JPS6240568Y2 - - Google Patents

Info

Publication number
JPS6240568Y2
JPS6240568Y2 JP9762981U JP9762981U JPS6240568Y2 JP S6240568 Y2 JPS6240568 Y2 JP S6240568Y2 JP 9762981 U JP9762981 U JP 9762981U JP 9762981 U JP9762981 U JP 9762981U JP S6240568 Y2 JPS6240568 Y2 JP S6240568Y2
Authority
JP
Japan
Prior art keywords
light
optical
light splitter
radius
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9762981U
Other languages
Japanese (ja)
Other versions
JPS584016U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9762981U priority Critical patent/JPS584016U/en
Publication of JPS584016U publication Critical patent/JPS584016U/en
Application granted granted Critical
Publication of JPS6240568Y2 publication Critical patent/JPS6240568Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、角膜、レンズ等の被検物の曲率半径
を光学的に測定する曲率半径測定装置に関し、特
に測定装置と被検物とを位置合わせするための位
置合わせ光学系に関する。
[Detailed description of the invention] The present invention relates to a curvature radius measuring device that optically measures the radius of curvature of a test object such as a cornea or a lens, and in particular, the present invention relates to a curvature radius measuring device that optically measures the radius of curvature of a test object such as a cornea or a lens. Regarding optical systems.

人間の眼の角膜の曲率半径を測定しようとする
場合、角膜はトーリツク面を含むことがあり、そ
のような場合には、トーリツク面の最大、最小を
示す曲率半径と、その方向(主径線の方向)とを
測定する必要がある。その前提として測定装置と
角膜とを位置合わせする必要がある。
When trying to measure the radius of curvature of the cornea of a human eye, the cornea may include a toric surface, and in such cases, the radius of curvature indicating the maximum and minimum of the toric surface and its direction (principal axis direction) and need to be measured. As a premise, it is necessary to align the measuring device and the cornea.

従来、被検者にリング状の光束又は円周上に配
設された多数の光点等の指標を投影し、角膜表面
での反射像の位置によつて鉛直面内での位置合わ
せを行なつていた。また、被検眼がトーリツク面
である場合には、測定装置を回転させて、反射像
の最大又は最小間隔(被検眼にリング光束を投影
した場合には楕円の長軸と短軸の長さになる)の
方向(主径線の方向)を所定の方向に合致させる
必要があつた。そのため、焦点板上の十字線に反
射像の最大、最小間隔(又は像の流れの方向)が
重なるように測定装置を回転させていた。すなわ
ち、従来の装置では、反射像の位置、形状によつ
て鉛直面内での位置合わせ及び主径線の方向に測
定装置を位置合せしていたのである。従つて、
種々の工夫はしているものの、位置合わせの迅速
さ及び正確さにおいて満足のできるものはなかつ
た。
Conventionally, indicators such as a ring-shaped light beam or a large number of light spots arranged on the circumference are projected onto the subject, and alignment in the vertical plane is performed based on the position of the reflected image on the corneal surface. I was getting used to it. In addition, if the eye to be examined is a toric surface, the measuring device can be rotated to determine the maximum or minimum interval between the reflected images (or the length of the long axis and short axis of the ellipse when a ring beam is projected onto the eye to be examined). It was necessary to match the direction (direction of the main radius) with a predetermined direction. Therefore, the measuring device was rotated so that the maximum and minimum intervals (or the direction of image flow) of the reflected images overlapped with the crosshairs on the reticle. That is, in the conventional apparatus, the measuring apparatus was aligned in the vertical plane and in the direction of the main meridian depending on the position and shape of the reflected image. Therefore,
Although various efforts have been made, none have been able to satisfy the speed and accuracy of positioning.

本考案の目的は、曲率半径測定装置において、
迅速かつ正確に位置合わせの行なえる位置合わせ
光学系を提供することにある。本考案は、従来の
欠点が、反射像の位置、形状をもとにして被検眼
と測定装置との位置合わせを行なつていたために
生じたものであることに鑑みてなされたものであ
り、合致式によつて位置合わせの行なえる曲率半
径測定装置の位置合せ光学系を提供するものであ
る。
The purpose of the present invention is to provide a radius of curvature measurement device that
An object of the present invention is to provide an alignment optical system that can perform alignment quickly and accurately. The present invention was developed in view of the fact that the drawbacks of the conventional method were caused by aligning the eye to be examined and the measuring device based on the position and shape of the reflected image. The present invention provides an alignment optical system for a radius of curvature measuring device that can perform alignment using a matching formula.

以下、図面に示した実施例に基づいて本考案を
説明する。
The present invention will be described below based on embodiments shown in the drawings.

第1図において、対物レンズ4の光軸O1と対
称に角度θを成して、光源1a,1b、ピンホー
ル2a,2b、コリメータレンズ3a,3bを有
する一対の投影光学系の光軸Oa,Obが設けられ
ている。また、第1図のA−A矢視図である第2
図からも明らかなように、光軸を含んで第1図の
紙面に垂直な面内にも同様に、光軸O1と対称に
角度θを成して、光源1c,1d、ピンホール2
c,2d、コリメータレンズ3c,3dを有する
一対の投影光学系の光軸Oc,Odが設けられてお
り、その際、光軸Oc,Odが光軸O1と交鎖する点
は、光軸Oa,Obも交鎖する如く、各投影光学系
が光軸O1の囲りに設けられている。
In FIG. 1, the optical axes Oa of a pair of projection optical systems having light sources 1a, 1b, pinholes 2a, 2b, and collimator lenses 3a, 3b form an angle θ symmetrically with the optical axis O1 of the objective lens 4. , Ob is provided. In addition, the second
As is clear from the figure, the light sources 1c, 1d and the pinhole 2 also form an angle θ symmetrically with the optical axis O 1 in a plane that includes the optical axis and is perpendicular to the plane of the paper in FIG. 1.
A pair of optical axes Oc and Od are provided for a pair of projection optical systems having collimator lenses 3c and 3d, and the point where the optical axes Oc and Od intersect with the optical axis O1 is the optical axis. Each projection optical system is provided around the optical axis O1 so that Oa and Ob also intersect.

対物レンズ4の背後には反透過鏡5が設けられ
ており、対物レンズ4への入射光を測定光学系
(透過)と位置合わせ光学系(反射)とに分離す
る。初めに反透過鏡5を透過後の測定光学系につ
いて説明する。絞り6は対物レンズ4の後側焦点
位置に設けられている。レンズ7は、前側焦点位
置が絞り6の位置に一致するように配設されてお
り、レンズ4,7と絞り6とによつていわゆるテ
レセントリツク光学系を形成している。レンズ7
の背後には反射鏡8が設けられており、光路を90
度曲げて受光素子9へ導く。受光素子9は、レン
ズ7の焦点位置に設けられておりポジシヨンセン
サの如き素子であつて表面に形成された点像の位
置に応じた信号を出力するものが用いられる。
An anti-transmissive mirror 5 is provided behind the objective lens 4, and separates the light incident on the objective lens 4 into a measurement optical system (transmission) and an alignment optical system (reflection). First, the measurement optical system after passing through the anti-transmission mirror 5 will be explained. The aperture 6 is provided at the back focal position of the objective lens 4. The lens 7 is arranged so that its front focal position coincides with the position of the aperture 6, and the lenses 4, 7 and the aperture 6 form a so-called telecentric optical system. lens 7
A reflector 8 is installed behind the 90
The light is bent once and guided to the light receiving element 9. The light receiving element 9 is provided at the focal point of the lens 7, and is an element such as a position sensor that outputs a signal according to the position of a point image formed on the surface.

次に反透過鏡5を反射後の位置合わせ光学系に
ついて説明する。絞り10は対物レンズ4の後側
焦点位置に設けられている。絞り10の背後に
は、貼り合わせプリズム11が設けられている。
このプリズム11は、貼り合わせ面11aがほぼ
550nm程度で立ち上がるダイクロイツクミラーと
して構成されている。プリズムの一方は、稜線が
ダイクロイツクミラー11aと平行になるように
形成されたダハ反射鏡11bを有し、プリズムの
他方は、ダイクロイツクミラー11aと平行な平
面鏡11cを有する。そして、ダイクロイツクミ
ラー11aの大きさは、ダイクロイツクミラー1
1aで分離した光軸がダハ反射鏡11b、平面鏡
11cにて各々90度折れ曲り、再び合致する位置
まで含むようなものでなければならない。プリズ
ム11の背後には絞り10上を前側焦点位置とす
るレンズ12が設けられている。すなわち、測定
光学系の場合と同様にレンズ4,12、絞り10
によつてテレセントリツク光学系が形成されてい
る。レンズ12の後側焦点位置には焦点板13が
設けられており、従つて、焦点板13は、受光素
子9と等価な位置にあることになる。焦点板13
には光軸で交鎖する十字線が設けられており、十
字の一方は紙面内にあり、他方は紙面に直角であ
る。焦点板13の背後には接眼レンズ14が設け
られている。
Next, the positioning optical system after reflecting the anti-transmissive mirror 5 will be explained. The aperture 10 is provided at the back focal position of the objective lens 4. A bonded prism 11 is provided behind the aperture 10.
In this prism 11, the bonding surface 11a is approximately
It is constructed as a dichroic mirror that rises at around 550 nm. One of the prisms has a roof reflecting mirror 11b whose ridgeline is parallel to the dichroic mirror 11a, and the other prism has a plane mirror 11c parallel to the dichroic mirror 11a. The size of the dichroic mirror 11a is as follows:
It must be such that the optical axis separated at 1a is bent by 90 degrees at the roof reflector 11b and the plane mirror 11c, and includes the positions where they meet again. A lens 12 whose front focal point is above the aperture 10 is provided behind the prism 11. That is, as in the case of the measurement optical system, the lenses 4 and 12 and the aperture 10
A telecentric optical system is formed by this. A focusing plate 13 is provided at the rear focal position of the lens 12, and therefore the focusing plate 13 is located at a position equivalent to that of the light receiving element 9. Focus plate 13
are provided with crosshairs intersecting at the optical axis, one of the crosses being in the plane of the paper and the other at right angles to the plane of the paper. An eyepiece lens 14 is provided behind the focus plate 13.

このような光学系であるから、光源1a乃至1
dからの光束はピンホール2a乃至2dを透過後
コリメータレンズ3a乃至3dにて平行光束にさ
れた後、光軸Oa乃至Odに沿つて被検眼E1へ投影
される。被検眼E1の角膜表面での反射光は対物
レンズ4に入射した後、反透過鏡5にて反射光と
透過光とに分離される。透過光は絞り6、レンズ
7、反射鏡8を経て受光素子9上に達する。本例
ではテレセントリツク光学系を用いているので、
対物レンズ4の光軸方向での位置合わせをそれほ
ど厳密にやらなくとも、レンズ7を透過後の主光
線は光軸と平行になるから、受光素子9は主光線
の位置、すなわちピンホール像がぼけた状態にあ
る時には、最も明るい位置(ぼけた円の中心に相
当)をピンホール像の座標位置として検出する如
く成すことによつてピンぼけの影響を除くことが
できる。受光素子9は、ポジシヨンセンサ等周知
の素子を用いることができ、そこから出力される
座標に応じた信号から、像間距離を求めることが
できる。なお、本例では光電的に像間距離を求め
る例を上げたが、光学的に読み取る方式等、その
求める手法はなんでも良い。
With such an optical system, the light sources 1a to 1
The light flux from d passes through pinholes 2a to 2d, is made into a parallel light flux by collimator lenses 3a to 3d, and is then projected onto the subject's eye E1 along optical axes Oa to Od. After the reflected light from the corneal surface of the eye E1 to be examined enters the objective lens 4, it is separated by the anti-transmissive mirror 5 into reflected light and transmitted light. The transmitted light passes through an aperture 6, a lens 7, and a reflecting mirror 8 before reaching a light receiving element 9. In this example, a telecentric optical system is used, so
Even if the positioning of the objective lens 4 in the optical axis direction is not very strict, the principal ray after passing through the lens 7 will be parallel to the optical axis, so the light receiving element 9 will be able to detect the position of the principal ray, that is, the pinhole image. When the image is out of focus, the effect of out-of-focus can be removed by detecting the brightest position (corresponding to the center of the out-of-focus circle) as the coordinate position of the pinhole image. A well-known element such as a position sensor can be used as the light-receiving element 9, and the inter-image distance can be determined from a signal output from the light-receiving element 9 according to the coordinates. In this example, the inter-image distance is determined photoelectrically, but any method such as an optical reading method may be used.

さて、反透過鏡5を反射した光は絞り10を通
つてプリズム11へ入射する。プリズム11へ入
射した光は、ダイクロイツクミラー11aによつ
て波長(550nm)を境に2つの波長域の光に分離
されて、一方は透過、他方は反射される。ダイク
ロツクミラー11aを透過した光はダハ反射鏡1
1bで反射され、またダイクロツクミラー11a
で反射した光は平面鏡11cで反射され、再び2
つの光はダイクロイツクミラー11aで合致す
る。従つて、ダハ反射鏡11bで反射された光に
よる像と平面鏡11cで反射された光による像と
は左右逆転することになる。プリズム11を射出
した光は、レンズによつて焦点板13上に像を生
ずる。検者E2は、接眼レンズ14を通して焦点
板13を観察する。
Now, the light reflected by the anti-transmissive mirror 5 passes through the aperture 10 and enters the prism 11. The light incident on the prism 11 is separated by the dichroic mirror 11a into two wavelength ranges with the wavelength (550 nm) as the boundary, one of which is transmitted and the other is reflected. The light transmitted through the dichroic mirror 11a is reflected by the roof reflector 1.
1b, and is also reflected by the dichroic mirror 11a.
The light reflected by the plane mirror 11c is reflected again by the 2
The two lights are matched by a dichroic mirror 11a. Therefore, the image of the light reflected by the roof mirror 11b and the image of the light reflected by the plane mirror 11c are reversed left and right. The light emitted from the prism 11 forms an image on the focus plate 13 by a lens. The examiner E 2 observes the focusing plate 13 through the eyepiece 14 .

いま、被検眼E1と装置100とは光軸O1方向
の位置合わせ(ピント合せ)は完了しているが、
装置100の光軸O1の延長に被検眼E1の頂点を
位置合わせすること(光軸合わせ)が未だ行なわ
れておらず、被検眼E1の角膜が球面である場合
を考える。そうすると、すべての位置合わせが完
了した場合、焦点板13上には第4図の如き光軸
を中心にピンホール2a乃至2dに対応した輝点
の像2a′乃至2d′が結像するが、光軸合わせが完
了していない場合にはプリズム11のダハ反射鏡
11b、平面鏡11cでは反射像が左右反転する
ので、焦点板13上には第3図の如き8つの輝点
の像が結像する。しかも、プリズム11の貼り合
わせ面は前述の如きダイクロイツクミラー11a
となつているので、例えば第3図の黒い点は青つ
ぽく、白い点は赤つぽく見えることになる。被検
眼E1に対して装置100を光軸O1と直交する方
向へ移動せしめて位置合わせ(光軸合わせ)が完
了すれば、8つの輝点の像は第4図の如く対応す
る青つぽい像と赤つぽい像が重なつて4つの白い
像となる。このとき4つの像は十字線に重なる。
一対の投影光学系により生じた像の間隔h1,h2
は、周知の如く第1図紙面内の径線の方向とそれ
に直角な方向での曲率半径に対応する。いま被検
眼E1の角膜は球面であるとしたのでh1=h2であ
る。
Now, the alignment (focusing) of the eye to be examined E 1 and the device 100 in the optical axis O 1 direction has been completed;
Consider a case where the vertex of the eye E 1 to be examined has not yet been aligned with the extension of the optical axis O 1 of the apparatus 100 (optical axis alignment), and the cornea of the eye E 1 to be examined has a spherical surface. Then, when all the alignments are completed, images 2a' to 2d' of bright spots corresponding to the pinholes 2a to 2d are formed on the reticle 13 around the optical axis as shown in FIG. If the optical axis alignment is not completed, the reflected images on the roof reflector 11b and the plane mirror 11c of the prism 11 are reversed left and right, so that images of eight bright spots as shown in FIG. 3 are formed on the focus plate 13. do. Moreover, the bonding surface of the prism 11 is the dichroic mirror 11a as described above.
Therefore, for example, the black dot in Figure 3 looks blue, and the white dot looks red. When the alignment (optical axis alignment) is completed by moving the device 100 in the direction orthogonal to the optical axis O 1 with respect to the eye E 1 to be examined, the images of the eight bright spots will become the corresponding blue color as shown in FIG. The red and red statues overlap to form four white statues. At this time, the four images overlap the crosshair.
Interval h 1 , h 2 between images generated by a pair of projection optical systems
As is well known, corresponds to the direction of the radial line in the plane of FIG. 1 and the radius of curvature in the direction perpendicular thereto. Assume that the cornea of the eye E 1 to be examined is spherical, so h 1 = h 2 .

