JPH06311965A - Cornea shape measuring instrument - Google Patents

Cornea shape measuring instrument

Info

Publication number
JPH06311965A
JPH06311965A JP5128358A JP12835893A JPH06311965A JP H06311965 A JPH06311965 A JP H06311965A JP 5128358 A JP5128358 A JP 5128358A JP 12835893 A JP12835893 A JP 12835893A JP H06311965 A JPH06311965 A JP H06311965A
Authority
JP
Japan
Prior art keywords
optical system
curvature
corneal
eye
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5128358A
Other languages
Japanese (ja)
Other versions
JP3337268B2 (en
Inventor
Noriji Kawai
規二 河合
Masanao Fujieda
正直 藤枝
Nobuyuki Yano
信幸 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP12835893A priority Critical patent/JP3337268B2/en
Publication of JPH06311965A publication Critical patent/JPH06311965A/en
Application granted granted Critical
Publication of JP3337268B2 publication Critical patent/JP3337268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To easily derive an imperfect shere's radius of curvature being orthogonal to a principal meridian by allowing a reflected light obtained by projecting light from source of two sets or more provided with an optical axis in the center to transmit through a lens and a telecentric diaphragm, dividing it into two by a beam splitter and detecting it by a one-dimensional detecting element. CONSTITUTION:From one set of light sources 1a, 1b consisting of plural symmetrical light emission diodes set centering around an optical axis consisting of a chain line, the cornea 3 of an eye to be examined is irradiated obliquely with light beams made parallel by lenses 2a, 2b, and point light source images 1a', 1b' are formed. The reflected light from the light source images 1a,' 1b' is allowed to form an image on a telecentric diaphragm 6 by a lens 4. The light beam which passes through the diaphragm 6 is divided into two by a beam splitter 7, allowed to transmit through convex lenses 8a, 8b, and the light beam is detected by one-dimensional detecting elements 5a, 5b at a position being conjugate to the diaphragm 6. Subsequently, the similar measurement is executed by the light source from a direction different from the sources 1a, 1b. In such a way, an imperfect shere's radius of curvature being orthogonal to a principal meridian is derived easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は角膜の曲率半径を測定す
る角膜形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corneal shape measuring apparatus for measuring a radius of curvature of a cornea.

【0002】[0002]

【従来の技術】角膜形状を測定する装置としては、角膜
の経線方向の曲率半径を測定する装置が知られている。
しかし、コンタクトレンズのベ−スカ−ブの決定に際し
て、角膜の径線方向の曲率半径だけではなく、球欠的な
曲率半径の測定も要求されることがある。従来の手動式
の測定装置には、角膜中心部の経線方向の曲率半径を測
定し測定された主経線方向に光学系を回転した後、固視
灯を利用して測定が必要な位置を測定光軸上に誘導し
て、その球欠的な曲率半径を測定できる装置も提案され
ている。
2. Description of the Related Art As a device for measuring the shape of the cornea, a device for measuring the radius of curvature of the cornea in the meridian direction is known.
However, when determining the base curve of the contact lens, it is sometimes necessary to measure not only the radius of curvature of the cornea in the radial direction but also the spherical radius of curvature. The conventional manual measuring device measures the radius of curvature in the meridian direction of the central part of the cornea, rotates the optical system in the measured meridian direction, and then uses the fixation lamp to measure the position where measurement is required. There is also proposed an apparatus that can measure the spherical radius of curvature by guiding the optical axis.

【0003】[0003]

【発明が解決しようとする課題】従来の球欠的な曲率半
径を測定する装置は、光学系を回転する機構が必要であ
るので、操作が極めて煩雑であると共に、測定に時間が
掛かるという欠点がある。
The conventional apparatus for measuring a spherical radius of curvature requires a mechanism for rotating an optical system, which is extremely complicated to operate and takes a long time to measure. There is.

