WO2018198195A1 - モータ及び車載用アクチュエータ - Google Patents

モータ及び車載用アクチュエータ Download PDF

Info

Publication number
WO2018198195A1
WO2018198195A1 PCT/JP2017/016368 JP2017016368W WO2018198195A1 WO 2018198195 A1 WO2018198195 A1 WO 2018198195A1 JP 2017016368 W JP2017016368 W JP 2017016368W WO 2018198195 A1 WO2018198195 A1 WO 2018198195A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor shaft
convex
rotor
motor
outer peripheral
Prior art date
Application number
PCT/JP2017/016368
Other languages
English (en)
French (fr)
Inventor
淳一 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/016368 priority Critical patent/WO2018198195A1/ja
Publication of WO2018198195A1 publication Critical patent/WO2018198195A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present invention relates to a motor and an on-vehicle actuator.
  • an in-vehicle direct acting actuator using a motor such as a brushed DC (Direct Current) motor or a brushless motor
  • An in-vehicle direct acting actuator is used, for example, for opening control of a waste gate valve provided in a turbocharger (see, for example, Patent Document 1).
  • the electric actuator (25) of Patent Document 1 includes a connecting frame (34) that connects the electric motor portion (24) and a rod support portion (33) that slidably supports the actuator rod (27).
  • the connecting frame (34) is attached to the compressor housing (35) of the compressor (8a) of the high pressure turbocharger (8).
  • the electric motor section (24) includes a stator section (37) provided in the motor housing (36) and a rotor section (39) rotatably provided in the motor housing (36) via a bearing (38). And have.
  • a female screw hole portion (41) is provided in the shaft core portion of the rotor portion (39).
  • the male screw part (42) provided on the linear drive shaft (40) is screwed into the female screw hole part (41) (see paragraph [0027] of FIG. 1 and FIG. 1).
  • a rotor In a DC motor with a brush for a direct acting actuator, a rotor has been developed in which a substantially cylindrical rotor shaft is press-fitted into a hollow portion of a rotor core. A substantially round rod-shaped motor shaft is passed through the rotor shaft, and a female screw portion formed on the inner peripheral portion of the rotor shaft and a male screw portion formed on the outer peripheral portion of the motor shaft are screwed together. .
  • the present invention has been made to solve the above-described problems, and an object thereof is to suppress the deformation of the female screw portion due to stress when the rotor shaft is press-fitted into the hollow portion of the rotor core.
  • a motor of the present invention includes a rotor core having a hollow portion, a cylindrical rotor shaft that penetrates the hollow portion, and a rod-shaped motor shaft that is passed through the rotor shaft, and is formed on an inner peripheral portion of the rotor shaft.
  • the female screw part and the male screw part formed on the outer peripheral part of the motor shaft are screwed together, and the convex part in the concave-convex part formed on the outer peripheral part of the rotor shaft is in pressure contact with the rotor core, and A gap portion is provided between the concave portion and the rotor core in the concavo-convex portion.
  • FIG. 1 is an explanatory diagram showing a main part of a motor according to Embodiment 1 of the present invention.
  • the motor 100 of Embodiment 1 and the vehicle-mounted actuator using this motor 100 are demonstrated.
  • the motor 100 is a brushed DC motor, and the in-vehicle actuator is a direct acting type.
  • 1 is a rotor core.
  • the rotor core 1 is configured by a laminated body using a plurality of electromagnetic steel plates, for example. This laminate is molded with an insulator such as an epoxy resin.
  • the rotor core 1 has a plurality of teeth portions, and a plurality of rotor coils 2 are constituted by a plurality of windings wound around these teeth portions.
  • 3 is a commutator.
  • the commutator 3 has a substantially cylindrical shape, and a plurality of commutator pieces are arranged along the outer periphery of the commutator 3. Each end of each winding in the rotor coil 2 is electrically connected to one of the commutator pieces.
  • a resin collar is provided between the rotor core 1 and the commutator 3. By this collar, the rotor core 1 and the commutator 3 are electrically insulated.
  • Each of the rotor core 1 and the commutator 3 has a substantially cylindrical hollow portion along the rotation axis A.
  • a substantially cylindrical rotor shaft 4 is passed through these hollow portions.
  • a female screw portion 5 is formed of resin or the like on the inner peripheral portion of the rotor shaft 4.
  • the rotor shaft 4 is press-fitted into the hollow portion of the rotor core 1.
  • an uneven portion is formed on at least a part of the back surface portion with respect to the female screw portion 5.
  • the convex portion in the concave and convex portion is in pressure contact with the rotor core 1, and a gap is provided between the concave portion in the concave and convex portion and the rotor core 1.
  • the rotor core 1 is held on the rotor shaft 4 by pressure contact between the convex portion and the rotor core 1. Specific examples of the uneven portions will be described later with reference to FIGS.
  • the rotor shaft 4 is press-fitted into the hollow part of the commutator 3.
  • the commutator 3 is held by the rotor shaft 4 by pressure contact between the rotor shaft 4 and the commutator 3.
  • the rotor core 1, the rotor coil 2, the commutator 3, the collar, the rotor shaft 4, and the female screw portion 5 constitute the main part of the rotor 6.
  • a substantially round bar-shaped motor shaft 7 is passed through the rotor shaft 4.
  • a male screw portion 8 is formed on the outer peripheral portion of the motor shaft 7, and the male screw portion 8 is screwed with the female screw portion 5. For this reason, the motor shaft 7 can be directly moved by the rotation of the rotor 6.
  • the rotor 6 is accommodated in a substantially bottomed cylindrical housing.
  • the motor shaft 7 is passed through a through hole formed in the bottom portion of the housing.
  • the tip of the motor shaft 7 protrudes outside the housing.
  • the rotor shaft 4 is rotatably supported by one or more bearings housed in the housing.
  • a plurality of brushes are accommodated in the housing.
  • the commutator piece of the commutator 3 is slidable with the brush by the rotation of the rotor 6.
  • a plurality of stators are provided on the inner peripheral portion of the housing. These stators are composed of, for example, permanent magnets arranged to face the outer peripheral portion of the rotor core 1.
  • the main part of the motor 100 is comprised by the rotor 6, the motor shaft 7, the housing, the bearing, the brush, and the stator.
  • the motor shaft 7 is linearly moved integrally with a substantially round rod-like actuator rod.
  • a lever is rotatably attached to the tip of the actuator rod, and the lever is rotated by a direct movement of the actuator rod. By rotating the lever, for example, the opening degree of a waste gate valve provided in the turbocharger is changed.
