WO2018194310A2 - 고분자 수지 조성물 - Google Patents

고분자 수지 조성물 Download PDF

Info

Publication number
WO2018194310A2
WO2018194310A2 PCT/KR2018/004206 KR2018004206W WO2018194310A2 WO 2018194310 A2 WO2018194310 A2 WO 2018194310A2 KR 2018004206 W KR2018004206 W KR 2018004206W WO 2018194310 A2 WO2018194310 A2 WO 2018194310A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin composition
repeating unit
polymer resin
aromatic vinyl
Prior art date
Application number
PCT/KR2018/004206
Other languages
English (en)
French (fr)
Other versions
WO2018194310A3 (ko
Inventor
백지원
김태영
김도균
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2018194310A2 publication Critical patent/WO2018194310A2/ko
Publication of WO2018194310A3 publication Critical patent/WO2018194310A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/78Stabilisers against oxidation, heat, light or ozone
    • C08L2666/82Phosphorus-containing stabilizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/84Flame-proofing or flame-retarding additives

Definitions

  • the present invention relates to a polymer resin composition exhibiting improved mechanical properties, together with excellent heat resistance, electrical insulation and impact resistance.
  • Polycarbonate resins have self-extinguishing properties and exhibit excellent flame resistance and fire resistance, as well as excellent impact resistance or heat resistance, and are used in various fields such as exteriors, packaging materials, cases, boxes, interior and exterior materials of various construction materials and electronic products. .
  • Such polycarbonate resins are also in high demand due to their excellent mechanical properties, but due to their low chemical resistance, various appearances of the polycarbonate resin may be changed or surface cracks may be caused by various detergents, cosmetics or hand sanitizers. There is a problem in that the appearance and physical properties of the product is degraded by the various biochemicals. .
  • polyester resins are used in a variety of fiber materials of reinforcement plastics, paints, films, molding resins, clothing due to the characteristics of relatively excellent mechanical and elastic strength.
  • the polyester resin has a problem that it is unsuitable for use as an outdoor exterior material having a high temperature change according to the season due to low heat resistance and lamella strength compared to other polymer materials, for example, acrylic materials or polycarbonate materials.
  • polyester resins and polycarbonate resins have different melt viscosity and molecular structure. Since they are different, simply blending them has certain limitations in improving heat resistance.
  • the present inventors have succeeded in producing a polymer resin composition showing improved mechanical properties with excellent heat resistance, electrical insulation and impact resistance, and produced the polymer resin composition in various fields, In particular, connectors, switches, relays, jacks, IC sockets, AC components, presser sensors or housings of various electrical / electronic products or automobiles, which are required to have a high layer resistance, particularly at low temperatures, in addition to heat resistance and electrical insulation. Confirmation of applicability to complete the present invention.
  • polyester means a synthetic polymer prepared by the polycondensation of one or more carboxylic acid (acid) and one or more dieul (dio l) compound," the copolyester ", herein do.
  • a “repeating unit” means the unit structure which has a diol derived functional group or carboxylic acid derived functional group couple
  • polyester resin comprising a repeating unit derived from dicarboxylic acid containing terephthalic acid and a repeating unit derived from diol containing 1,4-cyclonucleic acid dimethanol;
  • (i i i) impact modifiers include 5 to 20 weight 3 ⁇ 4,
  • the impact modifier exhibits reactivity to polar functional groups
  • Reactive rubbers containing glycidyl methacrylate-derived repeating units and unbanung rubbers are included in a weight ratio of 1: 9 to 9: 1.
  • polyester resin (i) polyester resin
  • the polyester resin is a poly-polymer prepared by polymerizing a dicarboxylic acid compound containing terephthalic acid and a di-based compound containing 1,4-cyclonucleic acid dimethanol As an ester copolymer, the repeating unit derived from the dicarboxylic acid type compound containing the said terephthalic acid, and the repeating unit derived from the diol type compound containing 1, 4- cyclonucleic acid dimethanol are included.
  • the repeating unit derived from the dicarboxylic acid-based compound may be a repeating unit derived from dicarboxylic acid or an ester thereof.
  • the dicarboxylic acid may specifically be an aromatic dicarboxylic acid having 8 to 20 carbon atoms, or an aliphatic dicarboxylic acid having 4 to 20 carbon atoms . Specifically, it may be terephthalic acid (TPA), isophthalic acid (IPA) or naphthalene 2,6-dicarboxylic acid (2,6 , naphthalenedicarboxyl ic acid; 2,6-NDA).
  • TPA terephthalic acid
  • IPA isophthalic acid
  • 2,6-NDA naphthalene 2,6-dicarboxylic acid
  • the dicarboxylic acid ester compound may be an ester of an aromatic dicarboxylic acid having 8 to 20 carbon atoms or an aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and more specifically, dimethyl terephthalate (DMT). , Dimethyl isophthalate (DMI), or dimethyl 2,6-naphthalenedicarboxylate (dimethyl 2,6-naphthalenedicarboxylate; 2,6-NDC) and the like.
  • DMT dimethyl terephthalate
  • DMT dimethyl terephthalate
  • DMI Dimethyl isophthalate
  • 2,6-naphthalenedicarboxylate dimethyl 2,6-naphthalenedicarboxylate
  • 2,6-NDC dimethyl 2,6-naphthalenedicarboxylate
  • the polyester resin by controlling the type and content of the dicarboxylic acid-based compound used in its manufacture, in terms of mechanical properties, heat resistance, electrical insulation and impact resistance It can exhibit improved properties.
  • the repeating unit is 100 mol of repeating units derived from dicarboxylic acid? It may contain 80 mol% or more of the repeating unit derived from terephthalic acid or its ester compound based on 3 ⁇ 4.
  • the polymer resin composition shows the molding processability with improved electrical insulation, and can maintain the initial mechanical properties at an excellent level even in a high temperature and high humidity environment, and can exhibit excellent crystallinity during low temperature molding.
  • the polyester resin may include a repeating unit represented by the following Formula 1 as a dicarboxylic acid-derived repeating unit, of which 80 mol% or more may be a repeating unit derived from terephthalic acid, more specifically It may be a 'to Ar 1 is 1,4-phenylene group in the repeating unit of formula I:
  • Ar 1 is a substituted or unsubstituted arylene group having 6 to 18 carbon atoms.
  • the dicarboxylic acid-derived repeating unit is more specifically 80 to 100 mol% of repeating units derived from terephthalic acid or its ester compound; and 0 to 20 mol% of repeating units derived from isophthalic acid or its ester compound.
  • the diol-derived repeating unit may include 1,4-cyclonucleic acid dimethanol-derived repeating unit.
  • the 1,4-cyclohexanedimethanol-derived repeating unit has a cyclic structure having 6 carbon atoms, it has better electrical insulation than a resin containing a phenylene group having a non-covalent electron in its molecular chain, such as a polycarbonate resin.
  • a resin containing a phenylene group having a non-covalent electron in its molecular chain such as a polycarbonate resin.
  • the repeating unit derived from 1, 4-cyclohexamethanol is a polyester resin
  • the constituting di may be included in an amount of 5 mol% or more, specifically 5 to 100 mol%, and more specifically 60 to 100 mol%, based on 100 mol% of the repeating unit derived from the di. When included in the above content range, it is possible to greatly improve the electrical insulation and heat resistance while maintaining the excellent mechanical properties of the polymer resin composition.
  • the repeating unit derived from diol is
  • One repeating unit derived from other diol-based compounds such as ethylene glycol, diethylene glycol, 1, 4-butanediol, 1, 3-propanediol or neopentyl glycol, together with repeating units derived from 1, 4—cyclohexamethanol It may further include more.
  • the polyester resin includes a repeating unit represented by the following formula (2) .
  • R 1 is cyclonuclear dimethyl dimethylene, and the repeating unit of which u is 0 is 5 mol% or more, more specifically 60 to 100 mol% based on 100 mol% of the diol-derived repeating unit, and other diols.
  • Repeating units derived from the system compound, and ethylene glycol-derived repeating units, which may further improve the impact resistance of the polyester resin, may be included in the remaining amount:
  • R 1 is substituted or unsubstituted carbon number
  • R 2 is substituted or unsubstituted carbon number
  • Y is —0—, -NH- or -S-,
  • u is an integer of 0 or 1.
  • the polyester resin may be a polycyclonuclear dimethyl dimethylene terephthalate resin prepared by polycondensation of terephthalic acid and 1,4. Cyclohexane dimethanol, wherein the 1,4-cyclonucleodimethane is added to Some ethylene glycols are copolymerized with di to less than 1 mole percent relative to 100 mole percent of the repeating units derived, or some isophthalic acid is added to the terephthalic acid. It may be copolymerized in an amount of 20 mol% or less with respect to 100 mol% of dicarboxylic acid-derived repeating units.
  • the polycyclonuclear silane dimethylene terephthalate resin is slower than polybutylene terephthalate (PBT) but the crystallization rate is significantly faster than polyethylene terephthalate (PET), injection molding, high heat resistance and relatively high price competitiveness The potential use is very high.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PA polyacrylate
  • the polymer resin composition according to the present invention includes a polycyclonuclear silane dimethylene terephthalate resin as the polyester resin, it is possible to greatly improve heat resistance and mechanical strength while maintaining impact strength.
  • the polyester resin as described above has a viscosity, weight average so as to exhibit an excellent effect in terms of mechanical properties, heat resistance, layer resistance, electrical conductivity, etc. by controlling the type and content of the components and polymerization conditions.
  • Molecular weight or glass transition temperature can be controlled.
  • the polyester resin has an inherent viscosity of 0.65 to 0.85 dl / g, which is converted from a viscosity measured at 35 ° C. after dissolving in solvent 0-chlorophenol (0CP), and a weight average
  • the molecular weight (Mw) is 10,000 to 100, 000 g / mol
  • the glass transition temperature is 0 to 200 t :, more specifically may be 80 to 120 ° C. Meanwhile .
  • the weight average molecular weight (Mw) means a standard polystyrene conversion value, measured by GPC (ge l permeat on chromatography), the glass transition temperature () is a differential scanning calorimeter (Di) according to ASTM E 1356 f ferent i al Scanning Ca l or imet ry, DSC).
  • the polyester resin may be included in 10 to 80% by weight relative to the total weight of the polymer resin composition, considering the superiority of the improvement effect according to the polyester content control in the polymer resin composition, it may be included as 15 to 70 weight 3 ⁇ 4.
  • the polyester resin may be included in an amount of 5 to 100 parts by weight based on 100 parts by weight of polycarbonate resin, under a condition that satisfies the content range in the polymer resin composition, more specifically 5 to 100 parts by weight of polycarbonate resin To 60 parts by weight, and more specifically 5 to 50 parts by weight. When the content ratio condition is satisfied, it is possible to greatly improve the layer resistance and heat resistance at low temperature of the polymer resin composition.
  • the polycarbonate resin is a polymer containing a carbonate functional group
  • the poly ' carbonate resin usable in the present invention includes a 4,4-isopropylidenediphenol-derived repeating unit together with a carbonate functional group.
  • the 4,4-isopropylidenediphenol-derived repeating unit may stably exhibit excellent mechanical properties of the polymer resin composition when included in a polycarbonate resin, and may improve layer resistance.
  • Propylidenediphenol-derived repeating unit may be included in the content of 5 mol% to 100 mol% in the polycarbonate resin.
  • the said polycarbonate resin and its manufacturing method are especially. It includes, but is not limited to, repeating units derived from 4,4-isopropylidenediphenol, and may be used as long as it is commonly used in the art. Specific examples thereof include linear polycarbonate resin branched polycarbonate resins, copolycarbonate resins, or polyester carbonate resins including the 4,4-isopropylidenediphenol-derived repeating unit, and any one of them. Or two or more combinations may be used.
  • the polycarbonate resin has a melt flow rate, a weight average molecular weight, or a glass transition temperature so that the polycarbonate resin may have a better effect in terms of mechanical properties, layer resistance, electrical insulation, and the like by controlling the type and content of components and polymerization conditions. Etc. can be controlled.
  • the polycarbonate resin may have a melt flow (300 ° C. and 1.2 kg . Measured under load) of 10 to 50 g / 10 min.
  • the pulley carbonate resin may have a glass transition temperature of 50 to 200 ° C, a weight average molecular weight of 10, 000 to 200, 000 g / mol.
  • the polycarbonate resin may be included in 10 to 80% by weight relative to the total weight of the polymer resin composition, 15 to 70 weight considering the excellent mechanical properties and impact resistance improvement effect by controlling the content of the polycarbonate resin in the polymer resin composition May be included as a%.
  • the layered reinforcing agent serves to improve the impact resistance of the polymer resin composition, the semi-ungung rubber to absorb the impact given to the resin at low temperature, and semi-ungungung to improve the dispersibility of the impact modifier by showing a semi-ungungung to polar functional groups It contains a mixture of rubber, it can greatly improve the impact resistance of the polymer resin composition at room temperature as well as low temperature of 30 ° C through the control of the content ratio.
  • the semi-aerated rubber may have a core-shell structure, and specifically, an unsaturated nitrile-diene rubber-aromatic vinyl graft copolymer, an alkyl methacrylate-diene rubber-aromatic vinyl graft air It may include any one or two or more combinations selected from the group consisting of a copolymer and an alkyl methacrylate-silicone / alkyl acrylate graft copolymer.
  • the unsaturated nitrile may be acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, or the like. Any one or two or more of these may be included.
  • the diene rubber may be butadiene rubber, isoprene rubber, or the like, and may include any one or more of sons.
  • the aromatic vinyl may be styrene, ⁇ -methylstyrene, vinylluene, t-butylstyrene, halogen substituted styrene, 1,3-dimethylstyrene, 2, 4-dimethylstyrene, ethyl styrene, or the like. It may include one or more than two.
  • the unsaturated nitrile-diene rubber-aromatic vinyl graft copolymer may be an acrylonitrile-butadienexstyrene graft copolymer.
  • the unsaturated nitrile-diene-based rubber-aromatic vinyl graft copolymer may be a core-shell rubber (Core ⁇ Shell Rubber) prepared by emulsion polymerization or bulk polymerization process, the average particle diameter is 0.01 To 5, the graft rate is 5 to 90%, the glass transition temperature of the core is -20 ° C or less, the glass transition temperature of the shell may be 2 (rc or more.
  • the glycidyl methacryl in the shell optionally It may or may not contain functional groups, such as a rate or maleic anhydride.
  • the core-shell rubber may have a monomorphic distribution (Morphol ogy) having a mean particle size of 0.01 to 5, or a multi particle distribution having a mean particle size of 0.01 to / m (Mul t It may have morphology in the form of imodal di str ibut ion. '
  • the alkyl methacrylate is methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate or butyl methacrylate. Acrylate, etc., and any one or two or more of these may be used.
  • alkyl methacrylate-diene rubber-aromatic vinyl graft copolymer may be a methyl methacrylate-butadiene styrene graft copolymer.
  • alkyl methacrylate-silicon / alkyl acrylate graft copolymer the alkyl methacrylate is as described above.
  • alkyl methacrylate-silicone / alkyl acrylate graft copolymer may be a methyl methacrylate-silicone / butyl acrylate graft copolymer.
  • the semi-aqueous rubber includes glycidyl methacrylate-derived repeating units which exhibit semi-amplification to polar functional groups such as hydroxy groups, carboxyl groups, or amino groups, and is semi-abrasive when melt mixed with thermoplastics. Indicates.
  • the semi-acyclic rubber is saturated ethylene-alkyl acrylate- Glycidyl methacrylate copolymers.
  • the alkyl acrylate may be methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate or butyl acrylate, etc., any one or two or more of these may be used.
  • the impact modifier may include the unreacted rubber and the semi-aqueous rubber in a weight ratio of 9: 1 to 1: 9, when included in the above-described mixed ratio. It can exhibit improved impact strength, particularly at low temperatures. Considering the remarkable effect of improving the impact strength by controlling the mixing ratio of the unreactive rubber and the reactive rubber, the impact modifier may include the unreactive rubber and the reactive rubber in a weight ratio of 5: 5 to 4: 6.
  • the impact modifier as described above may be included in an amount of 5 to 20% by weight based on the total weight of the polymer resin composition. If less than 5% by weight , particularly low-temperature impact strength of the impact resistance is difficult to implement, and if it exceeds 20% by weight, the low-temperature impact strength, flexural strength and heat deformation temperature of the resin composition may be lowered.
  • the impact modifier when added in an excessively small amount compared to the polycarbonate resin, it may be difficult to fully implement the impact resistance characteristics, and when added in an excessive amount compared to the polycarbonate resin, there is a fear that the mechanical properties or molding processability of the resin composition is reduced. have. Accordingly, it is possible to further improve the impact strength and mechanical properties of the polymer resin composition by controlling the addition amount of the impact modifier according to the polycarbonate resin content. More specifically, in my content range the polymer resin composition, the impact modifier is a polycarbonate resin, 5 to 30 parts by weight per 100 parts by weight, and more, specifically, 5 to 20 parts by weight, further more specifically from 7 to It may be included in 15 parts by weight.
  • Polymeric resin composition in addition to the above components, a compatibilizer, antioxidant, hydrolysis agent, nucleating agent, plasticizer, coloring pigment, lubricant, light stabilizer, transesterification inhibitor, coupling agent, filler , Inorganic or organic
  • additives such as particles, chain extenders, ultraviolet stabilizers, anti-colorants, matting agents, deodorants, flame retardants, weather resistance additives, antistatic agents, mold release agents, ion exchangers, or light absorbers may be further included.
  • the compatibilizer is to increase the compatibility between the components in the polymer resin composition to ensure excellent molding processability, unsaturated nitrile- aromatic vinyl copolymer, unsaturated nitrile ⁇ aromatic vinyl- glycidyl (meth) acrylate air Copolymer, unsaturated nitrile-aromatic vinyl-maleic anhydride copolymer, saturated ethylene-alkyl acrylate-glycidyl methacrylate copolymer, vinyl-based copolymer grafted with glycidyl (meth) acrylate, halogen substituted Vinyl copolymers, aromatic vinyl-aromatic maleimide-maleic anhydride copolymers, aromatic vinyl-unsaturated nitrile-aromatic maleimide copolymers, aromatic vinyl- ⁇ -methyl aromatic vinyl copolymers or aromatic vinyl-unsaturated nitrile-ex- Methyl aromatic vinyl copolymer, and the like, and any one or two or more of these may be included
  • the unsaturated nitrile-aromatic vinyl copolymer may have a glass transition temperature of 50 to 200 ° C. and a weight average molecular weight of 10,000 to 5,000,000 g / mol.
  • the unsaturated nitrile-aromatic vinyl-glycidyl (meth) acrylate copolymer may have a glass transition temperature (Tg) of 20 to 20 CTC and a weight average molecular weight of 200 to 300,000 g / mol.
  • Tg glass transition temperature
  • Specific examples thereof include styrene-acrylonitrile-glycidyl methacrylate copolymer (SAN-GMA) and the like, and commercially available copolymers include Sunny AG's SAG-005 product.
  • alkyl (meth) acrylate is methyl acrylate, ethyl acrylate, propyl acrylate, It may be at least one member selected from the group consisting of isopropyl acrylate, butyl acrylate, nucleosil acrylate, octyl acrylate and 2—ethyl nuxyl acrylate.