【0004】また、固視灯が被検眼の近くに置かれてい
るため、これを固視するには極めて大きな調節力が必要
であるという欠点がある。本発明は、上記のような欠点
に鑑み案出されたもので、被検眼の角膜の主経線方向に
直交する球欠的曲率半径が測定できる角膜形状測定装置
を提供することを技術課題とする。
Further, since the fixation lamp is placed near the eye to be inspected, there is a drawback that an extremely large adjusting force is required to fix the eye. The present invention has been devised in view of the above drawbacks, and an object thereof is to provide a corneal shape measuring apparatus capable of measuring a spherical curvature radius perpendicular to the main meridian direction of the cornea of the eye to be inspected. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は以下のような特徴を有する。 (1) 第1投影光学系により被検眼の角膜頂点を中心
として所定の指標を投影し、第1検出光学系により該指
標の角膜反射像を検出することにより角膜頂点近傍の角
膜形状を測定することができる角膜形状測定装置におい
て、角膜頂点近傍の角膜形状を測定するモ−ドから球欠
的曲率半径を測定するモ−ドに切換えるモ−ド切換え手
段と、被検眼の固視を誘導し前記第1検出光学系の光軸
上に角膜周辺部を導く固視誘導手段と、前記第1検出光
学系の光軸を通る被検眼の経線に対して直交する方向に
経線を挟んで複数の点指標を角膜周辺部に投影する第2
投影手段と、該第2投影手段により投影された角膜反射
像を検出する第2検出光学系と、第1検出光学系及び第
2検出光学系による検出結果に基づいて被検眼の乱視軸
方向の球欠的曲率半径を演算する演算手段とを具備する
ことを特徴とする。
In order to achieve the above object, the present invention has the following features. (1) The first projection optical system projects a predetermined index centering on the corneal apex of the eye to be examined, and the first detection optical system detects the corneal reflection image of the index to measure the corneal shape in the vicinity of the corneal apex. In the corneal shape measuring device capable of performing the above, a mode switching means for switching the mode for measuring the corneal shape in the vicinity of the apex of the cornea to the mode for measuring the spherical radius of curvature, and guiding the fixation of the eye to be examined. A plurality of fixation guiding means for guiding the corneal peripheral portion on the optical axis of the first detection optical system and a plurality of meridians sandwiching a meridian in a direction orthogonal to the meridian of the eye passing through the optical axis of the first detection optical system. Second projection of the point index to the cornea periphery
The projection means, the second detection optical system for detecting the corneal reflection image projected by the second projection means, and the astigmatic axis direction of the eye to be inspected based on the detection results by the first detection optical system and the second detection optical system. And a calculation means for calculating a spherical radius of curvature.

【0006】(2) (1)の第1投影光学系は、第1
検出光学系の光軸を中心として対称な位置に指標を投影
する指標組を少なくても2組は備えると共に、前記固視
誘導手段は各指標組の指標を結ぶ方向と直交する方向に
固視方向を誘導するように配置され、第1投影光学系と
第2投影光学系を共用することを特徴とする。
(2) The first projection optical system of (1) is
At least two index sets are provided for projecting the index at positions symmetrical with respect to the optical axis of the detection optical system, and the fixation guiding means fixes the fixation in a direction orthogonal to the direction connecting the indices of each index set. It is characterized in that it is arranged so as to guide the direction and shares the first projection optical system and the second projection optical system.

【0007】(3) (2)の第1投影光学系はある指
標組と他の1つの指標組とが直交する方向に配置すると
共に、指標光束を視認可能な光束で構成したことを特徴
とする。
(3) The first projection optical system of (2) is characterized in that a certain index set and another one index set are arranged in a direction orthogonal to each other, and the index light flux is constituted by a visible light flux. To do.

【0008】(4) (3)の第1投影光学系は被検眼
の90度間隔に配置された4個の点光源を有することを
特徴とする。
(4) The first projection optical system of (3) is characterized in that it has four point light sources arranged at 90-degree intervals of the eye to be inspected.

【0009】[0009]

【実施例】以下に、本発明の実施例について説明する。
図1は角膜形状測定装置の測定光学系を示す図である。
1a,1b,1c,1d(1c,1dは図示せず)は発
光ダイオ−ドからなる点光源であり、被検眼角膜に投影
される測定光として、また、被検眼に固視される固視視
標としての機能を果たすよう近赤外域の光束を出射す
る。点光源1a,1bより出射した光はコリメ−ティン
グレンズ2a,2bにより平行光束となり被検眼角膜3
にαの角度をもって投影され、点光源像1a´、1b´
を被検眼に形成する。同様に、点光源1aを光軸Oに対
し90度回転させた位置にある図示なき点光源1c,1
dより出射した光は、図示なきコリメ−ティングレンズ
2c,2dにより平行光束となり被検眼角膜3にαの角
度をもって投影され、図示なき点光源像3c´,3d´
ができる。
EXAMPLES Examples of the present invention will be described below.
FIG. 1 is a diagram showing a measurement optical system of the corneal shape measuring apparatus.
Reference numerals 1a, 1b, 1c and 1d (1c and 1d are not shown) are point light sources composed of a light emitting diode, and are used as measurement light projected on the cornea of the eye to be inspected, and are also fixed to the eye to be inspected. It emits a light flux in the near-infrared region so as to function as a target. Light emitted from the point light sources 1a and 1b is converted into a parallel light flux by the collimating lenses 2a and 2b, and the cornea 3 of the eye to be inspected.
Are projected at an angle of α onto the point light source images 1a ′, 1b ′.
Are formed on the eye to be examined. Similarly, the point light sources 1c, 1 (not shown) located at a position rotated by 90 degrees with respect to the optical axis O of the point light source 1a.
The light emitted from d is collimated by unillustrated collimating lenses 2c and 2d to be a parallel light beam, which is projected on the cornea 3 of the eye to be examined at an angle α, and unillustrated point light source images 3c ′ and 3d ′.
You can

【0010】結像レンズ4は、一次元位置検出素子5
a,5bの検出面と点光源像1a´,1b´,1c´,
1d´が共役となる位置に配置され、その像側焦点位置
にテレセントリック絞り6が配置されている。ビ−ムス
プリッタ7は光路を2分割している。さらに、テレセン
トリック絞り6と一次元位置検出素子5a,5bの間に
は、凸円筒レンズ8a,8bがその軸(母線)が一次元
位置検出素子の検出方向と一致するように配置されてい
る。凸円筒レンズ8a,8bの焦点距離は、円筒軸方向
断面では無限大で、円筒軸方向と直交する方向の断面で
は、テレセントリック絞り6と一次元位置検出素子5
a,5bとがほぼ共役となるように設計されている。さ
らに、一次元位置検出素子5aと5bは互いに直交の関
係にある。
The imaging lens 4 includes a one-dimensional position detecting element 5
a, 5b detection surfaces and point light source images 1a ', 1b', 1c ',
1d ′ is arranged at a conjugate position, and a telecentric diaphragm 6 is arranged at the image-side focal position thereof. The beam splitter 7 divides the optical path into two. Further, between the telecentric diaphragm 6 and the one-dimensional position detecting elements 5a and 5b, convex cylindrical lenses 8a and 8b are arranged so that their axes (bus lines) coincide with the detection direction of the one-dimensional position detecting element. The focal lengths of the convex cylindrical lenses 8a and 8b are infinite in the cross section in the cylinder axis direction, and the telecentric diaphragm 6 and the one-dimensional position detecting element 5 are in the cross section in the direction orthogonal to the cylinder axis direction.
It is designed so that a and 5b are almost conjugate. Further, the one-dimensional position detecting elements 5a and 5b are orthogonal to each other.

【0011】図2は装置の電気系ブロック図である。1
0は4個の点光源(1a,1b,1c,1d)点灯する
ためのLEDドライバ、11は検出素子5a,5b上の
信号をとらえるための駆動回路、12はクロックカウン
タ、13はクロック発生回路、14は11から送られて
くる信号のピ−ク電圧を保持するためのピ−クホ−ルド
回路、15は11からの信号とピ−クホ−ルド回路14
からコンピュ−タ17を経てピ−ク電圧の1/2に変換
された信号との電圧を比較してストロ−ブ信号を出すた
めのコンパレ−タ、16はストロ−ブ信号が入ったとき
のカウンタの値を保持するためのラッチ、18はA/D
コンバ−タ、19はD/Aコンバ−タである。
FIG. 2 is a block diagram of the electric system of the apparatus. 1
0 is an LED driver for turning on the four point light sources (1a, 1b, 1c, 1d), 11 is a drive circuit for capturing signals on the detection elements 5a, 5b, 12 is a clock counter, and 13 is a clock generation circuit. , 14 is a peak-hold circuit for holding the peak voltage of the signal sent from 11, and 15 is a peak-hold circuit with the signal from 11
From the computer through the computer 17 to compare the voltage with the signal converted to ½ of the peak voltage to output a strobe signal, and 16 is a comparator for outputting a strobe signal. Latch for holding counter value, 18 is A / D
The converter 19 is a D / A converter.

【0012】20は測定モ−ドを切換えるスイッチであ
り、頂点近傍の経線方向の曲率半径を測定するモ−ドか
ら角膜周辺部の球欠的曲率半径を測定するモ−ドに切換
える。21は表示回路、22はテレビモニタである。テ
レビモニタ22は図示しないテレビカメラにより撮影さ
れた前眼部像を表示すると共に、測定デ−タ等を表示す
る。
Reference numeral 20 denotes a switch for switching the measurement mode, which switches from the mode for measuring the radius of curvature in the meridian direction near the apex to the mode for measuring the spherical radius of curvature in the peripheral portion of the cornea. Reference numeral 21 is a display circuit, and 22 is a television monitor. The television monitor 22 displays an anterior ocular segment image captured by a television camera (not shown) and also displays measurement data and the like.

【0013】検出素子5によって得られた信号は駆動回
路11に伝達される。駆動回路11からの信号はコンパ
レ−タ15及びピ−クホ−ルド回路14に伝達される。
ピ−クホ−ルド回路14により検出されたピ−ク電圧は
A/Dコンバ−タ18によりデジタル信号に変換された
後、コンピュ−タ17に入力される。17で出力された
ピ−ク電圧のデジタル信号はD/Aコンバ−タ19でピ
−ク電圧の1/2の電圧信号に変換され、コンパレ−タ
15に入力される。この信号と直接コンパレ−タ15に
入った信号とを比較してストロ−ブ信号を出すが、ピ−
ク電圧の1/2の信号は1回前に入力した信号と比較す
ることになる。ストロ−ブ信号によりカウンタ12の信
号がラッチ16に入り、そのときの波形から明暗エッジ
の位置を読み取る。
The signal obtained by the detection element 5 is transmitted to the drive circuit 11. The signal from the drive circuit 11 is transmitted to the comparator 15 and the peak-hold circuit 14.
The peak voltage detected by the peak hold circuit 14 is converted into a digital signal by the A / D converter 18 and then input to the computer 17. The digital signal of the peak voltage output at 17 is converted into a voltage signal of 1/2 of the peak voltage at the D / A converter 19 and input to the comparator 15. This signal is compared with the signal directly input to the comparator 15 to output a strobe signal.
The signal of ½ of the input voltage is compared with the signal input one time before. The strobe signal causes the signal of the counter 12 to enter the latch 16, and the position of the bright and dark edges is read from the waveform at that time.

【0014】以上のような構成の装置において次にその
動作を説明する。なお、角膜中心部の径線方向の曲率半
径の測定及び演算方法は特開昭61−85920号公報
に詳細に説明されているので、その説明を援用する。図
示しない周知の位置合わせ機構により被検眼と装置を所
定の位置関係に置く。電源投入時の測定モ−ドは角膜頂
点近傍の経線方向の曲率半径及び主経線の軸角度を測定
するモ−ドであり、点光源1a〜1dを順次又は同時
(同時に点灯するときは像分離プリズム等を使用すると
よい)に点灯して、その像位置の検出により強弱の主経
線の曲率半径及び軸角度を算出する。
Next, the operation of the apparatus having the above-mentioned structure will be described. The method of measuring and calculating the radius of curvature of the central portion of the cornea in the radial direction is described in detail in Japanese Patent Laid-Open No. 61-85920, and the description thereof is incorporated herein by reference. The eye to be inspected and the device are placed in a predetermined positional relationship by a known alignment mechanism (not shown). The measurement mode when the power is turned on is a mode for measuring the radius of curvature in the meridian direction near the apex of the cornea and the axial angle of the main meridian, and the point light sources 1a to 1d are sequentially or simultaneously (image separation when simultaneously lit). It is better to use a prism or the like), and the radius of curvature and the axial angle of the strong and weak main meridians are calculated by detecting the image position.

【0015】スイッチ20が押されると、角膜周辺部の
球欠的曲率半径を測定するモ−ドに切換えられる。モ−
ドが切換えられると、点光源1aが点灯する(注意を引
くために点滅させる)。点光源1aから出射された光は
コリメ−ティングレンズにより平行光束にされ、被検眼
は点光源1aを無限遠に見ることができる。点光源1a
が固視されると、被検眼3は測定光軸に対してαの角度
回旋する。角膜下部に測定光軸を合わせて、図示しない
測定スイッチを押し、点光源1c及び1dを点灯する。
1c及び1dの角膜反射像の間隔が一次元位置検出素子
5bにより検出され、検出結果に基づいて角膜下部にお
ける球欠的曲率半径が算出される。
When the switch 20 is pressed, the mode is switched to the mode for measuring the spherical radius of curvature of the peripheral portion of the cornea. Mode
When the mode is switched, the point light source 1a lights up (blinks for attention). The light emitted from the point light source 1a is made into a parallel light flux by the collimating lens, and the eye to be examined can see the point light source 1a at infinity. Point light source 1a
When is fixed, the subject's eye 3 rotates by an angle α with respect to the measurement optical axis. The measurement optical axis is aligned with the lower part of the cornea, and a measurement switch (not shown) is pressed to turn on the point light sources 1c and 1d.
The interval between the corneal reflection images 1c and 1d is detected by the one-dimensional position detecting element 5b, and the spherical curvature radius in the lower cornea is calculated based on the detection result.

