JP2775285B2 - Eye refractive power measuring device - Google Patents

Eye refractive power measuring device

Info

Publication number
JP2775285B2
JP2775285B2 JP1074187A JP7418789A JP2775285B2 JP 2775285 B2 JP2775285 B2 JP 2775285B2 JP 1074187 A JP1074187 A JP 1074187A JP 7418789 A JP7418789 A JP 7418789A JP 2775285 B2 JP2775285 B2 JP 2775285B2
Authority
JP
Japan
Prior art keywords
light
eye
receiving element
light receiving
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1074187A
Other languages
Japanese (ja)
Other versions
JPH02249939A (en
Inventor
康文 福間
昭男 梅田
憲行 永井
靖久 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP1074187A priority Critical patent/JP2775285B2/en
Publication of JPH02249939A publication Critical patent/JPH02249939A/en
Application granted granted Critical
Publication of JP2775285B2 publication Critical patent/JP2775285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼屈折力測定装置、特に小児から乳幼児に対
しても有用である眼屈折力測定装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye refractive power measuring device, and more particularly to an eye refractive power measuring device useful for children to infants.

[従来の技術] 従来、眼屈折力測定装置としては、被検者の応答を基
に眼屈折力を測定する所謂自覚式検眼器、被検眼を他覚
的に測定する所謂オートレフラクトメータ等の装置が知
られている。
[Prior Art] Conventionally, as an eye refractive power measuring device, there are a so-called subjective ophthalmoscope for measuring eye refractive power based on a response of a subject, a so-called auto-refractometer for objectively measuring an eye to be examined, and the like. Devices are known.

然し乍ら、この種の装置で乳幼児の測定を行なう場
合、乳幼児の協力を得られない為自覚式検眼器では測定
ができず、又一般のオートレフラクトメータでは被検眼
の位置を固定しなくてはならないが、乳幼児の場合被検
眼の位置の固定が難しく、測定は極めて困難であるとい
う欠点を有していた。
However, when measuring infants with this kind of device, it is not possible to measure with a subjective ophthalmoscope because of the lack of cooperation of infants, and the position of the eye to be examined must be fixed with a general auto-refractometer. However, in the case of infants, it is difficult to fix the position of the eye to be examined, and the measurement is extremely difficult.

これらの欠点を解消する為、ストロボ光で被検眼眼底
を証明し、被検眼の瞳孔での光束の状態をカメラで撮影
し、その結果から被検眼の眼屈折力を測定するいわゆる
フォトレフラクション方式の測定方法が提案されてい
る。
In order to eliminate these drawbacks, the so-called photorefraction method of proving the fundus of the eye to be examined with a strobe light, photographing the state of the luminous flux at the pupil of the eye to be examined with a camera, and measuring the eye refractive power of the eye to be inspected from the result. Measurement methods have been proposed.

このフォトレフラクション方式の測定に於いては、被
検眼の光軸が少しずれても充分に測定をすることがで
き、被検眼を固定することが困難である乳幼児の眼屈折
力の測定には有用であるとされているものである。
In this photorefraction method measurement, it is possible to measure sufficiently even if the optical axis of the eye to be examined is slightly shifted, and it is useful for measuring the eye refractive power of infants who have difficulty fixing the eye to be examined. It is supposed to be.

[発明が解決しようとする課題] 然し乍ら、斯かるフォトレフラクション方式の眼屈折
力測定装置では、カメラの光軸に対し、斜め方向からス
トロボ光源により照明し、その時の瞳孔像を単に撮影す
るだけであり、光源の位置により測定できないディオプ
ター値があり、又測定可能な範囲が狭いという問題を有
している。
[Problems to be Solved by the Invention] However, in such a photorefraction type eye refractive power measuring apparatus, a strobe light source illuminates the optical axis of a camera from an oblique direction, and a pupil image at that time is simply taken. There is a problem that there is a diopter value that cannot be measured depending on the position of the light source, and that the measurable range is narrow.

更に従来この種の装置では乱視度、乱視軸角度等乱視
についての測定に関しては考慮されていなかった。
Further, in this type of apparatus, measurement of astigmatism such as astigmatism degree and astigmatic axis angle has not been taken into consideration.

本発明は、上記実情に鑑みなしたものであり、瞬時に
測定結果を得ることができると共に乱視度、乱視軸角度
等についても測定し得る眼屈折力測定装置を提供しよう
とするものである。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an eye-refractive-power measuring apparatus capable of obtaining a measurement result instantaneously and measuring an astigmatic degree, an astigmatic axis angle, and the like.

[課題を解決する為の手段] 本発明は、被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子を有し
被検眼眼底からの反射光束を前記受光素子に導く為の受
光系とを有する眼屈折力測定装置に於いて、前記受光系
の光路中に光軸と垂直な平面で光軸を中心に回転可能に
配置したエッヂ状の遮光部材を設け、該遮光部材の少な
くとも3つの回転位置での受光素子上の各光量分布状態
から眼屈折力を測定し得る様に構成し、及び投影系には
光軸と垂直な平面で光軸を中心として異なる経線方向に
配置され選択的に点灯される複数の光源部を有する光源
を設け、前記受光系光路中に光軸と垂直な平面内に前記
複数の光源部に対応して光軸を中心とした少なくとも3
経線方向に対し直角方向のエッヂ状稜線を有する遮光部
材を配置し、前記複数の光源部を選択的に点灯した時の
受光素子上の各光量分布状態から眼屈折力を測定し得る
様に構成し、及び投影系には光軸と垂直な平面で光軸を
中心として異なる経線方向に配置さた複数の光源部を有
する光源を設け、前記受光系光路中に光軸と垂直な平面
内に前記複数の光源部に対応して光軸を中心とした少な
くとも3経線方向に対し直角方向のエッヂ状稜線を有す
る遮光部材と、前記エッヂ状稜線を透過した各光束を分
離させ受光素子に導く為の光束分離手段を設け、前記受
光素子上の各光量分布状態から眼屈折力を測定し得る様
に構成し、及び受光系を少なくとも3組設け、前記反射
光束を各受光系に向けて分離する光束分離手段を前記被
検眼光軸上に設け、前記受光系にはそれぞれエッヂ状の
遮光部材を設け、各受光系に於いて前記受光素子上の光
量分布状態からそれぞれ異なった経線方向の眼屈折力を
測定し得る様に構成したことを特徴とするものである。
Means for Solving the Problems The present invention has a projection system for projecting a light source image on the fundus of the eye to be inspected, and a light receiving element arranged at a position substantially conjugate with the pupil of the eye to be inspected. An eye-refractive-power measuring device having a light-receiving system for guiding the light to the light-receiving element, wherein an edge-shaped light-shielding member is disposed in the optical path of the light-receiving system so as to be rotatable about the optical axis on a plane perpendicular to the optical axis. A light-reflecting power at each of at least three rotation positions of the light-shielding member, and measuring a refracting power of the eye. A light source having a plurality of light source units arranged and selectively turned on in different meridian directions around the center is provided, and an optical axis corresponding to the plurality of light source units in a plane perpendicular to an optical axis in the light receiving system optical path. At least 3 around
A light-shielding member having an edge-shaped ridge line perpendicular to the meridian direction is arranged, and the eye refractive power can be measured from each light amount distribution state on the light receiving element when the plurality of light source units are selectively turned on. And, the projection system is provided with a light source having a plurality of light source units arranged in different meridian directions about the optical axis in a plane perpendicular to the optical axis, and in a plane perpendicular to the optical axis in the light receiving system optical path. A light-shielding member having at least three edge directions perpendicular to the meridian direction corresponding to the plurality of light source sections and perpendicular to the meridian direction, and for separating each light beam transmitted through the edge-like edge line and leading the light beam to the light receiving element. The light beam separating means is provided so that the eye refractive power can be measured from each light amount distribution state on the light receiving element, and at least three light receiving systems are provided to separate the reflected light beam toward each light receiving system. A light beam separating means provided on the optical axis of the eye to be inspected; An edge-shaped light shielding member is provided in each of the light receiving systems, and in each of the light receiving systems, eye refractive power in different meridian directions can be measured from the light amount distribution state on the light receiving element. Is what you do.

