WO2018198269A1 - 受信機、及び、送信機ユニット - Google Patents

受信機、及び、送信機ユニット Download PDF

Info

Publication number
WO2018198269A1
WO2018198269A1 PCT/JP2017/016766 JP2017016766W WO2018198269A1 WO 2018198269 A1 WO2018198269 A1 WO 2018198269A1 JP 2017016766 W JP2017016766 W JP 2017016766W WO 2018198269 A1 WO2018198269 A1 WO 2018198269A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
transmitter
rotation angle
difference
wheel
Prior art date
Application number
PCT/JP2017/016766
Other languages
English (en)
French (fr)
Inventor
泰久 辻田
慧友 藤井
Original Assignee
太平洋工業 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋工業 株式会社 filed Critical 太平洋工業 株式会社
Priority to PCT/JP2017/016766 priority Critical patent/WO2018198269A1/ja
Priority to KR1020187009682A priority patent/KR102068577B1/ko
Priority to EP17851921.1A priority patent/EP3415347B1/en
Priority to US15/765,435 priority patent/US10479148B2/en
Priority to CN201780003471.XA priority patent/CN109153296B/zh
Priority to JP2018517457A priority patent/JP6756822B2/ja
Publication of WO2018198269A1 publication Critical patent/WO2018198269A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0438Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0459Transmission control of wireless signals self triggered by motion sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a receiver and a transmitter unit.
  • a tire condition monitoring apparatus is known as an apparatus for enabling a driver to check the condition of a plurality of tires provided in a vehicle in a passenger compartment.
  • the tire condition monitoring device includes a transmitter mounted on each of a plurality of wheels and a receiver mounted on the vehicle. Each transmitter transmits transmission data to the receiver.
  • the transmission data from the transmitter includes data indicating the state of the tire.
  • the receiver grasps the state of the tire by receiving the transmission data.
  • the receiver can specify which tire is included in the transmission data, among the plurality of tires. In other words, it is preferable that the receiver can identify whether the received transmission data is transmitted from a transmitter mounted on any of a plurality of wheels.
  • This type of tire condition monitoring device is described in Patent Document 1.
  • the tire condition monitoring device described in Patent Document 1 is mounted on a vehicle including a rotation angle detection device that detects rotation angles of a plurality of wheels.
  • the transmitter transmits transmission data when it detects that the rotation angle of the wheel has become a specific angle.
  • the receiver acquires the rotation angle of each wheel from the rotation angle detection device when receiving the transmission data.
  • the receiver identifies which wheel the transmitter is attached to, from the variation in the rotation angle of each wheel acquired with the reception of the transmission data.
  • the rotation angles acquired when the transmission data is received are classified for each specific angle at which the transmission data is transmitted. Then, variation is obtained for each classified rotation angle.
  • An object of the present invention is to provide a receiver and a transmitter unit that can shorten the time required to specify which of the plurality of wheels each transmitter is attached to.
  • a transmitter mounted on a vehicle having a rotation angle detection unit that detects a rotation angle of each of the plurality of wheels and mounted on each of the plurality of wheels.
  • a receiver configured to be able to specify which of a plurality of wheels is attached to. The receiver receives the transmission data transmitted from the transmitter when the transmitter detects that one of the plurality of specific angles set within the rotation angle that the wheel can take is detected.
  • the acquisition unit that acquires the rotation angle from the rotation angle detection unit triggered by the reception of the transmission data by the reception unit, the rotation angle acquired by the acquisition unit and the acquisition unit prior to the acquisition of the rotation angle
  • a calculation unit that calculates a difference from the acquired rotation angle, and whether or not the difference calculated by the calculation unit is included in a predetermined range, and is transmitted according to the number of times the difference is included in the range
  • a specific unit that associates the ID code included in the data with the wheel.
  • the range includes a reference range that is a range including 0 and a specific range that is a range including an angle difference between different specific angles.
  • each transmitter transmits transmission data when it is detected that the rotation angle of the wheel has become a specific angle. For this reason, when the rotation angle is acquired in response to the reception of the transmission data, the variation in the rotation angle of the wheel to which the transmitter that transmitted the transmission data is mounted is minimized.
  • each transmitter can be assigned to any wheel from the number of times the difference between the rotation angle acquired at the reception of transmission data and the rotation angle acquired before that is included in a predetermined range. It can be specified whether it is installed.
  • the rotation angle acquired at the reception of transmission data and the rotation angle acquired before that are acquired at the reception of transmission data transmitted at the same specific angle the rotation angle and The difference from the previously acquired rotation angle is included in the reference range.
  • the rotation angle acquired at the reception of transmission data and the rotation angle acquired before that are acquired at the reception of transmission data transmitted at different specific angles the rotation angle The difference between the rotation angle acquired before and the rotation angle is included in the specific range. Therefore, it is possible to specify which wheel each transmitter is mounted on without obtaining a difference individually for each rotation angle acquired in response to reception of transmission data transmitted at the same specific angle. . Therefore, the acquisition number (sample number) of the specific rotation angle required for specifying which wheel each transmitter is attached to is not dispersed. Therefore, the time required for specifying which wheel each transmitter is attached to becomes shorter.
  • the angle difference is different for each transmitter, and the receiver preferably further includes a reception storage unit in which the ID code of the transmitter is stored in association with the specific range.
  • the receiver preferably further includes a reception storage unit in which the ID code of the transmitter is stored in association with the specific range. According to this, in addition to whether the difference between the acquired rotation angle and the rotation angle acquired before the acquisition of the rotation angle is included in the reference range or the specific range, between the different specific angles It is possible to identify which wheel each transmitter is attached to, depending on whether or not the angle difference is a value commensurate with the ID code. Therefore, the reliability of the receiver is improved.
  • each of the plurality of wheels included in the vehicle including the rotation angle detection unit that detects the rotation angle of each of the plurality of wheels is mounted on the vehicle.
  • a transmitter unit is provided that includes a plurality of transmitters that transmit transmission data to a receiver.
  • the receiver includes a difference between a rotation angle acquired from the rotation angle detection unit triggered by reception of transmission data and a rotation angle acquired before acquisition of the rotation angle within a plurality of predetermined ranges.
  • the transmitter can be specified.
  • the transmitter includes a transmission storage unit in which individual ID codes are stored, and a specific angle detection unit that detects any specific angle among a plurality of specific angles set within a rotation angle that the wheel can take. And transmission data including an ID code when it is detected that the rotation angle of the wheel has become a specific angle, in order to make the receiver specify which of the plurality of wheels the transmitter is mounted on.
  • each transmitter of the transmitter unit transmits transmission data at a plurality of specific angles. For this reason, depending on whether the difference between the acquired rotation angle and the rotation angle acquired before acquisition of the rotation angle is included in the reference range or the specific range, it is determined which wheel each transmitter is attached to.
  • the receiver can be specified.
  • each transmitter has an angle difference between different specific angles, and the angle difference is different for each transmitter. Therefore, in addition to whether the difference between the acquired rotation angle and the rotation angle acquired before acquisition of the rotation angle is included in the reference range or the specific range, the angle difference between different specific angles is the ID code. It is possible to make the receiver specify which wheel each transmitter is attached to, depending on whether or not the value is suitable for. Therefore, the reliability of the receiver is improved.
  • (A) is a block diagram showing a tire condition monitoring device mounted on a vehicle
  • (b) is a schematic diagram showing the relationship between each wheel of the vehicle and a detection axis of an acceleration sensor. Schematic of a rotation sensor unit. The schematic of the pulse which arises by rotation of a wheel.
  • the block diagram which shows schematic structure of a transmitter.
  • (A) is the schematic which shows a 1st angle
  • (b) is the schematic which shows a 2nd angle.
  • the graph which shows a reference range and a specific range. Schematic which shows the specific angle which a transmitter transmits transmission data.
  • surface which shows the correspondence of a specific angle, the angle difference between different specific angles, and a specific range and the end of ID code.
  • the vehicle 10 includes a start switch 14 and a vehicle control device 15.
  • the vehicle control device 15 switches between a start state and a stop state of the vehicle 10 according to the operation of the start switch 14.
  • the starting state of the vehicle 10 is a state in which the vehicle 10 travels or the in-vehicle device is operated by an operation of an accelerator pedal or an in-vehicle device such as an air conditioner by a driver.
  • the stop state of the vehicle 10 is a state in which the vehicle 10 is not driven and the in-vehicle device is not operated even when an operation by the driver is performed.
  • the vehicle 10 includes four wheels 11. Each wheel 11 includes a wheel 12 and a tire 13 attached to the wheel 12.
  • the right front wheel 11 among the wheels 11 will be described as the right front wheel FR, the left front wheel 11 as the left front wheel FL, the right rear wheel 11 as the right rear wheel RR, and the left rear wheel 11 as the left rear wheel RL.
  • the vehicle 10 includes an ABS (anti-lock / brake system) 20.
  • the ABS 20 includes an ABS controller 25 and rotation sensor units 21 to 24 corresponding to the four wheels 11, respectively.
  • the first rotation sensor unit 21 corresponds to the left front wheel FL
  • the second rotation sensor unit 22 corresponds to the right front wheel FR.
  • the third rotation sensor unit 23 corresponds to the left rear wheel RL
  • the fourth rotation sensor unit 24 corresponds to the right rear wheel RR.
  • the ABS controller 25 is formed of a microcomputer or the like, and obtains the rotation angle of each wheel 11 based on signals from the rotation sensor units 21 to 24.
  • the ABS controller 25 and the rotation sensor units 21 to 24 function as a rotation angle detection unit.
  • each of the rotation sensor units 21 to 24 includes a gear (pulse wheel) 26 that rotates integrally with the wheel 11 and a detector 27 that is disposed so as to face the outer peripheral surface of the gear 26. Forty-eight teeth are provided on the outer peripheral surface of the gear 26 at equal angular intervals.
  • the detector 27 detects a pulse generated by the rotation of the gear 26.
  • the ABS controller 25 is wired to the detector 27 and determines the rotation angle of each wheel 11 based on a pulse count value (hereinafter referred to as a pulse count value) as a detection value of each detector 27. Specifically, as the gear 26 rotates, a number of pulses corresponding to the number of teeth is generated in the detector 27.
  • the ABS controller 25 counts pulses generated in the detector 27. As shown in FIG. 3, in the present embodiment, the rise and fall of the pulse are counted. Since the number of teeth is 48, the ABS controller 25 counts pulses from 0 to 95. Therefore, it can be said that the resolution of the rotation sensor units 21 to 24 is 3.75 degrees.
  • the tire condition monitoring device 30 includes a transmitter unit U and a receiver 50 installed in the vehicle 10.
  • the transmitter unit U includes four transmitters 31 that are respectively attached to the four wheels 11.
  • the transmitter 31 is attached to the wheel 11 so as to be disposed in the internal space of the tire 13.
  • the transmitter 31 is fixed to the tire valve or fixed to the wheel 12 or the tire 13.
  • the transmitter 31 detects the state of the tire air pressure and the temperature in the tire of the corresponding tire 13 and wirelessly transmits transmission data including information on the detected tire 13 to the receiver 50.
  • the tire condition monitoring device 30 monitors the condition of the tire 13 by receiving transmission data transmitted from the transmitter 31 by the receiver 50.
  • each transmitter 31 includes a pressure sensor 32, a temperature sensor 33, an acceleration sensor 34, a transmission control unit 35, a transmission circuit 36, a battery 37, and a transmission antenna 39.
  • the transmitter 31 is operated by the power supplied from the battery 37, and the transmission control unit 35 comprehensively controls the operation of the transmitter 31.
  • the battery 37 may be a primary battery, a secondary battery, or a power storage device such as a capacitor.
  • the pressure sensor 32 detects the air pressure of the corresponding tire 13.
  • the pressure sensor 32 outputs the detection result to the transmission control unit 35.
  • the temperature sensor 33 detects the temperature in the corresponding tire 13.
  • the temperature sensor 33 outputs the detection result to the transmission control unit 35.
  • the acceleration sensor 34 includes a detection shaft 34a, and the detection shaft 34a detects acceleration in the axial direction.
  • the acceleration sensor 34 outputs the detection result to the transmission control unit 35.
  • the acceleration sensor 34 may be a uniaxial acceleration sensor 34 or a multi-axis acceleration sensor 34.
  • the acceleration sensor 34 is provided so that the detection shaft 34a faces downward in the vertical direction when the transmitter 31 is at the lowest position or the highest position of the wheel 11.
  • acceleration acting on each detection axis is individually detected.
  • the acceleration detected by the acceleration sensor 34 indicates the acceleration detected by the detection axis 34a.
  • the transmission control unit 35 includes a microcomputer including a CPU 35a and a transmission storage unit 35b (RAM, ROM, etc.).
  • an ID code which is data indicating unique identification information of each transmitter 31 is stored.
  • the ID code of the transmitter 31 attached to the left front wheel FL is FLID
  • the ID code of the transmitter 31 attached to the right front wheel FR is FRID
  • the ID code of the transmitter 31 attached to the left rear wheel RL is denoted as RLID
  • the ID code of the transmitter 31 attached to the right rear wheel RR is denoted as RRID.
  • the transmission storage unit 35b stores various programs for controlling the transmitter 31.
  • the transmission control unit 35 has a timekeeping function.
  • the timekeeping function is realized by, for example, a timer or a counter.
  • the transmission control unit 35 acquires the detection results detected by the pressure sensor 32, the temperature sensor 33, and the acceleration sensor 34 at every predetermined acquisition interval.
  • the transmission control unit 35 generates transmission data including, for example, tire conditions such as tire air pressure and tire temperature, and an ID code based on the detection result.
  • the transmission control unit 35 outputs the generated transmission data to the transmission circuit 36.
  • the transmission circuit 36 modulates the transmission data output from the transmission control unit 35.
  • the modulated transmission data is transmitted from the transmission antenna 39 as a radio signal.
  • the radio signal is transmitted as a signal in an RF band (for example, a 315 MHz band or a 434 MHz band).
  • the transmission circuit 36 becomes a transmission unit.
  • the transmitter 31 transmits the transmission data as two different transmission modes, the normal transmission for transmitting the transmission data regardless of the rotation angle of the wheel 11 and the transmission data when the rotation angle of the wheel 11 becomes a predetermined specific angle. Specific angle transmission.
  • transmission data is transmitted at predetermined intervals.
  • the predetermined interval is, for example, 10 seconds to several tens of seconds.
  • the specific angle transmission is performed, for example, when the vehicle 10 starts running after the vehicle 10 has stopped for a predetermined time or longer.
  • the predetermined time is set to a time when the tire can be changed, for example, several tens of minutes to several hours. That is, the specific angle transmission is performed when there is a possibility that the position of the wheel 11 is changed due to tire rotation or the like. Whether the vehicle 10 is running or stopped is determined from the centrifugal acceleration that is the detection result of the acceleration sensor 34.
  • transmission data is transmitted when the transmission control unit 35 detects that the rotation angle of the wheel 11 has reached a predetermined specific angle. More specifically, when a predetermined time (for example, 10 seconds to several tens of seconds) has passed since the transmission of the previous transmission data and a specific angle is detected, the transmission control unit 35 transmits Send data.
  • a predetermined time for example, 10 seconds to several tens of seconds
  • a plurality of specific angles are set.
  • the second angle when is the lowest position of the wheel 11 is determined as the specific angle.
  • the first angle is a reference (0 degree)
  • the second angle is 180 degrees.
  • the angle difference between the first angle and the second angle is 180 degrees.
  • the fact that the transmitter 31 is at a specific angle can be detected by the acceleration detected by the acceleration sensor 34.
  • the axial direction of the detection shaft 34 a is the same as the direction in which the centrifugal force acts regardless of the rotation angle of the wheel 11. Therefore, the acceleration sensor 34 detects centrifugal acceleration regardless of the rotation angle of the wheel 11.
  • the gravitational acceleration always acts in the vertical direction. For this reason, when the detection axis 34a is not oriented in the vertical direction, the acceleration sensor 34 detects a component of gravitational acceleration (gravity acceleration component).
  • the acceleration sensor 34 detects acceleration obtained by adding gravity acceleration to centrifugal acceleration.
  • the centrifugal acceleration that changes while the wheel 11 makes one revolution is very small. Therefore, the acceleration that changes during one rotation of the wheel 11 can be regarded as gravitational acceleration. Therefore, it can be detected from the change in gravitational acceleration that the rotation angle of the wheel 11 has become a specific angle.
  • the gravitational acceleration changes between +1 [G] and ⁇ 1 [G] while the wheel 11 rotates once. In this case, the gravitational acceleration is +1 [G] when the transmitter 31 is at the lowest position of the wheel 11, and is ⁇ 1 [G] when the transmitter 31 is at the highest position of the wheel 11.
  • the transmission control unit 35 transmits transmission data based on the acceleration detected by the acceleration sensor 34, thereby transmitting transmission data when it is detected that the rotation angle of the wheel has become a specific angle.
  • the transmission control unit 35 transmits transmission data alternately at the first angle and the second angle.
  • the acceleration sensor 34 functions as a specific angle detection unit.
  • the transmission angle at which the transmission data is transmitted varies around the specific angle depending on the accuracy of the acceleration sensor 34, the acquisition interval at which the transmission control unit 35 acquires the detection result from the acceleration sensor 34, the disturbance due to the running condition, and the like.
  • the transmission angle at which the transmission data is transmitted increases as it is closer to the specific angle.
  • the receiver 50 includes a reception control unit 51, a reception circuit 52, and a reception antenna 56.
  • the reception control unit 51 is connected to a display device 57 mounted on the vehicle 10.
  • the reception control unit 51 includes a microcomputer including a reception CPU 54 and a reception storage unit 55 (ROM, RAM, etc.).
  • the reception control unit 51 has a timekeeping function. The timekeeping function is realized by, for example, a timer or a counter.
  • the reception circuit 52 demodulates the radio signal received from each transmitter 31 via the reception antenna 56 and outputs transmission data to the reception control unit 51.
  • the receiving circuit 52 functions as a receiving unit.
  • the reception control unit 51 grasps the state of the tire 13 such as the tire air pressure and the tire internal temperature based on the transmission data from the reception circuit 52.
  • the reception control unit 51 notifies the display device 57 when an abnormality has occurred in the tire 13.
  • the indicator 57 displays the pressure of each tire 13 in association with the position of the wheel 11.
  • the reception storage unit 55 stores the ID codes of the four transmitters 31 attached to the wheels 11 of the vehicle 10 on which the receiver 50 is mounted. Thereby, the receiver 50 is associated with the transmitter 31.
  • the reception control unit 51 recognizes transmission data transmitted from the four transmitters 31 as transmission data transmitted to itself. Based on the transmission data received by the reception circuit 52 and the ID code stored in the reception storage unit 55, the reception control unit 51 receives the identification information (ID code) registered in the transmitter 31 that has transmitted the transmission data and the receiver.
  • the identification information (ID code) registered in 50 is collated.
  • the reception control unit 51 includes data indicating the state of the tire 13 included in the transmission data (pressure data and temperature data). Are considered to be data of the vehicle 10 in which the receiver 50 is mounted.
  • the wheel position specifying process for specifying which of the plurality of wheels 11 each transmitter 31 is mounted on will be described together with the operation.
  • the wheel position specifying process is performed, for example, when the vehicle 10 is changed from a stopped state to an activated state by operating the start switch 14.
  • the transmission mode of the transmitter 31 is specified angle transmission. Thereby, even when tire rotation or the like is performed, the reception control unit 51 can automatically recognize which wheel 11 each transmitter 31 is attached to.
  • the reception control unit 51 receives the pulse count values (rotation angles of the wheels 11) of the respective rotation sensor units 21 to 24 from the ABS controller 25 when the reception circuit 52 receives the transmission data, and from the pulse count values.
  • the rotation angle of the wheel 11 is calculated.
  • the reception control unit 51 functions as an acquisition unit. That is, the acquisition unit is a part of the function of the reception control unit 51.
  • the rotation angle acquired with the reception of the transmission data transmitted at the first angle is set as the first acquisition rotation angle
  • the rotation angle acquired with the reception of the transmission data transmitted at the second angle is set as the first rotation angle. It is set as 2 acquisition rotation angles. Further, both are collectively referred to as an acquisition rotation angle.
  • the rotational speed (rotational speed) of each wheel 11 varies depending on the influence of a differential gear or the like. For this reason, the relative position of the transmitter 31 mounted on each wheel 11, that is, the difference in rotation angle between the wheels 11 changes as the vehicle 10 travels. For this reason, when the transmitter 31 is transmitting transmission data at a specific angle, the reception control unit 51 acquires the rotation angles of the four wheels 11 a plurality of times, triggered by reception of the transmission data. Then, only one wheel 11 out of the four wheels 11 has less variation in the rotation angle. In other words, when each transmitter 31 is transmitting transmission data at a specific angle, when the pulse count value is acquired with the reception of the transmission data, the rotation sensor units 21 to 24 with little variation in the pulse count value are 1 There are two.
  • the pulse count value is reset when the vehicle 10 is stopped by the start switch 14. Accordingly, the correspondence between the absolute angle of the wheel 11 detected by the rotation sensor units 21 to 24 and the specific angle changes every time the vehicle 10 is stopped. On the other hand, the difference (angle difference) between the first acquisition rotation angle and the second acquisition rotation angle is not affected by the reset of the pulse count value. Therefore, it is possible to specify which wheel 11 each transmitter 31 is attached to by using the difference between the respective acquisition rotation angles.
  • the reception control unit 51 calculates the absolute value of the difference between the acquired rotation angle and the rotation angle acquired before the acquisition of the rotation angle.
  • the absolute value of the difference here is calculated between the rotation angles acquired with the reception of transmission data including the same ID code as a trigger.
  • the reception control unit 51 calculates the absolute value of the difference between the acquired rotation angle and the rotation angle acquired immediately before the acquisition of the rotation angle.
  • the absolute value of the difference is referred to as “angle difference”.
  • the reception control unit 51 functions as a calculation unit. That is, the calculation unit is a part of the function of the reception control unit 51.
  • the “angle difference” is any one of a difference between the first acquisition rotation angle and the second acquisition rotation angle, a difference between the first acquisition rotation angles, and a difference between the second acquisition rotation angles.
  • the reception control unit 51 determines whether the angle difference is included in a predetermined range.
  • Two types of reference range A1 and specific range A2 are set in the predetermined range.
  • the reference range is a range including 0, for example, a range of 0 ⁇ predetermined value.
  • the specific range A2 is a range including an angle difference between different specific angles, for example, an angle difference between different specific angles ⁇ a range of a predetermined value. Since the angle difference between the first angle and the second angle is 180 degrees, the range of 180 degrees ⁇ predetermined value is the specific range A2.
  • the width of the reference range A1 is the same as the width of the specific range A2.
  • the predetermined value is set based on variations in transmission angle when transmission data is transmitted based on detection of a specific angle.
  • the predetermined value is set based on a simulation result, an experimental result, or the like, and is set to, for example, 7.5 degrees (for two pulses).
  • one of the four wheels 11 has little variation in the first acquisition rotation angle and second acquisition rotation angle. Therefore, there is one wheel 11 in which the angle difference between the first acquisition rotation angles and the angle difference between the second acquisition rotation angles are included in the reference range A1. In addition, one of the four wheels 11 has an angle difference between the first acquisition rotation angle and the second acquisition rotation angle that matches an angle difference between different specific angles. In practice, there may be a difference between the angle difference between the first acquisition rotation angle and the second acquisition rotation angle and the angle difference between different specific angles due to variations in the transmission angle, but the difference is slight. There is one wheel 11 in which the number of times included in the specific range A2 increases. That is, the reference range A1 is a range that includes an angular difference when transmission data transmitted at the same specific angle is continuously received. The specific range A2 is a range including an angle difference when transmission data transmitted at different specific angles is continuously received.
  • the reception control unit 51 classifies each ID code included in the transmission data, and determines whether the angle difference is included in the reference range A1 or the specific range A2.
  • the reception control unit 51 classifies each ID code, integrates the number of times that the angle difference between the four wheels 11 is included in the reference range A1 or the specific range A2, and calculates an integrated value.
  • the reception control unit 51 determines the wheel 11 and ID code with the largest integrated value. Associate. That is, the reception control unit 51 associates the wheel 11 with the ID code, which increases the number of times that the angle difference is included in the ranges A1 and A2.
  • the angle difference is calculated from the rotation angle of the right front wheel FR acquired by receiving the transmission data transmitted from the FRID transmitter 31, and the angle difference is distributed as shown in FIG. It can be determined that the transmitter 31 is attached to the right front wheel FR. As can be understood from FIG. 6, the angle difference is frequently included in the reference range A1 or the specific range A2. On the other hand, if the angle difference is calculated from the rotation angle of the wheel 11 other than the right front wheel FR acquired by receiving the transmission data transmitted from the FRID transmitter 31, the angle difference is randomly distributed.
  • FIG. 6 describes that the reference range A1 and the specific range A2 include the same degree of angular difference, but when the null point is not considered, the first angle and the second angle are alternately transmitted. Therefore, the angle difference tends to increase the number of times included in the specific range A2.
  • the reception control unit 51 When the reception control unit 51 associates each of the FFID, FRID, RFID, and RRID with the wheel 11, the reception control unit 51 stores the correspondence in the reception storage unit 55 and ends the wheel position specifying process.
  • the reception control unit 51 functions as a specifying unit. That is, the specifying unit is a part of the function of the reception control unit 51.
  • the identification of which wheel 11 each transmitter 31 is attached to can be performed only in the reference range A1.
  • both the angle difference between the first acquisition rotation angles and the angle difference between the second acquisition rotation angles are included in the reference range A1. Accordingly, when it is possible to determine whether the transmission data is transmitted at the first angle or the second angle when the transmission data is received, the first acquisition rotation angle and the second acquisition rotation are determined. Angles can be classified. And it is also possible to calculate an angle difference between the first acquisition rotation angles and between the second acquisition rotation angles, and specify which wheel 11 each transmitter 31 is attached to from the angle difference. However, in this case, the acquired rotation angle is dispersed into the first acquisition rotation angle and the second acquisition rotation angle.
  • the number of samples having a rotation angle of a predetermined number or more is necessary.
  • the number of samples that can be used for the wheel position specification processing is also distributed with respect to the number of transmissions of transmission data. End up.
  • the reference range A1 and the specific range A2 it is possible to specify which wheel 11 each transmitter 31 is attached to without classifying the first acquisition rotation angle and the second acquisition rotation angle. can do. Therefore, the number of samples that can be used for the wheel position specifying process is not dispersed, and the time required to specify which wheel 11 each transmitter 31 is attached to is shortened.
  • the wheel position specifying process of this embodiment may be used in combination with another wheel position specifying process.
  • the wheel position specifying process for specifying which wheel 11 each transmitter 31 is mounted on from the variation of the acquired rotation angle may be performed in addition to the wheel position specifying process of the first embodiment.
  • a plurality of wheel position specifying processes may be performed in parallel, and the determination result of the earlier determination of which wheel 11 each transmitter 31 is attached to among the wheel position specifying processes may be employed. . Moreover, you may identify which wheel 11 each transmitter 31 is mounted
  • (1-1) By providing the reference range A1 and the specific range A2, it is possible to determine which wheel 11 each transmitter 31 is mounted without classifying the first acquisition rotation angle and the second acquisition rotation angle. Can be identified. Therefore, the number of samples that can be used for the wheel position specifying process is not dispersed, and the time required to specify which wheel 11 each transmitter 31 is attached to is shortened.
  • the first angle and the second angle are set at equal intervals. That is, the angle difference between the first angle and the second angle is the same regardless of the angle in which direction the wheel 11 rotates. Therefore, only one specific range A2 needs to be set, and processing becomes easy.
  • angle data indicating a specific angle is included in the transmission data.
  • the data length is increased by the angle data.
  • the power consumption due to transmission of the transmission data increases.
  • the angle data is shortened (for example, 1 bit) to prevent the data length from becoming long, there is a high possibility that an error cannot be detected even though the angle data is incorrect.
  • the reception control unit 51 may mistakenly recognize that the transmission data transmitted at the second angle has been received. As a result, the identification of which wheel 11 each transmitter 31 is attached to may be delayed or may not be identified.
  • the acquisition rotation angle acquired with the reception of transmission data transmitted at the first angle and the acquisition rotation angle acquired with the reception of transmission data transmitted at the second angle as a trigger. It is possible to perform the wheel position specifying process without classifying them. Therefore, even when transmission data cannot be received continuously a plurality of times, it is possible to specify which wheel 11 each transmitter 31 is attached to. Further, it is not necessary to include angle data in the transmission data. Therefore, it contributes to shortening of the data length of the transmission data and, in turn, reducing the power required for transmission. In addition, since the angle data is not included in the transmission data, the identification of which wheel 11 each transmitter 31 is attached to is not delayed due to an error in the angle data.
  • the angle when the transmitter 31 is the uppermost position is the first angle
  • the angle when the transmitter 31 is the lowermost position is the second angle.
  • the first angle is 180 degrees away from the second angle.
  • the angle at which the transmitter 31 is located at a location that is 90 degrees away from the first angle is defined as a third angle.
  • the angle at which the transmitter 31 is located at a position that is shifted 120 degrees from the first angle is the fourth angle.
  • the angle when the transmitter 31 is located at a position deviated by 150 degrees from the first angle is defined as a fifth angle.
  • the transmitters 31 are grouped corresponding to the end of the ID code when the ID code is expressed in hexadecimal.
  • the ID codes are divided into four groups. Depending on the number of wheels 11, the number of groups may be changed.
  • the first angle and the second angle are specific angles.
  • the first angle and the third angle are specific angles.
  • the first angle and the fourth angle are specific angles.
  • the first angle and the fifth angle are specific angles. That is, the specific angle varies depending on the end of the ID code, and the angle difference between the specific angles varies accordingly.
  • the transmitter unit U includes one transmitter 31 of each group. Thereby, each transmitter 31 of the transmitter unit U has an angular difference between different specific angles, and the angular difference between different specific angles is different for each transmitter 31.
  • the reception storage unit 55 stores a different specific range A2 in association with the end (group) of the ID code.
  • the first group is associated with the same specific range A2 as in the first embodiment.
  • the second group is associated with a specific range A2 including 90 degrees that is an angle difference between the first angle and the third angle.
  • a specific range A2 including 120 degrees that is an angle difference between the first angle and the fourth angle is associated with the third group.
  • the fourth group is associated with a specific range A2 including 150 degrees that is an angle difference between the first angle and the fifth angle. That is, the specific range A2 is defined in correspondence with the angle difference between different specific angles.
  • the angle difference between the first angle and the third angle can be regarded as 270 degrees
  • the angle difference between the first angle and the fourth angle can be regarded as 240 degrees
  • the angle difference between the first angle and the fifth angle can be regarded as 210 degrees
  • a specific range A2 including 270 degrees is further associated with the second group
  • a specific range A2 including 240 degrees is further associated with the third group
  • a specific range A2 including 210 degrees is associated with the fourth group. Furthermore, it is matched. That is, when the angle difference between two different specific angles is not equal, a plurality of specific ranges A2 are set corresponding to the difference in the angle difference.
  • the reception control unit 51 determines whether or not the angle difference is included in the specific range A2 according to the angle difference between the specific angles in the transmitter 31 that has transmitted the transmission data, from the ID code included in the transmission data. . And similarly to 1st Embodiment, the reception control part 51 specifies which wheel 11 each transmitter 31 is mounted
  • the FRID transmitter 31 is the first group of transmitters 31 and the rotation sensor unit has an angular difference of 120 degrees obtained when the transmission data transmitted from the FRID transmitter 31 is received as a trigger. Assume that exists.
  • the position of the wheel 11 on which the transmitter 31 is mounted is determined based only on the correspondence relationship between the angle difference between the rotation angles acquired upon reception of transmission data and the angle difference between specific angles.
  • the FRID transmitter 31 is attached to the wheel 11 corresponding to the rotation sensor unit that has detected an angle difference of 120 degrees.
  • the first group of transmitters 31 are transmitters that transmit transmission data with an angle difference of 180 degrees, and thus the above determination is incorrect.
  • the reception control unit 51 of the second embodiment determines that the FRID transmitter 31 is the transmitter 31 of the first group from the end of the ID code of the transmitter 31. That is, when the reception control unit 51 acquires the rotation angle of each wheel 11 triggered by reception of transmission data transmitted from the FRID transmitter 31, the angle difference corresponding to the ID code of the transmission data is 180 degrees. judge. Accordingly, it can be determined that the FRID transmitter 31 is attached to the wheel 11 corresponding to the rotation sensor unit that has detected the angle difference of 120 degrees. In this case, the wheel position specifying process is performed again to specify which wheel 11 each transmitter 31 is attached to.
  • the reception storage unit 55 stores the ID code and the specific range A2 including the angle difference between the specific angles in association with each other. For this reason, even if the angle difference between specific angles differs for every transmitter 31, it can specify to which wheel 11 each transmitter 31 is equipped. Further, since it is confirmed whether transmission data is transmitted at a specific angle corresponding to the ID code (transmitter 31), the reliability of specifying which wheel 11 each transmitter 31 is attached to is improved. .
  • Each transmitter 31 of the transmitter unit U transmits transmission data when a plurality of specific angles are detected. Therefore, each transmitter 31 can cause the receiver 50 to specify which wheel 11 each transmitter 31 is mounted on, based on an angle difference between a plurality of different specific angles. Further, each transmitter 31 has an angle difference between different specific angles, and the angle difference between different specific angles is different for each transmitter 31. For this reason, each transmitter 31 can make the receiver 50 confirm whether transmission data is transmitted with the specific angle corresponding to ID code (transmitter 31). Thereby, reliability is improved in specifying which wheel 11 each transmitter 31 is attached to.
  • the difference between the acquired rotation angle and the rotation angle acquired before the acquisition of the rotation angle is acquired at least twice before the acquisition of the acquired rotation angle and the rotation angle. It may be a difference from the rotation angle. Since the pulse count value is reset when the vehicle 10 is stopped, the “rotation angle acquired before the rotation angle is acquired” indicates the rotation angle acquired after the vehicle 10 is activated. The rotation angle acquired before the vehicle 10 is started is not included.
  • the wheel position specifying process based on the difference between the acquired rotation angle and the rotation angle acquired two or more times before the acquisition of the rotation angle may be used in combination with the wheel position specifying process of the embodiment. Moreover, it may replace with the wheel position specific process of embodiment, and may perform the wheel position specific process by the difference of the acquired rotation angle and the rotation angle acquired 2 times or more before acquisition of the rotation angle.
  • transmission data may not be transmitted alternately between the first angle and the second angle.
  • transmission data may be transmitted randomly at the first angle and the second angle, or transmission data is transmitted at the first angle or transmission data at the second angle every predetermined number of times. Also good.
  • storage part 55 may memorize
  • the vehicle 10 should just be provided with the several wheel 11, for example, may be a two-wheeled vehicle.
  • the number of teeth of the gear 26 of the vehicle 10 is arbitrary. That is, the resolution of the rotation angle detector may be different from that of the embodiment.
  • the pulse count value is converted into a rotation angle and various processes are performed.
  • the process can be performed using the pulse count value.
  • the difference may be a pulse count value difference
  • the reference range A1 and the specific range A2 may be a pulse count value range.
  • the rotation angle is not limited to the rotation angle itself, and any rotation angle may be used.
  • the reference range A1 and the specific range A2 may be changed as appropriate.
  • the reference range A1 may be 0 + predetermined value or 0-predetermined value.
  • the predetermined value subtracted from 0 may be increased or decreased as compared with the predetermined value added to 0. The same applies to the specific range A2.
  • the predetermined value may be variable.
  • the predetermined value may be increased at the start of the wheel position specifying process, and the predetermined value may be decreased as time for the wheel position specifying process elapses.
  • standard range A1 and specific range A2 becomes variable.
  • the width of the reference range A1 and the specific range A2 may not be the same.
  • the range width of the specific range A2 may be smaller than the width of the reference range A1.
  • three or more specific angles may be set.
  • the wheel position specifying process using only the reference range A1 may be used in combination.
  • the angle difference between different specific angles was changed according to the end of ID code, it is not restricted to this.
  • the end of the ID code may be the same as long as the angle difference between different specific angles of the transmitters 31 of the transmitter unit U is different.
  • the reception storage unit 55 only needs to store an ID code of the transmitter 31 associated with the receiver 50 and an angle difference between different specific angles of the transmitter 31.
  • the reception control unit 51 sets the angle difference as it is when the angle difference is less than 180 degrees.
  • the reception control unit 51 subtracts the angle difference from 360 degrees to correct the angle difference. In this case, the obtained angle difference is less than 180 degrees.
  • the reception control unit 51 determines whether the angle difference when the angle difference is less than 180 degrees and the corrected angle difference are included in the reference range A1 or the specific range A2.
  • the reception control unit 51 sets the angle difference as it is when the angle difference is less than 180 degrees, and changes the angle difference from 360 degrees when the angle difference is 180 degrees or more. You may subtract and correct
  • a 90 ° ⁇ predetermined value range is set as the second group specific range
  • a 120 ° ⁇ predetermined range is set as the third group specific range
  • the fourth group specific range is set.
  • a range of 150 degrees ⁇ predetermined value is set.
  • the absolute value of the difference between the acquired rotation angle and the rotation angle acquired one time before the acquisition of the rotation angle is an angle difference, but the angle difference is not an absolute value. Also good.
  • the difference between the rotation angle acquired when receiving transmission data including the same ID code and the rotation angle acquired immediately before the acquisition of the rotation angle is +180 degrees, ⁇ 180 degrees, The angle is around 0 degrees.
  • the reception control unit 51 corrects the difference by adding 360 degrees to the difference.
  • the reception control unit 51 sets the difference as it is.
  • the reception control unit 51 corrects the difference by subtracting 360 degrees from the difference.
  • the specific range A2 is set corresponding to positive and negative. Specifically, two of +180 degrees-predetermined value and -180 degrees + predetermined value are set as the specific range A2. Since the specific range A2 corresponding to positive and negative is set, the number of the specific ranges A2 increases compared to the first embodiment.
  • the angle difference may not be an absolute value.
  • the reception control unit 51 sets the difference as it is when the difference is ⁇ 180 degrees or more and +180 degrees or less, as in the case described above.
  • the reception control unit 51 corrects the difference when the difference is less than ⁇ 180 degrees and when the difference is greater than +180 degrees. Even in this case, the specific range A2 corresponding to positive and negative is set.
  • the specific range A2 may be one.
  • the angle difference is corrected, and it is determined whether the value obtained by the correction is included in the specific range A2.
  • the angle difference between the specific angles is 90 degrees and 270 degrees.
  • the reception control unit 51 corrects the angle difference using 180 degrees that is the difference between the angle differences. For example, by performing the remainder calculation with the angle difference of 180 degrees, the above-described determination can be performed by regarding the angle difference between the first angle and the third angle as 90 degrees.
  • the specific range A2 corresponding to 90 degrees may be set as the specific range A2. If the angle difference is 180 degrees or more, the same result can be obtained by subtracting 180 degrees.
  • the reception control unit 51 may add 180 degrees to the angle difference when the angle difference is less than 180 degrees. In this case, it is possible to make the above determination by regarding the angle difference between the first angle and the third angle as 270 degrees. In this case, the specific range A2 corresponding to 270 degrees may be set as the specific range A2.
  • the third group of transmitters 31 and the fourth group of transmitters 31 can be made to have one specific range A2 by correcting the angle difference. Even when there are three or more specific angles, the specific range A2 can be made one by correcting the absolute value of the difference and assuming that the angle difference between the specific angles is the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

受信制御部(51)は、受信回路(52)で送信データを受信すると、各車輪(11)の回転角度を取得する。受信制御部(51)は、取得された回転角度とその回転角度の取得より前に取得された回転角度との差分の絶対値を算出する。受信制御部(51)は、差分の絶対値が基準範囲(A1)又は特定範囲(A2)に含まれるか否かを判定する。基準範囲(A1)は、0を含む範囲である。特定範囲(A2)は、特定角度間の角度差を含む範囲である。

Description

受信機、及び、送信機ユニット
 本発明は、受信機、及び、送信機ユニットに関する。
 車両に設けられた複数のタイヤの状態を運転者が車室内で確認できるようにするための装置として、タイヤ状態監視装置が知られている。タイヤ状態監視装置は、複数の車輪のそれぞれに装着される送信機と、車両に搭載された受信機とを備えている。各送信機は、送信データを受信機に送信する。送信機からの送信データには、タイヤの状態を示すデータが含まれている。受信機は、送信データを受信することで、タイヤの状態を把握する。
 上記したタイヤ状態監視装置では、送信データに含まれるタイヤの状態が複数のタイヤのうちいずれのタイヤに関するものかを受信機において特定できることが好ましい。言い換えれば、受信した送信データが複数の車輪のうちいずれの車輪に装着された送信機から送信されたものかを、受信機において特定できることが好ましい。この種のタイヤ状態監視装置が、特許文献1に記載されている。
 特許文献1に記載のタイヤ状態監視装置は、複数の車輪の回転角度を検出する回転角度検出装置を備える車両に搭載されている。送信機は、車輪の回転角度が特定角度となったことを検出したときに、送信データを送信する。受信機は、送信データを受信したことを契機として、回転角度検出装置から各車輪の回転角度を取得する。受信機は、送信データの受信を契機として取得された各車輪の回転角度のばらつきから、各送信機がいずれの車輪に装着されたものかを特定する。
 車両によっては、各送信機から送信された送信データが互いに干渉し合うヌルポイントが存在する。送信データが送信される特定角度がヌルポイントと一致する場合、受信機は、特定角度で送信された送信データを受信することができない。その結果、各送信機がいずれの車輪に装着されたものかを特定できないおそれがある。このため、送信データが送信される特定角度には、複数の特定角度が設定される場合がある。
 複数の特定角度が設定される場合、送信データの受信を契機として取得された回転角度は、送信データが送信された特定角度毎に分類される。そして、分類された回転角度毎に、ばらつきが求められる。
特開2014-227124号公報
 ところで、走行に伴う各車輪の回転数(回転速度)の差を利用して、各送信機がいずれの車輪に装着されているかを特定する受信機においては、同一の特定角度で送信された送信データの受信を契機として取得される回転角度として、複数の回転角度を取得する必要がある。この場合、複数の特定角度が設定されると、特定角度の数だけ、回転角度が得られる回数が分散される。これにより、1つの特定角度(一定角度)で送信データが送信される場合に比べて、各送信機の特定に必要な数の回転角度を取得するための時間が長くなる。結果として、各送信機がいずれの車輪に装着されているかの特定に要する時間が長くなる。
 本発明の目的は、各送信機が複数の車輪のうちいずれの車輪に装着されているかの特定に要する時間を短縮化できる受信機、及び、送信機ユニットを提供することにある。
 上記課題を解決するため、本発明の第一の態様によれば、複数の車輪それぞれの回転角度を検出する回転角度検出部を有する車両に搭載され、複数の車輪のそれぞれに装着された送信機が複数の車輪のうちいずれの車輪に装着されているかを特定可能に構成された受信機が提供される。受信機は、車輪が取り得る回転角度内に設定された複数の特定角度のうちいずれかの特定角度になったことを送信機が検出したときに送信機から送信される送信データを受信する受信部と、受信部が送信データを受信したことを契機として回転角度検出部から回転角度を取得する取得部と、取得部によって取得された回転角度とその回転角度の取得よりも前に取得部によって取得された回転角度との差分を算出する算出部と、算出部によって算出された差分が予め定められた範囲内に含まれるか否かを判定しその差分が前記範囲内に含まれる回数によって送信データに含まれるIDコードと車輪との対応付けを行う特定部とを備える。また、前記範囲は、0を含む範囲である基準範囲と、異なる特定角度間の角度差を含む範囲である特定範囲とを含む。
 車両の走行中、各車輪の回転数(回転速度)は異なる。各送信機は、車輪の回転角度が特定角度となったことを検出したときに送信データを送信する。このため、送信データの受信を契機として回転角度を取得すると、複数の車輪のうち送信データを送信した送信機が装着されている車輪の回転角度のばらつきが最も少なくなる。これを利用して、送信データの受信を契機として取得された回転角度とそれ以前に取得された回転角度との差分が予め定められた範囲に含まれる回数から、各送信機がいずれの車輪に装着されているかを特定することができる。
 送信データの受信を契機として取得された回転角度とそれ以前に取得された回転角度とが同一の特定角度で送信された送信データの受信を契機として取得されたものであれば、回転角度とそれ以前に取得された回転角度との差分は基準範囲に含まれる。また、送信データの受信を契機として取得された回転角度とそれ以前に取得された回転角度とが、異なる特定角度で送信された送信データの受信を契機として取得されたものであれば、回転角度とそれ以前に取得された回転角度との差分は特定範囲に含まれる。したがって、同一の特定角度で送信された送信データの受信を契機として取得された回転角度毎に個別に差分を求めることなく、各送信機がいずれの車輪に装着されているかを特定することができる。したがって、各送信機がいずれの車輪に装着されているかの特定に要する特定回転角度の取得数(サンプル数)が分散しない。よって、各送信機がいずれの車輪に装着されているかの特定に要する時間が短くなる。
 上記の受信機について、角度差は、送信機毎に異なり、受信機は、更に、特定範囲に対応付けて送信機のIDコードが記憶されている受信記憶部を備えることが好ましい。
 これによれば、受信機は、取得された回転角度とその回転角度の取得よりも前に取得された回転角度との差分が基準範囲又は特定範囲に含まれるかに加えて、異なる特定角度間の角度差がIDコードに見合った値であるか否かによって、各送信機がいずれの車輪に装着されているかを特定することができる。したがって、受信機の信頼性が向上する。
 上記課題を解決するため、本発明の第二の態様によれば、複数の車輪それぞれの回転角度を検出する回転角度検出部を有する車両が備える複数の車輪のそれぞれに装着されかつ車両に搭載された受信機に送信データを送信する複数の送信機を備えた送信機ユニットが提供される。受信機は、送信データの受信を契機として回転角度検出部から取得した回転角度とその回転角度の取得よりも前に取得された回転角度との差分が予め定められた複数の範囲内に含まれるか否かにより、送信機が複数の車輪のうちいずれの車輪に装着されているかを特定可能に構成されている。送信機は、個別のIDコードが記憶された送信記憶部と、車輪が取り得る回転角度内に設定された複数の特定角度のうちいずれかの特定角度となったことを検出する特定角度検出部と、送信機が複数の車輪のうちいずれの車輪に装着されているかを受信機に特定させるために、車輪の回転角度が特定角度となったことを検出したときにIDコードを含む送信データを送信する送信部とを備える。異なる特定角度間の角度差は、送信機毎に異なる。
 これによれば、送信機ユニットの各送信機は、複数の特定角度で送信データを送信する。このため、取得された回転角度とその回転角度の取得よりも前に取得された回転角度の差分が基準範囲又は特定範囲に含まれるかによって、各送信機がいずれの車輪に装着されているかを受信機に特定させることができる。更に、各送信機は、異なる特定角度間の角度差を有し、その角度差は、送信機毎に異なる。このため、取得された回転角度とその回転角度の取得よりも前に取得された回転角度との差分が基準範囲又は特定範囲に含まれるかに加えて、異なる特定角度間の角度差がIDコードに見合った値であるか否かによって、各送信機がいずれの車輪に装着されているかを受信機に特定させることができる。したがって、受信機の信頼性が向上する。
 本発明によれば、各送信機が複数の車輪のうちいずれの車輪に装着されているかの特定に要する時間を短縮化できる。
(a)は車両に搭載されたタイヤ状態監視装置を示すブロック図、(b)は車両の各車輪と加速度センサの検出軸との関係を示す概略図。 回転センサユニットの概略図。 車輪の回転により生じるパルスの概略図。 送信機の概略構成を示すブロック図。 (a)は第1角度を示す概略図、(b)は第2角度を示す概略図。 基準範囲と特定範囲とを示すグラフ。 送信機が送信データを送信する特定角度を示す概略図。 特定角度、異なる特定角度間の角度差、及び特定範囲とIDコードの末尾との対応関係を示す表。
 (第1実施形態)
 以下、受信機の第1実施形態について説明する。
 図1(a)に示すように、タイヤ状態監視装置30は、車両10に搭載されている。まず、車両10について説明する。
 車両10は、スタートスイッチ14と、車両制御装置15とを備える。車両制御装置15は、スタートスイッチ14の操作に応じて、車両10の起動状態と停止状態とを切り替える。車両10の起動状態とは、運転者によるアクセルペダルの操作や空調機器等の車載機器の操作により車両10が走行したり、車載機器が動作したりする状態である。車両10の停止状態とは、運転者による操作が行われても車両10の走行や、車載機器の動作が行われない状態である。
 車両10は、4つの車輪11を備える。各車輪11は、ホイール12と、ホイール12に装着されたタイヤ13とを備える。適宜、各車輪11のうち右前の車輪11を右前車輪FR、左前の車輪11を左前車輪FL、右後の車輪11を右後車輪RR、左後の車輪11を左後車輪RLとして説明する。
 車両10は、ABS(アンチロック・ブレーキシステム)20を備える。ABS20は、ABSコントローラ25と、4つの車輪11にそれぞれ対応する回転センサユニット21~24とを備える。第1回転センサユニット21は、左前車輪FLに対応し、第2回転センサユニット22は、右前車輪FRに対応している。第3回転センサユニット23は、左後車輪RLに対応し、第4回転センサユニット24は、右後車輪RRに対応している。ABSコントローラ25はマイクロコンピュータ等よりなり、回転センサユニット21~24からの信号に基づき各車輪11の回転角度を求める。ここでは、ABSコントローラ25及び各回転センサユニット21~24が回転角度検出部として機能する。
 図2に示すように、各回転センサユニット21~24は、車輪11と一体回転する歯車(パルスホイール)26と、歯車26の外周面に対向するように配置された検出器27とを備える。歯車26の外周面には48本の歯が等角度間隔おきに設けられている。検出器27は、歯車26が回転することで生じるパルスを検出する。ABSコントローラ25は、検出器27に有線接続され、各検出器27の検出値としてのパルスのカウント値(以下、パルスカウント値と記載)に基づき、各車輪11の回転角度を求める。具体的にいえば、歯車26が回転することで、歯の数に対応した数のパルスが検出器27に発生する。ABSコントローラ25は、検出器27に発生したパルスをカウントする。図3に示すように、本実施形態においては、パルスの立ち上がりと立ち下がりをカウントする。歯の数が48本なので、ABSコントローラ25は0~95までパルスカウントを行う。このため、回転センサユニット21~24の分解能は、3.75度であるといえる。
 次に、タイヤ状態監視装置30について説明する。
