WO2018199101A1 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
WO2018199101A1
WO2018199101A1 PCT/JP2018/016635 JP2018016635W WO2018199101A1 WO 2018199101 A1 WO2018199101 A1 WO 2018199101A1 JP 2018016635 W JP2018016635 W JP 2018016635W WO 2018199101 A1 WO2018199101 A1 WO 2018199101A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
resistance layer
measured
gas sensor
diffusion
Prior art date
Application number
PCT/JP2018/016635
Other languages
English (en)
French (fr)
Inventor
康敬 神谷
竜己 宇治山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880027091.4A priority Critical patent/CN110546493B/zh
Priority to DE112018002188.2T priority patent/DE112018002188T5/de
Publication of WO2018199101A1 publication Critical patent/WO2018199101A1/ja
Priority to US16/663,516 priority patent/US11467120B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures

Definitions

  • the present disclosure relates to a gas sensor that is used in a vehicle internal combustion engine or the like and detects a specific gas concentration in a gas to be measured.
  • An exhaust system of an automobile engine is provided with an exhaust gas purification system including a catalyst for purifying exhaust gas and a gas sensor for detecting oxygen concentration in the exhaust gas, and performs combustion control based on the detection result or a catalyst state, etc. Is monitoring.
  • a gas sensor that is, an air-fuel ratio sensor
  • a gas sensor that is, an air-fuel ratio sensor
  • Control is in progress.
  • a gas sensor used for such an application includes a gas sensor element using an oxide ion conductive solid electrolyte body.
  • a gas sensor element includes a measurement gas side electrode covered with a porous diffusion resistance layer on one surface of a solid electrolyte body, and a reference gas chamber on the other surface. It has a reference gas side electrode facing.
  • the porous diffusion resistance layer is formed so as to cover the surface side of the gas side electrode to be measured and the periphery thereof, and a limited size space is provided between the surface of the gas side electrode to be measured and the porous diffusion resistance layer. Parts are provided.
  • the surface of the porous diffusion resistance layer is covered with a shielding layer, and the measurement gas introduced into the space portion through the porous diffusion resistance layer from the outer peripheral side of the measurement gas side electrode is introduced. The amount is limited.
  • the volume and height of the space portion should not be larger than the upper limit value, or the porous diffusion resistance layer The porosity is kept from becoming smaller than the lower limit.
  • the gas to be measured is mixed in the space portion, so that fluctuations in sensor characteristics are reduced with respect to environmental changes such as temperature.
  • An object of the present disclosure is to provide a gas sensor that can reduce the pressure dependency of the output of the gas sensor element and can achieve both high detection accuracy and stable output.
  • a gas sensor comprising a gas sensor element for detecting a specific gas concentration in a gas to be measured,
  • the gas sensor element is An oxide ion conductive solid electrolyte body;
  • a gas side electrode to be measured which is provided on a surface of the solid electrolyte body on the gas side to be measured and into which the gas to be measured is introduced via a porous diffusion resistance layer;
  • a reference gas side electrode provided on the reference gas side surface of the solid electrolyte body and facing the reference gas chamber;
  • a diffusion space provided between the porous diffusion resistance layer and the measured gas side electrode;
  • the porous diffusion resistance layer has an inlet portion of the measurement gas that opens to the outer surface of the element, and an outlet portion of the measurement gas that opens to the diffusion space portion, and
  • the distance L1 between the inlet portion and the outlet portion and the distance L2 between the outlet portion and the measured gas side electrode are in a gas sensor in which 0 ⁇ L1 / (L1 + L2) ⁇ 0.4.
  • the gas to be measured including the specific gas passes through the diffusion path formed by the porous diffusion resistance layer and the diffusion space and reaches the gas to be measured side electrode.
  • gas diffusion in the diffusion path is expressed by Knudsen diffusion in which collision between molecules and a wall surface is dominant, and molecular diffusion in which collision between molecules is dominant.
  • Knudsen diffusion in which collision between molecules and a wall surface is dominant
  • molecular diffusion in which collision between molecules is dominant.
  • both Knudsen diffusion and molecular diffusion contribute, and the contribution of molecular diffusion increases in the diffusion space.
  • the dependence of the sensor output on the static pressure is smaller than that in the Knudsen diffusion region.
  • the ratio of the distance of the porous diffusion resistance layer (that is, L1) to the linear distance of the diffusion path (that is, L1 + L2) smaller than 0.4 and relatively increasing the ratio of the diffusion space portion.
  • the molecular diffusion region can be increased to reduce the dependence of sensor output on static pressure.
  • by disposing a porous diffusion resistance layer on the inlet side of the diffusion path it is possible to limit the permeation flux and reduce the dependence of the sensor output on the dynamic pressure. Thereby, pressure output can be reduced and a stable output can be obtained regardless of the pressure environment in which the gas sensor is arranged.
  • the pressure dependency of the output of the gas sensor element can be reduced, and a gas sensor capable of achieving both high detection accuracy and stable output can be provided.
  • FIG. 1 is a cross-sectional view of a gas sensor element constituting a gas sensor in Embodiment 1, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged main part of the gas sensor element in the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing the overall structure of the gas sensor in the first embodiment.
  • FIG. 4 is a schematic configuration diagram of an exhaust system of an automobile engine showing a configuration of an exhaust gas purification system including a gas sensor in the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the ratio of the porous diffusion resistance layer that constitutes the diffusion path of the gas sensor element and the output expansion ratio under static pressure in Embodiment 1.
  • FIG. 6 is a diagram showing an example of the average pore diameter distribution of the porous diffusion resistance layer constituting the diffusion path of the gas sensor element in Embodiment 1 in comparison with an example in the conventional gas sensor element configuration;
  • FIG. 7 is a cross-sectional view showing an example of a conventional gas sensor element configuration,
  • FIG. 8 is a diagram showing the relationship between the output amplitude and the average pore diameter distribution when the pressure of the gas sensor element varies in Embodiment 1.
  • FIG. 9 is a diagram for explaining the effect on the static pressure dependency and the dynamic pressure dependency in the first embodiment.
  • FIG. 10 is a diagram illustrating the relationship between the bending coefficient and the actual diffusion distance in the first embodiment.
  • FIG. 11 is a cross-sectional view of the gas sensor element constituting the gas sensor in the second embodiment.
  • the gas sensor element 1 shown in FIGS. 1 and 2 constitutes a main part of the gas sensor S shown in FIG. 3, and detects a specific gas concentration in the gas to be measured.
  • the gas sensor S is, for example, an oxygen sensor that detects an oxygen concentration that is a specific gas concentration or an air-fuel ratio based on the oxygen concentration in an exhaust gas purification system for an automobile engine that is a vehicle internal combustion engine. That is, it can be used for an air-fuel ratio sensor that detects (A / F).
  • a gas sensor element 1 is provided on an oxide ion conductive solid electrolyte body 11 and a surface 12 of the solid electrolyte body 11 on the gas to be measured side, and is covered via a porous diffusion resistance layer 4.
  • the gas sensor element 1 is formed of a laminated body having a lamination direction X in the vertical direction in the figure.
  • the porous diffusion resistance layer 4 has a measured gas inlet 41 opening on the outer surface of the element and a measured gas outlet 42 opening in the diffusion space 5.
  • the porous diffusion resistance layer 4 and the diffusion space portion 5 constitute a diffusion path of the measurement gas from the inlet 41 to the measurement gas side electrode 21.
  • the distance L1 between the inlet portion 41 and the outlet portion 42 and the distance L2 between the outlet portion 42 and the measured gas side electrode 21 are in a relationship of 0 ⁇ L1 / (L1 + L2) ⁇ 0.4.
  • the ratio of the porous diffusion resistance layer 4 and the diffusion space portion 5 is set, and the diffusion path configuration (for example, pore diameter distribution, diffusion distance, etc.) of the porous diffusion resistance layer 4 is appropriately adjusted. By doing so, the pressure dependence of the sensor output can be reduced.
  • the detailed configuration of the diffusion path of the gas to be measured formed in the gas sensor element 1 and the relationship between the pressure dependence will be described later.
  • the gas sensor S includes a cylindrical housing H having an axial direction Y in the vertical direction in the drawing, a gas sensor element 1 inserted and held in the housing H, and an element cover C1 attached to the front end side of the housing H. And an atmosphere-side cover C2 attached to the base end side of the housing H.
  • the distal end portion (that is, the lower end portion in the figure) of the gas sensor element 1 protrudes from the housing H and is accommodated in the element cover C1.
  • the gas sensor element 1 has a tip portion as a detection portion including a measured gas side electrode 21 and a reference gas side electrode 31.
  • the element cover C1 is a double-bottomed cylindrical shape with an inner and outer sides, and is arranged so as to surround the periphery of the tip of the gas sensor element 1.
  • the element cover C1 is provided with through holes C13 and C14 serving as exhaust gas outlet / inlet holes on the side surfaces or bottom surfaces of the inner cover C11 and the outer cover C12.
  • a base end portion (that is, an upper end portion in the figure) of the gas sensor element 1 protrudes from the housing H and is accommodated in the atmosphere-side cover C2.
  • the cylindrical atmosphere-side cover C2 is provided with a through hole C21 that opens to the outer peripheral side surface and serves as an atmosphere hole, and takes in the atmosphere inside.
  • a plurality of lead wires S1 and S2 connected to an external engine control unit (not shown) are insulated and held in the base end opening of the atmosphere side cover C2.
  • Terminal portions S11 and S21 are provided at the distal ends of the lead wires S1 and S2, and are electrically connected to electrode terminal portions (not shown) provided at the base end portion of the gas sensor element 1.
  • the electrode terminal portion of the gas sensor element 1 is connected to the measured gas side electrode 21 and the reference gas side electrode 31 at the tip portion via a lead portion. At this time, when a predetermined voltage is applied between the measured gas side electrode 21 and the reference gas side electrode 31, the sensor output exhibits a limit current characteristic corresponding to the oxygen concentration. By utilizing this, an air-fuel ratio signal corresponding to the oxygen concentration in the exhaust gas can be obtained.
  • the gas sensor element 1 is held inside a cylindrical insulating material S3 accommodated in the housing H, and a sealing glass S4 is filled between the proximal end side opening of the cylindrical insulating material S3 and the gas sensor element 1. ing.
  • the cylindrical insulating material S3 has an intermediate large diameter portion supported on the stepped portion of the housing H, and a powder S5 containing talc as a main component between the outer peripheral surface of the cylindrical insulating material S3 and the inner peripheral surface of the housing H. And is fixed by caulking the proximal end thin portion of the housing H via the cylindrical insulating member S6.
  • the gas sensor S is attached to, for example, the pipe wall of the exhaust gas pipe EX shown in FIG. 4 by a screw part provided on the outer periphery of the front end of the housing H, and constitutes a part of the exhaust gas purification system.
  • the automobile engine is, for example, a supercharged engine, and an exhaust gas purification catalyst 100 is disposed in an exhaust gas pipe EX downstream of the supercharger 101 including the turbine T and the compressor C.
  • the catalyst 100 is, for example, a known three-way catalyst, and the gas sensor S is used as an air-fuel ratio sensor and outputs a detection result to an engine control unit (not shown).
  • the engine control unit performs combustion control so that the air-fuel ratio in the combustion chamber becomes a stoichiometric air-fuel ratio or an air-fuel ratio corresponding to the operating state.
  • the gas sensor S for detecting the air-fuel ratio is provided on the upstream side of the catalyst 100.
  • the gas sensor S is provided in the exhaust pipe EXb between the supercharger 101 and the catalyst 100.
  • the gas sensor S is arranged in the exhaust pipe EXa on the upstream side of the turbine T of the supercharger 101, and the responsiveness is improved by taking in the exhaust gas immediately after being discharged from the engine. I examined that.
  • the supercharger 101 is configured to rotate the coaxial compressor by driving the turbine T with the exhaust pressure, and in the environment where the exhaust pipe EXa has a higher pressure than the exhaust pipe EXb, the output against the pressure change It is necessary to reduce the deviation (that is, the static pressure dependence). Furthermore, it is desired to suppress output fluctuation (that is, dynamic pressure dependency) due to an increase in pressure pulsation by being closer to the engine.
  • the gas sensor element 1 since the gas sensor element 1 has a diffusion path including the porous diffusion resistance layer 4 and the diffusion space portion 5, even in such a pressure environment, output deviation due to the pressure can be suppressed. To do. Thereby, it becomes possible to perform feedback of the air-fuel ratio using the gas sensor S with good controllability. Next, the detailed configuration of the gas sensor element 1 will be described.
  • the gas sensor element 1 of this embodiment is configured as a stacked element in which a heater portion 6 for heating an element is integrally laminated on a detection portion including a flat solid electrolyte body 11.
  • the solid electrolyte body 11 is, for example, a zirconia-based solid electrolyte mainly composed of zirconia in the form of a flat plate, and a measured gas side electrode 21 and a reference gas side electrode 31 are formed at opposing positions on both surfaces thereof.
  • the zirconia solid electrolyte include partially stabilized zirconia obtained by adding a stabilizer such as yttria to zirconia.
  • the measured gas side electrode 21 and the reference gas side electrode 31 are made of, for example, an electrode material containing a noble metal such as platinum.
  • the gas chamber 2 to be measured is formed by a space part surrounded by the porous diffusion resistance layer 4 and the shielding layer 14.
  • the shielding layer 14 is made of a dense ceramic layer and prevents the exhaust gas from entering the measured gas chamber 2 from the top surface side.
  • the surface of the shielding layer 14 is covered with a protective layer 15 made of a ceramic layer.
  • the shielding layer 14 and the protective layer 15 can be made of an insulating ceramic material such as alumina, for example.
  • the porous diffusion resistance layer 4 is laminated on the solid electrolyte body 11 and is arranged outside the measured gas side electrode 21 with an interval between them, and is opposed to the side wall (that is, left and right in FIG. 1) of the measured gas chamber 2. Side wall).
  • the shielding layer 14 is laminated on the porous diffusion resistance layer 4, faces the measured gas side electrode 21 with a space therebetween, and constitutes the top wall of the measured gas chamber 2. Space portions formed on both sides of the measured gas side electrode 21 become diffusion space portions 5 and constitute a part of the measured gas chamber 2.
  • the heater unit 6 includes a ceramic base 62 and a heater electrode 61 embedded therein.
  • the ceramic bases 62 and 32 are made of an insulating ceramic material such as alumina, for example.
  • the ceramic substrate 32 that forms the ceramic substrate 62 and the reference gas chamber 3 can be formed of an integral ceramic substrate.
  • the porous diffusion resistance layer 4 is made of a porous ceramic layer, has a predetermined diffusion resistance, and allows the exhaust gas to permeate.
  • the porous ceramic layer can be constituted by using, for example, a ceramic material in which pore-forming particles that are burned down during firing are added to aggregate particles constituting the porous skeleton.
  • the aggregate particles are made of an insulating ceramic material such as alumina, and the pore-forming particles are made of a resin or the like. By adjusting the particle size of these aggregate particles and pore-forming particles and the amount of pore-forming particles added, the pore size, porosity, etc. of the porous diffusion resistance layer 4 can be adjusted.
  • the tip of the gas sensor element 1 is disposed in the element cover C1 shown in FIG. 3, and exhaust gas exists around the gas sensor element 1.
  • exhaust gas diffusion paths serving as the porous diffusion resistance layer 4 and the diffusion space portion 5 are formed on both sides of the measured gas chamber 2.
  • the outer surface of the porous diffusion resistance layer 4 constitutes a side surface of the gas sensor element 1 and serves as an exhaust gas inlet 41.
  • the inner surface of the porous diffusion resistance layer 4 serves as an outlet 42 to the diffusion space 5, and the inlet 41 and the outlet 42 are positioned on a straight line.
  • the exhaust gas passes through the inside of the porous diffusion resistance layer 4 from the inlet 41. It reaches the outlet 42, further passes through the diffusion space 5, and reaches the measured gas side electrode 21.
  • the direction orthogonal to the stacking direction X is the diffusion direction, as shown by an arrow of the diffusion path of the exhaust gas G.
  • the distance L1 between the inlet 41 and the outlet 42 of the porous diffusion resistance layer 4 is the length of the porous diffusion resistance layer 4 in the diffusion direction
  • the distance L2 between the outlet 42 and the measured gas side electrode 21 is The length of the diffusion space 5 in the diffusion direction.
  • L1 / (L1 + L2) is the ratio of the length of the porous diffusion resistance layer 4 to the length of the diffusion path in the diffusion direction (that is, the length of the porous diffusion resistance layer 4 + the length of the diffusion space portion 5).
  • gas diffusion in the diffusion path is generally expressed by Knudsen diffusion and molecular diffusion, and when the representative length of the diffusion path (for example, corresponding to the pore diameter) is sufficiently smaller than the mean free path where the molecules collide with each other. Is Knudsen diffusion where the collision between the molecule and the wall is dominant. In addition, when the length is sufficiently larger than the representative length of the diffusion path, molecular collision is dominant molecular diffusion.
  • the porous diffusion resistance layer 4 in which the porous body forms a diffusion path it is considered that both Knudsen diffusion and molecular diffusion contribute, and the smaller the pore diameter, the larger the ratio of collision between the molecule and the wall surface. The larger the pore size, the greater the rate of molecule-molecule collision.
  • the diffusion space portion 5 is considered to have a sufficiently large pore diameter, and molecular diffusion becomes dominant.
  • IL is a theoretical expression (that is, concentration diffusion amount) of the sensor output at the time of static pressure, and is expressed as Expression 2 below.
  • the evaluation pressure is higher than atmospheric pressure, and corresponds to, for example, the pressure in the exhaust pipe EXa on the upstream side of the supercharger 101 in FIG.
  • IL ⁇ (4FP / RT) ⁇ D ⁇ (S / L) ⁇ ln [1- (P O2 / P)]
  • IL Sensor current value [A]
  • F Faraday constant [C / mol]
  • P Pressure [Pa (abs)]
  • R Gas constant [J / (mol ⁇ K)]
  • T Temperature [K]
  • S Cross-sectional area of diffusion layer [m 2 ]
  • L Diffusion distance [m]
  • P O2 oxygen partial pressure [Pa]
  • D is a diffusion coefficient, and is expressed by the following Expression 3 using Knudsen diffusion coefficient Dk and molecular diffusion coefficient Dm.
  • D ( ⁇ / ⁇ ) ⁇ [1 / (1 / Dk + 1 / Dm)]
  • porosity
  • bending coefficient
  • the Knudsen diffusion coefficient Dk is represented by the following formula 4, and the molecular diffusion coefficient Dm is represented by the following formula 5.
  • P C1 O 2 critical pressure [atm] T C1 : O 2 critical temperature [K]
  • P C2 N 2 critical pressure [atm] T C2 : N 2 critical temperature [K]
  • M 1 O 2 molecular weight [g / mol] M 2 : N 2 molecular weight [g / mol]
  • the sensor output IL at the static pressure is proportional to the diffusion coefficient D and the pressure P.
  • the diffusion coefficient D is determined according to the contribution of Knudsen diffusion and molecular diffusion.
  • the Knudsen diffusion coefficient Dk is proportional to the average pore diameter r of the porous diffusion resistance layer 4
  • the molecular diffusion coefficient Dm is inversely proportional to the pressure P. That is, the greater the contribution of molecular diffusion in the diffusion path, the smaller the pressure dependence of the sensor output based on Equation 2.
  • the ratio of the diffusion space portion 5 to be molecular diffusion is larger. The more you get
  • L1 / (L1 + L2) in FIG. 5 is decreased, that is, as the ratio of the diffusion space portion 5 is increased, the molecular diffusion region is increased and the output expansion rate under static pressure is reduced.
  • the static pressure output expansion ratio is well below 1.3 in a range where L1 / (L1 + L2) is smaller than 0.4, which is required in the exhaust gas purification system. Satisfy the characteristics.
  • L1 / (L1 + L2) is in the range of 0.2 or less, and the output expansion ratio during static pressure is greatly reduced to around 1.2 or less.
  • Equation 6 it is effective to reduce the permeation flux Q at the time of pressure fluctuation shown in Equation 7 in order to reduce the dynamic pressure dependency.
  • the permeation flux Q since the permeation flux Q ⁇ pore radius r p 2 , the permeation flux Q is reduced and the pressure is reduced as the pores serving as the diffusion path in the porous diffusion resistance layer 4 are reduced. It turns out that the pressure dependence at the time of a fluctuation
  • the pore diameter D90 that is 90% of the cumulative ratio in the pore diameter distribution can be regarded as the maximum pore diameter, and is hereinafter referred to as the maximum pore diameter D90 for convenience.
  • the average pore diameter and the maximum pore diameter D90 are those of the porous diffusion resistance layer in the sensor element configuration shown as a conventional example in the figure. It is desirable that the pore size distribution is smaller than the average pore size (for example, 1.2 ⁇ m to 2.0 ⁇ m) and the maximum pore size D90 (for example, 2.2 ⁇ m to 2.6 ⁇ m).
  • the top surface of the measurement gas chamber 204 in which the measurement gas side electrode 202 is arranged is configured by a porous diffusion resistance layer 203.
  • the surface of the porous diffusion resistance layer 203 is covered with a shielding layer 205, and the porous diffusion resistance layer 203 is open to the side surface of the element.
  • the measured gas side electrode 202 is disposed close to the inside of the ceramic layer 206 provided with a hole for forming the measured gas chamber 204, and the measured gas chamber 204 is porous from the side surface of the element.
  • the exhaust gas that has permeated through the mass diffusion resistance layer 203 is introduced from the top surface side of the gas chamber 204 to be measured.
  • the diffusion path in the porous diffusion resistance layer 203 becomes long, for example, it is difficult to sufficiently reduce the average pore diameter and the maximum pore diameter D90 in order to ensure responsiveness.
  • the sensor element 1 of the present embodiment has a diffusion path composed of the porous diffusion resistance layer 4 and the diffusion space portion 5 on the side of the measured gas side electrode 21, and the diffusion space portion 5 Since the ratio is large, good responsiveness can be obtained even if the pore diameter of the porous diffusion resistance layer 4 is reduced.
  • the measurement gas side electrode 202 and the reference gas side electrode 207 are provided at opposite positions on both surfaces of the solid electrolyte body 201, and the reference gas side electrode 207 is provided in the ceramic substrate 209.
  • the configuration arranged in the reference gas chamber 208 and the configuration in which the heater electrode 210 is embedded in the ceramic substrate 209 are the same as those of the sensor element 1 of the present embodiment.
  • the average pore diameter of the porous diffusion resistance layer 4 is preferably in the range of 0.6 ⁇ m to 1.0 ⁇ m, as shown in FIG.
  • the maximum pore diameter D90 is preferably in the range of 1.1 ⁇ m to 1.3 ⁇ m.
  • the fluctuation of the sensor output can be sufficiently suppressed.
  • the permeation flux is reduced by reducing the pore radius to 1/2, so that the output amplitude at the time of pressure fluctuation based on Equations 6 and 7 can be reduced to 1/4, Detection accuracy is further improved.
  • both the static pressure dependency and the dynamic pressure dependency of the sensor element 1 can be reduced.
  • the dynamic pressure dependency that is, the power expansion ratio due to dynamic pressure
  • the permeation flux it is better that the average pore diameter is small
  • the static pressure dependency is In order to reduce (that is, the output expansion ratio due to static pressure), it is preferable to increase the average pore diameter and make the contribution of molecular diffusion larger than Knudsen diffusion.
  • the diffusion path mainly consists of the porous diffusion resistance layer 203, and as shown in the left half of the figure, increasing the average pore diameter improves the static pressure dependency, The dynamic pressure dependence deteriorated, and there was a trade-off relationship between the two, and there was a limit to reducing the pressure dependence.
  • the gas sensor element 1 of the present embodiment has the diffusion space portion 5 sufficiently larger than the porous diffusion resistance layer 4 between the gas side electrode 21 to be measured, (1) molecular diffusion The contribution can be further increased, and the static pressure dependence can be reduced. Thereby, even if the pore diameter of the porous diffusion resistance layer 4 is made smaller, the static pressure dependency is not greatly deteriorated. (2) For example, by defining the average pore diameter and the maximum pore diameter D90 The permeation flux at the time of pressure fluctuation can be reduced, and the dynamic pressure dependency can be reduced.
  • the responsiveness can be improved by shortening the actual diffusion distance in the diffusion path.
  • the diffusion path 40 formed in the porous diffusion resistance layer 4 is formed by pores formed by voids between particles, and therefore has a bent shape along the particle surface.
  • the length obtained by linearly extending the diffusion path 40 (that is, the actual diffusion distance Le of the porous diffusion resistance layer 4) is longer than the length of the porous diffusion resistance layer 4 (that is, the apparent diffusion distance L).
  • the bending coefficient ⁇ is expressed by the following expression 8, and can be calculated using the following expression 9 by a known bending coefficient measuring method.
  • Formula 9: Le / L ⁇ ( ⁇ / 2k) ⁇ (Vp / SBET)
  • Porosity k: Permeation coefficient
  • Vp Pore specific volume SBET: Specific surface area
  • the Darcy permeability coefficient k can be calculated from the BET specific surface area SBET by measuring the air permeability by palm porometry.
  • the actual diffusion distance Le ⁇ 2.0 mm of the porous diffusion resistance layer 4 is preferable.
  • the porous diffusion resistance layer 4 is arranged on both sides of the measured gas side electrode 21 so as to be opposite side walls of the measured gas chamber 2. You may arrange
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the gas sensor element 1 of the present embodiment includes a measured gas side electrode 21 and a reference gas side electrode 31 that are opposed to both surfaces of a flat solid electrolyte body 11.
  • the measured gas chamber 2 in which the measured gas side electrode 21 is disposed is formed in a hole provided in the ceramic layer 16, and the surface of the ceramic layer 16 is covered with the protective layer 15.
  • the porous diffusion resistance layer 4 is disposed in the hole in the ceramic layer 16 to constitute the top wall of the gas chamber 2 to be measured.
  • the periphery of the porous diffusion resistance layer 4 is shielded by a protective layer 15, and the porous diffusion resistance layer 4 has an upper surface side in the figure as an exhaust gas inlet portion 41 and a lower surface side as an outlet to the diffusion space portion 5. This is part 42.
  • the diffusion space portion 5 is a space between the measured gas side electrode 21 and the outlet portion 42 and constitutes a part of the measured gas chamber 2.
  • the inlet part 41 and the outlet part 42 are located on a straight line.
  • the distance L1 between the inlet portion 41 and the outlet portion 42 of the porous diffusion resistance layer 4 and the distance L2 between the outlet portion 42 and the measured gas side electrode 21 are 0 ⁇ L1 / (L1 + L2) ⁇ . It is configured to have a relationship of 0.4. Further, the pore diameter and the maximum pore diameter D90 of the porous diffusion resistance layer 4 and the actual diffusion distance of the porous diffusion resistance layer 4 are defined in the same manner as in the first embodiment. By these, the same effect which reduces static pressure dependence and dynamic pressure dependence, and improves responsiveness is acquired.
  • the porous diffusion resistance layer 4 is configured to open on the side surface of the front end portion of the gas sensor element 1, but the porous diffusion resistance layer 4 is formed on the front end surface of the gas sensor element 1. It can also be configured to open.
  • the gas sensor element 1 shown in FIG. 3 is configured such that the inlet portion of the porous diffusion resistance layer 4 is opened at the front end surface (that is, the lower end surface in FIG. 3).
  • the porous diffusion resistance layer 4 and the diffusion space portion 5 may be arranged so that the diffusion direction of the exhaust gas G is the axial direction Y in FIG. .
  • the diffusion path composed of the porous diffusion resistance layer 4 and the diffusion space portion 5 is arranged to extend in the axial direction Y.
  • the gas sensor element 1 can be reduced in the width direction, for example, early activation is possible by the concentrated heat generation by the heater part 6. become.
  • the diffusion space 5 can be enlarged by increasing the axial length of the gas sensor element 1, the ratio L1 / (L1 + L2) of the diffusion path can be adjusted relatively easily, and the radial direction of the gas sensor S Increase in size can be suppressed. Therefore, the gas sensor S with a small size, high response and high accuracy can be obtained.
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the disclosure.
  • the gas sensor S using the stacked gas sensor element 1 has been described.
  • the gas sensor element 1 is a cup-type element using a solid electrolyte body formed in a bottomed cylindrical shape. You can also.
  • a reference gas chamber is provided inside the solid electrolyte body, the reference gas side electrode is arranged, and the gas side electrode to be measured is arranged opposite to the outside, and the diffusion path leading to the gas side electrode to be measured is made porous. It is composed of a quality diffusion resistance layer and a diffusion space.
  • an auxiliary oxygen pump cell for pumping oxygen is stacked on the oxygen concentration battery cell for measurement that has two solid electrolyte bodies and faces the gas chamber to be measured.
  • the gas sensor element having the above-described configuration may be used.
  • the present invention is not limited to the supercharged engine.
  • a gasoline particulate filter Like the upstream side, it can be attached at a position where the exhaust pressure is higher than other parts, and the same effect is exhibited.
  • the configuration of the gas sensor S is not limited to that shown in the above embodiment, and the configuration of the element cover and other components can be changed as appropriate. Furthermore, it can also be applied to internal combustion engines other than those for automobiles.

Abstract

被測定ガス中の特定ガス濃度を検出するガスセンサ素子(1)を備えるガスセンサ(S)であって、上記ガスセンサ素子は、酸化物イオン伝導性の固体電解質体(11)と、その被測定ガス側の面(12)に設けられ、多孔質拡散抵抗層(4)を介して被測定ガス(G)が導入される被測定ガス側電極(21)と、基準ガス側の面(13)に設けられ、基準ガス室(3)に面する基準ガス側電極(31)と、上記多孔質拡散抵抗層と上記被測定ガス側電極の間に設けられる、拡散空間部(5)を有し、上記多孔質拡散抵抗層は、素子外表面に開口する被測定ガスの入口部(41)と、上記拡散空間部に開口する被測定ガスの出口部(42)を有し、上記入口部と上記出口部との距離(L1)と、上記出口部と上記被測定ガス側電極の距離(L2)とが、0<L1/(L1+L2)<0.4の関係にある。

Description

ガスセンサ 関連出願の相互参照
 本出願は、2017年4月26日に出願された特許出願番号2017-087445号に基づくもので、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、車両用内燃機関等に用いられて、被測定ガス中の特定ガス濃度を検出するガスセンサに関する。
 自動車用エンジンの排気系には、排ガスを浄化するための触媒と、排ガス中の酸素濃度等を検出するガスセンサを備える排ガス浄化システムが設けられ、検出結果を基に燃焼制御を行い又は触媒状態等を監視している。例えば、触媒の前段には、酸素濃度に応じた空燃比信号を出力するガスセンサ(すなわち、空燃比センサ)が配置されており、検出された排ガス中の空燃比が目標値となるように、フィードバック制御を行っている。
 かかる用途に用いられるガスセンサは、一般に、酸化物イオン伝導性の固体電解質体を用いたガスセンサ素子を備えている。例えば、特許文献1に記載されるように、ガスセンサ素子は、固体電解質体の一方の面に、多孔質拡散抵抗層にて被覆される被測定ガス側電極を、他方の面に基準ガス室と対面する基準ガス側電極を有している。多孔質拡散抵抗層は、被測定ガス側電極の表面側及びその周囲を覆うように形成され、被測定ガス側電極の表面と多孔質拡散抵抗層の間には、制限された大きさの空間部が設けられる。空間部と反対側において、多孔質拡散抵抗層の表面は遮蔽層にて覆われ、被測定ガス側電極の外周側から多孔質拡散抵抗層を透過して空間部に導入される被測定ガスの量を制限している。
特開2000-65782号公報
 近年、空燃比をより速やかに検出してフィードバック制御性を高めることが要求されている。これに対して、例えば、特許文献1に記載されるガスセンサ素子は、応答性を向上させるために、空間部の容積や高さが上限値より大きくならないようにし、又は、多孔質拡散抵抗層の気孔率が下限値より小さくならないようにしている。また、空間部において、被測定ガスが混合されることで、温度等の環境変化に対してセンサ特性の変動が小さくなるようにしている。
 一方、ガスセンサ自体をより上流に配置して、エンジンにより近い位置で空燃比を検出することで、応答性を向上させることが検討されている。また、燃焼性や燃費の改善のために、過給機を付設したエンジンが注目されている。ところが、過給機付エンジンでは、タービンの上流側において排ガス圧力が高くなるために、ガスセンサ素子の圧力環境がより過酷となり、圧力の変化に依存してガスセンサ素子の出力ズレが生じやすくなる。また、エンジンの脈動に伴う圧力変動等の影響を受けやすくなり、安定した出力が得られない、といった課題が見出された。
 本開示の目的は、ガスセンサ素子の出力の圧力依存性を低減することができ、高い検出精度と安定した出力を両立可能なガスセンサを提供することにある。
 本開示の一態様は、
 被測定ガス中の特定ガス濃度を検出するガスセンサ素子を備えるガスセンサであって、
 上記ガスセンサ素子は、
 酸化物イオン伝導性の固体電解質体と、
 上記固体電解質体の被測定ガス側の面に設けられ、多孔質拡散抵抗層を介して被測定ガスが導入される被測定ガス側電極と、
 上記固体電解質体の基準ガス側の面に設けられ、基準ガス室に面する基準ガス側電極と、
 上記多孔質拡散抵抗層と上記被測定ガス側電極との間に設けられる、拡散空間部と、を有しており、
 上記多孔質拡散抵抗層は、素子外表面に開口する被測定ガスの入口部と、上記拡散空間部に開口する被測定ガスの出口部とを有し、かつ、
 上記入口部と上記出口部との距離L1と、上記出口部と上記被測定ガス側電極との距離L2とが、0<L1/(L1+L2)<0.4の関係にある、ガスセンサにある。
 特定ガスを含む被測定ガスは、多孔質拡散抵抗層及び拡散空間部にて形成される拡散経路を通過して、被測定ガス側電極に到達する。このとき、拡散経路におけるガス拡散は、分子と壁面との衝突が支配的となるクヌーセン拡散と、分子同士の衝突が支配的となる分子拡散とで表される。一般に、多孔質体からなる多孔質拡散抵抗層の内部を通過する場合には、クヌーセン拡散及び分子拡散の両方が寄与し、拡散空間部では分子拡散の寄与が大きくなる。このうち、分子拡散領域では、静的圧力に対するセンサ出力の依存性が、クヌーセン拡散領域よりも小さくなる。
 したがって、拡散経路の直線距離(すなわち、L1+L2)に占める多孔質拡散抵抗層の距離の比率(すなわち、L1)を0.4より小さくし、拡散空間部の比率を相対的に大きくすることで、分子拡散領域を大きくして、静的圧力に対するセンサ出力の依存性を低減することができる。また、拡散経路の入口側に多孔質拡散抵抗層を配置することで、透過流束を制限し、動的圧力に対するセンサ出力の依存性を低減することが可能になる。これにより、ガスセンサが配置される圧力環境によらず、圧力依存性を低減して、安定した出力を得ることができる。
 以上のごとく、上記態様によれば、ガスセンサ素子の出力の圧力依存性を低減することができ、高い検出精度と安定した出力を両立可能なガスセンサを提供することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、ガスセンサを構成するガスセンサ素子の横断面図で、図3のI-I線断面図であり、 図2は、実施形態1における、ガスセンサ素子の主要部を拡大して示す模式的な断面図であり、 図3は、実施形態1における、ガスセンサの全体構造を示す縦断面図であり、 図4は、実施形態1における、ガスセンサを含む排ガス浄化システムの構成を示す自動車用エンジンの排気系の概略構成図であり、 図5は、実施形態1における、ガスセンサ素子の拡散経路を構成する多孔質拡散抵抗層の比率と、静圧時出力拡大率の関係を示す図であり、 図6は、実施形態1における、ガスセンサ素子の拡散経路を構成する多孔質拡散抵抗層の平均細孔径分布の一例を、従来のガスセンサ素子構成における一例と比較して示す図であり、 図7は、従来のガスセンサ素子構成の一例を示す横断面図であり、 図8は、実施形態1における、ガスセンサ素子の圧力変動時の出力振幅と平均細孔径分布の関係を示す図であり、 図9は、実施形態1における、静的圧力依存性と動的圧力依存性に対する効果を説明するための図であり、 図10は、実施形態1における、屈曲係数と実拡散距離の関係を示す図であり、 図11は、実施形態2における、ガスセンサを構成するガスセンサ素子の横断面図である。
(実施形態1)
 以下に、ガスセンサに係る実施形態について、図1~図10を参照して説明する。図1、図2に示されるガスセンサ素子1は、図3に示されるガスセンサSの主要部を構成し、被測定ガス中の特定ガス濃度を検出する。図4に示されるように、ガスセンサSは、例えば、車両用内燃機関である自動車用エンジンの排ガス浄化システムにおいて、特定ガス濃度である酸素濃度を検出する酸素センサや、酸素濃度に基づいて空燃比(すなわち、A/F)を検出する空燃比センサ等に用いることができる。
 図1、図2において、ガスセンサ素子1は、酸化物イオン伝導性の固体電解質体11と、固体電解質体11の被測定ガス側の面12に設けられ、多孔質拡散抵抗層4を介して被測定ガスが導入される被測定ガス側電極21と、固体電解質体11の基準ガス側の面13に設けられ、基準ガス室3に面する基準ガス側電極31と、多孔質拡散抵抗層4と被測定ガス側電極21との間に設けられる、拡散空間部5と、を有している。ガスセンサ素子1は、図の上下方向を積層方向Xとする積層体からなる。
 多孔質拡散抵抗層4は、素子外表面に開口する被測定ガスの入口部41と、拡散空間部5に開口する被測定ガスの出口部42とを有する。このとき、多孔質拡散抵抗層4及び拡散空間部5は、入口部41から被測定ガス側電極21に至る被測定ガスの拡散経路を構成する。入口部41と出口部42との距離L1と、出口部42と被測定ガス側電極21との距離L2とは、0<L1/(L1+L2)<0.4の関係にある。この関係を満足するように、多孔質拡散抵抗層4と拡散空間部5の比率を設定し、多孔質拡散抵抗層4の拡散経路構成(例えば、細孔径分布や拡散距離等)を適切に調整することで、センサ出力の圧力依存性を低減することができる。
 ガスセンサ素子1に形成される被測定ガスの拡散経路の詳細な構成と、圧力依存性との関係については、後述する。
 図3において、ガスセンサSは、図中の上下方向を軸方向Yとする筒状ハウジングHと、ハウジングH内に挿通保持されるガスセンサ素子1と、ハウジングHの先端側に取付けられる素子カバーC1と、ハウジングHの基端側に取付けられる大気側カバーC2と、を有する。ガスセンサ素子1の先端部(すなわち、図の下端部)は、ハウジングHから突出し、素子カバーC1内に収容される。ガスセンサ素子1は、先端部を、被測定ガス側電極21、基準ガス側電極31を備える検出部としている。
 素子カバーC1は、内外二重の有底筒状で、ガスセンサ素子1の先端部の周囲を取り囲むように配置されている。素子カバーC1には、内側カバーC11と外側カバーC12の側面又は底面に、排ガスの導出入孔となる貫通孔C13、C14が設けられる。貫通孔C13、C14を通過した排ガスは、ガスセンサ素子1の表面に到達すると、多孔質拡散抵抗層4を介して、内部に取り込まれる。ガスセンサ素子1の基端部(すなわち、図の上端部)は、ハウジングHから突出し、大気側カバーC2内に収容される。筒状の大気側カバーC2には、外周側面に開口し大気孔となる貫通孔C21が設けられ、内部に大気を取り込むようになっている。
 大気側カバーC2の基端開口部には、図示しない外部のエンジン制御部に接続される複数のリード線S1、S2が絶縁保持されている。リード線S1、S2の先端側には、端子部S11、S21が設けられ、ガスセンサ素子1の基端部に設けられる、図示しない電極端子部と電気的に接続される。ガスセンサ素子1の電極端子部は、先端部の被測定ガス側電極21、基準ガス側電極31とリード部を介して接続される。このとき、被測定ガス側電極21と基準ガス側電極31の間に所定電圧を印加すると、センサ出力が酸素濃度に応じた限界電流特性を示す。これを利用して、排ガス中の酸素濃度に対応する空燃比信号を得ることができる。
 ガスセンサ素子1は、ハウジングH内に収容される筒状絶縁材S3の内側に保持され、筒状絶縁材S3の基端側開口とガスセンサ素子1との間には、封止ガラスS4が充填されている。筒状絶縁材S3は、中間大径部がハウジングHの段差部上に支持され、筒状絶縁材S3の外周面とハウジングHの内周面との間に、タルクを主成分とする粉末S5を充填し、筒状絶縁部材S6を介してハウジングHの基端薄肉部を加締めることで固定される。
 ガスセンサSは、ハウジングHの先端部外周に設けたネジ部により、例えば、図4に示す排ガス管EXの管壁に取り付けられて、排ガス浄化システムの一部を構成する。自動車用エンジンは、例えば、過給機付エンジンであり、タービンTとコンプレッサCからなる過給機101の下流の排ガス管EXには、排ガス浄化用の触媒100が配設されている。触媒100は、例えば、公知の三元触媒であり、ガスセンサSは、空燃比センサとして用いられて、図示しないエンジン制御部へ検出結果を出力する。エンジン制御部は、燃焼室における空燃比が理論空燃比もしくは運転状態に応じた空燃比となるように、燃焼制御を行う。
 一般に、空燃比を検出するガスセンサSは、触媒100の上流側に設けられ、従来の過給機付エンジンでは、過給機101と触媒100の間の排気管EXbに設けられている。これに対して、本形態では、ガスセンサSを、過給機101のタービンTより上流側の排気管EXaに配置して、エンジンから排出された直後の排ガスを取り込むことで、応答性を向上させることを検討した。その場合、過給機101が、排気圧力によりタービンTを駆動して同軸のコンプレッサを回転させる構成であり、排気管EXa内が排気管EXbより高圧となる環境にあることで、圧力変化に対する出力ズレ(すなわち、静的圧力依存性)を小さくすることが必要となる。さらに、エンジンにより近くなることで、圧力脈動が大きくなることによる出力変動(すなわち、動的圧力依存性)を抑制することが望まれる。
 本形態のガスセンサSは、ガスセンサ素子1が多孔質拡散抵抗層4及び拡散空間部5からなる拡散経路を有することにより、このような圧力環境においても、圧力の影響による出力ズレ等を抑制可能とする。それにより、ガスセンサSを用いた空燃比のフィードバックを制御性よく行うことが可能になる。
 次に、ガスセンサ素子1の詳細構成について、説明する。
 図1に示すように、本形態のガスセンサ素子1は、平板状の固体電解質体11を含む検出部に、素子加熱用のヒータ部6を一体的に積層した積層型素子として構成される。固体電解質体11は、例えば、ジルコニアを主成分とするジルコニア系固体電解質を平板状としたもので、その両面の対向位置に、被測定ガス側電極21と基準ガス側電極31とが形成される。ジルコニア系固体電解質としては、例えば、ジルコニアにイットリア等の安定化剤を添加した部分安定化ジルコニア等が挙げられる。被測定ガス側電極21及び基準ガス側電極31は、例えば、白金等の貴金属を含む電極材にて構成される。
 固体電解質体11の被測定ガス側には、多孔質拡散抵抗層4及び遮蔽層14にて取り囲まれる空間部により、被測定ガス室2が形成される。遮蔽層14は、緻密なセラミックス層からなり、被測定ガス室2へ頂面側から排ガスが浸入することを防止している。遮蔽層14の表面は、セラミックス層からなる保護層15にて被覆される。遮蔽層14及び保護層15は、例えば、アルミナ等の絶縁性セラミックス材料にて構成することができる。
 多孔質拡散抵抗層4は、固体電解質体11に積層されて、被測定ガス側電極21の外側に間隔をおいて配置され、被測定ガス室2の対向する側壁(すなわち、図1中の左右側壁)を構成する。遮蔽層14は、多孔質拡散抵抗層4に積層されて、被測定ガス側電極21と間隔をおいて対向し、被測定ガス室2の頂壁を構成している。被測定ガス側電極21の両側に形成される空間部は、拡散空間部5となり、被測定ガス室2の一部を構成する。
 固体電解質体11の基準ガス側には、基準ガス室3となる空間部を形成するセラミックス基体32が積層される。基準ガス室3は、ガスセンサ素子1の基端部に開口しており、上記図3に示した大気側カバーC2の内部空間と連通している。ヒータ部6は、セラミックス基体62とその内部に埋設されるヒータ電極61からなる。セラミックス基体62、32は、例えば、アルミナ等の絶縁性セラミックス材料にて構成される。図示するように、セラミックス基体62と基準ガス室3を形成するセラミックス基体32を、一体のセラミック基体にて形成することもできる。
 多孔質拡散抵抗層4は、多孔質セラミックス層からなり、所定の拡散抵抗を有して排ガスを透過させる。多孔質セラミックス層は、例えば、多孔質骨格を構成する骨材粒子に、焼成時に焼失する気孔形成粒子を添加したセラミックス材料を用いて構成することができる。骨材粒子には、アルミナ等の絶縁性セラミックス材料が用いられ、気孔形成粒子は、樹脂等からなる。これら骨材粒子及び気孔形成粒子の粒径や気孔形成粒子の添加量を調整することで、多孔質拡散抵抗層4の細孔径や気孔率等を調整することができる。
 ガスセンサ素子1の先端部は、上記図3に示した素子カバーC1内に配置されており、ガスセンサ素子1の周囲には、排ガスが存在する。ガスセンサ素子1の積層方向Xと直交する方向において、被測定ガス室2の両側には、多孔質拡散抵抗層4と拡散空間部5となる排ガスの拡散経路が形成される。多孔質拡散抵抗層4の外側の表面は、ガスセンサ素子1の側面を構成し、排ガスの入口部41となる。多孔質拡散抵抗層4の内側の表面は、拡散空間部5への出口部42となり、入口部41と出口部42とは、一直線上に位置している。
 このとき、図2に被測定ガス側電極21の一方の側(すなわち、図の左側)を拡大して示すように、排ガスは、入口部41から多孔質拡散抵抗層4の内部を透過して出口部42へ至り、さらに拡散空間部5を透過して、被測定ガス側電極21へ到達する。図中に、排ガスGの拡散経路の一例を矢印で示すように、積層方向Xと直交する方向が拡散方向となっている。多孔質拡散抵抗層4の入口部41と出口部42との距離L1は、拡散方向における多孔質拡散抵抗層4の長さであり、出口部42と被測定ガス側電極21との距離L2は、拡散方向における拡散空間部5の長さである。
 L1/(L1+L2)は、拡散方向における拡散経路の長さ(すなわち、多孔質拡散抵抗層4の長さ+拡散空間部5の長さ)に対する多孔質拡散抵抗層4の長さの比率である。ここで、拡散経路におけるガス拡散は、一般に、クヌーセン拡散と分子拡散で表され、分子同士が衝突する平均自由行程より、拡散経路の代表長さ(例えば、細孔径に相当)が十分小さい場合には、分子と壁面との衝突が支配的となるクヌーセン拡散となる。また、拡散経路の代表長さより十分大きい場合には、分子衝突が支配的な分子拡散となる。多孔質体が拡散経路を形成する多孔質拡散抵抗層4では、クヌーセン拡散と分子拡散の両方が寄与していると考えられ、細孔径が小さくなるほど、分子-壁面間衝突の割合が多くなり、細孔径が大きくなるほど、分子-分子間衝突の割合が多くなる。一方、拡散空間部5は、細孔径が十分大きい状態と考えられ、分子拡散が支配的になる。
 したがって、L1/(L1+L2)が小さくなるほど、拡散空間部5の比率が大きくなり、分子拡散が支配的になる領域が大きくなる。図5に示すように、L1/(L1+L2)を、0から1の範囲で変化させたときの、静圧時出力拡大率の変化を調べたところ、L1/(L1+L2)が小さくなるほど、静圧時出力拡大率が大きく低減することが判明した。静圧時出力拡大率は、下記式1で表される。
 式1:静圧時出力拡大率=評価時圧力におけるIL/大気圧におけるIL
 式1中、ILは、静圧時のセンサ出力の理論式(すなわち、濃度拡散量)であり、下記式2のように表される。評価時圧力は、大気圧より高い圧力であり、例えば、図4における過給機101上流側の排気管EXa内の圧力に相当する。
 式2:IL=-(4FP/RT)・D・(S/L)・ln[1-(PO2/P)]
 ただし、式2中、
 IL:センサ電流値[A]
 F:ファラデー定数[C/mol]
 P:圧力[Pa(abs)]
 R:気体定数[J/(mol・K)]
 T:温度[K]
 S:拡散層断面積[m2
 L:拡散距離[m]
 PO2:酸素分圧[Pa]
 式2中、Dは拡散係数であり、クヌーセン拡散係数Dkと分子拡散係数Dmとを用いて、下記式3で表される。
 式3:D=(ε/τ)・[1/(1/Dk+1/Dm)]
 ただし、式3中、
 ε:空隙率
 τ:屈曲係数
 このうち、クヌーセン拡散係数Dkは、下記式4で表され、分子拡散係数Dmは、下記式5で表される。
 式4:Dk=(4/3)・r・√(2RT/nM1)
 式5:Dm={0.00067T1.83/P[(TC1/PC1(1/3)+(TC2/PC2(1/3)3}・√(1/M1)+(1/M2)
 ただし、式4、式5中、
 PC1:O2臨界圧力[atm]
 TC1:O2臨界温度[K]
 PC2:N2臨界圧力[atm]
 TC2:N2臨界温度[K]
 M1:O2分子量[g/mol]
 M2:N2分子量[g/mol]
 式2に明らかなように、静圧時のセンサ出力ILは、拡散係数Dと圧力Pに比例する。ここで、式3に示されるように、拡散係数Dは、クヌーセン拡散及び分子拡散の寄与度に応じて定まる。このうち、クヌーセン拡散係数Dkは、多孔質拡散抵抗層4の平均細孔径rに比例し、分子拡散係数Dmは、圧力Pに反比例する。すなわち、拡散経路における分子拡散の寄与度が大きいほど、式2に基づくセンサ出力の圧力依存性を小さくすることができる。そのためには、多孔質拡散抵抗層4における分子拡散の寄与度に加えて、分子拡散となる拡散空間部5の比率が大きい方がよいことがわかる。
くなるほど、
 これにより、上記図5におけるL1/(L1+L2)が小さくなるほど、すなわち、拡散空間部5の比率が大きくなるほど、分子拡散領域が増加して、静圧時出力拡大率が低減する。具体的には、図5の結果に示されるように、L1/(L1+L2)が0.4より小さい範囲で、静圧時出力拡大率が1.3を十分下回り、排ガス浄化システムにおいて要求される特性を満足する。好ましくは、L1/(L1+L2)が0.2以下の範囲であるとよく、静圧時出力拡大率が、1.2前後ないしそれ以下に大きく低減する。
 このようにして、L1/(L1+L2)を適切に設定することで、静的圧力に依存する出力ズレを低減し、静圧時の検出精度を向上させることができる。一方、排気管EX内に生じる脈動等の動的圧力に対しても、多孔質拡散抵抗層4の比率と構成を適切に設定することで、圧力変動の影響を小さくすることができる。
 下記式6は、圧力変動時のセンサ出力の理論式であり、下記式6のように表される。式6中、Qは、透過流速の理論式であり、下記式7のように表される。
 式6:IL=4QSCF
 式7:Q=ε・(rp 2/8η)・[(P1-P2)/RTL]・[(P1+P2)/2]
 ただし、式6、式7中、
 IL:センサ電流値[A]
 Q:透過流速[mol/(m2・s)]
 S:拡散層断面積[m2
 C:酸素濃度[-]
 F:ファラデー定数[C/mol]
 ε:空隙率[-]
 rp:細孔半径[m]
 η:気体粘度[Pa・s]
 P:圧力[Pa(abs)]
 R:気体定数[J/(mol・K)]
 IL:センサ電流値[A]
 T:温度[K]
 L:拡散距離[m]
 式6から、動的圧力依存性を低減するには、式7に示される圧力変動時の透過流束Qを低減することが有効となる。式7から、透過流束Q∝細孔半径rp 2の関係にあるので、多孔質拡散抵抗層4内の拡散経路となる細孔を小さくするほど、透過流束Qを低減して、圧力変動時の圧力依存性を低減できることがわかる。このとき、平均細孔径を小さくすると共に、最大細孔径を小さくすることが望ましい。例えば、細孔径分布における累積比率90%となる細孔径D90は、ほぼ、最大細孔径とみなすことができ、以下、便宜的に最大細孔径D90と称する。
 好適には、図6に示すように、多孔質拡散抵抗層4の細孔径分布において、平均細孔径及び最大細孔径D90が、図中に従来例として示すセンサ素子構成における多孔質拡散抵抗層の細孔径分布における、平均細孔径(例えば、1.2μm~2.0μm)及び最大細孔径D90(例えば、2.2μm~2.6μm)よりも小さいことが望ましい。例えば、図7に示すように、従来のセンサ素子200は、被測定ガス側電極202が配置される被測定ガス室204の頂面を、多孔質拡散抵抗層203にて構成している。多孔質拡散抵抗層203の表面は、遮蔽層205で被覆され、多孔質拡散抵抗層203は、素子側面に開口している。
 図7において、被測定ガス側電極202は、被測定ガス室204を形成する抜き孔を設けたセラミックス層206の内側に近接して配置され、被測定ガス室204には、素子側面側から多孔質拡散抵抗層203内を透過した排ガスが、被測定ガス室204の頂面側から導入される。この構成では、多孔質拡散抵抗層203内の拡散経路が長くなるため、例えば、応答性を確保しようとすると、平均細孔径及び最大細孔径D90を十分小さくすることは難しい。これに対して、本形態のセンサ素子1は、被測定ガス側電極21の側方に、多孔質拡散抵抗層4と拡散空間部5からなる拡散経路を有し、かつ、拡散空間部5の比率が大きいので、多孔質拡散抵抗層4の細孔径を小さくしても、良好な応答性が得られる。
 なお、従来のセンサ素子200において、固体電解質体201の両面の対向位置に、被測定ガス側電極202と基準ガス側電極207が設けられ、基準ガス側電極207が、セラミックス基体209内に設けられる基準ガス室208に配置される構成、セラミックス基体209にヒータ電極210が埋設される構成は、本形態のセンサ素子1と同様である。
 より好適には、図6に実施例として細孔径分布を示すように、多孔質拡散抵抗層4の平均細孔径が、0.6μm~1.0μmの範囲にあることが好ましい。また、最大細孔径D90は、1.1μm~1.3μmの範囲にあることが好ましい。平均細孔径及び最大細孔径D90が、従来よりも十分小さい上記範囲となることで、動的圧力依存性を低減する効果を高めることができる。
 これにより、図8に示すように、センサ出力の変動を十分抑制することができる。具体的には、例えば、細孔半径を1/2にすることで透過流束が小さくなるので、式6、式7に基づく圧力変動時の出力振幅を1/4に低減することができ、検出精度がより向上する。
 その結果、図9に示すように、センサ素子1の静的圧力依存性及び動的圧力依存性の両方を低減可能となる。上述したように、動的圧力依存性(すなわち、動圧による出力拡大率)を低減するには、透過流束を減らすために、平均細孔径が小さい方がよく、一方、静的圧力依存性(すなわち、静圧による出力拡大率)を低減するには、平均細孔径を大きくして、分子拡散の寄与をクヌーセン拡散より大きくするのがよい。従来のセンサ素子200の構成では、拡散経路が主に多孔質拡散抵抗層203からなり、図中の左半部に示すように、平均細孔径を大きくすると静的圧力依存性は向上するものの、動的圧力依存性が悪化し、両者がトレードオフの関係にあって、圧力依存性の低減に限界があった。
 これに対して、本形態のガスセンサ素子1は、多孔質拡散抵抗層4よりも十分大きい拡散空間部5を、被測定ガス側電極21との間に設けているので、(1)分子拡散の寄与をさらに大きくすることができ、静的圧力依存性を低減可能となる。それにより、多孔質拡散抵抗層4の細孔径をより小さくしても、静的圧力依存性を大きく悪化させることがなくなり、(2)例えば、平均細孔径及び最大細孔径D90を規定することで、圧力変動時の透過流束を減らして、動的圧力依存性を低減可能となる。
 好適には、さらに、拡散経路における実拡散距離を短くすることで、応答性を向上させることができる。図10に示すように、多孔質拡散抵抗層4内に形成される拡散経路40は、粒子間の空隙からなる細孔にて形成されるために、粒子表面に沿う屈曲形状となっている。この拡散経路40を直線状に伸ばした長さ(すなわち、多孔質拡散抵抗層4の実拡散距離Le)は、多孔質拡散抵抗層4の長さ(すなわち、見掛けの拡散距離L)よりも長く、両者の差ΔLは、ΔL=Le-Lとなる。
 このとき、屈曲係数τは、下記式8で表され、公知の屈曲係数測定方法により、下記式9を用いて算出することができる。
 式8:τ=Le/L=1+ΔL/L
 式9:Le/L=√(ε/2k)・(Vp/SBET)
 ただし、式9中、
 ε:空隙率
 k:透過係数
 Vp:細孔比容積
 SBET:比表面積
 例えば、水銀圧入法による細孔径分布測定により、空隙率ε、細孔比容積Vpを、窒素ガスあるいはクリプトンガス吸着測定により、BET法比表面積SBETを、パームポロメトリーによる空気透過性測定により、ダルシーの透過係数kを算出することができる。
 これを用いて、多孔質拡散抵抗層4及び拡散空間部5からなる拡散経路の実拡散距離は、下記式10で表される。
 式10:拡散経路の実拡散距離=τ1×L1+τ2×L2
 ただし、式10中、
 τ1:多孔質拡散抵抗層4の屈曲係数
 τ2:拡散空間部5の屈曲係数
 なお、拡散空間部5における屈曲係数は、τ2≒1である。
 好適には、多孔質拡散抵抗層4の実拡散距離Le<2.0mmであることが好ましい。上述したように、多孔質拡散抵抗層4における細孔径が小さいほど、動的圧力依存性は低減するが、内部の拡散経路が長くなると、応答性に影響する。その場合でも、実拡散距離Leが2.0mmより小さくなるように、多孔質拡散抵抗層4の細孔径等を調整することによって、応答性を確保することができる。
(実施形態2)
 上記実施形態1では、多孔質拡散抵抗層4を、被測定ガス側電極21の両側に配置し、被測定ガス室2の対向する側壁となるように構成したが、被測定ガス側電極21と対向するように配置してもよい。この場合を実施形態2として、以下に相違点を中心に説明する。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 図11に示すように、本形態のガスセンサ素子1は、平板状の固体電解質体11の両面に対向して位置する、被測定ガス側電極21と基準ガス側電極31とを有する。被測定ガス側電極21が配置される、被測定ガス室2は、セラミックス層16に設けた抜き孔内に形成され、セラミックス層16の表面は、保護層15にて被覆される。セラミックス層16の抜き孔には、多孔質拡散抵抗層4が配置されて、被測定ガス室2の頂壁を構成している。多孔質拡散抵抗層4の周囲は、保護層15にて遮蔽され、多孔質拡散抵抗層4は、図の上面側を排ガスの入口部41とすると共に、下面側を拡散空間部5への出口部42としている。拡散空間部5は、被測定ガス側電極21と出口部42の間の空間であり、被測定ガス室2の一部を構成する。入口部41と出口部42とは、一直線上に位置している。
 本形態においても、多孔質拡散抵抗層4の入口部41と出口部42との距離L1と、出口部42と被測定ガス側電極21との距離L2とが、0<L1/(L1+L2)<0.4の関係となるように構成される。また、多孔質拡散抵抗層4の細孔径及び最大細孔径D90、多孔質拡散抵抗層4の実拡散距離を、実施形態1と同様に規定する。これらにより、静的圧力依存性及び動的圧力依存性を低減し、応答性を向上させる同様の効果が得られる。
(実施形態3)
 上記実施形態1、実施形態2では、多孔質拡散抵抗層4を、ガスセンサ素子1の先端部の側面に開口するように構成したが、多孔質拡散抵抗層4を、ガスセンサ素子1の先端面に開口するように構成することもできる。この場合には、上記図3に示したガスセンサ素子1において、先端面(すなわち、図3中の下端面)に、多孔質拡散抵抗層4の入口部が開口する構成とする。例えば、上記図2に示したガスセンサ素子1の拡大断面において、排ガスGの拡散方向が、図3における軸方向Yとなるように、多孔質拡散抵抗層4及び拡散空間部5を配置すればよい。
 本形態の構成によれば、多孔質拡散抵抗層4及び拡散空間部5からなる拡散経路が、軸方向Yに延びる配置となる。これにより、拡散空間部5がガスセンサ素子1の側面側に配置される場合よりも、ガスセンサ素子1を幅方向に小型化することができ、例えば、ヒータ部6による集中発熱で早期活性化が可能になる。また、ガスセンサ素子1の軸方向長を長くすることで、拡散空間部5を大きくすることができるので、拡散経路の比率L1/(L1+L2)の調整が比較的容易にでき、ガスセンサSの径方向の大型化を抑制できる。したがって、小型で高応答かつ高精度なガスセンサSが得られる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 例えば、上記各実施形態では、積層型のガスセンサ素子1を用いたガスセンサSについて説明したが、ガスセンサ素子1を、有底円筒状に形成された固体電解質体を用いたコップ型の素子とすることもできる。その場合には、固体電解質体の内側に基準ガス室を設けて基準ガス側電極を配置し、外側に被測定ガス側電極を対向配置して、被測定ガス側電極に至る拡散経路を、多孔質拡散抵抗層及び拡散空間部にて構成する。また、積層型のガスセンサ素子1を用いた場合において、2つの固体電解質体を備え、被測定ガス室に面する測定用の酸素濃淡電池セルに、酸素のポンピングを行う補助用の酸素ポンプセルを積層した構成のガスセンサ素子としてもよい。
 さらに、上記各実施形態では、自動車用の過給機付エンジンの排ガス浄化システムにガスセンサSを適用した例について説明したが、過給機付エンジンに限るものではなく、例えば、ガソリンパティキュレートフィルタの上流側のように、排気圧力が他の部位より高くなる位置に取り付けることもでき、同様の効果を発揮する。また、ガスセンサSの構成は、上記実施形態に示したものに限らず、素子カバーその他各部の構成は、適宜変更することができる。さらに、自動車用以外の内燃機関に適用することもできる。

Claims (7)

  1.  被測定ガス中の特定ガス濃度を検出するガスセンサ素子(1)を備えるガスセンサ(S)であって、
     上記ガスセンサ素子は、
     酸化物イオン伝導性の固体電解質体(11)と、
     上記固体電解質体の被測定ガス側の面(12)に設けられ、多孔質拡散抵抗層(4)を介して被測定ガス(G)が導入される被測定ガス側電極(21)と、
     上記固体電解質体の基準ガス側の面(13)に設けられ、基準ガス室(3)に面する基準ガス側電極(31)と、
     上記多孔質拡散抵抗層と上記被測定ガス側電極との間に設けられる、拡散空間部(5)と、を有しており、
     上記多孔質拡散抵抗層は、素子外表面に開口する被測定ガスの入口部(41)と、上記拡散空間部に開口する被測定ガスの出口部(42)とを有し、かつ、
     上記入口部と上記出口部との距離L1と、上記出口部と上記被測定ガス側電極との距離L2とが、0<L1/(L1+L2)<0.4の関係にある、ガスセンサ。
  2.  上記多孔質拡散抵抗層は、平均細孔径が0.6μm~1.0μmであり、細孔径分布における累積比率90%となる細孔径D90が1.1μm~1.3μmである、請求項1に記載のガスセンサ。
  3.  上記多孔質拡散抵抗層は、上記入口部から上記出口部へ至る被測定ガス拡散経路の実拡散距離が2.0mm以下である、請求項1又は2に記載のガスセンサ。
  4.  上記多孔質拡散抵抗層は、上記入口部と上記出口部とが一直線上に位置している、請求項1~3のいずれか1項に記載のガスセンサ。
  5.  上記多孔質拡散抵抗層は、上記固体電解質体の上記被測定ガス側の面において、上記被測定ガス側電極の外側に設けられ、上記入口部を除く表面に遮蔽層(14)が設けられる、請求項1~4のいずれか1項に記載のガスセンサ。
  6.  上記多孔質拡散抵抗層は、上記ガスセンサ素子の先端部に位置している、請求項1~5のいずれか1項に記載のガスセンサ。
  7.  上記多孔質拡散抵抗層は、上記入口部が上記ガスセンサ素子の先端面又は側面に開口している、請求項6に記載のガスセンサ。
PCT/JP2018/016635 2017-04-26 2018-04-24 ガスセンサ WO2018199101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880027091.4A CN110546493B (zh) 2017-04-26 2018-04-24 气体传感器
DE112018002188.2T DE112018002188T5 (de) 2017-04-26 2018-04-24 Gassensor
US16/663,516 US11467120B2 (en) 2017-04-26 2019-10-25 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087445A JP6809361B2 (ja) 2017-04-26 2017-04-26 ガスセンサ
JP2017-087445 2017-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/663,516 Continuation US11467120B2 (en) 2017-04-26 2019-10-25 Gas sensor

Publications (1)

Publication Number Publication Date
WO2018199101A1 true WO2018199101A1 (ja) 2018-11-01

Family

ID=63918438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016635 WO2018199101A1 (ja) 2017-04-26 2018-04-24 ガスセンサ

Country Status (5)

Country Link
US (1) US11467120B2 (ja)
JP (1) JP6809361B2 (ja)
CN (1) CN110546493B (ja)
DE (1) DE112018002188T5 (ja)
WO (1) WO2018199101A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215440B2 (ja) * 2020-02-05 2023-01-31 株式会社デンソー ガスセンサ素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189454A (ja) * 1989-01-18 1990-07-25 Toyota Motor Corp 酸素濃度センサ
JP2016065861A (ja) * 2014-09-16 2016-04-28 株式会社デンソー ガスセンサ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210641B1 (en) * 1997-07-09 2001-04-03 Denso Corporation Air-fuel ratio control system and gas sensor for engines
JP3855483B2 (ja) 1998-08-25 2006-12-13 株式会社デンソー 積層型空燃比センサ素子
JP3832437B2 (ja) * 2002-04-03 2006-10-11 株式会社デンソー ガスセンサ素子
JP4715375B2 (ja) * 2005-08-03 2011-07-06 株式会社デンソー ガスセンサ素子の製造方法及びガスセンサ素子
JP2007101353A (ja) * 2005-10-04 2007-04-19 Denso Corp ガスセンサ
JP4800853B2 (ja) * 2005-12-28 2011-10-26 株式会社デンソー ガスセンサ素子
JP4923948B2 (ja) * 2006-01-05 2012-04-25 株式会社デンソー ガスセンサ素子
CA2766022C (en) * 2009-06-26 2016-06-21 Nissan Motor Co., Ltd. Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same
JP5075937B2 (ja) * 2010-03-31 2012-11-21 日本碍子株式会社 ガスセンサ素子及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189454A (ja) * 1989-01-18 1990-07-25 Toyota Motor Corp 酸素濃度センサ
JP2016065861A (ja) * 2014-09-16 2016-04-28 株式会社デンソー ガスセンサ

Also Published As

Publication number Publication date
US20200057018A1 (en) 2020-02-20
US11467120B2 (en) 2022-10-11
JP2018185234A (ja) 2018-11-22
DE112018002188T5 (de) 2020-01-09
CN110546493A (zh) 2019-12-06
JP6809361B2 (ja) 2021-01-06
CN110546493B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
JP4812831B2 (ja) NOxセンサの出力補正方法
US4915814A (en) Sensor for measurement of air/fuel ratio and method of manufacturing
EP3064936B1 (en) Sensor element and gas sensor
CN110672698B (zh) 气体传感器及传感器元件
JP6263476B2 (ja) センサ素子及びガスセンサ
JP5254154B2 (ja) ガスセンサ
JP2017198659A (ja) ガスセンサ素子およびガスセンサ
US20220390410A1 (en) Gas sensor element
CN111380939A (zh) 传感器元件及气体传感器
JP4165652B2 (ja) ガスセンサ
US20200309727A1 (en) Gas sensor and sensor element
WO2018199101A1 (ja) ガスセンサ
US20100126883A1 (en) Sensor element having suppressed rich gas reaction
CN110672697A (zh) 气体传感器
CN102084242B (zh) 提高静态精度的λ探测器
US20220011257A1 (en) Gas sensor
KR101693531B1 (ko) 질소산화물 센서
JP2020003284A (ja) ガスセンサ
CN113631915A (zh) 气体传感器
US11209388B2 (en) Gas sensor
KR20160054706A (ko) 질소 산화물 센서
US20160109403A1 (en) Gas sensor for measuring different gases, and corresponding production method
JP2000214130A (ja) ガス濃度測定方法
JP7234988B2 (ja) ガスセンサ
CN108872345B (zh) 气体传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789828

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18789828

Country of ref document: EP

Kind code of ref document: A1