【0016】次に点光源1bを固視させ他状態で点光源
1c及び1dを点灯して、角膜の上部の球欠的曲率半径
を測定する。同様にして、点光源1cを固視灯として点
光源1a及び1bを点灯することにより角膜右部の周辺
における球欠的曲率半径を、点光源1dを固視灯とする
ことにより角膜左部の周辺における球欠的曲率半径をそ
れぞれ測定する。被検眼角膜が正確なト−リック面であ
れば測定デ−タは1つあれば良いが、被検眼は一般に正
確にはト−リック面でないことを考慮して、各経線方向
の球欠的な曲率半径を算出する上で最も良いデ−タを得
るために4個の球欠的曲率半径を測定する。本実施例の
固視方向の変更は、測定スイッチの測定信号に基づいて
所定の順序で固視灯を切換えているが、固視指定スイッ
チを設けて選択指定するようにしても良い。
Next, the point light source 1b is fixed and the point light sources 1c and 1d are turned on in other states to measure the spherical radius of curvature of the upper part of the cornea. Similarly, by turning on the point light sources 1a and 1b by using the point light source 1c as a fixation lamp, the spherical radius of curvature around the right part of the cornea can be obtained, and by using the point light source 1d as a fixation lamp, The spherical radius of curvature at the periphery is measured. If the cornea of the eye to be inspected is an accurate toric surface, only one measurement data is required, but in consideration of the fact that the eye to be inspected is not exactly the toric surface in general, it is aspherical in each meridian direction. The four spherical radii of curvature are measured in order to obtain the best data for calculating the various radii of curvature. In the modification of the fixation direction in this embodiment, the fixation lamps are switched in a predetermined order based on the measurement signal from the measurement switch, but a fixation specification switch may be provided for selective specification.

【0017】このようにして得られた周辺部の球欠的な
曲率半径に基づいて、強弱の主経線方向に直交する周辺
の球欠的曲率半径は次のようにして演算により求められ
る。求める主経線上の球欠的曲率半径をRs1(弱主経線
方向)、Rs2(強主経線方向)とし、中心部の測定によ
り求めた主経線方向の曲率半径をRm1(弱主経線方
向)、Rm2(強主経線方向)とすると、以下の式が成り
立つ。
Based on the thus obtained spherical radius of curvature of the peripheral portion, the peripheral spherical radius of curvature orthogonal to the strong and weak main meridian directions can be calculated by the following method. Let R s1 (weak main meridian direction) and R s2 (strong main meridian direction) be the spherical curvature radii on the main meridian to be obtained, and let R m1 (weak main meridian) be the radius of curvature obtained by measuring the central part. Direction) and R m2 (direction of strong main meridian), the following equation holds.

【数1】 hは角膜中心からサジッタルR測定点までの距離であ
る。(Rm12 はh2 に対して十分大きいので、数1は
次の数2に近似できる。
[Equation 1] h is the distance from the center of the cornea to the Sagittal R measurement point. Since (R m1 ) 2 is sufficiently larger than h 2 , Formula 1 can be approximated to Formula 2 below.

【数2】 さらに、被検眼の角膜中心から所定の距離の位置の球欠
的曲率半径をプロットすると、その軌跡は楕円に近似さ
せることができる。この球欠的曲率半径の軌跡および数
1から次式が得られる。
[Equation 2] Furthermore, by plotting the spherical curvature radius at a position at a predetermined distance from the center of the cornea of the eye to be examined, the locus can be approximated to an ellipse. The following equation is obtained from the locus of this spherical radius of curvature and Equation 1.

【数3】 数3のxとyは、前述の測定で得られた角膜周辺の球欠
的曲率半径に角膜中心測定で得られた乱視軸角度θだけ
軸を回転させる座標変換を加えたデ−タを使用する。変
換式は、数4に示す。
[Equation 3] For x and y in Equation 3, the data obtained by adding the coordinate transformation for rotating the axis by the astigmatic axis angle θ obtained in the corneal center measurement to the spherical radius of curvature around the cornea obtained in the above measurement is used. To do. The conversion formula is shown in Formula 4.