次に被検眼E1の角膜がトーリツク面である場
合を考える。上述と同様に、被検眼E1と装置1
00とはピント合わせは完了しているが、光軸合
わせは完了しておらず、しかも、主径線が第1図
の紙面内にない場合を考える。そうすると、焦点
板13上には第5図の如き8つの像が生じること
になる。すなわち、角膜での反射像はトーリツク
面におけるねじれの影響と周方向での異なる曲率
の影響とを受けて、同色の4点を結んだ四辺形が
第3図の如く正方形にならず、第5図の如く菱形
となり、しかもその対角線の方向が0゜もしくは
90゜以外の角度になる。そこで、被検眼E1と装
置100との光軸合わせを行なうと第6図の如き
青と赤の輝点の像が交互に並ぶことになる。逆に
言えば、第5図のようにばらばらだつた像が第6
図のように規則正しく並ぶように装置100を光
軸O1と直交する方向へ移動して光軸合わせを行
なう。その後、装置を光軸O1を中心として回転
して、十字線に4つの白い像が重なる如く成せ
ば、トーリツク面の主径線の方向が投影光学系に
よるピンホールの投影方向に一致することにな
る。このときの装置100の回転角はトーリツク
面の主径線の方向に対応し、ピンホール2aに対
応する輝点の像2a′とピンホール2bに対応する
輝点の像2b′との間隔h1は一方の主径線における
曲率半径となり、同様に像2c′と2d′との間隔h2
は他方の主径線の曲率半径となる。
Next, consider the case where the cornea of the eye E1 to be examined is a toric surface. Similarly to the above, the eye to be examined E 1 and the device 1
00 means that focusing has been completed, but optical axis alignment has not been completed, and furthermore, the main diameter line is not within the paper plane of FIG. 1. Then, eight images as shown in FIG. 5 will be generated on the focus plate 13. In other words, the reflected image on the cornea is affected by the torsion on the toric surface and the different curvatures in the circumferential direction, so that the quadrilateral connecting four points of the same color does not form a square as shown in Figure 3, but instead forms a 5th square. As shown in the figure, it is diamond-shaped, and the diagonal direction is 0° or
The angle will be other than 90°. Therefore, when the optical axes of the eye E1 to be examined and the apparatus 100 are aligned, images of blue and red bright spots are arranged alternately as shown in FIG. Conversely, the scattered images shown in Figure 5 are the 6th image.
The optical axes are aligned by moving the device 100 in a direction perpendicular to the optical axis O1 so that the optical axes are lined up regularly as shown in the figure. After that, if the device is rotated around the optical axis O1 so that the four white images are superimposed on the crosshairs, the direction of the principal axis of the toric surface will match the direction of projection of the pinhole by the projection optical system. become. The rotation angle of the device 100 at this time corresponds to the direction of the main axis of the toric surface, and the distance h between the bright spot image 2a' corresponding to the pinhole 2a and the bright spot image 2b' corresponding to the pinhole 2b 1 is the radius of curvature on one main meridian, and similarly the distance h 2 between images 2c' and 2d'
is the radius of curvature of the other main radius.