 図1(a)に示すように、タイヤ状態監視装置30は、送信機ユニットUと、車両10に設置される受信機50とを備える。送信機ユニットUは、4つの車輪11にそれぞれ装着される4つの送信機31を備える。送信機31は、タイヤ13の内部空間に配置されるように、車輪11に取り付けられている。送信機31は、タイヤバルブに固定されたり、ホイール12やタイヤ13に固定されたりする。送信機31は、対応するタイヤ13のタイヤ空気圧やタイヤ内温度の状態を検出して、検出したタイヤ13の情報を含む送信データを、受信機50に無線送信する。タイヤ状態監視装置30は、送信機31から送信される送信データを受信機50で受信することで、タイヤ13の状態を監視する。
 図4に示すように、各送信機31は、圧力センサ32、温度センサ33、加速度センサ34、送信制御部35、送信回路36、バッテリ37、及び送信アンテナ39を備える。送信機31は、バッテリ37からの供給電力によって動作し、送信制御部35は送信機31の動作を統括的に制御する。バッテリ37は、一次電池であってもよいし、二次電池や、キャパシタなどの蓄電装置であってもよい。
 圧力センサ32は、対応するタイヤ13の空気圧を検出する。圧力センサ32は、検出結果を送信制御部35に出力する。温度センサ33は、対応するタイヤ13内の温度を検出する。温度センサ33は、検出結果を送信制御部35に出力する。
 図1(b)に示すように、加速度センサ34は検出軸34aを備え、検出軸34aに軸方向への加速度を検出する。加速度センサ34は、検出結果を送信制御部35に出力する。加速度センサ34は、一軸の加速度センサ34であってもよいし、多軸の加速度センサ34であってもよい。
 加速度センサ34は、送信機31が車輪11の最下位置あるいは最上位置であるときに、検出軸34aが鉛直方向の下方を向くように設けられている。
 検出軸34a以外にも検出軸を有する多軸の加速度センサ34の場合には、それぞれの検出軸に作用する加速度が個別に検出される。以下の説明において、加速度センサ34によって検出される加速度とは、検出軸34aによって検出される加速度を示す。
 図4に示すように、送信制御部35は、CPU35a及び送信記憶部35b(RAMやROM等)を含むマイクロコンピュータ等よりなる。送信記憶部35bには、各送信機31の固有の識別情報を示すデータであるIDコードが記憶されている。説明の便宜上、左前車輪FLに装着された送信機31のIDコードをFLID、右前車輪FRに装着された送信機31のIDコードをFRID、左後車輪RLに装着された送信機31のIDコードをRLID、右後車輪RRに装着された送信機31のIDコードをRRIDと表記する。
 送信記憶部35bには、送信機31を制御する種々のプログラムが記憶されている。送信制御部35は、計時機能を備える。計時機能は、例えば、タイマや、カウンタによって実現される。送信制御部35は、所定の取得間隔毎に、圧力センサ32、温度センサ33、加速度センサ34によって検出された検出結果を取得する。
 送信制御部35は、検出結果に基づいて、例えばタイヤ空気圧やタイヤ内温度のタイヤ状態や、IDコードを含む送信データを生成する。送信制御部35は、生成した送信データを送信回路36に出力する。送信回路36は、送信制御部35から出力された送信データを変調する。変調された送信データは、無線信号として送信アンテナ39から送信される。無線信号は、例えば、RF帯(例えば、315MHz帯や、434MHz帯)の信号として送信される。送信回路36は送信部となる。
 送信機31は、異なる2つの送信モードとして、車輪11の回転角度に関わらず送信データを送信する通常送信と、車輪11の回転角度が予め定められた特定角度となったときに送信データを送信する特定角度送信とを行う。
 通常送信では、所定の間隔毎に送信データが送信される。所定の間隔は、例えば、十秒~数十秒などである。特定角度送信は、例えば、車両10が予め定められた時間以上、継続して停車した後に、車両10が走行を開始した場合に行われる。予め定められた時間は、例えば、数十分~数時間など、タイヤ交換が可能である時間に設定される。即ち、特定角度送信は、タイヤローテーションなどに伴い、車輪11の位置が変更された可能性がある場合に行われる。車両10が走行しているか停止しているかは、加速度センサ34の検出結果である遠心加速度から判断される。
 特定角度送信時には、車輪11の回転角度が、予め定められた特定角度となったことを送信制御部35が検出したときに送信データが送信される。詳細に説明すれば、1回前の送信データの送信から所定の時間(例えば、十秒~数十秒)が経過しており、かつ、特定角度が検出された場合に送信制御部35は送信データを送信する。
 図5(a)及び図5(b)に示すように、複数の特定角度が設定されており、ここでは、送信機31が車輪11の最上位置である場合の第1角度と、送信機31が車輪11の最下位置である場合の第2角度とが、特定角度として定められている。第1角度を基準(0度)とした場合、第2角度は180度となる。第1角度と第2角度との角度差は180度である。
 送信機31が特定角度になったことは、加速度センサ34によって検出される加速度によって検出可能である。検出軸34aの軸方向は、車輪11の回転角度に関わらず遠心力の作用する方向と同一方向である。このため、加速度センサ34は、車輪11の回転角度に関わらず遠心加速度を検出する。一方、重力加速度は、常に、鉛直方向に作用する。このため、検出軸34aが鉛直方向を向いていない場合、加速度センサ34は、重力加速度の分力(重力加速度成分)を検出する。加速度センサ34は、遠心加速度に重力加速度を加えた加速度を検出する。
 ここで、車両10が急加速や急停止しない限り、車輪11が1回転する間に変化する遠心加速度は、極僅かである。したがって、車輪11が1回転する間に変化する加速度は重力加速度であるとみなすことができる。よって、重力加速度の変化から、車輪11の回転角度が特定角度となったことを検出することができる。重力加速度のみを考慮した場合、重力加速度は、車輪11が1回転する間に、+1[G]~-1[G]の間で変化する。この場合、重力加速度は、送信機31が車輪11の最下位置であるときに+1[G]であり、送信機31が車輪11の最上位置であるときに-1[G]となる。
 送信制御部35は、加速度センサ34によって検出された加速度に基づいて送信データを送信することで、車輪の回転角度が特定角度となったことを検出したときに送信データを送信する。送信制御部35は、第1角度と第2角度で交互に送信データを送信する。ここでは、加速度センサ34が特定角度検出部として機能する。加速度センサ34の精度や、送信制御部35が加速度センサ34から検出結果を取得する取得間隔や、走行状況による外乱などによって、送信データが送信される送信角度は、特定角度を中心としてばらつく。送信データが送信される送信角度は、特定角度に近いほど多くなる。
 次に、受信機50について説明する。
 図1(a)に示すように、受信機50は、受信制御部51と、受信回路52と、受信アンテナ56とを備える。受信制御部51は、車両10に搭載された表示器57に接続されている。受信制御部51は、受信CPU54及び受信記憶部55(ROMやRAM等)を含むマイクロコンピュータ等よりなる。受信制御部51は、計時機能を備える。計時機能は、例えば、タイマや、カウンタによって実現される。受信回路52は、各送信機31から受信アンテナ56を介して受信された無線信号を復調して、送信データを受信制御部51に出力する。受信回路52が受信部として機能する。
 受信制御部51は、受信回路52からの送信データに基づき、例えばタイヤ空気圧やタイヤ内温度等のタイヤ13の状態を把握する。受信制御部51は、タイヤ13に異常が生じている場合に、表示器57による報知を行う。表示器57は、各タイヤ13の圧力を車輪11の位置に対応付けて、表示する。
 受信記憶部55は、受信機50が搭載された車両10の各車輪11に装着された4つの送信機31のIDコードを記憶している。これにより、受信機50は、送信機31と対応付けられている。受信制御部51は、4つの送信機31から送信された送信データを自身に送られた送信データとして認識する。受信制御部51は、受信回路52が受信した送信データと受信記憶部55に記憶されたIDコードとに基づき、送信データを送信した送信機31に登録された識別情報(IDコード)と受信機50に登録された識別情報(IDコード)とを照合する。送信データが受信機50に対応付けられた送信機31から送信されたものである場合、受信制御部51は、送信データに含まれるタイヤ13の状態を示すデータ(圧力データ、及び、温度データ)を、受信機50が搭載された車両10のデータであるとみなす。
 次に、各送信機31が複数の車輪11のうちいずれの車輪11に装着されているかを特定する車輪位置特定処理について作用とともに説明する。車輪位置特定処理は、例えば、スタートスイッチ14の操作により、車両10が停止状態から起動状態にされたときに行われる。以下の説明において、送信機31の送信モードは、特定角度送信とする。これにより、タイヤローテーションなどが行われた場合であっても、受信制御部51は、各送信機31がいずれの車輪11に装着されているかを自動で認識可能である。
 受信制御部51は、受信回路52が送信データを受信したことを契機として、各回転センサユニット21~24のパルスカウント値(車輪11の回転角度)をABSコントローラ25から取得し、パルスカウント値から車輪11の回転角度を演算する。受信制御部51が取得部として機能する。即ち、取得部は、受信制御部51の機能の一部である。
 以下、第1角度で送信された送信データの受信を契機として取得される回転角度を第1取得回転角度とし、第2角度で送信された送信データの受信を契機として取得される回転角度を第2取得回転角度とする。また、両者を総称して、取得回転角度とする。
 車両10の走行中において、各車輪11の回転数(回転速度)は、デファレンシャルギアなどの影響によって異なる。このため、各車輪11に装着された送信機31の相対位置、即ち、各車輪11同士の回転角度の差は、車両10の走行に伴い変化する。このため、送信機31が特定角度で送信データを送信している場合、受信制御部51は、送信データの受信を契機として、4つの車輪11の回転角度を複数回ずつ取得する。すると、4つの車輪11のうち1つの車輪11のみ、回転角度のばらつきが少なくなる。換言すれば、各送信機31が特定角度で送信データを送信している場合、送信データの受信を契機としてパルスカウント値を取得すると、パルスカウント値のばらつきが少ない回転センサユニット21~24が1つ存在する。
 詳細にいえば、第1角度で送信された送信データの受信を契機として第1取得回転角度を得た場合、第1取得回転角度のばらつきが少ない車輪11が1つ存在する。また、第2角度で送信された送信データの受信を契機として第2取得回転角度を得た場合、第2取得回転角度のばらつきが少ない車輪11が1つ存在する。
 パルスカウント値は、スタートスイッチ14により車両10が停止状態となるとリセットされる。したがって、回転センサユニット21~24によって検出される車輪11の絶対角度と特定角度との対応関係は、車両10が停止状態になる度に変化する。一方で、第1取得回転角度と第2取得回転角度の差分(角度差)は、パルスカウント値のリセットによる影響を受けない。したがって、各取得回転角度の差分を利用すれば、各送信機31がいずれの車輪11に装着されているかを特定することができる。
 受信制御部51は、取得された回転角度とその回転角度の取得より前に取得された回転角度との差分の絶対値を算出する。ここでいう差分の絶対値は、同一のIDコードを含んだ送信データの受信を契機として取得された回転角度間で算出される。ここでは、受信制御部51は、取得された回転角度とその回転角度の取得の1回前に取得された回転角度との差分の絶対値を算出する。以下、この差分の絶対値のことを「角度差分」と称する。受信制御部51が算出部として機能する。即ち、算出部は受信制御部51の機能の一部である。
 ヌルポイントや、通信環境などにより送信データを受信回路52で受信できない場合がある。このため、「角度差分」は、第1取得回転角度と第2取得回転角度との差分、第1取得回転角度同士の差分、第2取得回転角度同士の差分のいずれかとなる。
 受信制御部51は、角度差分が予め定められた範囲内に含まれているかを判定する。予め定められた範囲には、基準範囲A1と特定範囲A2との2種類が設定されている。
 図6に示すように、基準範囲は0を含む範囲であり、例えば、0±所定値の範囲である。特定範囲A2は、異なる特定角度間の角度差を含む範囲であり、例えば、異なる特定角度間の角度差±所定値の範囲である。第1角度と第2角度の角度差が180度であるため、180度±所定値の範囲が特定範囲A2となる。基準範囲A1の幅は、特定範囲A2の範囲の幅と同一である。
 所定値としては、特定角度の検出に基づいて送信データを送信したときの送信角度のばらつき等に基づいて設定される。所定値は、シミュレーション結果や、実験結果などに基づき設定され、例えば、7.5度(2パルス分)に設定される。
 前述したように、4つの車輪11のうち1つは、第1取得回転角度のばらつき、及び第2取得回転角度のばらつきが少ない。したがって、第1取得回転角度同士の角度差分、及び第2取得回転角度同士の角度差分が基準範囲A1に含まれる回数が多くなる車輪11が1つ存在している。また、4つの車輪11のうち1つは、第1取得回転角度と第2取得回転角度との角度差分が、異なる特定角度間の角度差と一致する。実際には、送信角度のばらつきにより、第1取得回転角度と第2取得回転角度との角度差分と、異なる特定角度間の角度差との間に差異が生じる場合もあるが、差異は僅かであり、特定範囲A2に含まれる回数が多くなる車輪11が1つ存在する。即ち、基準範囲A1は、同一の特定角度で送信された送信データを連続して受信したときの角度差分が含まれる範囲である。特定範囲A2は、異なる特定角度で送信された送信データを連続して受信したときの角度差分が含まれる範囲である。
 受信制御部51は、送信データに含まれるIDコード毎に分類して、角度差分が基準範囲A1又は特定範囲A2に含まれるか否かを判定する。受信制御部51は、IDコード毎に分類して、4つの車輪11の角度差分が基準範囲A1又は特定範囲A2に含まれる回数を積算し、積算値を算出する。そして、受信制御部51は、4つの車輪11のうち1つについての積算値と他の車輪11についての積算値との差が閾値以上となると、積算値が最も多い車輪11とIDコードとを対応付ける。即ち、受信制御部51は、角度差分が範囲A1,A2に含まれる回数が突出して多くなる車輪11とIDコードとの対応付けを行う。
 例えば、FRIDの送信機31から送信された送信データの受信を契機として取得された右前車輪FRの回転角度から角度差分を算出し、その角度差分が図6に示すように分布した場合、FRIDの送信機31は、右前車輪FRに装着されていると判定できる。図6から把握できるように、角度差分は基準範囲A1又は特定範囲A2内に含まれる回数が多い。これに対して、FRIDの送信機31から送信された送信データの受信を契機として取得された右前車輪FR以外の車輪11の回転角度から角度差分を算出すると、角度差分は乱雑に分布する。
 説明の便宜上、図6には、基準範囲A1と特定範囲A2に同程度の角度差分が含まれるように記載したが、ヌルポイントを考慮しない場合、第1角度と第2角度とが交互に送信されていることからすれば、角度差分は、特定範囲A2に含まれる回数の方が多くなる傾向となる。
 受信制御部51は、FFID、FRID、RFID、RRIDのそれぞれと、車輪11とを対応付けると、対応関係を受信記憶部55に記憶し、車輪位置特定処理を終了する。受信制御部51が特定部として機能する。即ち、特定部は受信制御部51の機能の一部である。
 ここで、各送信機31がいずれの車輪11に装着されているかの特定は、基準範囲A1のみでも行うこともできる。上記したように、第1取得回転角度同士の角度差分、及び第2取得回転角度の角度差分はいずれも、基準範囲A1に含まれる。したがって、送信データを受信したときに、その送信データが第1角度で送信されたものか、第2角度で送信されたものかを判定することができれば、第1取得回転角度と第2取得回転角度とを分類することができる。そして、第1取得回転角度同士と第2取得回転角度同士とで角度差分をそれぞれ算出し、それらの角度差分から各送信機31がいずれの車輪11に装着されているかを特定することもできる。しかしながら、この場合、取得される回転角度が、第1取得回転角度と第2取得回転角度とに分散される。
 車輪11の回転数(回転速度)の差が生じていることを把握するためには、所定数以上の回転角度のサンプル数が必要である。複数の特定角度が設定され、取得回転角度が第1取得回転角度と第2取得回転角度に分散されると、送信データの送信回数に対して、車輪位置特定処理に利用できるサンプル数も分散されてしまう。これに対し、基準範囲A1及び特定範囲A2を設けることで、第1取得回転角度と第2取得回転角度とを分類することなく、各送信機31がいずれの車輪11に装着されているかを特定することができる。したがって、車輪位置特定処理に利用できるサンプル数が分散せず、各送信機31がいずれの車輪11に装着されているかの特定に要する時間が短縮化される。
 本実施形態の車輪位置特定処理と他の車輪位置特定処理とを併用してもよい。例えば、取得回転角度のばらつきから各送信機31がいずれの車輪11に装着されているかを特定する車輪位置特定処理を、第1実施形態の車輪位置特定処理に加えて行ってもよい。
 この場合、複数の車輪位置特定処理を並行して行い、各車輪位置特定処理のうち各送信機31がいずれの車輪11に装着されているかの判定が早い方の判定結果を採用してもよい。また、複数の車輪位置特定処理の判定結果の一致性から各送信機31がいずれの車輪11に装着されているかを特定してもよい。例えば、複数の車輪位置特定処理で、同一の判定結果が得られれば、その判定結果を採用し、複数の車輪位置特定処理で異なる判定結果が得られた場合には、再度、車輪位置特定処理を行ってもよい。
 したがって、第1実施形態によれば、以下の効果を得ることができる。
 (1-1)基準範囲A1及び特定範囲A2を設けることで、第1取得回転角度と第2取得回転角度とを分類することなく、各送信機31がいずれの車輪11に装着されているかを特定することができる。したがって、車輪位置特定処理に利用できるサンプル数が分散せず、各送信機31がいずれの車輪11に装着されているかの特定に要する時間が短縮化される。
 (1-2)第1角度と第2角度とは等間隔置きに設定されている。即ち、車輪11の回転方向におけるいずれの方向への角度であっても、第1角度と第2角度の角度差は等しい。したがって、特定範囲A2を1つのみ設定すればよく、処理が容易となる。
 (1-3)基準範囲A1のみを用いて各送信機31がいずれの車輪11に装着されているかを特定する場合、第1取得回転角度と第2取得回転角度とを分類する必要がある。受信機50は、第1角度と第2角度とで交互に送信データが送信されることを認識できていれば、交互に取得回転角度を分類すればよい。また、通信環境の影響などで、送信データを受信できず、第1角度(あるいは第2角度)で送信された送信データを連続して受信する場合がある。この場合でも、送信データが送信される間隔は把握できているため、送信データの受信間隔が送信データの送信間隔の2倍程度であれば、同一の特定角度で送信された送信データを2回連続で受信したと認識することができる。
 しかしながら、複数回連続して送信データを受信できなかった場合、各送信機31がいずれの車輪11に装着されているかの特定が困難になる。これは、受信制御部51の計時機能の精度などに起因して、複数回連続して送信データを受信できなかった後に受信した送信データが、第1角度で送信されたものか第2角度で送信されたかを判断できなくなるためである。即ち、受信制御部51は、第1角度で送信された送信データの受信を契機として取得した取得回転角度と第2角度で送信された送信データの受信を契機として取得した取得回転角度とに分類できなくなる。
 送信データに特定角度を示す角度データを含めることも考えられる。しかしながら、この場合、角度データの分だけデータ長が長くなる。送信データのデータ長が長くなると、送信データの送信による電力消費が大きくなる。データ長が長くなることを抑制するために角度データを短く(例えば、1ビット)にすると、角度データが誤っているにも関わらず、誤りを検出できない可能性が高くなる。すると、第1角度で送信された送信データを受信したにも関わらず、受信制御部51は、第2角度で送信された送信データを受信したと誤認するおそれがある。これにより、各送信機31がいずれの車輪11に装着されているかの特定が遅くなったり、特定ができなくなるおそれがある。
 これに対して、第1実施形態では、第1角度で送信された送信データの受信を契機として取得した取得回転角度と第2角度で送信された送信データの受信を契機として取得した取得回転角度とに分類することなく、車輪位置特定処理を行うことができる。したがって、複数回連続して送信データを受信できなかった場合でも、各送信機31がいずれの車輪11に装着されているかを特定することができる。また、送信データ内に角度データを含める必要もない。したがって、送信データのデータ長の短縮化、ひいては、送信に要する電力の低減に寄与する。また、送信データに角度データを含めないため、角度データに誤りが生じることを原因として、各送信機31がいずれの車輪11に装着されているかの特定が遅くなることがない。
 (第2実施形態)
 以下、送信機ユニット、及び受信機の第2実施形態について説明する。なお、以下の説明において第1実施形態と同様の構成については、その説明を省略、あるいは、簡略する。
 図7に示すように、第1実施形態と同様に、送信機31が最上位置であるときの角度を第1角度、最下位置であるときの角度を第2角度とする。第1角度は、第2角度と180度ずれている。第1角度から90度ずれた箇所に送信機31が位置しているときの角度を第3角度とする。第1角度から120度ずれた箇所に送信機31が位置しているときの角度を第4角度とする。第1角度から150度ずれた箇所に送信機31が位置しているときの角度を第5角度とする。
 ここで、送信機31は、IDコードを16進数で表記した場合のIDコードの末尾に対応してグループ分けされている。ここでは、車輪11の数が4つであるため、IDコードは、4つのグループに分けられている。車輪11の数に応じて、グループ分けされる数は、変更してもよい。
 16進数で表記されるIDコードの末尾のうち、0~3を第1グループ、4~7を第2グループ、8~Bを第3グループ、C~Fを第4グループとする。
 図8に示すように、第1グループの送信機31では、第1角度及び第2角度が特定角度となる。第2グループの送信機31では、第1角度及び第3角度が特定角度となる。第3グループの送信機31では、第1角度及び第4角度が特定角度となる。第4グループの送信機31では、第1角度及び第5角度が特定角度となる。即ち、IDコードの末尾に応じて、特定角度が異なり、それに応じて、特定角度間の角度差が異なる。
 送信機ユニットUは、各グループの送信機31を1つずつ備えている。これにより、送信機ユニットUの各送信機31は、異なる特定角度間の角度差をそれぞれ有すると共に、異なる特定角度間の角度差は、各送信機31毎に異なっている。
 受信記憶部55は、IDコードの末尾(グループ)に対応付けて、異なる特定範囲A2を記憶している。第1グループには、第1実施形態と同一の特定範囲A2が対応付けられている。第2グループには、第1角度と第3角度との角度差である90度を含む特定範囲A2が対応付けられている。第3グループには、第1角度と第4角度との角度差である120度を含む特定範囲A2が対応付けられている。第4グループには、第1角度と第5角度との角度差である150度を含む特定範囲A2が対応付けられている。即ち、異なる特定角度間の角度差に対応して、特定範囲A2が定められている。また、第1角度と第3角度の角度差は270度であると捉えることもできるし、第1角度と第4角度の角度差は240度であると捉えることもできる。同様に、第1角度と第5角度との角度差は210度と捉えることもできる。第2グループには、270度を含む特定範囲A2が更に対応付けられ、第3グループには240度を含む特定範囲A2が更に対応付けられ、第4グループには210度を含む特定範囲A2が更に対応付けられている。即ち、異なる2つの特定角度間の角度差が等間隔ではない場合、その角度差の相違に対応して、複数の特定範囲A2が設定される。
 受信制御部51は、送信データに含まれるIDコードから、その送信データを送信した送信機31における特定角度間の角度差に応じた特定範囲A2に、角度差分が含まれるか否かを判定する。そして、第1実施形態と同様に、受信制御部51は、特定範囲A2に角度差分が含まれる回数によって、各送信機31がいずれの車輪11に装着されているかを特定する。
 特定範囲A2に角度差分が含まれているか否かを確認する場合、第2実施形態によれば、送信機31のIDコードに見合った特定角度で送信データが送信されているかを確認することができる。例えば、FRIDの送信機31が第1グループの送信機31であり、FRIDの送信機31から送信された送信データの受信を契機として取得された回転角度の角度差分が120度となる回転センサユニットが存在する場合を想定する。第1実施形態のように、送信データの受信を契機として取得された回転角度の角度差分と特定角度間の角度差との対応関係のみに基づき送信機31が装着されている車輪11の位置を特定すると、120度の角度差分を検出した回転センサユニットに対応する車輪11にFRIDの送信機31が装着されていると判定される虞がある。しかしながら、図8に示すように、第1グループの送信機31は180度の角度差で送信データを送信する送信機であることから、上記の判定は誤った判定となる。
 これに対し、第2実施形態の受信制御部51は、送信機31のIDコードの末尾から、FRIDの送信機31が第1グループの送信機31であると判定する。つまり、受信制御部51は、FRIDの送信機31から送信された送信データの受信を契機として各車輪11の回転角度を取得すると、送信データのIDコードに見合った角度差分が180度であると判定する。これにより、120度の角度差分を検出した回転センサユニットに対応する車輪11にFRIDの送信機31が装着されていると判定されることを抑止できる。この場合、再度、車輪位置特定処理を行うことで、各送信機31がいずれの車輪11に装着されているかを特定する。
 したがって、第2記実施形態によれば、第1実施形態の(1-1)~(1-3)の効果に加えて、以下の効果を得ることができる。
 (2-1)受信記憶部55は、IDコードと特定角度間の角度差を含む特定範囲A2とを対応付けて記憶している。このため、送信機31毎に特定角度間の角度差が異なっていても、各送信機31がいずれの車輪11に装着されているかを特定することができる。また、IDコード(送信機31)に見合った特定角度で送信データが送信されているかを確認するため、各送信機31がいずれの車輪11に装着されているかの特定についての信頼性が向上する。
 (2-2)送信機ユニットUの各送信機31は、複数の特定角度を検出したときに送信データを送信する。このため、各送信機31は、複数の異なる特定角度間の角度差に基づいて、受信機50に、各送信機31がいずれの車輪11に装着されているかを特定させることができる。更に、各送信機31は、異なる特定角度間の角度差をそれぞれ有し、異なる特定角度間の角度差は、各送信機31毎に異なっている。このため、各送信機31は、受信機50に、IDコード(送信機31)に見合った特定角度で送信データが送信されているかを確認させることができる。これにより、各送信機31がいずれの車輪11に装着されているかの特定について信頼性が向上する。
 上記各実施形態は、以下のように変更してもよい。
 ・各実施形態において、取得された回転角度とその回転角度の取得より前に取得された回転角度との差分は、取得された回転角度とその回転角度の取得の2回以上前に取得された回転角度との差分であってもよい。なお、パルスカウント値は車両10が停止状態となるとリセットされるため、「回転角度の取得より前に取得された回転角度」は、車両10が起動状態にされてから取得された回転角度を示し、車両10が起動される以前に取得された回転角度を含まない。
 取得された回転角度とその回転角度の取得の2回以上前に取得された回転角度との差分による車輪位置特定処理と、実施形態の車輪位置特定処理とを併用してもよい。また、実施形態の車輪位置特定処理に代えて、取得された回転角度とその回転角度の取得の2回以上前に取得された回転角度との差分による車輪位置特定処理を行ってもよい。
 ・各実施形態において、異なる特定角度間の角度差は、適宜変更してもよい。
 ・各実施形態において、第1角度と第2角度とで交互に送信データが送信されなくてもよい。例えば、第1角度と第2角度でランダムに送信データが送信されてもよいし、所定回数毎に、第1角度で送信データを送信するか第2角度で送信データを送信するかが切り替わってもよい。
 ・各実施形態において、受信記憶部55は、車輪11に装着された送信機31のIDコード、及びスペアタイヤに装着された送信機31のIDコードを記憶していてもよい。また、夏タイヤに装着された送信機31のIDコード、及び冬タイヤに装着された送信機31のIDコードの両方を、受信記憶部55が記憶していてもよい。
 ・各実施形態において、車両10は、複数の車輪11を備えたものであればよく、例えば、二輪車であってもよい。
 ・各実施形態において、車両10の歯車26の歯数は、任意である。即ち、回転角度検出部の分解能は、実施形態と異なっていてもよい。
 ・各実施形態において、パルスカウント値を回転角度に変換して各種処理を行ったが、パルスカウント値が回転角度を示すことを考慮すれば、パルスカウント値を用いて処理を行うこともできる。例えば、差分は、パルスカウント値の差分としてもよいし、基準範囲A1及び特定範囲A2はパルスカウント値の範囲としてもよい。回転角度とは、回転角度そのものに限られず、回転角度を示すものであればよい。
 ・各実施形態において、基準範囲A1、及び特定範囲A2は、適宜変更されてもよい。例えば、基準範囲A1は0+所定値であっても、0-所定値であってもよい。また、0に加算する所定値に比べて、0から減算する所定値を大きくしたり、小さくしたりしてもよい。特定範囲A2についても同様である。
 ・各実施形態において、所定値は可変としてもよい。例えば、車輪位置特定処理の開始時には所定値を大きくし、車輪位置特定処理が行われる時間が経過するにつれて所定値を小さくしてもよい。これにより、基準範囲A1と特定範囲A2との幅が可変となる。
 ・各実施形態において、基準範囲A1と特定範囲A2との幅は、同一でなくてもよい。例えば、特定範囲A2の範囲幅を基準範囲A1の幅より小さくしてもよい。
 ・各実施形態において、特定角度は、3つ以上設定されていてもよい。
 ・各実施形態において、基準範囲A1のみを用いた車輪位置特定処理を併用してもよい。
 ・第2実施形態において、IDコードの末尾に応じて異なる特定角度間の角度差を変更したが、これに限られない。送信機ユニットUの各送信機31の異なる特定角度間の角度差が異なっていれば、IDコードの末尾は同一でもよい。また、受信記憶部55は、受信機50に対応付けられた送信機31のIDコードとその送信機31の異なる特定角度間の角度差を記憶していればよい。
 ・第1実施形態において、受信制御部51は、角度差分が180度未満の場合には、角度差分をそのままの値とする。受信制御部51は、角度差分が180度以上の場合には360度から角度差分を減算し、角度差分を補正する。この場合、得られる角度差分は、180度未満となる。受信制御部51は、角度差分が180度未満の場合の角度差分、及び補正された角度差分が基準範囲A1又は特定範囲A2に含まれるかを判定する。
 同様に、第2実施形態において、受信制御部51は、角度差分が180度未満の場合には、角度差分をそのままの値とし、角度差分が180度以上の場合には360度から角度差分を減算し、角度差分を補正してもよい。この場合、得られる角度差分は、180度未満となる。したがって、特定範囲は、180度未満の角度に対応する範囲が1つ設定されていればよい。第2実施形態でいえば、第2グループの特定範囲として90度±所定値の範囲が設定され、第3グループの特定範囲として120度±所定値の範囲が設定され、第4グループの特定範囲として150度±所定値の範囲が設定される。
 ・第1実施形態において、取得された回転角度とその回転角度の取得の1回前に取得された回転角度との差分の絶対値を角度差分としたが、角度差分は、絶対値としなくてもよい。この場合、同一のIDコードを含んだ送信データの受信を契機として取得された回転角度とその回転角度の取得の1回前に取得された回転角度との差分は、+180度、-180度、0度付近の角度となる。上記した差分が、-180度未満の場合、受信制御部51は、差分に360度を加算することで差分を補正する。上記した差分が、-180度以上、+180度以下の場合、受信制御部51は、差分をそのままの値とする。上記した差分が、+180度より大きい場合、受信制御部51は、差分から360度を減算することで差分を補正する。特定範囲A2は、正負に対応して設定される。具体的にいえば、+180度-所定値、-180度+所定値の2つが特定範囲A2として設定される。正負に対応した特定範囲A2が設定されるため、第1実施形態に比べ、特定範囲A2の数が増加する。
 同様に、第2実施形態において、角度差分は絶対値としなくてもよい。この場合も、受信制御部51は、上記した場合と同様に、差分が-180度以上、+180度以下の場合には差分をそのままの値とする。受信制御部51は、差分が-180度未満の場合、及び差分が+180度より大きい場合、差分を補正する。また、この場合であっても、正負に対応した特定範囲A2が設定される。
 ・第2実施形態において、IDコードの末尾に限られず、特定のビットの値に応じて、グループ分けされてもよい。
 ・第2実施形態において、特定範囲A2は1つであってもよい。この場合、角度差分を補正し、補正により得られた値が特定範囲A2に含まれるかを判定する。図8から把握できるように、第2グループの送信機31において、特定角度間の角度差は90度及び270度である。この角度差の差分である180度を用いて、受信制御部51は、角度差分を補正する。例えば、角度差分を180度で剰余演算することで、第1角度と第3角度との角度差を90度とみなして、上記の判定を行うことができる。この場合には、特定範囲A2として、90度に対応した特定範囲A2が設定されていればよい。また、角度差分が180度以上の場合には180度を減算することでも同様の結果を得ることができる。
 受信制御部51は、角度差分が180度未満の場合には、角度差分に180度を加算してもよい。この場合、第1角度と第3角度との角度差を270度とみなして、上記の判定を行うことができる。この場合、特定範囲A2として270度に対応した特定範囲A2が設定されていればよい。
 第3グループの送信機31、第4グループの送信機31についても、同様に角度差の補正を行うことで、特定範囲A2を1つにすることができる。
 なお、特定角度が3つ以上の場合も、差分の絶対値を補正し、特定角度間の角度差が同一であるとみなせることで、特定範囲A2を1つにすることが可能である。
 U…送信機ユニット、10…車両、11…車輪、21~24…回転センサユニット、25…ABSコントローラ、30…タイヤ状態監視装置、31…送信機、34…加速度センサ(特定角度検出部)、35b…送信記憶部、36…送信回路(送信部)、50…受信機、51…受信制御部(取得部、算出部、及び、特定部)、52…受信回路(受信部)、55…受信記憶部。

Claims (3)

  1.  複数の車輪それぞれの回転角度を検出する回転角度検出部を有する車両に搭載され、前記複数の車輪のそれぞれに装着された送信機が前記複数の車輪のうちいずれの車輪に装着されているかを特定可能に構成された受信機であって、
     前記車輪が取り得る前記回転角度内に設定された複数の特定角度のうちいずれかの特定角度になったことを前記送信機が検出したときに前記送信機から送信される送信データを受信する受信部と、
     前記受信部が前記送信データを受信したことを契機として前記回転角度検出部から前記回転角度を取得する取得部と、
     前記取得部によって取得された前記回転角度と前記回転角度の取得よりも前に前記取得部によって取得された回転角度との差分を算出する算出部と、
     前記算出部によって算出された前記差分が予め定められた範囲内に含まれるか否かを判定し、前記差分が前記範囲内に含まれる回数によって前記送信データに含まれるIDコードと前記車輪との対応付けを行う特定部とを備え、
     前記範囲は、
     0を含む範囲である基準範囲と、
     異なる特定角度間の角度差を含む範囲である特定範囲とを含む、受信機。
  2.  前記角度差は、前記送信機毎に異なり、
     前記受信機は、更に、前記特定範囲に対応付けて前記送信機のIDコードが記憶されている受信記憶部を備える、請求項1に記載の受信機。
  3.  複数の車輪それぞれの回転角度を検出する回転角度検出部を有する車両が備える前記複数の車輪のそれぞれに装着されかつ前記車両に搭載された受信機に送信データを送信する複数の送信機を備えた送信機ユニットであって、
     前記受信機は、前記送信データの受信を契機として前記回転角度検出部から取得した前記回転角度と前記回転角度の取得よりも前に取得された回転角度との差分が予め定められた複数の範囲内に含まれるか否かにより、前記送信機が前記複数の車輪のうちいずれの車輪に装着されているかを特定可能に構成され、
     前記送信機は、
     個別のIDコードが記憶された送信記憶部と、
     前記車輪が取り得る前記回転角度内に設定された複数の特定角度のうちいずれかの特定角度となったことを検出する特定角度検出部と、
     前記送信機が前記複数の車輪のうちいずれの車輪に装着されているかを前記受信機に特定させるために、前記車輪の回転角度が特定角度となったことを検出したときに前記IDコードを含む前記送信データを送信する送信部とを備え、
     異なる特定角度間の角度差は、前記送信機毎に異なる、送信機ユニット。
PCT/JP2017/016766 2017-04-27 2017-04-27 受信機、及び、送信機ユニット WO2018198269A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/016766 WO2018198269A1 (ja) 2017-04-27 2017-04-27 受信機、及び、送信機ユニット
KR1020187009682A KR102068577B1 (ko) 2017-04-27 2017-04-27 수신기, 및 송신기 유닛
EP17851921.1A EP3415347B1 (en) 2017-04-27 2017-04-27 Receiver, and transmitter unit
US15/765,435 US10479148B2 (en) 2017-04-27 2017-04-27 Receiver and transmitter unit
CN201780003471.XA CN109153296B (zh) 2017-04-27 2017-04-27 接收器及发送器单元
JP2018517457A JP6756822B2 (ja) 2017-04-27 2017-04-27 受信機、及び、送信機ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016766 WO2018198269A1 (ja) 2017-04-27 2017-04-27 受信機、及び、送信機ユニット

Publications (1)

Publication Number Publication Date
WO2018198269A1 true WO2018198269A1 (ja) 2018-11-01

Family

ID=63919547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016766 WO2018198269A1 (ja) 2017-04-27 2017-04-27 受信機、及び、送信機ユニット

Country Status (6)

Country Link
US (1) US10479148B2 (ja)
EP (1) EP3415347B1 (ja)
JP (1) JP6756822B2 (ja)
KR (1) KR102068577B1 (ja)
CN (1) CN109153296B (ja)
WO (1) WO2018198269A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707635B2 (ja) * 2017-04-27 2020-06-10 太平洋工業株式会社 受信機、及び、送信機ユニット
JP7559662B2 (ja) * 2021-04-14 2024-10-02 トヨタ自動車株式会社 ロボット制御システム、ロボット制御方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111481A (ja) * 2010-11-05 2012-06-14 Trw Automotive Us Llc タイヤの状態および位置を決定する方法および装置
JP2014227124A (ja) 2013-05-24 2014-12-08 太平洋工業株式会社 車輪位置判定装置
WO2016190371A1 (ja) * 2015-05-28 2016-12-01 太平洋工業 株式会社 車輪位置特定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764137A (en) * 1996-12-09 1998-06-09 Chrysler Corporation System and method for diagnosing loss of pressure in tires of a vehicle
JP4507729B2 (ja) * 2004-07-15 2010-07-21 日産自動車株式会社 タイヤ空気圧モニター装置
JP2013505167A (ja) * 2009-09-22 2013-02-14 シュレーダー・エレクトロニクス・リミテッド ホイール位相角度情報を用いて車両のホイールの自動位置決めを行うシステム及び方法
CN102252691B (zh) 2011-04-14 2013-11-13 广州市计量检测技术研究院 一种汽车轮胎修正系数的测量方法
JP5910402B2 (ja) 2012-08-06 2016-04-27 株式会社デンソー 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
KR101351920B1 (ko) * 2012-08-21 2014-01-20 현대모비스 주식회사 타이어 압력 모니터링 장치 및 방법
KR101388622B1 (ko) * 2012-12-21 2014-04-24 현대오트론 주식회사 타이어 압력 감지 모듈, 이를 포함하는 타이어 압력 감지 시스템 및 타이어 압력 감지 모듈의 위치 자동 할당 방법
JP2015013635A (ja) * 2012-12-27 2015-01-22 株式会社東海理化電機製作所 タイヤ位置判定システム
US9031738B2 (en) 2013-01-24 2015-05-12 Trw Automotive U.S. Llc Method and apparatus for determining tire condition and location using wheel speed sensors and acceleration sensors
KR101601700B1 (ko) * 2013-12-20 2016-03-09 현대오트론 주식회사 타이어 압력 감지 시스템 및 타이어 위치 자동 할당 방법
JP2015123862A (ja) * 2013-12-26 2015-07-06 株式会社東海理化電機製作所 タイヤバルブid登録システム
EP3168066B1 (en) 2015-09-09 2019-07-03 Pacific Industrial Co., Ltd. Tire condition detection device, and wheel position identification device
WO2017042911A1 (ja) * 2015-09-09 2017-03-16 太平洋工業 株式会社 車輪位置特定装置
CN106114085B (zh) * 2016-08-19 2018-06-29 深圳市道通科技股份有限公司 胎压传感器前后轮位置识别方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111481A (ja) * 2010-11-05 2012-06-14 Trw Automotive Us Llc タイヤの状態および位置を決定する方法および装置
JP2014227124A (ja) 2013-05-24 2014-12-08 太平洋工業株式会社 車輪位置判定装置
WO2016190371A1 (ja) * 2015-05-28 2016-12-01 太平洋工業 株式会社 車輪位置特定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415347A4 *

Also Published As

Publication number Publication date
CN109153296A (zh) 2019-01-04
JP6756822B2 (ja) 2020-09-16
US20190070911A1 (en) 2019-03-07
EP3415347B1 (en) 2021-09-08
US10479148B2 (en) 2019-11-19
EP3415347A4 (en) 2019-03-20
JPWO2018198269A1 (ja) 2019-11-07
KR102068577B1 (ko) 2020-01-21
CN109153296B (zh) 2020-11-13
EP3415347A1 (en) 2018-12-19
KR20180135848A (ko) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6700386B2 (ja) 受信機
EP3308985B1 (en) Wheel position identification device
WO2018198269A1 (ja) 受信機、及び、送信機ユニット
WO2018179109A1 (ja) 送信機、受信機、及び、送受信システム
US11511572B2 (en) Tire condition monitoring system, transmitter, and receiver
JP7002561B2 (ja) タイヤ状態監視システム、送信機及び受信機
WO2018198270A1 (ja) 受信機、及び、送信機ユニット
KR20220150961A (ko) 수신기, 송신기 및 송수신 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517457

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187009682

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187009682

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE