JP2018189627A - Position measurement method and component - Google Patents

Position measurement method and component Download PDF

Info

Publication number
JP2018189627A
JP2018189627A JP2017239493A JP2017239493A JP2018189627A JP 2018189627 A JP2018189627 A JP 2018189627A JP 2017239493 A JP2017239493 A JP 2017239493A JP 2017239493 A JP2017239493 A JP 2017239493A JP 2018189627 A JP2018189627 A JP 2018189627A
Authority
JP
Japan
Prior art keywords
plane
inclined surface
image
angle
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017239493A
Other languages
Japanese (ja)
Other versions
JP6989950B2 (en
JP2018189627A5 (en
Inventor
孝弘 藤岡
Takahiro Fujioka
孝弘 藤岡
宏則 堀切
Hironori Horikiri
宏則 堀切
賢元 池田
Masamoto Ikeda
賢元 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalux Co Ltd
Original Assignee
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co Ltd filed Critical Nalux Co Ltd
Priority to US15/967,974 priority Critical patent/US10295754B2/en
Priority to CN201810430660.1A priority patent/CN108896276B/en
Priority to CN202111208827.8A priority patent/CN113933030A/en
Priority to DE102018111233.5A priority patent/DE102018111233A1/en
Publication of JP2018189627A publication Critical patent/JP2018189627A/en
Publication of JP2018189627A5 publication Critical patent/JP2018189627A5/ja
Priority to JP2021190918A priority patent/JP7244954B2/en
Application granted granted Critical
Publication of JP6989950B2 publication Critical patent/JP6989950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Abstract

PROBLEM TO BE SOLVED: To provide a position measurement method that highly accurately obtains positions of a lens and like, using a position of a position reference part of a component in an image of a measurement device, and to provide the component that is suitable for the position measurement method.SOLUTION: A position measurement method according to the present invention is the position measurement method that observes a position of a position reference part on a plane surface 101 or a position of an arbitrary point thereon in an image of a measurement device equipped with an imaging optical system using a coaxial epi-illumination, and determines a position of the arbitrary point, using the position of the position reference part as a reference. The position reference part, in which at least a bottom part is columnar, is provided with an inclined surface 103 surrounding the bottom of a column. The position measurement method includes the steps of, in the image of the measurement device,: determining a position of an outer periphery of the bottom from the inclined surface surrounding the bottom and a position of a boundary of the plane surface; determining the position of the position reference part from the position of the outer periphery of the bottom; and determining the position of the arbitrary point, using the position of the position reference part as the reference.SELECTED DRAWING: Figure 1

Description

本発明は、同軸落射照明を使用する撮像光学系を備えた測定装置の画像による位置測定方法、及び上記の測定方法に適した部品に関する。   The present invention relates to a position measurement method based on an image of a measurement apparatus provided with an imaging optical system using coaxial epi-illumination, and a component suitable for the measurement method.

たとえば、一つの面に複数のレンズが配列された部品と、複数の光ファイバを備えたコネクタと、を結合する際に、レンズと光ファイバとの位置合わせを行うために、部品の当該面に設けた柱状の凸部である位置基準部を、コネクタに設けた凹部に勘合させる場合がある。このような場合に、個々のレンズと個々の光ファイバとの位置合わせを行うには、部品の面上の位置基準部と個々のレンズとの間の距離を高い精度で保証する必要がある。そのため、部品の位置基準部と個々のレンズとの間の距離の高精度の測定が必要となる。このような測定は、CNC(Computer Numerical Control)画像測定機などの測定装置を使用して実施される(たとえば、特許文献1)。   For example, when a component having a plurality of lenses arranged on one surface and a connector having a plurality of optical fibers are coupled, the lens and the optical fiber are aligned on the corresponding surface of the component. There is a case where the position reference portion which is the provided columnar convex portion is fitted into the concave portion provided in the connector. In such a case, in order to align the individual lenses and the individual optical fibers, it is necessary to guarantee the distance between the position reference portion on the surface of the component and the individual lenses with high accuracy. Therefore, it is necessary to measure the distance between the position reference portion of the component and each lens with high accuracy. Such measurement is performed using a measuring device such as a CNC (Computer Numerical Control) image measuring machine (for example, Patent Document 1).

部品の面上の位置基準部と個々のレンズとの間の距離の測定においては、測定装置の画像において、当該面における柱状の位置基準部の位置を正確に定める必要がある。従来、測定装置の画像において、位置基準部の柱の根元の部分を識別するのは困難であったので、位置基準部の柱の先端の部分を識別し、先端部分の位置から位置基準部の位置を定め、当該位置を基準としてレンズの位置を定めていた。   In measuring the distance between the position reference portion on the surface of the component and each lens, it is necessary to accurately determine the position of the columnar position reference portion on the surface in the image of the measuring apparatus. Conventionally, since it has been difficult to identify the base part of the column of the position reference part in the image of the measuring device, the tip part of the column of the position reference part is identified, and the position of the position reference part is determined from the position of the tip part. The position is determined, and the position of the lens is determined based on the position.

しかし、たとえば、位置基準部の柱が当該面の法線に対して傾斜していると、当該法線の方向から取得した測定装置の画像において、位置基準部の柱の根元の位置と先端の位置とのあいだに間隔が生じる。したがって、先端部分の位置から位置基準部の位置を定め、当該位置を基準としてレンズの位置を定めると、上記の間隔に対応する距離の誤差が生じる。   However, for example, if the column of the position reference unit is inclined with respect to the normal of the surface, the position of the base and the tip of the column of the position reference unit in the image of the measuring device acquired from the direction of the normal There is a gap between the positions. Therefore, when the position of the position reference portion is determined from the position of the tip portion and the position of the lens is determined with reference to the position, an error in distance corresponding to the above-described interval occurs.

このように、測定装置の画像において、部品の位置基準部の位置を使用して、レンズなどの位置を高い精度で求める位置測定方法、及び上記の測定方法に適した部品は開発されていない。   As described above, a position measurement method for obtaining the position of a lens or the like with high accuracy using the position of the position reference portion of the component in the image of the measurement apparatus and a component suitable for the measurement method have not been developed.

特開2004-4055号公報Japanese Patent Laid-Open No. 2004-4055

したがって、測定装置の画像において、部品の位置基準部の位置を使用して、レンズなどの位置を高い精度で求める位置測定方法、及び上記の測定方法に適した部品に対するニーズがある。本発明の課題は、測定装置の画像において、部品の位置基準部の位置を使用して、レンズなどの位置を高い精度で求める位置測定方法、及び上記の測定方法に適した部品を提供することである。   Therefore, there is a need for a position measurement method for obtaining the position of a lens or the like with high accuracy using the position of the position reference portion of the component in the image of the measurement apparatus, and a component suitable for the measurement method. An object of the present invention is to provide a position measurement method for obtaining the position of a lens or the like with high accuracy using the position of a position reference portion of a component in an image of a measurement apparatus, and a component suitable for the measurement method described above. It is.

本発明の第1の態様の位置測定方法は、同軸落射照明を使用する撮像光学系を備えた測定装置の画像において、平面上の位置基準部の位置及び任意の点の位置を観察し、該位置基準部の位置を基準として該任意の点の位置を定める位置測定方法である。該位置基準部は、少なくとも根元の部分が柱状であり、柱の根元を取り囲む傾斜面を備える。該位置測定方法は、該測定装置の画像において、該根元を取り囲む傾斜面及び該平面の境界の位置から該根元の外周の位置を定めるステップと、該根元の外周の位置から該位置基準部の位置を定めるステップと、該位置基準部の位置を基準として該任意の点の位置を定めるステップと、を含む。   The position measuring method according to the first aspect of the present invention observes the position of a position reference portion on a plane and the position of an arbitrary point in an image of a measuring apparatus including an imaging optical system using coaxial incident illumination, In this position measurement method, the position of the arbitrary point is determined based on the position of the position reference unit. The position reference portion has a columnar shape at least at the base and includes an inclined surface surrounding the base of the column. The position measuring method includes a step of determining a position of an outer periphery of the base from a position of an inclined surface surrounding the base and a boundary of the plane in an image of the measuring device, and a position of the position reference unit from the position of the outer periphery of the base. And a step of determining a position, and a step of determining the position of the arbitrary point on the basis of the position of the position reference portion.

本発明の第1の態様の位置測定方法においては、測定装置の画像において、位置基準部の柱の根元を取り囲む傾斜面と平面との境界の位置から、柱の根元の外周の位置を定め、該柱の根元の外周の位置から位置基準部の位置を定めるので、柱の先端部の位置から位置基準部の位置を定める場合と比較して、位置測定の誤差を大幅に低減することができる。   In the position measuring method of the first aspect of the present invention, in the image of the measuring apparatus, the position of the outer periphery of the base of the column is determined from the position of the boundary between the inclined surface and the plane surrounding the base of the column of the position reference unit, Since the position of the position reference portion is determined from the position of the outer periphery of the base of the column, the position measurement error can be greatly reduced as compared with the case of determining the position of the position reference portion from the position of the tip end portion of the column. .

本発明の第1の態様の第1の実施形態の位置測定方法において、該撮像光学系の開口角をφ、該根元を取り囲む傾斜面と該平面とのなす鋭角をθとして、θが、

Figure 2018189627
を満たす。 In the position measurement method according to the first embodiment of the first aspect of the present invention, θ is an aperture angle of the imaging optical system, φ is an acute angle formed by an inclined surface surrounding the root and the plane, and θ is
Figure 2018189627
Meet.

上記の関係が満たされると、傾斜面で反射された光線は、測定装置に到達しない。したがって、測定装置による画像において、傾斜面の領域が明るくなることはなく平面の領域と傾斜面の領域との境界が明確になる。   When the above relationship is satisfied, the light beam reflected by the inclined surface does not reach the measuring device. Therefore, in the image by the measuring apparatus, the area of the inclined surface is not brightened, and the boundary between the planar area and the inclined surface area becomes clear.

本発明の第1の態様の第2の実施形態の位置測定方法において、該撮像光学系の開口角をφ、該根元を取り囲む傾斜面と該平面とのなす鋭角をθ、角度の単位を度として、θが、

Figure 2018189627
を満たす。 In the position measurement method according to the second embodiment of the first aspect of the present invention, the aperture angle of the imaging optical system is φ, the acute angle between the inclined surface surrounding the root and the plane is θ, and the unit of the angle is degree. As θ is
Figure 2018189627
Meet.

上記の関係が満たされると、平面に反射された光線が傾斜面に反射された後、測定装置に到達することはない。したがって、測定装置による画像において、傾斜面の領域が明るくなることはなく平面の領域と傾斜面の領域との境界が明確になる。   When the above relationship is satisfied, the light beam reflected by the plane does not reach the measuring device after being reflected by the inclined surface. Therefore, in the image by the measuring apparatus, the area of the inclined surface is not brightened, and the boundary between the planar area and the inclined surface area becomes clear.

本発明の第1の態様の第3の実施形態の位置測定方法において、該根元を取り囲む傾斜面は、該平面と該柱の側面とをつなぐか該平面と該平面に平行な他の平面とをつなぐように形成されている。   In the position measurement method according to the third embodiment of the first aspect of the present invention, the inclined surface that surrounds the root connects the plane and the side surface of the column, or the plane and another plane parallel to the plane. It is formed to connect.

本発明の第1の態様の第4の実施形態の位置測定方法において、該根元を取り囲む傾斜面は、該平面と該柱の側面とをつなぐ場合に、該顕微鏡の開口角をφ、該柱の中心軸を含む断面における該傾斜面の該中心軸と垂直方向の幅をX、該柱の長さをLとして、

Figure 2018189627
を満たす。 In the position measurement method according to the fourth embodiment of the first aspect of the present invention, the inclined surface surrounding the base has an opening angle of φ and the column when the plane and the side surface of the column are connected. X is the width in the direction perpendicular to the central axis of the inclined surface in the cross section including the central axis, and L is the length of the column.
Figure 2018189627
Meet.

本実施形態によれば、該傾斜面と該平面との境界付近で、φ以下の角度で該平面に入射し反射された光線のうち相当な部分が、該柱の側面に反射された後測定装置に到達する。したがって、測定装置による画像において、平面の領域が十分に明るくなり、平面の領域と傾斜面の領域との境界が明確になる。   According to the present embodiment, in the vicinity of the boundary between the inclined surface and the plane, a substantial part of the light rays that are incident on and reflected by the plane at an angle of φ or less are reflected after being reflected on the side surface of the column. Reach the device. Accordingly, in the image obtained by the measuring apparatus, the planar area becomes sufficiently bright, and the boundary between the planar area and the inclined surface area becomes clear.

本発明の第1の態様の第5の実施形態の位置測定方法において、該任意の点の位置が光学素子の位置である。   In the position measurement method according to the fifth embodiment of the first aspect of the present invention, the position of the arbitrary point is the position of the optical element.

本実施形態によれば、位置基準部の位置を基準として、光学素子の位置を高い精度で定めることができる。   According to the present embodiment, the position of the optical element can be determined with high accuracy using the position of the position reference portion as a reference.

本発明の第2の態様の部品は、一つの平面または互いに平行な複数の平面上に設置された、少なくとも二つの位置基準部と光学素子とを備えた部品であって、それぞれの位置基準部は、少なくとも根元の部分が柱状であり、柱の根元を取り囲む傾斜面を備え、該傾斜面の、それぞれの位置基準部が設置された平面に対する角度θは20度から70度の範囲である。   The component according to the second aspect of the present invention is a component including at least two position reference portions and an optical element, which are installed on one plane or a plurality of planes parallel to each other, and each position reference portion. Has a columnar shape at least at the base, and includes an inclined surface surrounding the base of the column, and an angle θ of the inclined surface with respect to a plane on which each position reference portion is installed is in the range of 20 degrees to 70 degrees.

本態様による部品は、同軸落射照明を使用する撮像光学系を備えた測定装置の画像により、該位置基準部の位置を基準として、該光学素子の位置を高い精度で測定するのに適している。   The component according to this aspect is suitable for measuring the position of the optical element with high accuracy based on the position of the position reference unit based on the image of a measurement apparatus including an imaging optical system using coaxial incident illumination. .

本発明の第2の態様の第1の実施形態の部品において、該根元を取り囲む傾斜面は、該平面と該柱の側面とをつなぐか該平面と該平面に平行な他の平面とをつなぐように形成されている。   In the component of the first embodiment of the second aspect of the present invention, the inclined surface surrounding the root connects the plane and the side surface of the column or connects the plane and another plane parallel to the plane. It is formed as follows.

本発明の一実施形態の、位置基準部を備えた部品を示す図である。It is a figure which shows the components provided with the position reference part of one Embodiment of this invention. 従来の部品の位置基準部の中心軸を含む断面を示す図である。It is a figure which shows the cross section containing the central axis of the position reference part of the conventional components. 本発明の測定方法において使用される、同軸落射照明を使用する測定装置を示す図である。It is a figure which shows the measuring apparatus which uses the coaxial epi-illumination used in the measuring method of this invention. 上記の測定装置の同軸落射照明の照明用の光、及び撮像用の反射光の経路を示す図である。It is a figure which shows the path | route of the illumination light of the coaxial epi-illumination of said measuring apparatus, and the reflected light for imaging. 本発明の第1の実施形態の部品の位置基準部の中心軸を含む断面を示す図である。It is a figure which shows the cross section containing the central axis of the position reference part of the components of the 1st Embodiment of this invention. 照明用の光のうち平面に垂直に進行する光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray which advances perpendicularly | vertically to a plane among the lights for illumination, and the image by the light ray. 照明用の光のうち平面に対して所定の範囲の角度で進行する光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray which advances at an angle of the predetermined range with respect to a plane among the lights for illumination, and the image by the light ray. 照明用の光の光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray of the light for illumination, and the image by the light ray. 傾斜面の、平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 傾斜面の、平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 傾斜面の、平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 傾斜面の、平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to a plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 柱の中心軸を含む断面における傾斜面の中心軸と垂直方向の長さXと柱の長さLとの関係を説明するための図である。It is a figure for demonstrating the relationship between the length X and the length L of the perpendicular | vertical direction and the central axis of the inclined surface in the cross section containing the central axis of a pillar. 本発明の第2の実施形態の部品の位置基準部の中心軸を含む断面を示す図である。It is a figure which shows the cross section containing the central axis of the position reference part of the components of the 2nd Embodiment of this invention. 照明用の光のうち平面に垂直に進行する光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray which advances perpendicularly | vertically to a plane among the lights for illumination, and the image by the light ray. 照明用の光のうち平面に対して所定の範囲の角度で進行する光線の経路及びその光線による画像を示す図であるIt is a figure which shows the path | route of the light ray which progresses with the angle of the predetermined range with respect to a plane among the lights for illumination, and the image by the light ray. 照明用の光の光線の経路及びその光線による画像を示す図である。It is a figure which shows the path | route of the light ray of the light for illumination, and the image by the light ray. 傾斜面の平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to the plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 傾斜面の平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to the plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 傾斜面の平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to the plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 傾斜面の平面に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。It is a figure for demonstrating the relationship between angle (theta) with respect to the plane of an inclined surface, and opening angle (phi) of the imaging optical system of a measuring device. 溝の幅Wと柱の長さLとの関係を説明するための図である。It is a figure for demonstrating the relationship between the width W of a groove | channel, and the length L of a pillar. 本発明の一実施形態の測定方法を説明するための流れ図である。It is a flowchart for demonstrating the measuring method of one Embodiment of this invention. 図19の流れ図に示した測定方法と境界E及びE’との関係を示す図である。It is a figure which shows the relationship between the measuring method shown to the flowchart of FIG. 19, and the boundary E and E '. 従来の部品及び本発明の部品について、柱の傾斜角度に対する基準位置の偏差を示す図である。It is a figure which shows the deviation of the reference | standard position with respect to the inclination angle of a pillar about the conventional components and the components of this invention. 本発明の他の実施形態の、位置基準部を備えた部品を示す図である。It is a figure which shows the components provided with the position reference part of other embodiment of this invention.

図1は、本発明の一実施形態の、位置基準部110を備えた部品100を示す図である。部品100の一つの面101には、2個の位置基準部110及び複数のレンズ150が設置されている。2個の位置基準部110は、ほぼ円柱状である。複数のレンズ150を備えた部品100は、たとえば、複数の光ファイバを備えたコネクタに接続される。2個の位置基準部110は、部品100とコネクタとの接続に使用される。たとえば、コネクタが、2個の柱状の位置基準部110に対応する2個の凹部を備えており、2個の位置基準部がコネクタの2個の凹部に収納されるようにしてもよい。その際に、複数のレンズ150と複数の光ファイバとを、高い精度で位置合わせする必要がある。このため、高い精度での位置合わせを保証するために、複数のレンズ150の位置を、2個の位置基準部110を基準として正確に測定する必要がある。   FIG. 1 is a diagram illustrating a component 100 including a position reference unit 110 according to an embodiment of the present invention. On one surface 101 of the component 100, two position reference portions 110 and a plurality of lenses 150 are installed. The two position reference parts 110 are substantially cylindrical. The component 100 including the plurality of lenses 150 is connected to, for example, a connector including a plurality of optical fibers. The two position reference parts 110 are used for connecting the component 100 and the connector. For example, the connector may include two concave portions corresponding to the two columnar position reference portions 110, and the two position reference portions may be accommodated in the two concave portions of the connector. At that time, it is necessary to align the plurality of lenses 150 and the plurality of optical fibers with high accuracy. For this reason, in order to guarantee alignment with high accuracy, it is necessary to accurately measure the positions of the plurality of lenses 150 with reference to the two position reference units 110.

図2は、従来の部品の位置基準部110’の中心軸を含む断面を示す図である。   FIG. 2 is a view showing a cross section including the central axis of the position reference portion 110 ′ of the conventional component.

ここで、複数のレンズ150の位置の測定は、CNC(Computer Numerical Control)画像測定機などの測定装置を使用して実施される。画像測定機などの測定装置で取得した画像において、従来の部品の位置基準部110’の柱の根元部分は、周囲の平面と区別するのが困難である。そこで、画像測定機などの測定装置で取得した画像において、図2において円で囲った、柱の先端部分を観察することにより位置基準部110’の位置を定めている。   Here, the measurement of the positions of the plurality of lenses 150 is performed using a measuring device such as a CNC (Computer Numerical Control) image measuring machine. In an image acquired by a measuring apparatus such as an image measuring machine, it is difficult to distinguish the base portion of the pillar of the position reference portion 110 ′ of the conventional component from the surrounding plane. In view of this, the position of the position reference unit 110 ′ is determined by observing the tip end portion of the column surrounded by a circle in FIG. 2 in an image acquired by a measuring apparatus such as an image measuring machine.

図3は、従来の測定方法及び本発明の測定方法において使用される、同軸落射照明を使用する測定装置を示す図である。測定装置は、CNC画像測定機であってもよい。測定装置は、光源301と、視野レンズ303と、ハーフミラー304と、コンデンサレンズ305と、結像レンズ307と、画像取得部309と、を含む。光源301、視野レンズ303、ハーフミラー304、及びコンデンサレンズ305は、測定装置の照明光学系を形成する。コンデンサレンズ305、ハーフミラー304、及び結像レンズ307は、測定装置の撮像光学系を形成する。位置基準部110を備えた部品100の面を101で表す。光源301からの光は、視野レンズ303及びハーフミラー304を介して、コンデンサレンズ305の瞳位置3051に光源の像を形成する。この光源の像を光源として、コンデンサレンズ305を介して、部品100の面101への照明が実施される。部品100の面101で反射された光は、コンデンサレンズ305を通過した後、ハーフミラー304及び結像レンズ307を通過して画像取得部309に到達する。   FIG. 3 is a diagram showing a measuring apparatus using coaxial epi-illumination used in the conventional measuring method and the measuring method of the present invention. The measuring device may be a CNC image measuring machine. The measurement apparatus includes a light source 301, a field lens 303, a half mirror 304, a condenser lens 305, an imaging lens 307, and an image acquisition unit 309. The light source 301, the field lens 303, the half mirror 304, and the condenser lens 305 form an illumination optical system of the measurement apparatus. The condenser lens 305, the half mirror 304, and the imaging lens 307 form an imaging optical system of the measuring device. A surface of the component 100 including the position reference unit 110 is denoted by 101. The light from the light source 301 forms an image of the light source at the pupil position 3051 of the condenser lens 305 through the field lens 303 and the half mirror 304. Illumination of the surface 101 of the component 100 is performed via the condenser lens 305 using the image of the light source as a light source. The light reflected by the surface 101 of the component 100 passes through the condenser lens 305, passes through the half mirror 304 and the imaging lens 307, and reaches the image acquisition unit 309.

図4は、上記の測定装置の同軸落射照明の照明用の光、及び撮像用の反射光の経路を示す図である。上記の経路は、上記の測定装置の撮像光学系の開口角、すなわちコンデンサレンズ305の開口角によって定まる。図4において、コンデンサレンズ305の瞳の中心位置から平面101に下した垂線と一致する主光線をL1で表し、主光線L1が平面101に到達する点から最も離れた点に到達する主光線をL2で表す。主光線L1及びL2はほぼ平行であるとみなすことができ、主光線L1に関する開口角及びL2に関する開口角はほぼ同じである。この開口角をφで表す。反射光のうち、平面101の法線となす角度が開口角φを超える光線は、測定装置に取り込まれない。   FIG. 4 is a diagram illustrating a path of illumination light and reflected light for imaging of the coaxial epi-illumination of the measurement apparatus. The above path is determined by the aperture angle of the imaging optical system of the measurement apparatus, that is, the aperture angle of the condenser lens 305. In FIG. 4, a principal ray that coincides with a perpendicular line drawn from the center position of the pupil of the condenser lens 305 to the plane 101 is denoted by L1, and a principal ray that reaches the point farthest from the point where the principal ray L1 reaches the plane 101 is represented. Represented by L2. The principal rays L1 and L2 can be regarded as being substantially parallel, and the aperture angle with respect to the principal ray L1 and the aperture angle with respect to L2 are substantially the same. This opening angle is represented by φ. Of the reflected light, a light beam whose angle with the normal of the plane 101 exceeds the opening angle φ is not taken into the measuring device.

図5は、本発明の第1の実施形態の部品100Aの位置基準部110Aの中心軸を含む断面を示す図である。位置基準部110Aの柱115は円柱であり、部品100Aの平面101上に、該円柱の中心軸が平面101と垂直になるように形成されている。本発明の一実施形態の部品100Aは、位置基準部110Aの柱115の根元の周囲に傾斜面103を備える点で従来の部品と異なる。傾斜面103は、平面101と位置基準部110Aの柱115の側面とをつなぐ。傾斜面103と平面101との境界線は円形であり、円の中心は上記の中心軸と平面101との交点である。図5の円で囲まれた図は、傾斜面103の上記の中心軸を含む断面を示す図である。平面101の粗さは、30nm以下に仕上げるのが好ましい。また、平面101は、レンズ150が配置される平面と同一の平面を形成するように形成するのが好ましい。   FIG. 5 is a diagram showing a cross section including the central axis of the position reference portion 110A of the component 100A according to the first embodiment of the present invention. The column 115 of the position reference portion 110A is a cylinder, and is formed on the plane 101 of the component 100A so that the central axis of the cylinder is perpendicular to the plane 101. The component 100A according to the embodiment of the present invention is different from the conventional component in that an inclined surface 103 is provided around the base of the column 115 of the position reference unit 110A. The inclined surface 103 connects the flat surface 101 and the side surface of the column 115 of the position reference portion 110A. The boundary line between the inclined surface 103 and the plane 101 is a circle, and the center of the circle is the intersection of the center axis and the plane 101. 5 is a diagram showing a cross section including the central axis of the inclined surface 103. The roughness of the flat surface 101 is preferably finished to 30 nm or less. The plane 101 is preferably formed so as to form the same plane as the plane on which the lens 150 is disposed.

図5において、軸AXは平面101と垂直であり、その方向は図4に示した主光線の方向である。   In FIG. 5, the axis AX is perpendicular to the plane 101, and the direction thereof is the direction of the principal ray shown in FIG.

図5において、Aで示される隅部は、断面が円弧上の部分、いわゆるRを有さないように形成されるのが好ましい。   In FIG. 5, the corner indicated by A is preferably formed so that the cross section does not have a so-called R portion on the arc.

図6は、照明用の光のうち平面101に垂直に進行する光線の経路及びその光線による画像を示す図である。平面101に垂直に入射する光線の反射光は、平面101に垂直に進行するので画像取得部309に到達する。他方、平面101に垂直に進行する光線が、傾斜面103に反射されると画像取得部309に到達することはない。そこで、画像取得部309で取得された画像において、平面101の領域は明るくなり、傾斜面103の領域は暗くなる。この結果、上記の画像において、平面101の領域と傾斜面103の領域との境界Eが明確に示される。   FIG. 6 is a diagram illustrating a path of a light beam that travels perpendicular to the plane 101 of the illumination light and an image of the light beam. The reflected light of the light ray that enters the plane 101 perpendicularly travels perpendicularly to the plane 101 and reaches the image acquisition unit 309. On the other hand, when the light beam traveling perpendicular to the plane 101 is reflected by the inclined surface 103, it does not reach the image acquisition unit 309. Therefore, in the image acquired by the image acquisition unit 309, the area of the plane 101 becomes bright and the area of the inclined surface 103 becomes dark. As a result, in the above image, the boundary E between the region of the plane 101 and the region of the inclined surface 103 is clearly shown.

図7は、照明用の光のうち平面101に対して所定の範囲の角度で進行する光線の経路及びその光線による画像を示す図である。平面101に上記所定の範囲の角度入射する光線の反射光は、平面101及び柱115の側面で反射された後、画像取得部309に到達する。他方、平面101に対して上記所定の範囲の角度で進行する光線は、傾斜面103に反射され画像取得部309に到達することはない。そこで、画像取得部309で取得された、柱115の側面で反射された光線による反射像において、平面101の領域は明るくなり、傾斜面103の領域は暗くなる。この結果、上記の画像において、平面101の領域の反射像と傾斜面103の領域の反射像との境界E’が明確に示される。   FIG. 7 is a diagram showing a path of light rays traveling at an angle within a predetermined range with respect to the plane 101 in the illumination light and an image by the light rays. The reflected light of the light beam incident on the plane 101 at an angle within the predetermined range is reflected by the plane 101 and the side surfaces of the pillar 115 and then reaches the image acquisition unit 309. On the other hand, light rays traveling at an angle within the predetermined range with respect to the plane 101 are reflected by the inclined surface 103 and do not reach the image acquisition unit 309. Therefore, in the reflection image obtained by the light beam reflected by the side surface of the pillar 115 acquired by the image acquisition unit 309, the area of the plane 101 becomes bright and the area of the inclined surface 103 becomes dark. As a result, in the above image, the boundary E ′ between the reflected image in the area of the plane 101 and the reflected image in the area of the inclined surface 103 is clearly shown.

図8は、照明用の光の光線の経路及びその光線による画像を示す図である。図8は、図6及び図7を組み合わせたものである。図8において、境界E’は、平面101の領域と傾斜面103の領域との境界Eの、柱115の側面における反射による像である。そこで、境界Eの上の点とそれに対応する境界E’上の点とを結ぶ線分の中点は、平面101における柱115の外周上の点の位置に対応する。このようにして、図8に示す画像から、平面101における柱115の外周の位置を求めることができる。なお、平面101における柱115の外周の位置の求め方については後で詳細に説明する。   FIG. 8 is a diagram showing a path of a light beam for illumination and an image by the light beam. FIG. 8 is a combination of FIGS. 6 and 7. In FIG. 8, the boundary E ′ is an image of the boundary E between the region of the plane 101 and the region of the inclined surface 103 due to reflection on the side surface of the column 115. Therefore, the midpoint of the line segment connecting the point on the boundary E and the corresponding point on the boundary E ′ corresponds to the position of the point on the outer periphery of the column 115 on the plane 101. In this manner, the position of the outer periphery of the column 115 on the plane 101 can be obtained from the image shown in FIG. A method for obtaining the position of the outer periphery of the column 115 on the plane 101 will be described in detail later.

以下において、傾斜面103の、平面101に対する角度について説明する。本明細書において角度の単位は度である。   Hereinafter, the angle of the inclined surface 103 with respect to the plane 101 will be described. In this specification, the unit of angle is degrees.

図9Aは、傾斜面103の平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図9Aにおいて、

Figure 2018189627
の関係を満たす。この場合に、平面101に反射された光線が傾斜面103に反射された後、画像取得部309に到達することはない。したがって、測定装置による画像において、傾斜面103の領域が明るくなることはなく平面101の領域と傾斜面103の領域との境界E’が明確になる。 FIG. 9A is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measurement apparatus. In FIG. 9A,
Figure 2018189627
Satisfy the relationship. In this case, the light beam reflected by the plane 101 does not reach the image acquisition unit 309 after being reflected by the inclined surface 103. Therefore, in the image by the measuring apparatus, the area of the inclined surface 103 does not become bright, and the boundary E ′ between the area of the plane 101 and the area of the inclined surface 103 becomes clear.

図9Bは、傾斜面103の、平面101に対する角度θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図9Bにおいて、

Figure 2018189627
の関係を満たす。この場合に、平面101に反射された光線の一部が傾斜面103に反射された後、画像取得部309に到達する。したがって、測定装置による画像において、傾斜面103の領域が明るくなり平面101の領域と傾斜面103の領域との境界E’が明確でなくなる。 FIG. 9B is a diagram for explaining the relationship between the angle θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 9B,
Figure 2018189627
Satisfy the relationship. In this case, a part of the light beam reflected by the plane 101 is reflected by the inclined surface 103 and then reaches the image acquisition unit 309. Therefore, in the image by the measuring apparatus, the area of the inclined surface 103 becomes brighter and the boundary E ′ between the area of the flat surface 101 and the area of the inclined surface 103 becomes unclear.

図10Aは、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図10Aにおいて、

Figure 2018189627
の関係を満たす。この場合に、傾斜面103で反射された光線は、測定装置に到達しない。したがって、測定装置による画像において、傾斜面103の領域が明るくなることはなく平面101の領域と傾斜面103の領域との境界Eが明確になる。 FIG. 10A is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 10A,
Figure 2018189627
Satisfy the relationship. In this case, the light beam reflected by the inclined surface 103 does not reach the measuring device. Therefore, in the image by the measuring apparatus, the area of the inclined surface 103 does not become bright, and the boundary E between the area of the plane 101 and the area of the inclined surface 103 becomes clear.

図10Bは、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図10Bにおいて、

Figure 2018189627
の関係を満たす。この場合に、傾斜面103で反射された光線は測定装置に到達する。この場合に、測定装置による画像において、傾斜面103の領域が明るくなり平面101の領域と傾斜面103の領域との境界Eが明確でなくなる。したがって、この状態は、画像による測定の観点から好ましくない。 FIG. 10B is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 10B,
Figure 2018189627
Satisfy the relationship. In this case, the light beam reflected by the inclined surface 103 reaches the measuring device. In this case, in the image by the measuring apparatus, the area of the inclined surface 103 becomes bright and the boundary E between the area of the plane 101 and the area of the inclined surface 103 becomes unclear. Therefore, this state is not preferable from the viewpoint of measurement by an image.

したがって、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとは、以下の関係を満たすのが好ましい。

Figure 2018189627
なお、測定装置の撮像光学系の開口角φは、一般的に10度から20度の範囲である。したがって、平面101に対する傾斜面103の角度は、20度から70度であるのが好ましい。 Therefore, the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus preferably satisfy the following relationship.
Figure 2018189627
Note that the aperture angle φ of the imaging optical system of the measuring apparatus is generally in the range of 10 degrees to 20 degrees. Therefore, the angle of the inclined surface 103 with respect to the plane 101 is preferably 20 degrees to 70 degrees.

図11は、柱115の中心軸を含む断面における傾斜面103の中心軸と垂直方向の長さXと柱115の長さLとの関係を説明するための図である。平面101と傾斜面103との境界上の点で反射された光線のうち相当な部分が、柱115の側面で反射され、測定装置に到達するためには、測定装置の撮像光学系の開口角をφとして、以下の関係が満たされるのが望ましい。

Figure 2018189627
また、長さXは、鮮明な画像を得るには0.01mm以上であるのが望ましい。他方、測定装置の解像限界dは、測定光学系のエフナンバーをfn0として以下の式で表せる。
d = 2.44×λ×fn0
λ= 0.55μm、fn0=0.4 としてd = 0.537um である。図8に示すように、測定装置の画像において、直接観察される傾斜面の像と反射によって観察される傾斜面の像とが存在する。そこで、解像限界dのみから考察すると、長さXは、d/2より大きくなければならない。 FIG. 11 is a diagram for explaining the relationship between the length X of the column 115 and the length X in the direction perpendicular to the center axis of the inclined surface 103 in the cross section including the center axis of the column 115. In order for a considerable part of the light beam reflected at the point on the boundary between the plane 101 and the inclined surface 103 to be reflected by the side surface of the column 115 and reach the measuring device, the aperture angle of the imaging optical system of the measuring device It is desirable that the following relationship is satisfied, where φ is φ.
Figure 2018189627
The length X is preferably 0.01 mm or more in order to obtain a clear image. On the other hand, the resolution limit d of the measuring device can be expressed by the following equation where the f-number of the measuring optical system is f n0 .
d = 2.44 × λ × f n0
Assuming that λ = 0.55 μm and f n0 = 0.4, d = 0.537 um. As shown in FIG. 8, in the image of the measuring apparatus, there are an image of an inclined surface observed directly and an image of an inclined surface observed by reflection. Therefore, considering only from the resolution limit d, the length X must be larger than d / 2.

図12は、本発明の第2の実施形態の部品100Bの位置基準部110Bの中心軸を含む断面を示す図である。位置基準部110Bの柱115は円柱であり、部品100Bの平面101上に、該円柱の中心軸が平面101と垂直になるように形成されている。図12の円で囲まれた図は、円柱の根元付近の円柱の中心軸を含む断面を示す図である。平面101は、環状の傾斜面103に囲まれており、傾斜面103は平面101と、平面101に平行で平面101からの距離がDである平面105とをつなぐ。傾斜面103と平面101との境界線は円形であり、円の中心は上記の中心軸と平面101との交点である。本実施形態において、平面101と傾斜面103とは柱115の周囲の溝を形成している。該断面において、平面101の該中心軸と垂直方向の幅、すなわち溝の幅はWである。平面101は、レンズ150が配置される平面と同一の平面を形成するのが好ましい。   FIG. 12 is a diagram illustrating a cross section including the central axis of the position reference portion 110B of the component 100B according to the second embodiment of the present invention. The column 115 of the position reference portion 110B is a cylinder, and is formed on the plane 101 of the component 100B so that the central axis of the cylinder is perpendicular to the plane 101. The figure surrounded by the circle in FIG. 12 is a diagram showing a cross section including the central axis of the cylinder near the base of the cylinder. The plane 101 is surrounded by an annular inclined surface 103, and the inclined surface 103 connects the plane 101 and a plane 105 parallel to the plane 101 and having a distance D from the plane 101. The boundary line between the inclined surface 103 and the plane 101 is a circle, and the center of the circle is the intersection of the center axis and the plane 101. In the present embodiment, the flat surface 101 and the inclined surface 103 form a groove around the pillar 115. In the cross section, the width of the plane 101 in the direction perpendicular to the central axis, that is, the width of the groove is W. The plane 101 preferably forms the same plane as the plane on which the lens 150 is disposed.

図12において、Aで示される隅部は、断面が円弧上の部分、いわゆるRを有さないように形成されるのが好ましい。   In FIG. 12, the corner indicated by A is preferably formed so that the cross section does not have a so-called R portion.

図13は、照明用の光のうち平面101に垂直に進行する光線の経路及びその光線による画像を示す図である。平面101に垂直に入射する光線の反射光は、平面101に垂直に進行するので画像取得部309に到達する。同様に、平面105に垂直に入射する反射光も画像取得部309に到達する。他方、平面101に垂直に進行する光線が、傾斜面103に反射されると、さらに、柱115の側面に反射され画像取得部309に到達することはない。そこで、画像取得部309で取得された画像において、平面101及び平面105の領域は明るくなり、傾斜面103の領域は暗くなる。この結果、上記の画像において、平面101の領域と傾斜面103の領域との境界Eが明確に示される。   FIG. 13 is a diagram illustrating a path of a light beam that travels perpendicular to the plane 101 of the illumination light and an image of the light beam. The reflected light of the light ray that enters the plane 101 perpendicularly travels perpendicularly to the plane 101 and reaches the image acquisition unit 309. Similarly, reflected light that enters the plane 105 perpendicularly also reaches the image acquisition unit 309. On the other hand, when the light beam traveling perpendicular to the plane 101 is reflected by the inclined surface 103, it is further reflected by the side surface of the column 115 and does not reach the image acquisition unit 309. Therefore, in the image acquired by the image acquisition unit 309, the areas of the plane 101 and the plane 105 become bright, and the area of the inclined surface 103 becomes dark. As a result, in the above image, the boundary E between the region of the plane 101 and the region of the inclined surface 103 is clearly shown.

図14は、照明用の光のうち平面101に対して所定の範囲の角度で進行する光線の経路及びその光線による画像を示す図である。平面101に上記所定の範囲の角度入射する光線の反射光は、平面101及び柱115の側面で反射された後、画像取得部309に到達する。同様に、平面105に入射する反射光も画像取得部309に到達する。他方、平面101に対して上記所定の範囲の角度で進行する光線は、傾斜面103に反射されたとしても、さらに、柱115の側面に反射され画像取得部309に到達することはない。そこで、画像取得部309で取得された、柱115の側面で反射された光線による反射像において、平面101及び平面105の領域は明るくなり、傾斜面103の領域は暗くなる。この結果、上記の画像において、平面101の領域の反射像と傾斜面103の領域の反射像との境界E’が明確に示される。   FIG. 14 is a diagram illustrating a path of light rays that travel at an angle within a predetermined range with respect to the plane 101 in the illumination light, and an image of the light rays. The reflected light of the light beam incident on the plane 101 at an angle within the predetermined range is reflected by the plane 101 and the side surfaces of the pillar 115 and then reaches the image acquisition unit 309. Similarly, the reflected light that enters the plane 105 also reaches the image acquisition unit 309. On the other hand, even if the light ray traveling at an angle within the predetermined range with respect to the plane 101 is reflected by the inclined surface 103, it is further reflected by the side surface of the column 115 and does not reach the image acquisition unit 309. Therefore, in the reflected image obtained by the light beam reflected by the side surface of the column 115 acquired by the image acquisition unit 309, the areas of the plane 101 and the plane 105 become bright and the area of the inclined plane 103 becomes dark. As a result, in the above image, the boundary E ′ between the reflected image in the area of the plane 101 and the reflected image in the area of the inclined surface 103 is clearly shown.

図15は、照明用の光の光線の経路及びその光線による画像を示す図である。図15は、図13及び図14を組み合わせたものである。図15において、境界E’は、平面101の領域と傾斜面103の領域との境界Eの、柱115の側面における反射による像である。そこで、境界Eの上の点とそれに対応する境界E’上の点とを結ぶ線分の中点は、平面101における柱115の外周上の点の位置に対応する。このようにして、図15に示す画像から、柱115の根元の外周の位置を求めることができる。なお、平面101における柱115の外周の位置の求め方については後で詳細に説明する。   FIG. 15 is a diagram illustrating a path of a light beam for illumination and an image by the light beam. FIG. 15 is a combination of FIGS. 13 and 14. In FIG. 15, a boundary E ′ is an image obtained by reflection on the side surface of the column 115 of the boundary E between the region of the plane 101 and the region of the inclined surface 103. Therefore, the midpoint of the line segment connecting the point on the boundary E and the corresponding point on the boundary E ′ corresponds to the position of the point on the outer periphery of the column 115 on the plane 101. In this manner, the position of the outer periphery of the base of the pillar 115 can be obtained from the image shown in FIG. A method for obtaining the position of the outer periphery of the column 115 on the plane 101 will be described in detail later.

以下において、傾斜面103の平面101に対する角度について説明する。本明細書において角度の単位は度である。   Hereinafter, the angle of the inclined surface 103 with respect to the plane 101 will be described. In this specification, the unit of angle is degrees.

図16Aは、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図16Aにおいて、

Figure 2018189627
の関係を満たす。この場合に、照射される光線の大部分は、平面101に到達する。 FIG. 16A is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 16A,
Figure 2018189627
Satisfy the relationship. In this case, most of the irradiated light rays reach the plane 101.

図16Bは、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図16Bにおいて、

Figure 2018189627
の関係を満たす。この場合に、照射される光線の一部は、平面105によるケラレによって平面101に到達することができない。したがって、この状態は照射の効率の観点から好ましくない。 FIG. 16B is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 16B,
Figure 2018189627
Satisfy the relationship. In this case, some of the irradiated light beams cannot reach the plane 101 due to vignetting by the plane 105. Therefore, this state is not preferable from the viewpoint of the efficiency of irradiation.

図17Aは、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図17Aにおいて、

Figure 2018189627
の関係を満たす。この場合に、傾斜面103で反射された光線は、測定装置に到達しない。したがって、測定装置による画像において、傾斜面103の領域が明るくなることはなく平面101の領域と傾斜面103の領域との境界Eが明確になる。 FIG. 17A is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 17A,
Figure 2018189627
Satisfy the relationship. In this case, the light beam reflected by the inclined surface 103 does not reach the measuring device. Therefore, in the image by the measuring apparatus, the area of the inclined surface 103 does not become bright, and the boundary E between the area of the plane 101 and the area of the inclined surface 103 becomes clear.

図17Bは、傾斜面103の、平面101に対する角度(鋭角)θと測定装置の撮像光学系の開口角φとの関係を説明するための図である。図17Bにおいて、

Figure 2018189627
の関係を満たす。この場合に、傾斜面103で反射された光線の一部は、測定装置に到達する。この場合に、測定装置による画像において、傾斜面103の領域が明るくなり平面101の領域と傾斜面103の領域との境界Eが明確でなくなる。したがって、この状態は、画像による測定の観点から好ましくない。 FIG. 17B is a diagram for explaining the relationship between the angle (acute angle) θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus. In FIG. 17B,
Figure 2018189627
Satisfy the relationship. In this case, a part of the light beam reflected by the inclined surface 103 reaches the measuring device. In this case, in the image by the measuring apparatus, the area of the inclined surface 103 becomes bright and the boundary E between the area of the plane 101 and the area of the inclined surface 103 becomes unclear. Therefore, this state is not preferable from the viewpoint of measurement by an image.

したがって、傾斜面103の、平面101に対する角度θと測定装置の撮像光学系の開口角φとは、以下の関係を満たすのが好ましい。

Figure 2018189627
なお、測定装置の撮像光学系の開口角φは、一般的に10度から20度の範囲である。したがって、平面101に対する傾斜面103の角度は、20度から70度であるのが好ましい。 Therefore, the angle θ of the inclined surface 103 with respect to the plane 101 and the aperture angle φ of the imaging optical system of the measuring apparatus preferably satisfy the following relationship.
Figure 2018189627
Note that the aperture angle φ of the imaging optical system of the measuring apparatus is generally in the range of 10 degrees to 20 degrees. Therefore, the angle of the inclined surface 103 with respect to the plane 101 is preferably 20 degrees to 70 degrees.

図18は、溝の幅Wと柱115の長さLとの関係を説明するための図である。平面101と傾斜面103との境界上の点で反射された光線のうち相当な部分が、柱115の側面で反射され、測定装置に到達するためには、測定装置の撮像光学系の開口角をφとして、以下の関係が満たされるのが望ましい。

Figure 2018189627
また、幅Wは、鮮明な画像を得るには0.01mm以上であるのが望ましい。 FIG. 18 is a diagram for explaining the relationship between the width W of the groove and the length L of the pillar 115. In order for a considerable part of the light beam reflected at the point on the boundary between the plane 101 and the inclined surface 103 to be reflected by the side surface of the column 115 and reach the measuring device, the aperture angle of the imaging optical system of the measuring device It is desirable that the following relationship is satisfied, where φ is φ.
Figure 2018189627
The width W is desirably 0.01 mm or more in order to obtain a clear image.

図19は、本発明の一実施形態の測定方法を説明するための流れ図である。   FIG. 19 is a flowchart for explaining a measurement method according to an embodiment of the present invention.

図20は、図19の流れ図に示した測定方法と境界E及びE’との関係を示す図である。   FIG. 20 is a diagram showing the relationship between the measurement method shown in the flowchart of FIG. 19 and the boundaries E and E ′.

図19のステップS1010において、測定装置の画像において、境界E上の3点から、境界Eを形成する円を定める。   In step S1010 of FIG. 19, a circle forming the boundary E is determined from three points on the boundary E in the image of the measuring apparatus.

図19のステップS1020において、上記の円の中心を通る軸Aを定める。ここでは、軸Aを水平方向とする。   In step S1020 of FIG. 19, an axis A passing through the center of the circle is determined. Here, the axis A is the horizontal direction.

図19のステップS1030において、上記の円の右側において、軸Aと境界E及び境界E’との交点をA1及びA1’とする。上述のように、境界E’は、境界Eの、柱115の側面における反射による像である。   In step S1030 of FIG. 19, on the right side of the circle, intersections of the axis A, the boundary E, and the boundary E ′ are defined as A1 and A1 ′. As described above, the boundary E ′ is an image of the boundary E due to reflection on the side surface of the column 115.

図19のステップS1040において、点A1及び点A1’を結ぶ線分の中点をAC1とする。   In step S1040 of FIG. 19, the midpoint of the line segment connecting point A1 and point A1 'is AC1.

図19のステップS1050において、上記の円の左側において、軸Aと境界E及び境界E’との交点をA2及びA2’とする。   In step S1050 of FIG. 19, on the left side of the circle, intersections of the axis A, the boundary E, and the boundary E ′ are defined as A2 and A2 ′.

図19のステップS1060において、点A2及び点A2’を結ぶ線分の中点をAC2とする。   In step S1060 in FIG. 19, the midpoint of the line segment connecting point A2 and point A2 'is AC2.

図19のステップS1070において、点AC1及び点AC2を結ぶ線分の中点をACとする。   In step S1070 in FIG. 19, the midpoint of the line segment connecting the points AC1 and AC2 is defined as AC.

図19のステップS1080において、軸Aと直交する軸Bを定める。   In step S1080 in FIG. 19, an axis B orthogonal to the axis A is determined.

図19のステップS1090において、軸Bについて、ステップS1030からステップS1070までの手順にしたがって、点BC1、点BC2及び点BCを求める。   In step S1090 of FIG. 19, for the axis B, the points BC1, BC2, and BC are obtained according to the procedure from step S1030 to step S1070.

図19のステップS1100において、点AC及び点BCから位置基準部110の位置を定める。本実施形態においては、位置基準部110の主要部は円柱であるので、点ACの軸A方向の座標及び点BCの軸B方向の座標を有する点を、円柱の軸に垂直な断面の中心位置とすることによって、位置基準部110の位置を定めることができる。   In step S1100 of FIG. 19, the position of the position reference unit 110 is determined from the point AC and the point BC. In the present embodiment, since the main part of the position reference unit 110 is a cylinder, a point having the coordinates of the point AC in the axis A direction and the point BC in the axis B direction is the center of the cross section perpendicular to the cylinder axis. By setting the position, the position of the position reference unit 110 can be determined.

図2を使用して説明した通り、従来の部品においては、位置基準部110’の柱の先端部分の位置を基準として測定を実施していた。このため、柱の傾斜角度により基準位置の偏差が生じる。   As described with reference to FIG. 2, in the conventional part, the measurement is performed based on the position of the tip portion of the column of the position reference unit 110 ′. For this reason, the deviation of the reference position is caused by the inclination angle of the column.

表1は、従来の部品及び本発明の部品について、柱の傾斜角度に対する基準位置の偏差を示す表である。柱の傾斜角度とは、柱の長手方向の軸の、平面101の法線に対する角度である。表1における長さの単位はミリメータである。柱の長さは、2.67ミリメータである。

Figure 2018189627
Table 1 is a table showing the deviation of the reference position with respect to the inclination angle of the column for the conventional part and the part of the present invention. The tilt angle of the column is an angle of the axis in the longitudinal direction of the column with respect to the normal line of the plane 101. The unit of length in Table 1 is millimeter. The column length is 2.67 millimeters.
Figure 2018189627

図21は、従来の部品及び本発明の部品について、柱の傾斜角度に対する基準位置の偏差を示す図である。図21において、従来の部品の偏差を破線で示し、本発明の部品の偏差を実線で示す。従来の部品と比較して、本発明の部品においては、柱の傾斜角度による基準位置の偏差が大幅に低減される。本発明によれば、一例として、レンズ位置の公差±3マイクロメータを実現することができる。   FIG. 21 is a diagram showing the deviation of the reference position with respect to the inclination angle of the column for the conventional part and the part of the present invention. In FIG. 21, the deviation of the conventional part is indicated by a broken line, and the deviation of the part of the present invention is indicated by a solid line. Compared with the conventional part, in the part of the present invention, the deviation of the reference position due to the inclination angle of the column is greatly reduced. According to the present invention, as an example, a tolerance of lens position ± 3 micrometers can be realized.

また、位置基準部110の柱の外周の位置と溝の外側の周縁の位置とが同心状に形成されていない場合であっても、図19及び図20に示した測定方法によれば、溝の周縁の位置に起因する誤差を低減することができる。   Further, even if the position of the outer periphery of the column of the position reference portion 110 and the position of the outer periphery of the groove are not formed concentrically, according to the measurement method shown in FIGS. It is possible to reduce an error caused by the position of the peripheral edge.

図22は、本発明の他の実施形態の、位置基準部110Cを備えた部品100Cを示す図である。2個の位置基準部110Cは四角柱状である。一般的に、位置基準部の柱の長手方向に垂直な断面は、円形、または多角形でよい。位置基準部の柱の断面が多角形であっても、図19に示した測定方法と同様の測定方法で位置基準部の位置を定めることができる。   FIG. 22 is a diagram illustrating a component 100C including a position reference unit 110C according to another embodiment of the present invention. The two position reference portions 110C have a quadrangular prism shape. In general, the cross section perpendicular to the longitudinal direction of the column of the position reference portion may be circular or polygonal. Even if the cross section of the column of the position reference portion is polygonal, the position of the position reference portion can be determined by a measurement method similar to the measurement method shown in FIG.

Claims (8)

同軸落射照明を使用する撮像光学系を備えた測定装置の画像において、平面上の位置基準部の位置及び任意の点の位置を観察し、該位置基準部の位置を基準として該任意の点の位置を定める位置測定方法であって、該位置基準部は、少なくとも根元の部分が柱状であり、柱の根元を取り囲む傾斜面を備え、
該測定装置の画像において、該根元を取り囲む傾斜面及び該平面の境界の位置から該根元の外周の位置を定めるステップと、
該根元の外周の位置から該位置基準部の位置を定めるステップと、
該位置基準部の位置を基準として該任意の点の位置を定めるステップと、を含む位置測定方法。
In an image of a measuring apparatus equipped with an imaging optical system that uses coaxial epi-illumination, the position of a position reference part on a plane and the position of an arbitrary point are observed. A position measuring method for determining a position, wherein the position reference part has a columnar shape at least at the base, and includes an inclined surface surrounding the base of the pillar,
Determining the position of the outer periphery of the base from the position of the inclined surface surrounding the base and the boundary of the plane in the image of the measuring device;
Determining the position of the position reference portion from the position of the outer periphery of the root;
Determining a position of the arbitrary point on the basis of the position of the position reference unit.
該撮像光学系の開口角をφ、該根元を取り囲む傾斜面と該平面とのなす鋭角をθとして、θが、
Figure 2018189627
を満たす請求項1に記載の位置測定方法。
Assuming that the aperture angle of the imaging optical system is φ, the acute angle formed between the inclined surface surrounding the root and the plane is θ, θ is
Figure 2018189627
The position measuring method according to claim 1, wherein:
該撮像光学系の開口角をφ、該根元を取り囲む傾斜面と該平面とのなす鋭角をθ、角度の単位を度として、θが、
Figure 2018189627
を満たす請求項1または2に記載の位置測定方法。
The aperture angle of the imaging optical system is φ, the acute angle between the inclined surface surrounding the base and the plane is θ, the unit of angle is degrees, and θ is
Figure 2018189627
The position measuring method according to claim 1 or 2, satisfying
該根元を取り囲む傾斜面は、該平面と該柱の側面とをつなぐか該平面と該平面に平行な他の平面とをつなぐように形成された請求項1から3のいずれかに記載の位置測定方法。   The position according to any one of claims 1 to 3, wherein the inclined surface surrounding the base is formed so as to connect the plane and a side surface of the column or connect the plane and another plane parallel to the plane. Measuring method. 該根元を取り囲む傾斜面は、該平面と該柱の側面とをつなぐ場合に、該顕微鏡の開口角をφ、該柱の中心軸を含む断面における該傾斜面の該中心軸と垂直方向の幅をX、該柱の長さをLとして、
Figure 2018189627
を満たす請求項4に記載の位置測定方法。
The inclined surface that surrounds the root is the width of the inclined surface perpendicular to the central axis in the cross section including the central axis of the column when the opening angle of the microscope is φ and the plane is connected to the side surface of the column. Is X and the length of the pillar is L,
Figure 2018189627
The position measurement method according to claim 4, wherein:
該任意の点の位置が光学素子の位置である請求項1から4のいずれかに記載の位置測定方法。   The position measuring method according to claim 1, wherein the position of the arbitrary point is a position of an optical element. 一つの平面または互いに平行な複数の平面上に設置された、少なくとも二つの位置基準部と光学素子とを備えた部品であって、それぞれの位置基準部は、少なくとも根元の部分が柱状であり、柱の根元を取り囲む傾斜面を備え、該傾斜面の、それぞれの位置基準部が設置された平面に対する角度θは20度から70度の範囲である部品。   A component having at least two position reference portions and an optical element, which are installed on one plane or a plurality of planes parallel to each other, each of the position reference portions is columnar at least at the base, A part having an inclined surface surrounding the base of the column, and an angle θ of the inclined surface with respect to a plane on which each position reference portion is installed is in the range of 20 degrees to 70 degrees. 該根元を取り囲む傾斜面は、それぞれの位置基準部が設置された平面と該柱の側面とをつなぐかそれぞれの位置基準部が設置された平面と該平面に平行な他の平面とをつなぐように形成された請求項7に記載の部品。   The inclined surface surrounding the base connects the plane on which each position reference portion is installed and the side surface of the column, or connects the plane on which each position reference portion is installed and another plane parallel to the plane. The component according to claim 7, formed in
JP2017239493A 2017-05-11 2017-12-14 Position measurement method and parts Active JP6989950B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/967,974 US10295754B2 (en) 2017-05-11 2018-05-01 Position determination method and element
CN201810430660.1A CN108896276B (en) 2017-05-11 2018-05-08 Position measuring method and member
CN202111208827.8A CN113933030A (en) 2017-05-11 2018-05-08 Position measuring unit
DE102018111233.5A DE102018111233A1 (en) 2017-05-11 2018-05-09 POSITION DETERMINATION METHOD AND ELEMENT
JP2021190918A JP7244954B2 (en) 2017-05-11 2021-11-25 Position measurement method and parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2017/017867 2017-05-11
PCT/JP2017/017867 WO2018207310A1 (en) 2017-05-11 2017-05-11 Position measurement method and component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021190918A Division JP7244954B2 (en) 2017-05-11 2021-11-25 Position measurement method and parts

Publications (3)

Publication Number Publication Date
JP2018189627A true JP2018189627A (en) 2018-11-29
JP2018189627A5 JP2018189627A5 (en) 2020-02-27
JP6989950B2 JP6989950B2 (en) 2022-01-12

Family

ID=64105577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017239493A Active JP6989950B2 (en) 2017-05-11 2017-12-14 Position measurement method and parts

Country Status (2)

Country Link
JP (1) JP6989950B2 (en)
WO (1) WO2018207310A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157144A (en) * 1993-12-10 1995-06-20 Furukawa Electric Co Ltd:The Dimension measuring method for optical part
JP2004319555A (en) * 2003-04-11 2004-11-11 Ricoh Co Ltd Photoelectric conversion element package, its manufacturing method, and optical connector
JP2007256372A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Optical fiber connecting component
JP2009145656A (en) * 2007-12-14 2009-07-02 Enplas Corp Optically coupled device and optical module including optically coupled device
WO2014157363A1 (en) * 2013-03-27 2014-10-02 京セラ株式会社 Optical transmission module, photoelectric composite transmission module, and optical connector
JP2014228585A (en) * 2013-05-20 2014-12-08 株式会社フジクラ Method of manufacturing optical module, and optical module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134199B2 (en) * 2006-05-25 2008-08-13 エルピーダメモリ株式会社 Manufacturing method of semiconductor device
JP4910788B2 (en) * 2007-03-07 2012-04-04 ソニー株式会社 Optical module and optical waveguide manufacturing method
JP2014137410A (en) * 2013-01-15 2014-07-28 Furukawa Electric Co Ltd:The Optical module and method for manufacturing optical module
TW201439631A (en) * 2013-04-02 2014-10-16 Hon Hai Prec Ind Co Ltd Optical fiber connector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157144A (en) * 1993-12-10 1995-06-20 Furukawa Electric Co Ltd:The Dimension measuring method for optical part
JP2004319555A (en) * 2003-04-11 2004-11-11 Ricoh Co Ltd Photoelectric conversion element package, its manufacturing method, and optical connector
JP2007256372A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Optical fiber connecting component
JP2009145656A (en) * 2007-12-14 2009-07-02 Enplas Corp Optically coupled device and optical module including optically coupled device
WO2014157363A1 (en) * 2013-03-27 2014-10-02 京セラ株式会社 Optical transmission module, photoelectric composite transmission module, and optical connector
JP2014228585A (en) * 2013-05-20 2014-12-08 株式会社フジクラ Method of manufacturing optical module, and optical module

Also Published As

Publication number Publication date
JP6989950B2 (en) 2022-01-12
WO2018207310A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US5904413A (en) Method and apparatus for recognizing a skew angle of at least one optical fiber
WO2017119118A1 (en) Sample shape measuring method and sample shape measuring apparatus
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
US5317142A (en) Automatic focusing apparatus which removes light reflected by a lower surface of a sample
JP7244954B2 (en) Position measurement method and parts
CN108139205B (en) Optical element characteristic measuring device
JP6989950B2 (en) Position measurement method and parts
US6924897B2 (en) Point source module and methods of aligning and using the same
WO2016143395A1 (en) Component equipped with position measuring part and measuring method
CN112197940B (en) Single-optical-path precise measurement near-far field reference and collimation device
US6831792B2 (en) Objective lens, combination of objective lenses, and method for adjusting optical system using objective lens
KR100342481B1 (en) Image tracking device and method for transverse measurement of an optical fiber
JP2018025440A (en) Component with position measuring part
JPH08166514A (en) Obliquely illuminating device
JPH06174430A (en) Center thickness measuring method and device used for it
CN111982473B (en) Method and device for detecting and adjusting common sphere center of spherical reflector
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device
JP4135133B2 (en) Optical axis correction apparatus and optical instrument system
JP2768955B2 (en) Lens meter
JPH1026510A (en) Method for detecting position of optical fiber
JP6762183B2 (en) Phase measuring device
JPS59112214A (en) Axis aligning device
JPH0648323B2 (en) Optical fiber axis deviation measurement method
JPH08210947A (en) Lens meter
JPH09325231A (en) Method for aligning optical fiber and observation device for alignment of optical fiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6989950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150