  • the alkene-alkyl (meth) acrylate ⁇ glycidyl (meth) acrylate copolymer has a glass transition degree of -150 to 200 °. C, and the weight average molecular weight may be 200 to 300, 000 g / mol. Specific examples include ethylene-methylmethacrylate ⁇ glycidyl methacrylate copolymer.
  • the halogen-substituted vinyl copolymers include vinyl copolymers, specifically, aromatic vinyl-unsaturated nitrile copolymers such as styrene-acrylonitrile copolymers (SAN); Aromatic vinyl-diene-aromatic vinyl copolymers such as styrene-butadiene-styrene copolymer (SBS), aromatic vinyl ⁇ alkene-alkene-aromatic vinyl copolymers such as styrene-ethylene-propylene-styrene copolymer (SEPS); Or to aromatic vinyl-alkene-diene-aromatic vinyl copolymers such as styrene-ethylene-butadiene-styrene copolymer (SEBS).
  • SAN styrene-acrylonitrile copolymers
  • SBS aromatic vinyl ⁇ alkene-alkene-aromatic vinyl copolymers
  • SEPS aromatic vinyl ⁇ alkene-al
  • Halogen-substituted compounds may be used.
  • examples of the compound in which the halogen is substituted in the aromatic vinyl-unsaturated nitrile copolymer include fluorinated styrene-acrylonitrile copolymers, and commercially available fluorinated styrene-acrylonitrile copolymers are HANNATECH FS200 TM products and the like can be used.
  • a mixture of a vinyl copolymer copolymerized with glycidyl (meth) acrylate and a vinyl copolymer substituted with halogen may be used.
  • a mixture mixed in a proportion of 10 to 40 parts by weight of the halogen-substituted vinyl copolymer may be used.
  • compatibilizer When the compatibilizer is further included, 10 parts by weight or less, specifically 0.1-10 parts by weight, based on 100 parts by weight of the total content of ( ⁇ polyester resin, (1 1) polycarbonate resin and (iii) impact modifier) If the content of the compatibilizer exceeds 10 parts by weight, the mechanical properties of the polymer resin composition There is a possibility that the physical properties are lowered. Considering the improvement effect of molding processability by using a compatibilizer while maintaining excellent mechanical properties, 0.5 to 2% by weight based on 100 parts by weight of the total content of (i) polyester resin, ( ⁇ ) polycarbonate resin and impact modifier It can be included as a wealth.
  • the antioxidant can suppress the yellowing of the polymer resin to improve the appearance of the polymer resin composition and the molded article and can suppress the oxidation or thermal decomposition.
  • the antioxidant may be used without particular limitation as long as it is used in the polymer resin composition. Specifically, hindered phenol-based antioxidants, phosphorus-based antioxidants, phosphite-based antioxidants or thioester-based antioxidants, and the like, any one or two or more of these may be used.
  • the hindered phenolic antioxidant may have a weight average molecular weight of 50 to 300, 000 g / mol, but may exhibit an excellent antioxidant effect when having the weight average molecular weight described above.
  • Commercially available hindered phenolic antioxidants include ADEKA A0-60 TM products.
  • the phosphorus antioxidants include BASF's Irgafos TM 168 products.
  • the content may be more than 0 parts by weight and 10 parts by weight or less based on 100 parts by weight of the total content of (i) the polyester resin, (ii) the polycarbonate resin, and (iii) the interlayer enhancer. It may be included in an amount of 0.1 to 7 parts by weight when considering the improvement of the appearance characteristics of the polymer resin composition and the molded article and the prevention of oxidation or pyrolysis due to the addition of antioxidants without fear of deterioration of mechanical properties.
  • the hydrolysis agent reacts endcapping with a hydroxyl group or a carboxyl group at the terminal of the polyester-based resin, thereby preventing hydrolysis of the resin composition by water or acid and also improving durability.
  • the hydrolysis agent may be a carbodiimide-based compound, specifically, a modified phenyl carbodiimide, poly (lryl carbodiimide), poly (4,4'-diphenylmethanecarbodiimide), poly (3, 3'-dimethyl-4, 4'biphenylenecarbodiimide), poly (P-phenylenecarbodiimide), poly (m-phenylenecarbodiimide) or poly (3,3'-dimethyl _4, 4'-di Phenylmethanecarbodiimide), and any one or a combination of two or more of them may be used.
  • the content thereof may be 5 parts by weight or less based on 100 parts by weight of the total content of the (1) polyester resin, (ii) polycarbonate resin, and (iii) the interlayer enhancer. .
  • the nucleating agent serves to improve the heat resistance and injection molding of the polymer resin composition.
  • Specific examples include talc / common organic metal salt compound, a sorbitan-based non-metal salts, phosphate salts, quinacridone,. Calcium carboxylate, montan-based metal salts, amide-based organic compounds or talc, and the like, and any one or two or more of these may be used. Of these, talc / organic metal salt mixtures can be used, given the remarkable improvement of the use of nucleating agents.
  • the content thereof may be 10 parts by weight or less based on 100 parts by weight of the total content of (i) the polyester resin, (ii) the polycarbonate resin, and (iii) the impact modifier. More specifically, it may be 0.1 to 5 parts by weight.
  • plasticizer examples include phthalic ester plasticizers such as diethyl phthalate, dioctyl phthalate and dicyclonuclear phthalate; Aliphatic dibasic acid ester plasticizers such as adipic di-butyl, adipic di-octyl, sebacic acid di-a-butyl, and azaline di-2-ethylnuclear chamber; Phosphoric acid ester plasticizers such as diphenyl-2-ethylnuclear phosphate and diphenyloctyl phosphate; Hydroxy polyhydric carboxylic acid ester plasticizers such as acetyl citrate tributyl, acetyl citrate tri-2-ethylnuclear chamber and tributyl citrate; Fatty acid ester plasticizers such as acetyl ricinolic acid methyl and amyl stearate; Polyhydric alcohol ester plasticizers such as glycerin
  • the content thereof is 10 parts by weight or less, more specifically, based on 100 parts by weight of the total content of ( ⁇ polyester resin, (ii) polycarbonate resin, and (iii) layered reinforcing agent. 0.1 to 7 parts by weight may be included.
  • coloring pigment Inorganic pigments, such as carbon black, titanium oxide, zinc oxide, or iron oxide; Or organic pigments such as cyanine-based, phosphorus-based, quinone-based, periron-based, isoindolinone-based, or thioindigo-based, and the like, and any one or two or more of these may be used.
  • Inorganic pigments such as carbon black, titanium oxide, zinc oxide, or iron oxide
  • organic pigments such as cyanine-based, phosphorus-based, quinone-based, periron-based, isoindolinone-based, or thioindigo-based, and the like, and any one or two or more of these may be used.
  • the lubricant may include, for example, metal stearate lubricant, amide lubricant, paraffin lubricant, or ester lubricant, and any one or two or more of these may be used.
  • the light stabilizer may specifically include a Hals-based light stabilizer and the like
  • the light absorber may include a benzotriazole-based light absorber or a benzophenone-based light absorber. Compounds can be used.
  • trans-esterification banung inhibitors include intramolecular least one hydroxyl functional group or be cited comprising the alkyl ester functional groups, the compound or a hydrazine compound or the like, and any one or two or more common compound is used, of which Can be.
  • the above additives may be included in an amount controlled appropriately according to the use of the polymer resin composition within a range that does not inhibit the effect of the polymer resin composition, specifically, (i) polyester resin, (ii) polycarbonate resin and (in) 10 parts by weight or less, more specifically 0.1 to 7 parts by weight based on 100 parts by weight of the total content of the impact modifier.
  • the polymer resin composition according to an embodiment of the present invention Stable expression of excellent mechanical properties and balance of heat resistance, electrical insulation and impact resistance.
  • the compatibilizer and the flame retardant may be further included in an amount of 10 parts by weight or less based on 100 parts by weight of the total content of the (1) polyester resin, (ii) polycarbonate resin, and (iii) impact modifier.
  • the flame retardant may include a phosphorus flame retardant and a phenol flame retardant in a weight ratio of 2: 1 to 1: 2.
  • the types of the compatibilizer and the flame retardant are as described above.
  • Polymer resin composition according to an embodiment of the present invention having the above composition can be prepared by blending the above components to the optimum content described.
  • the blending of each component may be performed according to a conventional method, and a blending apparatus may be used if necessary.
  • the polymer resin composition is a polycarbonate resin, polyester resins, impact modifiers and optionally one or more other additives in a mixer, mixer or tumbler to each of the above content conditions, and then mixed through a twin screw extruder Can be manufactured.
  • the polymer resin composition-forming resin may be preferably used in a dry state.
  • Polymer resin composition according to an embodiment of the present invention by having a combination of components and content as described above optimized at the same time, while showing excellent mechanical properties such as tensile strength, significantly improved heat resistance, electrical insulation And excellent impact resistance at low temperatures, particularly at low temperatures.
  • the polymer resin composition may have a tensile strength of 500 kg / crf or more, more specifically 530 kg / cuf or more, measured according to D638.
  • the polymer resin composition is room temperature measured according to the ASTM D256 method
  • the impact strength at 23 ° C 650 J / m or more, more specifically 700 J / m or more, the impact strength at low temperature 30 ° C may be 600 J / m or more, more specifically 610 J / m or more. .
  • the heat deflection temperature may be 100 ° C. or more, more specifically 1 C or more.
  • the polymer resin composition may have a breakdown voltage of 600V or more measured according to IEC 60112.
  • the polymer resin composition according to an embodiment of the present invention may be applied to various fields.
  • impact resistance in particular, various electrical / electronic products or automobiles requiring excellent impact resistance at low temperatures Applicable to connectors, switches, relays, jacks, IC sockets, AC components, presser sensors or housings.
  • the polymer resin composition may be pelletized by molding through various molding methods, for example, molding, such as injection, extrusion, extrusion blow, injection blow, or profile extrusion, and post-processing such as thermoforming using the same. It may be implemented in the form of a film or the like /
  • a molded article manufactured using the polymer resin composition may be provided.
  • the molded article may be produced by various molding methods such as injection, extrusion, extrusion blow, injection blow, and profile ' extrusion, and post-processing such as thermoforming using the polymer resin composition according to its application. It can be obtained by molding through.
  • the specific shape or size of the molded article may vary depending on the application, and the example is not limited thereto.
  • the molded article may have a shape such as a sheet, a container, or a pellet.
  • the polymer resin composition according to the present invention stably exhibits excellent mechanical properties such as tensile strength, it is possible to realize greatly improved corrosion resistance, electrical insulation and impact resistance, particularly excellent impact resistance at low temperature of 30 ° C. Accordingly, the composition can be applied to various fields, and especially connectors, switches, relays, jacks, ICs of various electric / electronic products or automobiles requiring layer resistance, particularly excellent impact resistance at low temperatures, in addition to heat resistance and electrical insulation. It may be useful for sockets, AC components, pressure sensors or housings. [Form for implementation of invention]
  • PCT polycyclonuclear silane dimethylene terephthalate
  • TPA terephthalic acid
  • IPA isophthalic acid
  • CHDM 1,4-cyclonucleodimethanol
  • EG ethylene glycol
  • Polyester SKYPURA TM 1631, manufactured by SK Chemicals, ASTM E 1356, glass transition temperature
  • Polyester resin B SKYPET-BL TM (manufactured by SK Chemical Co., Ltd.) of polyethylene terephthalate (PET) resin system was used.
  • Polyester resin C PBT-1200 TM (manufactured by Chang Chun Plastics) of polybutylene terephthalate (PBT) resin system was used.
  • Polycarbonate Resin A polycarbonate resin (TRIREX TM 3022PJ, manufactured by Samyang Co.) of 4,4-isopropylidenediphenol having a melt flow rate (300 ° C./1.2 kg) of 14 g / 10 minutes was prepared and blended with the polyester. It was used after drying at 125 ° C for 10 hours before.
  • TRIPX TM 3022PJ 4,4-isopropylidenediphenol having a melt flow rate (300 ° C./1.2 kg) of 14 g / 10 minutes was prepared and blended with the polyester. It was used after drying at 125 ° C for 10 hours before.
  • Lamellar Reinforcement A An acrylonitrile-butadiene-styrene (ABS) graft copolymer (HR-181 TM , manufactured by Kumho Petrochemical Co., Ltd.) in the form of a core-shell rubber was used.
  • ABS acrylonitrile-butadiene-styrene
  • Impact modifier B An alkylmethacrylate-diene-based rubber-aromatic vinyl (MBS) graft copolymer (M-732 TM, Kaneka) in the form of a core-shell rubber was used.
  • Impact modifier C Alkyl methacrylate-silicone / alkylacrylate graft copolymer, wherein the core is methyl methacrylate in the form of a shell rubber.
  • a silicone / butyl acrylate (MBS) graft copolymer S-2001 TM, manufactured by Mitsui Shi Rayon was used.
  • Lamellar enhancer D Saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer (LOTADER TM AX-8900, manufactured by Arkema) was used.
  • Oxidation stabilizers phenolic primary oxidative stabilizers (A0-60 TM, manufactured by ADEKA) and phosphorus
  • a secondary oxidative stabilizer (IRgafos 168, manufactured by BASF) was used.
  • Styrene acrylonitrile glycidyl methacrylate copolymer SAG-005 TM, manufactured by SUNNY FC.
  • Example 3 65% by weight of polycarbonate resin, 25% by weight of polyester resin A, 9% by weight of alkyl methacrylate-diene-based rubber-aromatic vinyl graft copolymer (impact enhancer B) and Saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D) except that 100 parts by weight of the resin mixture consisting of 1% by weight, was carried out in the same manner as in Example 1 A resin composition and pellets using the same were prepared.
  • impact enhancer B alkyl methacrylate-diene-based rubber-aromatic vinyl graft copolymer
  • impact enhancer D Saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer
  • Example 4 65% by weight of polycarbonate resin, 25% by weight of polyester resin A, 9% by weight of alkyl methacrylate-silicone / alkylacrylate graft copolymer (improving agent C) and Saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D) except that 100 parts by weight of the resin mixture consisting of 1% by weight, was carried out in the same manner as in Example 1 A resin composition and pellets using the same were prepared.
  • Example 4 65% by weight of polycarbonate resin, 25% by weight of polyester resin A, 9% by weight of alkyl methacrylate-silicone / alkylacrylate graft copolymer (improving agent C) and Saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D) except that 100 parts by weight of the resin mixture consisting of 1% by weight, was carried out in the same manner as in Example 1 A resin composition and pellets
  • Example 5 instead of the resin mixture in Example 1, polycarbonate resin 65 weight polyester resin A 25% by weight, unsaturated nitrile-diene rubber ⁇ aromatic vinyl graft copolymer (layered filler A) 1% by weight and saturated ethylene- Polymer resin composition and the same as in Example 1, except that 100 parts by weight of the resin mixture consisting of 9% by weight of the alkyl acrylate ⁇ glycidyl methacrylate-based copolymer (impact enhancer D) The used pellets were prepared.
  • impact enhancer D the alkyl acrylate ⁇ glycidyl methacrylate-based copolymer
  • Example 6 65% by weight, 25% by weight of polyester resin A, 4% by weight of alkyl methacrylate-diene-based rubber-aromatic vinyl graft copolymer (improving agent B) and saturated ethylene one alkyl acrylate-glycidyl methacrylate A polymer resin composition and a pellet using the same were prepared in the same manner as in Example 1, except that 100 parts by weight of a resin mixture consisting of 6 wt% of a copolymer (layer stiffener D) was used.
  • Example 7 instead of the resin mixture in Example 1, polycarbonate 80% by weight, 10% by weight of polyester resin A, 5% by weight of alkyl methacrylate-diene-based rubber (aromatic modifier B) and saturated ethylene-alkylacrylate-glycidyl methacrylate A polymer resin composition and pellets using the same were prepared in the same manner as in Example 1, except that 100 parts by weight of the resin mixture composed of 5% by weight of the coalescent (impact enhancer D) was used.
  • Example 7 Example 7
  • Example 1 Instead of the resin mixture in Example 1, 45% by weight of polycarbonate resin, 45% by weight of polyester resin A ⁇ 5% by weight of alkyl ⁇ acrylate-diene-based rubber-aromatic vinyl graft copolymer (layered modifier B) And 100 parts by weight of a resin mixture composed of 5% by weight of a saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D), by the same method as in Example 1, A polymer resin composition and pel3 ⁇ 4 using the same were prepared. Comparative Example 1
  • Example 2 65% by weight of polycarbonate resin, 25% by weight of polyester resin B, 5% by weight of alkyl methacrylatediene-based rubber-aromatic vinyl graft copolymer (improving agent B) and Saturated ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D) except that 100 parts by weight of the resin mixture consisting of 5% by weight, was carried out in the same manner as in Example 1 A resin composition and pellets using the same were prepared. Comparative Example 2
  • Example 2 65% by weight of polycarbonate resin, 25% by weight of polyester resin C, 5% by weight of alkyl methacrylate-diene-based rubber-aromatic vinyl graft copolymer (layered modifier B) And saturated ethylene ⁇
  • the polymer resin composition was carried out in the same manner as in Example 1, except that 100 parts by weight of the resin mixture consisting of 5% by weight of the alkyl acrylate-glycidyl methacrylate copolymer (impact enhancer D) was used. Pellets were prepared using the same. Comparative Example 3
  • Example 4 65% by weight of polycarbonate resin, 25% by weight of polyester resin A, 10% by weight of alkyl methacrylate one silicone / alkyl acrylate graft copolymer (impact enhancer C) A polymer resin composition and a pellet using the same were prepared in the same manner as in Example 1, except that 100 parts by weight of the resin mixture was used. Comparative Example 4
  • Example 1 49 weight percent polycarbonate resin, 21 weight polyester resin A alkyl methacrylate—diene-based rubber-aromatic vinyl graft copolymer (impact enhancer B) 15 weight 3 ⁇ 4 and saturation Ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D) was carried out in the same manner as in Example 1, except that 100 parts by weight of the resin mixture consisting of 15% by weight of the polymer resin A composition and felspe using the same were prepared. Comparative Example 7
  • Example 2 Instead of the resin mixture in Example 1, 85% by weight of polycarbonate resin, 5% by weight of polyester resin A 5% by weight alkyl methacrylate-diene rubber-aromatic vinyl graft copolymer (improving agent B) and saturation
  • the polymer resin was carried out in the same manner as in Example 1, except that 100 parts by weight of the resin mixture consisting of 5% by weight of ethylene one alkyl acrylate-glycidyl methacrylate-based co-polymer (layer stiffener D) was used. The composition and the pellets using the same were prepared. Comparative Example 8
  • Example 1 Ethylene-alkylacrylate-glycidyl methacrylate copolymer (impact enhancer D) was carried out in the same manner as in Example 1, except that 100 parts by weight of the resin mixture consisting of 5% by weight of the polymer resin A composition and pellets using the same were prepared.
  • Test specimens were prepared according to ASTM D 638, and tensile strengths were measured using a universal testing machine (Universal Testing Machine, Zwick Roe 11 Z010).
  • CTI measurement According to IEC 60112, measurement specimens were made and the dielectric breakdown voltage was measured by using a Comprehensive Tracking Index (CTI) tester.
  • CTI Comprehensive Tracking Index
  • the impact strength is at least 650 J / m at room temperature 23 ° C, more specifically 700 J / m or more, at least 600 J / m at low temperature -30 ° C, more specifically 610 J High impact strength of more than / m could be achieved.
  • it showed a breakdown voltage of 600V and a thermal deformation temperature of more than 100 ° C.
  • the polymer resin composition of the embodiment exhibits excellent heat resistance, electrical insulation, and mechanical properties compared with the comparative example, but also shows significantly improved impact resistance, particularly at low temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명에서는 우수한 기계적 물성을 유지하면서도 개선된 내열성, 전기절연성 및 내충격성, 특히 -30°C의 저온에서 현저히 개선된 내충격성을 나타내는 고분자 수지 조성물이 제공된다.