[作用] 被検眼の眼屈折力の相違により、遮光部材による光束
を遮光する状態が異なってくる。この遮光の状態と眼屈
折力とは対応し、受光素子に投影された光束の状態、即
ち形状、光量分布を基に眼屈折力を測定でき、更に3経
線についての眼屈折力を求めて乱視についての測定を行
う。
[Operation] The state in which the light-shielding member blocks light is different depending on the eye refractive power of the eye to be examined. The light-shielding state corresponds to the eye refractive power, the eye refractive power can be measured based on the state of the light beam projected on the light receiving element, that is, the shape and the light amount distribution, and the eye refractive power for three meridians is obtained. Is measured.

[実施例] 以下、図面を参照しつつ本発明の一実施例を説明す
る。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

乱視は、各経線での眼屈折力(ディオプター値)が異
なることによって生じ、乱視の状態は球面度S、乱視度
C、乱視軸角度Aを測定することで特定することができ
る。又、任意の角度θの経線でのデオプター値Dθと球
面度S、乱視度C、乱視軸角度Aとの関係は下記の式で
表される。
Astigmatism is caused by a difference in eye refractive power (diopter value) at each meridian, and the state of astigmatism can be specified by measuring the sphericity S, the astigmatic degree C, and the astigmatic axis angle A. Further, Deoputa value D theta and the spherical degree S at meridian arbitrary angle theta, astigmatic degree C, the relationship between the astigmatic axis angle A is represented by the following formula.

θ=S+C sin(θ−A) …(1) 従って、3経線θ、θ、θのディオプター値を
求めれば、球面度数S、乱視度数S、乱視軸角度Aが求
められ、乱視状態が特定できる。
D θ = S + C sin (θ−A) (1) Accordingly, if the diopter values of the three meridians θ 1 , θ 2 , and θ 3 are obtained, the spherical power S, the astigmatic power S, and the astigmatic axis angle A are obtained. The state can be specified.

以下、第1図、第2図に於いて本発明の第1の実施例
について説明する。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

1は光源像を被検眼3の眼底7に投影する為の投影系
であり、2は眼底7により反射された光束10を受光する
為の受光系であり、投影系1及び受光系2は被検眼3に
対向して配置される。
1 is a projection system for projecting a light source image onto the fundus 7 of the eye 3 to be inspected, 2 is a light receiving system for receiving the light beam 10 reflected by the fundus 7, and the projection system 1 and the light receiving system 2 are It is arranged to face the optometry 3.

前記投影系1は、光源4及び光源4からの光束11を被
検眼3に向けて反射させる為のハーフミラー5から成
り、該投影系1は光源4からの光束11を瞳孔6を通して
眼底7上に光源4の像を形成する様に投影する。
The projection system 1 includes a light source 4 and a half mirror 5 for reflecting a light beam 11 from the light source 4 toward the subject's eye 3. The projection system 1 transmits the light beam 11 from the light source 4 onto a fundus 7 through a pupil 6. Is projected so as to form an image of the light source 4.

前記受光系2は、対物レンズ8及び受光素子9から成
り、眼底7からの光束10はハーフミラー5を透過して受
光素子9上に導かれる。
The light receiving system 2 includes an objective lens 8 and a light receiving element 9, and a light beam 10 from the fundus 7 passes through the half mirror 5 and is guided onto the light receiving element 9.

該受光素子9は、エリアCCD、撮像管或は2以上の受
光素子の集合体であり、受光素子9の受光面9aは対物レ
ンズ8に関して被検眼3の瞳孔6と共役位置に配置され
る。
The light receiving element 9 is an area CCD, an image pickup tube, or an aggregate of two or more light receiving elements. The light receiving surface 9a of the light receiving element 9 is disposed at a position conjugate with the pupil 6 of the eye 3 with respect to the objective lens 8.

前記受光系2の光路中には、被検眼3の眼屈折力が基
準ディオプター値の場合に光源像が形成される位置に、
対物レンズ8の光軸Oを境界として光束10の片側を遮光
する為のエッヂ状の遮光部材12を光軸と垂直な平面内に
配置する。
In the optical path of the light receiving system 2, at a position where a light source image is formed when the eye refractive power of the eye 3 to be examined is a reference diopter value,
An edge-shaped light blocking member 12 for blocking one side of the light beam 10 with the optical axis O of the objective lens 8 as a boundary is disposed in a plane perpendicular to the optical axis.

遮光部材12は、エッヂ部15のエッジ状稜線15aが受光
系2の光軸と合致し且ローラ20等により該光軸を中心に
回転可能に支持されている。
The light-shielding member 12 is supported by a roller 20 or the like so that the edge-like ridge line 15a of the edge portion 15 matches the optical axis of the light receiving system 2 and is rotatable about the optical axis.

又、前記受光素子9には演算器13が接続され、該演算
器3は受光素子9の受光状態を演算し、その結果を表示
器14に出力する様になっている。
An arithmetic unit 13 is connected to the light receiving element 9, and the arithmetic unit 3 calculates the light receiving state of the light receiving element 9 and outputs the result to the display 14.

以下作用を説明する。 The operation will be described below.

前記した様に乱視の測定は3経線のディオプター値を
測定することで求められるので、先ず第3図〜第11図に
於いて1経線についてのディオプター値測定について説
明する。
As mentioned above, the measurement of astigmatism can be obtained by measuring the diopter value of three meridians. First, the measurement of the diopter value of one meridian will be described with reference to FIGS. 3 to 11.

第3図(A)に示す様に、被検眼3のディオプター値
が基準ディオプター値に比べて負のディオプター値の場
合には、光源4の像は眼底7の前方で結像され、この光
束により照明された眼底7上の内、光軸上の1点で反射
された光束10を考えると、この光束10は遮光部材12の前
方、即ち被検眼3側で集光され、対物レンズ8により受
光素子9上に投影される光束の上半分(斜線部分)が遮
光される。一方、第3図(B)に示す様に、被検眼のデ
ィオプター値が基準ディオプター値の場合には、光束10
は遮光部材12上に集光されるもので、光束10は遮光部材
12によって遮られない。
As shown in FIG. 3 (A), when the diopter value of the subject's eye 3 is a negative diopter value compared to the reference diopter value, the image of the light source 4 is formed in front of the fundus 7, and this light flux causes Considering the light beam 10 reflected at one point on the optical axis among the illuminated fundus 7, the light beam 10 is condensed in front of the light shielding member 12, that is, on the side of the eye 3 to be examined, and is received by the objective lens 8. The upper half (hatched portion) of the light beam projected onto the element 9 is shielded. On the other hand, as shown in FIG. 3B, when the diopter value of the eye to be examined is the reference diopter value,
Is focused on the light shielding member 12, and the light flux 10 is a light shielding member.
Unobstructed by 12.

又、第3図(C)に示す様に、被検眼3のディオプタ
ー値が基準ディオプター値より正の場合には、光源4の
像は眼底7の後方で結像するように投影され、前述と同
様に眼底7で反射された光束10は遮光部材12の後方、即
ち受光素子9側で集光され、受光素子9上に投影される
光束10は第3図(A)とは逆の部分の光束(図中では上
半分)が遮光される。
Also, as shown in FIG. 3 (C), when the diopter value of the eye 3 to be examined is more positive than the reference diopter value, the image of the light source 4 is projected so as to form an image behind the fundus 7, and as described above. Similarly, the light beam 10 reflected by the fundus 7 is collected behind the light shielding member 12, that is, on the light receiving element 9 side, and the light beam 10 projected on the light receiving element 9 is a portion opposite to that of FIG. The light flux (the upper half in the figure) is shielded.

而して、受光面9aに投影される光束は基準ディオプタ
ー値に対して被検眼3のディオプター値の大小、正負に
よって光量分布状態が変化し、この光量分布状態を基に
ディオプター値が求められる。
Thus, the light flux projected on the light receiving surface 9a changes its light quantity distribution state with respect to the reference diopter value depending on the magnitude of the diopter value of the eye to be inspected 3 and the sign thereof, and the diopter value is determined based on this light quantity distribution state.

受光素子9はこの受光面9aに形成される光束の光量分
布を検出する為のものであり、前記演算器13は受光素子
9からの信号を基に、受光面9a上に形成される光束の光
量分布を検出し、基準となるディオプター値に対し被検
眼の眼屈折力が正か負かを判断すると共にその絶対値を
演算し、演算結果を表示器14に出力し、表示器14は求め
られた結果を表示する。
The light receiving element 9 is for detecting the light amount distribution of the light beam formed on the light receiving surface 9a, and the arithmetic unit 13 is configured to detect the light amount distribution of the light beam formed on the light receiving surface 9a based on the signal from the light receiving element 9. Detects the light amount distribution, determines whether the eye refractive power of the subject's eye is positive or negative with respect to the reference diopter value, calculates the absolute value, outputs the calculation result to the display 14, and the display 14 calculates Display the results.

尚、上記実施例では光束分離手段としてハーフミラー
を使用したが、ビームスプリッター、偏光プリズム等種
々の光束分離手段を用いることは勿論である。
In the above embodiment, a half mirror is used as a light beam separating means. However, it is a matter of course that various light beam separating means such as a beam splitter and a polarizing prism are used.

以下第4図(A)〜(E)に於いて、受光面9aに形成
される光束の光量分布状態を説明する。
4A to 4E, the distribution of the amount of light of the light beam formed on the light receiving surface 9a will be described.

尚、第4図(A)〜(E)に於いて説明を簡略化する
為、光源4の光軸と受光系の光軸とを合致させ且遮光部
材12と対物レンズ8とを一致させている。この為、光源
4と対物レンズ8とは同一位置で重ね合わせて示してお
り、遮光部材12は省略して示している。
In order to simplify the explanation in FIGS. 4 (A) to 4 (E), the optical axis of the light source 4 and the optical axis of the light receiving system are matched, and the light shielding member 12 and the objective lens 8 are matched. I have. For this reason, the light source 4 and the objective lens 8 are shown superimposed at the same position, and the light shielding member 12 is omitted.

第4図(A)〜(E)は被検眼の屈折力Dが基準屈折
力D0に対し負の場合を示しており、以下の説明は眼底か
らの反射光束は全て対物レンズ8によって受光面9a上に
投影されるものとする。
FIG. 4 (A) ~ (E) is the light receiving surface by all reflected light beam objective lens 8 from the shows the case where the refractive power D of the eye is negative with respect to the reference power D 0, the following description fundus It shall be projected on 9a.

光源4と被検眼瞳孔6との距離をlに設定しこの光源
の像が眼底に合焦する被検眼の屈折力を基準屈折力D0
すると である。
Assuming that the distance between the light source 4 and the pupil 6 of the subject's eye is set to 1 and the refractive power of the subject's eye at which the image of this light source is focused on the fundus is the reference refractive power D 0 It is.

第4図(A)は被検眼の屈折力がD(<D0)の場合
の、光軸に対し直角方向にLの長さを有するスリット状
の光源4の軸上の一点S0からの投影光束を示すもので、
点S0の像は一旦、S0′に結像され、被検眼眼底7には、
ぼけた像として投影される。D0−Dが大きくなるに従い
投影される領域7aは広くなる。
FIG. 4 (A) shows a case where the refractive power of the subject's eye is D (<D 0 ) from one point S 0 on the axis of the slit-like light source 4 having a length L in a direction perpendicular to the optical axis. Indicates the projected light flux,
The image of the point S 0 is once formed on S 0 ′,
Projected as a blurred image. Region 7a where D 0 -D is projected in accordance with increase becomes wider.

第4図(B)は受光系2、及び、被検眼眼底7からの
反射光束の状態を示すものである。
FIG. 4 (B) shows the state of the light beam reflected from the light receiving system 2 and the fundus 7 of the eye to be examined.

第4図(B)に示す様に、被検眼眼底7上の投影領域
の端部の点I-nからの光束を考えると、この点の像I-n
は被検眼瞳孔からl′の距離の位置に結像され、この光
束は対物レンズ8を介して被検眼瞳孔6と共役位置に配
置した受光素子9上に投影される。尚、このl′と被検
眼の屈折力Dの関係式は下記の通りである。
As shown in FIG. 4 (B), considering the light flux from a point I- n at the end of the projection area on the fundus 7 of the eye to be examined, an image I- n 'of this point is considered.
Is imaged at a position 1 'away from the pupil of the eye to be examined, and this light beam is projected via the objective lens 8 onto a light receiving element 9 arranged at a position conjugate with the pupil 6 of the eye to be examined. The relational expression between l 'and the refractive power D of the eye to be examined is as follows.

一方、この眼底上の一点から発した光束のエッヂ上で
の広がり幅Δは被検眼の瞳径をuとすると、第4図
(B)から明らかな様に、 であり、第1式、第2式より となり、被検眼3の屈折力Dと基準屈折力D0との差が大
になるに従い遮光部材12上の広がりは大きくなる。
On the other hand, assuming that the pupil diameter of the subject's eye is u, the spread width Δ of the light flux emitted from one point on the fundus is as shown in FIG. 4 (B). From the first and second equations. Thus, as the difference between the refractive power D of the eye 3 to be examined and the reference refractive power D 0 increases, the spread on the light shielding member 12 increases.

次に、受光素子9上での光束の広がりについて述べ
る。受光素子9は、被検眼3の屈折力に関係なく常に、
対物レンズ8に関して被検眼瞳孔と共役に配置されてお
り、被検眼瞳孔6の径をu、対物レンズ8の倍率をβと
すると、受光素子9上ではβuの径の領域(被検眼の屈
折力に影響を受けない)に光束が投影される。
Next, the spread of the light beam on the light receiving element 9 will be described. The light receiving element 9 is always irrespective of the refractive power of the eye 3 to be inspected.
Assuming that the diameter of the pupil 6 of the eye to be examined is u and the magnification of the objective lens 8 is β, the region of the diameter of βu on the light receiving element 9 (the refractive power of the eye to be examined) Is unaffected by the light beam.