【数4】 変換されたxとyを数3に代入し、かつ数1を利用する
ことによって、デ−タとして使用した球欠的曲率半径の
測定位置に近い主経線上での球欠的曲率半径を得ること
ができる。このようにして、上及び下の強弱各主経線に
おける計4個の球欠的曲率半径を算出できる。なお、主
経線上での球欠的曲率半径を算出するためのデ−タ選択
については、その主経線に最も近い位置の測定デ−タを
採るほか、近い2点のデ−タの平均を利用したりするこ
ともできる。さらに、図3のように点光源の数を増やし
て配置し、中心測定で得られる弱主計線方向に近い点光
源を固視灯として利用し、この経線に直交する方向の2
つの点光源を測定光として利用することによって、より
正確な球欠的曲率半径を測定できる。
[Equation 4] By substituting the converted x and y into the equation 3 and using the equation 1, the spherical radius of curvature on the main meridian near the measurement position of the spherical radius of curvature used as data is obtained. be able to. In this way, a total of four spherical radiuses of curvature can be calculated for the upper and lower main meridians. Regarding the data selection for calculating the spherical radius of curvature on the main meridian, the measurement data at the position closest to the main meridian is taken, and the average of the two closest data points is taken. You can also use it. Further, as shown in FIG. 3, the number of point light sources is increased, and the point light sources near the weak main line direction obtained by the center measurement are used as a fixation lamp.
A more accurate spherical radius of curvature can be measured by using one point light source as the measurement light.

【0018】[0018]

【発明の効果】本発明によれば、極めて簡単に角膜の主
経線方向に直交する球欠的曲率半径が測定できる。
According to the present invention, the spherical radius of curvature perpendicular to the main meridian direction of the cornea can be measured very easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】角膜形状測定装置の測定光学系を示す図であ
る。
FIG. 1 is a diagram showing a measurement optical system of a corneal shape measuring apparatus.

【図2】装置の電気系ブロック図である。FIG. 2 is a block diagram of an electric system of the apparatus.

【図3】点光源の数を増やした場合を示す図である。FIG. 3 is a diagram showing a case where the number of point light sources is increased.

【符号の説明】[Explanation of symbols]

1 発光ダイオ−ド 2 コリメ−ティングレンズ 3 被検眼角膜 4 結像レンズ 5 検出素子 1 Light emitting diode 2 Collimating lens 3 Eye cornea 4 Imaging lens 5 Detection element

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月28日[Submission date] February 28, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】このようにして得られた周辺部の球欠的な
曲率半径に基づいて、強弱の主経線方向に直交する周辺
の球欠的曲率半径は次のようにして演算により求められ
る。求める主経線上の球欠的曲率半径をRs1(弱主経線
方向)、Rs2(強主経線方向)とし、中心部の測定によ
り求めた主経線方向の曲率半径をRm1(弱主経線方
向)、Rm2(強主経線方向)とすると、以下の式が成り
立つ。
Based on the thus obtained spherical radius of curvature of the peripheral portion, the peripheral spherical radius of curvature orthogonal to the strong and weak main meridian directions can be calculated by the following method. Let R s1 (weak main meridian direction) and R s2 (strong main meridian direction) be the spherical curvature radii on the main meridian to be obtained, and let R m1 (weak main meridian) be the radius of curvature obtained by measuring the central part. Direction) and R m2 (direction of strong main meridian), the following equation holds.

【数1】 hは角膜中心からサジッタルR測定点までの距離であ
る。(Rm12 はh2 に対して十分大きいので、数1は
次の数2に近似できる。
[Equation 1] h is the distance from the center of the cornea to the Sagittal R measurement point. Since (R m1 ) 2 is sufficiently larger than h 2 , Formula 1 can be approximated to Formula 2 below.

【数2】 さらに、被検眼の角膜中心から所定の距離の位置の球欠
的曲率半径をプロットすると、その軌跡は楕円に近似さ
せることができる。この球欠的曲率半径の軌跡および数
1から次式が得られる。
[Equation 2] Furthermore, by plotting the spherical curvature radius at a position at a predetermined distance from the center of the cornea of the eye to be examined, the locus can be approximated to an ellipse. The following equation is obtained from the locus of this spherical radius of curvature and Equation 1.

【数3】 数3のxとyは、前述の測定で得られた角膜周辺の球欠
的曲率半径に角膜中心測定で得られた乱視軸角度θだけ
軸を回転させる座標変換を加えたデ−タを使用する。変
換式は、数4に示す。
[Equation 3] X and y in Equation 3 are the corneal deficiencies around the cornea obtained in the above measurement.
Astigmatic axis angle θ obtained by measuring the center of the cornea
The data with coordinate transformation to rotate the axis is used. Strange
The substitution formula is shown in Equation 4.

【数4】 変換されたxとyを数3に代入し、かつ数1を利用する
ことによって、デ−タとして使用した球欠的曲率半径の
測定位置に近い主経線上での球欠的曲率半径を得ること
ができる。このようにして、上及び下の強弱各主経線に
おける計4個の球欠的曲率半径を算出できる。なお、主
経線上での球欠的曲率半径を算出するためのデ−タ選択
については、その主経線に最も近い位置の測定デ−タを
採るほか、近い2点のデ−タの平均を利用したりするこ
ともできる。さらに、図3のように点光源の数を増やし
て配置し、中心測定で得られる弱主線方向に近い点光
源を固視灯として利用し、この経線に直交する方向の2
つの点光源を測定光として利用することによって、より
正確な球欠的曲率半径を測定できる。
[Equation 4] By substituting the converted x and y into the equation 3 and using the equation 1, the spherical radius of curvature on the main meridian near the measurement position of the spherical radius of curvature used as data is obtained. be able to. In this way, a total of four spherical radiuses of curvature can be calculated for the upper and lower main meridians. Regarding the data selection for calculating the spherical radius of curvature on the main meridian, the measurement data at the position closest to the main meridian is taken, and the average of the two closest data points is taken. You can also use it. Furthermore, arranged to increase the number of point light sources as shown in FIG. 3, the point source close to Yowanushi via line direction obtained at the center measured using a fixation lamp, the direction perpendicular to the meridian 2
A more accurate spherical radius of curvature can be measured by using one point light source as the measurement light.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1投影光学系により被検眼の角膜頂点
を中心として所定の指標を投影し、第1検出光学系によ
り該指標の角膜反射像を検出することにより角膜頂点近
傍の角膜形状を測定することができる角膜形状測定装置
において、角膜頂点近傍の角膜形状を測定するモ−ドか
ら球欠的曲率半径を測定するモ−ドに切換えるモ−ド切
換え手段と、被検眼の固視を誘導し前記第1検出光学系
の光軸上に角膜周辺部を導く固視誘導手段と、前記第1
検出光学系の光軸を通る被検眼の経線に対して直交する
方向に経線を挟んで複数の点指標を角膜周辺部に投影す
る第2投影手段と、該第2投影手段により投影された角
膜反射像を検出する第2検出光学系と、第1検出光学系
及び第2検出光学系による検出結果に基づいて被検眼の
乱視軸方向の球欠的曲率半径を演算する演算手段とを具
備することを特徴とする角膜形状測定装置。
1. A corneal shape in the vicinity of a corneal apex is formed by projecting a predetermined index around the corneal apex of an eye by the first projection optical system and detecting a corneal reflection image of the index by the first detection optical system. In a corneal shape measuring device capable of measuring, a mode switching means for switching from a mode for measuring a corneal shape in the vicinity of a corneal apex to a mode for measuring a spherical radius of curvature, and a fixation of an eye to be examined. Fixation guidance means for guiding and guiding the peripheral portion of the cornea on the optical axis of the first detection optical system;
Second projection means for projecting a plurality of point indices on the corneal peripheral portion with a meridian in a direction orthogonal to the meridian of the eye to be inspected that passes through the optical axis of the detection optical system, and the cornea projected by the second projection means A second detection optical system for detecting a reflected image and a calculation means for calculating a spherical radius of curvature of the eye to be inspected in the astigmatic axis direction based on the detection results of the first detection optical system and the second detection optical system. A corneal shape measuring device characterized by the above.
【請求項2】 請求項1の第1投影光学系は、第1検出
光学系の光軸を中心として対称な位置に指標を投影する
指標組を少なくても2組は備えると共に、前記固視誘導
手段は各指標組の指標を結ぶ方向と直交する方向に固視
方向を誘導するように配置され、第1投影光学系と第2
投影光学系を共用することを特徴とする角膜形状測定装
置。
2. The first projection optical system according to claim 1, further comprising at least two index sets for projecting indices at positions symmetrical with respect to the optical axis of the first detection optical system, and the fixation system. The guiding means is arranged so as to guide the fixation direction in a direction orthogonal to the direction connecting the indexes of each index set, and includes the first projection optical system and the second projection optical system.
A corneal shape measuring apparatus that shares a projection optical system.
【請求項3】 請求項2の第1投影光学系はある指標組
と他の1つの指標組とが直交する方向に配置すると共
に、指標光束を視認可能な光束で構成し、投影光学系と
固視誘導手段を共用化したことを特徴とする角膜形状測
定装置。
3. The first projection optical system according to claim 2, wherein a certain index set and another one index set are arranged in a direction orthogonal to each other, and the index light flux is constituted by a visible light flux. A corneal shape measuring apparatus characterized in that a fixation guiding means is shared.
【請求項4】 請求項3の第1投影光学系は被検眼の9
0度間隔に配置された4個の点光源を有することを特徴
とする角膜形状測定装置。
4. The first projection optical system according to claim 3,
A corneal shape measuring apparatus having four point light sources arranged at 0 degree intervals.
JP12835893A 1993-04-30 1993-04-30 Corneal shape measuring device Expired - Fee Related JP3337268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12835893A JP3337268B2 (en) 1993-04-30 1993-04-30 Corneal shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12835893A JP3337268B2 (en) 1993-04-30 1993-04-30 Corneal shape measuring device

Publications (2)

Publication Number Publication Date
JPH06311965A true JPH06311965A (en) 1994-11-08
JP3337268B2 JP3337268B2 (en) 2002-10-21

Family

ID=14982850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12835893A Expired - Fee Related JP3337268B2 (en) 1993-04-30 1993-04-30 Corneal shape measuring device

Country Status (1)

Country Link
JP (1) JP3337268B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576780A (en) * 1992-05-26 1996-11-19 Cain Research Pty. Ltd. Method for evaluation of length of focus of the eye
US5909268A (en) * 1996-10-25 1999-06-01 Nidek Co., Ltd. Alignment detecting apparatus
EP0999479A2 (en) 1998-11-02 2000-05-10 Sharp Kabushiki Kaisha Image forming apparatus
KR100479542B1 (en) * 2002-09-12 2005-04-06 주식회사 휴비츠 Method for reducing measuring time of refractive power-corneal curvature in keratometer-refractometer
CN103961055A (en) * 2013-06-20 2014-08-06 深圳市斯尔顿科技有限公司 Optical system and optical method for measuring human eye white-to-white distance
CN104887176A (en) * 2015-06-18 2015-09-09 苏州四海通仪器有限公司 Handheld independent vision measurement device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576780A (en) * 1992-05-26 1996-11-19 Cain Research Pty. Ltd. Method for evaluation of length of focus of the eye
US5684561A (en) * 1992-05-26 1997-11-04 Daphne Eye Technologies Device and method for evaluation of refraction of the eye
US5909268A (en) * 1996-10-25 1999-06-01 Nidek Co., Ltd. Alignment detecting apparatus
EP0999479A2 (en) 1998-11-02 2000-05-10 Sharp Kabushiki Kaisha Image forming apparatus
KR100479542B1 (en) * 2002-09-12 2005-04-06 주식회사 휴비츠 Method for reducing measuring time of refractive power-corneal curvature in keratometer-refractometer
CN103961055A (en) * 2013-06-20 2014-08-06 深圳市斯尔顿科技有限公司 Optical system and optical method for measuring human eye white-to-white distance
CN103961055B (en) * 2013-06-20 2015-07-22 深圳市斯尔顿科技有限公司 Optical system and optical method for measuring human eye white-to-white distance
CN104887176A (en) * 2015-06-18 2015-09-09 苏州四海通仪器有限公司 Handheld independent vision measurement device and method
US10694937B2 (en) 2015-06-18 2020-06-30 Suzhou Seehitech Equipments Co., Ltd. Hand-held autonomous visual acuity measurement apparatus and visual acuity measuring method

Also Published As

Publication number Publication date
JP3337268B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
JP3269665B2 (en) Alignment detection device and ophthalmic apparatus using the alignment detection device
US5463430A (en) Examination apparatus for examining an object having a spheroidal reflective surface
JP3630884B2 (en) Ophthalmic examination equipment
JP3509377B2 (en) Curvature measuring device
JPH0618364A (en) Lens measuring device
JPH06311965A (en) Cornea shape measuring instrument
JPH04332525A (en) Cornea shape measuring instrument
JP3966775B2 (en) Refractometer
JPH0417048B2 (en)
US4364646A (en) Position adjusting device for ophthalmologic instrument
JP3269660B2 (en) Corneal shape measuring device
JPH0353572B2 (en)
JPS625147A (en) Refraction intensity measuring apparatus for optical system
JP2962845B2 (en) Corneal curvature measurement device
JP2707249B2 (en) Corneal shape measuring device
JPS6343091B2 (en)
JPH05212001A (en) Measuring instrument for radius of curvature
JPS629331B2 (en)
JPH0580611B2 (en)
SU1337042A1 (en) Keratometer
JPS5977828A (en) Apparatus for measuring shape of cornea
JPS61206422A (en) Visual field measuring apparatus
JPS59155232A (en) Ophthalmic apparatus
JPS6240568Y2 (en)
JPS61135633A (en) Apparatus for measuring eye refraction

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees