WO2018198698A1 - 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法 - Google Patents

有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法 Download PDF

Info

Publication number
WO2018198698A1
WO2018198698A1 PCT/JP2018/014440 JP2018014440W WO2018198698A1 WO 2018198698 A1 WO2018198698 A1 WO 2018198698A1 JP 2018014440 W JP2018014440 W JP 2018014440W WO 2018198698 A1 WO2018198698 A1 WO 2018198698A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
transparent conductive
concave groove
conductive layer
layer
Prior art date
Application number
PCT/JP2018/014440
Other languages
English (en)
French (fr)
Inventor
康夫 山崎
弘典 梶
勝誠 久保
昌志 田部
坂本 明彦
Original Assignee
OLED Material Solutions株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017190706A external-priority patent/JP2018186066A/ja
Application filed by OLED Material Solutions株式会社 filed Critical OLED Material Solutions株式会社
Priority to CN201880024127.3A priority Critical patent/CN110521283A/zh
Priority to EP18792293.5A priority patent/EP3618572A1/en
Priority to US16/608,327 priority patent/US20210104699A1/en
Priority to KR1020197022243A priority patent/KR20200005529A/ko
Publication of WO2018198698A1 publication Critical patent/WO2018198698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an organic EL device substrate, an organic EL device using the same, and a method for producing them.
  • organic EL devices using organic EL (electroluminescence) elements has been attracting attention for the purpose of reducing the thickness and reducing power consumption.
  • organic EL elements often have insufficient luminance particularly for use as a light source for illumination, and the actual situation is that further improvement in light extraction efficiency is required.
  • Patent Document 1 discloses using an organic EL device substrate having a function of scattering light from an organic EL element in order to increase light extraction efficiency.
  • the substrate for an organic EL device disclosed in the same document includes a glass plate having a concavo-convex surface for scattering light from the organic EL element on the surface on which the transparent conductive film is formed.
  • the organic EL device substrate disclosed in the same document further includes a high refractive index layer made of a fired glass film on the uneven surface of the glass plate, and the surface on which the transparent conductive film is formed is flattened by the high refractive index layer. It has become.
  • the high refractive index layer also plays a role of reducing light reflection at the interface with the transparent conductive film and increasing light extraction efficiency.
  • the transparent conductive film of the organic EL device substrate is used as an electrode (for example, an anode) of the organic EL device. Therefore, a concave groove is formed in the transparent conductive film according to the device shape and structure, and the transparent conductive film is divided so as to correspond to a desired electrode shape. On the surface of the concave groove portion, an organic EL element layer is formed in the process of manufacturing an organic EL device, and insulation between electrodes made of transparent conductive films adjacent to each other through the concave groove portion is maintained.
  • An object of the present invention is to provide an organic EL device substrate and an organic EL device that can reduce the occurrence of leakage current.
  • the cause of the leakage current is the shape of the concave groove.
  • an insulating layer such as an organic EL element layer is formed by vapor deposition or the like.
  • the present invention has been conceived by optimizing the dimensional relationship between the minimum width and the maximum depth of the concave groove based on such knowledge.
  • the substrate for an organic EL device which was created to solve the above-described problems, is for an organic EL device including a translucent plate, a high refractive index layer, and a transparent conductive layer in this order in the thickness direction.
  • the substrate has a concave groove that separates the transparent conductive layer into at least a first region and a second region, the thickness of the transparent conductive layer is t1 ( ⁇ m), and the minimum width of the concave groove is w1 ( ⁇ m).
  • d1 ( ⁇ m) is the maximum depth of the concave groove with respect to the surface of the layer opposite to the high refractive index layer.
  • the maximum depth of the concave groove portion is greater than or equal to the thickness of the transparent conductive layer, and the concave groove portion ensures that the transparent conductive layer is placed in the first region and the second region. Can be separated.
  • d1 / ⁇ (w1) 0.5 ⁇ ⁇ 0.1 makes the maximum depth appropriate for the minimum width of the concave groove. Therefore, if an organic EL device is manufactured using an organic EL device substrate having such a dimensional relationship, an insulating layer such as an organic EL element layer can be formed on the entire surface of the concave groove portion. Generation can be reduced.
  • the minimum width of the concave groove is 10 ⁇ m or more. In this way, since the minimum width of the concave groove is sufficiently wide, when an organic EL device is manufactured using an organic EL device substrate, an insulating layer such as an organic EL element layer is formed on the entire surface of the concave groove. It becomes easy to do.
  • the end portion on the surface side of the transparent conductive layer in the side wall portion of the concave groove portion has a raised portion raised from the surface of the transparent conductive layer, and the dimension along the longitudinal direction of the concave groove portion is 40 ⁇ m.
  • a rectangular region having a dimension of 10 ⁇ m along the width direction of the groove portion is provided so as to include the end portion of the side wall portion, the height of the raised portion with respect to the surface of the transparent conductive layer in the rectangular region It is preferable that the area in plan view of the portion where the thickness is 10 nm or more is 10% or less of the area of the rectangular region.
  • the area (horizontal projection area) in plan view of the raised portion having a height of 10 nm or more is defined as a rectangular region (40 ⁇ m ⁇ 10 ⁇ m) as defined in the above configuration. ) Is preferably reduced to 10% or less of the area.
  • An organic EL device which was created to solve the above problems, includes the organic EL device substrate and an organic EL element layer formed on the transparent conductive layer side of the organic EL device substrate. It is characterized by that. According to such a configuration, it is possible to enjoy the same effects as described in the organic EL device substrate.
  • the manufacturing method of the substrate for organic EL devices according to the present invention is an organic device comprising a translucent plate, a high refractive index layer, and a transparent conductive layer in this order in the thickness direction.
  • a method for manufacturing an EL device substrate comprising a laser processing step of removing a part of a transparent conductive layer by laser processing and forming a concave groove portion separating the transparent conductive layer into at least a first region and a second region, In the laser processing step, the thickness of the transparent conductive layer is t1 ( ⁇ m), the minimum width of the concave groove is w1 ( ⁇ m), and the maximum depth of the concave groove is based on the surface of the transparent conductive layer opposite to the high refractive index layer.
  • the concave groove is formed so that the relationship of t1 ⁇ d1 and d1 / ⁇ (w1) 0.5 ⁇ ⁇ 0.1 is established. According to such a structure, the same effect as the corresponding structure demonstrated in said organic EL device substrate can be enjoyed. Further, since the concave groove is formed by laser processing instead of wet etching, even if a material having poor water resistance and chemical resistance is selected as the high refractive index layer, damage to the high refractive index layer can be reduced. That is, for example, a bismuth-based, lead-based, or lanthanum-based glass composition can be selected without any problem as a material for the high refractive index layer.
  • the concave groove portion is formed in the laser processing step so that the minimum width of the concave groove portion is 10 ⁇ m or more.
  • a polishing step for polishing the surface of the transparent conductive layer is provided, and after the polishing step, the end portion on the surface side of the transparent conductive layer in the sidewall portion of the concave groove portion is the surface of the transparent conductive layer.
  • the area in plan view of the portion where the height of the raised portion with respect to the surface of the transparent conductive layer is 10 nm or more in the rectangular region is 10% or less of the area of the rectangular region.
  • the manufacturing method of the organic EL device according to the present invention includes a step of obtaining an organic EL device substrate by the above-described manufacturing method of an organic EL device substrate, and an organic EL device substrate. And a step of forming an organic EL element layer on the transparent conductive layer side. According to such a configuration, it is possible to receive the same functions and effects as described in the method for manufacturing the organic EL device substrate and the organic EL device substrate.
  • the organic EL device substrate 1 includes a translucent plate 2, an uneven layer 3, a high refractive index layer 4, and a transparent conductive layer 5 in this order in the thickness direction.
  • Each of the translucent plate 2, the uneven layer 3, the high refractive index layer 4, and the transparent conductive layer 5 has light transmittance.
  • the translucent plate 2 is made of glass or resin.
  • the glass forming the translucent plate 2 include soda lime glass, borosilicate glass, alkali-free glass, and quartz glass.
  • the resin forming the translucent plate 2 include acrylic resin, silicone resin, epoxy resin, polyester resin, and polycarbonate resin.
  • the concavo-convex layer 3 is composed of a glass fired layer having a concavo-convex shape.
  • the refractive index nd of the uneven layer 3 is preferably substantially the same as the refractive index nd of the light transmitting plate 2.
  • the refractive index nd of the concavo-convex layer 3 is preferably within a range of ⁇ 0.1 with respect to the refractive index nd of the light transmitting plate 2.
  • the refractive index nd represents the refractive index at a wavelength of 588 nm.
  • Examples of the method for forming the concavo-convex surface include mechanical treatment methods such as a sand blast method, a press molding method, and a roll molding method, and chemical treatment methods such as a sol-gel spray method, an etching method, and an atmospheric pressure plasma treatment method.
  • a substance having a refractive index different from that of the high refractive index layer 4 is dispersed in the base material of the high refractive index layer 4. You may let them.
  • the dispersion material is preferably a material having a refractive index smaller than that of the base material of the high refractive index layer 4.
  • the dispersed material examples include air (oxygen) gas such as oxygen, nitrogen and carbon dioxide (bubbles), ceramic particles such as titania, zirconia and silica, and inorganic particles such as glass (amorphous glass or crystallized glass) particles.
  • air oxygen
  • nitrogen and carbon dioxide bubbles
  • ceramic particles such as titania, zirconia and silica
  • inorganic particles such as glass (amorphous glass or crystallized glass) particles.
  • the high refractive index layer 4 has a refractive index larger than that of the translucent plate 2.
  • the refractive index nd of the high refractive index layer is not particularly limited, but is, for example, 1.8 to 2.1.
  • the high refractive index layer 4 is formed of glass (amorphous glass or crystallized glass), resin, ceramics, or the like.
  • the high refractive index layer 4 is preferably a glass fired layer. Examples of the glass forming the glass fired layer include inorganic glasses such as soda lime glass, borosilicate glass, aluminosilicate glass, phosphate glass, bismuth glass, lead glass, and lanthanum glass.
  • bismuth glass is particularly preferable because it is non-lead glass and has a high refractive index and can be fired at a low temperature.
  • the bismuth glass has a high relative dielectric constant, the charge density in the surface layer portion of the high refractive index layer 4 tends to be high, and the leakage current from the concave groove portion 6 described later tends to increase. Therefore, in the organic EL element substrate having the high refractive index layer 4 containing bismuth-based glass, the usefulness of the present invention that can reduce the occurrence of leakage current is particularly remarkable.
  • the relative dielectric constant of the high refractive index layer 4 is preferably 9 to 23, and more preferably 10 to 22.
  • Examples of the transparent conductive layer 5 include indium tin oxide (ITO), aluminum zinc oxide (AZO), and indium zinc oxide (IZO).
  • ITO indium tin oxide
  • AZO aluminum zinc oxide
  • IZO indium zinc oxide
  • the uneven shape of the uneven layer 3 depends on the particle size of the glass powder in addition to the heat treatment conditions when baking the frit paste.
  • the preferred powder particle size (D 50 ) of the glass powder is in the range of 0.3 to 15 ⁇ m, more preferably 1.0 to 10 ⁇ m, and even more preferably 1.5 to 8 ⁇ m.
  • Examples of the glass powder used for forming the high refractive index layer 4 include, by mass, Bi 2 O 3 : 70%, SiO 2 : 5%, ZnO: 10%, B 2 O 3 : 10%, Al 2 O 3. : Bismuth glass powder containing 5% and having a relative dielectric constant of 17 can be used.
  • the surface of the high refractive index layer 4 is smooth. In order to obtain a smooth surface, it is preferable to appropriately set the particle size of the glass powder in addition to the heat treatment conditions for firing the frit paste.
  • the powder particle size (D 50 ) of the glass powder is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, and still more preferably 0.3 to 10 ⁇ m.
  • the transparent conductive layer 5 is formed with a concave groove 6 that separates the transparent conductive layer 5 into at least a first region R1 and a second region R2.
  • the concave groove 6 has the following characteristics. That is, as shown in FIG. 2, the thickness of the transparent conductive layer 5 is t1, the minimum width of the concave groove portion 6 is w1, and the concave groove portion is based on the surface 5a of the transparent conductive layer 5 opposite to the high refractive index layer 4.
  • d1 ⁇ d1 (1) d1 / ⁇ (w1) 0.5 ⁇ ⁇ 0.1 (2)
  • This relationship is established. However, in the above equation (2), values converted to ⁇ m are used for d1 and w1.
  • the first region R1 and the second region R2 are completely separated, and the first region R1 and the second region R2 are not directly conducted by the transparent conductive layer 5.
  • the high refractive index layer 4 is exposed at the bottom wall portion 6 a of the concave groove portion 6.
  • the maximum depth d1 becomes appropriate with respect to the minimum width w1 of the concave groove part 6 by said (2) Formula. Therefore, when an organic EL device is manufactured using the organic EL device substrate 1 having such a dimensional relationship, an insulating layer such as an organic EL element layer can be formed on the entire surface of the concave groove 6. The occurrence of leakage current can be reduced to a level where there is no problem.
  • d1 / ⁇ (w1) 0.5 ⁇ is preferably 0.08 or less, more preferably 0.06 or less, and still more preferably 0.04 or less.
  • the maximum depth d1 of the concave groove 6 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the minimum width w1 of the concave groove 6 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more.
  • the minimum width w1 of the concave groove portion 6 is a width at a position corresponding to the bottom wall portion 6a.
  • the pair of side wall portions 6b of the concave groove portions 6 that face each other in the groove width direction are outside so that the groove width of the concave groove portions 6 increases from the bottom wall portion 6a to the surface 5a side of the transparent conductive layer 5. It is preferable to be inclined.
  • An end portion 6b1 on the surface 5a side of the transparent conductive layer 5 in the side wall portion 6b of the concave groove portion 6 has a raised portion 7 raised from the surface 5a of the transparent conductive layer 5.
  • the raised portion 7 preferably has the following characteristics. That is, as shown in FIG. 3, a rectangular region S having a dimension along the longitudinal direction X of the concave groove portion 6 of 40 ⁇ m and a dimension along the width direction Y of the concave groove portion 6 of 10 ⁇ m is defined as an end portion 6b1 of the side wall portion 6b.
  • the height h of the raised portion 7 (see FIG. 2) with reference to the surface 5a of the transparent conductive layer 5 is 10 nm or more in plan view.
  • the area (hereinafter also simply referred to as the raised area) is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less of the area of the rectangular region S.
  • the position of the rectangular region S in the plane direction (X direction and Y direction) is arbitrary as long as the condition that the end portion 6b1 of the side wall portion 6b is included in the region is satisfied.
  • the organic EL device substrate 1 may satisfy the following relational expression. d1 / t1 ⁇ 4 (3)
  • the organic EL device 11 further includes an organic EL element layer 12 and a cathode 13 on the organic EL device substrate 1 of FIG.
  • the organic EL element layer 12 and the cathode 13 are formed on the transparent conductive layer 5 side.
  • the transparent conductive layer 5 functions as an anode.
  • the cathode 13 is formed of a metal layer such as aluminum and has light reflectivity in the present embodiment.
  • the organic EL element layer 12 includes a light emitting layer, and a hole injection layer, a hole transport layer, and the like are formed between the light emitting layer and the transparent conductive layer 5 as necessary. Further, an electron transport layer, an electron injection layer, and the like are formed between the light emitting layer and the cathode 13 as necessary.
  • the maximum depth d1 of the concave groove 6 is more preferably 2.5 times or less of the thickness t2 of the organic EL element layer 12, and further preferably 2 times or less.
  • the light emitted from the organic EL element layer 12 passes through the transparent conductive layer 5 and the translucent plate 2 and is taken out from the translucent plate 2 side. At this time, the light reflected by the cathode 13 is also taken out from the translucent plate 2 side.
  • the organic EL device 11 configured as described above has high light extraction efficiency and extremely low leakage current that adversely affects the light emission characteristics, it can be suitably used, for example, as illumination.
  • the manufacturing method of the organic EL device includes a concavo-convex layer forming step of forming the concavo-convex layer 3 on the translucent plate 2, a high refractive index layer forming step of forming the high refractive index layer 4 on the concavo-convex layer 3, A transparent conductive layer forming step for forming the transparent conductive layer 5 on the refractive index layer 4; an organic EL element layer forming step for forming the organic EL element layer 12 on the transparent conductive layer 5; A cathode forming step of forming the cathode 13 thereon.
  • the process from the uneven layer forming process to the transparent conductive layer forming process is a process related to the method for manufacturing the substrate for an organic EL device.
  • the manufacturing process of the substrate for organic EL devices is performed by, for example, a glass manufacturer, and the remaining processes included in the manufacturing process of the organic EL device are performed by, for example, an organic EL device manufacturer.
  • the uneven layer forming step a frit paste containing glass powder is applied or printed on the surface of the light-transmitting plate 2 and then the frit paste is fired (first heat treatment).
  • first heat treatment the uneven
  • the heat treatment temperature of the first heat treatment needs to be lower than the heat resistant temperature of the translucent plate 2, preferably lower than the softening point (for example, 730 ° C.) of the translucent plate 2, more preferably the translucent plate. 50 to 200 ° C. lower than the softening point of 2.
  • the high refractive index layer forming step a frit paste containing glass powder is applied or printed on the uneven layer 3 (or the uneven layer 3 and the light transmitting plate 2), and then the frit paste is baked (second heat treatment). Thereby, the high refractive index layer 4 which consists of a glass baking layer is formed on the uneven
  • the heat treatment temperature of the second heat treatment is preferably lower than the heat treatment temperature of the first heat treatment. If it does in this way, the uneven
  • the transparent conductive layer 5 is formed on the high refractive index layer 4 by a known method such as sputtering, vapor deposition, or CVD. Thereafter, part of the transparent conductive layer 5 is removed by laser processing according to a predetermined patterning shape (laser processing step). Thereby, the concave groove part 6 is formed in the transparent conductive layer 5, and it isolate
  • a pulse laser is used for example.
  • the concave groove 6 is formed so that the relationship of the above formulas (1) and (2) is established. At this time, the minimum width w1 and / or the maximum depth d1 of the concave groove 6 is adjusted by adjusting the laser power and the irradiation spot diameter, for example.
  • the end portion 6b1 on the surface 5a side of the transparent conductive layer 5 on the side wall portion 6b of the concave groove portion 6 is affected by heat during laser processing and is raised more than the surface 5a of the transparent conductive layer 5
  • the raised ridge 7 may be formed. Therefore, in the transparent conductive layer forming step of the present embodiment, the surface 5a of the transparent conductive layer 5 is polished after the laser processing step. This polishing step is performed by buffing, for example. Thereby, the protruding portion area is set to be 10% or less of the area of the rectangular region S.
  • the raised portions 7 are not limited to those formed by laser processing.
  • the organic EL element layer 12 is formed on the transparent conductive layer 5 by vapor deposition.
  • the organic EL element layer 12 is also formed in the concave groove portion 6, and insulation between the first region R1 and the second region R2 is maintained by the organic EL element layer 12. At this time, it is preferable to form the organic EL element layer 12 so that the relationship of the above formula (3) is established.
  • the cathode 13 is formed on the organic EL element layer 12 by a known method such as sputtering, vapor deposition, or CVD.
  • a soda-lime glass substrate having a thickness of 0.7 mm was prepared as a translucent plate.
  • a frit paste for forming an uneven layer was applied with a thickness of about 25 ⁇ m using a screen printer, dried at 130 ° C., and then subjected to a first heat treatment at 600 ° C. using an electric furnace.
  • the glass particles of the glass powder in the frit paste for forming the concavo-convex layer are fused to each other to form the concavo-convex layer on the surface of the glass substrate.
  • a frit paste for forming a high refractive index layer is applied with a thickness of about 80 ⁇ m using a die coater, dried at 130 ° C., and then subjected to a second heat treatment at 580 ° C. using an electric furnace. Went. Since the heat treatment temperature of the second heat treatment is lower than the heat treatment temperature of the first heat treatment, the concavo-convex layer formed by the first heat treatment maintains its form even during the second heat treatment. By the second heat treatment, the glass particles of the glass powder in the high refractive index layer forming frit paste are fused to each other and flow in the plane direction to form a high refractive index layer having a flat and smooth surface. .
  • a transparent conductive layer made of an ITO film having a thickness of 120 nm was formed on the high refractive index layer by a sputtering apparatus. Thereafter, laser processing was performed on the transparent conductive layer by a pulse laser device (R-100, manufactured by Raydiance) having a wavelength of 1550 nm, thereby forming a concave groove in the transparent conductive layer. At this time, the depth and width of the concave groove were controlled by adjusting the laser power and the irradiation spot diameter.
  • the surface of the transparent conductive film was polished by buffing to produce an organic EL device substrate.
  • an organic layer having a thickness of 150 nm composed of a hole injection layer, a light emitting layer, an electron transport layer, and an electron injection layer and an aluminum electrode (cathode) having a thickness of 80 nm are vacuum-deposited on the organic EL device substrate.
  • the organic EL device according to the comparative example was manufactured by changing the depth and width of the concave groove portion according to laser irradiation conditions different from those in the example in the manufacturing process of the organic EL device according to the above example.
  • the manufacturing conditions other than the laser irradiation conditions are the same as in the examples.
  • the leakage current was evaluated for each of Examples 1 to 9 and Comparative Examples 1 to 4.
  • an organic EL device having a light emitting area of 2 mm ⁇ 2 mm was manufactured, and the current-voltage characteristics of each of the manufactured organic EL devices were measured. The measurement was carried out using a 2400 type source meter manufactured by Keithley. At this time, the current value when the voltage was 2 V was defined as the leakage current (mA / cm 2 ). The results are shown in Table 1.
  • the leakage current is 7 ⁇ 10 ⁇ 5 mA / cm 2 or less, and organic It can be confirmed that a value suitable for an EL device is obtained.
  • the transparent conductive film was uniformly formed as shown in FIGS. 5A and 5B.
  • the high refractive index layer is exposed at the bottom wall of the concave groove. Further, the exposed high refractive index layer does not show damage such as cracking, melting, and discoloration.
  • the leakage current is 1 ⁇ 10 ⁇ 4 mA / cm 2 or more. Compared with -9, the leakage current is very large.
  • this invention is not limited to the structure of said embodiment or an Example, It is not limited to an above-described effect.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the case where the organic EL element layer 12 is formed in the concave groove 6 and the concave groove 6 is insulated has been described.
  • the organic EL element layer 12 instead of the organic EL element layer 12, as shown in FIG. 6 may be filled with an insulating resin 21.
  • the filling of the insulating resin 21 may be performed in the manufacturing process of the organic EL device substrate 1 or may be performed in the manufacturing process of the organic EL device 11.
  • the organic EL device substrate 1 includes the insulating resin 21 in the concave groove 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

透光板と、高屈折率層4と、透明導電層5とを、厚み方向にこの順で備えた有機ELデバイス用基板1であって、透明導電層5を少なくとも第一領域R1と第二領域R2に分離する凹状溝部6を有するとともに、透明導電層5の厚みをt1(μm)、凹状溝部6の最小幅をw1(μm)、透明導電層5の高屈折率層4とは反対側の表面5aを基準とした凹状溝部6の最大深さをd1(μm)とした場合に、t1≦d1かつd1/{(w1)0.5}<0.1なる関係が成立する。

Description

有機ELデバイス用基板、有機ELデバイスおよび有機ELデバイス用基板の製造方法
 本発明は、有機ELデバイス用基板及びこれを用いた有機ELデバイス、並びにこれらの製造方法に関する。
 近年、ディスプレイや照明等の各種デバイスにおいて、薄型化や低消費電力化を図る目的で、有機EL(エレクトロルミネッセンス)素子を用いた有機ELデバイスの利用が注目されている。しかしながら、有機EL素子は、特に照明用光源として用いるには輝度が不十分な場合が多く、更なる光取り出し効率の改善が必要とされているのが実情である。
 そこで、例えば、特許文献1には、光取り出し効率を高めるために、有機EL素子からの光を散乱させる機能を有する有機ELデバイス用基板を用いることが開示されている。詳細には、同文献に開示の有機ELデバイス用基板は、透明導電膜が形成される側の表面に、有機EL素子からの光を散乱するための凹凸面が形成されたガラス板を備える。ただし、このままでは凹凸面に透明導電膜を直接形成しにくいという問題がある。そのため、同文献に開示の有機ELデバイス用基板は、ガラス板の凹凸面の上にガラス焼成膜からなる高屈折率層を更に備え、透明導電膜が形成される面を高屈折率層によって平坦化している。なお、高屈折率層は、透明導電膜との界面における光の反射を低減し、光取り出し効率を高める役割も果たしている。
特開2010-198797号公報
 有機ELデバイス用基板の透明導電膜は、有機ELデバイスの電極(例えば、陽極)として利用される。そのため、透明導電膜にはデバイス形状や構造に応じて凹状溝部が形成され、所望の電極形状に対応するように透明導電膜が分割される。凹状溝部の表面には、有機ELデバイスを製造する過程で有機EL素子層が形成され、凹状溝部を介して隣接する透明導電膜からなる電極間の絶縁が保たれるようになっている。
 しかしながら、このように製造された有機ELデバイスであっても、凹状溝部において大きな漏れ電流が発生し、有機ELデバイスの発光特性が損なわれるという問題がある。
 本発明は、漏れ電流の発生を低減し得る有機ELデバイス用基板および有機ELデバイスを提供することを課題とする。
 本発明者等は鋭意研究の結果、漏れ電流の原因が凹状溝部の形状にあることを知見するに至った。詳細には、有機ELデバイス用基板を用いて有機ELデバイスを製造する過程において、有機EL素子層等の絶縁層を蒸着等によって形成する。この際、凹状溝部の最小幅に対してその深さが大きすぎると、凹状溝部の表面全体に有機EL素子層等の絶縁層を形成することが難しい。そのため、例えば凹状溝部の側壁部に、絶縁層が形成されずに透明導電層が露出した露出部が形成され、漏れ電流の発生原因となり得る。そこで、このような知見に基づき凹状溝部の最小幅と最大深さの寸法関係の適正化を図ることで、本発明を想到するに至った。
 上記の課題を解決するために創案された本発明に係る有機ELデバイス用基板は、透光板と、高屈折率層と、透明導電層とを、厚み方向でこの順に備えた有機ELデバイス用基板であって、透明導電層を少なくとも第一領域と第二領域に分離する凹状溝部を有するとともに、透明導電層の厚みをt1(μm)、凹状溝部の最小幅をw1(μm)、透明導電層の高屈折率層とは反対側の表面を基準とした凹状溝部の最大深さをd1(μm)とした場合に、t1≦d1かつd1/{(w1)0.5}<0.1なる関係が成立することを特徴とする。このような構成によれば、t1≦d1であるため、凹状溝部の最大深さが透明導電層の厚み以上の大きさとなり、凹状溝部によって透明導電層を第一領域と第二領域に確実に分離することができる。一方、d1/{(w1)0.5}<0.1であると、凹状溝部の最小幅に対してその最大深さが適正なものとなることが種々の実験からも判明している。したがって、このような寸法関係を有する有機ELデバイス用基板を用いて有機ELデバイスを製造すれば、凹状溝部の表面全体に有機EL素子層等の絶縁層を形成することができるので、漏れ電流の発生を低減することができる。
 上記の構成において、凹状溝部の最小幅が、10μm以上であることが好ましい。このようにすれば、凹状溝部の最小幅が十分広くなるため、有機ELデバイス用基板を用いて有機ELデバイスを製造した際に、凹状溝部の表面全体に有機EL素子層等の絶縁層を形成しやすくなる。
 上記の構成において、凹状溝部の側壁部における透明導電層の表面側の端部は、透明導電層の表面よりも隆起した隆起部を有し、凹状溝部の長手方向に沿った寸法が40μm、凹状溝部の幅方向に沿った寸法が10μmの矩形状領域を、側壁部の端部を含むように設けた場合に、矩形状領域内で、透明導電層の表面を基準とした隆起部の高さが10nm以上となる部分の平面視した面積が、矩形状領域の面積の10%以下であることが好ましい。すなわち、高さ10nm以上の隆起部が多数存在すると、隆起部によって透明導電層の形状が複雑化し、漏れ電流の発生原因になり得る。そのため、漏れ電流の発生をより確実に防止する観点からは、上記の構成に規定するように、高さ10nm以上の隆起部の平面視した面積(水平投影面積)を矩形状領域(40μm×10μm)の面積の10%以下まで小さくすることが好ましい。
 上記の課題を解決するために創案された本発明に係る有機ELデバイスは、上記の有機ELデバイス用基板と、有機ELデバイス用基板の透明導電層側に形成された有機EL素子層とを備えることを特徴とする。このような構成によれば、上記の有機EL用デバイス用基板で説明した同様の作用効果を享受することができる。
 上記の課題を解決するために創案された本発明に係る有機ELデバイス用基板の製造方法は、透光板と、高屈折率層と、透明導電層とを、厚み方向でこの順に備えた有機ELデバイス用基板の製造方法であって、透明導電層の一部をレーザー加工により除去し、透明導電層を少なくとも第一領域と第二領域に分離する凹状溝部を形成するレーザー加工工程を備え、レーザー加工工程において、透明導電層の厚みをt1(μm)、凹状溝部の最小幅をw1(μm)、透明導電層の高屈折率層とは反対側の表面を基準とした凹状溝部の最大深さをd1(μm)とした場合に、t1≦d1かつd1/{(w1)0.5}<0.1なる関係が成立するように、凹状溝部を形成することを特徴とする。このような構成によれば、上記の有機EL用デバイス用基板で説明した対応する構成と同様の作用効果を享受することができる。また、ウェットエッチングではなく、レーザー加工で凹状溝部が形成されるため、高屈折率層として耐水性や耐薬品性に劣る材質を選択しても、高屈折率層へのダメージを小さくできる。すなわち、例えば高屈折率層の材料として、ビスマス系、鉛系、ランタン系等のガラス組成物を問題なく選択することができる。
 上記の構成において、レーザー加工工程において、凹状溝部の最小幅が10μm以上になるように、凹状溝部を形成することが好ましい。
 上記の構成において、レーザー加工工程の後に、透明導電層の表面を研磨する研磨工程を備え、研磨工程後に、凹状溝部の側壁部における透明導電層の表面側の端部は、透明導電層の表面よりも隆起した隆起部を有しており、凹状溝部の長手方向に沿った寸法が40μm、凹状溝部の幅方向に沿った寸法が10μmの矩形状領域を、側壁部の端部を含むように設けた場合に、矩形状領域内で、透明導電層の表面を基準とした隆起部の高さが10nm以上となる部分の平面視した面積が、矩形状領域の面積の10%以下になるように、透明導電層の表面を研磨することが好ましい。
 上記の課題を解決するために創案された本発明に係る有機ELデバイスの製造方法は、上記の有機ELデバイス用基板の製造方法により、有機ELデバイス用基板を得る工程と、有機ELデバイス用基板の透明導電層側に有機EL素子層を形成する工程とを備えることを特徴とする。このような構成によれば、上記の有機EL用デバイス用基板および上記の有機EL用デバイス用基板の製造方法で説明した同様の作用効果を享受することができる。
 以上のような本発明によれば、漏れ電流の発生を低減し得る有機ELデバイス用基板および有機ELデバイスを提供することができる。
有機ELデバイス用基板の断面図である。 有機ELデバイス用基板の凹状溝部周辺の拡大断面図である。 有機ELデバイス用基板の凹状溝部周辺の原子間力顕微鏡図である。 有機ELデバイスの断面図である。 実施例の有機ELデバイス用基板の凹状溝部周辺の走査型電子顕微鏡写真である。 実施例の有機ELデバイス用基板の凹状溝部内の走査型電子顕微鏡写真である。 有機ELデバイス用基板の変形例を示す断面図である。
 以下、本発明の実施形態を添付図面に基づいて説明する。
 図1に示すように、有機ELデバイス用基板1は、透光板2と、凹凸層3と、高屈折率層4と、透明導電層5とを、厚み方向でこの順に備える。透光板2、凹凸層3、高屈折率層4および透明導電層5のそれぞれは、光透過性を有する。
 透光板2は、ガラスや樹脂などで形成される。透光板2を形成するガラスとしては、ソーダライムガラス、ホウケイ酸塩ガラス、無アルカリガラス、石英ガラスなどが挙げられる。透光板2を形成する樹脂としては、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリカーボネート樹脂などが挙げられる。
 凹凸層3は、凹凸形状をなすガラス焼成層からなる。凹凸層3の屈折率ndは、透光板2の屈折率ndと実質的に同じであることが好ましい。この際、凹凸層3の屈折率ndは、透光板2の屈折率ndに対して±0.1の範囲内であることが好ましい。ここで、屈折率ndは波長588nmにおける屈折率を表す。なお、凹凸層3の代わりに、透光板2の表面自体を凹凸面で形成してもよい。凹凸面を形成する方法としては、サンドブラスト法、プレス成形法、ロール成形法などの機械的処理法、ゾルゲルスプレー法、エッチング法、大気圧プラズマ処理法などの化学的処理法が挙げられる。また、凹凸層3や凹凸面などの凹凸形状の代わり、或いはこれと併用して、高屈折率層4の基材中に、高屈折率層4の基材とは異なる屈折率の物質を分散させてもよい。分散物質は、高屈折率層4の基材の屈折率より小さい屈折率の物質であることが好ましい。分散物質としては、空気、酸素、窒素、二酸化炭素などの気体(気泡)、チタニア、ジルコニア、シリカなどのセラミックス粒子やガラス(非晶質ガラス又は結晶化ガラス)粒子などの無機粒子が挙げられる。
 高屈折率層4は、透光板2の屈折率よりも大きな屈折率を有する。高屈折率層の屈折率ndは、特に限定されるものではないが、例えば1.8~2.1である。高屈折率層4は、ガラス(非晶質ガラス又は結晶化ガラス)、樹脂、セラミックスなどで形成される。高屈折率層4は、ガラス焼成層であることが好ましい。ガラス焼成層を形成するガラスとしては、ソーダライムガラス、ホウケイ酸塩ガラス、アルミノケイ酸塩ガラス、リン酸塩ガラス、ビスマス系ガラス、鉛系ガラス、ランタン系ガラスなどの無機ガラスが挙げられる。中でもビスマス系ガラスは、非鉛系ガラスで屈折率が高く、低温で焼成できるため特に好ましい。ただし、ビスマス系ガラスは比誘電率が高いため、高屈折率層4の表層部における電荷密度が高くなりやすく、後述する凹状溝部6からの漏れ電流が大きくなりやすい。従って、ビスマス系ガラスを含む高屈折率層4を有する有機EL素子用基板においては、漏れ電流の発生を低減し得る本発明の有用性は特に顕著である。なお、高屈折率層4の比誘電率は、9~23であることが好ましく、10~22であることがより好ましい。
 透明導電層5としては、酸化インジウム錫(ITO)、アルミニウム亜鉛酸化物(AZO)、インジウム亜鉛酸化物(IZO)などが挙げられる。
 凹凸層3の形成に用いるガラス粉末として、例えば、質量%で、SiO2:30%、B23:40%、ZnO:10%、Al23:5%、K2O:15%を含有するガラス粉末を用いることができる。また、凹凸層3の凹凸形状は、フリットペーストを焼成する際の熱処理条件に加え、ガラス粉末の粒径にも依存する。ガラス粉末の好ましい粉末粒度(D50)は、0.3~15μm、より好ましくは1.0~10μm、さらに好ましくは1.5~8μmの範囲である。
 高屈折率層4の形成に用いるガラス粉末として、例えば、質量%で、Bi23:70%、SiO2:5%、ZnO:10%、B23:10%、Al23:5%を含有し、比誘電率が17のビスマス系ガラス粉末を用いることができる。高屈折率層4の表面に透光性電極等を形成する場合、高屈折率層4の表面は平滑であることが好ましい。平滑な表面を得るためには、フリットペーストを焼成する際の熱処理条件に加え、ガラス粉末の粒度を適切に設定することが好ましい。ガラス粉末の粉末粒度(D50)は、好ましくは0.1~20μm、より好ましくは0.2~15μm、さらに好ましくは0.3~10μmである。
 透明導電層5には、透明導電層5を少なくとも第一領域R1と第二領域R2に分離する凹状溝部6が形成されている。この凹状溝部6は次のような特徴を有する。すなわち、図2に示すように、透明導電層5の厚みをt1、凹状溝部6の最小幅をw1、透明導電層5の高屈折率層4とは反対側の表面5aを基準とした凹状溝部6の最大深さをd1とした場合に、
 t1≦d1……(1)
 d1/{(w1)0.5}<0.1……(2)
なる関係が成立する。ただし、上記の(2)式において、d1及びw1にはμm換算した値を用いる。
 上記の(1)式により、第一領域R1と第二領域R2とが完全に分離され、第一領域R1と第二領域R2とが透明導電層5によって直接導通することがない。上記の(1)式は、t1<d1であることが好ましい。この場合、図2に示すように、凹状溝部6の底壁部6aにおいて、高屈折率層4が露出する。
 また、上記の(2)式により、凹状溝部6の最小幅w1に対してその最大深さd1が適正なものとなる。したがって、このような寸法関係を有する有機ELデバイス用基板1を用いて有機ELデバイスを製造した際に、凹状溝部6の表面全体に有機EL素子層等の絶縁層を形成することができるので、漏れ電流の発生を問題のないレベルまで低減することができる。上記の(2)式において、d1/{(w1)0.5}は、好ましくは0.08以下、より好ましくは0.06以下、さらに好ましくは0.04以下である。
 凹状溝部6の最大深さd1は、好ましくは1μm以下、より好ましくは0.8μm以下、さらに好ましくは0.5μm以下である。
 凹状溝部6の最小幅w1は、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上である。ここで、凹状溝部6の最小幅w1は、底壁部6aに対応する位置の幅であることが好ましい。また、凹状溝部6の溝幅が底壁部6aから透明導電層5の表面5a側に移行するに連れて拡大するように、溝幅方向で対向する凹状溝部6の一対の側壁部6bが外側に傾斜していることが好ましい。
 凹状溝部6の側壁部6bにおける透明導電層5の表面5a側の端部6b1は、透明導電層5の表面5aよりも隆起した隆起部7を有する。隆起部7は次のような特徴を有することが好ましい。すなわち、図3に示すように、凹状溝部6の長手方向Xに沿った寸法が40μm、凹状溝部6の幅方向Yに沿った寸法が10μmの矩形状領域Sを、側壁部6bの端部6b1を含むように設けた場合に、矩形状領域S内で、透明導電層5の表面5aを基準とした隆起部7の高さh(図2を参照)が10nm以上となる部分の平面視した面積(以下、単に隆起部面積ともいう)が、矩形状領域Sの面積の10%以下であることが好ましく、5%以下であることがより好ましく、2%以下であることがさらに好ましい。矩形状領域Sの平面方向(X方向及びY方向)における位置は、側壁部6bの端部6b1を領域内に含む条件を満たせば任意である。
 有機ELデバイス用基板1は、次の関係式を満足するものであってもよい。
 d1/t1<4……(3)
 図4に示すように、有機ELデバイス11は、図1の有機ELデバイス用基板1の上に、さらに有機EL素子層12と、陰極13とを備えるものである。有機EL素子層12及び陰極13は、透明導電層5側に形成される。透明導電層5は陽極として機能する。陰極13は、アルミなどの金属層で形成され、本実施形態では光反射性を有する。有機EL素子層12は、発光層を備えており、発光層と透明導電層5の間には、ホール注入層、ホール輸送層などが必要に応じて形成される。また、発光層と陰極13の間には、電子輸送層、電子注入層などが必要に応じて形成される。
 透明導電層5の凹状溝部6の非形成領域における有機EL素子層12の厚みをt2とした場合、凹状溝部6の最大深さd1との間に、
 d1/t2≦3……(4)
なる関係が成立することが好ましい。
 凹状溝部6の最大深さd1は、有機EL素子層12の厚みt2の2.5倍以下であることがより好ましく、2倍以下であることがさらに好ましい。
 有機EL素子層12で発光した光は、透明導電層5及び透光板2を通り、透光板2側から外部に取り出される。この際、陰極13で反射した光も、透光板2側から外部に取り出される。
 以上のように構成された有機ELデバイス11は、光取り出し効率が高く、かつ、発光特性に悪影響を与える漏れ電流も非常に小さいため、例えば、照明として好適に用いることができる。
 次に、以上のように構成された有機ELデバイスの製造方法を説明する。なお、有機ELデバイスの製造方法において、有機ELデバイス用基板の製造方法も併せて説明する。
 有機ELデバイスの製造方法は、透光板2の上に凹凸層3を形成する凹凸層形成工程と、凹凸層3の上に高屈折率層4を形成する高屈折率層形成工程と、高屈折率層4の上に透明導電層5を形成する透明導電層形成工程と、透明導電層5の上に有機EL素子層12を形成する有機EL素子層形成工程と、有機EL素子層12の上に陰極13を形成する陰極形成工程とを備える。このうち、凹凸層形成工程から透明導電層形成工程までが、有機ELデバイス用基板の製造方法に関する工程である。有機ELデバイス用基板の製造工程は、例えばガラスメーカーで行われ、有機ELデバイスの製造工程に含まれる残りの工程は、例えば有機ELデバイスメーカーで行われる。
 凹凸層形成工程では、ガラス粉末を含むフリットペーストを透光板2の表面に塗布又は印刷した後、フリットペーストを焼成する(第一熱処理)。これにより、透光板2の上に、ガラス焼成層からなる凹凸層3を形成する。ここで、第一熱処理の熱処理温度は、透光板2の耐熱温度よりも低くする必要があり、好ましくは透光板2の軟化点(例えば730℃)よりも低く、より好ましくは透光板2の軟化点よりも50~200℃程度低い。
 高屈折率層形成工程では、ガラス粉末を含むフリットペーストを凹凸層3(又は凹凸層3及び透光板2)の上に塗布又は印刷した後、フリットペーストを焼成する(第二熱処理)。これにより、凹凸層3の上に、ガラス焼成層からなる高屈折率層4を形成する。ここで、第二熱処理の熱処理温度は、第一熱処理の熱処理温度よりも低温であることが好ましい。このようにすれば、第一熱処理によって形成された凹凸層3は、第二熱処理中もその形態を維持する。
 透明導電層形成工程では、まず、スパッタリング、蒸着、CVDなどの公知の手法により、高屈折率層4の上に透明導電層5を形成する。その後、所定のパターニング形状に応じて、透明導電層5の一部をレーザー加工により除去する(レーザー加工工程)。これにより、透明導電層5に凹状溝部6を形成し、少なくとも第一領域R1と第二領域R2に分離する。レーザー加工には、例えば、パルスレーザーが用いられる。
 レーザー加工工程では、上記の式(1)及び(2)の関係が成立するように、凹状溝部6を形成する。この際、例えばレーザーパワーや照射スポット径を調整することで、凹状溝部6の最小幅w1及び/又は最大深さd1が調整される。
 このレーザー加工工程の後、凹状溝部6の側壁部6bにおける透明導電層5の表面5a側の端部6b1には、レーザー加工時の熱の影響を受け、透明導電層5の表面5aよりも隆起した隆起部7が形成される場合がある。そのため、本実施形態の透明導電層形成工程では、レーザー加工工程の後に、透明導電層5の表面5aを研磨する。この研磨工程は、例えばバフ研磨によって行う。これにより、隆起部面積が、矩形状領域Sの面積の10%以下になるようにする。なお、隆起部7は、レーザー加工によって形成されたものに限定されない。
 有機EL素子層形成工程では、蒸着により、透明導電層5の上に有機EL素子層12を形成する。有機EL素子層12は凹状溝部6内にも形成し、有機EL素子層12により第一領域R1と第二領域R2との間の絶縁を保つ。この際、上記の式(3)の関係が成立するように、有機EL素子層12を形成することが好ましい。
 陰極形成工程では、スパッタリング、蒸着、CVDなどの公知の手法により、有機EL素子層12の上に陰極13を形成する。
 まず、本発明の実施例に係る有機ELデバイスの製造条件を説明する。
 透光板として、厚さ0.7mmのソーダライムガラス基板を用意した。このガラス基板の表面に、スクリーン印刷機を用いて凹凸層形成用フリットペーストを約25μmの厚さで塗布し、130℃で乾燥後、電気炉を用いて600℃で第一熱処理を行った。第一熱処理によって、凹凸層形成用フリットペースト中のガラス粉末のガラス粒子同士が互いに融着して、ガラス基板の表面に凹凸層が形成される。
 ガラス基板及び凹凸層のそれぞれの上に、ダイコーターを用いて高屈折率層形成用フリットペーストを厚さ約80μmで塗布し、130℃で乾燥後、電気炉を用いて580℃で第二熱処理を行った。第二熱処理の熱処理温度は第一熱処理の熱処理温度よりも低温であるため、第一熱処理によって形成された凹凸層は、第二熱処理中もその形態を維持する。第二熱処理によって、高屈折率層形成用フリットペースト中のガラス粉末のガラス粒子同士が互いに融着すると共に、平面方向に流動して、平坦で平滑な表面を有する高屈折率層が形成される。
 スパッタリング装置によって高屈折率層上に厚さ120nmのITO膜からなる透明導電層を形成した。その後、波長1550nmのパルスレーザー装置(Raydiance社製R-100)によって透明導電層にレーザー加工を行って、透明導電層に凹状溝部を形成した。この際、レーザーパワーや照射スポット径を調整することによって、凹状溝部の深さや幅の制御を行った。
 上記のレーザー加工の後、透明導電膜の表面をバフ研磨によって研磨し、有機ELデバイス用基板を製造した。
 さらに、上記の有機ELデバイス用基板の上に、ホール注入層、発光層、電子輸送層、電子注入層からなる厚さ150nmの有機層と、厚さ80nmのアルミニウム電極(陰極)とを真空蒸着によって形成し、有機ELデバイスを製造した。
 一方、比較例に係る有機ELデバイスは、上記の実施例に係る有機ELデバイスの製造工程において、実施例とは異なるレーザー照射条件により、凹状溝部の深さや幅を変更することによって製造した。なお、レーザー照射条件以外の製造条件は、実施例と同様とする。
 そして、実施例1~9及び比較例1~4のそれぞれについて漏れ電流を評価した。漏れ電流の評価は、実施例1~9及び比較例1~4のそれぞれについて、2mm×2mmの発光面積を有する有機ELデバイスを製造し、その製造された各有機ELデバイスの電流-電圧特性をケースレー社製2400型ソースメータにより測定することによって行った。この際、電圧が2Vの時の電流値を漏れ電流(mA/cm2)とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、d1/{(w1)0.5}が0.1未満となる、実施例1~9のすべてにおいて、漏れ電流が7×10-5mA/cm2以下となっており、有機ELデバイスとして好適な値が得られていることが確認できる。ここで、実施例2の有機ELデバイスに用いた有機ELデバイス用基板における凹状溝部の状態を走査型電子顕微鏡で確認したところ、図5A及び図5Bに示すように、透明導電膜が一様に除去され、凹状溝部の底壁部において高屈折率層が露出している。また、露出している高屈折率層には、クラック、溶融、変色等のダメージは見られない。
 これに対し、d1/{(w1)0.5}が0.1以上となる、比較例1~4のすべてにおいて、漏れ電流が1×10-4mA/cm2以上となっており、実施例1~9に比べて漏れ電流が非常に大きくなっている。
 ここで、実施例1~9、比較例1~3において、矩形状領域の面積に占める隆起部面積が10%以下になっていることから、比較例1~3でも、矩形状領域の面積に占める隆起部面積が10%超となる比較例4よりも漏れ電流が小さくなっている。
 なお、本発明は、上記の実施形態や実施例の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上記の実施形態では、凹状溝部6内に有機EL素子層12を形成し、凹状溝部6を絶縁する場合を説明したが、有機EL素子層12の代わりに、図6に示すように、凹状溝部6に絶縁樹脂21を充填してもよい。この絶縁樹脂21の充填は、有機ELデバイス用基板1の製造工程で行ってもよいし、有機ELデバイス11の製造工程で行ってもよい。前者の場合、有機ELデバイス用基板1は、凹状溝部6に絶縁樹脂21を備えることになる。
1   有機ELデバイス用基板
2   透光板
3   凹凸層
4   高屈折率層
5   透明導電層
5a  表面
6   凹状溝部
6a  底壁部
6b  側壁部
7   隆起部
11  有機ELデバイス
12  有機EL素子層
13  陰極
21  絶縁樹脂
R1  第一領域
R2  第二領域
S   矩形状領域
d1  凹状溝部の最大深さ
w1  凹状溝部の最小幅

Claims (7)

  1.  透光板と、高屈折率層と、透明導電層とを、厚み方向にこの順で備えた有機ELデバイス用基板であって、
     前記透明導電層を少なくとも第一領域と第二領域に分離する凹状溝部を有するとともに、
     透明導電層の厚みをt1(μm)、前記凹状溝部の最小幅をw1(μm)、前記透明導電層の前記高屈折率層とは反対側の表面を基準とした前記凹状溝部の最大深さをd1(μm)とした場合に、
     t1≦d1かつd1/{(w1)0.5}<0.1
    なる関係が成立することを特徴とする有機ELデバイス用基板。
  2.  前記凹状溝部の最小幅が、10μm以上であることを特徴とする請求項1に記載の有機EL素子用基板。
  3.  前記凹状溝部の側壁部における前記透明導電層の前記表面側の端部は、前記透明導電層の前記表面よりも隆起した隆起部を有し、
     前記凹状溝部の長手方向に沿った寸法が40μm、前記凹状溝部の幅方向に沿った寸法が10μmの矩形状領域を、前記側壁部の前記端部を含むように設けた場合に、
     前記矩形状領域内で、前記透明導電層の前記表面を基準とした前記隆起部の高さが10nm以上となる部分の平面視した面積が、前記矩形状領域の面積の10%以下であることを特徴とする請求項1又は2に記載の有機ELデバイス用基板。
  4.  請求項1~3のいずれか1項に記載の有機ELデバイス用基板と、前記有機ELデバイス用基板の前記透明導電層側に形成された有機EL素子層とを備えることを特徴とする有機ELデバイス。
  5.  透光板と、高屈折率層と、透明導電層とを、厚み方向でこの順に備えた有機ELデバイス用基板の製造方法であって、
     前記透明導電層の一部をレーザー加工により除去し、前記透明導電層を少なくとも第一領域と第二領域に分離する凹状溝部を形成するレーザー加工工程を備え、
     前記レーザー加工工程において、前記透明導電層の厚みをt1(μm)、前記凹状溝部の最小幅をw1(μm)、前記透明導電層の前記高屈折率層とは反対側の表面を基準とした前記凹状溝部の最大深さをd1(μm)とした場合に、
     t1≦d1かつd1/{(w1)0.5}<0.1
    なる関係が成立するように、前記凹状溝部を形成することを特徴とする有機ELデバイス用基板の製造方法。
  6.  前記レーザー加工工程において、前記凹状溝部の最小幅が10μm以上になるように、前記凹状溝部を形成することを特徴とする請求項5に記載の有機ELデバイス用基板の製造方法。
  7.  前記レーザー加工工程の後に、前記透明導電層の前記表面を研磨する研磨工程を備え、
     前記研磨工程後に、前記凹状溝部の側壁部における前記透明導電層の前記表面側の端部は、前記透明導電層の前記表面よりも隆起した隆起部を有しており、
     前記凹状溝部の長手方向に沿った寸法が40μm、前記凹状溝部の幅方向に沿った寸法が10μmの矩形状領域を、前記側壁部の前記端部を含むように設けた場合に、
     前記矩形状領域内で、前記透明導電層の前記表面を基準とした前記隆起部の高さが10nm以上となる部分の平面視した面積が、前記矩形状領域の面積の10%以下になるように、前記透明導電層の前記表面を研磨することを特徴とする請求項5又は6に記載の有機ELデバイス用基板の製造方法。
PCT/JP2018/014440 2017-04-25 2018-04-04 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法 WO2018198698A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880024127.3A CN110521283A (zh) 2017-04-25 2018-04-04 有机el设备用基板、有机el设备以及有机el设备用基板的制造方法
EP18792293.5A EP3618572A1 (en) 2017-04-25 2018-04-04 Organic el device substrate, organic el device, and method for manufacturing organic el device substrate
US16/608,327 US20210104699A1 (en) 2017-04-25 2018-04-04 Organic el device substrate, organic el device, and method for manufacturing organic el device substrate
KR1020197022243A KR20200005529A (ko) 2017-04-25 2018-04-04 유기 el 디바이스용 기판, 유기 el 디바이스 및 유기 el 디바이스용 기판의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-086493 2017-04-25
JP2017086493 2017-04-25
JP2017190706A JP2018186066A (ja) 2017-04-25 2017-09-29 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法
JP2017-190706 2017-09-29

Publications (1)

Publication Number Publication Date
WO2018198698A1 true WO2018198698A1 (ja) 2018-11-01

Family

ID=63919710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014440 WO2018198698A1 (ja) 2017-04-25 2018-04-04 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法

Country Status (1)

Country Link
WO (1) WO2018198698A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198797A (ja) 2009-02-23 2010-09-09 Nippon Electric Glass Co Ltd 有機el素子用ガラス基板及びその製造方法
JP2010286615A (ja) * 2009-06-10 2010-12-24 Sony Corp 光学部品の製造方法、光学部品、表示装置の製造方法および表示装置
WO2012053625A1 (ja) * 2010-10-22 2012-04-26 ソニー株式会社 パターン基体およびその製造方法ならびに情報入力装置および表示装置
JP2012204170A (ja) * 2011-03-25 2012-10-22 Sony Corp 導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、電子機器、ならびに原盤
WO2016100303A2 (en) * 2014-12-16 2016-06-23 Carbonics Inc. Photolithography based fabrication of 3d structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198797A (ja) 2009-02-23 2010-09-09 Nippon Electric Glass Co Ltd 有機el素子用ガラス基板及びその製造方法
JP2010286615A (ja) * 2009-06-10 2010-12-24 Sony Corp 光学部品の製造方法、光学部品、表示装置の製造方法および表示装置
WO2012053625A1 (ja) * 2010-10-22 2012-04-26 ソニー株式会社 パターン基体およびその製造方法ならびに情報入力装置および表示装置
JP2012204170A (ja) * 2011-03-25 2012-10-22 Sony Corp 導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、電子機器、ならびに原盤
WO2016100303A2 (en) * 2014-12-16 2016-06-23 Carbonics Inc. Photolithography based fabrication of 3d structures

Similar Documents

Publication Publication Date Title
JP5742838B2 (ja) 有機led素子、透光性基板、および有機led素子の製造方法
US8530748B2 (en) Substrate with through-holes for grid-like auxiliary wiring pattern
JP2008066027A (ja) 凹凸表面を有する基板およびそれを用いた有機el素子
KR20100101076A (ko) 투광성 기판, 그의 제조 방법, 유기 led 소자 및 그의 제조 방법
KR101493601B1 (ko) 발광 디바이스용 적층체 및 그의 제조 방법
TW201321329A (zh) 有機led元件之散射層用玻璃、有機led元件用之積層基板及其製造方法、以及有機led元件及其製造方法
KR101579457B1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
KR101632614B1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
JP2013025900A (ja) 電子デバイス用基板、及び、これを用いた有機led素子
KR101615525B1 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
CN106488893B (zh) 透明扩散性oled基板和制造这样的基板的方法
KR20140132589A (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
JP2018186066A (ja) 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法
WO2015186584A1 (ja) 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
WO2018198698A1 (ja) 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法
JP2010171349A (ja) 表示パネル用基板、その製造方法、これを用いた表示パネル及びその製造方法
WO2014010621A1 (ja) 光取り出し層形成用ガラス、これを用いた、光取り出し層形成用ガラス粉末、光取り出し層の形成方法、光取り出し層形成用材料、光取り出し層形成用ガラスペースト、有機el素子用ガラス基板、有機el素子及び有機el素子用ガラス基板の製造方法
KR101470293B1 (ko) 유기발광소자용 광추출 기판 제조방법
JP2013109923A (ja) 電子デバイス用基板の製造方法
JP6406571B2 (ja) ガラス
US20190237698A1 (en) Mother substrate for substrate for electronic device
KR101501828B1 (ko) 유기발광다이오드
KR101465882B1 (ko) 유기발광다이오드
JP2016011245A (ja) 分相ガラス
KR20200095699A (ko) 스크린 프린팅 인쇄기술을 이용한 도로 표지판 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022243

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018792293

Country of ref document: EP

Effective date: 20191125