  • the main part of the on-vehicle actuator is constituted by the motor 100, the actuator rod and the lever.
  • the concavo-convex portion 10 is formed by an annular convex portion 11 along the outer peripheral portion of the rotor shaft 4.
  • the convex portion 11 is disposed at a position corresponding to the central portion of the rotor core 1.
  • the base portions 12 and 13 of the convex portion 11 are curved, more specifically, R-shaped, and the corner portions 14 and 15 of the convex portion 11 are also R-shaped.
  • the convex portion 11 is in a state of being pressed against the rotor core 1 by surface contact.
  • a gap portion 17 is provided in a portion of the concavo-convex portion 10 excluding the convex portion 11, that is, between the concave portion 16 and the rotor core 1.
  • the motor 100 having the concavo-convex portion 10 has a smaller contact area between the rotor shaft 4 and the rotor core 1 than a conventional motor not having the concavo-convex portion 10. For this reason, when the rotor shaft 4 is press-fitted into the hollow portion of the rotor core 1, the stress in the inner diameter direction generated in the rotor shaft 4 can be reduced. As a result, the deformation of the rotor shaft 4 due to the stress can be suppressed, and the deformation of the female screw portion 5 can also be suppressed. Therefore, the clearance between the female screw portion 5 and the male screw portion 8 can be ensured in the state after the press-fitting, and the output due to the direct movement of the motor shaft 7 can be stabilized.
  • root portions 12 and 13 of the convex portion 11 are R-shaped, it is possible to prevent stress concentration on the root portions 12 and 13 from occurring when the rotor shaft 4 is press-fitted into the hollow portion of the rotor core 1. As a result, breakage of the rotor core 1 can be avoided.
  • corner portions 14 and 15 of the convex portion 11 are R-shaped, it is possible to prevent so-called “galling” when the rotor shaft 4 is press-fitted into the hollow portion of the rotor core 1. For this reason, the force required for press-fitting can be stabilized.
  • an uneven portion 20 is formed by two annular convex portions 21 along the outer peripheral portion of the rotor shaft 4. These convex portions 21 are respectively arranged at positions corresponding to both end portions of the rotor core 1. That is, one convex portion 21 is disposed at a position corresponding to one end portion of the rotor core 1, and the other convex portion 21 is disposed at a position corresponding to the other end portion of the rotor core 1.
  • the base portions 22 and 23 of the individual convex portions 21 are curved, more specifically, R-shaped, and the corners 24 and 25 of the individual convex portions 21 are also R-shaped.
  • the individual convex portions 21 are in a state of being pressed against the rotor core 1 by surface contact.
  • a gap portion 27 is provided in a portion of the uneven portion 20 excluding the convex portion 21, that is, between the concave portion 26 and the rotor core 1.
  • the concavo-convex portion 20 is formed by three annular convex portions 21 along the outer peripheral portion of the rotor shaft 4.
  • the base portions 22 and 23 of the individual convex portions 21 have an R surface shape, and the corner portions 24 and 25 of the individual convex portions 21 also have an R surface shape.
  • the individual protrusions 21 are in pressure contact with the rotor core 1 by surface contact, and a gap 27 is provided between the recess 26 and the rotor core 1.
  • the concavo-convex portion 20 is formed by five annular convex portions 21 along the outer peripheral portion of the rotor shaft 4. Of these convex portions 21, the two convex portions 21 are respectively disposed at positions corresponding to both end portions of the rotor core 1, and the remaining convex portions 21 are disposed between the two convex portions 21. .
  • the base portions 22 and 23 of the individual convex portions 21 have an R surface shape, and the corner portions 24 and 25 of the individual convex portions 21 also have an R surface shape.
  • the individual protrusions 21 are in pressure contact with the rotor core 1 by surface contact, and a gap 27 is provided between the recess 26 and the rotor core 1.
  • the number of press contact points with respect to the rotor core 1 can be increased as compared with the case where one convex portion 11 is provided. As a result, the holding of the rotor core 1 by pressure contact can be stabilized.
  • each of the convex portions 21 when the convex portions 21 are arranged at positions corresponding to both ends of the rotor core 1, the arrangement positions of these two convex portions 21 are set outside the both ends of the rotor core 1. Only a part of each of the convex portions 21 may be in pressure contact with the rotor core 1. For example, as shown in FIG. 5, only approximately half of each of the two convex portions 21 may be in a state of being pressed against the rotor core 1.
  • a wavy uneven portion 30 is formed on the outer peripheral portion of the rotor shaft 4.
  • each of the three convex portions 31 is in a state of being pressed against the rotor core 1 by surface contact, and a gap portion 33 is provided between the concave portion 32 and the rotor core 1.
  • the same effect as the case where the uneven portion 20 is formed using the plurality of convex portions 21 can be obtained. Moreover, since the shape of the concavo-convex portion 30 is smoother than that of the concavo-convex portions 10 and 20 formed by the convex portions 11 and 21, the effect of preventing the occurrence of galling can be improved.
  • an uneven portion 40 is formed by three annular convex portions 41 along the outer peripheral portion of the rotor shaft 4.
  • Each convex part 41 is formed of a pair of tapered surfaces 42 and 43 and is in a state of being pressed against the rotor core 1 by line contact.
  • a gap 45 is provided in a portion of the concavo-convex portion 40 excluding the convex portion 41, that is, between the concave portion 44 and the rotor core 1.
  • the convex portion 41 Since the convex portion 41 is in line contact, the force required for press-fitting the rotor shaft 4 can be reduced as compared with the case where the convex portions 11 and 21 for surface contact are provided. However, since the convex portion 41 is tapered, the effect of preventing the occurrence of galling is small as compared with the case where the corner portions 14, 15, 24, and 25 of the convex portions 11 and 21 are formed in the R-plane shape. Therefore, it is preferable to adopt a more appropriate shape among the convex portions 11 and 21 due to surface contact or the convex portion 41 due to line contact according to the performance of the manufacturing facility and the required specifications of the motor 100.
  • the number of the convex portions 41 is not limited to three.
  • the uneven portion 40 may be formed by one annular convex portion 41 along the outer peripheral portion of the rotor shaft 4.
  • the single convex portion 41 may be disposed at a position corresponding to the central portion of the rotor core 1.
  • convex portions 11 and 21 by surface contact and the convex portion 41 by line contact may be used in combination. That is, one or more convex portions 11 and 21 by surface contact and one or more convex portions 41 by line contact may be formed on the outer peripheral portion of the rotor shaft 4.
  • a bellows-like uneven portion 50 is formed on the outer peripheral portion of the rotor shaft 4.
  • each of the three convex portions 51 is in a state of being pressed against the rotor core 1 by line contact, and a gap portion 53 is provided between the concave portion 52 and the rotor core 1.
  • the convex part 62 and the recessed part 63 are formed of the taper-shaped level
  • the portion corresponding to the concave portion 63 is thinner than the portion corresponding to the convex portion 62.
  • the convex portion 62 is in pressure contact with the rotor core 1 by surface contact, and a gap portion 64 is provided between the concave portion 63 and the rotor core 1. In this way, the uneven portion 60 is formed.
  • the stepped portion 61 As low as possible on the paper surface, that is, to increase the ratio of the concave portion 63 in the concave and convex portion 60.
  • the majority of the concavo-convex portion 60 is constituted by the concave portion 63, and the remaining portion is constituted by the convex portion 62.
  • the shapes of the concavo-convex portions 10, 20, 30, 40, 50, and 60 shown in FIGS. 2 to 9 are all rotating bodies having the rotor shaft 4 as a rotation axis. For this reason, the concavo-convex portions 10, 20, 30, 40, 50, 60 can be easily formed by polishing or cutting while rotating the rotor shaft 4.
  • the convex portion 11 may be a complete ring over the entire circumference of the outer peripheral portion of the rotor shaft 4, but is a substantially ring having one or more missing portions in the ring. May be.
  • each of the convex portions 21 may be a complete ring over the entire outer periphery of the rotor shaft 4.
  • the projecting portion 21 may have one or more missing portions in the ring. It may be annular.
  • each of the convex portions 41 may be a complete ring over the entire outer periphery of the rotor shaft 4, but is a substantially ring having one or more missing portions in the ring. May be.
  • the meaning of the term “annular” described in the claims of the present application is not limited to a complete ring, but also includes a substantially ring.
  • concave and convex portion may have any shape as long as a concave portion is formed on at least a part of the back surface portion with respect to the female screw portion 5 in the outer peripheral portion of the rotor shaft 4.
  • the rotor shaft 4 may be substantially cylindrical as shown in FIG. 1 and may not be completely cylindrical.
  • the meaning of the term “tubular” described in the claims of the present application is not limited to a complete cylindrical shape, but includes at least a substantially cylindrical shape.
  • the motor shaft 7 may be a substantially round bar shape as shown in FIG. 1, and may not be a complete round bar shape.
  • the meaning of the term “bar shape” described in the claims of the present application is not limited to a complete round bar shape, but includes at least a substantially round bar shape.
  • the use of the motor 100 is not limited to the vehicle-mounted actuator.
  • the motor 100 can be used for an actuator for any application as long as it is a direct acting type.
  • the motor 100 of the first embodiment includes the rotor core 1 having a hollow portion, the cylindrical rotor shaft 4 penetrating the hollow portion, the rod-shaped motor shaft 7 passed through the rotor shaft 4,
  • the female screw portion 5 formed on the inner peripheral portion of the rotor shaft 4 and the male screw portion 8 formed on the outer peripheral portion of the motor shaft 7 are screwed together and formed on the outer peripheral portion of the rotor shaft 4.
  • the protrusions 11, 21, 31, 41, 51, 62 in the uneven portions 10, 20, 30, 40, 50, 60 are in pressure contact with the rotor core 1, and the uneven portions 10, 20, 30, 40, Between the recesses 16, 26, 32, 44, 52, 63 and the rotor core 1 at 50, 60, gaps 17, 27, 33, 45, 53, 64 are provided. Thereby, when the rotor shaft 4 is press-fitted into the hollow portion of the rotor core 1, the stress in the inner diameter direction generated in the rotor shaft 4 can be reduced. As a result, the deformation of the rotor shaft 4 due to the stress can be suppressed, and the deformation of the female screw portion 5 can also be suppressed. Therefore, the clearance between the female screw portion 5 and the male screw portion 8 can be ensured in the state after the press-fitting, and the output due to the direct movement of the motor shaft 7 can be stabilized.
  • the shape of the concavo-convex portions 10, 20, 30, 40, 50, 60 is a rotating body having the rotor shaft 4 as a rotation axis. For this reason, the concavo-convex portions 10, 20, 30, 40, 50, 60 can be easily formed by polishing or cutting while rotating the rotor shaft 4.
  • uneven portions 10, 20, 40 are formed by annular convex portions 11, 21, 41 along the outer peripheral portion of the rotor shaft 4.
  • the motor 100 can be realized using the concavo-convex portions 10, 20, and 40 illustrated in FIG. 2 to FIG. 5 or FIG.
  • the concave and convex portions 20 and 40 are formed by the plurality of convex portions 21 and 41.
  • convex portions 21 are respectively arranged at positions corresponding to both end portions of the rotor core 1. Thereby, it can prevent that the inclination of the rotor core 1 with respect to the rotor shaft 4 generate
  • root portions 12, 13, 22, and 23 of the convex portions 11 and 21 are curved. Thereby, it can prevent that the stress concentration with respect to the base parts 12, 13, 22, and 23 occurs.
  • corner portions 14, 15, 24, 25 of the convex portions 11, 21 are curved. Thereby, the occurrence of galling can be prevented.
  • the convex portion 41 is formed by the tapered surfaces 42 and 43. Thereby, since the convex part 41 becomes a line contact with respect to the rotor core 1, the force required for press fit can be made small.
  • the projecting portions 11, 21, 41 are provided with missing portions. Thereby, the uneven
  • a wavy uneven portion 30 is formed on the outer peripheral portion of the rotor shaft 4.
  • the motor 100 is realizable using the uneven
  • the shape of the uneven part 30 is smooth, the effect of preventing the occurrence of galling can be improved.
  • a bellows-like uneven portion 50 is formed on the outer peripheral portion of the rotor shaft 4.
  • the motor 100 is realizable using the uneven
  • the convex part 51 is in line contact with the rotor core 1, the force required for press-fitting can be reduced.
  • a convex portion 62 and a concave portion 63 are formed by a tapered step portion 61 provided on the outer peripheral portion of the rotor shaft 4.
  • the motor 100 can be realized by using the uneven portion 60 illustrated in FIG. 9.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the motor of the present invention can be used for an in-vehicle actuator, for example.
  • the vehicle-mounted actuator of the present invention can be used, for example, for opening control of a waste gate valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

ロータシャフト(4)の内周部に形成された雌螺子部(5)とモータシャフト(7)の外周部に形成された雄螺子部(8)とが螺合しており、ロータシャフト(4)の外周部に形成された凹凸部(10,20,30,40,50,60)における凸部(11,21,31,41,51,62)がロータコア(1)に圧接した状態であり、かつ、凹凸部(10,20,30,40,50,60)における凹部(16,26,32,44,52,63)とロータコア(1)との間に間隙部(17,27,33,45,53,64)が設けられている。

Description

モータ及び車載用アクチュエータ
 本発明は、モータ及び車載用アクチュエータに関する。
 従来、ブラシ付きDC(Direct Current)モータ又はブラシレスモータなどのモータを用いた車載用の直動型アクチュエータが開発されている。車載用の直動型アクチュエータは、例えば、ターボチャージャに設けられたウェイストゲートバルブの開度制御に用いられている(例えば、特許文献1参照)。
 特許文献1の電動アクチュエータ(25)は、電動モータ部(24)と、アクチュエータロッド(27)をスライド可能に支持するロッド支持部(33)とを連結する連結フレーム(34)を有し、この連結フレーム(34)が高圧段ターボチャージャ(8)のコンプレッサ(8a)のコンプレッサハウジング(35)に取付られている。電動モータ部(24)は、モータハウジング(36)内に設けられたステータ部(37)と、モータハウジング(36)内に軸受(38)を介して回転自在に設けられたロータ部(39)とを有している。ロータ部(39)の回転をその軸方向の直線駆動軸(40)の直線(進退)運動に変換するために、ロータ部(39)の軸芯部には雌ネジ孔部(41)が設けられ、この雌ネジ孔部(41)には直線駆動軸(40)に設けられた雄ネジ部(42)が螺合されている(特許文献1の段落[0027]、図1参照)。
特開2007-262964号公報
 直動型アクチュエータ用のブラシ付きDCモータにおいて、ロータコアの中空部に略円筒状のロータシャフトを圧入してなるロータが開発されている。ロータシャフト内には略丸棒状のモータシャフトが通されており、ロータシャフトの内周部に形成された雌螺子部とモータシャフトの外周部に形成された雄螺子部とが螺合している。
 ここで、ロータコアの中空部にロータシャフトを圧入するとき、ロータシャフトに内径方向の応力が生じて、この応力によりロータシャフトが変形する。また、当該内径方向の応力がロータシャフトの内周部に伝わることにより、雌螺子部も変形する。このため、圧入後の状態において雌螺子部と雄螺子部間のクリアランスがなくなり、雌螺子部と雄螺子部間の摩擦力が増加する。この結果、雌螺子部と雄螺子部間の摺動抵抗が増加するため、ロータの回動をモータシャフトの直動に変換する効率が低下して、直動による出力が不安定になる問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、ロータコアの中空部にロータシャフトを圧入するときの応力による雌螺子部の変形を抑制することを目的とする。
 本発明のモータは、中空部を有するロータコアと、中空部を貫通した筒状のロータシャフトと、ロータシャフト内に通された棒状のモータシャフトと、を備え、ロータシャフトの内周部に形成された雌螺子部とモータシャフトの外周部に形成された雄螺子部とが螺合しており、ロータシャフトの外周部に形成された凹凸部における凸部がロータコアに圧接した状態であり、かつ、凹凸部における凹部とロータコアとの間に間隙部が設けられているものである。
 本発明によれば、上記のように構成したので、ロータコアの中空部にロータシャフトを圧入するときの応力による雌螺子部の変形を抑制することができる。
本発明の実施の形態1に係るモータの要部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。 本発明の実施の形態1に係るモータにおけるロータシャフトの外周部に形成された他の凹凸部を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係るモータの要部を示す説明図である。図1を参照して、実施の形態1のモータ100と、このモータ100を用いた車載用アクチュエータとについて説明する。なお、モータ100はブラシ付きDCモータであり、車載用アクチュエータは直動型である。
 図中、1はロータコアである。ロータコア1は、例えば、複数枚の電磁鋼板を用いた積層体により構成されている。この積層体は、エポキシ樹脂などの絶縁体によりモールドされている。ロータコア1は複数個のティース部を有しており、これらのティース部に巻回された複数本の巻線により複数個のロータコイル2が構成されている。
 図中、3はコンミテータである。コンミテータ3は略円柱状であり、コンミテータ3の外周部に沿うように複数枚の整流子片が配列されている。ロータコイル2における各巻線の各端部は、いずれかの整流子片と電気的に接続されている。
 ロータコア1とコンミテータ3間には、樹脂製のカラーが設けられている。このカラーにより、ロータコア1とコンミテータ3間が電気的に絶縁されている。
 ロータコア1及びコンミテータ3の各々は、回動軸Aに沿う略円柱状の中空部を有している。これらの中空部を貫くようにして、略円筒状のロータシャフト4が通されている。ロータシャフト4の内周部には、樹脂などにより雌螺子部5が形成されている。
 ここで、ロータシャフト4はロータコア1の中空部に圧入されたものである。ロータシャフト4の外周部において、雌螺子部5に対する裏面部のうちの少なくとも一部に凹凸部が形成されている。当該凹凸部における凸部はロータコア1に圧接した状態であり、かつ、当該凹凸部における凹部とロータコア1との間には間隙部が設けられている。当該凸部とロータコア1間の圧接により、ロータコア1がロータシャフト4に保持されている。当該凹凸部の具体例については、図2~図9を参照して後述する。
 また、ロータシャフト4はコンミテータ3の中空部に圧入されたものである。ロータシャフト4とコンミテータ3間の圧接により、コンミテータ3がロータシャフト4に保持されている。
 ロータコア1、ロータコイル2、コンミテータ3、カラー、ロータシャフト4及び雌螺子部5により、ロータ6の要部が構成されている。
 ロータシャフト4内には、略丸棒状のモータシャフト7が通されている。モータシャフト7の外周部には雄螺子部8が形成されており、この雄螺子部8が雌螺子部5と螺合している。このため、ロータ6の回動によりモータシャフト7が直動自在である。
 ロータ6は、略有底筒状のハウジング内に収容されている。モータシャフト7は、ハウジングの底面部に形成された貫通孔に通されている。モータシャフト7の先端部は、ハウジング外に突出している。
 ロータシャフト4は、ハウジング内に収容された1個以上の軸受により回動自在に支持されている。また、ハウジング内には複数個のブラシが収容されている。ロータ6の回動により、コンミテータ3の整流子片がブラシと摺動自在である。さらに、ハウジングの内周部には複数個のステータが設けられている。これらのステータは、例えば、ロータコア1の外周部と対向配置された永久磁石により構成されている。
 ロータ6、モータシャフト7、ハウジング、軸受、ブラシ及びステータにより、モータ100の要部が構成されている。
 モータシャフト7は、略丸棒状のアクチュエータロッドと一体に直動するものである。アクチュエータロッドの先端部にはレバーが回動自在に取り付けられており、アクチュエータロッドの直動によりレバーが回動するようになっている。レバーの回動により、例えば、ターボチャージャに設けられたウェイストゲートバルブの開度が変化するようになっている。
 モータ100、アクチュエータロッド及びレバーにより、車載用アクチュエータの要部が構成されている。
 次に、図2を参照して、ロータシャフト4の外周部に形成された凹凸部の一例について説明する。
 図2に示す如く、ロータシャフト4の外周部に沿う環状の凸部11により凹凸部10が形成されている。凸部11は、ロータコア1の中央部に対応する位置に配置されている。凸部11の根元部12,13は曲面状、より具体的にはR面状であり、凸部11の角部14,15もR面状である。凸部11は、ロータコア1に対して面接触により圧接した状態である。凹凸部10のうちの凸部11を除く部位、すなわち凹部16とロータコア1との間には、間隙部17が設けられている。
 凹凸部10を有するモータ100は、凹凸部10を有しない従来のモータに比して、ロータシャフト4とロータコア1間の接触面積が小さい。このため、ロータシャフト4をロータコア1の中空部に圧入するとき、ロータシャフト4に生ずる内径方向の応力を低減することができる。この結果、当該応力によるロータシャフト4の変形を抑制することができ、雌螺子部5の変形も抑制することができる。したがって、圧入後の状態において雌螺子部5と雄螺子部8間のクリアランスを確保することができ、モータシャフト7の直動による出力を安定させることができる。
 また、凸部11の根元部12,13がR面状であるため、ロータシャフト4をロータコア1の中空部に圧入するとき、根元部12,13に対する応力集中が生ずるのを防ぐことができる。この結果、ロータコア1の折損を回避することができる。
 また、凸部11の角部14,15がR面状であるため、ロータシャフト4をロータコア1の中空部に圧入するとき、いわゆる「かじり」が発生するのを防ぐことができる。このため、圧入に要する力を安定させることができる。
 次に、図3~図5を参照して、ロータシャフト4の外周部に形成された凹凸部の他の例について説明する。
 図3に示す如く、ロータシャフト4の外周部に沿う環状の2個の凸部21により凹凸部20が形成されている。これらの凸部21は、ロータコア1の両端部に対応する位置にそれぞれ配置されている。すなわち、一方の凸部21はロータコア1の一端部に対応する位置に配置されており、かつ、他方の凸部21はロータコア1の他端部に対応する位置に配置されている。個々の凸部21の根元部22,23は曲面状、より具体的にはR面状であり、個々の凸部21の角部24,25もR面状である。個々の凸部21は、ロータコア1に対して面接触により圧接した状態である。凹凸部20のうちの凸部21を除く部位、すなわち凹部26とロータコア1との間には、間隙部27が設けられている。
 または、図4に示す如く、ロータシャフト4の外周部に沿う環状の3個の凸部21により凹凸部20が形成されている。個々の凸部21の根元部22,23はR面状であり、個々の凸部21の角部24,25もR面状である。個々の凸部21はロータコア1に対して面接触により圧接した状態であり、かつ、凹部26とロータコア1間に間隙部27が設けられている。
 または、図5に示す如く、ロータシャフト4の外周部に沿う環状の5個の凸部21により凹凸部20が形成されている。これらの凸部21のうち、2個の凸部21はロータコア1の両端部に対応する位置にそれぞれ配置されており、残余の凸部21は当該2個の凸部21間に配置されている。個々の凸部21の根元部22,23はR面状であり、個々の凸部21の角部24,25もR面状である。個々の凸部21はロータコア1に対して面接触により圧接した状態であり、かつ、凹部26とロータコア1間に間隙部27が設けられている。
 図3~図5に示す如く、複数個の凸部21を設けることにより、1個の凸部11を設けた場合に比してロータコア1に対する圧接箇所を増やすことができる。この結果、圧接によるロータコア1の保持を安定させることができる。
 また、図3又は図5に示す如く、ロータコア1の両端部に対応する位置にそれぞれ凸部21を配置することにより、圧入後の状態においてロータシャフト4に対するロータコア1の傾きが発生するのを防ぐことができる。
 また、ロータコア1の両端部に対応する位置にそれぞれ凸部21を配置した場合において、これらの2個の凸部21の配置位置がロータコア1の両端よりも外側に設定されており、当該2個の凸部21の各々のうちの一部のみがロータコア1に圧接した状態となるものであっても良い。例えば、図5に示す如く、当該2個の凸部21の各々のうちの略半部のみがロータコア1に圧接した状態となるものであっても良い。
 次に、図6を参照して、ロータシャフト4の外周部に形成された凹凸部の他の例について説明する。
 図6に示す如く、ロータシャフト4の外周部に波状の凹凸部30が形成されている。これにより、3個の凸部31の各々がロータコア1に対して面接触により圧接した状態であり、かつ、凹部32とロータコア1間に間隙部33が設けられている。
 波状の凹凸部30を設けることにより、複数個の凸部21を用いて凹凸部20を形成した場合と同様の上記効果を得ることができる。また、凸部11,21により形成された凹凸部10,20に比して、凹凸部30の形状が滑らかであるため、かじりの発生を防ぐ効果を向上することができる。
 次に、図7を参照して、ロータシャフト4の外周部に形成された凹凸部の他の例について説明する。
 図7に示す如く、ロータシャフト4の外周部に沿う環状の3個の凸部41により凹凸部40が形成されている。個々の凸部41は、一対のテーパ面42,43より形成されており、ロータコア1に対して線接触により圧接した状態である。凹凸部40のうちの凸部41を除く部位、すなわち凹部44とロータコア1との間には、間隙部45が設けられている。
 凸部41が線接触であるため、面接触の凸部11,21を設けた場合に比して、ロータシャフト4の圧入に要する力を低減することができる。しかしながら、凸部41がテーパ状であるため、凸部11,21の角部14,15,24,25をR面状にした場合に比して、かじりの発生を防ぐ効果が小さい。よって、製造設備の性能及びモータ100の要求仕様などに応じて、面接触による凸部11,21又は線接触による凸部41のうちのより適切な形状を採用するのが好適である。
 なお、凸部41の個数は3個に限定されるものではない。例えば、図2に示す例と同様に、ロータシャフト4の外周部に沿う環状の1個の凸部41により凹凸部40が形成されたものであっても良い。この場合、1個の凸部41は、ロータコア1の中央部に対応する位置に配置されたものであっても良い。
 また、面接触による凸部11,21と線接触による凸部41とを組み合わせて用いたものであっても良い。すなわち、ロータシャフト4の外周部に、面接触による1個以上の凸部11,21と線接触による1個以上の凸部41とが形成されたものであっても良い。
 次に、図8を参照して、ロータシャフト4の外周部に形成された凹凸部の他の例について説明する。
 図8に示す如く、ロータシャフト4の外周部に蛇腹状の凹凸部50が形成されている。これにより、3個の凸部51の各々がロータコア1に対して線接触により圧接した状態であり、かつ、凹部52とロータコア1間に間隙部53が設けられている。蛇腹状の凹凸部50を設けることにより、複数個の凸部41を用いて凹凸部40を形成した場合と同様の上記効果を得ることができる。
 次に、図9を参照して、ロータシャフト4の外周部に形成された凹凸部の他の例について説明する。
 図9に示す如く、ロータシャフト4の外周部に設けられたテーパ状の段差部61により凸部62及び凹部63が形成されている。すなわち、ロータシャフト4は、凸部62に対応する部位に対して凹部63に対応する部位が薄肉である。凸部62はロータコア1に対して面接触により圧接した状態であり、かつ、凹部63とロータコア1間に間隙部64が設けられている。このようにして、凹凸部60が形成されている。
 圧入時の応力を低減する観点から、段差部61をなるべく紙面下方に配置すること、すなわち凹凸部60における凹部63の割合を大きくすることが望ましい。図9に示す例においては、凹凸部60のうちの過半部が凹部63により構成されており、残余の部位が凸部62により構成されている。
 ここで、図2~図9に示す凹凸部10,20,30,40,50,60の形状は、いずれも、ロータシャフト4を回転軸とした回転体状である。このため、ロータシャフト4を回転させながら研磨又は切削をすることにより、凹凸部10,20,30,40,50,60を容易に形成することができる。
 なお、図2に示す例において、凸部11は、ロータシャフト4の外周部の全周に亘る完全な環状であっても良いが、当該環状において1個以上の欠落部を有する略環状であっても良い。図3~図5に示す例において、個々の凸部21は、ロータシャフト4の外周部の全周に亘る完全な環状であっても良いが、当該環状において1個以上の欠落部を有する略環状であっても良い。図7に示す例において、個々の凸部41は、ロータシャフト4の外周部の全周に亘る完全な環状であっても良いが、当該環状において1個以上の欠落部を有する略環状であっても良い。本願の請求の範囲に記載された「環状」の用語の意義は、完全な環状に限定されるものではなく、略環状も包含するものである。
 そのほか、凹凸部は、ロータシャフト4の外周部において、雌螺子部5に対する裏面部のうちの少なくとも一部に凹部が形成されるものであれば、如何なる形状によるものであっても良い。
 また、ロータシャフト4は、図1に示す如く略円筒状であれば良く、完全な円筒状でなくとも良い。本願の請求の範囲に記載された「筒状」の用語の意義は、完全な円筒状に限定されるものではなく、少なくとも略円筒状を包含するものである。
 また、モータシャフト7は、図1に示す如く略丸棒状であれば良く、完全な丸棒状でなくとも良い。本願の請求の範囲に記載された「棒状」の用語の意義は、完全な丸棒状に限定されるものではなく、少なくとも略丸棒状を包含するものである。
 また、モータ100の用途は車載用アクチュエータに限定されるものではない。モータ100は、直動型であれば如何なる用途のアクチュエータにも用いることができる。
 以上のように、実施の形態1のモータ100は、中空部を有するロータコア1と、中空部を貫通した筒状のロータシャフト4と、ロータシャフト4内に通された棒状のモータシャフト7と、を備え、ロータシャフト4の内周部に形成された雌螺子部5とモータシャフト7の外周部に形成された雄螺子部8とが螺合しており、ロータシャフト4の外周部に形成された凹凸部10,20,30,40,50,60における凸部11,21,31,41,51,62がロータコア1に圧接した状態であり、かつ、凹凸部10,20,30,40,50,60における凹部16,26,32,44,52,63とロータコア1との間に間隙部17,27,33,45,53,64が設けられている。これにより、ロータシャフト4をロータコア1の中空部に圧入するとき、ロータシャフト4に生ずる内径方向の応力を低減することができる。この結果、当該応力によるロータシャフト4の変形を抑制することができ、雌螺子部5の変形も抑制することができる。したがって、圧入後の状態において雌螺子部5と雄螺子部8間のクリアランスを確保することができ、モータシャフト7の直動による出力を安定させることができる。
 また、凹凸部10,20,30,40,50,60の形状は、ロータシャフト4を回転軸とした回転体状である。このため、ロータシャフト4を回転させながら研磨又は切削をすることにより、凹凸部10,20,30,40,50,60を容易に形成することができる。
 また、ロータシャフト4の外周部に沿う環状の凸部11,21,41により凹凸部10,20,40が形成されている。これにより、図2~図5又は図7に例示する凹凸部10,20,40を用いてモータ100を実現することができる。
 また、複数個の凸部21,41により凹凸部20,40が形成されている。これにより、ロータコア1に対する圧接個所を増やすことができるため、圧接によるロータコア1の保持を安定させることができる。
 また、ロータコア1の両端部に対応する位置にそれぞれ凸部21が配置されている。これにより、圧入後の状態においてロータシャフト4に対するロータコア1の傾きが発生するのを防ぐことができる。
 また、凸部11,21の根元部12,13,22,23が曲面状である。これにより、根元部12,13,22,23に対する応力集中が発生するのを防ぐことができる。
 また、凸部11,21の角部14,15,24,25が曲面状である。これにより、かじりの発生を防ぐことができる。
 また、凸部41がテーパ面42,43により形成されている。これにより、凸部41がロータコア1に対して線接触となるため、圧入に要する力を小さくすることができる。
 また、凸部11,21,41に欠落部が設けられている。これにより、略環状の凸部11,21,41を用いて凹凸部10,20,40を実現することができる。
 また、ロータシャフト4の外周部に波状の凹凸部30が形成されている。これにより、図6に例示する凹凸部30を用いてモータ100を実現することができる。また、凹凸部30の形状が滑らかであるため、かじりの発生を防ぐ効果を向上することができる。
 また、ロータシャフト4の外周部に蛇腹状の凹凸部50が形成されている。これにより、図8に例示する凹凸部50を用いてモータ100を実現することができる。また、凸部51がロータコア1に対して線接触となるため、圧入に要する力を小さくすることができる。
 また、ロータシャフト4の外周部に設けられたテーパ状の段差部61により凸部62及び凹部63が形成されている。これにより、図9に例示する凹凸部60を用いてモータ100を実現することができる。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 本発明のモータは、例えば、車載用アクチュエータに用いることができる。本発明の車載用アクチュエータは、例えば、ウェイストゲートバルブの開度制御に用いることができる。
 1 ロータコア、2 ロータコイル、3 コンミテータ、4 ロータシャフト、5 雌螺子部、6 ロータ、7 モータシャフト、8 雄螺子部、10 凹凸部、11 凸部、12,13 根元部、14,15 角部、16 凹部、17 間隙部、20 凹凸部、21 凸部、22,23 根元部、24,25 角部、26 凹部、27 間隙部、30 凹凸部、31 凸部、32 凹部、33 間隙部、40 凹凸部、41 凸部、42,43 テーパ面、44 凹部、45 間隙部、50 凹凸部、51 凸部、52 凹部、53 間隙部、60 凹凸部、61 段差部、62 凸部、63 凹部、64 間隙部、100 モータ。

Claims (14)

  1.  中空部を有するロータコアと、前記中空部を貫通した筒状のロータシャフトと、前記ロータシャフト内に通された棒状のモータシャフトと、を備え、
     前記ロータシャフトの内周部に形成された雌螺子部と前記モータシャフトの外周部に形成された雄螺子部とが螺合しており、
     前記ロータシャフトの外周部に形成された凹凸部における凸部が前記ロータコアに圧接した状態であり、かつ、前記凹凸部における凹部と前記ロータコアとの間に間隙部が設けられている
     ことを特徴とするモータ。
  2.  前記凹凸部は、前記ロータシャフトの外周部のうちの前記雌螺子部に対する裏面部に形成されていることを特徴とする請求項1記載のモータ。
  3.  前記凹凸部の形状は、前記ロータシャフトを回転軸とした回転体状であることを特徴とする請求項1記載のモータ。
  4.  前記ロータシャフトの外周部に沿う環状の前記凸部により前記凹凸部が形成されていることを特徴とする請求項1記載のモータ。
  5.  複数個の前記凸部により前記凹凸部が形成されていることを特徴とする請求項4記載のモータ。
  6.  前記ロータコアの両端部に対応する位置にそれぞれ前記凸部が配置されていることを特徴とする請求項5記載のモータ。
  7.  前記凸部の根元部が曲面状であることを特徴とする請求項4記載のモータ。
  8.  前記凸部の角部が曲面状であることを特徴とする請求項4記載のモータ。
  9.  前記凸部がテーパ面により形成されていることを特徴とする請求項4記載のモータ。
  10.  前記凸部に欠落部が設けられていることを特徴とする請求項4記載のモータ。
  11.  前記ロータシャフトの外周部に波状の前記凹凸部が形成されていることを特徴とする請求項1記載のモータ。
  12.  前記ロータシャフトの外周部に蛇腹状の前記凹凸部が形成されていることを特徴とする請求項1記載のモータ。
  13.  前記ロータシャフトの外周部に設けられたテーパ状の段差部により前記凸部及び前記凹部が形成されていることを特徴とする請求項1記載のモータ。
  14.  請求項1記載のモータを用いた車載用アクチュエータ。
PCT/JP2017/016368 2017-04-25 2017-04-25 モータ及び車載用アクチュエータ WO2018198195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016368 WO2018198195A1 (ja) 2017-04-25 2017-04-25 モータ及び車載用アクチュエータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016368 WO2018198195A1 (ja) 2017-04-25 2017-04-25 モータ及び車載用アクチュエータ

Publications (1)

Publication Number Publication Date
WO2018198195A1 true WO2018198195A1 (ja) 2018-11-01

Family

ID=63919530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016368 WO2018198195A1 (ja) 2017-04-25 2017-04-25 モータ及び車載用アクチュエータ

Country Status (1)

Country Link
WO (1) WO2018198195A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833389A (ja) * 1994-07-14 1996-02-02 Jeco Co Ltd アクチュエータ
JP2006129583A (ja) * 2004-10-27 2006-05-18 Asmo Co Ltd モータ
JP2006254530A (ja) * 2005-03-08 2006-09-21 Mitsubishi Electric Corp 電動機
JP2016131437A (ja) * 2015-01-13 2016-07-21 ミネベア株式会社 モータシャフト、モータ及びモータ構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833389A (ja) * 1994-07-14 1996-02-02 Jeco Co Ltd アクチュエータ
JP2006129583A (ja) * 2004-10-27 2006-05-18 Asmo Co Ltd モータ
JP2006254530A (ja) * 2005-03-08 2006-09-21 Mitsubishi Electric Corp 電動機
JP2016131437A (ja) * 2015-01-13 2016-07-21 ミネベア株式会社 モータシャフト、モータ及びモータ構造体

Similar Documents

Publication Publication Date Title
US7427817B2 (en) Small-sized motor having polygonal outer shape
US10418873B2 (en) Brushless motor with stator having twelve teeth with corresponding coils having axially arranged connecting wires
JP2012016236A (ja) 永久磁石型回転子
JP6349140B2 (ja) ロータ、ロータの製造方法及びロータを備える回転電機
JPWO2018016571A1 (ja) モータ
JP6353722B2 (ja) バスバーユニット及びこれを備えた回転電機
JP5173636B2 (ja) 回転電機
US10903713B2 (en) Inner-rotor motor
JP2009022147A (ja) アキシャルモータ用コア、ステータおよびアキシャルモータ
WO2018198195A1 (ja) モータ及び車載用アクチュエータ
JP2005020914A (ja) 電動機及びヨークハウジング
US9035512B2 (en) Linear actuator
JP2011067070A (ja) 電動機
WO2018235184A1 (ja) 電動機及び電動機の組立方法
JP2009060754A (ja) ステータ用コア、ステータ、その組立方法およびモータ
JP4701921B2 (ja) アキシャルギャップ型回転電機のステータ構造
JP2011045179A (ja) ステータ及びその製造方法
JP2009273321A (ja) 直流モータ
JP2009038887A (ja) すべり軸受け、および電動モータ
JP7325386B2 (ja) 直動式アクチュエータ
JP2014087202A (ja) ステータの製造方法及び電動ポンプ
JP5989438B2 (ja) 回転電機及びその製造方法
JP6023019B2 (ja) 電機子及び電機子の製造方法
JP2008289235A (ja) 電動機
JP2016214016A (ja) モータの軸受構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP