WO2018199187A1 - スケール組成判定システム、スケール組成判定方法、およびプログラム - Google Patents

スケール組成判定システム、スケール組成判定方法、およびプログラム Download PDF

Info

Publication number
WO2018199187A1
WO2018199187A1 PCT/JP2018/016865 JP2018016865W WO2018199187A1 WO 2018199187 A1 WO2018199187 A1 WO 2018199187A1 JP 2018016865 W JP2018016865 W JP 2018016865W WO 2018199187 A1 WO2018199187 A1 WO 2018199187A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
wavelengths
spectral emissivity
wavelength
hematite
Prior art date
Application number
PCT/JP2018/016865
Other languages
English (en)
French (fr)
Inventor
杉浦 雅人
寛志 多根井
山崎 修一
近藤 泰光
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112019016687-4A priority Critical patent/BR112019016687B1/pt
Priority to KR1020197028682A priority patent/KR102197962B1/ko
Priority to US16/484,615 priority patent/US11474032B2/en
Priority to CA3057054A priority patent/CA3057054C/en
Priority to CN201880012159.1A priority patent/CN110312927B/zh
Priority to JP2018545405A priority patent/JP6424998B1/ja
Priority to EP18791563.2A priority patent/EP3617693B1/en
Publication of WO2018199187A1 publication Critical patent/WO2018199187A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2028Metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity

Definitions

  • the present invention relates to a scale composition determination system, a scale composition determination method, and a program, and is particularly suitable for use in determining the composition of scale generated on the surface of a steel material.
  • a scale iron oxide film
  • a red hot steel material 600 [° C.] to 1200 [° C.] is conveyed on the line and stretched by a roller. Therefore, scale is always generated on the surface of the steel material during hot rolling.
  • scales There are three types of scales, wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ), depending on temperature and oxygen concentration.
  • Scale adhesion is related to its composition.
  • the multilayer scale in which Fe 2 O 3 is formed on the outermost layer of the scale is easy to peel off.
  • a single-layer scale whose scale composition is only FeO has high adhesion. Therefore, a scale that is easy to peel off when passing through a scale removing device called a descaler is preferable.
  • the scale is in close contact with the steel material. Therefore, it is desired to determine the composition of the scale and use the result for operation.
  • X-ray diffraction measurement can be considered as a technique for discriminating the composition of the scale.
  • a test piece obtained by cutting a steel material with a growing scale into a size of about several centimeters is produced, and the X-ray diffraction pattern of the test piece is measured.
  • Different X-ray diffraction patterns are obtained depending on the crystal structure of the scale. Therefore, it can be determined from the X-ray diffraction pattern whether Fe 2 O 3 is present on the outermost layer of the scale (that is, whether the scale is the single-layer scale or the multi-layer scale described above).
  • the rate-limiting process of oxidation on the surface of the steel material includes a process in which oxygen molecules are supplied to the oxide film on the surface of the steel sheet and a process in which iron atoms are oxidized on the surface of the steel material. Whether or not Fe 2 O 3 is present on the outermost surface layer of the scale is determined depending on which rate is determined.
  • the present invention has been made in view of the above problems, and an object of the present invention is to be able to accurately discriminate on-line the composition of the scale generated on the surface of the steel material in operation.
  • the scale composition determination system of the present invention is a scale composition determination system that determines the composition of the scale generated on the surface of the steel material, the detection means for detecting the spectral radiance of the steel material at each of a plurality of wavelengths, Temperature acquisition means for acquiring the temperature of the steel material; temperature of the steel material acquired by the temperature acquisition means; and spectral radiance of the steel material at each of the plurality of wavelengths detected by the detection means.
  • a spectral emissivity deriving unit for deriving a spectral emissivity of the steel material at each of the plurality of wavelengths, and a spectral emissivity of the steel material at each of the plurality of wavelengths derived by the spectral emissivity deriving unit.
  • determining means for determining whether or not the hematite in the outermost layer of the scale (Fe 2 O 3) is generated, wherein The determining means is configured to reduce the maximum of the scale when at least one of the spectral emissivities of the steel materials at each of the plurality of wavelengths is outside a predetermined range set at each of the plurality of wavelengths.
  • the predetermined range includes the spectral emissivity of wustite (FeO) at the wavelength, and the plurality of wavelengths are assumed as the spectral emissivity of the hematite and the thickness of the hematite at each of the plurality of wavelengths.
  • the plurality of wavelengths are determined by the relationship with the thickness of the hematite within the range to be determined, and the plurality of wavelengths in the relationship can be determined at any thickness of the hematite.
  • Spectral emissivity of the hematite in at least one of the wavelengths is characterized in that it is determined to be outside the range of the predetermined set in the wavelengths.
  • the scale composition determination method of the present invention is a scale composition determination method for determining the composition of a scale generated on the surface of a steel material, the detection step of detecting the spectral radiance of the steel material at each of a plurality of wavelengths, A temperature acquisition step of acquiring a temperature of the steel material; a temperature of the steel material acquired by the temperature acquisition step; and a spectral radiance of the steel material at each of the plurality of wavelengths detected by the detection step.
  • the determination step Based on the spectral emissivity derivation step of deriving the spectral emissivity of the steel material at each of the plurality of wavelengths, and the spectral emissivity of the steel material at each of the plurality of wavelengths derived by the spectral emissivity derivation step based on, and a determination step of determining whether the hematite in the outermost layer of the scale (Fe 2 O 3) is generated, the determination step , Wherein at a plurality of at least one of the spectral emissivity of the steel at the respective wavelengths, when there outside a predetermined range set in each of the plurality of wavelengths, hematite as the outermost layer of the scale (Fe 2 It is determined that O 3 ) is generated.
  • hematite Fe 2 O 3
  • the predetermined range set at the wavelength is determined.
  • the plurality of wavelengths includes the hematite spectral emissivity at each of the plurality of wavelengths and the hematite within a range assumed as the thickness of the hematite.
  • the plurality of wavelengths are determined using the relationship with the thickness of the hematite in any of the thicknesses of the hematite in the relationship. Characterized in that the spectral emissivity of the hematite in at least one of the wavelengths is determined to be outside the predetermined set in the wavelength.
  • the program of the present invention is a program for causing a computer to determine a composition of a scale generated on the surface of a steel material, the temperature of the steel material, and the spectral radiance of the steel material at each of a plurality of wavelengths. And a spectral emissivity derivation step of deriving a spectral emissivity of the steel material at each of the plurality of wavelengths, and the steel material at each of the plurality of wavelengths derived by the spectral emissivity derivation step. And determining whether hematite (Fe 2 O 3 ) is generated on the outermost layer of the scale based on the spectral emissivity, and causing the computer to execute the determination step.
  • hematite Fe 2 O 3
  • the outermost layer of the scale is determined as hematite (Fe 2 O 3) is generated, determines that otherwise, hematite (Fe 2 O 3) in the outermost layer of the scale is not generated,
  • the predetermined range set at the wavelength includes a spectral emissivity of wustite (FeO) at the wavelength, and the plurality of wavelengths includes the spectral emissivity of the hematite at each of the plurality of wavelengths, and
  • the plurality of wavelengths are determined using a relationship with the thickness of the hematite within a range assumed as the thickness of the hematite, and the plurality of wavelengths in the relationship is at least one of the plurality of wavelengths at any thickness of the hematite.
  • the spectral emissivity of the hematite at one wavelength is determined to be outside the predetermined
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a hot rolling line.
  • FIG. 2 is a diagram illustrating an example of the configuration of the scale composition determination system.
  • FIG. 3A is a diagram illustrating an example of the relationship between the thickness of the single-layer scale and the spectral emissivity.
  • FIG. 3B is a diagram showing an example of the relationship between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity.
  • FIG. 4A is a diagram showing the difference between the spectral emissivity of the single-layer scale and the spectral emissivity of the multi-layer scale at the wavelength A.
  • FIG. 4B is a diagram showing the difference between the spectral emissivity of the single-layer scale and the spectral emissivity of the multilayer scale at the wavelength B.
  • FIG. 5 is a diagram illustrating an example of the relationship between the spectral radiance of a black body and the wavelength.
  • FIG. 6A is a diagram illustrating an example of the relationship between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity of Fe 2 O 3 at wavelength A.
  • FIG. 6B is a diagram illustrating an example of the relationship between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity of Fe 2 O 3 at wavelength B.
  • FIG. 7 is a flowchart for explaining an example of the operation of the scale composition determination apparatus.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of the scale composition determination apparatus.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a hot rolling line which is an example of an application destination of the scale composition determination apparatus 10.
  • a hot rolling line includes a heating furnace 11, descalers 12a to 12f, a width direction rolling mill 13, a rough rolling mill 14, a finishing rolling mill 15, a cooling device (runout table) 16, a winding machine.
  • the heating furnace 11 heats a slab (steel material) S.
  • the descalers 12a to 12f remove scales generated on the surface of the steel material. The thickness of the scale is, for example, 10 [ ⁇ m] to 100 [ ⁇ m].
  • the descalers 12a to 12f perform descaling (removal of scale), for example, by spraying pressurized water onto the surface of the steel material.
  • descalers 12a to 12f perform descaling (removal of scale), for example, by spraying pressurized water onto the surface of the steel material.
  • the steel materials are high temperature, even if scales are removed, the steel materials are immediately reoxidized. Therefore, the steel material is always rolled with the scale existing on the surface.
  • the width direction rolling mill 13 rolls the slab S heated in the heating furnace 11 in the width direction.
  • the rough rolling machine 14 rolls the slab S rolled in the width direction by the width direction rolling machine 13 from the upper and lower directions into a rough bar.
  • the roughing mill 14 has a rolling stand 14a composed of only work rolls, and rolling stands 14b to 14e each having a work roll and a backup roll.
  • the finish rolling mill 15 performs hot finish rolling on the rough bar produced by the rough rolling mill 14 continuously to a predetermined thickness.
  • the finishing mill 15 has seven rolling stands 15a to 15g.
  • the cooling device 16 cools the hot-rolled steel sheet H that has been hot finish-rolled by the finish rolling mill 15 with cooling water.
  • the winding device 17 winds the hot rolled steel sheet H cooled by the cooling device 16 in a coil shape.
  • a hot rolling line can be implement
  • the descaler is arranged between the upstream rolling stands (for example, between the rolling stands 15a and 15b and between the rolling stands 15b and 15c). good.
  • At least one set of radiometers including three radiometers is arranged on the hot rolling line. Moreover, all three radiometers detect the spectral radiance of steel materials in a non-contact manner. However, one of the three radiometers is a radiometer used for measuring the temperature of a steel material by a radiation thermometry method. The remaining two of the three radiometers are radiometers used to measure the spectral emissivity of steel.
  • the spectral radiance L b ( ⁇ , T) produced by the black body at the absolute temperature T is expressed by the following equation (1) according to Planck's black body radiation law.
  • the spectral radiance is the radiant flux [W ⁇ ⁇ m ⁇ 1 ⁇ sr ⁇ 1 ⁇ m ⁇ 2 ] per unit wavelength, per unit area and per unit solid angle at the wavelength ⁇ [ ⁇ m].
  • Equation (1) is the spectral radiance of a black body, which is an ideal radiator.
  • the spectral radiance L ( ⁇ , T) of an actual object is smaller than the spectral radiance L b ( ⁇ , T) of a black body at the same temperature. Therefore, the spectral emissivity ⁇ ( ⁇ , T) of the object to be measured is defined by the following equation (2).
  • the spectral radiance L ( ⁇ , T) of the object to be measured is measured. Further, the temperature T of the object to be measured is obtained by some method. Then, the equation (2) is calculated using the spectral radiance L ( ⁇ , T) of the object to be measured and the temperature T of the object to be measured.
  • the example shown in FIG. 1 shows a case where a set of radiometers 20, 21a, 21b is arranged in a region between the descaler 12b and the rolling stand 14b.
  • the rolling stand 14b is a rolling stand provided in the uppermost stream among rolling stands having a work roll and a backup roll.
  • the radiometer 20 shall be a radiometer used in order to measure the temperature of steel materials.
  • the radiometers 21a and 21b are radiometers used for measuring the spectral emissivity of the steel material.
  • FIG. 2 is a diagram illustrating an example of the configuration of the scale composition determination system.
  • FIG. 2 shows an example of the arrangement of the radiometers 20, 21 a, and 21 b and the functional configuration of the scale composition determination apparatus 10.
  • Radiometer 20, 21a, 21b First, an example of the arrangement of the radiometers 20, 21a, 21b will be described.
  • FIG. 2 the case where the direction of the arrow line attached to the side of steel material SM is a conveyance direction of steel material SM is mentioned as an example, and it shows. Further, it is assumed that the scale SC is generated on the surface of the steel material SM.
  • the radiometers 20, 21a, and 21b are arranged so that the intersections of the axes of the radiometers 20, 21a, and 21b (the optical axis of the light receiving lens) and the passing position of the steel material SM (the surface thereof) substantially coincide To do.
  • FIG. 2 shows an example in which the radiometers 20, 21a, 21b are arranged in the conveying direction of the steel material SM.
  • the radiometers 20, 21a, 21b are It is not necessary to arrange in this way.
  • the radiometers 20, 21a, 21b may be arranged in the width direction of the steel material SM.
  • the radiometer 20 used for measuring the temperature of the steel material is referred to as a temperature measurement radiometer 20 as necessary.
  • the radiometers 21a and 21b used for measuring the spectral emissivity of the steel material are referred to as spectral emissivity measuring radiometers 21a and 21b as necessary.
  • This detection wavelength corresponds to the wavelength ⁇ in the equations (1) and (2).
  • the wavelengths that can be measured by the temperature measuring radiometer 20 and the spectral emissivity measuring radiometers 21a and 21b are generally in the region of 0.6 [ ⁇ m] to 14.0 [ ⁇ m] in the atmosphere. This is a zone where absorption by carbon dioxide and water vapor is small.
  • This lower limit value of 0.6 [ ⁇ m] is determined from the lower limit value of the wavelength at which the spectral radiance can be measured by the radiometer.
  • the lower limit of the wavelength at which this spectral radiance can be measured is determined according to the temperature of the steel material SM to be measured.
  • the lower limit of the wavelength at which the spectral radiance can be measured with a radiometer is 0.6 [ ⁇ m].
  • the lower limit value of the temperature of the steel plate SM to be measured is 600 [° C.]
  • the lower limit value of the detection wavelength is 0.9 [ ⁇ m].
  • the upper limit of wavelength 14.0 [ ⁇ m] is determined by the restriction of the performance of the photodetecting element in the radiometer (detection ability of long wavelength infrared rays). Note that the temperature range of the steel material SM assumed in the present embodiment is 600 [° C.] to 1200 [° C.].
  • the detection wavelengths of the temperature measurement radiometer 20 and the spectral emissivity measurement radiometers 21a and 21b are selected from the range of 0.6 [ ⁇ m] to 14.0 [ ⁇ m]. It is preferable to do this.
  • the composition and structure of the scale SC will be described.
  • the single-layer scale is composed only of wustite (FeO).
  • the multilayer scale is composed of wustite (FeO), magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ).
  • wustite (FeO), magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ) form a layer having a thickness ratio of about 94: 5: 1 in this order from the ground iron side.
  • wavelength A one detection wavelength defined in the region of 3.3 [ ⁇ m] to 5.0 [ ⁇ m], and 8.0 [ ⁇ m].
  • wavelength B In two wavelengths of one wavelength (hereinafter referred to as wavelength B) defined in the region of ⁇ 14.0 [ ⁇ m], a single-layer scale (scale SC composed only of FeO) and a multi-layer scale (from the surface layer) , Fe 2 O 3 , Fe 3 O 4 , and FeO in the order of the sandwich scale SC) were investigated.
  • the spectral emissivity was experimentally determined as follows.
  • the steel sample to which the thermocouple is welded is heated in a chamber, and the thermal radiance of the steel sample is measured with a radiometer while the steel sample is kept at a predetermined temperature.
  • the radiometer output L ( ⁇ , T) thus obtained is read.
  • L b ( ⁇ , T) is calculated by substituting the indicated temperature of the thermocouple into the equation (1).
  • the spectral emissivity ⁇ ( ⁇ , T) is obtained from L ( ⁇ , T) and L b ( ⁇ , T) based on the equation (2).
  • a single-layer scale and a multi-layer scale were separately formed, and the spectral emissivity of each scale structure was obtained.
  • FIG. 3A is a diagram illustrating an example of the relationship between the thickness of the single-layer scale (FeO) and the spectral emissivity.
  • FIG. 3B is a diagram showing an example of the relationship between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity.
  • the FeO thickness means the thickness of the single-layer scale (the whole).
  • the Fe 2 O 3 thickness means the thickness of Fe 2 O 3 produced in the outermost layer of the multilayer scale.
  • the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale is about 1/100 of the thickness of the entire scale. As shown in FIG.
  • the spectral emissivity of the single layer scale shows a stable value regardless of the thickness of the single layer scale for both the wavelength A and the wavelength B. This is because FeO is opaque.
  • the spectral emissivity of the multilayer scale periodically fluctuates with changes in the thickness of the Fe 2 O 3 (i.e. growth of Fe 2 O 3). The period is longer as the wavelength is longer.
  • Patent Document 1 shows a simulation result in which the spectral emissivity of the multilayer scale changes according to the thickness of Fe 2 O 3 at a wavelength of 3.9 [ ⁇ m]. Although the overall thickness of the multilayer scale is larger than the wavelength, Fe 2 O 3 is transparent and Fe 3 O 4 can be considered opaque.
  • the optical interference phenomenon in the thin Fe 2 O 3 contributes to the spectral emissivity.
  • the spectral emissivity of the multilayer scale periodically varies depending on the thickness of Fe 2 O 3 .
  • the behavior of the spectral emissivity with respect to the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale is within the range of the wavelength A or the wavelength B (3.3 [ ⁇ m] to 5.0 [ ⁇ m], 8 0.0 [ ⁇ m] to 14.0 [ ⁇ m]), it has been separately confirmed that it does not vary greatly.
  • the behavior of the spectral emissivity with respect to the multilayer scale surface Fe 2 O 3 thickness is, for example, whether the spectral emissivity value forms a peak or valley, whether it has a monotonous change or an extreme value, It means the behavior of whether it is convex upward or downward, and the behavior in the correspondence between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity.
  • the thickness of the entire scale SC is 100 [ ⁇ m] at the maximum (in this case, the thickness of Fe 2 O 3 is about 1 [ ⁇ m] at the maximum), as can be read from FIGS. 3A and 3B,
  • the spectral emissivity of one wavelength is observed, there is a thickness region in which the spectral emissivity of Fe 2 O 3 is similar to that of FeO.
  • the thickness of Fe 2 O 3 is around 0.8 [ ⁇ m]
  • the spectral emissivity of Fe 2 O 3 at the wavelength A is around 0.75 which is equivalent to the spectral emissivity of FeO (here, 100 times the thickness of Fe 2 O 3 is the (total) thickness of the multilayer scale).
  • the spectral emissivity when the spectral emissivity is measured at one wavelength, it is determined from the spectral emissivity whether Fe 2 O 3 is present on the outermost layer of the scale SC (ie, whether the scale SC is a single-layer scale or a multi-layer scale). There is a thickness region where it cannot be determined. Therefore, in the present embodiment, the following method has been adopted so that it can be determined whether the scale SC is a single-layer scale or a multi-layer scale in any thickness region.
  • the spectral emissivity of Fe 2 O 3 in at least one wavelength of the two wavelengths clearly different from the spectral emissivity of FeO
  • the two wavelengths are selected.
  • the spectral emissivity of Fe 2 O 3 is varied by the thickness of the Fe 2 O 3. For this reason, measurement is performed at a plurality of wavelengths so that the spectral emissivity does not become a similar value depending on the thickness of Fe 2 O 3 .
  • This is also one of the technical features of this embodiment. This will be specifically described with reference to FIGS. 4A and 4B.
  • FIG. 4A shows the relationship between the thickness of Fe 2 O 3 formed on the outermost layer of the multilayer scale, the spectral emissivity of FeO, and the spectral emissivity of Fe 2 O 3 for wavelength A from FIGS. 3A and 3B. It is a figure which extracts and shows.
  • FIG. 4B shows the relationship between the thickness of Fe 2 O 3 formed on the outermost layer of the multilayer scale, the spectral emissivity of FeO, and the spectral emissivity of Fe 2 O 3 for wavelength B from FIGS. 3A and 3B. It is a figure which extracts and shows. As shown in FIGS. 3A and 3B, the spectral emissivity of FeO is constant regardless of the thickness of the scale SC.
  • the spectral emissivity of the multilayer scale periodically varies depending on the thickness of Fe 2 O 3 .
  • the layer thickness means the following. That is, for the spectral emissivity of FeO, the layer thickness is a (single layer scale) thickness. For the spectral emissivity of Fe 2 O 3 , the layer thickness is the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale.
  • the “predetermined first range” (see the gray area in the figure) is set in a range where the spectral emissivity is about 0.7 to 0.8. Yes. If the measured spectral emissivity is within the predetermined range (see the gray area in the figure), it is determined that the scale SC is FeO. By doing so, if the thickness of Fe 2 O 3 produced on the outermost layer of the multilayer scale was 0.6 [ ⁇ m] or less, the measurement was performed when the scale SC to be measured was a multilayer scale. The spectral emissivity is a value outside the predetermined first range. From this, the multi-layer scale and the single-layer scale can be separated.
  • the wavelength B shown in FIG. 4B apart from the “predetermined first range” in the case of the wavelength A shown in FIG. 4A, as an example, in the range where the spectral emissivity is about 0.6 to 0.7.
  • “Predetermined second range” see gray area in the figure
  • the scale SC is FeO.
  • the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale is about 0.2 [ ⁇ m] or more, the measurement is performed when the scale SC to be measured is a multilayer scale.
  • the spectral emissivity becomes a value outside the predetermined second range.
  • the predetermined first range may be a range including the spectral emissivity of FeO at the wavelength A.
  • the predetermined second range may be a range including the spectral emissivity of FeO at the wavelength B.
  • the upper limit value and the lower limit value of the predetermined first range and the upper limit value and the lower limit value of the predetermined second range may be appropriately set in consideration of a measurement error (radiometer tolerance) and the like. it can.
  • the scale SC to be measured is a multi-layer scale even if it is a single-layer scale. Even at the layer scale, the spectral emissivity at the wavelength A is a value within the predetermined first range.
  • the spectral emissivity at the wavelength B is a value within the predetermined second range.
  • the determination when the wavelength A is used and the determination when the wavelength B is used are combined.
  • the range which was not able to be judged only with each wavelength A and B can be supplemented. Therefore, the multi-layer scale and the single-layer scale can be separated regardless of the thickness of Fe 2 O 3 generated in the outermost layer of the multi-layer scale. That is, as can be seen from FIGS. 4A and 4B, the determination that the spectral emissivity at the wavelength A is out of the predetermined first range and the spectral emissivity at the wavelength B is out of the predetermined second range.
  • the spectral emissivity value is determined by the determination of at least one of the wavelength A and the wavelength B.
  • the scale SC is a multi-layer scale or a single-layer scale regardless of the thickness of Fe 2 O 3 generated in the outermost layer of the multi-layer scale.
  • the wavelength A, B are in any of the thickness of the Fe 2 O 3, the spectral emissivity of Fe 2 O 3 in at least one of the wavelengths of the wavelength A and wavelength B is set in the wavelength It is determined to be outside the predetermined range.
  • the predetermined range set in the wavelength A is the predetermined first range.
  • the predetermined range set in the wavelength B is the predetermined second range.
  • 4A and 4B show an example in which the thickness of Fe 2 O 3 is assumed to be in the range of 0.0 [ ⁇ m] to 1.0 [ ⁇ m].
  • the range of the thickness of Fe 2 O 3 is obtained, for example, as follows.
  • the thickness range of the entire scale SC is obtained from a known scale thickness calculation formula.
  • the scale thickness calculation formula is an equation for obtaining the entire thickness of the scale SC from a function of temperature and time. Then, as the thickness range of Fe 2 O 3 that is assumed to be generated in the hot rolling line, the upper limit value and the lower limit value of 1 [%] of the entire thickness range of the scale SC are obtained. Further, the thickness range of Fe 2 O 3 may be obtained, for example, by conducting a laboratory experiment for generating a scale assuming an actual temperature history.
  • the temperature of the steel material SC is measured by a radiation temperature measurement method.
  • radiation temperature measurement it is desirable that the spectral emissivity is known and constant.
  • the scale SC is expected to vary in spectral emissivity in all wavelength bands due to its composition and optical interference. Therefore, in this embodiment, radiation temperature measurement is performed in a short wavelength band.
  • the spectral emissivity is measured in the infrared long wavelength band.
  • FIG. 5 is a diagram illustrating an example of the relationship between the spectral radiance L b ( ⁇ , T) of a black body and the wavelength.
  • the curve shown in FIG. 5 is calculated from the theoretical formula of black body radiation (Planck's radiation law).
  • the change in the spectral radiance due to the temperature T is large in the region of a shorter wavelength than in the vicinity of approximately 2 [ ⁇ m]. Therefore, in the short wavelength region, temperature measurement that is relatively robust to fluctuations in spectral emissivity is possible, which is suitable for temperature measurement.
  • the change in the spectral radiance due to the temperature T is small in the wavelength region longer than about 4 [ ⁇ m]. Therefore, in the long wavelength region, measurement that is relatively robust to temperature fluctuations is possible, which is suitable for measurement of spectral emissivity.
  • wavelengths of 0.65 [ ⁇ m], 0.9 [ ⁇ m], and 1.55 [ ⁇ m] are generally used as detection wavelengths.
  • the shorter the detection wavelength the smaller the temperature measurement error due to emissivity fluctuation.
  • the radiometer with a detection wavelength of 0.65 [ ⁇ m] is limited to temperature measurement of a high-temperature measurement object of approximately 900 [° C.] or higher. For this reason, here, a case where a radiometer having a detection wavelength of 0.9 [ ⁇ m] is used will be described as an example.
  • variation of a spectral emissivity means the difference between the spectral emissivity set when performing radiation temperature measurement, and an actual spectral emissivity.
  • the spectral emissivity of FeO at a wavelength of 0.9 [ ⁇ m] was experimentally determined, it was stable at about 0.78.
  • the spectral emissivity of Fe 2 O 3 having this wavelength was measured, it changed in an unstable manner within a range of 0.78 ⁇ 0.07.
  • the variation in spectral emissivity of Fe 2 O 3 is presumed to be due to optical interference phenomenon Fe 2 O 3 film (the layer).
  • FIG. 6A is a diagram illustrating an example of the relationship between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity of Fe 2 O 3 at wavelength A.
  • FIG. 6B is a diagram illustrating an example of the relationship between the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale and the spectral emissivity of Fe 2 O 3 at wavelength B.
  • the Fe 2 O 3 thickness means the thickness of Fe 2 O 3 generated in the outermost layer of the multilayer scale.
  • the curve indicated by the solid line is that shown in FIGS. 4A and 4B. Due to the temperature measurement error of ⁇ 8 [° C.] described above, the spectral emissivity has an uncertainty in the range of the curve indicated by the broken line in FIGS. 6A and 6B with respect to the curve indicated by the solid line. Even if such temperature measurement uncertainty occurs, there is no problem in determining the composition of the scale described above. That is, as described above, the spectral emissivity of the wavelength A and the spectral emissivity of the wavelength B are respectively the predetermined first range and the predetermined second range (the gray color shown in FIGS. 4A and 4B). It is determined whether it is in the area.
  • the spectral emissivity of the wavelength A is the predetermined first At least one of out of the range of 1 and the spectral emissivity of the wavelength B out of the predetermined second range occurs.
  • the detection wavelength of the temperature measuring radiometer 20 is 0.9 [ ⁇ m].
  • a silicon detection element is preferably used as the spectral radiance detection element in the temperature measurement radiometer 20.
  • the detection wavelength of the radiometer 21a for spectral emissivity measurement is set to a wavelength A in the range of 3.3 [ ⁇ m] to 5.0 [ ⁇ m].
  • the detection wavelength of the spectral emissivity radiometer 21b is a wavelength B in the range of 8.0 [ ⁇ m] to 14.0 [ ⁇ m].
  • the spectral emissivity measurement radiometer 21a can be realized, for example, by attaching an optical filter to a radiometer using an MCT (HgCdTe) detection element as a detection element.
  • the spectral emissivity measurement radiometer 21b can be realized, for example, by attaching an optical filter to a radiometer having a pyroelectric element as a detection element.
  • the hardware of the scale composition determination apparatus 10 can be realized by using, for example, an information processing apparatus including a CPU, ROM, RAM, HDD, and various interfaces, or dedicated hardware.
  • FIG. 7 is a flowchart for explaining an example of the operation of the scale composition determination apparatus 10. An example of the function of the scale composition determination apparatus 10 will be described with reference to FIGS. 2 and 7. 7 is executed each time the spectral radiance of the steel material SM is detected by the temperature measuring radiometer 20 and the spectral emissivity measuring radiometers 21a and 21b.
  • step S701 the spectral radiance acquisition unit 201 acquires the spectral radiance of the steel material SM detected by the temperature measurement radiometer 20 and the spectral emissivity measurement radiometers 21a and 21b.
  • step S702 the temperature deriving unit 202 derives the temperature T of the steel material SM by calculating the following equation (3).
  • ⁇ TH is a detection wavelength of the radiometer 20 for temperature measurement.
  • L TH is the spectral radiance of the steel material SM detected by the temperature measurement radiometer 20.
  • the spectral radiance L TH of the steel material SM is obtained in step S701.
  • ⁇ TH is a spectral emissivity used when deriving the temperature T of the steel material SM. As described above, in this embodiment, 0.78 can be used as the spectral emissivity ⁇ TH .
  • step S703 the spectral emissivity deriving unit 203 performs the calculation of the following formulas (4) and (5), whereby the wavelength A ( ⁇ A in the formula (4)) and the wavelength B (( 5) In the equation, spectral emissivities ⁇ A and ⁇ B in ⁇ B ) are derived.
  • T is the temperature of the steel material SM derived in step S702.
  • L A is the spectral radiance of the steel material SM detected by the spectral emissivity measurement radiometer 21a.
  • L B is detected by the spectral emissivity measuring radiometer 21b, the spectral radiance of the steel SM.
  • the spectral radiances L A and L B of these steel materials SM are those acquired in step S701.
  • step S704 the determination unit 204 determines whether or not the spectral emissivity ⁇ A at the wavelength A is within the predetermined first range.
  • the predetermined first range is 0.70 to 0.80 (see FIG. 4A).
  • Fe 2 O 3 is generated on the outermost layer of the scale SC (ie, steel material). It is judged that a multilayer scale is generated on the surface of the SM).
  • step S705 the output unit 205 outputs information indicating that Fe 2 O 3 is generated on the outermost layer of the scale SC (a multi-layer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 7 is complete
  • step S704 determines whether or not the spectral emissivity ⁇ B at the wavelength B is within the predetermined second range.
  • the predetermined second range is 0.60 to 0.70 (see FIG. 4B).
  • step S705 the output unit 205 outputs information indicating that Fe 2 O 3 is generated on the outermost layer of the scale SC (a multi-layer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 7 is complete
  • step S706 determines that the spectral emissivity ⁇ B at the wavelength B is within the predetermined second range. (That is, it is determined that a single-layer scale is generated on the surface of the steel material SM). Therefore, in step S707, the output unit 205 outputs information indicating that Fe 2 O 3 is not generated on the outermost layer of the scale SC (a single-layer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 7 is complete
  • the output form of the information by the output unit 205 is, for example, at least one of display on a computer display, transmission to an external device, and storage in a storage medium inside or outside the scale composition determination device 10. Can be adopted.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of the scale composition determination apparatus 10.
  • the scale composition determination apparatus 10 includes a CPU 801, a main storage device 802, an auxiliary storage device 803, a communication circuit 804, a signal processing circuit 805, an image processing circuit 806, an I / F circuit 807, a user interface 808, a display 809, And a bus 810.
  • the CPU 801 performs overall control of the entire scale composition determination apparatus 10.
  • the CPU 801 executes a program stored in the auxiliary storage device 803 using the main storage device 802 as a work area.
  • the main storage device 802 temporarily stores data.
  • the auxiliary storage device 803 stores various data in addition to the program executed by the CPU 801.
  • the auxiliary storage device 803 stores information necessary for the processing of the flowchart shown in FIG. 7 such as the predetermined first range and the predetermined second range described above.
  • the communication circuit 804 is a circuit for performing communication with the outside of the scale composition determination apparatus 10.
  • the signal processing circuit 805 performs various types of signal processing on the signal received by the communication circuit 804 and the signal input in accordance with the control by the CPU 801.
  • the spectral radiance acquisition unit 201 exhibits its function by using, for example, the CPU 801, the communication circuit 804, and the signal processing circuit 805.
  • the temperature deriving unit 202, the spectral emissivity deriving unit 203, and the determining unit 204 exhibit their functions by using, for example, the CPU 801 and the signal processing circuit 805.
  • the image processing circuit 806 performs various kinds of image processing on the input signal according to the control by the CPU 801.
  • the signal subjected to the image processing is output to the display 809.
  • the user interface 808 is a part where the operator gives an instruction to the scale composition determination apparatus 10.
  • the user interface 808 includes, for example, buttons, switches, and dials. Further, the user interface 808 may have a graphical user interface using the display 809.
  • the display 809 displays an image based on the signal output from the image processing circuit 806.
  • the I / F circuit 807 exchanges data with a device connected to the I / F circuit 807.
  • FIG. 8 shows a user interface 808 and a display 809 as devices connected to the I / F circuit 807.
  • the device connected to the I / F circuit 807 is not limited to these.
  • a portable storage medium may be connected to the I / F circuit 807.
  • at least a part of the user interface 808 and the display 809 may be outside the scale composition determination apparatus 10.
  • the output unit 205 exhibits its function by using, for example, at least one of the communication circuit 804 and the signal processing circuit 805, the image processing circuit 806, the I / F circuit 807, and the display 809.
  • the CPU 801, the main storage device 802, the auxiliary storage device 803, the signal processing circuit 805, the image processing circuit 806, and the I / F circuit 807 are connected to the bus 810. Communication between these components takes place via bus 810. Further, the hardware of the scale composition determination apparatus 10 is not limited to that shown in FIG. 8 as long as the function of the scale composition determination apparatus 10 described above can be realized.
  • the scale composition determination apparatus 10 is configured such that at least one of the spectral emissivities at the wavelengths A and B measured by the spectral emissivity measuring radiometers 21a and 21b is the wavelength A and If it is not within the predetermined range set for each of the wavelengths B, it is determined that Fe 2 O 3 has been generated on the outermost layer of the scale SC, and if not, Fe 2 O 3 has been formed on the outermost layer of the scale SC. It is determined that 2 O 3 is not generated.
  • the predetermined ranges set in each of the wavelength A and the wavelength B include the spectral emissivity of FeO at the wavelengths A and B. It is.
  • the spectral emissivity is outside the predetermined range set at the wavelength. Further, if the number of wavelengths for obtaining the spectral emissivity is two as in this embodiment, the number of radiometers can be reduced. Further, the processing can be simplified. However, the number of wavelengths for obtaining the spectral emissivity may be three or more. In this case, as shown in FIGS. 4A and 4B, in a range of thickness which is assumed as a thickness of the Fe 2 O 3, of the plurality of wavelengths, the Fe 2 O 3 in at least one of the wavelength spectral radiant The plurality of wavelengths and the predetermined range are determined so that the rate is outside the predetermined range set for the wavelength. As described above, the predetermined range set for each of the plurality of wavelengths includes the spectral emissivity of FeO at that wavelength.
  • a set of radiometers may be arranged at a plurality of positions in such a place (that is, a plurality of sets of radiometers may be arranged).
  • the scale composition determination apparatus 10 performs the flowchart shown in FIG. 7 for each set of radiometers, and Fe 2 O 3 is present on the outermost layer of the scale SC at each location where the set of radiometers is arranged. It is determined whether or not it has been generated.
  • the scale composition determination apparatus 10 is applied to a hot rolling line.
  • the application destination of the scale composition determination apparatus 10 is not limited to the hot rolling line.
  • the scale composition determination apparatus 10 may be applied to the heating furnace described in Patent Document 1.
  • the Fe 2 O 3 in a range of thickness which is assumed as a thickness of the Fe 2 O 3, of the plurality of wavelengths, the Fe 2 O 3 in at least one of the wavelength spectral radiant
  • the plurality of wavelengths and the predetermined range are determined so that the rate is outside the predetermined range set for the wavelength.
  • the predetermined range set for each of the plurality of wavelengths includes the spectral emissivity of FeO at that wavelength.
  • the case where the temperature of the steel material SM is measured using the radiometer 20 has been described as an example. However, it is not always necessary to determine the temperature of the steel material SM using the radiometer 20.
  • the temperature of the steel material SM may be derived online by performing heat transfer calculation. Further, when the temperature of the steel material SM can be obtained with high accuracy from the past operation results, the temperature of the steel material SM may be used. If there is no risk of damage to the thermometer, a contact-type thermometer may be used.
  • the scale SC It is preferable because it can be easily and highly accurately determined whether or not Fe 2 O 3 is formed on the outermost layer.
  • the predetermined range set for each of the plurality of wavelengths includes the spectral radiance of FeO at that wavelength.
  • the embodiment of the present invention described above can be realized by a computer executing a program. Further, a computer-readable recording medium in which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
  • the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
  • the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
  • the present invention can be used for manufacturing steel materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