又、光軸に対して前記I-nと対照な点Inからの光束も
同様に被検眼瞳孔6からl′の位置に像In′を結像した
後、受光素子9上の同じ領域βuに投影される。光源4
を点光源として、遮光部材12が無いものとした時、これ
ら眼底7からの各点I-n、…I0、…In、からの光束の積
分が受光素子9上の光量分布を決めるものである。
Also, after the imaged also similar light flux from the eye pupil 6 'image I n to the position of' l from I -n and control point I n with respect to the optical axis, the same area on the light receiving element 9 projected onto βu. Light source 4
As a point light source, when that there is no light blocking member 12 is, those points I -n from these fundus 7, ... I 0, ... I n, the integral of the light beam from determining the light intensity distribution on the light receiving element 9 It is.

ここで、受光素子9上での光量分布について考察する
ため、受光素子9上の光束投影位置の端部位置P-n、す
なわち、光軸を中心とした座標位置−βu/2に入射する
光束を考えると、この位置に入射する光束は第4図
(C)での斜線Aの範囲の光束に限られることとなる。
又、同様に、光軸に対して、前記のP-n位置と対称な位
置Pnに入射する光束を考えると斜線A′範囲の光束に限
られることになる。してみると、被検眼瞳孔6からlの
距離(光源4と共役位置)の位置に光軸の一方の光束
A′を遮断するエッヂ状の遮光部材12を配置すると受光
素子9上のP-nの位置に入射する光束は遮光部材12によ
り遮断されず、このP-nの位置から上方の位置にいくに
従って光束は徐々に遮光され、中心P0位置で光束の半分
が遮光され、Pnの位置になると全ての光束が遮断される
こととなるものである。従って、エッヂ状の遮光部材12
により受光素子9上には上方に行くにしたがって暗くな
り、Pnの点で光量が0となる一定傾斜の光量分布となる
ものである。
Here, in order to consider the light amount distribution on the light receiving element 9, the light flux incident on the end position P -n of the light beam projection position on the light receiving element 9, that is, the coordinate position -βu / 2 centered on the optical axis. In consideration of the above, the light beam incident on this position is limited to the light beam in the range of the oblique line A in FIG. 4 (C).
Similarly, considering the light flux incident on the position Pn symmetrical to the P- n position with respect to the optical axis, the light flux is limited to the light flux in the range of the hatched line A '. When an edge-shaped light-blocking member 12 that blocks one light beam A ′ of the optical axis is arranged at a distance of 1 from the pupil 6 of the eye to be examined (a position conjugate with the light source 4), P light beam incident on the position of the n is not blocked by the light shielding member 12, the light beam toward the upper position from the position of the P -n is gradually shading, half of the light beam is blocked by the center P 0 position, P n In this position, all the light beams are blocked. Therefore, the edge-shaped light shielding member 12
As a result, the light becomes darker on the light receiving element 9 as it goes upward, and the light quantity distribution has a constant slope where the light quantity becomes 0 at the point Pn .

以上の第4図(A)〜(C)では、光源4の光軸上の
一点から発する光束のみを示したが、光源4の端部の一
点S-n(光源の大きさをLとすると−L/2の座標位置の
点)からの光束を考えると第4図(D)に示すようにな
る。この点S-nからの光束は、第4図(D)に示す被検
眼眼底7上のI-n点からIn点の領域に投影され、このI-n
点、In点からの反射光は、前述と同様に被検眼瞳孔6か
らl′の距離の位置でIn′、In′の像を結像した後、受
光素子9上のβuの径の領域に投影されるものである。
ここで、光源4の端部の点S-nから発する光束のうち、
受光素子9上の光束投影の端部位置P-nに入射する光束
は第4図(D)のBの斜線領域の光束となるものであ
る。
4 (A) to 4 (C) show only a light beam emitted from one point on the optical axis of the light source 4, but one point S- n at the end of the light source 4 (where the size of the light source is L) Considering the luminous flux from the point (−L / 2 coordinate position), the result is as shown in FIG. 4D. Light beam from the point S -n are projected from I -n point on the fundus 7 shown in FIG. 4 (D) in the region of I n points, this I -n
Point, the reflected light from I n points, after forming an image of, I n '' I n at a distance of 'l from the eye pupil 6 in the same manner as described above, the diameter of βu on the light receiving element 9 Is projected on the area of.
Here, of the luminous flux emitted from the point S- n at the end of the light source 4,
The light beam incident on the end position P- n of the light beam projection on the light receiving element 9 is a light beam in a hatched area B in FIG. 4D.

又、前記S-nの点と対称な光源4の一点Snからの光束
を考え、そのうち受光素子9上のP-nの点に入射する光
束を考えると第4図(E)のCの斜線領域の光束とな
る。この様に、光源4がある大きさを有するものとして
考えた場合、受光素子9上の一点の光量は、光源4の各
点からの光束の総和として考えなければならない。
Further, the S consider the light beam from one point S n of the point symmetrical with the light source 4 -n, of which FIG. 4 Given the light beam incident on the point P -n on the light receiving element 9 C of (E) It becomes the light flux in the shaded area. As described above, when the light source 4 is considered to have a certain size, the amount of light at one point on the light receiving element 9 must be considered as the sum of the light flux from each point of the light source 4.

第5図(A)は、この考え方に基づき、受光素子9上
のP-nの位置に入射する各光束を重ね合わせて示したも
のであり、光源上のS-nの位置から発する光束のうちP-n
の位置に入射する光束はBの領域であり(第4図(D)
参照)、光源上での位置が上方に行くにしたがってその
光束も上方に移動し、軸上の光源位置S0ではAの領域の
光束となり(第4図(C)参照)、光源上でのSnの位置
ではCの領域の光束となる(第4図(E)参照)。従っ
て、受光素子9上のP-nの点での光量は、これらの光束
の総和として考えられる。
FIG. 5 (A) shows the respective light beams incident on the position of P- n on the light receiving element 9 based on this concept, and shows the light beams emitted from the position of S- n on the light source. Of which P -n
Is incident on the area B (FIG. 4 (D)).
See), the light beam according to the position on the light source goes upward also moves upward, the reference becomes a light flux area of the light source position S 0 in A on the axis (FIG. 4 (C)), on the light source the light beam C region at the position of S n (see FIG. 4 (E)). Therefore, the light quantity at the point P- n on the light receiving element 9 can be considered as the sum of these light fluxes.

ここで、被検眼瞳孔6からlの距離の位置に遮光部材
12を配置した時の受光素子9上の点P-nの光量を示す模
式図を第5図(A)に示す。第5図(A)は光源上の位
置が変化するにしたがって遮光部材12により光束がどの
様に遮光されるかを示すものである。第5図(B)の横
軸は光源上の座標位置、縦軸は光量を示すものであり、
光源上での各点からの光束を考えると、座標位置の−L/
2(Lは光源の大きさ)点から0点までの光束は遮光部
材12により遮光されず、座標位置の0点を過ぎると徐々
に遮光され、Δ(前述の光束の広がり)の位置で全ての
光束が遮断される事になるものである。ここで遮光され
ない場合の光源上の各点からの光量をkとして光源上で
の各点からの光量の寄与を示したものが第5図(B)で
あり、斜線部の面積が受光素子上のP-nの点の光量値に
対応するものである。この面積値Tは下記の様になる。
Here, a light shielding member is provided at a position of a distance 1 from the pupil 6 of the eye to be examined.
FIG. 5A is a schematic diagram showing the light amount at the point P- n on the light receiving element 9 when 12 is arranged. FIG. 5A shows how the light beam is blocked by the light blocking member 12 as the position on the light source changes. The horizontal axis in FIG. 5 (B) indicates the coordinate position on the light source, and the vertical axis indicates the light amount.
Considering the luminous flux from each point on the light source, -L /
The light beam from the point 2 (L is the size of the light source) to the point 0 is not blocked by the light blocking member 12, but is gradually blocked after passing the coordinate point 0, and the light flux is all Is to be blocked. Here, FIG. 5 (B) shows the contribution of the light amount from each point on the light source, where k is the light amount from each point on the light source when no light is shielded. This corresponds to the light amount value at the point P- n . This area value T is as follows.

同様にして、受光素子上での他の点についても考察す
る。第6図(A)は受光素子上での中心点P0に入射する
光束を第5図(A)と同様に示したものであり、光源上
のS-nの点からの光束の内P0の点に入射する光束はB0
斜線領域、光源上の中心S0の点からはA0の斜線領域、光
源上のSnの点からの光束はC0の斜線領域の光束となるも
のであり、受光素子9の中心に入射する光量は第6図
(B)の斜線領域の面積T0に対応することになる。すな
わち、光源の各点からの受光素子の中心点に入射する光
束を考えると、光源上の座標位置−L/2の位置から−Δ/
2の位置までは光束は遮光されず、−Δ/2位置を過ぎる
と徐々に光束が遮られΔ/2の位置で全ての光束が遮断さ
れることになり、この面積値を前述と同様に計算すると
下記値になる。
Similarly, other points on the light receiving element will be considered. Figure 6 (A) have the meanings indicated in the same manner as Figure 5 a light beam incident on the center point P 0 on the light receiving element (A), an inner P of the light beam from a point S -n on the light source The light flux incident on the point 0 is a shaded area of B 0 , the light flux from the point S 0 on the light source is the shaded area of A 0 , and the light flux from the point S n on the light source is the light flux of the shaded area C 0. is intended, the amount of light incident on the center of the light receiving element 9 will correspond to the area T 0 of the shaded area of the diagram the 6 (B). That is, considering the light flux incident on the center point of the light receiving element from each point of the light source, -Δ /
The luminous flux is not blocked until the position of 2, and after passing the -Δ / 2 position, the luminous flux is gradually blocked, and all the luminous flux is blocked at the position of Δ / 2. The following values are calculated.

同様にして、受光素子上での点Pnに入射する光束の状
態、及びこの点での光量値を第7図(A)、第7図
(B)に示す。第7図(A)において、光源上のS-n
点からの光束の内Pnの点に入射する光束はB′の斜線領
域、光源上の中心S0の点からはA″の斜線領域、光源上
のP-nの点からの光束はC″の斜線領域の光束として示
す。この場合には、第7図(B)に示すように、光源の
各点から受光素子のPnの点に入射する光束を考えると、
光源上の−L/2の位置から−Δの位置までは光束は遮光
されず、−Δ位置を過ぎると徐々に光束が遮られ、0の
位置で全ての光束が遮断されることになり、この面積値
を計算すると下記値になる。
Similarly, FIGS. 7A and 7B show the state of the light beam incident on the point Pn on the light receiving element and the light amount value at this point. In Figure 7 (A), hatched A "is the light beam incident on the point of the inner P n of the light beam from the point S -n on the light source is shaded region of B ', the center point S 0 on the light source The luminous flux from the point P- n on the area and the light source is shown as a luminous flux in the hatched area C ". In this case, as shown in FIG. 7 (B), considering the light flux incident from each point of the light source to the point P n of the light receiving element,
From the position of -L / 2 on the light source to the position of -Δ, the light beam is not blocked, and after passing the -Δ position, the light beam is gradually blocked, and all the light beams are blocked at the position of 0, When this area value is calculated, the following value is obtained.

これらの式(6)、(7)、(8)の結果からわかる
ように、受光素子9上の光量値は下方から上方にいくに
したがって、光量値は徐々に低くなるものであり、その
受光素子上での光量分布を図示すると第8図に示すよう
に直線的に変化する。
As can be seen from the results of these equations (6), (7), and (8), the light amount value on the light receiving element 9 gradually decreases as going upward from below. When the light quantity distribution on the element is illustrated, it changes linearly as shown in FIG.

前述の説明に於いては、眼底の一点から発する光束を
考えた場合の遮光部材12上での広がり幅Δが光源の大き
さLの1/2より小さな場合を想定して説明を行ったもの
である。
In the above description, the description has been made on the assumption that the spread width Δ on the light blocking member 12 when considering the light flux emitted from one point of the fundus is smaller than 1/2 of the size L of the light source. It is.

然し乍ら の場合、即ち基準ディオプター値D0に対する被検眼のデ
ィオプター値の偏差ΔDが所定量以上の場合には、第11
図に示すような直線変化は示さない。これを第5図ない
し第7図にしたがって説明を行う。前述のように の場合には、第5図(B)、第6図(B)、第7図
(B)はそれぞれ第12図、第13図、第14図、に示す様に
なり、この光量変化は第8図に示す様に直線変化を示さ
ないことになる。
However In other words, when the deviation ΔD of the diopter value of the subject's eye with respect to the reference diopter value D 0 is equal to or larger than a predetermined amount,
A linear change as shown in the figure is not shown. This will be described with reference to FIGS. 5 to 7. As aforementioned In the case of FIG. 5, FIGS. 5 (B), 6 (B), and 7 (B) are as shown in FIGS. 12, 13, and 14, respectively. As shown in FIG. 8, no linear change is shown.

次に、第3図(B)で示す被検眼の屈折力が基準値で
ある場合、第3図(C)で示す被検眼の屈折力が基準値
より正の場合も、前記したと同様に受光素子9上の光量
分布を考察することができ、その場合被検眼の屈折力が
基準値である場合は、第9図に示す如く、均一分布、被
検眼の屈折力が正の場合は第8図で示したものと逆な分
布状態となる。
Next, when the refractive power of the subject's eye shown in FIG. 3 (B) is the reference value, and when the refractive power of the subject's eye shown in FIG. 3 (C) is more positive than the reference value, the same as described above. The light amount distribution on the light receiving element 9 can be considered. In this case, when the refractive power of the eye to be examined is a reference value, as shown in FIG. The distribution state is opposite to that shown in FIG.

上記した光量分布の傾斜がディオプター値(屈折力)
をそして、傾斜の方向がディオプター値の正負を表わ
す。以下第11図を参照して説明する。
The diopter value (refractive power) is the slope of the light amount distribution described above.
And the direction of the slope represents the sign of the diopter value. This will be described below with reference to FIG.

光量分布の傾きを と定義すると、 前記した光束の広がりΔ、即ちボケ量Δは、前記
(5)式より、 よって(7)式より 而して、(11)式は基準ディオプター値D0に対する被
検眼のディオプター値の偏差ΔDと が比例していることを示している。従って、光量分布よ
を求めることにより被検眼のディオプター値を求めるこ
とが可能となる。
The slope of the light distribution Is defined as The spread Δ of the light beam, that is, the amount of blur Δ, is given by the above equation (5). Therefore, from equation (7) Thus, equation (11) gives the deviation ΔD of the diopter value of the subject's eye with respect to the reference diopter value D 0 . Are proportional. Therefore, from the light intensity distribution , It is possible to obtain the diopter value of the eye to be examined.

上記の如くして1経線についてのディオプター値を求
めることができるが、他の2経線についてのディオプタ
ー値は遮光部材12を例えば60°次に120°と回転させた
位置で求めればよい。
The diopter value for one meridian can be obtained as described above, but the diopter values for the other two meridians may be obtained at positions where the light shielding member 12 is rotated, for example, by 60 ° and then by 120 °.

即ち、遮光部材12の3箇所の回転位置を選び、各位置
のディオプター値を測定すれば、前記第(1)式により
球面度数S、乱視度数C、乱視軸角度Aが直ちに求めら
れる。
That is, if three rotational positions of the light shielding member 12 are selected and the diopter value at each position is measured, the spherical power S, the astigmatic power C, and the astigmatic axis angle A can be immediately obtained by the above equation (1).

次に、第15図に於いて本発明の第2の実施例を説明す
る。
Next, a second embodiment of the present invention will be described with reference to FIG.

該第2の実施例では、光源16を第16図で示す様に複数
の光源部16a,16b,16c…を有し、各光源部が選択的に点
灯できる様に構成したもので各光源部16a,16b,16c…は
投影系1の光軸と垂直な平面内で該光軸と所要距離離れ
た位置で光軸を中心としてθだけ異なる経線上、例えば
60°、120°…の経線上に設けられている。又、遮光部
材17は、第17図に示す如く6角形の孔18が設けられ、該
孔18の中心が受光系2の光軸と合致する様に配置されて
いる。更に、6角孔18の角エッヂ状稜線18a,18b,18c…
は前記光源部16a,16b,16c…の属する経線と直角方向で
且該光源部16a,16b,16c…と対応した位置にあり且基準
ディオプター値の場合、光源部の像がこの稜線上で形成
される様にする。
In the second embodiment, the light source 16 has a plurality of light sources 16a, 16b, 16c... As shown in FIG. 16a, 16b, 16c... On a meridian different from the optical axis by θ at a position separated from the optical axis by a required distance in a plane perpendicular to the optical axis of the projection system 1, for example,
It is provided on the meridians of 60 °, 120 °, etc. The light shielding member 17 is provided with a hexagonal hole 18 as shown in FIG. 17, and is arranged such that the center of the hole 18 coincides with the optical axis of the light receiving system 2. Further, the corner edges 18a, 18b, 18c of the hexagonal hole 18 are formed.
Are perpendicular to the meridian to which the light source sections 16a, 16b, 16c... Belong, and at positions corresponding to the light source sections 16a, 16b, 16c. To be done.

該第2の実施例において異なった経線上の少なくとも
3箇所の光源部(経線の延長状にある他の光源部を除
く)、例えば16a,16b,16cを選択的に1箇所ずつ点灯さ
せ前記したと同様な測定をすれば、3経線でのディオプ
ター値が求められ、やはり前記(1)式より直ちに球面
度数S、乱視度数C、乱視軸角度Aが求められる。
In the second embodiment, at least three light sources on different meridians (excluding the other light sources extending in the meridian), for example, 16a, 16b, and 16c, are selectively turned on one by one. By performing the same measurement as in the above, the diopter value at three meridians is obtained, and the spherical power S, the astigmatic power C, and the astigmatic axis angle A are immediately obtained from the equation (1).

又、第18図は第3の実施例を示しており、該実施例で
は第2の実施例中で示した光源16と同様な構成を有し、
各光源部16a,16b,16c…が点滅しない様になっている光
源16′と第2の実施例中で示したものと同一の遮光部材
17を有すると共に該遮光部材17と対物レンズ8との間に
各光源部16a,16b,16c…からの光束を受光系2の光軸よ
り分離即ち該光軸より離反させる方向に分離させる光束
分離手段、例えば偏角プリズム19を設けている。該偏角
プリズム19は各光源部16a,16b,16c…に対応するプリズ
ム片19a,19b,19c…を光軸を中心に放射状に集合させた
ものである。
FIG. 18 shows a third embodiment, which has the same configuration as the light source 16 shown in the second embodiment.
A light source 16 'in which the light sources 16a, 16b, 16c ... do not blink, and a light-shielding member identical to that shown in the second embodiment
And a light beam separation device for separating the light beams from the respective light source units 16a, 16b, 16c... From the optical axis of the light receiving system 2, that is, in a direction away from the optical axis between the light shielding member 17 and the objective lens 8. For example, a deflection prism 19 is provided. The deflection prism 19 is formed by radially assembling prism pieces 19a, 19b, 19c,... Corresponding to the respective light source sections 16a, 16b, 16c,.

該実施例では各光源部16a,16b,16c…からの光束が、
受光面9aの異なった位置に投影される為、受光面9aの投
影された各部分で前記したと同様な方法でディオプター
値を求めるようにすれば、複数の経線方向のディオプタ
ー値が同時に求められ、球面度S、乱視度数C、乱視軸
角度Aも又求められる。
In this embodiment, the luminous flux from each of the light sources 16a, 16b, 16c.
Since the light is projected to different positions on the light receiving surface 9a, if the diopter value is obtained in the same manner as described above at each projected portion of the light receiving surface 9a, a plurality of diopter values in the meridian direction can be obtained at the same time. , Sphericity S, astigmatic power C, and astigmatic axis angle A are also determined.

更に、第20図は第4の実施例を示している。 FIG. 20 shows a fourth embodiment.

光源4を被検眼3に対して対向した位置に配置し、該
光源4、被検眼3の光軸を含む平面内で該光軸に交差す
る光軸を有する受光系2x,2y,2zを被検眼3側より順次配
設する。而して、被検眼3の光軸上にハーフミラー5x,5
y,5zを配設し、眼底7からの光束を受光系2x,2y,2zに向
けて分割反射する。
The light source 4 is disposed at a position facing the eye 3 to be examined, and the light source 4 is covered by a light receiving system 2x, 2y, 2z having an optical axis intersecting the optical axis in a plane including the optical axis of the eye 3 to be inspected. It is arranged sequentially from the optometry 3 side. Thus, half mirrors 5x and 5x are placed on the optical axis of the eye 3 to be examined.
The light beams from the fundus 7 are split and reflected toward the light receiving systems 2x, 2y, 2z.

ここで、受光系2x,2y,2zの受光素子9x,9y,9zの受光面
9xa,9ya,9zaは前記実施例と同様対物レンズ8x,8y,8zに
関して被検眼3の瞳孔6と共役位置とし、該3つの受光
系2x,2y,2zの光路内に前記実施例と同様な位置に遮光部
材12x,12y,12zを遮光部材12yは光軸に関し遮光部材12x
より60°回転させた位置、遮光部材12zは光軸に関し該
遮光部材12yより更に60°回転させた位置とする。
Here, the light receiving surface of the light receiving element 9x, 9y, 9z of the light receiving system 2x, 2y, 2z
9xa, 9ya, and 9za are conjugated to the pupil 6 of the subject's eye 3 with respect to the objective lenses 8x, 8y, and 8z in the same manner as in the previous embodiment. The light shielding members 12x, 12y, and 12z are located at the positions.
The position further rotated by 60 °, the light shielding member 12z is a position further rotated by 60 ° with respect to the optical axis than the light shielding member 12y.

斯かる構成とすれば、受光素子9x,9y,9zの受光結果よ
り得られるディオプター値は3経線方向の値となり、し
かも同時に測定することができる。
With such a configuration, the diopter value obtained from the light receiving results of the light receiving elements 9x, 9y, and 9z is a value in the direction of three meridians, and can be measured simultaneously.

尚、第20図で示した実施例に於いて、受光系2x,2y,2z
を全く同一の構成とし、ハーフミラーで分割反射する方
向を被検眼3の光軸に関し、60°、120°と変え、受光
系2x,2y,2zが被検眼3の光軸に対して放射状となる様な
配置としても、同様に3経線方向のディオプター値を得
ることが可能である。
In the embodiment shown in FIG. 20, the light receiving systems 2x, 2y, 2z
Are completely identical, and the directions of the split reflection by the half mirror are changed to 60 ° and 120 ° with respect to the optical axis of the eye 3 to be inspected, and the light receiving systems 2x, 2y, and 2z are radial with respect to the optical axis of the eye 3 to be inspected. Even in such an arrangement, it is possible to obtain diopter values in three meridian directions in the same manner.

尚、上記した第1、第2、第3、第4の実施例に於い
て乱視状態を特定する為に3経線上のディオプター値を
求めればよいが、1つの経線延長上の他の経線について
のディオプター値を、第1、第4の実施例では遮光部材
12及び12x,12y,12zを更に回転させ、第2、第3の実施
例では対称な位置にある光源部、及び対向配置位置にあ
るエッヂ部により求めて平均化すれば、被検眼のマツゲ
の影響、角膜水晶体等透明体の部分的な濁りの影響を除
くことができ、測定精度は更に向上する。
In the first, second, third, and fourth embodiments described above, the diopter value on three meridians may be obtained in order to specify the astigmatism state. Of the light-shielding member in the first and fourth embodiments.
12 and 12x, 12y, and 12z are further rotated, and in the second and third embodiments, the light sources are located at symmetrical positions and the edges are located at opposite positions. The influence of partial turbidity of a transparent body such as a corneal lens can be eliminated, and the measurement accuracy is further improved.

尚、上記実施例では投影系の光束分離手段としてハー
フミラーを使用したが、ビームスプリッター、偏光プリ
ズム等種々の光束分離手段を用い得ることは勿論であ
る。更に、乱視の測定では3経線上のディオプター値を
求めるのが好ましいが、乱視の状態は大体2経線方向
(直角関係にある2経線方向)に代表されるものであ
り、従って第17図で示した6角形状の遮光部材は矩形形
状の遮光部材であってもよい。
In the above embodiment, a half mirror is used as the light beam separating means of the projection system. However, it goes without saying that various light beam separating means such as a beam splitter and a polarizing prism can be used. Further, in the measurement of astigmatism, it is preferable to obtain a diopter value on three meridians, but the state of astigmatism is generally represented by two meridian directions (two meridian directions in a right angle relationship). The hexagonal light shielding member may be a rectangular light shielding member.

[発明の効果] 以上述べた如く本発明によれば、複数の経線について
のディオプター値が測定でき、乱視についての測定を実
現化すると共に受光系は受光素子を用いているので測定
結果は瞬時に得られるという優れた効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, diopter values for a plurality of meridians can be measured, measurement for astigmatism is realized, and the light receiving system uses a light receiving element. It has an excellent effect of being obtained.

【図面の簡単な説明】 第1図は本発明の第1の実施例を示す基本構成図、第2
図は第1図のA−A矢視図、第3図(A)(B)(C)
は該実施例に於ける被検眼のディオプター値の相違によ
る光束の状態の相違を示す説明図、第4図(A)(B)
(C)(D)(E)は受光系及び被検眼眼底からの反射
光束の状態を示す説明図、第5図(A)、第6図
(A)、第7図(A)は受光素子に到達する光源各点の
反射光束の状態を示す説明図、第5図(B)、第6図
(B)、第7図(B)は遮光部材によって遮られた場合
の各光束の光量変化を示す説明図、第8図、第9図、第
10図はディオプター値に対応した受光面での光量分布状
態を示す説明図、第11図は光量分布状態よりディオプタ
ー値を求める場合の説明図、第12図、第13図、第14図は
遮光部材上での広がり幅Δが光源の1/2の大きさより大
きな場合の遮光部材によって遮光された場合の各光束の
光量変化を示す説明図、第15図は第2の実施例を示す基
本構成図、第16図は第15図のB−B矢視図、第17図は第
15図のC−C矢視図、第18図は第3の実施例を示す基本
構成図、第19図は第18図のD−D矢視図、第20図は第4
の実施例を示す基本構成図である。 1は投影系、2,2x,2y,2zは受光系、3は被検眼、4,16,1
6′は光源、5,5x,5y,5zはハーフミラー、8,8x,8y,8zは
対物レンズ、9,9x,9y,9zは受光素子、12,12x,12y,12z,1
7は遮光部材、19は偏向プリズムを示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a basic structural diagram showing a first embodiment of the present invention, and FIG.
The figure is a view taken in the direction of arrows AA in FIG. 1, and FIGS. 3 (A), (B) and (C).
FIGS. 4A and 4B are explanatory diagrams showing the difference in the state of the light beam due to the difference in the diopter value of the eye to be examined in the embodiment; FIGS.
(C), (D) and (E) are explanatory views showing the state of the light receiving system and the state of the reflected light flux from the fundus of the eye to be examined. FIGS. 5 (A), 6 (A) and 7 (A) are light receiving elements. FIGS. 5 (B), 6 (B), and 7 (B) show the state of the reflected light flux at each point of the light source reaching the light source, and FIG. FIG. 8, FIG. 9, FIG.
FIG. 10 is an explanatory diagram showing a light amount distribution state on the light receiving surface corresponding to the diopter value, FIG. 11 is an explanatory diagram for obtaining a diopter value from the light amount distribution state, FIG. 12, FIG. 13, and FIG. FIG. 15 is an explanatory diagram showing a change in the amount of light of each light beam when light is shielded by a light shielding member when the spread width Δ on the member is larger than half the size of the light source. FIG. 15 is a basic configuration showing the second embodiment. FIG. 16, FIG. 16 is a view taken in the direction of arrows BB in FIG. 15, and FIG.
FIG. 15 is a view taken in the direction of arrows CC, FIG. 18 is a basic configuration diagram showing the third embodiment, FIG. 19 is a view taken in the direction of arrows DD in FIG. 18, and FIG.
It is a basic block diagram which shows Example of this. 1 is a projection system, 2,2x, 2y, 2z is a light receiving system, 3 is an eye to be examined, 4,16,1
6 ′ is a light source, 5,5x, 5y, 5z is a half mirror, 8,8x, 8y, 8z is an objective lens, 9,9x, 9y, 9z is a light receiving element, 12,12x, 12y, 12z, 1
Reference numeral 7 denotes a light shielding member, and reference numeral 19 denotes a deflecting prism.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石倉 靖久 東京都板橋区蓮沼町75番1号 東京光学 機械株式会社内 (58)調査した分野(Int.Cl.6,DB名) A61B 3/10──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuhisa Ishikura 75-1 Hasunuma-cho, Itabashi-ku, Tokyo Tokyo Optical Machinery Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) A61B 3/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子を有し
被検眼眼底からの反射光束を前記受光素子に導く為の受
光系とを有する眼屈折力測定装置に於いて、前記受光系
の光路中に光軸と垂直な平面で光軸を中心に回転可能に
配置したエッヂ状の遮光部材を設け、該遮光部材の少な
くとも3つの回転位置での受光素子上の各光量分布状態
から眼屈折力を測定し得る様に構成したことを特徴とす
る眼屈折力測定装置。
A projection system for projecting a light source image onto the fundus of the eye to be examined, and a light receiving element disposed at a position substantially conjugate with the pupil of the eye to be examined, and a light beam reflected from the fundus of the eye to be guided to the light receiving element. An eye-refractive-power measuring apparatus having a light-receiving system, wherein an edge-shaped light-blocking member arranged rotatably about the optical axis on a plane perpendicular to the optical axis is provided in an optical path of the light-receiving system; An eye-refractive-power measuring device, characterized in that the eye-refractive power can be measured from each light amount distribution state on the light receiving element at at least three rotational positions.
【請求項2】被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子を有し
被検眼眼底からの反射光束を前記受光素子に導く為の受
光系とを有する眼屈折力測定装置に於いて、投影系には
光軸と垂直な平面で光軸を中心として異なる経線方向に
配置され選択的に点灯される複数の光源部を有する光源
を設け、前記受光系光路中に光軸と垂直な平面内に前記
複数の光源部に対応して光軸を中心とした少なくとも3
経線方向に対し直角方向のエッヂ状稜線を有する遮光部
材を配置し、前記複数の光源部を選択的に点灯した時の
受光素子上の各光量分布状態から眼屈折力を測定し得る
様に構成したことを特徴とする眼屈折力測定装置。
2. A projection system for projecting a light source image on the fundus of the eye to be inspected, and a light receiving element arranged at a position substantially conjugate with the pupil of the eye to be inspected, for guiding a light beam reflected from the fundus of the eye to the eye to the light receiving element. In the eye-refractive-power measuring apparatus having a light receiving system, the projection system includes a light source having a plurality of light source units which are arranged in different meridian directions around the optical axis on a plane perpendicular to the optical axis and are selectively turned on. At least 3 centered on the optical axis corresponding to the plurality of light sources in a plane perpendicular to the optical axis in the optical path of the light receiving system.
A light-shielding member having an edge-shaped ridge line perpendicular to the meridian direction is arranged, and the eye refractive power can be measured from each light amount distribution state on the light receiving element when the plurality of light source units are selectively turned on. An eye-refractive-power measuring device, characterized in that:
【請求項3】被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子を有し
被検眼眼底からの反射光束を前記受光素子に導く為の受
光系とを有する眼屈折力測定装置に於いて、投影系には
光軸と垂直な平面で光軸を中心として異なる経線方向に
配置した複数の光源部を有する光源を設け、前記受光系
光路中に光軸と垂直な平面内に前記複数の光源部に対応
して光軸を中心とした少なくとも3経線方向に対し直角
方向のエッヂ状稜線を有する遮光部材と、前記エッヂ状
稜線を透過した各光束を分離させ受光素子に導く為の光
束分離手段を設け、前記受光素子上の各光量分布状態か
ら眼屈折力を測定し得る様に構成したことを特徴とする
眼屈折力測定装置。
3. A projection system for projecting a light source image on the fundus of the eye to be inspected, and a light receiving element arranged at a position substantially conjugate with the pupil of the eye to be inspected, for guiding a light beam reflected from the fundus of the eye to the eye to the light receiving element. An eye refractive power measuring device having a light receiving system, wherein the projection system is provided with a light source having a plurality of light source sections arranged in different meridian directions about the optical axis on a plane perpendicular to the optical axis, A light-shielding member having an edge-shaped ridge line in a plane perpendicular to the optical axis and corresponding to at least three meridian directions centering on the optical axis and corresponding to the plurality of light sources, and penetrating the edge-shaped ridge line. An eye-refractive-power measuring device, characterized in that a light-beam separating means for separating each light beam and leading the light beam to a light-receiving element is provided so that the eye-refractive power can be measured from each light amount distribution state on the light-receiving element.
【請求項4】被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子を有し
被検眼眼底からの反射光束を前記受光素子に導く為の受
光系とを有する眼屈折力測定装置に於いて、受光系を少
なくとも3組設け、前記反射光束を各受光系に向けて分
離する光束分離手段を前記被検眼光軸上に設け、前記受
光系にはそれぞれエッヂ状の遮光部材を設け、各受光系
に於いて前記受光素子上の光量分布状態からそれぞれ異
なった経線方向の眼屈折力を測定し得る様に構成したこ
とを特徴とする眼屈折力測定装置。
4. A projection system for projecting a light source image on a fundus of a subject's eye, and a light receiving element arranged at a position substantially conjugate with a pupil of the subject's eye, for guiding a light beam reflected from the fundus of the subject's eye to the light receiving element. An eye refractive power measuring device having a light receiving system, wherein at least three sets of light receiving systems are provided, and a light beam separating means for separating the reflected light beam toward each light receiving system is provided on the optical axis of the eye to be inspected; Are provided with edge-shaped light-shielding members, respectively, so that in each light-receiving system, eye refractive power in different meridian directions can be measured from the light amount distribution state on the light-receiving element. Force measuring device.
JP1074187A 1988-12-06 1989-03-27 Eye refractive power measuring device Expired - Fee Related JP2775285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1074187A JP2775285B2 (en) 1988-12-06 1989-03-27 Eye refractive power measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30831488 1988-12-06
JP63-308314 1988-12-06
JP1074187A JP2775285B2 (en) 1988-12-06 1989-03-27 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JPH02249939A JPH02249939A (en) 1990-10-05
JP2775285B2 true JP2775285B2 (en) 1998-07-16

Family

ID=26415319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074187A Expired - Fee Related JP2775285B2 (en) 1988-12-06 1989-03-27 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP2775285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459609B2 (en) * 2020-03-27 2024-04-02 株式会社ニデック Optometry equipment and programs

Also Published As

Publication number Publication date
JPH02249939A (en) 1990-10-05

Similar Documents

Publication Publication Date Title
JP5601614B2 (en) Eye refractive power measuring device
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
EP0600455B1 (en) Apparatus for measuring the refractive power of an optical system
JPH0659272B2 (en) Corneal shape measuring device
JPH0417048B2 (en)
JP2001340299A (en) Optical measuring device for eye
JP2775285B2 (en) Eye refractive power measuring device
US4364646A (en) Position adjusting device for ophthalmologic instrument
JPH0365488B2 (en)
JP4458937B2 (en) Eye refractive power measuring device
JP2775297B2 (en) Eye refractive power measuring device
JP2775276B2 (en) Eye refractive power measuring device
JPH0346774B2 (en)
JPH04141128A (en) Ophthalmic measuring apparatus for refractive power
JPS6151890B2 (en)
JPH11235316A (en) Optometrical device
JP2817791B2 (en) Eye refractive power measuring device
JPH06315465A (en) Subject eye position detecting apparatus
JP2817796B2 (en) Eye refractive power measuring device
JP2817798B2 (en) Eye refractive power measuring device
JPH06245909A (en) Ophthalmorefractometer
JP2002336200A (en) Ophthalmoscopic equipment
JPH0496728A (en) Refraction force measuring device for eye
JP3001247B2 (en) Eye refractive power measuring device
JP2951991B2 (en) Eye refractometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees