WO2018198971A1 - 組成物及びそれを用いた発光素子 - Google Patents

組成物及びそれを用いた発光素子 Download PDF

Info

Publication number
WO2018198971A1
WO2018198971A1 PCT/JP2018/016306 JP2018016306W WO2018198971A1 WO 2018198971 A1 WO2018198971 A1 WO 2018198971A1 JP 2018016306 W JP2018016306 W JP 2018016306W WO 2018198971 A1 WO2018198971 A1 WO 2018198971A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
atom
bonded
compound
Prior art date
Application number
PCT/JP2018/016306
Other languages
English (en)
French (fr)
Inventor
塁 石川
タラン,ウィリアム
カムテカー,ティモシー,キラン
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/494,007 priority Critical patent/US20200411773A1/en
Priority to KR1020197034219A priority patent/KR102558986B1/ko
Priority to CN201880027274.6A priority patent/CN110574497B/zh
Priority to EP18791887.5A priority patent/EP3618579B1/en
Priority to JP2018568992A priority patent/JP6614370B2/ja
Publication of WO2018198971A1 publication Critical patent/WO2018198971A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum

Definitions

  • the present invention relates to a composition and a light emitting device using the composition.
  • Patent Document 1 proposes a composition containing the compound (H0-1) and FIrpic which is a phosphorescent compound.
  • Patent Document 2 proposes a composition containing the compound (H0-2) and the phosphorescent compound (B0).
  • an object of this invention is to provide a composition useful for manufacture of the light emitting element which is excellent in luminous efficiency.
  • the present invention provides the following [1] to [9].
  • a composition comprising a compound represented by the formula (C-1) and a phosphorescent compound represented by the formula (1).
  • Ring R 1C , ring R 2C , ring R 3C, and ring R 4C each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R C represents a carbon atom, a silicon atom, a germanium atom, a tin atom, or a lead atom.
  • M 1 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more.
  • Ring R 1A represents a triazole ring.
  • Ring R 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent.
  • E 1 , E 2 , E 11A , E 12A and E 13A each independently represent a nitrogen atom or a carbon atom.
  • E 1 , E 2 , E 11A , E 12A and E 13A they may be the same or different.
  • at least one of E 1 and E 2 is a carbon atom.
  • R 11A , R 12A and R 13A are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or halogen Represents an atom, and these groups optionally have a substituent.
  • R 11A , R 12A and R 13A may be the same or different.
  • R 11A and R 12A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 12A and R 13A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent which ring R 2 may have and R 11A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • E 11A is a nitrogen atom
  • R 11A may or may not be present.
  • E 12A is a nitrogen atom
  • R 12A may or may not be present.
  • E 13A is a nitrogen atom
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • a 1 -G 1 -A 2 When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different.
  • [2] The composition according to [1], wherein at least one of the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C has a group represented by the formula (D-1). object.
  • Ring RD represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • X D1 and X D2 each independently represent a single bond, an oxygen atom, a sulfur atom, a group represented by —N (R XD1 ) —, or a group represented by —C (R XD2 ) 2 —. .
  • R XD1 and R XD2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom. These groups may have a substituent.
  • a plurality of R XD2 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • E 1D , E 2D and E 3D each independently represent a nitrogen atom or a carbon atom.
  • R 1D , R 2D and R 3D are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or halogen Represents an atom, and these groups optionally have a substituent.
  • E 1D is a nitrogen atom, R 1D does not exist.
  • R 1D and R 2D may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R 2D and R 3D may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R 1D and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 1D and R XD2 may be bonded to each other to form a ring together with the carbon atom to which they are bonded.
  • the substituent which the ring R D may have and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent which the ring R D may have and R XD2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • [3] The composition according to [2], wherein the group represented by the formula (D-1) is a group represented by the formula (D-2). [Where: X D1 , X D2 , E 1D , E 2D , E 3D , R 1D , R 2D and R 3D represent the same meaning as described above.
  • E 4D , E 5D , E 6D and E 7D each independently represent a nitrogen atom or a carbon atom.
  • R 4D , R 5D , R 6D and R 7D are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a halogen atom, and these groups optionally have a substituent.
  • E 4D is a nitrogen atom
  • R 4D does not exist.
  • E 5D is a nitrogen atom
  • R 5D does not exist.
  • E 6D is a nitrogen atom, R 6D does not exist.
  • Ring R 1C ′, ring R 2C ′, ring R 3C ′ and ring R 4C ′ each independently represent a benzene ring, a pyridine ring or a diazabenzene ring.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are respectively Independently, it represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom. You may have. When E 11C is a nitrogen atom, R 11C does not exist.
  • E 12C is a nitrogen atom
  • E 13C is a nitrogen atom
  • R 13C does not exist
  • E 14C is a nitrogen atom
  • E 21C is a nitrogen atom
  • E 22C is a nitrogen atom
  • E 23C is a nitrogen atom
  • E 24C is a nitrogen atom
  • E 31C is a nitrogen atom
  • E 32C is a nitrogen atom
  • E 33C is a nitrogen atom, R 33C does not exist.
  • E 34C is a nitrogen atom
  • R 34C does not exist.
  • E 41C is a nitrogen atom
  • R 42C does not exist.
  • E 43C is a nitrogen atom
  • R 43C does not exist.
  • E 44C is a nitrogen atom, R 44C does not exist.
  • R 11C and R 12C , R 12C and R 13C , R 13C and R 14C , R 14C and R 34C , R 34C and R 33C , R 33C and R 32C , R 32C and R 31C , R 31C and R 41C , R 41C And R 42C , R 42C and R 43C , R 43C and R 44C , R 44C and R 24C , R 24C and R 23C , R 23C and R 22C , R 22C and R 21C , and R 21C and R 11C are respectively They may be bonded to form a ring together with the carbon atoms to which they are bonded.
  • Ring R 1A represents a benzene ring, a pyridine ring or a diazabenzene ring.
  • E 21A , E 22A , E 23A and E 24A each independently represent a nitrogen atom or a carbon atom. When there are a plurality of E 21A , E 22A , E 23A and E 24A , they may be the same or different.
  • R 21A When E 21A is a nitrogen atom, R 21A does not exist.
  • E 22A When E 22A is a nitrogen atom, R 22A does not exist.
  • E 23A When E 23A is a nitrogen atom, R 23A does not exist.
  • E 24A When E 24A is a nitrogen atom, R 24A does not exist.
  • R 21A , R 22A , R 23A and R 24A are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a halogen atom, and these groups optionally have a substituent.
  • R 21A , R 22A , R 23A and R 24A When there are a plurality of R 21A , R 22A , R 23A and R 24A , they may be the same or different.
  • R 21A and R 22A , R 22A and R 23A , R 23A and R 24A , and R 11A and R 21A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the phosphorescent compound represented by the formula (1-A) is a phosphorescent compound represented by the formula (1-A1), a phosphorescent compound represented by the formula (1-A2), or The composition according to [7], which is a phosphorescent compound represented by the formula (1-A3).
  • a light emitting device comprising the composition according to any one of [1] to [8].
  • the present invention it is possible to provide a composition useful for producing a light emitting device having excellent luminous efficiency. Moreover, according to this invention, the light emitting element containing this composition can be provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • polymer compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • Structuretural unit means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl
  • a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom or the like (for example, a trifluoromethyl group, a pentafluoroethyl group,
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent, such as a phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups
  • crosslinking group is a group capable of forming a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • * 1 represents a binding position.
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • composition of the present invention is a composition containing a compound represented by the formula (C-1) and a phosphorescent compound represented by the formula (1).
  • the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1) may each contain only one kind, and two or more kinds may be contained. You may contain.
  • the molecular weight of the compound represented by the formula (C-1) is preferably 2 ⁇ 10 2 to 5 ⁇ 10 4 , more preferably 2 ⁇ 10 2 to 5 ⁇ 10 3 , still more preferably 3 ⁇ 10 2 to 3 ⁇ 10 3 , particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the number of carbon atoms of the aromatic hydrocarbon ring represented by ring R 1C , ring R 2C , ring R 3C and ring R 4C is usually 6 to 60, not including the number of carbon atoms of the substituent, preferably It is 6 to 30, more preferably 6 to 18.
  • Examples of the aromatic hydrocarbon ring represented by ring R 1C , ring R 2C , ring R 3C, and ring R 4C include benzene ring, naphthalene ring, anthracene ring, indene ring, fluorene ring, spirobifluorene ring, and phenanthrene.
  • Ring, dihydrophenanthrene ring, pyrene ring, chrysene ring and triphenylene ring preferably benzene ring, naphthalene ring, anthracene ring, fluorene ring, spirobifluorene ring, phenanthrene ring or dihydrophenanthrene ring, more preferably A benzene ring, a naphthalene ring, a fluorene ring, or a spirobifluorene ring, more preferably a benzene ring, which may have a substituent.
  • the number of carbon atoms of the aromatic heterocyclic ring represented by ring R 1C , ring R 2C , ring R 3C and ring R 4C is usually 2 to 60, not including the number of carbon atoms of the substituent, It is 3 to 30, more preferably 4 to 15.
  • Examples of the aromatic heterocycle represented by ring R 1C , ring R 2C , ring R 3C and ring R 4C include, for example, pyrrole ring, diazole ring, triazole ring, furan ring, thiophene ring, oxadiazole ring, thiadiazole ring , Pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, diazanaphthalene ring, triazanaphthalene ring, azaanthracene ring, diazaanthracene ring, triazaanthracene ring, azaphenanthrene ring, diazaphenanthrene ring, triazaphenanthrene Ring, dibenzofuran ring, dibenzothiophene ring, dibenzosilole ring, dibenzophosphole ring, carbazole ring, azacarbazole ring, diazacarbazole ring
  • Emitting device containing the composition of the present invention (hereinafter, referred to as "light emitting device of the present invention”.)
  • Luminous Since the efficiency more excellent, the ring R 1C, the ring R 2C, among the rings R 3C and ring R 4C It is preferable that at least one is an aromatic hydrocarbon ring, and it is more preferable that at least two of ring R 1C , ring R 2C , ring R 3C and ring R 4C are aromatic hydrocarbon rings, and ring R 1C More preferably, all of ring R 2C , ring R 3C and ring R 4C are aromatic hydrocarbon rings, and all of ring R 1C , ring R 2C , ring R 3C and ring R 4C are benzene rings. Are particularly preferred, and these rings may have a substituent.
  • the substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or an aryloxy group.
  • it is a monovalent
  • the number of carbon atoms of the aryl group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have is usually 6 to 60, not including the number of carbon atoms of the substituent. Yes, preferably 6 to 40, more preferably 6 to 25.
  • Examples of the aryl group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have include, for example, a benzene ring, a naphthalene ring, an anthracene ring, an indene ring, a fluorene ring, and a spirobi A group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from a fluorene ring, a phenanthrene ring, a dihydrophenanthrene ring, a pyrene ring, a chrysene ring, a triphenylene ring or a ring obtained by condensing these rings;
  • the number of carbon atoms of the monovalent heterocyclic group that is a substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have is usually not including the number of carbon atoms of the substituent. It is 2 to 60, preferably 3 to 30, and more preferably 3 to 15.
  • Examples of the monovalent heterocyclic group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have include, for example, a pyrrole ring, a diazole ring, a triazole ring, a furan ring, and a thiophene.
  • Sazine ring, phenothiazine ring, di A group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a hydroacridine ring or dihydrophenazine ring, and more preferably a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a phenoxazine ring , A phenothiazine ring, a dihydroacridine ring or a dihydrophenazine ring in which one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting the ring is removed, particularly preferably a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring Or a group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a dihydroacridine
  • the amino group may have an aryl group or a monovalent heterocyclic group.
  • an aryl group is more preferable, and these groups may further have a substituent.
  • Examples and preferred ranges of the aryl group which is a substituent of the amino group include examples and preferred ranges of the aryl group which is a substituent which the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C may have. Is the same.
  • Examples and preferred ranges of the monovalent heterocyclic group that is a substituent that the amino group has are monovalent that are substituents that the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C may have.
  • the examples are the same as the examples and preferred ranges of the heterocyclic group.
  • the substituents that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have further include an alkyl group, a cycloalkyl group, an alkoxy group, and a cycloalkoxy group.
  • An aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferred, and an alkyl group or an aryl group is preferred.
  • alkyl groups, and these groups may further have a substituent, but these groups preferably have no further substituent.
  • Ring R 1C , Ring R 2C , Ring R 3C and Ring R 4C may be further substituted with an aryl group, a monovalent heterocyclic group and a substituted amino group which may be further substituted.
  • Examples and preferred ranges are examples of an aryl group, a monovalent heterocyclic group and a substituted amino group, which are substituents that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have, respectively. It is the same as a preferable range.
  • R C is preferably a carbon atom, a silicon atom or a germanium atom, more preferably a carbon atom or a silicon atom, and even more preferably a carbon atom, because the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • At least one of the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C preferably has an aryl group or a monovalent heterocyclic group. More preferably, at least one of ring R 1C , ring R 2C , ring R 3C and ring R 4C has a group represented by formula (D-1), and these groups have a substituent. You may do it.
  • ring R 1C , ring R 2C , ring R 3C and ring R 4C has an aryl group or a monovalent heterocyclic group
  • ring R 1C , ring R 2C , ring R 3C and ring R 4C The total number of aryl groups and monovalent heterocyclic groups possessed by is preferably 1 to 5, more preferably 1 to 3, still more preferably 1 or 2, particularly preferably. One.
  • ring R 1C , ring R 2C , ring R 3C and ring R 4C has a group represented by formula (D-1)
  • ring R 1C , ring R 2C , ring R 3C and ring R 4C has a group represented by formula (D-1)
  • the total number of groups represented by the formula (D-1) possessed by R 4C is preferably 1 to 5, more preferably 1 to 3, and further preferably 1 or 2. Particularly preferred is one.
  • Ring RD is preferably an aromatic hydrocarbon ring and more preferably a benzene ring because the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • X D1 and X D2 are preferably a single bond, an oxygen atom, a sulfur atom, or a group represented by —C (R XD2 ) 2 — because the luminous efficiency of the light emitting device of the present invention is more excellent.
  • they are a single bond, an oxygen atom, or a sulfur atom, More preferably, a single bond or. It is a sulfur atom.
  • At least one of X D1 and X D2 is preferably a single bond, and more preferably X D2 is a single bond.
  • R XD1 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group. These groups may have a substituent.
  • R XD2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and these groups optionally have a substituent. .
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R XD1 and R XD2 are the ring R 1C , ring R 2C , ring R 3C and ring R 4C , respectively.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which may be substituents, and the preferred range are the same.
  • R XD2 groups represented by —C (R XD2 ) 2 — represented by X D1 and X D2 is preferably both an alkyl group or a cycloalkyl group, both an aryl group, Is a monovalent heterocyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably both are an aryl group or one is an alkyl group or a cycloalkyl group.
  • An alkyl group and the other is an aryl group, more preferably both are aryl groups, and these groups may have a substituent.
  • R XD2 s are preferably bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the group represented by —C (R XD2 ) 2 — is preferably a group represented by the formula (Y-A1) -formula (Y-A5), more preferably Is a group represented by the formula (Y-A4), and these groups may have a substituent.
  • R XD1 and R XD2 may have further include the substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have. Examples of the substituents that may be present and the preferred ranges are the same.
  • E 1D , E 2D and E 3D are preferably carbon atoms.
  • R 1D , R 2D and R 3D are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and are a hydrogen atom, an alkyl group or an aryl group. Is more preferable, and a hydrogen atom is more preferable, and these groups may further have a substituent.
  • Examples of aryl groups, monovalent heterocyclic groups, and substituted amino groups represented by R 1D , R 2D, and R 3D and preferred ranges thereof include ring R 1C , ring R 2C , ring R 3C, and ring R 4C , respectively.
  • R 1D and R 2D , R 2D and R 3D , R 1D and R XD1 , R 1D and R XD2 , R XD1 and the substituent R DD may have, and R XD2 and R DD have
  • the substituents which may be bonded may be bonded to each other to form a ring together with the carbon atoms to which they are bonded, but it is preferable not to form a ring.
  • the group represented by the formula (D-1) is preferably a group represented by the formula (D-2) because the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • E 4D , E 5D , E 6D and E 7D are preferably carbon atoms.
  • Examples and preferred ranges of R 4D , R 5D , R 6D and R 7D are the same as examples and preferred ranges of R 1D , R 2D and R 3D .
  • Examples and preferred ranges of substituents that R 4D , R 5D , R 6D and R 7D may have are examples and preferred ranges of substituents which R 1D , R 2D and R 3D may have. The same.
  • R 4D and R 5D , R 5D and R 6D , R 6D and R 7D may be bonded to each other to form a ring together with the carbon atoms to which they are bonded, but it is preferable that no ring is formed.
  • the compound represented by the formula (C-1) is preferably a compound represented by the formula (C-2) since the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • Ring R 1C ′, ring R 2C ′, ring R 3C ′ and ring R 4C ′ are preferably benzene rings.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are hydrogen It is preferably an atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a hydrogen atom, an aryl group or a monovalent heterocyclic group, a hydrogen atom or
  • the group represented by the formula (D-1) is more preferable, and these groups may further have a substituent.
  • At least one is preferably an aryl group or a monovalent heterocyclic group, more preferably a group represented by the formula (D-1), and these groups further have a substituent. Also good.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group are aryl which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have respectively. The same as the examples and preferred ranges of the group, monovalent heterocyclic group and substituted amino group.
  • R 11C, R 12C, R 13C , R 14C, R 21C, R 22C, R 23C, R 24C, R 31C, R 32C, R 33C, R 34C, R 41C, R 42C, R 43C and R 44C has Examples and preferred ranges of the substituent which may be present include examples of the substituent which the ring R 1C , ring R 2C , ring R 3C and ring R 4C may further have and It is the same as a preferable range.
  • the total number of 34C , R 41C , R 42C , R 43C and R 44C is an aryl group or a monovalent heterocyclic group is preferably 1 to 5, more preferably 1 to 3, The number is preferably 1 or 2, particularly preferably 1.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are preferably 1 to 5, more preferably 1 to 3 in total, which is a group represented by the formula (D-1). More preferably, it is 1 or 2, particularly preferably 1.
  • R 11C , R 12C , R 14C , R 21C , R 22C , R 24C , R 31C , R 32C , R 34C , R 41C , R 42C and R it is preferred that at least one of 44C is an aryl group or a monovalent heterocyclic group, R 11C, R 12C, R 21C, R 22C, R 31C, at least one of the R 32C, R 41C and R 42C Is more preferably an aryl group or a monovalent heterocyclic group, and more preferably at least one of R 11C , R 12C , R 21C
  • R 11C , R 12C , R 14C , R 21C , R 22C , R 24C , R 31C , R 32C , R 34C , R 41C , R 42C And R 44C is preferably a group represented by the formula (D-1), and R 11C , R 12C , R 21C , R 22C , R 31C , R 32C , R 41C and R 42C More preferably, at least one of them is a group represented by the formula (D-1), and at least one of R 11C , R 12C , R 21C and R 22C is represented by the formula (D-1). more
  • R 11C and R 12C , R 12C and R 13C , R 13C and R 14C , R 14C and R 34C , R 34C and R 33C , R 33C and R 32C , R 32C and R 31C , R 31C and R 41C , R 41C And R 42C , R 42C and R 43C , R 43C and R 44C , R 44C and R 24C , R 24C and R 23C , R 23C and R 22C , R 22C and R 21C , and R 21C and R 11C are respectively They may be bonded to form a ring together with the carbon atoms to which they are bonded, but it is preferable not to form a ring.
  • the compound represented by the formula (C-2) is preferably a compound represented by the formula (C-3) since the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • Examples of the compound represented by the formula (C-1) include compounds represented by the formula (C-101) to the formula (C-137).
  • X represents an oxygen atom or a sulfur atom. When two or more X exists, they may be the same or different. ]
  • X is preferably a sulfur atom.
  • the compound represented by the formula (C-1) is, for example, Aldrich, Luminescence Technology Corp. Is available from Other examples of the compound represented by the formula (C-1) include, for example, International Publication No. 2014/023388, International Publication No. 2013/0445408, International Publication No. 2013/045410, International Publication No. 2013/045411, International Publication No. 2012. / 048820, International Publication No. 2012/048819, International Publication No. 2011/006574, “Organic-Electronics” vol. 14, 902-908 (2013) ”.
  • the host material has at least one function selected from:
  • the lowest excited triplet state (T 1 ) of the compound represented by the formula (C-1) is more excellent in luminous efficiency of the light emitting device of the present invention. It is preferable that the energy level is equal to or higher than T 1 of the phosphorescent compound, and more preferable is a higher energy level.
  • the compound represented by the formula (C-1) can dissolve the phosphorescent compound represented by the formula (1) because the light emitting device of the present invention can be produced by a solution coating process. It is preferable that it is soluble in a solvent that can be used.
  • the phosphorescent compound represented by the formula (1) is usually a metal complex that exhibits phosphorescence at room temperature (25 ° C.), and preferably a metal complex that emits light from a triplet excited state at room temperature. .
  • M 1 is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • n 1 is preferably 2 or 3, and more preferably 3.
  • M 1 is a palladium atom or a platinum atom
  • n 1 is preferably 2.
  • E 1 and E 2 are preferably carbon atoms.
  • Ring R 1A is a triazole ring
  • E 11A and E 12A is a nitrogen atom, or a triazole ring are preferred
  • E 11A and E 13A is a nitrogen atom,
  • E 11A and E 13A is more preferably a triazole ring is a nitrogen atom .
  • R 11A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and is an alkyl group or an aryl group Are more preferable, and an aryl group is more preferable, and these groups may have a substituent.
  • R 11A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group, a cycloalkyl group Or an aryl group, more preferably an alkyl group or an aryl group, and these groups optionally have a substituent.
  • R 12A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and is an alkyl group or an aryl group Are more preferable, and an aryl group is more preferable, and these groups may have a substituent.
  • R 12A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, a cycloalkyl group Or an aryl group, more preferably an alkyl group or an aryl group, and these groups optionally have a substituent.
  • R 13A is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and is an alkyl group or an aryl group Are more preferable, and an aryl group is more preferable, and these groups may have a substituent.
  • R 13A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, a cycloalkyl group Or an aryl group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and particularly preferably an alkyl group, and these groups optionally have a substituent.
  • Ring R 1A is preferably a triazole ring in which E 11A and E 12A are nitrogen atoms and R 11A is present but R 12A is not present, or E 11A and E 13A are nitrogen atoms, and R A triazole ring in which 11A is present and R 13A is not present, more preferably a triazole ring in which E 11A and E 13A are nitrogen atoms, and R 11A is present and R 13A is absent.
  • Two of R 11A , R 12A and R 13A are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group. This group may have a substituent.
  • a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group or a pyrenyl group is preferable, and a phenyl group, a naphthyl group or A fluorenyl group is more preferred, a phenyl group is still more preferred, and these groups may have a substituent.
  • Examples of the monovalent heterocyclic group represented by R 11A , R 12A and R 13A include pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, azacarbazolyl group A diazacarbazolyl group, a phenoxazinyl group or a phenothiazinyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, a dibenzofuranyl group, a carbazolyl group, an azacarbazolyl group or a diazacarbazolyl group is more preferred, a pyridyl group, A pyrimidinyl group or a triazinyl group is more preferable, and these groups may have a substituent.
  • the substituent of the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups are further substituted. It may have a group.
  • Examples and preferred ranges of the aryl group which is a substituent of the amino group are the same as examples and preferred ranges of the aryl group represented by R 11A , R 12A and R 13A .
  • Examples and preferred ranges of monovalent heterocyclic groups which are substituents of the amino group are the same as examples and preferred ranges of monovalent heterocyclic groups represented by R 11A , R 12A and R 13A .
  • R 11A , R 12A and R 13A may have is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group or a substituted amino group,
  • An alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferred, an alkyl group, a cycloalkyl group or an aryl group is more preferred, an alkyl group is particularly preferred, and these groups are further substituted groups.
  • These groups may preferably have no substituent.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group which may be substituted by R 11A , R 12A and R 13A are ring R 1C , ring R 2C , ring Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that R 3C and ring R 4C may have, are the same as the preferred range.
  • the aryl group, monovalent heterocyclic group or substituted amino group represented by R 11A , R 12A and R 13A is preferably a compound represented by formula (DA) or (DB) or a group represented by formula (DC), more preferably a group represented by formula (DA) or formula (DC), and still more preferably a group represented by formula (D A group represented by -C).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • a plurality of GDAs may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. Good.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 represents an integer of 0 or more.
  • Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • m DA1, m DA2, m DA3 , m DA4, m DA5, m DA6 and m DA7 is usually 10 or less integer is preferably 5 or less integer, more preferably 2 or less an integer, further Preferably 0 or 1.
  • m DA2, m DA3, m DA4 , m DA5, m DA6 and m DA7 is, it is preferably the same integer, m DA1, m DA2, m DA3, m DA4, m DA5, m DA6 and m DA7, More preferably, they are the same integer.
  • GDA is preferably an aromatic hydrocarbon group or a heterocyclic group, more preferably hydrogen bonded directly to a carbon atom or a nitrogen atom constituting the ring from a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring or a carbazole ring. It is a group formed by removing three atoms, and these groups may have a substituent.
  • the substituent that GDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, A cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but these groups further have a substituent. It is preferable not to have it.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-15), more preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-14) And more preferably a group represented by the formula (GDA-11) or the formula (GDA-14), and particularly a group represented by the formula (GDA-11).
  • *** is, Ar DA3 in the formula (D-A), Ar DA3 in the formula (D-B), Ar DA5 in the formula (D-B), or, the bond between Ar DA7 in the formula (D-B) To express.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazolediyl group, and more preferably represented by the formulas (ArDA-1) to (ArDA-1)-( ArDA-5), more preferably a group represented by formula (ArDA-1) to formula (ArDA-3), particularly preferably a group represented by formula (ArDA-1) And these groups may have a substituent.
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, The group may have a substituent.
  • Examples of the substituents that Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 , Ar DA7 and R DB may have and preferred ranges thereof may be the substituents that G DA may have The same as the examples and preferred ranges.
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ formula (TDA-3), more preferably a group represented by the formula (TDA-1).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (DA) is preferably a group represented by the formula (D-A1) to the formula (D-A5), more preferably the formula (D-A1), the formula (D- A4) or a group represented by formula (D-A5), more preferably a group represented by formula (D-A1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 , R p2 and R p4 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (DB) is preferably a group represented by the formula (D-B1) to the formula (D-B6), more preferably the formula (D-B1) to the formula (D- B3) or a group represented by formula (D-B5), more preferably a group represented by formula (D-B1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 , R p2 and R p4 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 and np2 may be the same or different.
  • the group represented by the formula (DC) is preferably a group represented by the formula (D-C1) to the formula (D-C4), more preferably the formula (D-C1) or the formula (D-C A group represented by C2), more preferably a group represented by the formula (D-C1).
  • R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np1 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • np2 is preferably 0 or 1
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2
  • np5 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • np6 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the alkyl group or cycloalkyl group represented by R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, 2-ethylhexyl group, cyclohexyl group or tert-octyl group.
  • the alkoxy group or cycloalkoxy group represented by R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methoxy group, a 2-ethylhexyloxy group or a cyclohexyloxy group.
  • R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and more An alkyl group which may have a substituent is preferable, and a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group is more preferable.
  • At least one selected from the group consisting of R 11A , R 12A and R 13A has an alkyl group which may have a substituent and a substituent.
  • the alkyl group which may have a substituent, or the formula (D-A1), the formula (D-A4), the formula (D-A5), the formula (D-B1) to the formula (D-B3) or a group represented by formula (D-C1) to formula (D-C4) is more preferable, and an alkyl group which may have a substituent, or a group represented by formula (D-C1) ) Or a group represented by the formula (D-C2).
  • At least one selected from the group consisting of R 11A , R 12A and R 13A may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 11A may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a monovalent which may have a substituent. It is preferably a heterocyclic group, more preferably R 11A is an alkyl group which may have a substituent or an aryl group which may have a substituent, and R 11A has a substituent. More preferably, it may be an aryl group.
  • R 11A and R 12A , R 12A and R 13A , and ring R 2 may have.
  • the substituent and R 11A are preferably bonded to each other and do not form a ring together with the atoms to which they are bonded.
  • Ring R 2 is preferably a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle More preferably, it is a ring, more preferably a 6-membered aromatic hydrocarbon ring, and these rings may have a substituent.
  • E 2 is preferably a carbon atom.
  • Examples of the ring R 2 include a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyridine ring, a diazabenzene ring and a triazine ring, and a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a diazabenzene ring.
  • a benzene ring, a pyridine ring or a diazabenzene ring is more preferable, a benzene ring is more preferable, and these rings may have a substituent.
  • the substituent that the ring R 2 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group, or a fluorine atom. More preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably an alkyl group, or a group represented by the formula (DA), (DB) or A group represented by (DC), particularly preferably an alkyl group or a group represented by the formula (DA), and these groups may further have a substituent. .
  • Examples of aryl group, monovalent heterocyclic group and substituted amino group which are substituents which ring R 2 may have are aryl groups represented by R 11A , R 12A and R 13A , respectively.
  • Examples of the monovalent heterocyclic group and substituted amino group are the same as the preferred range.
  • Examples and preferred ranges of the substituent that the substituent which the ring R 2 may have may further have examples of the substituent which R 11A , R 12A and R 13A may have and preferred Same as range.
  • Anionic bidentate ligand represented by A 1 -G 1 -A 2 examples include a ligand represented by the following formula. . However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
  • R L1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or a halogen atom, and these groups optionally have a substituent.
  • a plurality of R L1 may be the same or different.
  • R L2 represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a halogen atom, and these groups optionally have a substituent.
  • R L1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a fluorine atom, more preferably a hydrogen atom or an alkyl group, and these groups optionally have a substituent.
  • R L2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • the phosphorescent compound represented by the formula (1) is preferably a phosphorescent compound represented by the formula (1-A) since the light emitting efficiency of the light emitting device of the present invention is more excellent.
  • ring R 2A is a pyridine ring
  • a pyridine ring in which E 21A is a nitrogen atom a pyridine ring in which E 22A is a nitrogen atom, or a pyridine ring in which E 23A is a nitrogen atom is preferable, and E 22A is a nitrogen atom.
  • Some pyridine rings are more preferred.
  • ring R 2A is a diazabenzene ring
  • a pyrimidine ring in which E 21A and E 23A are nitrogen atoms or a pyrimidine ring in which E 22A and E 24A are nitrogen atoms is preferable, and E 22A and E 24A are nitrogen atoms.
  • a pyrimidine ring is more preferred.
  • Ring R 2A is preferably a benzene ring.
  • R 21A , R 22A , R 23A and R 24A are a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom, Preferably, they are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and more preferably a hydrogen atom, an alkyl group, or formulas (DA) and (D -B) or a group represented by (DC), particularly preferably a hydrogen atom, an alkyl group, or a group represented by the formula (DA), particularly preferably a hydrogen atom or A group represented by the formula (DA), and these groups optionally have a substituent;
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 21A , R 22A , R 23A and R 24A are the substituents that the ring R 2 may have.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group are the same as the preferred range.
  • R 21A , R 22A , R 23A, and R 24A are those of the substituent that the ring R 2 may further have. Same as example and preferred range.
  • R 21A and R 22A , R 22A and R 23A , R 23A and R 24A , and R 11A and R 21A are preferably bonded to each other and do not form a ring with the atoms to which they are bonded.
  • the phosphorescent compound represented by the formula (1-A) is preferably phosphorescent compounds represented by the formulas (1-A1) to (1-A3), because the light-emitting element of the present invention is more excellent in luminous efficiency.
  • a luminescent compound more preferably a phosphorescent compound represented by formula (1-A1) or (1-A3), and more preferably a phosphorescent compound represented by formula (1-A3). It is a sex compound.
  • Examples of the phosphorescent compound represented by the formula (1) include a phosphorescent compound represented by the following formula.
  • the phosphorescent compound represented by the formula (1) is, for example, Aldrich, Luminescence Technology Corp. Available from the American Dye Source.
  • Other examples of the phosphorescent compound represented by the formula (1) include, for example, International Publication No. 2006/121811, International Publication No. 2007/097153, Japanese Unexamined Patent Publication No. 2013-048190, Japanese Unexamined Patent Publication No. 2015-174824. It can be synthesized according to the method described in the publication.
  • the content of the phosphorescent compound represented by the formula (1) is such that the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1)
  • the total is 100 parts by mass, it is usually 0.01 to 99 parts by mass, and the light emission efficiency of the light emitting device of the present invention is more excellent. Therefore, 0.1 to 80 parts by mass is preferable. More preferably, it is 10 parts by weight, still more preferably 10-50 parts by weight, and particularly preferably 20-40 parts by weight.
  • the composition of the present invention further contains at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant, and a solvent. Also good.
  • the hole transport material, the hole injection material, the electron transport material, and the electron injection material are different from the compound represented by the formula (C-1), and the light emitting material is represented by the formula (C-1).
  • the compound is different from the phosphorescent compound represented by the formula (1).
  • [ink] A composition containing a compound represented by the formula (C-1), a phosphorescent compound represented by the formula (1), and a solvent (hereinafter referred to as “ink”) is an inkjet printing method, It is suitable for manufacturing a light emitting element using a printing method such as a nozzle printing method.
  • the viscosity of the ink may be adjusted depending on the type of printing method, but is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent examples include chlorine solvents, ether solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, ketone solvents, ester solvents, polyhydric alcohol solvents, alcohol solvents, sulfoxide solvents, Examples include amide solvents.
  • the amount of the solvent is usually 1000 to 100,000 when the total of the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1) is 100 parts by mass. Part by mass.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound having a crosslinking group.
  • the polymer compound include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which electron accepting sites such as fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone are bonded.
  • the compounding amount of the hole transport material is 100 parts by mass of the total of the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1). In this case, it is usually 1 to 400 parts by mass.
  • a hole transport material may be used individually by 1 type, or may use 2 or more types together.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • Low molecular weight compounds include, for example, metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone.
  • Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transporting material is 100 parts by mass when the total of the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1) is 100 parts by mass. Usually, it is 1 to 400 parts by mass.
  • An electron transport material may be used individually by 1 type, or may use 2 or more types together.
  • the hole injection material and the electron injection material are classified into a low molecular compound and a high molecular compound, respectively.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • the low molecular weight compound include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • the polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain.
  • a functional polymer A functional polymer.
  • the compounding amounts of the hole injecting material and the electron injecting material are each the sum of the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1). Is usually 1 to 400 parts by mass. Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the type of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion. Doping ions may be used alone or in combination of two or more.
  • Luminescent materials are classified into low molecular compounds and high molecular compounds.
  • the light emitting material may have a crosslinking group.
  • the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and triplet light-emitting complexes having iridium, platinum, or europium as a central metal.
  • Examples of the polymer compound include arylene groups such as a phenylene group, naphthalenediyl group, fluorenediyl group, phenanthrene diyl group, dihydrophenanthrene diyl group, anthracenediyl group, and pyrenediyl group; two hydrogen atoms from an aromatic amine.
  • Examples thereof include a polymer compound containing an aromatic amine residue such as a group to be removed; and a divalent heterocyclic group such as a carbazolediyl group, a phenoxazinediyl group and a phenothiazinediyl group.
  • Examples of the triplet luminescent complex include the metal complexes shown below.
  • the content of the light emitting material is such that the total of the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1) is 100 parts by mass. Usually, it is 0.1 to 400 parts by mass.
  • a luminescent material may be used individually by 1 type, or may use 2 or more types together.
  • the antioxidant may be any compound that is soluble in the same solvent as the compound represented by formula (C-1) and the phosphorescent compound represented by formula (1) and does not inhibit light emission and charge transport. Examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the amount of antioxidant added is 100 parts by mass when the total of the compound represented by the formula (C-1) and the phosphorescent compound represented by the formula (1) is 100 parts by mass. Usually, it is 0.001 to 10 parts by mass.
  • Antioxidants may be used alone or in combination of two or more.
  • the membrane contains the composition of the present invention.
  • the film is suitable as a light emitting layer in a light emitting element.
  • the film is made of ink, for example, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method. , Flexographic printing, offset printing, ink jet printing, capillary coating, and nozzle coating.
  • the thickness of the film is usually 1 nm to 10 ⁇ m.
  • the light emitting device of the present invention is a light emitting device containing the composition of the present invention.
  • the electrode which consists of an anode and a cathode, for example, and the layer containing the composition of this invention provided between this electrode.
  • the layer containing the composition of the present invention is usually one or more layers selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer and an electron injection layer, It is a light emitting layer.
  • Each of these layers includes a light emitting material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material.
  • Each of these layers is the same as the above-described film production, in which a light-emitting material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material are dissolved in the above-described solvent and ink is prepared and used. It can be formed using a method.
  • the light emitting element has a light emitting layer between the anode and the cathode.
  • the light emitting device of the present invention preferably has at least one of a hole injection layer and a hole transport layer between the anode and the light emitting layer from the viewpoint of hole injection and hole transport. From the viewpoint of injection property and electron transport property, it is preferable to have at least one of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • the above-described hole transport material, electron transport material, light emitting material, hole injection layer and electron injection layer in addition to the composition of the present invention, the above-described hole transport material, electron transport material, light emitting material, positive Examples thereof include a hole injection material and an electron injection material.
  • the material of the hole transport layer, the material of the electron transport layer, and the material of the light emitting layer are used as solvents used in forming the layer adjacent to the hole transport layer, the electron transport layer, and the light emitting layer, respectively, in the production of the light emitting element.
  • the material When dissolved, the material preferably has a cross-linking group in order to avoid dissolution of the material in the solvent. After forming each layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer
  • a low molecular compound for example, vacuum deposition from powder
  • a method using film formation from a solution or a molten state may be used. The order, number and thickness of the layers to be laminated are adjusted in consideration of the light emission efficiency and the luminance life.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is preferably transparent or translucent.
  • the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • the planar anode and the cathode may be arranged so as to overlap each other.
  • a method of forming an anode or a cathode, or both electrodes in a pattern is a method.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like.
  • These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. .
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC.
  • the mobile phase was run at a flow rate of 1.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • the detector used was a UV-VIS detector (trade name: UV-8320GPC, manufactured by Tosoh Corporation).
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (trade name: INOVA300, JEOL RESONANCE, trade name: JNM-ECZ400S / L1, or Bruker, trade name: AVANCE600) manufactured by Agilent.
  • an NMR apparatus trade name: INOVA300, JEOL RESONANCE, trade name: JNM-ECZ400S / L1, or Bruker, trade name: AVANCE600
  • HPLC high performance liquid chromatography
  • SUMPAX ODS Z-CLUE manufactured by Sumika Chemical Analysis Center, inner diameter: 4.6 mm, length: 250 mm, particle size: 3 ⁇ m
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.64 g of the polymer compound HTL-1.
  • the high molecular compound HTL-1 had Mn of 3.5 ⁇ 10 4 and Mw of 2.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw materials for polymer compound HTL-1 is that the structural unit derived from compound M1, the structural unit derived from compound M2, and the structural unit derived from compound M3 are: A copolymer composed of a molar ratio of 40:10:50.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 6.02 g of a polymer compound HTL-2.
  • the high molecular compound HTL-2 had Mn of 3.8 ⁇ 10 4 and Mw of 4.5 ⁇ 10 5 .
  • the polymer compound HTL-2 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound M1, a structural unit derived from the compound M2, a structural unit derived from the compound M3, a metal
  • a structural unit derived from the complex RM1 is a copolymer having a molar ratio of 40: 10: 47: 3.
  • reaction mixture L5-1 ′ After making the inside of the reaction vessel a nitrogen gas atmosphere, Compound L5-1 (50 g) and thionyl chloride (100 mL) were added, and the mixture was stirred under reflux for 3 hours. The obtained reaction mixture was cooled to room temperature, and thionyl chloride was distilled off under reduced pressure to obtain a reaction mixture L5-1 ′.
  • the resulting reaction solution was cooled to room temperature and concentrated under reduced pressure, ethyl acetate (2 L) was added, and the mixture was washed with a 10 mass% aqueous sodium bicarbonate solution.
  • the obtained organic layer was dried over magnesium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained crude product was purified by silica gel column chromatography (mixed solvent of methanol and chloroform), crystallized using acetonitrile, and then dried under reduced pressure to obtain compound L5-3 (6 g). It was.
  • the HPLC area percentage value of Compound L5-3 was 99.1%.
  • the obtained organic layer was washed successively with ion-exchanged water, a 10% by mass aqueous sodium hydrogen carbonate solution and saturated brine.
  • the obtained organic layer was dried over sodium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained crude product was purified by silica gel column chromatography (mixed solvent of hexane and ethyl acetate), and then crystallized using a mixed solvent of N, N-dimethylformamide and water.
  • the obtained solid was dried under reduced pressure to obtain Compound L6-4 (70 g, white solid).
  • Compound L6-4 had an HPLC area percentage value of 99.2%.
  • the obtained residue L7-3-1 was washed with toluene and then dried under reduced pressure to obtain solid L7-3 ′ (24.5 g).
  • the aqueous layer was removed from the obtained filtrate L7-3-2, and the obtained organic layer was dried over magnesium sulfate and then filtered.
  • the obtained filtrate was concentrated under reduced pressure, and then crystallized with a mixed solvent of toluene and heptane.
  • the obtained solid was dried under reduced pressure to obtain a solid L7-3 ′′ (3.9 g).
  • the obtained solid L7-3 ′ and solid L7-3 ′′ were combined and crystallized using a mixed solvent of toluene and heptane.
  • the obtained solid was dried under reduced pressure to obtain Compound L7-3 (27.8 g, white solid).
  • the HPLC area percentage value of Compound L7-3 was 98.9%.
  • Compound HM-1 is purchased from Luminescence Technology. did.
  • Compound HM-5 was synthesized according to the method described in International Publication No. 2014/023388.
  • Compound HM-6 and Compound HM-7 were synthesized according to the method described in International Publication No. 2012/048820.
  • Compound HM-9 was synthesized according to the method described in International Publication No. 2013/045411.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-3a (13.5 g), compound HM-2b (8.9 g), toluene (404 mL), tetrakis (triphenylphosphine) palladium (0) (2.0 g) ) And a 20% by mass aqueous tetrabutylammonium hydroxide solution (166 g), and the mixture was stirred at 90 ° C. for 3 hours.
  • the resulting reaction solution was cooled to room temperature and then filtered through a filter with celite. The obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was dried over anhydrous sodium sulfate and filtered.
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and chloroform), further crystallized using a mixed solvent of toluene and methanol, and then dried at 50 ° C. under reduced pressure to give compound HM- 3 (10.5 g) was obtained.
  • Compound HM-3 had an HPLC area percentage value of 99.5% or more.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-4a (1.6 g), compound HM-4b (1.3 g), xylene (63 mL), palladium acetate (II) (22 mg), tri-tert-butyl Phosphonium tetrafluoroborate (63 mg) and sodium tert-butoxide (1.9 g) were added, and the mixture was stirred with heating under reflux for 54 hours.
  • the resulting reaction solution was cooled to room temperature and then filtered through a filter with silica gel and celite. The obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was dried over anhydrous sodium sulfate and filtered.
  • HM-4 (1.0 g) was obtained.
  • Compound HM-4 had an HPLC area percentage value of 99.5% or more.
  • the polymer compound ETL-1a had an Mn of 3.2 ⁇ 10 4 and an Mw of 6.0 ⁇ 10 4 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound ETL-1a is that the structural unit derived from the compound M4 and the structural unit derived from the compound M5 are composed in a molar ratio of 50:50. It is a copolymer.
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated at 180 ° C. for 60 minutes on a hot plate in a nitrogen gas atmosphere. A transport layer was formed.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm was formed on the light-emitting layer by a spin coating method. An electron transport layer was formed by heating at 130 ° C. for 10 minutes in a gas atmosphere.
  • EL light emission was observed by applying a voltage to the light emitting element D1.
  • Luminous efficiency [cd / A] at 200 cd / m 2 was measured.
  • the CIE chromaticity coordinate (x, y) at 200 cd / m 2 was (0.19, 0.41).
  • Example D2 Production and Evaluation of Light-Emitting Element D2
  • Example D1 except that "phosphorescent compound B2" was used instead of "phosphorescent compound B4" in (Formation of light-emitting layer), Example A light emitting device D2 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D2. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.16, 0.35).
  • Example D3 Production and Evaluation of Light-Emitting Element D3
  • Example D1 except that “phosphorescent compound B6” was used instead of “phosphorescent compound B4” in (Formation of light-emitting layer), Example A light emitting device D3 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D3. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.18, 0.36).
  • Example D1 Production and Evaluation of Light-Emitting Element CD1
  • Example D1 except that “phosphorescent compound B1” was used instead of “phosphorescent compound B4” in (Formation of light-emitting layer), Example A light emitting device CD1 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting device CD1. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.16, 0.35).
  • Table 1 shows the results of Examples D1 to D3 and Comparative Example CD1. The relative values of the light emission efficiency of the light emitting elements D1 to D3 when the light emission efficiency of the light emitting element CD1 is 1.0 are shown.
  • Example D4 Production and Evaluation of Light-Emitting Element D4
  • EL light emission was observed by applying a voltage to the light emitting element D4.
  • Luminous efficiency [cd / A] at 200 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.16, 0.36).
  • Example D5 Fabrication and Evaluation of Light-Emitting Element D5
  • Example D4 except that “Compound HM-4” was used instead of “Compound HM-2” in (Formation of Light-Emitting Layer), Example D4 and Similarly, a light-emitting element D5 was manufactured. EL light emission was observed by applying a voltage to the light emitting element D5. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.17, 0.37).
  • Example D6 Production and Evaluation of Light-Emitting Element D6
  • Example D4 except that "phosphorescent compound B4" was used instead of "phosphorescent compound B2" in (Formation of light-emitting layer), Example A light emitting device D6 was fabricated in the same manner as D4. EL light emission was observed by applying a voltage to the light emitting element D6. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.19, 0.39).
  • Example D7 Production and Evaluation of Light-Emitting Element D7
  • compound HM-3, compound HM-1 and phosphorescent compound B4 37.5 mass% / 37.5 mass% / 25 mass%)
  • a light emitting device D7 was produced in the same manner as in Example D4.
  • EL light emission was observed by applying a voltage to the light emitting element D7.
  • Luminous efficiency [cd / A] at 200 cd / m 2 was measured.
  • the CIE chromaticity coordinate (x, y) at 200 cd / m 2 was (0.17, 0.34).
  • Example D8 Production and Evaluation of Light-Emitting Element D8
  • Example D4 except that “phosphorescent compound B6” was used instead of “phosphorescent compound B2” in (Formation of light-emitting layer), Example A light emitting device D8 was produced in the same manner as D4. EL light emission was observed by applying a voltage to the light emitting element D8. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.19, 0.38).
  • Example D4 Production and Evaluation of Light-Emitting Element CD2
  • Example D4 except that “phosphorescent compound B1” was used instead of “phosphorescent compound B2” in (Formation of light-emitting layer), Example A light emitting device CD2 was fabricated in the same manner as D4. EL light emission was observed by applying a voltage to the light emitting device CD2. Luminous efficiency [cd / A] at 200 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 200 cd / m 2 were (0.16, 0.35).
  • Table 2 shows the results of Examples D4 to D8 and Comparative Example CD2. The relative values of the light emission efficiency of the light emitting elements D4 to D8 when the light emission efficiency of the light emitting element CD2 is 1.0 are shown.
  • Example D9 Production and Evaluation of Light-Emitting Element D9
  • Example D1 except that “Compound HM-4” was used instead of “Compound HM-3” in (Formation of light-emitting layer), Example D1 Similarly, a light-emitting element D9 was manufactured. EL light emission was observed by applying a voltage to the light emitting element D9. The light emission efficiency [cd / A] at 1000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.19, 0.41).
  • Example D10 Production and Evaluation of Light-Emitting Element D10
  • a light emitting device D10 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D10. The light emission efficiency [cd / A] at 1000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.19, 0.39).
  • Example D11 Production and Evaluation of Light-Emitting Element D11
  • a light emitting device D11 was manufactured in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D11. The light emission efficiency [cd / A] at 1000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.16, 0.35).
  • Example D12 Production and Evaluation of Light-Emitting Element D12
  • a light emitting device D12 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D12. The light emission efficiency [cd / A] at 1000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.19, 0.39).
  • a light emitting device CD3 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting device CD3. The light emission efficiency [cd / A] at 1000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.17, 0.38).
  • a light emitting device CD4 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting device CD4. The light emission efficiency [cd / A] at 1000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 1000 cd / m 2 were (0.20, 0.45).
  • Table 3 shows the results of Examples D9 to D12 and Comparative Examples CD3 to CD4. The relative values of the light emission efficiency of the light emitting elements D9 to D12 and CD4 when the light emission efficiency of the light emitting element CD3 is 1.00 are shown.
  • Example D13 Fabrication and evaluation of light-emitting element D13 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-2 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm is formed on the hole injection layer by spin coating, and heated in a nitrogen gas atmosphere on a hot plate at 180 ° C. for 60 minutes to form a second film. The light emitting layer was formed.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • EL light emission was observed by applying a voltage to the light emitting element D13.
  • the luminous efficiency [cd / A] at 400 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 400 cd / m 2 were (0.41, 0.46).
  • Example D13 Fabrication and Evaluation of Light-Emitting Element CD5
  • “Compound HM-1” was used instead of “Compound HM-2” in (Formation of first light-emitting layer).
  • a light emitting device CD5 was produced in the same manner as in Example D13.
  • EL light emission was observed by applying a voltage to the light emitting device CD5.
  • the luminous efficiency [cd / A] at 400 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 400 cd / m 2 were (0.40, 0.44).
  • Table 4 shows the results of Example D13 and Comparative Example CD5. The relative value of the light emission efficiency of the light emitting element D13 when the light emission efficiency of the light emitting element CD5 is 1.00 is shown.
  • Example D14 Fabrication and Evaluation of Light-Emitting Element D14
  • EL light emission was observed by applying a voltage to the light emitting element D14.
  • the luminous efficiency [cd / A] at 10,000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 10,000 cd / m 2 were (0.45, 0.46).
  • Example D15 Fabrication and Evaluation of Light-Emitting Element D15
  • Example D14 except that “Compound HM-2” was used in place of “Compound HM-3” in (Formation of first light-emitting layer).
  • a light emitting device D15 was produced in the same manner as in Example D14.
  • EL light emission was observed by applying a voltage to the light emitting element D15.
  • the luminous efficiency [cd / A] at 10,000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 10,000 cd / m 2 were (0.47, 0.45).
  • Example D16 Fabrication and Evaluation of Light-Emitting Element D16
  • Example D14 except that "Compound HM-8" was used instead of "Compound HM-3" in (Formation of first light-emitting layer).
  • a light emitting device D16 was produced in the same manner as in Example D14.
  • EL light emission was observed by applying a voltage to the light emitting element D16.
  • the luminous efficiency [cd / A] at 10,000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 10,000 cd / m 2 were (0.48, 0.45).
  • Example D17 Fabrication and evaluation of light-emitting element D17
  • Example D14 except that "Compound HM-5" was used instead of "Compound HM-3" in (Formation of first light-emitting layer), this was carried out.
  • a light emitting device D17 was produced in the same manner as in Example D14.
  • EL light emission was observed by applying a voltage to the light emitting element D17.
  • the luminous efficiency [cd / A] at 10,000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 10,000 cd / m 2 were (0.43, 0.46).
  • Example D14 Fabrication and Evaluation of Light-Emitting Element CD6
  • “Compound HM-1” was used instead of “Compound HM-3” in (Formation of first light-emitting layer).
  • a light emitting device CD6 was produced in the same manner as in Example D14.
  • EL light emission was observed by applying a voltage to the light emitting device CD6.
  • the luminous efficiency [cd / A] at 10,000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 10,000 cd / m 2 were (0.48, 0.45).
  • Example D13 Fabrication and Evaluation of Light-Emitting Element CD7
  • EL light emission was observed by applying a voltage to the light emitting device CD7.
  • the luminous efficiency [cd / A] at 10,000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 10,000 cd / m 2 were (0.47, 0.46).
  • Table 5 shows the results of Examples D14 to D17 and Comparative Examples CD6 to CD7. The relative values of the light emission efficiency of the light emitting elements D14 to D17 and CD7 when the light emission efficiency of the light emitting element CD6 is 1.00 are shown.
  • Example D18 Production and Evaluation of Light-Emitting Element D18
  • phosphorescent compound B2 phosphorescent compound B2
  • phosphorescent compound G2 phosphorescent compound R1 (compound HM-2 / phosphorescent compound B2 / phosphorescent compound G2)”
  • Table 6 shows the results of Example D18 and Comparative Example CD8. The relative value of the light emission efficiency of the light emitting element D18 when the light emission efficiency of the light emitting element CD8 is 1.00 is shown.
  • Example D19 Production and Evaluation of Light-Emitting Element D19
  • a light emitting device D19 was produced in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D19. The luminous efficiency [cd / A] at 5000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 5000 cd / m 2 were (0.20, 0.44).
  • Example D20 Fabrication and Evaluation of Light-Emitting Element D20 Example D19 was the same as Example D19 except that “Compound HM-2” was used instead of “Compound HM-3” in (Formation of light-emitting layer). Similarly, a light-emitting element D20 was manufactured. EL light emission was observed by applying a voltage to the light emitting element D20. The luminous efficiency [cd / A] at 5000 cd / m 2 was measured. The CIE chromaticity coordinates (x, y) at 5000 cd / m 2 were (0.21, 0.46).
  • Example D21 Production and Evaluation of Light-Emitting Element D21
  • Example D19 was the same as Example D19 except that “Compound HM-8” was used instead of “Compound HM-3” in (Formation of light-emitting layer).
  • a light-emitting element D21 was manufactured.
  • EL light emission was observed by applying a voltage to the light emitting element D21.
  • the luminous efficiency [cd / A] at 5000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 5000 cd / m 2 were (0.20, 0.44).
  • Example D22 Production and evaluation of light-emitting device D22 In Example D19, except that "Compound HM-5" was used instead of "Compound HM-3" in (Formation of light-emitting layer), Example D19 and Similarly, a light-emitting element D22 was manufactured. EL light emission was observed by applying a voltage to the light emitting element D22. The luminous efficiency [cd / A] at 5000 cd / m 2 was measured. The CIE chromaticity coordinate (x, y) at 5000 cd / m 2 was (0.19, 0.41).
  • Example D23 Production and Evaluation of Light-Emitting Element D23
  • Example D19 was the same as Example D19 except that “Compound HM-7” was used instead of “Compound HM-3” in (Formation of light-emitting layer).
  • a light-emitting element D23 was manufactured.
  • EL light emission was observed by applying a voltage to the light emitting element D23.
  • the luminous efficiency [cd / A] at 5000 cd / m 2 was measured.
  • the CIE chromaticity coordinates (x, y) at 5000 cd / m 2 were (0.21, 0.46).
  • Example D24 Production and Evaluation of Light-Emitting Element D24
  • Example D19 was the same as Example D19 except that “Compound HM-6” was used instead of “Compound HM-3” in (Formation of light-emitting layer).
  • a light-emitting element D24 was manufactured.
  • EL light emission was observed by applying a voltage to the light emitting element D24.
  • the luminous efficiency [cd / A] at 5000 cd / m 2 was measured.
  • the CIE chromaticity coordinate (x, y) at 5000 cd / m 2 was (0.22, 0.47).
  • Table 7 shows the results of Examples D19 to D24. The relative values of the light emission efficiency of the light emitting elements D19 to D23 when the light emission efficiency of the light emitting element D24 is 1.00 are shown.
  • the present invention it is possible to provide a composition useful for producing a light emitting device having excellent luminous efficiency. Moreover, according to this invention, the light emitting element containing this composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

発光効率に優れる発光素子の製造に有用な組成物を提供する。 式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物とを含有する組成物。(C-1) [式中、 環R1C~環R4Cは、芳香族炭化水素環又は芳香族複素環を表す。 RCは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。](1) [式中、 M1は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。 n1は1以上の整数を表し、n2は0以上の整数を表す。但し、n1+n2は2又は3である。 環R1Aはトリアゾール環を表す。 環R2は、芳香族炭化水素環又は芳香族複素環を表す。 E1、E2及びE11A~E13Aは、窒素原子又は炭素原子を表す。 R11A~R13Aは、水素原子、アルキル基、アリール基等を表す。 A1-G1-A2は、アニオン性の2座配位子を表す。]

Description

組成物及びそれを用いた発光素子
 本発明は、組成物及びそれを用いた発光素子に関する。
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能である。発光素子の発光層に用いられる発光材料として、例えば、特許文献1では、化合物(H0-1)と燐光発光性化合物であるFIrpicとを含有する組成物が提案されている。また、特許文献2では、化合物(H0-2)と燐光発光性化合物(B0)とを含有する組成物が提案されている。
Figure JPOXMLDOC01-appb-C000010
中国特許出願公開第102911145号明細書 国際公開第2015/156235号
 しかし、上記の組成物を用いて製造される発光素子は、発光効率が必ずしも十分ではなかった。そこで、本発明は、発光効率に優れる発光素子の製造に有用な組成物を提供することを目的とする。
 本発明は、以下の[1]~[9]を提供する。
[1]式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物とを含有する組成物。
Figure JPOXMLDOC01-appb-C000011
[式中、
 環R1C、環R2C、環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 RCは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
Figure JPOXMLDOC01-appb-C000012
[式中、
 M1は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n1は1以上の整数を表し、n2は0以上の整数を表す。但し、M1がロジウム原子又はイリジウム原子の場合、n1+n2は3であり、M1がパラジウム原子又は白金原子の場合、n1+n2は2である。
 環R1Aは、トリアゾール環を表す。
 環R2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が複数存在する場合、それらは同一でも異なっていてもよい。
 E1、E2、E11A、E12A及びE13Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1、E2、E11A、E12A及びE13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、E1及びE2のうち、少なくとも一方は炭素原子である。
 R11A、R12A及びR13Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A及びR13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 R11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R12AとR13Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。
 A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
[2]前記環R1C、前記環R2C、前記環R3C及び前記環R4Cのうちの少なくとも1つが、式(D-1)で表される基を有する、[1]に記載の組成物。
Figure JPOXMLDOC01-appb-C000013
[式中、
 環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 XD1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXD1)-で表される基、又は、-C(RXD2)2-で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 E1D、E2D及びE3Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
 R1D、R2D及びR3Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。
 R1DとR2Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[3]前記式(D-1)で表される基が、式(D-2)で表される基である、[2]に記載の組成物。
Figure JPOXMLDOC01-appb-C000014
[式中、
 XD1、XD2、E1D、E2D、E3D、R1D、R2D及びR3Dは、前記と同じ意味を表す。
 E4D、E5D、E6D及びE7Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
 R4D、R5D、R6D及びR7Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E4Dが窒素原子の場合、R4Dは存在しない。E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。
 R4DとR5D、R5DとR6D、R6DとR7D、R4DとRXD1、R4DとRXD2、R7DとRXD1、及び、R7DとRXD2は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[4]前記式(C-1)で表される化合物が、式(C-2)で表される化合物である、[1]~[3]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000015
[式中、
 RCは、前記と同じ意味を表す。
 E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
 環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
 R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[5]前記式(C-2)で表される化合物が、式(C-3)で表される化合物である、[4]に記載の組成物。
Figure JPOXMLDOC01-appb-C000016
[式中、RC、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
[6]前記R11C、前記R12C、前記R14C、前記R21C、前記R22C、前記R24C、前記R31C、前記R32C、前記R34C、前記R41C、前記R42C及び前記R44Cのうちの少なくとも一つが、前記式(D-1)で表される基である、[4]又は[5]に記載の組成物。
[7]前記式(1)で表される燐光発光性化合物が、式(1-A)で表される燐光発光性化合物である、[1]~[6]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000017
[式中、
 M1、n1、n2、環R1A、E1、E11A、E12A、E13A、R11A、R12A、R13A及びA1-G1-A2は、前記と同じ意味を表す。
 環R2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
 E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
 R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22A、R22AとR23A、R23AとR24A、及び、R11AとR21Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[8]前記式(1-A)で表される燐光発光性化合物が、式(1-A1)で表される燐光発光性化合物、式(1-A2)で表される燐光発光性化合物又は式(1-A3)で表される燐光発光性化合物である、[7]に記載の組成物。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
[式中、M1、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1-G1-A2は、前記と同じ意味を表す。]
[9][1]~[8]のいずれかに記載の組成物を含有する発光素子。
 本発明によれば、発光効率に優れる発光素子の製造に有用な組成物を提供することができる。また、本発明によれば、該組成物を含有する発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
[式中、R及びRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~式(XL-17)で表される架橋基である。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000031
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
 <組成物>
 本発明の組成物は、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物とを含有する組成物である。
 本発明の組成物において、式(C-1)で表される化合物及び式(1)で表される燐光発光性化合物は、それぞれ、1種のみを含有していてもよく、2種以上を含有していてもよい。
 [式(C-1)で表される化合物]
 式(C-1)で表される化合物の分子量は、好ましくは2×102~5×104であり、より好ましくは、2×102~5×103であり、更に好ましくは3×102~3×103であり、特に好ましくは4×102~1×103である。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環及びトリフェニレン環が挙げられ、好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、スピロビフルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、より好ましくはベンゼン環、ナフタレン環、フルオレン環又はスピロビフルオレン環であり、更に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~30であり、より好ましくは、4~15である。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族複素環としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環及びジヒドロフェナジン環が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、アザアントラセン環、ジアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環であり、より好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環であり、更に好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
 本発明の組成物を含有する発光素子(以下、「本発明の発光素子」と言う。)の発光効率がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが芳香族炭化水素環であることが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも2つが芳香族炭化水素環であることがより好ましく、環R1C、環R2C、環R3C及び環R4Cのすべてが芳香族炭化水素環であることが更に好ましく、環R1C、環R2C、環R3C及び環R4Cのすべてがベンゼン環であることが特に好ましく、これらの環は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アリール基又は1価の複素環基であり、特に好ましくは、1価の複素環基であり、これらの基は更に置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~25である。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環、トリフェニレン環又はこれらの環が縮合した環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ベンゼン環、ナフタレン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環又はトリフェニレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、更に好ましくはフルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~30であり、より好ましくは、3~15である。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環、ジヒドロフェナジン環又はこれらの環に芳香環が縮合した環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環又はジヒドロアクリジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの環は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の例及び好ましい範囲と同じである。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基がより好ましく、アルキル基又はアリール基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RCは、本発明の発光素子の発光効率がより優れるので、好ましくは炭素原子、ケイ素原子又はゲルマニウム原子であり、より好ましくは炭素原子又はケイ素原子であり、更に好ましくは炭素原子である。
 本発明の発光素子の発光効率がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、アリール基又は1価の複素環基を有することが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、式(D-1)で表される基を有することがより好ましく、これらの基は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが、アリール基又は1価の複素環基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有するアリール基及び1価の複素環基の合計の個数は、好ましくは1~5個であり、より好ましくは、1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが、式(D-1)で表される基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有する式(D-1)で表される基の合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 ・式(D-1)で表される基
 環RDで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲と同じである。
 環RDが有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 環RDは、本発明の発光素子の発光効率がより優れるので、芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。
 XD1及びXD2は、本発明の発光素子の発光効率がより優れるので、好ましくは単結合、酸素原子、硫黄原子、又は、-C(RXD2)2-で表される基であり、より好ましくは、単結合、酸素原子又は硫黄原子であり、更に好ましくは、単結合、又は。硫黄原子である。
 XD1及びXD2のうちの少なくとも一方は、単結合であることが好ましく、XD2が単結合であることがより好ましい。
 RXD1は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 RXD2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 RXD1及びRXD2で表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 XD1及びXD2で表される-C(RXD2)2-で表される基中の2個のRXD2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは、両方がアリール基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、更に好ましくは、両方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRXD2は互いに結合して、それぞれが結合する炭素原子と共に環を形成することが好ましい。RXD2が環を形成する場合、-C(RXD2)2-で表される基としては、好ましくは式(Y-A1)-式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000032
 RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 E1D、E2D及びE3Dは、炭素原子であることが好ましい。
 R1D、R2D及びR3Dは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はアリール基であることがより好ましく、水素原子であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 R1D、R2D及びR3Dで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R1D、R2D及びR3Dが有していてもよい置換基の例及び好ましい範囲は、RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲と同じである。
 R1DとR2D、R2DとR3D、R1DとRXD1、R1DとRXD2、RXD1と環RDが有していてもよい置換基、及び、RXD2と環RDが有していてもよい置換基は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 式(D-1)で表される基は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(D-2)で表される基である。
 E4D、E5D、E6D及びE7Dは、炭素原子であることが好ましい。
 R4D、R5D、R6D及びR7Dの例及び好ましい範囲は、R1D、R2D及びR3Dの例及び好ましい範囲と同じである。
 R4D、R5D、R6D及びR7Dが有していてもよい置換基の例及び好ましい範囲は、R1D、R2D及びR3Dが有していてもよい置換基の例及び好ましい範囲と同じである。
 R4DとR5D、R5DとR6D、R6DとR7Dはそれぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 [式(C-2)で表される化合物]
 式(C-1)で表される化合物は、本発明の発光素子の発光効率がより優れるので、式(C-2)で表される化合物であることが好ましい。
 E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、炭素原子であることが好ましい。
 環R1C'、環R2C'、環R3C'及び環R4C'は、好ましくはベンゼン環である。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アリール基又は1価の複素環基であることがより好ましく、水素原子又は式(D-1)で表される基であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つは、アリール基又は1価の複素環基であることが好ましく、式(D-1)で表される基であることがより好ましく、これらの基は更に置換基を有していてもよい。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cがアリール基又は1価の複素環基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも1つが式(D-1)で表される基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが式(D-1)で表される基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つがアリール基又は1価の複素環基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが更に好ましく、R12C及びR22Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが特に好ましく、これらの基は置換基を有していてもよい。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つが式(D-1)で表される基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つが式(D-1)で表される基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つが式(D-1)で表される基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つが式(D-1)で表される基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つが式(D-1)で表される基であることが特に好ましく、R12Cが式(D-1)で表される基であることがとりわけ好ましい。
 R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 [式(C-3)で表される化合物]
 式(C-2)で表される化合物は、本発明の発光素子の発光効率がより優れるので、式(C-3)で表される化合物であることが好ましい。
 式(C-1)で表される化合物としては、例えば、式(C-101)~式(C-137)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
[式中、Xは酸素原子又は硫黄原子を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
 Xは、硫黄原子であることが好ましい。
 式(C-1)で表される化合物は、例えば、Aldrich、Luminescence Technology Corp.から入手可能である。式(C-1)で表される化合物は、その他には、例えば、国際公開2014/023388号、国際公開2013/045408号、国際公開2013/045410号、国際公開2013/045411号、国際公開2012/048820号、国際公開2012/048819号、国際公開2011/006574号、「Organic Electronics vol.14、902-908(2013)」に記載されている方法に従って合成することができる。
 本発明の組成物において、式(C-1)で表される化合物は、本発明の発光素子の発光効率がより優れるので、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有するホスト材料であることが好ましい。
 本発明の組成物において、式(C-1)で表される化合物の有する最低励起三重項状態(T1)は、本発明の発光素子の発光効率がより優れるので、式(1)で表される燐光発光性化合物の有するT1と同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましく、より高いエネルギー準位であることがより好ましい。
 本発明の組成物において、式(C-1)で表される化合物は、本発明の発光素子を溶液塗布プロセスで作製できるので、式(1)で表される燐光発光性化合物を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
 [式(1)で表される燐光発光性化合物]
 式(1)で表される燐光発光性化合物は、通常、室温(25℃)で燐光発光性を示す金属錯体であり、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。
 M1は、本発明の発光素子の発光効率がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 M1がロジウム原子又はイリジウム原子の場合、n1は2又は3であることが好ましく、3であることがより好ましい。
 M1がパラジウム原子又は白金原子の場合、n1は2であることが好ましい。
 E1及びE2は、炭素原子であることが好ましい。
 環R1Aは、E11A及びE12Aが窒素原子であるトリアゾール環、又は、E11A及びE13Aが窒素原子であるトリアゾール環が好ましく、E11A及びE13Aが窒素原子であるトリアゾール環がより好ましい。
 E11Aが窒素原子であり、且つ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、アルキル基又はアリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E12Aが窒素原子であり、且つ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、アルキル基又はアリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E13Aが窒素原子であり、且つ、R13Aが存在する場合、R13Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E13Aが炭素原子である場合、R13Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、アルキル基、シクロアルキル基又はアリール基であることが更に好ましく、アルキル基であることが特に好ましく、これらの基は置換基を有していてもよい。
 環R1Aは、好ましくは、E11A及びE12Aが窒素原子であり、且つ、R11Aが存在しR12Aが存在しないトリアゾール環、又は、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環であり、より好ましくは、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環である。
 R11A、R12A及びR13Aのうちの2つは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 R11A、R12A及びR13Aで表されるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は置換基を有していてもよい。
 R11A、R12A及びR13Aで表される1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾフラニル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、これらの基は置換基を有していてもよい。
 R11A、R12A及びR13Aで表される置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、R11A、R12A及びR13Aで表されるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、R11A、R12A及びR13Aで表される1価の複素環基の例及び好ましい範囲と同じである。
 R11A、R12A及びR13Aが有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 R11A、R12A及びR13Aが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11A、R12A及びR13Aで表されるアリール基、1価の複素環基又は置換アミノ基は、本発明の発光素子の発光効率がより優れるので、好ましくは式(D-A)、式(D-B)又は式(D-C)で表される基であり、より好ましくは式(D-A)又は式(D-C)で表される基であり、更に好ましくは式(D-C)で表される基である。
Figure JPOXMLDOC01-appb-C000041
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000042
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000043
[式中、
 mDA1は、0以上の整数を表す。
 ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数ある場合、それらは同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7が、同一の整数であることが好ましく、mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7が、同一の整数であることがより好ましい。
 GDAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
 GDAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、これらの基は置換基を更に有さないことが好ましい。
 GDAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、より好ましくは式(GDA-11)~式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基であり、特に式(GDA-11)で表される基である。
Figure JPOXMLDOC01-appb-C000044
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(ArDA-1)~(ArDA-5)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-3)で表される基であり、特に好ましくは式(ArDA-1)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000045
[式中、
 RDAは、前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6、ArDA7及びRDBが有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。
 TDAは、好ましくは式(TDA-1)~式(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure JPOXMLDOC01-appb-C000046
[式中、RDA及びRDBは、前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A5)で表される基であり、より好ましくは式(D-A1)、式(D-A4)又は式(D-A5)で表される基であり、更に好ましくは式(D-A1)で表される基である。
Figure JPOXMLDOC01-appb-C000047
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
 式(D-B)で表される基は、好ましくは式(D-B1)~式(D-B6)で表される基であり、より好ましくは式(D-B1)~式(D-B3)又は式(D-B5)で表される基であり、更に好ましくは式(D-B1)で表される基である。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1及びnp2は、それぞれ同一でも異なっていてもよい。]
 式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基であり、より好ましくは式(D-C1)又は式(D-C2)で表される基であり、更に好ましくは式(D-C1)で表される基である。
Figure JPOXMLDOC01-appb-C000050
[式中、
 Rp4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
 np1は、好ましくは0~2の整数であり、より好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数であり、より好ましくは0である。np5は、好ましくは0~3の整数であり、より好ましくは0又は1である。np6は、好ましくは0~2の整数であり、より好ましくは0又は1である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルキル基又はシクロアルキル基としては、好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルコキシ基又はシクロアルコキシ基としては、好ましくは、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基であり、より好ましくは、置換基を有していてもよいアルキル基であり、更に好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
 本発明の発光素子の発光効率がより優れるので、R11A、R12A及びR13Aからなる群から選ばれる少なくとも1つは、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基であることが好ましく、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であることがより好ましく、置換基を有していてもよいアルキル基、又は、式(D-A1)、式(D-A4)、式(D-A5)、式(D-B1)~式(D-B3)若しくは式(D-C1)~式(D-C4)で表される基であることが更に好ましく、置換基を有していてもよいアルキル基、又は、式(D-C1)若しくは式(D-C2)で表される基であることが特に好ましい。
 R11A、R12A及びR13Aからなる群から選ばれる少なくとも1つが、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基である場合、R11Aが置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基であることが好ましく、R11Aが置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基であることがより好ましく、R11Aが置換基を有していてもよいアリール基であることが更に好ましい。
 式(1)で表される燐光発光性化合物の発光スペクトルの最大ピーク波長が短波長になるので、R11AとR12A、R12AとR13A、及び、環R2が有していてもよい置換基とR11Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 環R2は、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環R2が6員の芳香族複素環である場合、E2は炭素原子であることが好ましい。
 環R2としては、例えば、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はジアザベンゼン環が好ましく、ベンゼン環、ピリジン環又はジアザベンゼン環がより好ましく、ベンゼン環が更に好ましく、これらの環は置換基を有していてもよい。
 環R2が有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であり、特に好ましくは、アルキル基、又は、式(D-A)で表される基であり、これらの基は更に置換基を有していてもよい。
 環R2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R11A、R12A及びR13Aで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 環R2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、R11A、R12A及びR13Aが有していてもよい置換基の例及び好ましい範囲と同じである。
 ・アニオン性の2座配位子
 A1-G1-A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。。但し、A1-G1-A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
[式中、
 *は、M1と結合する部位を表す。
 RL1は、水素原子、アルキル基、シクロアルキル基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
 RL2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
 RL1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はフッ素原子であり、より好ましくは水素原子又はアルキル基であり、これらの基は置換基を有していてもよい。
 RL2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 [式(1-A)で表される燐光発光性化合物]
 式(1)で表される燐光発光性化合物は、本発明の発光素子の発光効率がより優れるので、式(1-A)で表される燐光発光性化合物であることが好ましい。
 環R2Aがピリジン環である場合、E21Aが窒素原子であるピリジン環、E22Aが窒素原子であるピリジン環、又は、E23Aが窒素原子であるピリジン環が好ましく、E22Aが窒素原子であるピリジン環がより好ましい。
 環R2Aがジアザベンゼン環である場合、E21A及びE23Aが窒素原子であるピリミジン環、又は、E22A及びE24Aが窒素原子であるピリミジン環が好ましく、E22A及びE24Aが窒素原子であるピリミジン環がより好ましい。
 環R2Aは、ベンゼン環であることが好ましい。
 R21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、アルキル基、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であり、特に好ましくは、水素原子、アルキル基、又は、式(D-A)で表される基であり、とりわけ好ましくは、水素原子又は式(D-A)で表される基であり、これらの基は置換基を有していてもよい。
 R21A、R22A、R23A及びR24Aで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R21A、R22A、R23A及びR24Aが有していてもよい置換基の例及び好ましい範囲は、環R2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R21AとR22A、R22AとR23A、R23AとR24A、及び、R11AとR21Aは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 式(1-A)で表される燐光発光性化合物は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(1-A1)~式(1-A3)で表される燐光発光性化合物であり、より好ましくは、式(1-A1)又は式(1-A3)で表される燐光発光性化合物であり、更に好ましくは、式(1-A3)で表される燐光発光性化合物である。
 式(1)で表される燐光発光性化合物としては、例えば、下記式で表される燐光発光性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 式(1)で表される燐光発光性化合物は、例えば、Aldrich、Luminescence Technology Corp.、American Dye Sourceから入手可能である。式(1)で表される燐光発光性化合物は、その他には、例えば、国際公開第2006/121811号、国際公開第2007/097153号、特開2013-048190号公報、特開2015-174824号公報に記載されている方法に従って合成することができる。
 本発明の組成物において、式(1)で表される燐光発光性化合物の含有量は、式(C-1)で表される化合物と式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、0.01~99質量部であり、本発明の発光素子の発光効率がより優れるので、0.1~80質量部であることが好ましく、1~65質量部であることがより好ましく、10~50質量部であることが更に好ましく、20~40質量部であることが特に好ましい。
 [その他の成分]
 本発明の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群から選ばれる少なくとも1種の材料を更に含有していてもよい。但し、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料は、式(C-1)で表される化合物とは異なり、発光材料は、式(C-1)で表される化合物、式(1)で表される燐光発光性化合物とは異なる。
 [インク]
 式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物と、溶媒とを含有する組成物(以下、「インク」と言う。)は、インクジェットプリント法、ノズルプリント法等の印刷法を用いた発光素子の作製に好適である。インクの粘度は、印刷法の種類によって調整すればよいが、好ましくは25℃において1~20mPa・sである。
 インクに含まれる溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、塩素系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、多価アルコール系溶媒、アルコール系溶媒、スルホキシド系溶媒、アミド系溶媒が挙げられる。
 インクにおいて、溶媒の配合量は、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、1000~100000質量部である。
 溶媒は、一種単独で用いても二種以上を併用してもよい。
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは架橋基を有する高分子化合物である。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン及びトリニトロフルオレノン等の電子受容性部位が結合された化合物でもよい。
 本発明の組成物において、正孔輸送材料の配合量は、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、1~400質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 本発明の組成物において、電子輸送材料の配合量は、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、1~400質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 本発明の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、1~400質量部である。
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 [イオンドープ]
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
 [発光材料]
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基及びピレンジイル基等のアリーレン基;芳香族アミンから2個の水素原子を取り除いてなる基等の芳香族アミン残基;並びに、カルバゾールジイル基、フェノキサジンジイル基及びフェノチアジンジイル基等の2価の複素環基を含む高分子化合物が挙げられる。
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 本発明の組成物において、発光材料の含有量は、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、0.1~400質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
 [酸化防止剤]
 酸化防止剤は、式(C-1)で表される化合物及び式(1)で表される燐光発光性化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 本発明の組成物において、酸化防止剤の配合量は、式(C-1)で表される化合物と、式(1)で表される燐光発光性化合物との合計を100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 <膜>
 膜は、本発明の組成物を含有する。
 膜は、発光素子における発光層として好適である。
 膜は、インクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により作製することができる。
 膜の厚さは、通常、1nm~10μmである。
 <発光素子>
 本発明の発光素子は、本発明の組成物を含有する発光素子である。
 本発明の発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本発明の組成物を含有する層とを有する。
 [層構成]
 本発明の組成物を含有する層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層及び電子注入層からなる群から選ばれる1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
 発光素子は、陽極と陰極の間に発光層を有する。本発明の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層、電子輸送層、発光層、正孔注入層及び電子注入層の材料としては、本発明の組成物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料及び電子注入材料等が挙げられる。
 正孔輸送層の材料、電子輸送層の材料及び発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層及び発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 本発明の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
 積層する層の順番、数及び厚さは、発光効率及び輝度寿命を勘案して調整する。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極もしくは陰極、又は、両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300、JEOL RESONANCE製、商品名:JNM-ECZ400S/L1、又は、ブルカー製、商品名:AVANCE600)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
<合成例M1> 化合物M1~M5及び金属錯体RM1の合成
 化合物M1、M2及びM3は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M4は、特開2012-33845号公報に記載の方法に従って合成した。
 化合物M5は、特開2010-189630号公報に記載の方法に従って合成した。
 金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
 <合成例HTL1> 高分子化合物HTL-1の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M1(0.800g)、化合物M2(0.149g)、化合物M3(1.66g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.4mg)及びトルエン(45mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、7時間還流させた。その後、そこに、2-エチルフェニルボロン酸(90mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、17.5時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応液を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を1.64g得た。高分子化合物HTL-1のMnは3.5×104であり、Mwは2.2×105であった。
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。
 <合成例HTL2> 高分子化合物HTL-2の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M1(2.52g)、化合物M2(0.470g)、化合物M3(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。その後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応液を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-2を6.02g得た。高分子化合物HTL-2のMnは3.8×104であり、Mwは4.5×105であった。
 高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。
 <合成例B1~B3、B8> 燐光発光性化合物B1~B3及びB8の合成、入手
 燐光発光性化合物B1(FIrpic)は、Aldrich社より購入した。
 燐光発光性化合物B2は、特開2013-147551号公報に記載の方法に従って合成した。
 燐光発光性化合物B3は、国際公開第2016/185183号公報に記載の方法に準じて合成した。
 燐光発光性化合物B8は、国際公開第2006/121811号に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000063
 <合成例B4> 燐光発光性化合物B4の合成
Figure JPOXMLDOC01-appb-C000064
 (化合物L4-2の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L4-1(50g)及びN-メチル-2-ピロリドン(200mL)を加え、0℃で撹拌した。その後、そこへ、N-メチル-2-ピロリドン(40mL)に溶解させた化合物L4-1’(40g)を滴下し、室温で18時間撹拌した。得られた反応液をイオン交換水(1.2L)に注いだところ、沈殿物が生じた。得られた沈殿物をろ取した後、1M塩酸水溶液、イオン交換水及びヘプタンで順次洗浄した。得られた固体を減圧乾燥させることにより、化合物L4-2(43g、白色固体)を得た。
 化合物L4-2の分析結果は以下のとおりであった。
 1H-NMR(600MHz、CDCl3)δ(ppm)=9.64(br,1H),8.90(br,1H),7.86(d,2H),7.56(t,1H),7.45(t,2H),7.02-7.08(m,3H),2.41(s,6H).
 (化合物L4-3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L4-2(43g)及びトルエン(740mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(67g)を加えた後、110℃で21時間撹拌した。得られた反応液を室温まで冷却した後、氷水(500mL)に注ぎ、2時間撹拌した後、水層を除去した。得られた有機層をイオン交換水及び10質量%炭酸水素ナトリウム水溶液でそれぞれ洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、化合物L4-3(40g)を得た。
 (化合物L4-5の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L4-3(40g)、化合物L4-4(32g)及びキシレン(800mL)を加え、室温で撹拌した。その後、そこへ、p-トルエンスルホン酸(3g)を加え、120℃で116時間撹拌した。得られた反応液を室温まで冷却した後、イオン交換水(800mL)を加え、室温で1時間撹拌した。得られた反応液から水層を除去した後、得られた有機層を5質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)及びシリカゲルカラムクロマトグラフィー(アセトニトリル及びテトラヒドロフラン)により順次精製することにより、化合物L4-5(1.3g、白色固体)を得た。化合物L4-5のHPLC面積百分率値は99.5%以上であった。上記操作を繰り返し行うことにより、必要量の化合物L4-5を得た。
 化合物L4-5の分析結果は以下のとおりであった。
 1H-NMR(600MHz、THF-d8)δ(ppm)=7.42(d,2H),7.30(t,1H),7.24(t,2H),7.15(t,1H),6.98(d,2H),6.85(s,2H),2.51(t,2H),2.07(s,6H),1.81(s,6H),1.56(m,2H),1.26-1.32(m,6H),0.88(t,3H).
 (燐光発光性化合物B4の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.6g)、化合物L4-5(2.0g)及びトリデカン(2mL)を加え、250℃で120時間攪拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製した後、塩化メチレン及びアセトニトリルの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、燐光発光性化合物B4(0.6g、黄色固体)を得た。燐光発光性化合物B4のHPLC面積百分率値は99.2%であった。
 燐光発光性化合物B4の分析結果は以下のとおりであった。
 1H-NMR(600MHz、THF-d8)δ(ppm)=7.04-7.08(m, 6H),6.93(s,3H),6.92(s,3H),6.88(d,3H),6.84(d,3H),6.61(t,3H),6.43(t,3H),6.29(d,3H),2.57(t,6H),2.12(s,9H),1.95(s,9H),1.82(s,9H),1.70(s,9H),1.62(m,6H),1.28-1.36(m,18H),0.89(t,9H).
 <合成例B5> 燐光発光性化合物B5の合成
Figure JPOXMLDOC01-appb-C000065
 (反応混合物L5-1’の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L5-1(50g)及び塩化チオニル(100mL)を加え、還流下で3時間撹拌した。得られた反応混合物を室温まで冷却した後、塩化チオニルを減圧留去することにより、反応混合物L5-1’を得た。
 (化合物L5-2の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L4-1(47g)及びテトラヒドロフラン(1L)を加え、0℃に冷却した。その後、そこへ、トリエチルアミン(54mL)を加え、0℃で45分間撹拌した。その後、そこへ、(反応混合物L5-1’の合成)で得られた反応混合物L5-1’(全量)を加え、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、酢酸エチル及びヘキサンの混合溶媒で洗浄した後、減圧乾燥させることにより、化合物L5-2(50g)を得た。化合物L5-2のHPLC面積百分率値は95.2%であった。上記操作を繰り返し行うことにより、必要量の化合物L5-2を得た。
 化合物L5-2の分析結果は以下のとおりであった。
 LC-MS(APCI,positive):m/z=263[M+H]+
 1H-NMR(300MHz,CDCl3):δ(ppm)=0.84(t,9H),1.64(q,6H),7.39-7.54(m,3H),7.81-7.84(m,2H),8.72-8.74(m,1H),9.66-9.68(m,1H).
 (化合物L5-3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L5-2(58g)及びトルエン(600mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(92g)を加えた後、110℃で3時間撹拌した。得られた反応液を室温まで冷却した後、化合物L5-4(78.2g)及びp-トルエンスルホン酸(3g)を加え、130℃で4日間撹拌した。得られた反応液を室温まで冷却し、減圧濃縮した後、酢酸エチル(2L)を加え、10質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(メタノール及びクロロホルムの混合溶媒)により精製した後、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L5-3(6g)を得た。化合物L5-3のHPLC面積百分率値は99.1%であった。
 化合物L5-3の分析結果は以下のとおりであった。
 LC-MS(APCI,positive):m/z=404[M+H]+
 1H-NMR(400MHz,CDCl3):δ(ppm)=0.83(t,9H),1.34(s,9H),1.64(q,6H),1.96(s,6H),7.12(s,2H),7.20-7.23(m,2H),7.28-7.34(m,3H).
 (燐光発光性化合物B5の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.4g)、化合物L5-3(4.6g)及びペンタデカン(2mL)を加え、300℃で18時間撹拌した。得られた反応液を室温まで冷却し、トルエンに溶解させた後、減圧濃縮させることにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製した後、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、燐光発光性化合物B5(2.8g)を得た。燐光発光性化合物B5のHPLC面積百分率値は99.5%以上であった。
 燐光発光性化合物B5の分析結果は以下のとおりであった。
 1H-NMR(600MHz,THF-d8):δ(ppm)=7.30(s,6H),6.90(d,3H),6.44-6.48(m,3H),6.22-6.26(m,3H),5.77(d,3H),2.10(s,9H),1.89(s,9H),1.56(s,18H),1.38(s,27H),0.73(t,27H).
 <合成例B6> 燐光発光性化合物B6の合成
Figure JPOXMLDOC01-appb-C000066
 (化合物L6-2の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L4-1(100g)、トリエチルアミン(114mL)及びテトラヒドロフラン(1.5L)を加え、0℃で撹拌した。その後、そこへ、化合物L6-1(52mL)を滴下した後、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を濃縮することにより、粗生成物を得た。得られた粗生成物を、酢酸エチルを用いて晶析した後、減圧乾燥させることにより、化合物L6-2(70g)を得た。化合物L6-2のHPLC面積百分率値は98.7%であった。
 化合物L6-2の分析結果は以下のとおりであった。
 LC-MS(APCI,positive):m/z=179[M+H]
 H-NMR(300MHz、DMSO-d)δ(ppm)=10.26(br,1H),9.86(br,1H),7.83-7.86(m,2H),7.45-7.56(m,3H),1.90(s,3H).
 (化合物L6-4の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L6-2(70g)及びキシレン(700mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(123g)を加え、130℃で2時間撹拌した。得られた反応液を室温まで冷却し、化合物L6-3(70g)を加えた後、130℃で8時間撹拌した。得られた反応液を室温まで冷却し、減圧濃縮した後、酢酸エチルを加えた。得られた有機層をイオン交換水、10質量%炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。得られた有機層を硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製した後、N,N-ジメチルホルムアミド及び水の混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、化合物L6-4(70g、白色固体)を得た。化合物L6-4のHPLC面積百分率値は99.2%であった。
 化合物L6-4の分析結果は以下のとおりであった。
 LC-MS(APCI,positive):m/z=320[M+H]
 H-NMR(400MHz、CDCl)δ(ppm)=7.53-7.58(m,1H),7.48(d,2H),7.33(d,2H),7.28-7.30(m,1H),7.21-7.25(m,2H),2.39(q,2H),2.26(s,3H),1.14(d,6H),0.87(d,6H).
 (燐光発光性化合物B6の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.2g)、化合物L6-4(4.0g)及びトリデカン(1mL)を加え、280℃で18時間攪拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(酢酸エチル及びメタノールの混合溶媒)により精製し、次いで、トルエン及びアセトニトリルの混合溶媒を用いて晶析した。得られた固体を減圧乾燥させることにより、燐光発光性化合物B6(1.7g、黄色固体)を得た。燐光発光性化合物B6のHPLC面積百分率値は99.5%以上であった。
 燐光発光性化合物B6の分析結果は以下のとおりであった。
 H-NMR(600MHz、THF-d)δ(ppm)=7.56(t,3H),7.42(dd,3H),7.40(dd,3H),6.87(dd,3H),6.52(td,3H),6.35(td,3H),6.17(dd,3H),2.83(hept,3H),2.34(hept,3H),2.10(s,9H),1.23(d,9H),0.98(d,9H),0.96(d,9H),0.92(d,9H).
 <合成例B7> 燐光発光性化合物B7の合成
Figure JPOXMLDOC01-appb-C000067
 (化合物L7-3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L7-1(21.4g)、トリエチルアミン(13.0mL)及びテトラヒドロフラン(300mL)を加え、0℃に冷却した。その後、そこへ、化合物L7-2(12.8mL)を滴下し、室温で16時間撹拌した。その後、そこへ、イオン交換水(100mL)を加えたところ、沈殿物が生じた。得られた沈殿物を含む反応液をろ過することにより、残渣L7-3-1及びろ液L7-3-2を得た。
 得られた残渣L7-3-1をトルエンで洗浄した後、減圧乾燥させることにより、固体L7-3’(24.5g)を得た。
 得られたろ液L7-3-2から水層を除去し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、トルエン及びヘプタンの混合溶媒で晶析を行った。得られた固体を減圧乾燥させることにより、固体L7-3’’(3.9g)を得た。
 得られた固体L7-3’と固体L7-3’’とを合一した後、トルエン及びヘプタンの混合溶媒を用いて晶析した。得られた固体を減圧乾燥させることにより、化合物L7-3(27.8g、白色固体)を得た。化合物L7-3のHPLC面積百分率値は98.9%であった。
 化合物L7-3の分析結果は以下のとおりであった。
 H-NMR(600MHz,THF-d):δ(ppm)=7.57(d,2H),7.43(t,2H),7.35(s,2H),7.34(t,1H),6.82(brs,1H),3.08(septet,2H),1.73(q,2H),1.34(s,6H),1.25(d,12H),1.00(t,3H).
 (化合物L7-5の合成)
 化合物L7-5は、化合物L7-3(19.1g)、化合物L7-4(9.0g)、クロロベンゼン(150mL)、2-フルオロピリジン(5.15mL)及びトリフルオロメタンスルホン酸無水物(10.0mL)を用いて、Organic Letters,17巻,1184-1187頁,2015年に記載の方法に準じて合成した。
 化合物L7-5の分析結果は以下のとおりであった。
 H-NMR(600MHz,CDCl):δ(ppm)=7.68(d,2H),7.52(t,2H),7.50(s,2H),7.43(t,1H),7.26(s,1H),7.05-6.98(m,3H),2.53(septet,2H),2.15(s,3H),1.88(q,2H),1.28(d,6H),1.23(s,6H),0.89(t,3H),0.77(d,6H).
 (燐光発光性化合物B7の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.72g)、化合物L7-5(2.8g)及びペンタデカン(2mL)を加え、300℃で24時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)により精製し、次いで、アセトニトリル及びトルエンの混合溶媒、トルエン及びメタノールの混合溶媒、並びに、塩化メチレン及びアセトニトリルの混合溶媒を用いて順次晶析を行った。得られた固体を塩化メチレンで洗浄後、減圧乾燥させることにより、燐光発光性化合物B7(0.82g)を得た。燐光発光性化合物B7のHPLC面積百分率値は98.8%であった。
 燐光発光性化合物B7の分析結果は以下のとおりであった。
 H-NMR(600MHz,THF-d):δ(ppm)=7.74(d,6H),7.64(dd,6H),7.48(t,6H),7.38(t,3H),6.68(d,3H),6.30(d,3H),5.62(s,3H),2.94(septet,3H),2.37(septet,3H),1.75(s,9H),1.71-1.64(m,6H),1.34(d,9H),1.22-1.17(m,27H),0.98(d,9H),0.90(d,9H),0.81(d,9H).
 <合成例G1、G2及びR1> 燐光発光性化合物G1、G2及びR1の合成
 燐光発光性化合物G1は、国際公開第2009/131255号に記載の方法に準じて合成した。
 燐光発光性化合物G2は、特開2014-224101号公報に記載の方法に従って合成した。
 燐光発光性化合物R1は、特開2006-188673号公報に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000068
 <合成例HM-1、HM-5~HM-7及びHM-9> 化合物HM-1、HM-5~HM-7及びHM-9の合成、入手
 化合物HM-1は、Luminescence Technology社より購入した。
 化合物HM-5は、国際公開第2014/023388号に記載の方法に準じて合成した。
 化合物HM-6及び化合物HM-7は、国際公開第2012/048820号に記載の方法に準じて合成した。
 化合物HM-9は、国際公開第2013/045411号に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000069
 <合成例HM-2> 化合物HM-2の合成
Figure JPOXMLDOC01-appb-C000070
 反応容器内を窒素ガス雰囲気とした後、化合物HM-2a(15.6g)、化合物HM-2b(10.3g)、トルエン(390mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.2g)及び20質量%水酸化テトラブチルアンモニウム水溶液(194g)を加え、90℃で4時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-2(15.2g)を得た。化合物HM-2のHPLC面積百分率値は99.5%以上であった。
 化合物HM-2の分析結果は以下のとおりであった。
 1H-NMR (CD2Cl2、400MHz):δ(ppm)=6.70-6.83(4H、m)、7.15(3H、t)、7.39(3H、t)、7.48(3H、t)、7.59(2H、t)、7.83-7.93(4H、m)、8.18-8.23(3H、m).
 <合成例HM-3> 化合物HM-3の合成
Figure JPOXMLDOC01-appb-C000071
 反応容器内を窒素ガス雰囲気とした後、化合物HM-3a(13.5g)、化合物HM-2b(8.9g)、トルエン(404mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.0g)及び20質量%水酸化テトラブチルアンモニウム水溶液(166g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、トルエン及びメタノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-3(10.5g)を得た。化合物HM-3のHPLC面積百分率値は99.5%以上であった。
 化合物HM-3の分析結果は以下のとおりであった。
 1H-NMR (CD2Cl2、400MHz):δ(ppm)=6.51(1H、d)、6.60(1H、d)、6.80(4H、m)、6.92(1H、t)、7.21(3H、m)、7.34(1H、d)、7.39-7.50(4H、m)、7.65(1H、d)、7.71(1H、t)、7.81(1H、d)、7.88(2H、d)、8.28-8.35(2H、m).
 <合成例HM-4> 化合物HM-4の合成
Figure JPOXMLDOC01-appb-C000072
 反応容器内を窒素ガス雰囲気とした後、化合物HM-4a(1.6g)、化合物HM-4b(1.3g)、キシレン(63mL)、酢酸パラジウム(II)(22mg)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(63mg)及びナトリウムtert-ブトキシド(1.9g)を加え、加熱還流下で54時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、クロロホルム及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-4(1.0g)を得た。化合物HM-4のHPLC面積百分率値は99.5%以上であった。
 化合物HM-4の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=7.08(4H、t)、7.34(6H、m)、7.47-7.57(12H、m)、8.02(2H、d)、8.12(2H、s)、8.22(4H、d).
 <合成例HM-8> 化合物HM-8の合成
Figure JPOXMLDOC01-appb-C000073
 反応容器内を窒素ガス雰囲気とした後、化合物HM-2a(1.64g)、化合物HM-8b(1.00g)、トルエン(40mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.24g)及び20質量%水酸化テトラブチルアンモニウム水溶液(20g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエンを加え、イオン交換水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-8(1.7g)を得た。化合物HM-8のHPLC面積百分率値は99.5%以上であった。
 化合物HM-8の分析結果は以下のとおりであった。
 H-NMR(CDCl,400MHz):δ(ppm)=8.36(d,1H),8.03-7.99(m,1H),7.98-7.93(m,2H),7.89-7.86(m,2H),7.70-7.60(m,3H),7.51-7.35(m,6H),7.17-7.12(m,3H),6.89(d,1H),6.86-6.82(m,2H),6.78(d,1H).
 <合成例ETL1> 高分子化合物ETL-1の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M4(9.23g)、化合物M5(4.58g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.6mg)、メチルトリオクチルアンモニウムクロライド(シグマアルドリッチ社製、商品名Aliquat336(登録商標))(0.098g)及びトルエン(175mL)を加え、105℃に加熱した。その後、そこに、12質量%炭酸ナトリウム水溶液(40.3mL)を滴下し、29時間還流させた。その後、そこに、フェニルボロン酸(0.47g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.7mg)を加え、14時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、メタノールに滴下したところ、沈殿が生じた。得られた沈殿物をろ取し、メタノール、水でそれぞれ洗浄後、乾燥させた。得られた固体をクロロホルムに溶解させ、予めクロロホルムを通液したアルミナカラム及びシリカゲルカラムに順番に通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1a(7.15g)を得た。高分子化合物ETL-1aのMnは3.2×104、Mwは6.0×104であった。
 高分子化合物ETL-1aは、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
 反応容器内をアルゴンガス雰囲気下とした後、高分子化合物ETL-1a(3.1g)、テトラヒドロフラン(130mL)、メタノール(66mL)、水酸化セシウム一水和物(2.1g)及び水(12.5mL)を加え、60℃で3時間撹拌した。その後、そこに、メタノール(220mL)を加え、2時間撹拌した。得られた反応混合物を濃縮した後、イソプロピルアルコールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1(3.5g)を得た。高分子化合物ETL-1の1H-NMR解析により、高分子化合物ETL-1中のエチルエステル部位のシグナルが消失し、反応が完結したことを確認した。
 高分子化合物ETL-1は、高分子化合物ETL-1aの仕込み原料の量から求めた理論値では、下記式で表される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-C000074
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成)
 トルエンに、化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。
 <実施例D2> 発光素子D2の作製と評価
 実施例D1において、(発光層の形成)の「燐光発光性化合物B4」に代えて、「燐光発光性化合物B2」を用いた以外は、実施例D1と同様にして、発光素子D2を作製した。
 発光素子D2に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.16,0.35)であった。
 <実施例D3> 発光素子D3の作製と評価
 実施例D1において、(発光層の形成)の「燐光発光性化合物B4」に代えて、「燐光発光性化合物B6」を用いた以外は、実施例D1と同様にして、発光素子D3を作製した。
 発光素子D3に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.18,0.36)であった。
 <比較例CD1> 発光素子CD1の作製と評価
 実施例D1において、(発光層の形成)の「燐光発光性化合物B4」に代えて、「燐光発光性化合物B1」を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.16,0.35)であった。
 実施例D1~D3及び比較例CD1の結果を表1に示す。発光素子CD1の発光効率を1.0としたときの発光素子D1~D3の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000075
 <実施例D4> 発光素子D4の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-3、化合物HM-2及び燐光発光性化合物B2(化合物HM-3/化合物HM-2/燐光発光性化合物B2=37.5質量%/37.5質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D4を作製した。
 発光素子D4に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.16,0.36)であった。
 <実施例D5> 発光素子D5の作製と評価
 実施例D4において、(発光層の形成)の「化合物HM-2」に代えて、「化合物HM-4」を用いた以外は、実施例D4と同様にして、発光素子D5を作製した。
 発光素子D5に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.17,0.37)であった。
 <実施例D6> 発光素子D6の作製と評価
 実施例D4において、(発光層の形成)の「燐光発光性化合物B2」に代えて、「燐光発光性化合物B4」を用いた以外は、実施例D4と同様にして、発光素子D6を作製した。
 発光素子D6に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.19,0.39)であった。
 <実施例D7> 発光素子D7の作製と評価
 実施例D4において、(発光層の形成)の「化合物HM-3、化合物HM-2及び燐光発光性化合物B2(化合物HM-3/化合物HM-2/燐光発光性化合物B2=37.5質量%/37.5質量%/25質量%)」に代えて、「化合物HM-3、化合物HM-1及び燐光発光性化合物B4(化合物HM-3/化合物HM-1/燐光発光性化合物B4=37.5質量%/37.5質量%/25質量%)」を用いた以外は、実施例D4と同様にして、発光素子D7を作製した。
 発光素子D7に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.17,0.34)であった。
 <実施例D8> 発光素子D8の作製と評価
 実施例D4において、(発光層の形成)の「燐光発光性化合物B2」に代えて、「燐光発光性化合物B6」を用いた以外は、実施例D4と同様にして、発光素子D8を作製した。
 発光素子D8に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.19,0.38)であった。
 <比較例CD2> 発光素子CD2の作製と評価
 実施例D4において、(発光層の形成)の「燐光発光性化合物B2」に代えて、「燐光発光性化合物B1」を用いた以外は、実施例D4と同様にして、発光素子CD2を作製した。
 発光素子CD2に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率[cd/A]を測定した。200cd/m2におけるCIE色度座標(x,y)は(0.16,0.35)であった。
 実施例D4~D8及び比較例CD2の結果を表2に示す。発光素子CD2の発光効率を1.0としたときの発光素子D4~D8の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000076
 <実施例D9> 発光素子D9の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3」に代えて、「化合物HM-4」を用いた以外は、実施例D1と同様にして、発光素子D9を作製した。
 発光素子D9に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率[cd/A]を測定した。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。
 <実施例D10> 発光素子D10の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-4及び燐光発光性化合物B5(化合物HM-4/燐光発光性化合物B5=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D10を作製した。
 発光素子D10に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率[cd/A]を測定した。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.39)であった。
 <実施例D11> 発光素子D11の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-4及び燐光発光性化合物B2(化合物HM-4/燐光発光性化合物B2=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D11を作製した。
 発光素子D11に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率[cd/A]を測定した。1000cd/m2におけるCIE色度座標(x,y)は(0.16,0.35)であった。
 <実施例D12> 発光素子D12の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-9及び燐光発光性化合物B4(化合物HM-9/燐光発光性化合物B4=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D12を作製した。
 発光素子D12に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率[cd/A]を測定した。1000cd/m2におけるCIE色度座標(x,y)は(0.19,0.39)であった。
 <比較例CD3> 発光素子CD3の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-1及び燐光発光性化合物B2(化合物HM-1/燐光発光性化合物B2=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD3を作製した。
 発光素子CD3に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率[cd/A]を測定した。1000cd/m2におけるCIE色度座標(x,y)は(0.17,0.38)であった。
 <比較例CD4> 発光素子CD4の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-4及び燐光発光性化合物B8(化合物HM-4/燐光発光性化合物B8=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD4を作製した。
 発光素子CD4に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率[cd/A]を測定した。1000cd/m2におけるCIE色度座標(x,y)は(0.20,0.45)であった。
 実施例D9~D12及び比較例CD3~CD4の結果を表3に示す。発光素子CD3の発光効率を1.00としたときの発光素子D9~D12及びCD4の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000077
 <実施例D13> 発光素子D13の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
 キシレンに高分子化合物HTL-2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(第1の発光層の形成)
 トルエンに、化合物HM-2、燐光発光性化合物B3及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B3/燐光発光性化合物G1=74質量%/25質量%/1質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D13を作製した。
(発光素子の評価)
 発光素子D13に電圧を印加することによりEL発光が観測された。400cd/m2における発光効率[cd/A]を測定した。400cd/m2におけるCIE色度座標(x,y)は(0.41,0.46)であった。
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D13において、(第1の発光層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D13と同様にして、発光素子CD5を作製した。
 発光素子CD5に電圧を印加することによりEL発光が観測された。400cd/m2における発光効率[cd/A]を測定した。400cd/m2におけるCIE色度座標(x,y)は(0.40,0.44)であった。
 実施例D13及び比較例CD5の結果を表4に示す。発光素子CD5の発光効率を1.00としたときの発光素子D13の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000078
 <実施例D14> 発光素子D14の作製と評価
 実施例D13において、(第1の発光層の形成)の「化合物HM-2、燐光発光性化合物B3及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B3/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-3、燐光発光性化合物B7及び燐光発光性化合物G1(化合物HM-3/燐光発光性化合物B7/燐光発光性化合物G1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D13と同様にして、発光素子D14を作製した。
 発光素子D14に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.45,0.46)であった。
 <実施例D15> 発光素子D15の作製と評価
 実施例D14において、(第1の発光層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D14と同様にして、発光素子D15を作製した。
 発光素子D15に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.47,0.45)であった。
 <実施例D16> 発光素子D16の作製と評価
 実施例D14において、(第1の発光層の形成)の「化合物HM-3」に代えて、「化合物HM-8」を用いた以外は、実施例D14と同様にして、発光素子D16を作製した。
 発光素子D16に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.48,0.45)であった。
 <実施例D17> 発光素子D17の作製と評価
 実施例D14において、(第1の発光層の形成)の「化合物HM-3」に代えて、「化合物HM-5」を用いた以外は、実施例D14と同様にして、発光素子D17を作製した。
 発光素子D17に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.43,0.46)であった。
 <比較例CD6> 発光素子CD6の作製と評価
 実施例D14において、(第1の発光層の形成)の「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D14と同様にして、発光素子CD6を作製した。
 発光素子CD6に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.48,0.45)であった。
 <比較例CD7> 発光素子CD7の作製と評価
 実施例D13において、(第1の発光層の形成)の「化合物HM-2、燐光発光性化合物B3及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B3/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B8及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B8/燐光発光性化合物G1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D13と同様にして、発光素子CD7を作製した。
 発光素子CD7に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.47,0.46)であった。
 実施例D14~D17及び比較例CD6~CD7の結果を表5に示す。発光素子CD6の発光効率を1.00としたときの発光素子D14~D17及びCD7の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000079
 <実施例D18> 発光素子D18の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-2、燐光発光性化合物B2、燐光発光性化合物G2及び燐光発光性化合物R1(化合物HM-2/燐光発光性化合物B2/燐光発光性化合物G2/燐光発光性化合物R1=62.05質量%/37.5質量%/0.25質量%/0.20質量%)」を用いた以外は、実施例D1と同様にして、発光素子D18を作製した。
 発光素子D18に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。
 <比較例CD8> 発光素子CD8の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-1、燐光発光性化合物B2、燐光発光性化合物G2及び燐光発光性化合物R1(化合物HM-1/燐光発光性化合物B2/燐光発光性化合物G2/燐光発光性化合物R1=62.05質量%/37.5質量%/0.25質量%/0.20質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD8を作製した。
 発光素子CD8に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率[cd/A]を測定した。10000cd/m2におけるCIE色度座標(x,y)は(0.31,0.38)であった。
 実施例D18及び比較例CD8の結果を表6に示す。発光素子CD8の発光効率を1.00としたときの発光素子D18の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000080
 <実施例D19> 発光素子D19の作製と評価
 実施例D1において、(発光層の形成)の「化合物HM-3及び燐光発光性化合物B4(化合物HM-3/燐光発光性化合物B4=75質量%/25質量%)」に代えて、「化合物HM-3及び燐光発光性化合物B7(化合物HM-3/燐光発光性化合物B7=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D19を作製した。
 発光素子D19に電圧を印加することによりEL発光が観測された。5000cd/m2における発光効率[cd/A]を測定した。5000cd/m2におけるCIE色度座標(x,y)は(0.20,0.44)であった。
 <実施例D20> 発光素子D20の作製と評価
 実施例D19において、(発光層の形成)の「化合物HM-3」に代えて、「化合物HM-2」を用いた以外は、実施例D19と同様にして、発光素子D20を作製した。
 発光素子D20に電圧を印加することによりEL発光が観測された。5000cd/m2における発光効率[cd/A]を測定した。5000cd/m2におけるCIE色度座標(x,y)は(0.21,0.46)であった。
 <実施例D21> 発光素子D21の作製と評価
 実施例D19において、(発光層の形成)の「化合物HM-3」に代えて、「化合物HM-8」を用いた以外は、実施例D19と同様にして、発光素子D21を作製した。
 発光素子D21に電圧を印加することによりEL発光が観測された。5000cd/m2における発光効率[cd/A]を測定した。5000cd/m2におけるCIE色度座標(x,y)は(0.20,0.44)であった。
 <実施例D22> 発光素子D22の作製と評価
 実施例D19において、(発光層の形成)の「化合物HM-3」に代えて、「化合物HM-5」を用いた以外は、実施例D19と同様にして、発光素子D22を作製した。
 発光素子D22に電圧を印加することによりEL発光が観測された。5000cd/m2における発光効率[cd/A]を測定した。5000cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。
 <実施例D23> 発光素子D23の作製と評価
 実施例D19において、(発光層の形成)の「化合物HM-3」に代えて、「化合物HM-7」を用いた以外は、実施例D19と同様にして、発光素子D23を作製した。
 発光素子D23に電圧を印加することによりEL発光が観測された。5000cd/m2における発光効率[cd/A]を測定した。5000cd/m2におけるCIE色度座標(x,y)は(0.21,0.46)であった。
 <実施例D24> 発光素子D24の作製と評価
 実施例D19において、(発光層の形成)の「化合物HM-3」に代えて、「化合物HM-6」を用いた以外は、実施例D19と同様にして、発光素子D24を作製した。
 発光素子D24に電圧を印加することによりEL発光が観測された。5000cd/m2における発光効率[cd/A]を測定した。5000cd/m2におけるCIE色度座標(x,y)は(0.22,0.47)であった。
 実施例D19~D24の結果を表7に示す。発光素子D24の発光効率を1.00としたときの発光素子D19~D23の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000081
 本発明によれば、発光効率に優れる発光素子の製造に有用な組成物を提供することができる。また、本発明によれば、この組成物を含有する発光素子を提供することができる。

Claims (9)

  1.  式(C-1)で表される化合物と、
     式(1)で表される燐光発光性化合物とを含有する組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     環R1C、環R2C、環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     RCは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     M1は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     n1は1以上の整数を表し、n2は0以上の整数を表す。但し、M1がロジウム原子又はイリジウム原子の場合、n1+n2は3であり、M1がパラジウム原子又は白金原子の場合、n1+n2は2である。
     環R1Aは、トリアゾール環を表す。
     環R2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が複数存在する場合、それらは同一でも異なっていてもよい。
     E1、E2、E11A、E12A及びE13Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1、E2、E11A、E12A及びE13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、E1及びE2のうち、少なくとも一方は炭素原子である。
     R11A、R12A及びR13Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A及びR13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     R11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R12AとR13Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。
     A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
  2.  前記環R1C、前記環R2C、前記環R3C及び前記環R4Cのうちの少なくとも1つが、式(D-1)で表される基を有する、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     XD1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXD1)-で表される基、又は、-C(RXD2)2-で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     E1D、E2D及びE3Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
     R1D、R2D及びR3Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。
     R1DとR2Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  3.  前記式(D-1)で表される基が、式(D-2)で表される基である、請求項2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     XD1、XD2、E1D、E2D、E3D、R1D、R2D及びR3Dは、前記と同じ意味を表す。
     E4D、E5D、E6D及びE7Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
     R4D、R5D、R6D及びR7Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E4Dが窒素原子の場合、R4Dは存在しない。E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。
     R4DとR5D、R5DとR6D、R6DとR7D、R4DとRXD1、R4DとRXD2、R7DとRXD1、及び、R7DとRXD2は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  4.  前記式(C-1)で表される化合物が、式(C-2)で表される化合物である、請求項1~3のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     RCは、前記と同じ意味を表す。
     E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
     環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
     R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
     R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  5.  前記式(C-2)で表される化合物が、式(C-3)で表される化合物である、請求項4に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式中、RC、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
  6.  前記R11C、前記R12C、前記R14C、前記R21C、前記R22C、前記R24C、前記R31C、前記R32C、前記R34C、前記R41C、前記R42C及び前記R44Cのうちの少なくとも一つが、前記式(D-1)で表される基である、請求項4又は5に記載の組成物。
  7.  前記式(1)で表される燐光発光性化合物が、式(1-A)で表される燐光発光性化合物である、請求項1~6のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     M1、n1、n2、環R1A、E1、E11A、E12A、E13A、R11A、R12A、R13A及びA1-G1-A2は、前記と同じ意味を表す。
     環R2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
     E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
     R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22A、R22AとR23A、R23AとR24A、及び、R11AとR21Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  8.  前記式(1-A)で表される燐光発光性化合物が、式(1-A1)で表される燐光発光性化合物、式(1-A2)で表される燐光発光性化合物又は式(1-A3)で表される燐光発光性化合物である、請求項7に記載の組成物。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    [式中、M1、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1-G1-A2は、前記と同じ意味を表す。]
  9.  請求項1~8のいずれか一項に記載の組成物を含有する発光素子。
PCT/JP2018/016306 2017-04-27 2018-04-20 組成物及びそれを用いた発光素子 WO2018198971A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/494,007 US20200411773A1 (en) 2017-04-27 2018-04-20 Composition and light emitting device using the same
KR1020197034219A KR102558986B1 (ko) 2017-04-27 2018-04-20 조성물 및 그것을 사용한 발광 소자
CN201880027274.6A CN110574497B (zh) 2017-04-27 2018-04-20 组合物和使用了该组合物的发光元件
EP18791887.5A EP3618579B1 (en) 2017-04-27 2018-04-20 Composition and light-emitting element in which same is used
JP2018568992A JP6614370B2 (ja) 2017-04-27 2018-04-20 組成物及びそれを用いた発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088005 2017-04-27
JP2017-088005 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198971A1 true WO2018198971A1 (ja) 2018-11-01

Family

ID=63919649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016306 WO2018198971A1 (ja) 2017-04-27 2018-04-20 組成物及びそれを用いた発光素子

Country Status (6)

Country Link
US (1) US20200411773A1 (ja)
EP (1) EP3618579B1 (ja)
JP (1) JP6614370B2 (ja)
KR (1) KR102558986B1 (ja)
CN (1) CN110574497B (ja)
WO (1) WO2018198971A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691416A4 (en) * 2017-09-29 2021-04-21 Sumitomo Chemical Company Limited LIGHT EMITTING DEVICE
CN112652731B (zh) * 2020-12-27 2022-07-22 浙江华显光电科技有限公司 一种组合物及包含其的有机电致发光元件
CN112614964B (zh) * 2020-12-27 2022-07-22 浙江华显光电科技有限公司 一种组合物及包含其的有机电致发光元件
CN112652730B (zh) * 2020-12-27 2022-07-22 浙江华显光电科技有限公司 一种组合物及包含其的有机电致发光元件

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
WO2007097153A1 (ja) 2006-02-20 2007-08-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2011006574A1 (de) 2009-07-14 2011-01-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2012503889A (ja) * 2008-09-25 2012-02-09 ユニバーサル ディスプレイ コーポレイション 有機セレン材料および有機発光デバイス内でのその使用
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
WO2012048819A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
JP2012516831A (ja) * 2009-02-02 2012-07-26 メルク パテント ゲーエムベーハー 金属錯体
CN102911145A (zh) 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
WO2013045411A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045408A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
JP2013147551A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 燐光性発光化合物及び高分子化合物を含む組成物、並びにそれを用いた発光素子
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
CN104250242A (zh) * 2013-06-26 2014-12-31 海洋王照明科技股份有限公司 一种含二苯并噻吩单元的蓝光磷光主体材料及其制备方法和有机电致发光器件
JP2015174824A (ja) 2014-03-13 2015-10-05 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015156235A1 (ja) 2014-04-09 2015-10-15 住友化学株式会社 発光素子およびそれに用いる組成物
US20160087224A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light-emitting device
US20160111665A1 (en) * 2014-10-17 2016-04-21 Samsung Display Co., Ltd. Organic light-emitting device
CN105524114A (zh) * 2015-12-24 2016-04-27 石家庄诚志永华显示材料有限公司 一系列深蓝金属铱磷光oled材料
WO2016185183A1 (en) 2015-05-15 2016-11-24 Cambridge Display Technology Limited Light-emitting compound
JP2016540381A (ja) * 2013-11-17 2016-12-22 ソルヴェイ(ソシエテ アノニム) 隣接層にsbfマトリックス材料を有する多層構造体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1573830B1 (en) * 2002-12-13 2016-11-09 Philips Intellectual Property & Standards GmbH Organic electroluminescent component with triplet emitter complex
US9309458B2 (en) * 2012-02-24 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
WO2014085296A1 (en) * 2012-11-29 2014-06-05 E. I. Du Pont De Nemours And Company Blue luminescent compounds
JP5867580B2 (ja) * 2014-06-04 2016-02-24 住友化学株式会社 発光素子
US9991471B2 (en) * 2014-12-26 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, and electronic device

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
WO2007097153A1 (ja) 2006-02-20 2007-08-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2012503889A (ja) * 2008-09-25 2012-02-09 ユニバーサル ディスプレイ コーポレイション 有機セレン材料および有機発光デバイス内でのその使用
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2012516831A (ja) * 2009-02-02 2012-07-26 メルク パテント ゲーエムベーハー 金属錯体
WO2011006574A1 (de) 2009-07-14 2011-01-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
WO2012048819A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
WO2013045411A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045408A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045410A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
JP2013147551A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 燐光性発光化合物及び高分子化合物を含む組成物、並びにそれを用いた発光素子
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
CN102911145A (zh) 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
CN104250242A (zh) * 2013-06-26 2014-12-31 海洋王照明科技股份有限公司 一种含二苯并噻吩单元的蓝光磷光主体材料及其制备方法和有机电致发光器件
JP2016540381A (ja) * 2013-11-17 2016-12-22 ソルヴェイ(ソシエテ アノニム) 隣接層にsbfマトリックス材料を有する多層構造体
JP2015174824A (ja) 2014-03-13 2015-10-05 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015156235A1 (ja) 2014-04-09 2015-10-15 住友化学株式会社 発光素子およびそれに用いる組成物
US20160087224A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light-emitting device
US20160111665A1 (en) * 2014-10-17 2016-04-21 Samsung Display Co., Ltd. Organic light-emitting device
WO2016185183A1 (en) 2015-05-15 2016-11-24 Cambridge Display Technology Limited Light-emitting compound
CN105524114A (zh) * 2015-12-24 2016-04-27 石家庄诚志永华显示材料有限公司 一系列深蓝金属铱磷光oled材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ORGANIC ELECTRONICS, vol. 14, 2013, pages 902 - 908
See also references of EP3618579A4

Also Published As

Publication number Publication date
KR102558986B1 (ko) 2023-07-26
EP3618579A1 (en) 2020-03-04
EP3618579A4 (en) 2021-01-06
CN110574497B (zh) 2022-10-18
CN110574497A (zh) 2019-12-13
KR20190141714A (ko) 2019-12-24
JPWO2018198971A1 (ja) 2019-06-27
US20200411773A1 (en) 2020-12-31
EP3618579B1 (en) 2023-03-15
JP6614370B2 (ja) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2018198975A1 (ja) 発光素子
JP6224758B2 (ja) 発光素子及びその製造方法
JP6562168B2 (ja) 組成物及びそれを用いた発光素子
JP6614370B2 (ja) 組成物及びそれを用いた発光素子
JP2015110751A (ja) 組成物およびそれを用いた発光素子
JP6489122B2 (ja) 発光素子およびそれに用いる高分子化合物
JP6519718B2 (ja) 組成物及びそれを用いた発光素子
JP6399243B2 (ja) 発光素子
JP2018083941A (ja) 組成物及びそれを用いた発光素子
JP2020065068A (ja) 発光素子
JP6573041B2 (ja) 発光素子
JP6372204B2 (ja) 金属錯体およびそれを用いた発光素子
WO2019065388A1 (ja) 組成物及びそれを用いた発光素子
JP2018078286A (ja) 組成物及びそれを用いた発光素子
JP6851189B2 (ja) 発光素子及び金属錯体
JP6708214B2 (ja) 組成物及びそれを用いた発光素子
JP2016064998A (ja) 金属錯体およびそれを用いた発光素子
JP2019050370A (ja) 発光素子
WO2018088573A1 (ja) 発光素子、並びに、それに用いる金属錯体及び組成物
JP2015063482A (ja) 金属錯体およびそれを用いた発光素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018568992

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034219

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018791887

Country of ref document: EP

Effective date: 20191127