なお、操作手順としては第5図から装置100
を回転して第8図の如く成し、その後光軸合わせ
を行なつて第7図になる如く操作しても良い。
The operating procedure for the device 100 is shown in FIG.
The optical axis may be rotated to form the structure as shown in FIG. 8, and then the optical axis may be aligned and the operation may be performed as shown in FIG.

以上の説明でもわかるように、曲率半径は受光
素子9の出力に基づいて求めなくとも、焦点板1
3の十字線に目盛を打つておけば視覚的に曲率半
径を読み取ることができるのでその場合は部材
6,7,8,9は必要なくなる。また、十字線に
目盛を打たないような場合には十字線は必ずしも
必要でない。勿論その場合には他に間隔を読み取
る装置が必要となる。さらに、合致の確認を行な
いやすくするために、上述の例ではダハ反射鏡1
1bの光路を通つた像と平面鏡11cの光路を通
つた像とを色別しており具体的にはプリズム11
の貼り合わせ面をダイクロイツクミラー11aと
したが、必ずしも色別けは必要がなく、ダイクロ
イツクミラー11aは光分割器であれば十分であ
る。その場合には同色の像を合致させることにな
る。
As can be seen from the above explanation, the radius of curvature does not need to be determined based on the output of the light receiving element 9,
If a scale is marked on the cross line 3, the radius of curvature can be read visually, so in that case members 6, 7, 8, and 9 are not needed. Further, in cases where a scale is not marked on the crosshair, the crosshair is not necessarily necessary. Of course, in that case, another device for reading the interval is required. Furthermore, in order to make it easier to confirm the match, in the above example, the roof reflector 1
The image passing through the optical path of the plane mirror 1b and the image passing through the optical path of the plane mirror 11c are separated by color.
The dichroic mirror 11a is used as the bonding surface of the dichroic mirror 11a, but it is not necessarily necessary to use different colors, and it is sufficient if the dichroic mirror 11a is a light splitter. In that case, images of the same color will be matched.

またプリズム11は、各々の機能を有する別々
の光学部材で形成することができる。すなわち、
プリズム11は、機能的には光路を分離するため
の光分割器11aと、この光分割器11aで分離
した一方の光路中に光分割器11aに平行に稜線
がある如く配設したダハ反射鏡11bと、光分割
器11aで分離した他方の光路中に光分割器11
aに平行に配設した平面鏡11cと、この平面鏡
11cとダハ反射鏡11bとの反射光軸の交鎖位
置に光路を合成するために前記光分割器11aに
平行に配設した光合成器11aとから構成されて
いるわけである。
Further, the prism 11 can be formed of separate optical members having different functions. That is,
The prism 11 functionally includes a light splitter 11a for separating optical paths, and a roof reflector arranged so that one of the optical paths separated by the light splitter 11a has a ridge line parallel to the light splitter 11a. 11b, and a light splitter 11 in the other optical path separated by the light splitter 11a.
a plane mirror 11c disposed parallel to a, and a light combiner 11a disposed parallel to the light splitter 11a to combine optical paths at the intersecting position of the reflection optical axes of the plane mirror 11c and the roof reflector 11b. It is composed of.

以上述べた如く本考案の位置合わせ光学系によ
れば、合致式にて装置と被検物の位置合わせを行
なえるので、位置合わせを迅速、しかも正確に行
なうことができる。
As described above, according to the alignment optical system of the present invention, the apparatus and the object to be inspected can be aligned using a matching method, so that alignment can be performed quickly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す説明図、第2
図は第1図におけるA方向視図、第3図、第4
図、第5図、第6図、第7図及び第8図はそれぞ
れ輝点の反射像を示す視野図である。 主要部分の符号の説明、1a〜1d……光源
(輝点)、5……反透過鏡、9……光電素子、11
……プリズム、11a……ダイクロイツクミラ
ー、11b……ダハ反射鏡、11c……平面鏡、
E……被検眼、E1……検者眼。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention;
The figures are a view from direction A in Fig. 1, Fig. 3, and Fig. 4.
, FIG. 5, FIG. 6, FIG. 7, and FIG. 8 are field views showing reflected images of bright spots, respectively. Explanation of symbols of main parts, 1a to 1d...Light source (bright spot), 5...Anti-transmitting mirror, 9...Photoelectric element, 11
... Prism, 11a... Dichroic mirror, 11b... Roof reflector, 11c... Plane mirror,
E... Eye to be examined, E 1 ... Eye of examiner.

Claims (1)

【実用新案登録請求の範囲】 被検物へ指標を投影し、反射鏡の様子から曲率
半径を測定する如く成した曲率半径測定装置を被
検物に対して位置合わせするための位置合わせ光
学系において、 前記装置に入射した光路を分離するための光分
割器と、該光分割器で分離した一方の光路中に該
光分割器に平行に稜線がある如く配設したダハ反
射鏡と、前記光分割器で分離した他方の光路中に
前記光分割器に平行に配設した平面鏡と、該平面
鏡と前記ダハ反射鏡との反射光軸の交鎖位置に、
光路を合成するために前記光分割器に平行に配設
した光合成器と、を有することを特徴とする位置
合わせ光学系。
[Claims for Utility Model Registration] A positioning optical system for aligning a radius of curvature measuring device, which projects an index onto the object and measures the radius of curvature from the appearance of a reflecting mirror, with respect to the object. a light splitter for separating the optical path incident on the device; a roof reflector disposed so that one of the optical paths separated by the light splitter has a ridge line parallel to the light splitter; a plane mirror disposed parallel to the light splitter in the other optical path separated by the light splitter, and a position where the reflection optical axes of the plane mirror and the roof reflector intersect;
and a light combiner arranged parallel to the light splitter to combine optical paths.
JP9762981U 1981-07-02 1981-07-02 Positioning optical system for radius of curvature measuring device Granted JPS584016U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9762981U JPS584016U (en) 1981-07-02 1981-07-02 Positioning optical system for radius of curvature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9762981U JPS584016U (en) 1981-07-02 1981-07-02 Positioning optical system for radius of curvature measuring device

Publications (2)

Publication Number Publication Date
JPS584016U JPS584016U (en) 1983-01-11
JPS6240568Y2 true JPS6240568Y2 (en) 1987-10-17

Family

ID=29892416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9762981U Granted JPS584016U (en) 1981-07-02 1981-07-02 Positioning optical system for radius of curvature measuring device

Country Status (1)

Country Link
JP (1) JPS584016U (en)

Also Published As

Publication number Publication date
JPS584016U (en) 1983-01-11

Similar Documents

Publication Publication Date Title
JPH029805B2 (en)
JPS63212318A (en) Eye measuring apparatus
JPS623122Y2 (en)
JPS6240568Y2 (en)
JPH0365488B2 (en)
JPH0346774B2 (en)
JPS6315937A (en) Apparatus for measuring shape of cornea
JP3206936B2 (en) Eye refractometer
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JP2614324B2 (en) Corneal shape measuring device
JPH0353572B2 (en)
JPH0154055B2 (en)
JPH05212001A (en) Measuring instrument for radius of curvature
JPS6343091B2 (en)
JP2817796B2 (en) Eye refractive power measuring device
SU1337042A1 (en) Keratometer
JPS6345530B2 (en)
JPS59214427A (en) Cornea shape measuring apparatus
JPS6315938A (en) Apparatus for measuring shape of cornea
JPS6052371B2 (en) Focal position measuring device
JP2775285B2 (en) Eye refractive power measuring device
JP2951991B2 (en) Eye refractometer
JPH0373128A (en) Eye refractometer
JPS629331B2 (en)
JPS59170741A (en) Centering device of lens