スケール組成判定装置(10)は、分光放射率測定用放射計(21a、21b)により測定された、一の波長および他の波長における分光放射率の少なくとも何れか一方が、一の波長および他の波長におけるFeOの分光放射率を含む所定の範囲内にない場合には、スケール(SC)の最表層にFe2O3が生成されていると判定し、そうでない場合に、スケール(SC)の最表層にFe2O3が生成されていないと判定する。

Description

スケール組成判定システム、スケール組成判定方法、およびプログラム
 本発明は、スケール組成判定システム、スケール組成判定方法、およびプログラムに関し、特に、鋼材の表面に生成されるスケールの組成を判定するために用いて好適なものである。
 特許文献1に記載されているように、鋼材を加熱すると表面にスケール(鉄酸化物の皮膜)ができる。例えば、鋼材を熱間圧延する工程では、600[℃]~1200[℃]の赤熱した鋼材がライン上を搬送されてローラで延伸される。従って、熱間圧延中の鋼材の表面には常にスケールが生じている。スケールには、温度や酸素濃度等によって、ウスタイト(FeO)、マグネタイト(Fe3O4)およびヘマタイト(Fe2O3)の3種類の組成がある。
 スケールの密着性はその組成に関係している。スケールの最表層にFe2O3が生成する複層スケールは剥離しやすい。一方、スケール組成がFeOのみの単層スケールは密着性が高い。
 そこで、デスケーラと呼ばれるスケール除去装置を通過する時は剥離しやすいスケールが好ましい。逆に、スケールがまだらに剥離した模様が表面品質上の問題になる場合にはスケールが鋼材に密着していることが好ましい。従って、スケールの組成を判別し、その結果を、操業に活用することが望まれる。
 スケールの組成を判別する手法として、X線回折測定が考えられる。X線回折測定では、スケールが成長している鋼材を数cm程度の大きさに切断した試験片を作製し、この試験片のX線回折パターンを測定する。スケールの結晶構造により異なるX線回折パターンが得られる。従って、X線回折パターンから、スケールの最表層にFe2O3があるか否か(即ち、前述した単層スケールであるか、複層スケールであるか)を判別することができる。
 しかしながら、X線回折測定では、鋼材を切断して試験片を作製する必要がある。また、鋼材が冷えた後でしかX線回折パターンを測定することができない。従って、操業中の鋼材の表面に生成されているスケールの組成をオンライン(リアルタイム)で判別することができない。
 そこで、特許文献1に記載の技術では、鋼材の表面における酸化の律速過程が、酸素分子が鋼板の表面の酸化膜へ供給される過程と、鉄原子が鋼材の表面で酸化する過程とのうち、何れに律速されているかによって、スケールの最表層にFe2O3があるか否かを判別する。
特開2012-93177号公報
 しかしながら、特許文献1に記載の技術では、鋼材の表面における酸化の律速過程を判別するためにモデル式を用いる必要がある。従って、判別の精度はモデル式の精度に依存する。更に、熱間圧延ラインでは、デスケーラで鋼板に高圧水を吹き付ける。従って、熱間圧延ライン上の鋼板の表面に部分的に水や水蒸気が存在することになる。よって、モデル計算に必要な酸素供給過程が正確に分からない場合がある。以上のように、特許文献1に記載の技術では、操業中の鋼材の表面に生成されているスケールの組成を精度良くオンライン(リアルタイム)で判別することが容易ではないという問題点がある。
 本発明は、以上の問題点に鑑みてなされたものであり、操業中の鋼材の表面に生成されているスケールの組成をオンラインで精度良く判別できるようにすることを目的とする。
 本発明のスケール組成判定システムは、鋼材の表面に生成されるスケールの組成を判定するスケール組成判定システムであって、複数の波長のそれぞれにおける前記鋼材の分光放射輝度を検出する検出手段と、前記鋼材の温度を取得する温度取得手段と、前記温度取得手段により取得された、前記鋼材の温度と、前記検出手段により検出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射輝度と、に基づいて、前記複数の波長のそれぞれにおける前記鋼材の分光放射率を導出する分光放射率導出手段と、前記分光放射率導出手段により導出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射率に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定手段と、を有し、前記判定手段は、前記複数の波長のそれぞれにおける前記鋼材の分光放射率の少なくとも何れか1つが、前記複数の波長のぞれぞれにおいて設定された所定の範囲外にある場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていないと判定し、前記波長において設定された前記所定の範囲には、当該波長におけるウスタイト(FeO)の分光放射率が含まれ、前記複数の波長は、前記複数の波長のそれぞれにおける前記ヘマタイトの分光放射率と、前記ヘマタイトの厚みとして想定される範囲内におけるヘマタイトの厚みとの関係を用いて定められ、前記複数の波長は、前記関係において、前記ヘマタイトの何れの厚みにおいても、前記複数の波長の少なくとも何れか一つの波長における前記ヘマタイトの分光放射率が当該波長において設定された前記所定の範囲外になるように定められることを特徴とする。
 本発明のスケール組成判定方法は、鋼材の表面に生成されるスケールの組成を判定するスケール組成判定方法であって、複数の波長のそれぞれにおける前記鋼材の分光放射輝度を検出する検出工程と、前記鋼材の温度を取得する温度取得工程と、前記温度取得工程により取得された、前記鋼材の温度と、前記検出工程により検出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射輝度と、に基づいて、前記複数の波長のそれぞれにおける前記鋼材の分光放射率を導出する分光放射率導出工程と、前記分光放射率導出工程により導出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射率に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、を有し、前記判定工程は、前記複数の波長のそれぞれにおける前記鋼材の分光放射率の少なくとも何れか1つが、前記複数の波長のそれぞれにおいて設定された所定の範囲外にある場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていないと判定し、前記波長において設定された前記所定の範囲には、当該波長におけるウスタイト(FeO)の分光放射率が含まれ、前記複数の波長は、前記複数の波長のそれぞれにおける前記ヘマタイトの分光放射率と、前記ヘマタイトの厚みとして想定される範囲内におけるヘマタイトの厚みとの関係を用いて定められ、前記複数の波長は、前記関係において、前記ヘマタイトの何れの厚みにおいても、前記複数の波長の少なくとも何れか一つの波長における前記ヘマタイトの分光放射率が当該波長において設定された前記所定の範囲外になるように定められることを特徴とする。
 本発明のプログラムは、鋼材の表面に生成されるスケールの組成を判定することをコンピュータに実行させるためのプログラムであって、前記鋼材の温度と、複数の波長のそれぞれにおける前記鋼材の分光放射輝度と、に基づいて、前記複数の波長のそれぞれにおける前記鋼材の分光放射率を導出する分光放射率導出工程と、前記分光放射率導出工程により導出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射率に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、をコンピュータに実行させ、前記判定工程は、前記複数の波長のそれぞれにおける前記鋼材の分光放射率の少なくとも何れか1つが、前記複数の波長のぞれぞれにおいて設定された所定の範囲外にある場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていないと判定し、前記波長において設定された前記所定の範囲には、当該波長におけるウスタイト(FeO)の分光放射率が含まれ、前記複数の波長は、前記複数の波長のそれぞれにおける前記ヘマタイトの分光放射率と、前記ヘマタイトの厚みとして想定される範囲内におけるヘマタイトの厚みとの関係を用いて定められ、前記複数の波長は、前記関係において、前記ヘマタイトの何れの厚みにおいても、前記複数の波長の少なくとも何れか一つの波長における前記ヘマタイトの分光放射率が当該波長において設定された前記所定の範囲外になるように定められることを特徴とする。
図1は、熱間圧延ラインの概略構成の一例を示す図である。 図2は、スケール組成判定システムの構成の一例を示す図である。 図3Aは、単層スケールの厚みと分光放射率との関係の一例を示す図である。 図3Bは、複層スケールの最表層に生成されるFe2O3の厚みと分光放射率との関係の一例を示す図である。 図4Aは、波長Aにおける、単層スケールの分光放射率と複層スケールの分光放射率との違いを示す図である。 図4Bは、波長Bにおける、単層スケールの分光放射率と複層スケールの分光放射率との違いを示す図である。 図5は、黒体の分光放射輝度と波長との関係の一例を示す図である。 図6Aは、複層スケールの最表層に生成されるFe2O3の厚みと、波長AにおけるFe2O3の分光放射率との関係の一例を示す図である。 図6Bは、複層スケールの最表層に生成されるFe2O3の厚みと、波長BにおけるFe2O3の分光放射率との関係の一例を示す図である。 図7は、スケール組成判定装置の動作の一例を説明するフローチャートである。 図8は、スケール組成判定装置のハードウェアの構成の一例を示す図である。
 以下、図面を参照しながら、本発明の一実施形態を説明する。
<熱間圧延ラインの構成の概略>
 図1は、スケール組成判定装置10の適用先の一例である熱間圧延ラインの概略構成の一例を示す図である。
 図1において、熱間圧延ラインは、加熱炉11と、デスケーラ12a~12fと、幅方向圧延機13と、粗圧延機14と、仕上圧延機15と、冷却装置(ランアウトテーブル)16と、巻取装置(コイラー)17とを有する。
 加熱炉11は、スラブ(鋼材)Sを加熱する。
 デスケーラ12a~12fは、鋼材の表面に生成されているスケールを除去する。スケールの厚みは、例えば10[μm]~100[μm]である。デスケーラ12a~12fは、例えば、加圧水を鋼材の表面に吹き付けることにより、デスケーリング(スケールの除去)を行う。尚、鋼材は高温であるため、スケールを除去しても鋼材は直ちに再酸化する。従って、鋼材は、常にスケールが表面に存在した状態で圧延される。
 幅方向圧延機13は、加熱炉11で加熱されたスラブSを幅方向に圧延する。
 粗圧延機14は、幅方向圧延機13で幅方向に圧延されたスラブSを上下方向から圧延して粗バーにする。図1に示す例では、粗圧延機14は、ワークロールのみからなる圧延スタンド14aと、ワークロールとバックアップロールとを有する圧延スタンド14b~14eとを有する。
 仕上圧延機15は、粗圧延機14で製造された粗バーをさらに所定の厚みまで連続して熱間仕上圧延を行う。図1に示す例では、仕上圧延機15は、7つの圧延スタンド15a~15gを有する。
 冷却装置16は、仕上圧延機15により熱間仕上圧延が行われた熱延鋼板Hを冷却水により冷却する。
 巻取装置17は、冷却装置16により冷却された熱延鋼板Hをコイル状に巻き取る。
 尚、熱間圧延ラインは、公知の技術で実現することができ、図1に示す構成に限定されるものではない。例えば、仕上圧延機15の7つの圧延スタンド15a~15gのうち、上流側の圧延スタンドの間(例えば、圧延スタンド15a、15bの間および圧延スタンド15b、15cの間)にデスケーラを配置しても良い。
 本実施形態では、熱間圧延ラインに対し、3つの放射計を一組とする放射計の組を少なくとも1つ配置する。また、3つの放射計は、何れも、鋼材の分光放射輝度を非接触で検出する。ただし、3つの放射計のうちの1つの放射計は、放射測温法により、鋼材の温度を測定するために用いられる放射計である。3つの放射計のうちの残りの2つの放射計は、鋼材の分光放射率を測定するために用いられる放射計である。
 絶対温度Tの黒体が出す分光放射輝度Lb(λ,T)は、プランク(Planck)の黒体放射則により、以下の(1)式で表される。尚、分光放射輝度は、波長λ[μm]における、単位波長あたり、単位面積あたり、単位立体角あたりの放射束[W・μm-1・sr-1・m-2]である。
Figure JPOXMLDOC01-appb-M000001
 ここで、c1、c2は、それぞれ、プランクの黒体放射式の第1定数、第2定数である。
 (1)式は、理想的な放射体である黒体の分光放射輝度である。現実の物体の分光放射輝度L(λ,T)は、それと同じ温度の黒体の分光放射輝度Lb(λ,T)よりも小さい。そこで、被測定物の分光放射率ε(λ,T)を以下の(2)式で定義する。
Figure JPOXMLDOC01-appb-M000002
 以上のように分光放射率ε(λ,T)を測定するためには、被測定物の分光放射輝度L(λ,T)を測定する。さらに被測定物の温度Tを何らかの方法で得る。そして、被測定物の分光放射輝度L(λ,T)と、被測定物の温度Tとを用いて(2)式の計算を行う。
 図1に示す例では、デスケーラ12bと、圧延スタンド14bとの間の領域に一組の放射計20、21a、21bを配置する場合を示す。圧延スタンド14bは、ワークロールとバックアップロールとを有する圧延スタンドのうち最上流に設けられた圧延スタンドである。ここで、放射計20は、鋼材の温度を測定するために用いられる放射計であるものとする。また、放射計21a、21bは、鋼材の分光放射率を測定するために用いられる放射計であるものとする。
 図2は、スケール組成判定システムの構成の一例を示す図である。図2では、放射計20、21a、21bの配置と、スケール組成判定装置10の機能的な構成の一例を示す。
<放射計20、21a、21b>
 まず、放射計20、21a、21bの配置の一例について説明する。図2では、鋼材SMの傍らに付している矢印線の方向が鋼材SMの搬送方向である場合を例に挙げて示す。また、鋼材SMの表面にはスケールSCが生成されているものとする。
 図2において、放射計20、21a、21bの軸(受光レンズの光軸)の、鋼材SM(の表面)の通過位置との交点が略一致するように、放射計20、21a、21bを配置する。尚、図2では、鋼材SMの搬送方向に放射計20、21a、21bを並べる場合を例に挙げて示す。しかしながら、放射計20、21a、21bの軸(受光レンズの光軸)の、鋼材SM(の表面)の通過位置との交点が略一致するようにしていれば、放射計20、21a、21bをこのように配置する必要はない。例えば、鋼材SMの幅方向に放射計20、21a、21bを並べても良い。
 以下の説明では、鋼材の温度を測定するために用いられる放射計20を必要に応じて温度測定用放射計20と称する。また、鋼材の分光放射率を測定するために用いられる放射計21a、21bを必要に応じて分光放射率測定用放射計21a、21bと称する。
 次に、温度測定用放射計20と分光放射率測定用放射計21a、21bにおいて検出する波長の一例について説明する。尚、この検出波長は、(1)式および(2)式の波長λに対応する。
 温度測定用放射計20および分光放射率測定用放射計21a、21bが測定することができる波長は、一般的に、0.6[μm]~14.0[μm]の領域において、大気中の二酸化炭素や水蒸気による吸収が小さい帯域である。
 この下限値の0.6[μm]は、放射計において分光放射輝度を測定することが可能な波長の下限値から定まる。この分光放射輝度を測定することが可能な波長の下限値は、測定対象の鋼材SMの温度に応じて定まる。例えば、測定対象の鋼材SMの温度として900[℃]以上の温度を測定する場合には、放射計において分光放射輝度を測定することが可能な波長の下限値は0.6[μm]になる。また、測定対象の鋼板SMの温度の下限値を600[℃]とする場合には、検出波長の下限値は0.9[μm]になる。
 また、波長の上限値の14.0[μm]は、放射計における光検出素子の性能(長波長の赤外線の検出能力)の制約から定まる。
 尚、本実施形態において想定している鋼材SMの温度の範囲は、600[℃]~1200[℃]である。
 このように、本実施形態においては、温度測定用放射計20および分光放射率測定用放射計21a、21bの検出波長として、0.6[μm]~14.0[μm]の範囲内から選択するのが好ましい。
 ここで、スケールSCの組成・構造について説明する。例えば、特許文献1に記載されているように、鉄酸化物であるスケールには、単層スケールと、複層スケールとがあることが知られている。単層スケールは、ウスタイト(FeO)のみで構成される。複層スケールは、ウスタイト(FeO)、マグネタイト(Fe3O4)およびヘマタイト(Fe2O3)から構成される。複層スケールでは、地鉄側から順にウスタイト(FeO)、マグネタイト(Fe3O4)およびヘマタイト(Fe2O3)が94:5:1程度の厚み割合の層を成す。FeO、Fe3O4、Fe2O3はそれぞれ固有の屈折率と減衰係数とを有するため、光学特性の一つである分光放射率が単層スケールと複層スケールとで異なることが期待される。そこで、本発明者らは、3.3[μm]~5.0[μm]の領域に定めた一つの検出波長(以下ではこの波長を波長Aと称する)、および、8.0[μm]~14.0[μm]の領域に定めた一つの波長(以下ではこの波長を波長Bと称する)の2つの波長において、単層スケール(FeOのみからなるスケールSC)と複層スケール(表層から、Fe2O3、Fe3O4、FeOの順にサンドイッチ構造になるスケールSC)のそれぞれの分光放射率を調査した。
 分光放射率は、以下のように実験的に求めた。
 熱電対を溶着した鋼材サンプルをチャンバー内で加熱して、鋼材サンプルを所定の温度に保持した状態で、鋼材サンプルの熱放射輝度を放射計で測定する。このようにして得られる放射計の出力L(λ,T)を読み取る。一方、熱電対の指示温度を(1)式に代入してLb(λ,T)を計算する。そしてL(λ,T)およびLb(λ,T)から(2)式に基づき分光放射率ε(λ,T)を求める。この際、チャンバー内の雰囲気を調整することで単層スケールと複層スケールを作り分けて、それぞれのスケール構造の分光放射率を得た。
 図3Aは、単層スケール(FeO)の厚みと分光放射率との関係の一例を示す図である。図3Bは、複層スケールの最表層に生成されるFe2O3の厚みと分光放射率との関係の一例を示す図である。図3Aにおいて、FeO厚とは、単層スケール(の全体)の厚みを意味する。図3Bにおいて、Fe2O3厚とは、複層スケールの最表層に生成されるFe2O3の厚みを意味する。前述の通り、複層スケールの最表層に生成されるFe2O3の厚みは、スケール全体の厚みの100分の1程度である。
 図3Aに示すように、単層スケールの分光放射率は、波長A、波長Bともに単層スケールの厚みによらず安定した値を示す。FeOは不透明であるためである。一方、図3Bに示すように、複層スケールの分光放射率は、Fe2O3の厚みの変化(即ちFe2O3の成長)に伴い周期的に変動する。その周期は、波長が長いほど長い。尚、特許文献1には、波長3.9[μm]において、複層スケールの分光放射率がFe2O3の厚みに応じて変化するシミュレーション結果が示されている。
 複層スケールの全体の厚みは波長よりも大きいものの、Fe2O3は透明性があり、Fe3O4は不透明と見なせる。このことから、特許文献1にも記載されているように、厚みの薄いFe2O3における光学的な干渉現象が、分光放射率に寄与する。このため、複層スケールの分光放射率は、Fe2O3の厚みに応じて周期的に変動する。
 尚、複層スケールの最表層に生成されるFe2O3の厚みに対する分光放射率の挙動は、波長A又は波長Bの範囲内(3.3[μm]~5.0[μm]、8.0[μm]~14.0[μm])では、大きくは変動しないことが、別途確認されている。ここで、複層スケール表層Fe2O3厚に対する分光放射率の挙動とは、例えば、分光放射率の値がどの厚みで山や谷を形成するか、単調変化なのか極値を持つのか、上に凸なのか下に凸なのか、といった挙動であって、複層スケールの最表層に生成されるFe2O3の厚みと分光放射率との対応関係における挙動を意味する。
 スケールSC全体の厚みが最大で100[μm]であると想定すると(この場合、Fe2O3の厚みは最大で1[μm]程度になる)、図3Aおよび図3Bから読み取れるように、一つの波長の分光放射率を観測したのでは、Fe2O3の分光放射率がFeOのそれと類似する厚み領域がある。例えば、Fe2O3の厚みが0.8[μm]付近では、波長AにおけるFe2O3の分光放射率は、FeOの分光放射率と同等の0.75付近になる(尚、ここでは、Fe2O3の厚みの100倍が複層スケールの(全体の)厚みであるとする)。従って、1つの波長で分光放射率を測定すると、当該分光放射率から、スケールSCの最表層にFe2O3があるか否か(即ち、スケールSCが単層スケールおよび複層スケールの何れであるか)を判別することができない厚み領域が存在することになる。そこで、何れの厚み領域でも、スケールSCが単層スケールおよび複層スケールの何れであるかを判別することができるように、本実施形態では、以下のような手法を採用するに至った。
 即ち、Fe2O3の厚みとして想定される厚みの範囲内において、2つの波長のうち少なくとも何れか一方の波長におけるFe2O3の分光放射率が、FeOの分光放射率と明確に異なるように、当該2つの波長を選択する。このことが本実施形態の技術的な特徴の一つである。また、Fe2O3の分光放射率がFe2O3の厚みによって変動する。このため、Fe2O3の厚みによって分光放射率が類似の値になることがないように、複数の波長で測定を行う。このことも本実施形態の技術的な特徴の一つである。このことについて、図4Aおよび図4Bを参照しながら具体的に説明する。
 図4Aは、図3Aおよび図3Bから、波長Aについて、複層スケールの最表層に形成されるFe2O3の厚みと、FeOの分光放射率およびFe2O3の分光放射率との関係を抜き出して示す図である。図4Bは、図3Aおよび図3Bから、波長Bについて、複層スケールの最表層に形成されるFe2O3の厚みと、FeOの分光放射率およびFe2O3の分光放射率との関係を抜き出して示す図である。尚、図3Aおよび図3Bに示したように、FeOの分光放射率は、スケールSCの厚みによらず一定である。一方、複層スケールの分光放射率は、Fe2O3の厚みに応じて周期的に変動する。図4Aおよび図4Bにおいて、層厚は、以下のことを意味する。即ち、FeOの分光放射率に対しては、層厚は、単層スケール(の全体)の厚みになる。Fe2O3の分光放射率に対しては、層厚は、複層スケールの最表層に生成されるFe2O3の厚みになる。
 図4Aに示す波長Aでは、例として、分光放射率が約0.7~0.8となる範囲に、「所定の第1の範囲」(図中のグレーの領域を参照)が設定されている。そして、測定された分光放射率が当該所定の範囲内(図中のグレーの領域を参照)にあれば、スケールSCがFeOであると判断する。そうすることで、複層スケールの最表層に生成されるFe2O3の厚みが0.6[μm]以下であれば、測定対象のスケールSCが複層スケールの場合には、測定された分光放射率が、前記所定の第1の範囲外の値となる。このことから、複層スケールと単層スケールとを分別することができる。
 一方、図4Bに示す波長Bでは、図4Aに示す波長Aの場合の「所定の第1の範囲」とは別に、例として、分光放射率が約0.6~0.7となる範囲に、「所定の第2の範囲」(図中のグレーの領域を参照)が設定されている。そして、測定された分光放射率が当該所定の第2の範囲内にあれば、スケールSCがFeOであると判断する。そうすることで、複層スケールの最表層に生成されるFe2O3の厚みが約0.2[μm]以上であれば、測定対象のスケールSCが複層スケールの場合には、測定された分光放射率が、前記所定の第2の範囲外の値となる。このことから、複層スケールと単層スケールとを分別することができる。
 尚、前記所定の第1の範囲は、波長AにおけるFeOの分光放射率を含む範囲であればよい。また、前記所定の第2の範囲は、波長BにおけるFeOの分光放射率を含む範囲であればよい。前記所定の第1の範囲の上限値および下限値と、前記所定の第2の範囲の上限値および下限値は、それぞれ、測定誤差(放射計の公差)等を考慮して適宜設定することができる。
 一方、図4Aより、複層スケールの最表層に生成されるFe2O3の厚みが0.6[μm]を上回る場合には、測定対象のスケールSCが、単層スケールであっても複層スケールであっても、波長Aにおける分光放射率は、前記所定の第1の範囲内の値となる。また、図4Bより、複層スケールの最表層に生成されるFe2O3の厚みが0.2[μm]を下回る場合には、測定対象のスケールSCが、単層スケールであっても複層スケールであっても、波長Bにおける分光放射率は、前記所定の第2の範囲内の値となる。
 そこで、本実施形態では、波長Aを用いた場合の判断と、波長Bを用いた場合の判断とを組み合わせる。このようにすることで、それぞれの波長A、B単独では判断できなかった範囲を補い合うことができる。従って、複層スケールの最表層に生成されるFe2O3の厚みによらず、複層スケールと単層スケールとを分別することができる。即ち、図4Aおよび図4Bから読み取れるように、波長Aにおける分光放射率が前記所定の第1の範囲外であるという判断と、波長Bにおける分光放射率が前記所定の第2の範囲外であるという判断と、のうち、少なくとも何れか一方の判断がなされれば、スケールSCの最表層にFe2O3がある(即ち、スケールSCが複層スケールである)と判定することができる。一方、波長Aにおける分光放射率が前記所定の第1の範囲内であるという判断と、波長Bにおける分光放射率が前記所定の第2の範囲内であるという判断と、の双方の判断がなされれば、スケールSCの最表層にFe2O3がない(即ち、スケールSCが単層スケールである)と判定することができる。
 即ち、図4Aに示す判断しかしなければ、スケールSCの最表層に生成されるFe2O3の厚みが0.6[μm]を上回る場合には、スケールSCが複層スケールなのか単層スケールなのかを判断することができない。一方、図4Bに示す判断しかしなければ、スケールSCの最表層に生成されるFe2O3の厚みが約0.2[μm]を下回れば、スケールSCが複層スケールなのか単層スケールなのかを判断できなない。そこで、それぞれの判断を組み合わせることで、スケールSCの最表層にFe2O3が生成されている場合には、波長A又は波長Bの少なくとも何れか一方の判断では、分光放射率の値が前記所定の第1の範囲または前記所定の第2の範囲から外れることになる。従って、複層スケールの最表層に生成されるFe2O3の厚みによらず、スケールSCが複層スケールなのか単層スケールなのかを、容易に判定することが可能となる。
 以上のように、波長A、Bは、Fe2O3の何れの厚みにおいても、波長Aおよび波長Bの少なくとも何れか一つの波長におけるFe2O3の分光放射率が当該波長において設定された所定の範囲外になるように定められる。ここで、波長Aにおいて設定された所定の範囲は、前記所定の第1の範囲である。波長Bにおいて設定された所定の範囲は、前記所定の第2の範囲である。尚、図4Aおよび図4Bでは、Fe2O3の厚みとして0.0[μm]~1.0[μm]の範囲が想定されている場合を例に挙げて示す。Fe2O3の厚みの範囲は、例えば、以下のようにして求められる。まず、デスケーリングによるスケール除去時の鋼材SMの温度とその後の経過時間とを用いて、公知のスケール厚計算式からスケールSC全体の厚みの範囲を求める。スケール厚計算式は、温度と時間との関数からスケールSCの全体の厚みを求める式である。そして、熱間圧延ラインにおいて生成されることが想定されるFe2O3の厚みの範囲として、スケールSCの全体の厚みの範囲の上限値および下限値の1[%]の厚みを求める。また、Fe2O3の厚みの範囲は、例えば、実際の温度履歴を想定したスケール生成のラボ実験を行うことによって求めてもよい。
 次に、分光放射率を求めるために必要な、鋼材SMの温度Tを測定する方法の一例について説明する。
 図1に示す熱間圧延ラインにおけるオンラインの測定では、熱電対等の接触式の温度計を使用することは現実的でない。温度計が破損する虞があるからである。そこで、本実施形態では、放射測温法により鋼材SCの温度を測定する。放射測温では、分光放射率が既知で一定であることが望ましい。しかしながら、スケールSCは、その組成や光学的な干渉によって、あらゆる波長帯域で分光放射率が変動することが予想される。そこで、本実施形態では、短波長帯域で放射測温を行う。一方、分光放射率の測定は、赤外の長波長帯域で行う。
 この理由は次のように説明される。図5は、黒体の分光放射輝度Lb(λ,T)と波長との関係の一例を示す図である。図5では、黒体の温度T=700[℃]、900[℃]の場合の関係を例に挙げて示す。図5に示す曲線は、黒体放射の理論式(プランクの放射則)から計算される。
 図5から分かるように、おおよそ2[μm]付近よりも短波長の領域では、温度Tによる分光放射輝度の変化が大きい。従って、短波長の領域では、分光放射率の変動に比較的ロバストな測温が可能であり、温度の測定に適している。一方、図5から分かるように、おおよそ4[μm]付近よりも長波長の領域では、温度Tによる分光放射輝度の変化が小さい。従って、長波長の領域では、温度の変動に比較的ロバストな測定が可能であるため、分光放射率の測定に適している。
 短波長における温度計測用の放射計としては、一般的に、主に波長0.65[μm]、0.9[μm]および1.55[μm]が、検出波長として使用されている。検出波長が短いほど放射率変動による測温誤差は小さくなる。ただし、検出波長が0.65[μm]の放射計では、おおよそ900[℃]以上の高温の被測定物の測温に限られる。このため、ここでは0.9[μm]を検出波長とする放射計を用いる場合を例に挙げて説明する。
 放射測温を実施する波長λ=0.9[μm]における分光放射率の変動が、波長A、波長Bにおける分光放射率の測定を妨げないことについては、次のようにして確認した。尚、分光放射率の変動とは、放射測温を行う際に設定する分光放射率と実際の分光放射率との違いを意味する。
 波長0.9[μm]におけるFeOの分光放射率を実験的に求めたところ、約0.78で安定していた。一方、この波長のFe2O3の分光放射率を測定したところ、0.78±0.07の範囲で不安定に変化していた。このFe2O3の分光放射率の変動はFe2O3膜内(層内)の光干渉現象に起因するものと推測される。放射計の分光放射率を0.78に設定して、温度T=900℃の被測定物の温度を測定すると、この±0.07の分光放射率の変動により、約±8[℃]の測温誤差が生じることになる。
 図6Aおよび図6Bを参照しながら、測温誤差がFe2O3の分光放射率に与える影響を説明する。図6Aは、複層スケールの最表層に生成されるFe2O3の厚みと、波長AにおけるFe2O3の分光放射率との関係の一例を示す図である。図6Bは、複層スケールの最表層に生成されるFe2O3の厚みと、波長BにおけるFe2O3の分光放射率との関係の一例を示す図である。図6Aおよび図6Bにおいて、Fe2O3厚とは、複層スケールの最表層に生成されるFe2O3の厚みを意味する。
 図6Aおよび図6Bにおいて、実線で示す曲線は、図4Aおよび図4Bに示したものである。前述した±8[℃]の測温誤差により、分光放射率には、この実線で示す曲線に対し、図6Aおよび図6Bに破線で示す曲線の範囲の不確かさが生じる。このような温度測定の不確かさが生じても、前述したスケールの組成の判別には問題とならない。即ち、前述したように、波長Aの分光放射率、波長Bの分光放射率が、それぞれ、前記所定の第1の範囲、前記所定の第2の範囲(図4A、図4Bに示したグレーの領域)にあるか否かを判定する。この際、仮に図6A、図6Bに破線で示す曲線の範囲の不確かさが生じても、スケールSCの最表層がFe2O3であれば、波長Aの分光放射率が、前記所定の第1の範囲外になることと、波長Bの分光放射率が、前記所定の第2の範囲外になることとのうち、少なくとも何れか一方が生じることになる。
 以上のことから、本実施形態では、温度測定用放射計20の検出波長を0.9[μm]とすることが好ましい。温度測定用放射計20における分光放射輝度の検出素子としては、例えばシリコン検出素子を用いるのが好ましい。また、前述したように、波長λ=0.9[μm]におけるFe2O3の分光放射率は、0.78±0.07の範囲で変動する。そこで、本実施形態では、鋼材SMの温度Tを導出する際に用いる分光放射率εTHとして、0.78を用いることが考えられる。
 一方、分光放射率測定用放射計21aの検出波長を3.3[μm]~5.0[μm]の範囲にある波長Aとする。また、分光放射率測定用放射計21bの検出波長を8.0[μm]~14.0[μm]の範囲にある波長Bとする。分光放射率測定用放射計21aとしては、例えば、MCT(HgCdTe)検出素子を検出素子とする放射計に、光学フィルタを取り付けることで実現することができる。また、分光放射率測定用放射計21bとしては、例えば、焦電素子を検出素子とする放射計に、光学フィルタを取り付けることで実現することができる。これらの放射計(温度測定用放射計20、分光放射率測定用放射計21a、21b)は、被測定物の温度が600[℃]以上であれば、熱放射を安定して観測することができる。
<スケール組成判定装置10>
 次に、スケール組成判定装置10の詳細の一例について説明する。スケール組成判定装置10のハードウェアは、例えば、CPU、ROM、RAM、HDD、および各種のインターフェースを備える情報処理装置、または、専用のハードウェアを用いることにより実現することができる。
 図7は、スケール組成判定装置10の動作の一例を説明するフローチャートである。図2および図7を参照しながら、スケール組成判定装置10の機能の一例を説明する。尚、図7のフローチャートは、温度測定用放射計20および分光放射率測定用放射計21a、21bにより鋼材SMの分光放射輝度が検出される度に実行される。
 ステップS701において、分光放射輝度取得部201は、温度測定用放射計20および分光放射率測定用放射計21a、21bにより検出された、鋼材SMの分光放射輝度を取得する。
 次に、ステップS702において、温度導出部202は、以下の(3)式の計算を行うことにより、鋼材SMの温度Tを導出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、λTHは、温度測定用放射計20の検出波長である。LTHは、温度測定用放射計20により検出された、鋼材SMの分光放射輝度である。この鋼材SMの分光放射輝度LTHは、ステップS701で取得されたものである。また、εTHは、鋼材SMの温度Tを導出する際に用いる分光放射率である。前述したように本実施形態では、分光放射率εTHとして0.78を用いることができる。
 次に、ステップS703において、分光放射率導出部203は、以下の(4)式、(5)式の計算を行うことにより、波長A((4)式中ではλA)、波長B((5)式中ではλB)における分光放射率εA、εBを導出する。
Figure JPOXMLDOC01-appb-M000004
 ここで、Tは、ステップS702で導出された、鋼材SMの温度である。LAは、分光放射率測定用放射計21aにより検出された、鋼材SMの分光放射輝度である。LBは、分光放射率測定用放射計21bにより検出された、鋼材SMの分光放射輝度である。これらの鋼材SMの分光放射輝度LA、LBは、ステップS701で取得されたものである。
 次に、ステップS704において、判定部204は、波長Aにおける分光放射率εAが前記所定の第1の範囲内であるか否かを判定する。前述したように本実施形態では、前記所定の第1の範囲は、0.70~0.80である(図4Aを参照)。
 この判定の結果、波長Aにおける分光放射率εAが前記所定の第1の範囲内でない場合には、スケールSCの最表層にFe2O3が生成されていると判断される(即ち、鋼材SMの表面に複層スケールが生成されていると判断される)。そこで、ステップS705において、出力部205は、スケールSCの最表層にFe2O3が生成されている(鋼材SMの表面に複層スケールが生成されている)ことを示す情報を出力する。そして、図7のフローチャートによる処理を終了する。
 一方、ステップS704において、波長Aにおける分光放射率εAが前記所定の第1の範囲内であると判定された場合には、ステップS706に進む。ステップS706に進むと、判定部204は、波長Bにおける分光放射率εBが前記所定の第2の範囲内であるか否かを判定する。前述したように本実施形態では、前記所定の第2の範囲は、0.60~0.70である(図4Bを参照)。
 この判定の結果、波長Bにおける分光放射率εBが前記所定の第2の範囲内でない場合には、スケールSCの最表層にFe2O3が生成されていると判断される(即ち、鋼材SMの表面に複層スケールが生成されていると判断される)。そこで、ステップS705において、出力部205は、スケールSCの最表層にFe2O3が生成されている(鋼材SMの表面に複層スケールが生成されている)ことを示す情報を出力する。そして、図7のフローチャートによる処理を終了する。
 一方、ステップS706において、波長Bにおける分光放射率εBが前記所定の第2の範囲内であると判定された場合には、スケールSCの最表層にFe2O3が生成されていないと判断される(即ち、鋼材SMの表面に単層スケールが生成されていると判断される)。そこで、ステップS707において、出力部205は、スケールSCの最表層にFe2O3が生成されていない(鋼材SMの表面に単層スケールが生成されている)ことを示す情報を出力する。そして、図7のフローチャートによる処理を終了する。
 尚、出力部205による前記情報の出力形態としては、例えば、コンピュータディスプレイへの表示、外部装置への送信、およびスケール組成判定装置10の内部または外部の記憶媒体への記憶の少なくとも何れか1つを採用することができる。
 図8は、スケール組成判定装置10のハードウェアの構成の一例を示す図である。
 図8において、スケール組成判定装置10は、CPU801、主記憶装置802、補助記憶装置803、通信回路804、信号処理回路805、画像処理回路806、I/F回路807、ユーザインターフェース808、ディスプレイ809、およびバス810を有する。
 CPU801は、スケール組成判定装置10の全体を統括制御する。CPU801は、主記憶装置802をワークエリアとして用いて、補助記憶装置803に記憶されているプログラムを実行する。主記憶装置802は、データを一時的に格納する。補助記憶装置803は、CPU801によって実行されるプログラムの他、各種のデータを記憶する。補助記憶装置803は、前述した所定の第1の範囲および所定の第2の範囲等、図7に示したフローチャートの処理に必要な情報を記憶する。
 通信回路804は、スケール組成判定装置10の外部との通信を行うための回路である。
 信号処理回路805は、通信回路804で受信された信号や、CPU801による制御に従って入力した信号に対し、各種の信号処理を行う。分光放射輝度取得部201は、例えば、CPU801、通信回路804、および信号処理回路805を用いることによりその機能を発揮する 。また、温度導出部202、分光放射率導出部203および判定部204は、例えば、CPU801および信号処理回路805を用いることによりその機能を発揮する 。
 画像処理回路806は、CPU801による制御に従って入力した信号に対し、各種の画像処理を行う。この画像処理が行われた信号は、ディスプレイ809に出力される。
 ユーザインターフェース808は、オペレータがスケール組成判定装置10に対して指示を行う部分である。ユーザインターフェース808は、例えば、ボタン、スイッチ、およびダイヤル等を有する。また、ユーザインターフェース808は、ディスプレイ809を用いたグラフィカルユーザインターフェースを有していても良い。
 ディスプレイ809は、画像処理回路806から出力された信号に基づく画像を表示する。I/F回路807は、I/F回路807に接続される装置との間でデータのやり取りを行う。図8では、I/F回路807に接続される装置として、ユーザインターフェース808およびディスプレイ809を示す。しかしながら、I/F回路807に接続される装置は、これらに限定されない。例えば、可搬型の記憶媒体がI/F回路807に接続されても良い。また、ユーザインターフェース808の少なくとも一部およびディスプレイ809は、スケール組成判定装置10の外部にあっても良い。
 出力部205は、例えば、通信回路804および信号処理回路805と、画像処理回路806、I/F回路807、およびディスプレイ809との少なくとも何れか一方を用いることによりその機能を発揮する 。
 尚、CPU801、主記憶装置802、補助記憶装置803、信号処理回路805、画像処理回路806、およびI/F回路807は、バス810に接続される。これらの構成要素間の通信は、バス810を介して行われる。また、スケール組成判定装置10のハードウェアは、前述したスケール組成判定装置10の機能を実現することができれば、図8に示すものに限定されない。
 以上のように本実施形態では、スケール組成判定装置10は、分光放射率測定用放射計21a、21bにより測定された、波長Aおよび波長Bにおける分光放射率の少なくとも何れか一方が、波長Aおよび波長Bのそれぞれにおいて設定された所定の範囲内にない場合には、スケールSCの最表層にFe2O3が生成されていると判定し、そうでない場合には、スケールSCの最表層にFe2O3が生成されていないと判定する。ここで、波長Aおよび波長Bのそれぞれにおいて設定された所定の範囲(前記所定の第1の範囲および前記所定の第2の範囲)には、当該波長A、BにおけるFeOの分光放射率が含まれる。従って、異なる波長における分光放射輝度の検出を行うことにより、操業中の鋼材SMの表面に生成されているスケールSCが単層スケールであるか複層スケールであるかをオンラインで正確に判別することができる。これにより、例えば、操業上の管理を迅速に且つ正確に行ったり、スケールSCの組成の判別結果を操業に迅速に且つ正確に反映させたりすることができる。
<変形例>
[変形例1]
 本実施形態では、温度測定用放射計20の検出波長が、0.9[μm]である場合を例に挙げて説明した。しかしながら、温度測定用放射計20の検出波長としては、図5に示す結果に基づき、波長が約2.0[μm]以下のものを採用することができる。尚、温度測定用放射計20の検出波長を、例えば、1.6[μm]としても、図6Aおよび図6Bを参照しながら説明したのと同様のことが言える。即ち、温度測定用放射計20による測温誤差によって、分光放射率測定用放射計21a、21bにより測定される分光放射率に不確かさが生じても、少なくとも何れか一方の波長におけるFe2O3の分光放射率が、当該波長において設定された前記所定の範囲外になる。また、本実施形態のように、分光放射率を求めるための波長の数を2つとすれば、放射計の数を少なくすることができる。また、処理を簡便にすることができる。しかしながら、分光放射率を求めるための波長の数は、3つ以上であっても良い。この場合でも、図4Aおよび図4Bに示すように、Fe2O3の厚みとして想定される厚みの範囲内において、複数の波長のうち、少なくとも何れか1つの波長におけるFe2O3の分光放射率が、当該波長において設定された所定の範囲外になるように当該複数の波長と当該所定の範囲とを定める。前述したように、複数の波長のそれぞれにおいて設定される所定の範囲には、当該波長におけるFeOの分光放射率が含まれるようにする。
[変形例2]
 本実施形態では、3つの放射計20、21a、21bを用いる場合を例に挙げて説明した。しかしながら、少なくとも3つの異なる波長の分光放射輝度を検出するようにしていれば、必ずしもこのようにする必要はない。例えば、同一の受光レンズから入光した光をハーフミラーにより3つに分光する。そして、分光した光を、相互に異なる波長の光のみを通過する3つの波長選択フィルタの何れか一方に通す。この波長選択フィルタを通過した光について分光放射輝度を検出する。このようにすれば、放射計の省スペース化を図ることができる。
[変形例3]
 本実施形態では、デスケーラ12bと、ワークロールとバックアップロールとを有する圧延スタンドのうち最上流に設けられた圧延スタンド14bとの間の領域に一組の放射計20、21a、21bを配置する場合を例に挙げて示した。しかしながら、熱間圧延工程の、最上流のデスケーラ12aよりも下流側の場所であれば(加熱炉11から抽出され、少なくとも1回のデスケーリングが行われた鋼板の温度を測定していれば)、放射計の組を配置する場所は、この場所に限定されない。例えば、デスケーラと、当該デスケーラに対し下流側において最も近い位置にある圧延スタンドとの間の場所に、放射計の組を配置することができる。また、このような場所の複数の位置に、放射計の組をそれぞれ配置しても良い(即ち、放射計の組を複数配置しても良い)。この場合、スケール組成判定装置10は、それぞれの放射計の組について、図7に示すフローチャートを行い、放射計の組が配置されるそれぞれの場所において、スケールSCの最表層にFe2O3が生成されているか否かを判定する。
[変形例4]
 本実施形態では、スケール組成判定装置10を熱間圧延ラインに適用する場合を例に挙げて説明した。しかしながら、スケール組成判定装置10の適用先は熱間圧延ラインに限定されない。例えば、特許文献1に記載の加熱炉にスケール組成判定装置10を適用しても良い。この場合でも、図4Aおよび図4Bに示すように、Fe2O3の厚みとして想定される厚みの範囲内において、複数の波長のうち、少なくとも何れか1つの波長におけるFe2O3の分光放射率が、当該波長において設定された所定の範囲外になるように当該複数の波長と当該所定の範囲とを定める。前述したように、複数の波長のそれぞれにおいて設定される所定の範囲には、当該波長におけるFeOの分光放射率が含まれるようにする。
[変形例5]
 本実施形態では、放射計20を用いて鋼材SMの温度を測定する場合を例に挙げて説明した。しかしながら、必ずしも放射計20を用いて鋼材SMの温度を求める必要はない。例えば、伝熱計算を行うことにより鋼材SMの温度をオンラインで導出しても良い。また、鋼材SMの温度が過去の操業実績から精度良く得られる場合には、その鋼材SMの温度を用いても良い。温度計に破損の虞がなければ、接触式の温度計を用いても良い。
[変形例6]
 本実施形態のように、複数の波長における分光放射率が、当該複数の波長のそれぞれにおいて設定された所定の範囲内にあるか否かを判定すれば、鋼材の温度に関わらず、スケールSCの最表層にFe2O3が生成されているか否かを容易に且つ高精度に判定することができるので好ましい。しかしながら、鋼材の温度が略一定の所定の温度に保たれるような状況下では、必ずしも分光放射率を求める必要はない。このようにする場合、例えば、複数の波長における分光放射輝度が、当該複数の波長のそれぞれにおいて設定された所定の範囲内にあるか否かを判定すればよい。このようにする場合も、図4Aおよび図4Bを参照しながら説明したのと同様に、Fe2O3の厚みとして想定される厚みの範囲内において、複数の波長のうち、少なくとも何れか1つの波長におけるFe2O3の分光放射輝度が、当該波長において設定された所定の範囲外になるように当該複数の波長と当該所定の範囲とを定める。また、複数の波長のそれぞれにおいて設定される所定の範囲には、当該波長におけるFeOの分光放射輝度が含まれるようにする。
[その他の変形例]
 尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
 また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本発明は、鋼材を製造すること等に利用できる。

Claims (4)

  1.  鋼材の表面に生成されるスケールの組成を判定するスケール組成判定システムであって、
     複数の波長のそれぞれにおける前記鋼材の分光放射輝度を検出する検出手段と、
     前記鋼材の温度を取得する温度取得手段と、
     前記温度取得手段により取得された、前記鋼材の温度と、前記検出手段により検出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射輝度と、に基づいて、前記複数の波長のそれぞれにおける前記鋼材の分光放射率を導出する分光放射率導出手段と、
     前記分光放射率導出手段により導出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射率に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定手段と、を有し、
     前記判定手段は、前記複数の波長のそれぞれにおける前記鋼材の分光放射率の少なくとも何れか1つが、前記複数の波長のぞれぞれにおいて設定された所定の範囲外にある場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていないと判定し、
     前記波長において設定された前記所定の範囲には、当該波長におけるウスタイト(FeO)の分光放射率が含まれ、
     前記複数の波長は、前記複数の波長のそれぞれにおける前記ヘマタイトの分光放射率と、前記ヘマタイトの厚みとして想定される範囲内におけるヘマタイトの厚みとの関係を用いて定められ、
     前記複数の波長は、前記関係において、前記ヘマタイトの何れの厚みにおいても、前記複数の波長の少なくとも何れか一つの波長における前記ヘマタイトの分光放射率が当該波長において設定された前記所定の範囲外になるように定められることを特徴とするスケール組成判定システム。
  2.  前記複数の波長は、3.3[μm]~5.0[μm]の波長帯域から選択された波長と、8.0[μm]~14.0[μm]の波長帯域から選択された波長とを含むことを特徴とする請求項1に記載のスケール組成判定システム。
  3.  鋼材の表面に生成されるスケールの組成を判定するスケール組成判定方法であって、
     複数の波長のそれぞれにおける前記鋼材の分光放射輝度を検出する検出工程と、
     前記鋼材の温度を取得する温度取得工程と、
     前記温度取得工程により取得された、前記鋼材の温度と、前記検出工程により検出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射輝度と、に基づいて、前記複数の波長のそれぞれにおける前記鋼材の分光放射率を導出する分光放射率導出工程と、
     前記分光放射率導出工程により導出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射率に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、を有し、
     前記判定工程は、前記複数の波長のそれぞれにおける前記鋼材の分光放射率の少なくとも何れか1つが、前記複数の波長のそれぞれにおいて設定された所定の範囲外にある場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていないと判定し、
     前記波長において設定された前記所定の範囲には、当該波長におけるウスタイト(FeO)の分光放射率が含まれ、
     前記複数の波長は、前記複数の波長のそれぞれにおける前記ヘマタイトの分光放射率と、前記ヘマタイトの厚みとして想定される範囲内におけるヘマタイトの厚みとの関係を用いて定められ、
     前記複数の波長は、前記関係において、前記ヘマタイトの何れの厚みにおいても、前記複数の波長の少なくとも何れか一つの波長における前記ヘマタイトの分光放射率が当該波長において設定された前記所定の範囲外になるように定められることを特徴とするスケール組成判定方法。
  4.  鋼材の表面に生成されるスケールの組成を判定することをコンピュータに実行させるためのプログラムであって、
     前記鋼材の温度と、複数の波長のそれぞれにおける前記鋼材の分光放射輝度と、に基づいて、前記複数の波長のそれぞれにおける前記鋼材の分光放射率を導出する分光放射率導出工程と、
     前記分光放射率導出工程により導出された、前記複数の波長のそれぞれにおける前記鋼材の分光放射率に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、をコンピュータに実行させ、
     前記判定工程は、前記複数の波長のそれぞれにおける前記鋼材の分光放射率の少なくとも何れか1つが、前記複数の波長のぞれぞれにおいて設定された所定の範囲外にある場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイト(Fe2O3)が生成されていないと判定し、
     前記波長において設定された前記所定の範囲には、当該波長におけるウスタイト(FeO)の分光放射率が含まれ、
     前記複数の波長は、前記複数の波長のそれぞれにおける前記ヘマタイトの分光放射率と、前記ヘマタイトの厚みとして想定される範囲内におけるヘマタイトの厚みとの関係を用いて定められ、
     前記複数の波長は、前記関係において、前記ヘマタイトの何れの厚みにおいても、前記複数の波長の少なくとも何れか一つの波長における前記ヘマタイトの分光放射率が当該波長において設定された前記所定の範囲外になるように定められることを特徴とするプログラム。
PCT/JP2018/016865 2017-04-25 2018-04-25 スケール組成判定システム、スケール組成判定方法、およびプログラム WO2018199187A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019016687-4A BR112019016687B1 (pt) 2017-04-25 2018-04-25 Sistema e método de determinação de composição de incrustação, e meio de armazenamento legível por computador
KR1020197028682A KR102197962B1 (ko) 2017-04-25 2018-04-25 스케일 조성 판정 시스템, 스케일 조성 판정 방법, 및 컴퓨터 판독 가능한 기억 매체
US16/484,615 US11474032B2 (en) 2017-04-25 2018-04-25 Scale composition determination system, scale composition determination method, and program
CA3057054A CA3057054C (en) 2017-04-25 2018-04-25 Scale composition determination system, scale composition determination method, and program
CN201880012159.1A CN110312927B (zh) 2017-04-25 2018-04-25 氧化皮组成判定系统、氧化皮组成判定方法以及程序
JP2018545405A JP6424998B1 (ja) 2017-04-25 2018-04-25 スケール組成判定システム、スケール組成判定方法、およびプログラム
EP18791563.2A EP3617693B1 (en) 2017-04-25 2018-04-25 Scale composition determining system, scale composition determining method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-086174 2017-04-25
JP2017086174 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018199187A1 true WO2018199187A1 (ja) 2018-11-01

Family

ID=63918593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016865 WO2018199187A1 (ja) 2017-04-25 2018-04-25 スケール組成判定システム、スケール組成判定方法、およびプログラム

Country Status (8)

Country Link
US (1) US11474032B2 (ja)
EP (1) EP3617693B1 (ja)
JP (1) JP6424998B1 (ja)
KR (1) KR102197962B1 (ja)
CN (1) CN110312927B (ja)
CA (1) CA3057054C (ja)
TW (1) TWI651527B (ja)
WO (1) WO2018199187A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156270A (ja) * 2016-03-03 2017-09-07 新日鐵住金株式会社 鋼板の表面組成判別方法、表面組成判別装置、製造方法、および製造装置
JP2021128013A (ja) * 2020-02-12 2021-09-02 日本製鉄株式会社 測温システム及び測温方法
JP2022165402A (ja) * 2021-04-19 2022-10-31 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備
JP7315064B1 (ja) 2022-05-19 2023-07-26 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102549B1 (fr) * 2019-10-28 2021-11-26 Fives Stein Dispositif et procédé de pilotage d’un four de réchauffage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235840A (en) * 1991-12-23 1993-08-17 Hot Rolling Consultants, Ltd. Process to control scale growth and minimize roll wear
WO1995013149A1 (en) * 1993-11-12 1995-05-18 Milan Kosanovich Slab caster and inline strip and plate apparatus
JPH08219891A (ja) * 1995-02-10 1996-08-30 Kawasaki Steel Corp 鋼板の表面性状測定方法及び鋼板温度測定方法
JPH0933464A (ja) * 1995-07-21 1997-02-07 Kawasaki Steel Corp 鋼板の表面スケール測定方法及び材質測定方法
JP2012093177A (ja) 2010-10-26 2012-05-17 Nippon Steel Corp 炉内における鋼材の表面温度測定方法および表面温度測定装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1229392A (en) * 1984-02-28 1987-11-17 Hirosato Yamane Method and apparatus for detection of surface defects of hot metal body
US5314249A (en) * 1991-11-19 1994-05-24 Kawasaki Steel Corporation Surface condition measurement apparatus
JPH07270130A (ja) * 1994-03-31 1995-10-20 Nippon Steel Corp 酸化膜厚さ測定方法
JPH0933517A (ja) * 1995-07-21 1997-02-07 Kawasaki Steel Corp 鋼板の材質計測方法
DE10028058A1 (de) * 2000-06-06 2001-12-13 Sms Demag Ag Verfahren und Einrichtung zum Beizen eines gewalzten Metallstranges, insbesondere eines Stahlbandes
US20050063451A1 (en) * 2002-02-28 2005-03-24 Shin-Etsu Handotai Co., Ltd Temperature measuring system, heating device using it and production method for semiconductor wafer, heat ray insulating translucent member, visible light reflection membner, exposure system-use reflection mirror and exposure system, and semiconductor device produced by using them and vetical heat treating device
EP1455237B1 (en) * 2003-03-07 2011-05-25 Canon Kabushiki Kaisha Toner and two-component developer
US6814815B2 (en) * 2003-04-07 2004-11-09 The Material Works, Ltd. Method of removing scale and inhibiting oxidation in processed sheet metal
CN103765158B (zh) * 2011-09-07 2016-09-07 杰富意钢铁株式会社 测定方法和测定装置
TWI472624B (zh) * 2012-07-09 2015-02-11 China Steel Corp 低碳鋼材之製造方法
CN104583739B (zh) * 2012-08-22 2017-10-17 新日铁住金株式会社 表面温度测量装置以及表面温度测量方法
JP5994502B2 (ja) 2012-09-12 2016-09-21 Jfeスチール株式会社 分光測定装置および分光測定方法
FR3032265B1 (fr) * 2015-02-04 2017-02-10 Fives Stein Procede de pilotage de four a partir de mesures de la calamine formee
WO2017055895A1 (en) * 2015-09-30 2017-04-06 Arcelormittal Method of online characterization of a layer of oxides on a steel substrate
JP6716964B2 (ja) 2016-03-03 2020-07-01 日本製鉄株式会社 鋼板の表面組成判別方法、表面組成判別装置、製造方法、および製造装置
TWI665432B (zh) * 2017-04-25 2019-07-11 日商新日鐵住金股份有限公司 鏽皮組成判定系統、鏽皮組成判定方法、及程式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235840A (en) * 1991-12-23 1993-08-17 Hot Rolling Consultants, Ltd. Process to control scale growth and minimize roll wear
WO1995013149A1 (en) * 1993-11-12 1995-05-18 Milan Kosanovich Slab caster and inline strip and plate apparatus
JPH08219891A (ja) * 1995-02-10 1996-08-30 Kawasaki Steel Corp 鋼板の表面性状測定方法及び鋼板温度測定方法
JPH0933464A (ja) * 1995-07-21 1997-02-07 Kawasaki Steel Corp 鋼板の表面スケール測定方法及び材質測定方法
JP2012093177A (ja) 2010-10-26 2012-05-17 Nippon Steel Corp 炉内における鋼材の表面温度測定方法および表面温度測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617693A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156270A (ja) * 2016-03-03 2017-09-07 新日鐵住金株式会社 鋼板の表面組成判別方法、表面組成判別装置、製造方法、および製造装置
JP2021128013A (ja) * 2020-02-12 2021-09-02 日本製鉄株式会社 測温システム及び測温方法
JP7328548B2 (ja) 2020-02-12 2023-08-17 日本製鉄株式会社 測温システム及び測温方法
JP2022165402A (ja) * 2021-04-19 2022-10-31 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備
JP7371721B2 (ja) 2021-04-19 2023-10-31 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備
JP7315064B1 (ja) 2022-05-19 2023-07-26 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備
WO2023223598A1 (ja) * 2022-05-19 2023-11-23 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備
JP2023170552A (ja) * 2022-05-19 2023-12-01 Jfeスチール株式会社 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備

Also Published As

Publication number Publication date
US11474032B2 (en) 2022-10-18
CA3057054A1 (en) 2018-11-01
CA3057054C (en) 2021-11-16
KR20190123766A (ko) 2019-11-01
US20200033268A1 (en) 2020-01-30
KR102197962B1 (ko) 2021-01-05
EP3617693A1 (en) 2020-03-04
BR112019016687A2 (pt) 2020-04-07
CN110312927B (zh) 2022-01-04
TW201843432A (zh) 2018-12-16
EP3617693B1 (en) 2021-11-24
JP6424998B1 (ja) 2018-11-21
JPWO2018199187A1 (ja) 2019-06-27
CN110312927A (zh) 2019-10-08
TWI651527B (zh) 2019-02-21
EP3617693A4 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2018199187A1 (ja) スケール組成判定システム、スケール組成判定方法、およびプログラム
US11454542B2 (en) Scale composition determination system, scale composition determination method, and program
CA2679667C (en) Method and apparatus for hot-rolling metal strip using near-infrared camera
TWI458572B (zh) 控制裝置及控制方法
CN102596440B (zh) 热轧钢板的制造方法和热轧钢板的制造装置
Speicher et al. An integrated thermal model of hot rolling
Samarasekera et al. The application of microstructural engineering to the hot rolling of steel
JP7328548B2 (ja) 測温システム及び測温方法
BR112019016687B1 (pt) Sistema e método de determinação de composição de incrustação, e meio de armazenamento legível por computador
JP2020128980A (ja) 温度測定装置、温度測定方法及びプログラム
JP7315064B1 (ja) 温度測定方法、温度測定装置、温度制御方法、温度制御装置、鋼材の製造方法、及び鋼材の製造設備
Gołdasz et al. Influence of the radiation shield on the temperature of rails rolled in the reversing mill
JPH04283633A (ja) ストリップ連続熱処理設備の板温測定方法
JP2023096777A (ja) 巻取制御装置、巻取実績蓄積装置、巻取制御方法、巻取実績蓄積方法、およびプログラム
JPS5814486B2 (ja) 加熱炉の制御方法
JP2012189394A (ja) 鋼板の品質管理温度設定装置、およびこれを用いる品質管理温度設定方法
JP2011177784A (ja) 圧延ロールプロフィールの測定方法、圧延ロールの研削方法、熱延鋼板の製造方法、圧延機、及び、熱延鋼板の製造装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545405

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791563

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016687

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3057054

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197028682

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018791563

Country of ref document: EP

Effective date: 20191125

ENP Entry into the national phase

Ref document number: 112019016687

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190812