Description

【명세서】
【발명의 명칭】
고분자 수지 조성물
【기술분야】
본 출원은 2017년 4월 20일자 한국 특허 출원 제 10-2017一
0051261호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 내열성, 전기절연성 및 내충격성과 함께, 개선된 기계적 물성을 나타내는 고분자 수지 조성물에 관한 것이다.
【배경기술】
폴리카보네이트 수지는 자기소화성을 가져 우수한 난연성 및 내화성을 나타낼 뿐만 아니라, 뛰어난 내충격성 또는 내열성을 나타내어, 각종 건축자재와 전자제품의 외관, 포장재질, 케이스, 박스 또는 인테리어 내외장재 등의 다양한 분야에 사용되고 있다. 이러한 폴리카보네이트 수지는 또 우수한 기계적 물성으로 인하여 많은 수요가 있으나, 낮은 내화학성으로 인해 각종 세정제나 여성화장품ᅳ 또는 유아용 손 소독제 등에 의해 폴리카보네이트 수지의 외관 색상이 변하거나 표면 갈라짐이 발생하는 등, 여러 가지 생활화학 물질에 의해 제품의 외관과 물성이 저하되는 문제점이 있다. .
한편, 폴리에스터 수지는 상대적으로 우수한 기계적 강도 및 탄성 강도가 갖는 특징으로 인하여, 강화 플라스틱, 도료, 필름, 성형용 수지, 의복의 섬유 재료로도 다양하게 사용되고 있다. 그러나 폴리에스터 수지는 다른 고분자 재료, 예를 들어 아크릴계 재료 또는 폴리카보네이트계 재료에 비하여 내열성과 층격강도가 낮아 계절에 따른 온도 변화가 심한 옥외용 외장재로 사용하기에 부적합한 문제가 있다.
상기 폴리에스터 수지 또는 폴리카보네이트 수지의 문제점을 해결하기 위한 다양한 시도가 있었으며, 폴리에스터 수지와 폴리카보네이트 수지를 블렌딩 하는 방법에 관한 연구가 계속 진행되어 왔다. 하지만 폴리에스터 수지와 폴리카보네이트 수지는 용융 점도 및 분자 구조가 서로 상이하기 때문에, 이들을 단순히 블렌딩하는 것으로는 내열성을 향상시키는 데 일정한 한계가 있었다.
또, 폴리카보네이트 수지의 기계적 물성 및 내열성을 유지하면서 내화학성을 증대시키기 위하여 다양한 방법이 시도되었으나, 내화학성의 향상 정도가 실제 산업상 적용할 수 있을 정도로 충분하지 못하였으며, 또 제조되는 수지 제품의 외관 특성이 저하되는 문제점이 발생하였다. 이외 내열성과 내화학성을 동시에 향상시키기 위한 다양한 첨가제를 배합하는 방법도 시도되었으나, 적정 수준의 내화학성을 발현시키기 어려웠다.
이에 따라, 이러한 수지들의 블렌드를 통해 내화학성, 전기절연성, 내충격성 및 내열성을 동시에 구현하면서도, 안정적인 기계적 물성을 구현할 수 있는 고분자 수지 조성물에 대한 연구가 여전히 필요하다.
【발명의 상세한 설명】
[기술적 과제】
본 발명의 목적은 우수한 내열성, 전기절연성 및 내충격성과 함께, 개선된 기계적 물성을 나타내는, 특히 30 °C의 저온에서 우수한 충격강도를 나타내는 고분자 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은, 상기 고분자 수지 조성물을 이용하여 제조되어, 우수한 내열성, 전기절연성, 및 내충격성과 함께 개선된 기계적 물성을 나타.내는 성형품을 제공하는 것이다.
【기술적 해결방법】
상기와 같은 목적을 달성하기 위해, 본 발명자는 우수한 내열성 , 전기절연성 및 내충격성과 함께 개선된 기계적 물성을 나타내는 고분자 수지 조성물에 대한 거듭된 연구 끝에 이를 제조하는데 성공하고, 제조한 고분자 수지 조성물이 다양한 분야, 특히 내열성 및 전기절연성과 함께, 내층격성, 특히 저온에서의 우수한 내층격성이 요구되는 각종 전기 /전자 제품 또는 자동차의 컨넥터, 스위치, 릴레이, 잭, IC 소켓, 교류부품, 프레서 센서 또는 하우징류 등에 적용가능함을 확인하여 본 발명을 완성하였다.
이하 발명의 구체적인 구현예에 따른 고분자 수지 조성물 및 이를 이용하여 제조한 성형품에 관하여 보다 상세하게 설명하기로 한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명올 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다 "구비하다11 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또, 본 명세서에 '있어서 , "폴리에스터 "란 하나 이상의 카르복실산 (acid)과 하나 이상의 디을 (dio l ) 화합물과의 중축합에 의해 제조되는 합성 중합체로서, "코폴리에스터' '를 포함한다.
또, 본 명세서에 있어서 "반복단위"란, 카보닐옥시기를 통해 결합된 디올 유래 작용기 또는 카르복실산 유래 작용기를 갖는 단위 구조를 의미한다.
본 발명의 일 구현예에 따른 고분자 수지 조성물은,
( i ) 테레프탈산을 포함하는 디카르복실산 유래 반복단위와, 1,4- 사이클로핵산디메탄올을 포함하는 디올 유래 반복단위를 포함하는 폴리에스터 수지 10 내지 80중량 ¾ ;
( 1 1 ) 폴리카보네이트 수지 10 내지 80중량 ¾; 및 .
( i i i ) 충격보강제 5 내지 20중량 ¾를 포함하며,
상기 ( i i i ) 충격보강제는 극성 작용기에 대해 반응성을 나타내는, 글리시딜 메타크릴레이트 유래 반복단위를 포함하는 반응성 고무와, 미반웅성 고무를 1:9 내지 9:1의 중량비로 포함한다.
이하 고분자 수지 조성물을 구성하는 각 성분별로 상세히 설명한다. (i) 폴리에스터 수지
본 발명의 일 구현예에 따른 고분자 수지 조성물에 있어서, 상기 폴리에스터 수지는 테레프탈산을 포함하는 디카르복실산계 화합물과, 1,4- 사이클로핵산디메탄올을 포함하는 디을계 화합물을 중합하여 제조한 폴리에스터 공중합체로서, 상기 테레프탈산을 포함하는 디카르복실산계 화합물 유래 반복단위와, 1,4-사이클로핵산디메탄올을 포함하는 디올계 화합물 유래 반복단위를 포함한다.
구체적으로, 상기 폴리에스터 수지에 있어서, 디카르복실산계 화합물 유래 반복단위는, 디카르복실산 또는 이의 에스터로부터 래된 반복단위일 수 있다.
상기 디카르복실산은 구체적으로 탄소수 8 내지 20의 방향족 디카르복실산, 또는 탄소수 4 내지 20의 지방족 디카르복실산일 수 있으며, 보다 . 구체적으로 테레프탈산 (terephthalic acid; TPA) , 이소프탈산 (isophthalic acid; IPA) 또는 나프탈렌 2,6-디카르복실산 (2,6ᅳ naphthalenedicarboxyl ic acid; 2,6-NDA) 등일 수 있다.
또, 상기 디카르복실산 에스터 화합물은 탄소수 8 내지 20의 방향족 디카르복실산, 또는 탄소수 4 내지 20의 지방족 디카르복실산의 에스터일 수 있으며, 보다 구체적으로 디메틸 테레프탈레이트 (dimethyl terephthalate; DMT), 디메틸 이소프탈레이트 (dimethyl isophthalate; DMI), 또는 디메틸 2, 6-나프탈렌디카복실레이트 (dimethyl 2,6- naphthalenedicarboxylate; 2,6-NDC) 등일 수 있다.
본 발명의 일 구현예에 따른 고분자 수지 조성물에 있어서, 상기 폴리에스터 수지는 그 제조시 사용되는 디카르복실산계 화합물의 종류 및 함량을 제어함으로써, 기계적 물성, 내열성, 전기절연성 및 내충격성 면에서 보다 개선된 특성을 나타낼 수 있다.
구체적으로, 상기 폴리에스터 수지에 있어서 디카르복실산 유래 반복단위는 디카르복실산 유래 반복단위 100몰? ¾에 대하여 테레프탈산 또는 그 에스터계 화합물 유래 반복단위를 80몰% 이상 포함할 수 있다. 이 경우, 고분자 수지 조성물에 적용시 개선된 전기절연성과 함께 성형가공성을 나타내며, 또 고온 다습한 환경에서도 초기 기계적 물성을 우수한 수준으로 유지할 수 있고, 저온 성형시 우수한 결정성을 나타낼 수 있다.
보다 구체적으로, 상기 폴리에스터 수지는 디카르복실산 유래 반복단위로서 하기 화학식 1로 표시되는 반복단위를 포함할 수 있으며, 이중 80몰% 이상은 테레프탈산에서 유래한 반복단위일 수 있고, 보다 구체적으로는 '하기 화학식 1에서의 Ar1이 1,4-페닐렌기인 반복단위일 수 있다:
1] .
Figure imgf000006_0001
상기 화학식 1에서, Ar1은 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이다.
. 디카르복실산계 화합물의 종류 및 함량 제어에 따른 기계적 물성, 내열성, 전기절연성 및 내충격성 개선 효과의 현저함을 고려할 때, 상기 폴리에스터 수지에 있어서, 상기 디카르복실산 유래 반복단위는 보다 구체적으로 테레프탈산 또는 그 에스터계 화합물 유래 반복단위 80 내지 100몰%; 및 이소프탈산 또는 그 에스터계 화합물 유래 반복단위 0 내지 20몰%를 포함할 수 있다.
한편 상기 폴리에스터 수지에 있어서, 디올 유래 반복단위는 1 , 4- 사이클로핵산디메탄올 유래 반복단위를 포함할 수 있다.
상기 1 , 4—사이클로핵산디메탄올 유래 반복단위는 탄소수 6의 환형 구조를 포함하기 때문에 폴리카보네이트 수지와 같이 분자 쇄에 비공유 전자를 갖는 페닐렌기를 포함하는 수지에 비해 전기 절연성이 우수하며, 그 결과 이를 포함하는 폴리에스터 수지의 고분자 수지 조성물에 적용시 , 전기절연성을 크게 향상시킬 수 있다.
상기 1 , 4—사이클로핵산디메탄올 유래 반복단위는 폴리에스터 수지를 구성하는 디을 유래 반복단위 100몰%에 대하여 5몰% 이상, 구체적으로는 5 내지 100몰%, 보다 더 구체적으로는 60 내지 100몰%로 포함될 수 있다. 상기한 함량 범위로 포함될 때, 고분자 수지 조성물의 우수한 기계적 물성을 유지하면서도 전기절연성 및 내열성을 크게 향상시킬 수 있다.
또, 상기 폴리에스터 수지에 있어서 디올 유래 반복단위는 상기한
1 , 4—사이클로핵산디메탄올 유래 반복단위와 함께, 에틸렌 글리콜, 디에틸렌 글리콜, 1 , 4-부탄디올, 1 , 3—프로판디올 또는 네오펜틸 글리콜 등과 같은 기타의 디올계 화합물 유래 반복단위를 1종 이상 더 포함할 수 있다.
구체적으로, 상기 폴리에스터 수지는 하기 화학식 2로 표시되는 반복단위를 포함하되, . 이중 하기 화학식 2에서 R1이 사이클로핵실렌디메틸렌이고, u가 0인 반복단위를 디올 유래 반복단위 100몰%에 대하여 5몰% 이상, 보다 구체적으로는 60 내지 100몰%로 포함하고 이외 디올계 화합물 유래 반복단위, 이중에서도 폴리에스터 수지의 내충격성을 더욱 개선시킬 수 있는 에틸렌 글리콜 유래 반복단위를 잔부의 양으로 포함할 수 있다:
Figure imgf000007_0001
상기 화학식 2 에서 ,
R1은 치환 또는 비치환된 탄소수
고리형 알킬렌기이고,
R2는 치환 또는 비치환된 탄소수
알킬렌기이며,
Y는 —0—, -NH- 또는 -S-이고,
u는 0 또는 1의 정수이다.
보다 구체적으로, 상기 폴리에스터 수지는 테레프탈산과 1 , 4· 사이클로핵산디메탄올의 중축합에 의해 제조된 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지일 수 있으며, 상기 1,4-사이클로핵산디메탄을에 일부 에틸렌 글리클이 디을 유래 반복단위 100몰%에 대하여 1몰% 이하의 함량으로 공중합되거나, 또는 상기 테레프탈산에 일부 이소프탈산이 디카르복실산 유래 반복단위 100몰%에 대하여 20몰% 이하의 함량으로 공중합된 것일 수 있다.
상기 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 결정화 속도가 폴리부틸렌테레프탈레이트 (PBT) 보다는 늦지만 폴리에틸렌테레프탈레이트 (PET)보다는 월등히 빠르고, 사출 성형이 가능하면서도 높은 내열성을 가지며 상대적으로 가격 경쟁력이 높아 잠재적 용도 가능성이 매우 높다. 또, 액정 폴리머를 제외하고는 현존하는 폴리에스터계 수지 중에서 가장 높은 용융점을 갖는 고분자이며, 폴리아크릴레이트 (PA)계 고분자 대비 수분 흡수율이 낮고, 열에 의한 내변색성이 매우 우수하다. 이에 따라, 상기 본 발명에 따른 고분자 수지 조성물이 상기 폴리에스터 수지로서 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지를 포함할 경우, 충격강도를 유지하면서도 내열성과 기계적 강도를 크게 향상시킬 수 있다.
또, 상기와 같은 폴리에스터 수지는 그 구성성분들의 종류와 함량, 그리고 중합 조건의 제어를 통해, 기계적 물성, 내열성, 내층격성, 전기전연성 등의 면에서 보다 우수한 효과를 나타낼 수 있도록 점도, 중량평균 분자량 또는 유리 전이온도 등을 제어할 수 있다. 구체적으로, 상기한 효과의 개선을 위해 폴리에스터 수지는 용매 0-클로로페놀 (0CP)에 용해시킨 후 35°C에서 측정한 점도로부터 환산된 고유 점도가 0.65 내지 0 .85dl /g이고, 중량평균분자량 (Mw)이 10,000 내지 100 , 000 g/mo l이며, 유리전이온도가 0 내지 200 t:, 보다 구체적으로는 80 내지 120 °C인 것일 수 있다. 한편., 본 발명에 있어서, 중량평균분자량 (Mw)은 GPC(ge l permeat i on chromatography)로 측정한, 표준 폴리스티렌 환산 수치를 의미하고, 유리전이온도 ( )는 ASTM E 1356에 따라 시차주사열량계 (Di f ferent i al Scanning Ca l or imet ry , DSC)를 이용하여 측정한 온도이다.
상기 폴리에스터 수지는 고분자 수지 조성물 총 중량에 대하여 10 내지 80중량 %로 포함될 수 있으며, 고분자 수지 조성물내 폴리에스터 함량 제어에 따른 개선 효과의 우수함을 고려할 때, 15 내지 70중량 ¾로 포함될 수 있다. 또, 상기 폴리에스터 수지는 고분자 수지 조성물내 상기 함량 범위를 충족하는 조건 하에서, 폴리카보네이트 수지 100중량부에 대하여 5 내지 100중량부로 포함될 수 있으며, 보다 구체적으로는 폴리카보네이트 수지 100중량부에 대하여 5 내지 60중량부, 보다 더 구체적으로는 5 내지 50중량부로 포함될 수 있다. 이와 같은 함량비 조건을 충족할 경우, 고분자 수지 조성물의 저온에서의 내층격성 및 내열성을 크게 향상시킬 수 있다.
C i i ) 폴리카보네이트 수지
상기 폴리카보네이트 수지는 카보네이트 작용기를 포함하는 고분자로 본 발명에서 사용 가능한 폴리'카보네이트 수지는 카보네이트 작용기와 함께 4,4-이소프로필리덴디페놀 유래 반복단위를 포함한다.
상기 4 , 4-이소프로필리덴디페놀 유래 반복단위는 폴리카보네이트 수지에 포함시 고분자 수지 조성물의 우수한 기계적 물성을 안정적으로 나타낼 수 있으며, 내층격성을 향상시킬 수 있다ᅳ 이와 같은 상기 4 , 4- 이소프로필리덴디페놀 유래 반복단위는 폴리카보네이트 수지 내에 5몰% 내지 100몰%의 함량으로 포함될 수 있다.
상기 폴리카보네이트 수지 및 그 제조 방법은 특별히. 한정되지는 않으며, 4 , 4-이소프로필리덴디페놀 유래 반복단위를 포함하며, 해당 분야에서 통상적으로 사용되는 것이라면 사용가능하다 . 구체적인 예로는 , 상기 4 , 4-이소프로필리덴디페놀 유래 반복단위를 포함하는 선형 폴리카보네이트 수지 분지화된 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 폴리에스터 카보네이트 수지 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
상기 폴리카보네이트 수지는 그 구성성분들의 종류와 함량 , 그리고 중합 조건의 제어를 통해, 기계적 물성, 내층격성, 전기절연성 등의 면에서 보다 우수한 효과를 나타낼 수 있도록 용융 유동률, 중량평균 분자량 또는 유리 전이온도 등을 제어할 수 있다. 구체적으로, 상기 폴리카보네이트 수지는 용융 유동를 (300 °C 및 1.2kg.하중 하 측정)이 10 내지 50g/10분인 것일 수 있다. 또 상기 풀리카보네이트 수지는 유리전이온도가 50 내지 200 °C고, 중량평균 분자량이 10 , 000 내지 200 , 000g/mol인 것일 수 있다. 상기 폴리카보네이트 수지는 고분자 수지 조성물 총 중량에 대하여 10 내지 80중량 %로 포함될 수 있으며, 고분자 수지 조성물내 플리카보네이트 수지 함량 제어에 따른 기계적 물성 및 내충격성 개선 효과의 우수함을 고려할 때, 15 내지 70중량 %로 포함될 수 있다.
( i i i ) 충격보강제
상기 층격보강제는 고분자 수지 조성물의 내충격성을 향상시키는 역할을하는 것으로, 저온에서 수지에 주어지는 충격을 흡수하는 미반웅성 고무와, 극성 작용기에 대해 반웅성을 나타내어 충격보강제의 분산성을 향상시키는 반웅성 고무의 흔합물을 포함하며, 그 함량비 제어를 통해 상온뿐만 아니라 30 °C의 저온에서의 고분자 수지 조성물의 내충격성을 크게 향상시킬 수 있다.
상기 충격보강제에 있어서 미반웅성 고무는 코어-쉘 구조를 갖는 것일 수 있으며, 구체적으로, 불포화니트릴-디엔계 고무 -방향족비닐 그라프트 공중합체, 알킬메타크릴레이트-디엔계 고무—방향족비닐 그라프트 공중합체 및 알킬메타크릴레이트-실리콘 /알킬아크릴레이트 그라프트 공중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물을 포함할 수 있다.
상기 불포화니트릴—디엔계 고무 -방향족비닐 그라프트 공중합체에 있어서, 불포화니트릴은 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, 또는 α - 클로로아크릴로니트릴 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상을 포함할 수 있다. 또, 상기 디엔계 고무는 부타디엔계 고무 또는 이소프렌계 고무 등일 수일 수 있으며, 아들 중 어느 하나 또는 들 이상을 포함할 수 있다. 또, 상기 방향족비닐은 스티렌, α -메틸스티렌, 비닐를루엔, t—부틸스티렌, 할로겐 치환 스티렌, 1,3-디메틸스티렌, 2 , 4-디메틸스티렌, 또는 에틸스티렌 등일 수일 수 있으며, 이들 중 어느 하나 또는 둘 이상을 포함할 수 있다.
보다 구체적으로, 상기 불포화니트릴—디엔계 고무—방향족비닐 그라프트 공중합체는 아크릴로니트릴-부타디엔ᅳ스티렌그라프트 공중합체일 수 있다. . 또, 상기 불포화니트릴-디엔계 고무 -방향족비닐 그라프트 공중합체는, 유화중합 또는 벌크중합 공정을 통해 제조된 코어-쉘 형태의 고무 (Coreᅳ She l l Rubber )일 수 있으며, 평균입자직경이 0.01 내지 5 이고, 그라프트율이 5 내지 90%이며, 코어의 유리전이온도가 -20°C 이하이고, 쉘의 유리전이온도가 2(rc 이상인 것일 수 있다. 또, 선택적으로 쉘에 글리시딜 메타크릴레이트 또는 말레산무수물 등의 관능기를 포함하거나 포함하지 않을 수 있다.
또, 상기 코어—쉘 고무는 평균입자직경이 0.01 내지 5 인 단일 입자분포 (Monomodal di str i but ion) 형태의 모폴로지 (Morphol ogy), 또는 평균입자경이 0.01 내지 /m인 다중 입자분포 (Mul t imodal di str ibut ion) 형태의 모폴로지 (Morphology)를 가질 수 있다. '
또, 상기 알킬메타크릴레이트—디엔계 고무ᅳ방향족비닐 그라프트 공중합체에 있어서, 상기 알킬메타크릴레이트는 메틸메타크릴레이트, 에틸메타크릴레이트, 프로필메타크릴레이트, 이소프로필메타크릴레이트 또는 부틸메타크릴레이트 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
보다 구체적으로, 상기 알킬메타크릴레이트-디엔계 고무 -방향족비닐 그라프트 공중합체는 메틸메타크릴레이트 -부타디엔ᅳ스티렌 그라프트 공중합체일 수 있다.
또, 상기 알킬메타크릴레이트-실리콘 /알킬아크릴레이트 그라프트 공중합체에 있어서, 알킬메타크릴레이트는 앞서 설명한 바와 같다.
보다 구체적으로, 상기 알킬메타크릴레이트ᅳ실리콘 /알킬아크릴레이트 그라프트 공중합체는 메틸메타크릴레이트-실리콘 /부틸아크릴레이트 그라프트 공중합체일 수 있다.
한편, 상기 층격보강제에 있어서 반웅성 고무는 히드록시기, 카르복시기, 또는 아미노기와 같은 극성 작용기에 대해 반웅성을 나타내는 글리시딜 메타크릴레이트 유래 반복단위를 포함하여, 열가소성 플라스틱과의 용융 혼합시 반웅성을 나타낸다.
구체적으로 상기 반웅성 고무는 포화에틸렌—알킬아크릴레이트- 글리시딜 메타크릴레이트 공중합체를 포함할 수 있다. 이때 상기 알킬아크릴레이트는 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, 이소프로필아크릴레이트 또는 부틸아크릴레이트 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. 본 발명의 일 구현예에 따른 고분자 수지 조성물에 있어서 상기 충격보강제는 상기한 미반응성 고무와 반웅성 고무를 9 : 1 내지 1 : 9의 중량비로 포함할 수 있다, 상기한 흔합비로 포함할 때 충격강도, 특히 저온에서 개선된 충격강도를 나타낼 수 있다. 미반응성 고무와 반응성 고무의 흔합비 제어에 따른 충격강도 개선 효과의 현저함을 고려할 때, 상기 충격보강제는 미반응성 고무와 반응성 고무를 5 : 5 내지 4 : 6의 중량비로 포함할 수 있다.
상기와 같은 충격보강제는, 고분자 수지 조성물 총 중량에 대하여 5 내지 20중량 %로 포함될 수 있다. 5중량 % ,미만이면 내충격 특성 중 특히 저온충격강도가 구현되기 어려우며, 또, 20중량 %를 초과하면 수지 조성물의 저온충격강도 , 굴곡강도 및 열변형 온도가 저하될 우려가 있다 .
또 , 상기 충격보강제는 폴리카보네이트 수지 대비 지나치게 소량으로 첨가될 경우, 내충격 특성이 충분히 구현되기 어려을 수 있고, 폴리카보네이트 수지 대비 과량으로 첨가될 경우, 수지 조성물의 기계적 물성이나 성형 가공성이 감소될 우려가 있다. 이에 따라, 폴리카보네이트 수지 함량에 따른 충격보강제의 첨가량 제어를 통해 고분자 수지 조성물의 충격강도 및 기계적 물성을 더욱 개선시킬 수 있다. 구체적으로, 상기한 고분자 수지 조성물내 함량 범위 내에서, 상기 충격보강제는 폴리카보네이트 수지 100중량부에 대하여 5 내지 30중량부, 보다 '구체적으로는 5 내지 20중량부, 보다 더 구체적으로는 7 내지 15중량부로 포함될 수 있다.
( i v) 기타 첨가제
본 발명의 일 구현예에 따른 고분자 수지 조성물은, 상기한 성분들 외에 상용화제, 산화방지제, 내가수분해제, 핵제, 가소제, 착색 안료, 활제, 광안정제, 트랜스에스터화반응 억제제, 커플링제, 필러, 무기 또는 유기 입자, 사슬 연장제, 자외선 안정제, 착색 방지제, 무광택제, 탈취제, 난연제, 내후성첨가제, 대전방지제, 이형제, 이온 교환제 , 또는 광흡수제 등의 각종 첨가제를 1종 이상 더 포함할 수도 있다.
구체적으로, 상기 상용화제는 고분자 수지 조성물내 구성 성분간 흔화성을 높여 우수한 성형 가공성을 확보하기 위한 것으로, 불포화니트릴- 방향족비닐 공중합체, 불포화니트릴ᅳ방향족비닐- 글리시딜 (메타)아크릴레이트 공중합체 , 불포화니트릴-방향족비닐- 말레산무수물 공중합체, 포화에틸렌—알킬아크릴레이트-글리시딜 메타크릴레이트 공중합체, 글리시딜 (메타)아크릴레이트가 그라프트된 비닐계 공중합체, 할로겐이 치환된 비닐계 공중합체, 방향족비닐-방향족 말레이미드-말레산 무수물 공중합체, 방향족비닐—불포화니트릴-방향족 말레이미드 공중합체, 방향족비닐 -α-메틸 방향족비닐 공중합체 또는 방향족비닐-불포화니트릴 -ex-메틸 방향족비닐 공중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 포함될 수 있다.
구체적으로, 상기 상용화제에 있어서, 불포화니트릴—방향족비닐 공중합체는 유리전이온도가 50 내지 200°C고, 중량평균분자량이 10,000 내지 5,000,000g/mol일 수 있다.
또, 상기 불포화니트릴-방향족비닐-글리시딜 (메타)아크릴레이트 공중합체는 유리전이온도 (Tg)가 20 내지 20CTC 이고, 중량평균분자량이 200 내지 300,000 g/mol일 수 있다. 그 구체적인 예로는 스티렌- 아크릴로니트릴-글리시딜 메타크릴레이트 공중합체 (SAN-GMA) 등을 들 수 있으며, 상업적으로 입수 가능한 공중합체로는 Sunny FC사의 SAG-005 제품 등을 들 수 있다.
또, 상기 글리시딜 (메타)아크릴레이트가 그라프트된 비닐계 공중합체로는 불포화니트릴 -방향족비닐—글리시딜 (메타)아크릴레이트 또는 알켄 -알킬 (메타)아크릴레이트-글리시딜 (메타)아크릴레이트 공중합체 등을 들 수 있다. 한편, 본 명세서에서, '(메타)아크릴 '은 아크릴 및 메타크릴을 모두 포함하는 의미이다. 또, 상기 알킬 (메타)아크릴레이트는 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, 이소프로필아크릴레이트, 부틸아크릴레이트, 핵실아크릴레이트, 옥틸아크릴레이트 및 2—에틸핵실아크릴레이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 글리시딜 (메타)아크릴레이트가 그라프트된 비닐계 공중합체에 있어서, 상기 알켄 -알킬 (메타)아크릴레이트ᅳ글리시딜 (메타)아크릴레이트 공중합체는 유리전이은도가 -150 내지 200 °C이고, 중량평균분자량이 200 내지 300 , 000g/mo l일 수 있다. 구체적인 예로는 에틸렌- 메틸메타크릴레이트ᅳ글리시딜 메타크릴레이트 공중합체를 들 수 있다.
또, 상기 할로겐이 치환된 비닐계 공중합체로는 비닐계 공중합체, 구체적으로는 스티렌-아크릴로니트릴 공중합체 (SAN)과 같은 방향족비닐- 불포화니트릴 공중합체; 스티렌 -부타디엔-스티렌 공중합체 (SBS)와 같은 방향족비닐-디엔-방향족비닐 공중합체; 스티렌-에틸렌—프로필렌 -스티렌 공중합체 (SEPS)와 같은 방향족비닐ᅳ알켄-알켄—방향족비닐 공중합체; 또는 스티렌-에틸렌 -부타디엔-스티렌 공중합체 (SEBS)와 같은 방향족비닐-알켄- 디엔 -방향족비닐 공중합체에. 할로겐이 치환된 화합물이 사용될 수 있다. 일례로, 상기 방향족비닐-불포화니트릴 공중합체에 할로겐이 치환된 화합물의 예로는 블소화 스티렌—아크릴로니트릴 공중합체를 들 수 있으며, 상업적으로 입수 가능한 상기 불소화 스티렌-아크릴로니트릴 공중합체로는 한나노텍사의 FS200™ 제품 등이 사용될 수 있다.
보다 구체적으로, 상기 상용화제로는 글리시딜 (메타)아크릴레이트가 그라프트된 비닐계 공중합체와, 할로겐이 치환된 비닐계 공중합체의 흔합물이 사용될 수 있으며, 보다 더 구체적으로는 상기 글리시딜 (메타)아크릴레이트가 그라프트된 비닐계 공중합체 100중량부에 대하여, 할로겐이 치환된 비닐계 공중합체 10 내지 40 중량부의 비율로 흔합된 흔합물이 사용될 수 있다.
상기 상용화제가 더 포함될 경우 , 상기 ( Π 폴리에스터 수지, ( 1 1 ) 폴리카보네이트 수지 및 ( i i i ) 충격보강제의 총 함량 100중량부에 대하여 10중량부 이하, 구체적으로는 0. 1 내지 10중량부로 포함될 수 있다. 상용화제의 함량이 10중량부를 초과할 경우, 고분자 수지 조성물의 기계적 물성이 저하될 우려가 있다. 우수한 기계적 물성을 유지하면서도 상용화제 사용에 따른 성형가공성 향상의 개선 효과를 고려할 때, 상기 ( i ) 폴리에스터 수지, ( π ) 폴리카보네이트 수지 및 충격보강제의 총 함량 100 중량부에 대하여 0.5 내지 2중량부로 포함될 수 있다.
또, 상기 산화방지제는 고분자 수지의 황변을 억제하여 고분자 수지 조성물 및 성형품의 외관을 양호하게 하며ᅳ 산화 또는 열분해 되는 것을 억제할 수 있다.
상기 산화방지제는 고분자 수지 조성물에 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로는 힌더드 페놀계 산화방지제, 인계 산화방지제, 포스파이트계 산화방지제 또는 티오에스터계 산화방지제 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. 또, 상기 힌더드 페놀계 산화방지제는 중량평균분자량이 50 내지 300 , 000 g/mo l인 것일 수 있으몌 상기한 중량평균 분자량을 가질 때 보다 우수한 산화방지 효과를 나타낼 수 있다. 상업적으로 입수 가능한 힌더드 페놀계 산화방지제로는 ADEKA사의 A0-60™ 제품을 들 수 있다.
또, 상기 인계 산화방지제로는 BASF사의 Irgafos™ 168 제품을 들 수 있다.
다만, 상기와 같은 산화방지제는 고분자 수지 조성물내 함량이 지나치게 을 높을 경우, 상기 고분자 수지 조성물의 기계적 물성 특히, 내열도 등이 저하될 수 있다. 이에 따라, 산화방지제가 더 포함될 경우, 그 함량은 상기 ( i ) 폴리에스터 수지, ( i i ) 폴리카보네이트 수지 및 ( i i i ) 층격보강제의 총 함량 100중량부에 대하여 0중량부 초과 10중량부 이하일 수 있으며, 기계적 물성의 저하에 대한 우려 없이 산화방지제 투입에 따른 고분자 수지 조성물 및 성형품의 외관 특성 개선 및 산화 또는 열분해 방지 효과를 고려할 때 0. 1 내지 7중량부로 포함될 수 있다.
또, 상기 내가수분해제는 폴리에스터계 수지 말단의 하이드록실기 또는 카르복실기와 엔드캡핑 (endcapping) 반웅하여, 물 또는 산에 의한 수지 조성물의 가수분해를 방지할 뿐만 아니라 내구성도 향상시키는 역할을 한다. 상기 내가수분해제는 카보디이미드계 화합물일 수 있으며, 구체적으로는 변성 페닐카보디이미드, 폴리 (를릴카보디이미드), 폴리 (4,4'- 디페닐메탄카보디이미드), 폴리 (3, 3'-디메틸 -4, 4'바이페닐렌카보디이미드), 폴리 (P—페닐렌카보디이미드) , 폴리 (m-페닐렌카보디이미드) 또는 폴리 (3,3'- 디메틸 _4, 4'-디페닐메탄카보디이미드) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
상기 내가수분해제가 고분자 수지 조성물 내에 더 포함될 경우, 그 함량은 상기 (1) 폴리에스터 수지, (ii) 폴리카보네이트 수지 및 (iii) 층격보강제의 총 함량 100중량부에 대하여 5중량부 이하일 수 있다.
또, 상기 핵제는 고분자 수지 조성물의 내열성 및 사출성형성을 향상시키는 역할을 한다. 구체적인 예로는 탈크 /유기금속염 흔합물, 소르비를계 금속염 , 포스페이트계 금속염, 퀴나크리돈, . 칼슘 카르복실레이트, 몬탄계 금속염, 아마이드계 유기 화합물 또는 탈크 등을 들 수 있으며 , 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. 이중에서도 핵제 사용에 따른 개선 효과의 현저함을 고려할 때 탈크 /유기금속염 흔합물이 사용될 수 있다.
또, 상기 핵제가 고분자 수지 조성물내에 더 포함될 경우, 그 함량은 상기 (i) 폴리에스터 수지, (ii) 폴리카보네이트 수지 및 (iii) 충격보강제의 총 함량 100중량부에 대하여 10중량부 이하일 수 있으며, 보다 구체적으로는 0.1 내지 5중량부일 수 있다.
또, 상기 가소제로는 프탈산 디에틸, 프탈산 디옥틸, 프탈산 디사이클로핵실 등의 프탈산 에스터계 가소제; 아디프산 디 -1-부틸, 아디프산 디 - -옥틸, 세바신산 디 -a—부틸, 아제라인산 디 -2-에틸핵실 등의 지방족 이염기산 에스터계 가소제 ; 인산 .디페닐 -2-에틸핵실 , 인산 디페닐옥틸 등의 인산 에스터계 가소제; 아세틸 구연산 트리부틸, 아세틸 구연산 트리 -2-에틸핵실, 구연산 트리부틸 등의 하이드록시 다가 카르본산 에스터계 가소제; 아세틸 리시놀산 메틸, 스테아린산 아밀 등의 지방산 에스터계 가소제; 글리세린 트리아세테이트 등의 다가 알코올 에스터계 가소제; .에폭시화 콩기름,. 에폭시화 아마니 기름 지방산 부틸 에스터, 에폭시 스테아린산 옥틸 등의 에폭시계 가소제 둥을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
상기 가소제가 고분자 수지 조성물 내에 더 포함될 경우, 그 함량은 상기 (Π 폴리에스터 수지, (ii) 폴리카보네이트 수지 및 (iii) 층격보강제의 총 함량 100중량부에 대하여 10중량부 이하, 보다 구체적으로는 0.1 내지 7중량부로 포함될 수 있다.
또, 상기 착색 안료로는 구체적으로 카본 블랙, 산화 티탄, 산화 아연, 또는 산화철 등의 무기 안료; 또는 시아닌계, 인계, 퀴논계, 페리론계, 이소인돌리논계, 또는 티오인디고계 등의 유기 안료 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
또, 상기 활제로는 구체적으로 금속 스테아레이트계 활제 아마이드계 활제, 파라핀계 활제, 또는 에스터계 활제 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
또, 상기 광안정제로는 구체적으로 할스계 광안정제 등을 들 수 있고, 또 상기 광흡수제로는 벤조트리아졸계 광흡수제 또는 벤조페논계 광흡수제 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
또, 상기" 트랜스에스터화반웅 억제제로는 분자내 적어도 1개 이상의 히드록실 관능기 또는 알킬에스터 관능기를 포함하는, 인 화합물 또는 히드라진 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
또, 상기 커플링제로는 글리시딜 메타크릴레이트계 반복단위를 포함한 화합물 등을 들 수 있다.
상기한 첨가제들은 고분자 수지 조성물의 효과를 저해하지 않는 범위 내에서 고분자 수지 조성물의 용도에 따라 적절히 제어된 함량으로 포함될 수 있으며, 구체적으로는 상기 (i) 폴리에스터 수지, (ii) 폴리카보네이트 수지 및 (in) 충격보강제의 총 함량 100중량부에 대하여 10중량부 이하, 보다 구체적으로는 0.1 내지 7중량부로 포함될 수 있다.
보다 구체적으로, 본 발명의 일 구현예에 따른 고분자 수지 조성물은, 우수한 기계적 물성의 안정적인 발현 및 내열성, 전기절연성, 내충격성의 발란스 좋은 개선 효과를 고려할 때, 상기한 기타. 첨가제 중에서도 상용화제 및 난연제를 상기 ( 1 ) 폴리에스터 수지, ( i i ) 폴리카보네이트 수지 및 ( i i i ) 충격보강제의 총 함량 100중량부에 대하여 각각 10중량부 이하의 함량으로 더 포함할 수 있으며, 상기 난연제는 인계 난연제 및 페놀계 난연제를 2 : 1 내지 1 : 2의 중량비로 포함할 수 있다. 이때 상기 상용화제 및 난연제의 종류는 앞서 설명한 바와 같다.
상기한 조성을 갖는 본 발명의 일 구현예에 따른 고분자 수지 조성물은, 상기 구성성분들을 기재된 최적 함량으로 블렌딩함으로써 제조될 수 있다. 이때, 각 성분들의 블렌딩은 통상적인 방법에 따라 수행될 수 있으며, 필요한 경우 블렌딩 장치가 이용될 수도 있다. '
구체적으로는, 상기 고분자 수지 조성물은 폴리카보네이트 수지, 폴리에스터 수지, 충격보강제 및 선택적으로 1종 이상의 기타 첨가제를 흔합기, 믹서기 또는 텀블러 등에 상기한 함량 조건으로 각각 넣은 후, 이축압출기를 통해 흔합함으로써 제조될 수 .있다.
이때, 상기 고분자 수지 조성물 형성용 수지들은 층분히 건조된 상태에서 사용되는 것이 바람직할 수 있다.
본 발명의 일 구현예에 따른 고분자 수지 조성물은, 상기한 바와 같은 구성 성분 및 함량이 동시에 최적화된 조합 구성을 가짐으로써, 인장강도 등 우수한 기계적 물성을 안정적으로 나타내면서도, 크게 개선된 내열성, 전기절연성 및 내층격성 특히 저온에서의 우수한 내충격성을 구현할 수 있다.
구체적으로, 상기 고분자 수지 조성물은 D638에 따라 측정한 인장강도가 500 kg/crf 이상, 보다 구체적으로는 530kg/cuf 이상 일 수 있다. 또, 상기 고분자 수지 조성물은 ASTM D256 방법에 따라 측정한 상온
23 °C 에서 충격강도가 650 J/m 이상, 보다 구체적으로는 700 J/m 이상이고, 저온 30 °C 에서 충격강도가 600 J/m 이상, 보다 구체적으로는 610 J/m 이상 일 수 있다.
또, 상기 고분자 수지 조성물은 ASTM D 648에 따라 측정한 열변형온도가 100 °C 이상, 보다 구체적으로는 1 C 이상일 수 있다.
또, 상기 고분자 수지 조성물은 IEC 60112에 따라 측정한 절연파괴전압이 600V 이상일 수 있다.
이와 같은, 본 발명의 일 구현예에 따른 고분자 수지 조성물은 다양한 분야에 적용될 수 있으며, 특히 내열성 및 전기절연성과 함께, 내충격성, 특히 저온에서의 우수한 내충격성이 요구되는 각종 전기 /전자 제품 또는 자동차의 컨넥터, 스위치, 릴레이, 잭, IC 소켓, 교류부품, 프레서 센서 또는 하우징류 등에 적용가능하다.
구체적으로, 상기 고분자 수지 조성물은 다양한 성형 방법, 예를 들어 사출, 압출, 압출 블로우, 사출 블로우 또는 프로파일 압출 등의 성형공정 및 이를 이용한 열성형 공정과 같은 후가공 등의 방법을 통하여 성형함으로써, 펠렛 또는 필름 등의 형태로 구현될 수 있다/
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 고분자 수지 조성물을 이용하여 제조한 성형품이 제공될 수 있다.
상기 성형품은 그 적용 용도에 따라서 상기 고분자 수지 조성물을 다양한 성형 방법, 예를 들어 사출, 압출, 압출 블로우, 사출 블로우 및 프로파일' 압출 등의 성형공정 및 이를 이용한 열성형 공정과 같은 후가공 등의 방법을 통하여 성형 함으로서 얻을 수 있다.
또,. 상기 성형품의 구체적인 형상이나 크기는 그 적용 용도에 따라 다양할 수 있으며, 그 예가 크게 한정되는 것은 아니나, 예를 들어 시트, 용기 또는 펠렛 등의 형상을 가질 수 있다.
【발명의 효과】
본 발명에 따른 고분자 수지 조성물은 인장강도 등 우수한 기계적 물성을 안정적으로 나타내면서도, 크게 개선된 내¾성, 전기절연성 및 내충격성, 특히 30°C 저온에서의 우수한 내충격성을 구현할 수 있다. 이에 따라 상기 조성물은 다양한 분야에 적용될 수 있으며, 특히 내열성 및 전기절연성과 함께, 내층격성, 특히 저온에서의 우수한 내충격성이 요구되는 각종 전기 /전자 제품 또는 자동차의 컨넥터, 스위치, 릴레이, 잭, IC 소켓, 교류부품, 프레서 센서 또는 하우징류 등에 유용할 수 있다. 【발명의 실시를 위한 형태】
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<고분자 수지 조성물의 제조 >
이하 실시예 및 비교예에 따른 수지 조성물의 제조시 사용한 각 화합물은 하기와 같다:
폴리에스터 수지 A: 폴리사이클로핵실렌디메틸렌 테레프탈레이트 (PCT)로서, 테레프탈산 (TPA), 이소프탈산 (IPA), 1,4- 사이클로핵산디메탄올 (CHDM) 및 에틸렌글리콜 (EG)을 축합중합한 폴리에스터 (SKYPURA™ 1631, SK케미칼사제, ASTM E 1356에 따른 측정시 유리전이온도 =89 °C, 0-클로로페놀에 용해시킨 후 35°C에서 측정한 점도로부터 환산된 고유 점도 =0.8 dl/g)를 준비하고, 폴리카보네이트 수지와 블렌딩하기 전 10시간 동안 65°C에서 건조시킨후 사용하였다.
폴리에스터 수지 B: 폴리에틸렌테레프탈레이트 (PET) 수지계의 SKYPET-BLTM(SK케미칼사제)를 사용하였다.
폴리에스터 수지 C: 폴리부틸렌테레프탈레이트 (PBT) 수지계의 PBT- 1200™ (Chang Chun Plastics 사제)를 사용하였다.
폴리카보네이트 수지: 용융 유동률 (300°C/1.2kg)이 14g/10분인 4,4- 이소프로필리덴디페놀의 폴리카보네이트 수지 (TRIREX™ 3022PJ , 삼양사제)를 준비하고, 상기 폴리에스터와 블렌딩하기 전에 10시간 동안 125°C에서 건조시킨 후 사용하였다.
층격보강제 A: 코어-쉘 고무 (Core— Shell · Rubber)형태의 아크릴로니트릴—부타디엔-스티렌 (ABS) 그라프트 공중합체 (HR-181TM, 금호석유화학사제)를 사용하였다.
충격보강제 B: 코어-쉘 고무 형태의 알킬메타크릴레이트-디엔계 고무—방향족비닐 (MBS) 그라프트 공중합체 (M-732™, Kaneka사)를 사용하였다. 충격보강제 C: 알킬메타크릴레이트-실리콘 /알킬아크릴레이트 그라프트 공중합체로서, 코어—쉘 고무 형태의 메틸메타크릴레이트- 실리콘 /부틸아크릴레이트 (MBS) 그라프트 공중합체 (S-2001™, Mi t subi shi Rayon사제)를 사용하였다.
층격보강제 D : 포화에틸렌—알킬아크릴레이트-글리시딜 메타크릴레이트 공중합체 (LOTADER™ AX— 8900 , Arkema사제)를 사용하였다. 산화안정제: 페놀계 1차 산화안정제 (A0-60™, ADEKA사제) 및 인계
2차 산화안정제 ( I rgafos 168 , BASF사제)를 사용하였다.
스티렌아크릴로니트릴글리시딜메타크릴레이트 공중합체: SAG— 005™, SUNNY FC사제를 사용하였다.
<고분자 수지 조성물의 제조 >
실시예 1
이축압출기 ( Φ : 40 瞧, L/D = 44)를 사용하여, 폴리카보네이트 수지 65중량 %, 폴리에스터 . 수지 A 25중량 %, 아크릴로니트릴 -부타디엔—스티렌 그라프트 공중합체 (층격보강제 A) 9중량 % 및 포화에틸렌-알킬아크릴레이트- 글리시딜 메타크릴레이트계 공중합체 (층격보강제 D) 1중량 ¾>로 이루어진 수지 흔합물 100중량부에 대해, 페놀계 1차 산화안정제 0.2중량부, 인계 2차 산화안정제 0.2중량부, 및 스티렌아크릴로니트릴글리시딜메타크릴레이트 공중합체 1 .5중량부를 흔합하여 고분자 수지 조성물을.제조한 후, 균일하게 흔련 압출을 진행하여 펠렛을 제조하였다. 제조한 펠렛은 100 °C에서 6시간 동안 건조시켰다. 실시예 2
상기 실시예 1에서의 수지 혼합물 대신에, 폴리카보네이트 수지 65중량 % , 폴리에스터 수지 A 25중량 %, 알킬메타크릴레이트-디엔계 고무- 방향족비닐 그라프트 공중합체 (충격보강제 B) 9중량 % 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 1증량 %로 이루어진 수지 흔합물 100중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 실시예 3
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 65증량 % , 폴리에스터 수지 A 25중량 %, 알킬메타크릴레이트- 실리콘 /알킬아크릴레이트 그라프트 공중합체 (충격보강제 C) 9중량 % 및 포화에틸렌—알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 1중량 %로 이루어진 수지 흔합물 100중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 실시예 4
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 65중량 폴리에스터 수지 A 25중량 %, 불포화니트릴-디엔계 고무ᅳ 방향족비닐 그라프트 공중합체 (층격보강제 A) 1중량 % 및 포화에틸렌- 알킬아크릴레이트ᅳ글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 9중량 %로 이루어진 수지 흔합물 100중량부를 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠랫을 제조하였다. 실시예 5
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지
65중량 %, 폴리에스터 수지 A 25중량 % , 알킬메타크릴레이트-디엔계 고무- 방향족 비닐 그라프트 공중합체 (충격보강제 B) 4중량 % 및 포화에틸렌一 알킬아크릴레이트—글리시딜 메타크릴레이트계 공중합체 (층격보강제 D) 6중량 %로 이루어진 수지 흔합물 100중량부를 사용한 것올 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 실시예 6
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 주지 80중량 %, 폴리에스터 수지 A 10중량 % , 알킬메타크릴레이트-디엔계 고무一 방향족 비닐 그라프트 공중합체 (층격보강제 B) 5중량 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 5중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛올 제조하였다. 실시예 7
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 45 중량 %, 폴리에스터 수지 A 45 중량 %ᅳ 알킬쩨타크릴레이트-디엔계 고무- 방향족 비닐 그라프트 공중합체 (층격보강제 B) 5중량 % 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 5중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠¾을 제조하였다. 비교예 1
상기 실시예 1에서의 수지 혼합물 대신에, 폴리카보네이트 수지 65중량 %, 폴리에스터 수지 B 25중량 %, 알킬메타크릴레이트ᅳ디엔계 고무- 방향족 비닐 그라프트 공중합체 (충격보강제 B) 5중량 % 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 5중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 비교예 2
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 65중량 %, 폴리에스터 수지 C 25중량 %, 알킬메타크릴레이트-디엔계 고무- 방향족 비닐 그라프트 공중합체 (층격보강제 B) 5중량 % 및 포화에틸렌 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 5중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 비교예 3
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 65중량 %, 폴리에스터 수지 A 25중량 %, 알킬메타크릴레이트一 실리콘 /알킬아크릴레이트 그라프트 공중합체 (충격보강제 C) 10중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 비교예 4
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지
65중량 % , 폴리에스터 수지 A 25중량 ¾ 및 포화에틸렌-알킬아크릴레이트- 글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 10중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 비교예 5
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 69중량 폴리에스터 수지 A 29중량 %, 불포화니트릴—디엔계 고무- 방향족비닐 그라프트 공중합체 (충격보강제 A) 1중량 % 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 1중량 %로 이루어진 수지 흔합물 100중량부를 사용한 것을 제외하고는, 상기 실시여 U에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다. 비교예 6
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 49중량 %, 폴리에스터 수지 A 21중량 알킬메타크릴레이트—디엔계 고무- 방향족 비닐 그라프트 공중합체 (충격보강제 B) 15중량 ¾ 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 15중량 %로 이루어진 수지 흔합물 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠뻣을 제조하였다. 비교예 7
상기 실시예 1에서의 수지 흔합물 대신에, 폴리카보네이트 수지 85중량 %, 폴리에스터 수지 A 5중량 알킬메타크릴레이트-디엔계 고무- 방향족 비닐 그라프트 공중합체 (충격보강제 B) 5중량 % 및 포화에틸렌一 알킬아크릴레이트—글리시딜 메타크릴레이트계 공증합체 (층격보강제 D) 5중량 %로 이루어진 수지 흔합물 100중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠¾을 제조하였다. 비교예 8
상기 실시예 1에서의 수지 흔합물 대신에 폴리카보네이트 수지 5중량 %, 폴리에스터 수지 A 85중량 , 알킬메타크릴레이트-디엔계 고무- 방향족 비닐 그라프트 공중합체 (층격보강제 B) 5중량 % 및 포화에틸렌- 알킬아크릴레이트-글리시딜 메타크릴레이트계 공중합체 (충격보강제 D) 5중량 %로 이루어진 수지 흔합물 100중량부를 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고분자 수지 조성물 및 이를 이용한 펠렛을 제조하였다.
<실험예 : 고분자수지 조성물의 물성 측정 > 상기 실시예 1 내지 7, 및 비교예 1 내지 8에서 제조한 펠렛을 각각 사출기를 이용하여 사출온도 285°C에서 동일하게 사출한 후, 사출된 시험편을 23土 2°C, 50土 5% 상대습도 조건 하에서 상태 조절을 하고, 하기와 같은 방법으로 각각의 물성을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
1) 인장강도: ASTM D 638 에 의거하여 측정용 시편을 만들고, 만능재료시험기 (Universal Testing Machine, Zwick Roe 11 Z010)를 이용하여 인장강도를 측정하였다.
2) 충격강도: 23 °C 및 -30 °C 온도 하에서 ASTM D256 방법에 의하여 Izod notched type으로 각각 측정하였으며, 이때 시편의 두께는 1/8' '로 하였다.
3) 내열성 : ASTM D 648 에 의거하여 측정용 시편을 만들고, 열변형 온도 (heat deflection. temperature, HOT) 시험기 (HDT Tester, Toyoseiki사제)를 이용하여 열변형 온도를 측정하였다.
4) CTI 측정: IEC 60112 에 의거하여, 측정용 시편을 만들어 절연파괴지수 (Comparative Tracking Index, CTI) 시험기를 이용하여 절연파괴전압을 측정하였다.
【표 1】
Figure imgf000027_0001
상기 표 1에 나타난 바와 같이, 실시예 1 내지 7의 경우, 폴리에스터 수지와 폴리카보네이트 수지의 블렌드에서 두 수지의 함량비와 함께 층격보강제의 종류와 함량에 따라 상온 23 °C에서 650 J/m 이상, 보다 구체적으로는 700 J/m 이상의 충격강도와, 저온 -30 °C에서 600 J/m 이상, 보다 구체적으로는 610 J/m 이상의 높은 충격강도를 구현할 수 있었다. 더불어 600V의 절연파괴전압과 100 °C 이상의 열변형온도를 나타내었다. 반면, 폴리사이클로핵실렌디메틸렌 테레프탈레이트 (PCT) 수지 대신에 폴리에틸렌테레프탈레이트 (PET) 수지 또는 폴리부틸렌테레프탈레이트 (PBT) 수지를 사용한 비교예 1 및 2의 경우, 500V 이하의 절연파괴전압과 ioo°c 이하의 열변형온도를 나타내었다. 상기 실시예 1 내지 7과, 비교예 1 및 2의 결과로부터 폴리에스터 수지 내 1 , 4- 사이클로핵산디메탄올 유래 반복단위를 포함할 경우, 전기절연성 및 내열성이 개선될 수 있음을 확인할 수 있다.
또, 폴리에스터 수지와 폴리카보네이트 수지의 . 블렌드에서 충격보강제 C 및 D중 어느 하나만을 10중량 % 사용한 비교예 3 내지 4의 경우, 저온 30 °C에서 충격강도가 600 J/m 이하로 크게 낮아졌으며, 충격보강제 A 와 D를 각각 1중량 %씩 흔합사용한 비교예 5의 경우에도, 저온 -30°C에서 충격강도가 130 J/m로 크게 .낮아졌다. 반면 충격보강제 B 와 D를 각각 15중량 %씩 흔합사용한 비교예 6의 경우, 상온과 저온 -3CTC에서 충격강도가 각각 500 J/m 정도로 나타났다. 상기 실시예 1 내지 7과, 비교예 3 내지 6의 결과로부터 층격보강제의 종류 및 그 흔합비 제어를 통해 저온에서의 충격강도 특성이 더욱 개선될 수 있음을 확인할 수 있다. 또, 폴리에스터 수지와 폴리카보네이트 수지의 블렌드에서 두 수지의 흔합 함량비가 5 : 85로, 폴리카보네이트 수지의 함량이 지나치게 높은 비교예 7의 경우 CTI 값이 350V로 크게 낮아졌고, 또 두 수지의 함량비가 85 : 5으로, 폴리에스터 수지의 함량이 지나치게 높은 비교예 8의 경우, 인장강도 및 상온에서의 층격강도가 저하되었을 뿐만아니라, 저온 - 30 °C에서의 충격강도가 310 J/m로, 그리고 열변형온도가 98 °C로 크게 저하되었다. 이에 반해 본 발명에서 한점하고 있는 폴리카보네이트 및 폴리에스터 수지의 최적 함량범위 조건을 충족하는 실시예 6의 경우, 상기 비교예 7 및 8에 비해 보다 우수한 내열성, 전기절연성 및 내층격성을 나타내었다.
상기한 결과로부터, 실시예의 고분자 수지 조성물은 비교예에 비하여 우수한 내열성과 전기절연성 및 기계적 특성을 나타내면서도 내충격성 특히 저온에서 현저히 개선된 내충격성을 나타냄을 알 수 있다ᅳ
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims

【청구범위】
【청구항 11
(i) 테레프탈산을 포함하는 디카르복실산 유래 반복단위와, 1,4- 사이클로핵산디메탄올을 포함하는 디올 유래 반복단위를 포함하는 폴리에스터 수지 10 내지 80중량 %; '
(ii) 폴리카보네이트 수지 10 내지 80중량 %; 및
(iii) 충격보강제 5 내지 20중량 %를 포함하며,
상기 (iii) 층격보강제는 글리시딜 메타크릴레이트 유래 반복단위를 포함하는 반응성 고무, 및 미반응성 고무를 1:9 내지 9:1의 중량비로 포함하는, 고분자 수지 조성물.
【청구항 2]
제 1항에 있어서,
상기 디올 유래 반복단위는 1,4-사이클로핵산디메탄을 유래 구조단위를 디올 유래 반복단위 100몰%에 대하여 5 내지 100몰%로 포함하는, 고분자 수지 조성물.
【청구항 3】
제 1항에 있어서, .
상기 디을 유래 반복단위는, 에틸렌 글리콜, 디에틸렌 글리콜, 1,
4- 부탄디올, 1,3-프로판디올 및 네오펜틸 글리콜로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물 유래 반복단위를 더 포함하는, 고분자 수지 조성물. 【청구항 4】
게 1항에 있어서,
상기 디카르복실산 유래 반복단위는 디카르복실산 유래 반복단위 100몰%에 대하여 테레프탈산 유래 반복단위 80 내지 100몰%로 포함하는, 고분자 수지 조성물.
【청구항 5】
제 1항에 있어서,
상기 디카르복실산 유래 반복단위는, 테레프탈산을 제외한 탄소수 8 내지 . 20의 방향족 디카르복실산 및 탄소수 4 내지 20의 지방족 디카르복실산으로 이루어진 군으로부터 선택되는 1종 이상의 디카르복실산 유래 반복단위를 더 포함하는, 고분자 수지 조성물.
【청구항 6]
제 1항에 있어서,
상기 디카르복실산 유래 반복단위는 디카르복실산 유래 반복단위 100몰%에 대하여 테레프탈산 유래 반복단위 80 내지 100몰% 및 이소프탈산 0 내지 20몰%를 포함하고,
상기 디올 유래 반복단위는 디올 유래 반복단위 100몰%에 대하여 1 , 4—사이클로핵산디메탄올 유래 반복단위 99 내지 100몰¾ 및 에틸렌글리콜 0 내지 1몰%를 포함하는, 고분자 수지 조성물.
【청구항 7】
제 1항에 있어서,
상기 폴리에스터 수지는 으클로로페놀에 용해시킨 후 35°C에서 측정한 점도로부터 환산한 고유 점도가 0.65 내지 0.85dl /g이고, 유리전이온도가 0 내지 200 °C인, 고분자 수자 조성물.
【청구항 8]
게 1항에 있어서,
상기 플리에스터 수지는 폴리카보네이트 수지 100중량부에 대하여 5 내지 100중량부로 포함되는, 고분자 수지 조성물.
【청구항 9】 제 1항에 있어서,
상기 폴리카보네이트 수지는 4 , 4—이소프로필리덴디페놀 유래 반복단위를 포함하며, 용융 유동율 (3CX C 및 1 .2kg 하중 하 측정)이 10 내지 50 g/10분인, 고분자 수지 조성물.
【청구항 10]
거 U항에 있어서,
상기 미반응성 고무는 불포화니트릴—디엔계 고무 -방향족비닐 그라프트 공중합체, 알킬메타크릴레이트-디엔계 고무 -방향족비닐 그라프트 공중합체 및 알킬메타크릴레이트-실리콘 /알킬아크릴레이트 그라프트 공중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물을 포함하는, 고분자 수지 조성물.
【청구항 11】
제 1항에 있어서, '
.상기 미반응성 고무는 코어-쉘 구조를 갖는, 고분자 수지 조성물.
【청구항 12】
제 1항에 있어서,
상기 미반웅성 고무는 아크릴로니트릴 -부타디엔ᅳ스티렌 그라프트 공중합체, 메틸메타크릴레이트—부타디엔-스티렌 그라프트 공중합체, 및 메틸메타크릴레이트-실리콘 /부틸아크릴레이트 그라프트 공중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물을 포함하는, 고분자 수지 조성물.
【청구항 13]
제 1항에 있어서,
상기 반응성 고무는 포화에틸렌-알킬아크릴레이트-글리시딜 메타크릴레이트 공중합체를 포함하는, 고분자 수지 조성물.
【청구항 14】
제 1항에 있어서,
상기 층격보강제는 폴리카보네이트 수지' 100중량부에 대하여 5 내지 30중량부로 포함되는, 고분자 수지 조성물.
【청구항 15】
제 1항에 있어서,
상용화제, 산화방지제, 내가수분해제, 핵제, 가소제, 착색 안료, 활제 , 광안정제 , 트랜스에스터화반응 억제제 , 커플링제, 필러, 무기 또는 유기 입자ᅳ 사슬 연장제, 자외선 안정제, 착색 방지제, 무광택제, 탈취제, 난연제, 내후성첨가제, 대전방지제, 이형제, 이온 교환제, 및 광흡수제로 이루어진 군에서 선택되는 1종 이상의 첨가제를 더 포함하는, 고분자 수지 조성물.
【청구항 16】
제 15항에 있어서,
상기 상용화제는 불포화니트릴 -방향족비닐 공중합체, 불포화니트릴- 방향족비닐-글리시딜 (메타)아크릴레이트 공중합체, 불포화니트릴一 방향족비닐-말레산무수물 공중합체, 포화에틸렌-알킬아크릴레이트-글리시딜 메타크릴레이트 공중합체, 글리시딜 (메타)아크릴레이트가 그라프트된 비닐계 공중합체, 할로겐이 치환된 비닐계 공중합체, 방향족비닐-방향족 말레이미드-말레산 무수물 공중합체, 방향족비닐—불포화니트릴-방향족 말레이미드 공중합체, 방향족비닐 - α—메틸 방향족비닐 공중합체 및 방향족비닐-불포화니트릴— α -메틸 방향족비닐 공중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물을 포함하는, 고분자 수지 조성물.
【청구항 17】 제 1항에 있어서,
상용화제 및 난연제를 상기 ) 폴리에스터 수지, (Π) 폴리카보네이트 수지 및 (iii) 충격보강제의 총 함량 100 중량부에 대하여 각각 0 중량부 초과 10 중량부 이하의 함량으로 더 포함하며 ,
상기 난연제는 인계 난연제 및 페놀계 난연제를 2:1 내지 1:2의 중량비로 포함하는, 고분자 수지 조성물.
【청구항 18】
제 1항에 있어서,
ASTM D256 방법에 따라 측정한 상온 23°C에서의 충격강도가 650 J/m 이상이고, 저온 30°C에서의 충격강도가 600 J/m 이상이며, IEC 60112 에 따라 측정한 절연파괴전압이 600V 이상이고, ASTM D 648 에 따라 측정한 열변형온도가 100°C 이상인, 고분자 수지 조성물.
【청구항 19】
제 1항 내지 제 18항 중 어느 한 항에 따른 고분자 수지 조성물을 포함하는 성형품.
【청구항 20]
제 19항에 있어서,
상기 성형품은 자동차 부품 또는 전기전자 제품인, 성형품.
PCT/KR2018/004206 2017-04-20 2018-04-10 고분자 수지 조성물 WO2018194310A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170051261A KR102290294B1 (ko) 2017-04-20 2017-04-20 고분자 수지 조성물
KR10-2017-0051261 2017-04-20

Publications (2)

Publication Number Publication Date
WO2018194310A2 true WO2018194310A2 (ko) 2018-10-25
WO2018194310A3 WO2018194310A3 (ko) 2019-01-03

Family

ID=63855907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004206 WO2018194310A2 (ko) 2017-04-20 2018-04-10 고분자 수지 조성물

Country Status (2)

Country Link
KR (1) KR102290294B1 (ko)
WO (1) WO2018194310A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388201A (zh) * 2021-06-29 2021-09-14 上海朗杜新材料有限公司 一种高光泽、免喷涂pp/pe复合材料及其制备方法
CN117887238A (zh) * 2024-01-17 2024-04-16 山东富饶新材料科技有限公司 一种改性pc塑料及其制备工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102340102B1 (ko) * 2018-12-31 2021-12-15 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품
KR102187340B1 (ko) * 2020-04-16 2020-12-07 (주)도일에코텍 투명도와 유연성이 우수한 필름제조용 생분해성 수지 조성물
US20230383054A1 (en) * 2021-09-30 2023-11-30 Lg Chem, Ltd. Thermoplastic resin and molded article manufactured using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981661A (en) * 1997-08-29 1999-11-09 General Electric Company Modified weatherable thermoplastic resin molding compositions and articles molded therefrom
US7655737B2 (en) * 2006-11-16 2010-02-02 Sabic Innovative Plastics Ip B.V. Polycarbonate-polyester blends, methods of manufacture, and methods of use
KR101174089B1 (ko) * 2009-06-12 2012-08-14 제일모직주식회사 폴리에스테르/폴리카보네이트 얼로이 수지 조성물 및 이를 이용한 성형품
EP2554597B1 (en) * 2011-08-02 2014-12-31 Styron Europe GmbH Chemical resistant and fire retardant polycarbonate polyester composition
KR102119444B1 (ko) * 2014-10-31 2020-06-16 에스케이케미칼 주식회사 센터페시아용 내화학성 고분자 수지 조성물
KR20160075207A (ko) * 2014-12-19 2016-06-29 에스케이케미칼주식회사 난연성이 우수한 고분자 수지 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388201A (zh) * 2021-06-29 2021-09-14 上海朗杜新材料有限公司 一种高光泽、免喷涂pp/pe复合材料及其制备方法
CN117887238A (zh) * 2024-01-17 2024-04-16 山东富饶新材料科技有限公司 一种改性pc塑料及其制备工艺

Also Published As

Publication number Publication date
KR102290294B1 (ko) 2021-08-13
WO2018194310A3 (ko) 2019-01-03
KR20180117990A (ko) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2018194310A2 (ko) 고분자 수지 조성물
JP6378211B2 (ja) 耐衝撃性または耐熱性に優れた高分子樹脂組成物
US10287434B2 (en) Polymer resin composition having excellent chemical resistance
US11339274B2 (en) Resin composition and resin molded article
KR101233373B1 (ko) 폴리유산 수지 조성물
WO2008082138A1 (en) Thermoplastic resin composition having improved impact resistance
EP3290478B1 (en) Thermoplastic resin composition, and electronic device housing comprising same
CN105566877B (zh) 用于车辆顶置控制台的耐化学性聚合树脂组合物
US20220356344A1 (en) Thermoplastic Resin Composition and Molded Product Using Same
KR20160051040A (ko) 센터페시아용 내화학성 고분자 수지 조성물
US10087324B2 (en) Parts for automobiles, electrical/electronic devices, home appliances, office equipment, or daily necessities
CN106893149B (zh) 树脂组合物和树脂成型体
WO2014208958A1 (ko) 자동차, 전기전자기기, 가전기기, 사무기기 또는 생활용품용 부품
KR20190080603A (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
CN109641993B (zh) 环氧改性乙烯基系共聚物、包含该共聚物的热塑性树脂组合物及其成型品
JP5625720B2 (ja) 複合ポリ乳酸系熱可塑性樹脂組成物およびその成形品
JP5434177B2 (ja) 成形性の優れた樹脂組成物
KR20160057558A (ko) 자동차 내장용 내화학성 폴리실록산-폴리카보네이트 수지조성물 및 이를 포함하는 성형품
KR20180040458A (ko) 내크립성이 우수한 고분자 얼로이 수지 조성물
KR20180067291A (ko) 고분자 수지 조성물 및 그 성형품
JPH09137036A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788456

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788456

Country of ref document: EP

Kind code of ref document: A2