WO2018193853A1 - リアクトル - Google Patents

リアクトル Download PDF

Info

Publication number
WO2018193853A1
WO2018193853A1 PCT/JP2018/014468 JP2018014468W WO2018193853A1 WO 2018193853 A1 WO2018193853 A1 WO 2018193853A1 JP 2018014468 W JP2018014468 W JP 2018014468W WO 2018193853 A1 WO2018193853 A1 WO 2018193853A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
resin
coil
end surface
core
Prior art date
Application number
PCT/JP2018/014468
Other languages
English (en)
French (fr)
Inventor
平林 辰雄
誠二 舌間
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201880023798.8A priority Critical patent/CN110494940B/zh
Priority to US16/603,383 priority patent/US11495388B2/en
Publication of WO2018193853A1 publication Critical patent/WO2018193853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating

Definitions

  • the present invention relates to a reactor.
  • This application claims priority based on Japanese Patent Application No. 2017-082393 filed on Apr. 18, 2017, and incorporates all the contents described in the aforementioned Japanese application.
  • Reactor is one of the circuit components that perform voltage step-up and step-down operations.
  • a coil having a winding part, a magnetic core disposed inside and outside the coil (winding part) to form a closed magnetic path, and interposed between the coil (winding part) and the magnetic core
  • a reactor including an insulating interposed member is disclosed.
  • the coil has a pair of winding parts arranged in parallel, and each winding part is formed in a rectangular tube shape.
  • the magnetic core is formed in an annular shape with an inner core portion disposed inside the winding portion and an outer core portion disposed outside the winding portion.
  • the insulating interposed member includes an inner interposed member interposed between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion, and an end surface interposed between the end surface of the winding portion and the outer core portion. It is comprised with the member.
  • the reactor of patent document 1 is provided with the inner side resin part with which it fills between the inner peripheral surface of the winding part of a coil, and the outer peripheral surface of an inner core part.
  • the reactor described in Patent Document 1 by arranging an inner interposed member between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion, the reactor is disposed between the winding portion and the inner core portion. A gap (resin channel) is secured. And the inner resin part is formed by filling resin into the gap between the winding part and the inner core part from the end face side of the winding part via the resin filling hole formed in the end face interposed member.
  • the reactor according to the present disclosure is A reactor comprising a coil and an annular magnetic core disposed inside and outside the coil,
  • the coil has two winding portions arranged side by side with each other,
  • the magnetic core includes two inner core portions disposed inside the winding portion and two outer core portions that are disposed outside the winding portion and connect ends of the inner core portions.
  • An inner resin portion filled between the inner peripheral surface of the wound portion and the inner core portion;
  • An end surface interposed member interposed between the end surface of the wound portion and the outer core portion;
  • a spacer piece formed integrally with the end surface interposed member and interposed over the entire area between the mutually opposing inner side surfaces of the winding portions.
  • FIG. 1 is a schematic perspective view of a reactor according to a first embodiment.
  • 1 is a schematic top view of a reactor according to a first embodiment. It is a schematic perspective view of the union body with which the reactor which concerns on Embodiment 1 is equipped.
  • FIG. 4 is a schematic cross-sectional view taken along line (IV)-(IV) shown in FIG.
  • FIG. 2 is a schematic cross-sectional view taken along line (V)-(V) shown in FIG.
  • It is the schematic front view which looked at the end surface interposed member with which the reactor which concerns on Embodiment 1 is equipped from the front side.
  • It is a schematic cross-sectional view which shows the modification of a spacer piece.
  • a reactor including a coil having two winding portions as described above and an annular magnetic core disposed inside and outside the coil (winding portion), the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion When the inner resin part is formed by filling the resin between the two, the winding part may be deformed.
  • the resin forming the inner resin portion is filled by applying pressure to the resin by injection molding, but the resin is sufficiently distributed in a narrow gap between the inner peripheral surface of the winding portion and the outer peripheral surface of the inner core portion. Therefore, it is necessary to apply high pressure. Therefore, the winding part may be deformed so as to bulge outward due to the pressure of the resin, and in some cases, the winding parts (specifically, the inner side surfaces of the two winding parts facing each other). Can come into contact. When the winding parts come into contact with each other, there is a possibility that electrical insulation between the winding parts cannot be secured.
  • the winding portion is arranged so that the end surface shape of the winding portion is a rectangular shape and the long side of the end surface shape is the inner surface, the deformation is increased on the inner surface, and the winding portions Contact is likely to occur.
  • the present disclosure suppresses deformation of the winding portion when forming the inner resin portion by filling the resin between the inner peripheral surface of the winding portion of the coil and the inner core portion of the magnetic core.
  • One of the purposes is to provide a reactor that can avoid contact between turning parts.
  • the reactor according to the present disclosure suppresses deformation of the winding portion when filling the resin between the inner peripheral surface of the winding portion of the coil and the inner core portion of the magnetic core to form the inner resin portion. Contact between turning parts can be avoided.
  • a reactor according to an aspect of the present invention is: A reactor comprising a coil and an annular magnetic core disposed inside and outside the coil, The coil has two winding portions arranged side by side with each other, The magnetic core includes two inner core portions disposed inside the winding portion and two outer core portions that are disposed outside the winding portion and connect ends of the inner core portions. And An inner resin portion filled between the inner peripheral surface of the wound portion and the inner core portion; An end surface interposed member interposed between the end surface of the wound portion and the outer core portion; A spacer piece formed integrally with the end surface interposed member and interposed over the entire area between the mutually opposing inner side surfaces of the winding portions.
  • the spacer piece when filling the resin between the inner peripheral surface of the winding part and the inner core part to form the inner resin part, the pressure of the winding part of the winding part is increased. It can suppress that an inner surface deform
  • the spacer piece is interposed between the winding portions, electrical insulation between the winding portions can be secured by the spacer piece.
  • interposing the spacer piece over the entire area between the mutually facing inner side surfaces of both winding parts it is possible to suppress deformation over the entire inner side surface, and contact between the winding parts due to deformation of the winding part. Can be avoided.
  • “Intervened over the entire area between the inner side surfaces” means that the entire inner side surfaces of both winding parts are opposed to each other, and the entire inner side surface (full length and total height) is between the winding parts. It means that it is provided in contact.
  • a part of the inner side surface may be deformed at a place where it does not contact the spacer piece, thereby avoiding contact between the inner side surfaces. It may not be possible.
  • the workability can be improved because the spacer piece is formed integrally with the end surface interposed member.
  • a plate-like shape is provided between the winding parts. It is conceivable to fill the resin by arranging the spacers. However, in this case, it is necessary to dispose the spacers separately or to extract the spacers after filling and molding the resin. Moreover, there is a possibility that the insulating coating of the winding forming the winding portion is damaged when the spacer is forgotten to be removed or when the spacer is removed. In the reactor, since the spacer piece is integrally formed with the end surface interposed member, it is not necessary to separately arrange or remove the spacer, and there is little possibility of damaging the inner surface of the winding portion.
  • the height in the vertical direction of the spacer piece is larger than the height of the inner side surface of the winding part, and the upper end portion and the lower end portion of the spacer piece protrude from the inner side surface. It is mentioned.
  • the upper and lower end portions of the spacer piece protrude in the vertical direction from the inner side surface, so that the creeping distance between the winding portions can be secured and the electrical insulation between the winding portions can be enhanced.
  • the winding portion is arranged such that an end surface shape viewed from the axial direction is a rectangular shape, and a long side of the end surface shape is the inner side surface. .
  • the end surface shape of the winding part is rectangular, the surface on the long side of the end surface of the outer periphery of the winding part is more easily deformed by the pressure of the resin than the surface on the short side. Therefore, when the winding portion is arranged so that the long side of the end face shape is the inner surface, the inner surface is likely to be deformed, and the winding portions are likely to contact each other. According to the reactor, when the winding portion is arranged so that the long side of the end face shape becomes the inner side surface, the deformation of the inner side surface of the winding portion can be suppressed by the spacer piece, so that the effect is great.
  • the reactor 1 of Embodiment 1 includes a coil 2 having two winding portions 2c, a magnetic core 3 disposed inside and outside the winding portion 2c, and an end surface interposed member 52.
  • a combination 10 with the insulating interposed member 5 is provided. Both winding parts 2c are arranged side by side.
  • the magnetic core 3 includes two inner core portions 31 disposed on the inner side of the winding portion 2c and two outer cores disposed on the outer side of the winding portion 2c and connecting the ends of the inner core portions 31 to each other. Part 32.
  • the reactor 1 is provided with the inner side resin part 41 (mold resin part 4) with which it fills between the internal peripheral surface of the winding part 2c, and the inner core part 31, as shown in FIG. 4, FIG.
  • One of the features of the reactor 1 is that it includes a spacer piece 55 interposed between the mutually facing inner side surfaces of the two winding portions 2c.
  • the reactor 1 is installed on an installation target (not shown) such as a converter case, for example.
  • the lower side in FIG. 1 and FIG. 4 is the installation side facing the installation target, the installation side is “lower”, and the opposite side is “up”.
  • the vertical direction is the height direction.
  • the direction in which the winding portions 2c (inner core portion 31) are arranged is the horizontal direction, and the direction along the axial direction of the winding portion 2c (inner core portion 31) (the paper surface in FIG. 2).
  • the vertical direction is the length direction.
  • FIG. 4 is a cross-sectional view cut in a transverse direction perpendicular to the length direction of the winding portion 2c
  • FIG. 5 is a plan cross-sectional view cut along a plane that divides the winding portion 2c up and down.
  • the coil 2 has two winding portions 2c each formed by spirally winding two windings 2w, and each winding forming both winding portions 2c.
  • One ends of the line 2 w are connected to each other through the joint 20.
  • Both winding portions 2c are arranged side by side (in parallel) so that their axial directions are parallel to each other.
  • the joining portion 20 is formed by joining one end portions of the winding 2w drawn from each winding portion 2c by a joining method such as welding, soldering, or brazing.
  • the other end of the winding 2w is pulled out from each winding portion 2c in an appropriate direction (upward in this example), and a terminal fitting (not shown) is appropriately attached to the external device (not shown) such as a power source. )).
  • the coil 2 can use a well-known thing, for example, the both winding parts 2c may be formed by one continuous winding.
  • Both winding portions 2c are composed of the windings 2w having the same specifications, have the same shape, size, winding direction, and number of turns, and adjacent turns forming the winding portion 2c are in close contact with each other.
  • the winding 2w is, for example, a coated wire (so-called enameled wire) having a conductor (copper or the like) and an insulating coating (polyamideimide or the like) on the outer periphery of the conductor.
  • the winding portion 2c is a square cylindrical (specifically, rectangular cylindrical) edgewise coil obtained by edgewise winding the winding 2w of the coated rectangular wire, and the winding portion 2c viewed from the axial direction.
  • the end face shape is a rectangular shape with rounded corners (see also FIG. 4).
  • the outer peripheral surface of the winding portion 2 c has four planes (upper surface, lower surface and two side surfaces) and four corners, and the two winding portions 2 c out of the two side surfaces.
  • the side surfaces facing each other are defined as the inner side surface, and the side surface located on the opposite side is defined as the outer surface.
  • the winding portion 2c is arranged so that the pair of short sides of the end face shape are the upper surface and the lower surface, and the pair of long sides are the inner surface and the outer surface.
  • the shape of the winding part 2c is not particularly limited, and may be, for example, a long cylindrical shape (race track shape).
  • the height of the inner side surface of the winding part 2c (the length of the long side of the end face shape, excluding the corners) is, for example, 30 mm or more and 100 mm or less, and the interval between the winding parts 2c (space distance between the inner side surfaces) is For example, it is mentioned that they are 1 mm or more and 5 mm or less.
  • the coil 2 (the winding part 2c) is not covered with a mold resin part 4 to be described later, and when the reactor 1 is configured, the outer peripheral surface of the coil 2 is exposed as shown in FIG. become. Therefore, heat can be easily radiated from the coil 2 to the outside, and the heat dissipation of the coil 2 can be enhanced.
  • the coil 2 may be a molded coil molded with a resin having electrical insulation.
  • the coil 2 can be protected from the external environment (such as dust and corrosion), and the mechanical strength and electrical insulation of the coil 2 can be increased.
  • the electrical insulation between the winding part 2c and the inner core part 31 can be improved because the inner peripheral surface of the winding part 2c is covered with resin.
  • the resin for molding the coil 2 include thermosetting resins such as epoxy resins, unsaturated polyester resins, urethane resins, and silicone resins, polyphenylene sulfide (PPS) resins, polytetrafluoroethylene (PTFE) resins, and liquid crystal polymers.
  • Thermoplastic resins such as (LCP), polyamide (PA) resin such as nylon 6 and nylon 66, polyimide (PI) resin, polybutylene terephthalate (PBT) resin, acrylonitrile butadiene styrene (ABS) resin, and the like can be used.
  • LCP polyamide
  • PA polyamide
  • PI polyimide
  • PBT polybutylene terephthalate
  • ABS acrylonitrile butadiene styrene
  • the coil 2 may be a heat fusion coil in which a fusion layer is provided between adjacent turns forming the winding portion 2c, and the adjacent turns are thermally fused. In this case, adjacent turns can be brought into closer contact with each other.
  • the magnetic core 3 includes two inner core portions 31 disposed inside the winding portion 2c and two outer cores disposed outside the winding portion 2c.
  • the inner core portion 31 is a portion where the coil 2 is disposed, positioned inside the winding portions 2c arranged side by side. That is, both the inner core parts 31 are arrange
  • the inner core portion 31 may have a part of the end portion in the axial direction protruding from the winding portion 2c.
  • the outer core part 32 is a part which is located outside the winding part 2c and where the coil 2 is not substantially disposed (that is, protrudes (exposes) from the winding part 2c).
  • the outer core portion 32 is provided so as to connect the end portions of the inner core portions 31 to each other.
  • the outer core portions 32 are disposed so as to sandwich the inner core portion 31 from both ends, and the end surfaces of both inner core portions 31 are connected to the inner end surface 32e of the outer core portion 32 so as to face each other.
  • An annular magnetic core 3 is configured. In the magnetic core 3, when the coil 2 is energized and excited, a magnetic flux flows and a closed magnetic path is formed.
  • the shape of the inner core portion 31 is a shape corresponding to the inner peripheral surface of the winding portion 2c.
  • the inner core portion 31 is formed in a quadrangular prism shape (rectangular column shape), and the end surface shape of the inner core portion 31 viewed from the axial direction is a rectangular shape with chamfered corner portions (see also FIG. 4).
  • the outer peripheral surface of the inner core portion 31 has four planes (upper surface, lower surface, and two side surfaces) and four corners.
  • the inner core part 31 has the some inner core piece 31m, and the inner core piece 31m is comprised in the length direction, and is comprised. .
  • the inner core portion 31 is formed of a material containing a soft magnetic material.
  • the inner core piece 31m is formed by compression molding, for example, soft magnetic powder such as iron or an iron alloy (Fe-Si alloy, Fe-Si-Al alloy, Fe-Ni alloy, etc.) or a coated soft magnetic powder having an insulating coating. It is formed of a powder compact or a composite material compact including soft magnetic powder and resin.
  • a thermosetting resin, a thermoplastic resin, a room temperature curable resin, a low temperature curable resin, or the like can be used.
  • the thermosetting resin include unsaturated polyester resin, epoxy resin, urethane resin, and silicone resin.
  • thermoplastic resin examples include PPS resin, PTFE resin, LCP, PA resin, PI resin, PBT resin, and ABS resin.
  • BMC Bulk molding compound in which calcium carbonate or glass fiber is mixed with unsaturated polyester, millable silicone rubber, millable urethane rubber, or the like can also be used.
  • the inner core piece 31m is formed of a green compact.
  • the outer core portion 32 is composed of one core piece.
  • the outer core portion 32 is formed of a material containing a soft magnetic material, similarly to the inner core piece 31m, and the above-described powder compact or composite material can be used.
  • the outer core portion 32 is formed of a green compact.
  • the insulating interposition member 5 is interposed between the coil 2 (winding portion 2 c) and the magnetic core 3 (inner core portion 31 and outer core portion 32), and provides electrical insulation between the coil 2 and the magnetic core 3.
  • This is a member to be secured, and has an inner interposed member 51 and an end surface interposed member 52.
  • the insulating interposing member 5 (the inner interposing member 51 and the end surface interposing member 52) is formed of an electrically insulating resin, such as an epoxy resin, an unsaturated polyester resin, a urethane resin, a silicone resin, a PPS resin, a PTFE resin, or an LCP. , PA resin, PI resin, PBT resin, ABS resin and the like.
  • the inner interposed member 51 is interposed between the inner peripheral surface of the winding portion 2 c and the outer peripheral surface of the inner core portion 31, and is formed between the winding portion 2 c and the inner core portion 31. Ensure electrical insulation between.
  • the inner interposed member 51 is formed at the rectangular plate portion 510 interposed between the inner core pieces 31 m and the corner portion of the plate portion 510, and adjacent to each other. And a projecting piece 511 extending in the length direction along the corner of the inner core piece 31m.
  • a frame portion 512 is formed on the outer edge portion of the plate portion 510 so as to surround the peripheral edge portions of the end surfaces of the adjacent inner core pieces 31m.
  • the plate portion 510 functions as a gap while maintaining an interval between the inner core pieces 31m.
  • the projecting piece 511 holds the corner portion of the inner core piece 31m and is interposed between the inner peripheral surface of the winding portion 2c and the outer peripheral surface of the inner core piece 31m, so that the inner core piece is placed in the winding portion 2c.
  • Position 31m inner core portion 31.
  • a gap is formed between the inner peripheral surface of the winding portion 2 c and the outer peripheral surface of the inner core portion 31 by the protrusion 511, and the four surfaces (upper surface, lower surface, and both side surfaces) of the inner core portion 31 are formed. ) Is secured in each case.
  • Each gap serves as a resin flow path that forms an inner resin portion 41 (see FIGS. 4 and 5), which will be described later, and the inner resin portion 41 is formed by filling each gap with resin. Further, as shown in FIG. 3, the protruding pieces 511 of the adjacent inner interposed members 51 are butted together and connected.
  • the end surface interposed member 52 is interposed between the end surface of the winding portion 2 c and the inner end surface 32 e of the outer core portion 32, and between the winding portion 2 c and the outer core portion 32. Ensure electrical insulation.
  • the end surface interposed members 52 are respectively arranged at both ends of the winding part 2c, and are rectangular frame bodies in which two through holes 520 into which the inner core part 31 is inserted are formed as shown in FIG. In this example, as shown in FIG. 6, when the end surface interposed member 52 is viewed from the outer core portion 32 side (front side), the end surface interposed member 52 is in contact with the corner portion of the end surface of the inner core portion 31 (inner core piece 31 m).
  • a protrusion 523 that protrudes inward of the through hole 520 is formed. As shown in FIG. 5, the protrusion 523 is interposed between the corner of the end surface of the inner core portion 31 and the inner end surface 32 e of the outer core portion 32, and as shown in FIG. A gap is formed between this and 32e. Further, as shown in FIG. 6, each through hole 520 is formed in a cross shape, and in the state of the combined body 10, the through hole 520 includes an inner peripheral surface of the winding portion 2 c and an outer periphery of the inner core portion 31. Resin filling holes 524 communicating with the gaps between the surfaces are formed. Via this resin filling hole 524, it is possible to fill the gaps between the winding part 2c and the inner core part 31 with resin.
  • a concave fitting portion 525 into which the inner end surface 32 e side of the outer core portion 32 is fitted is formed on the outer core portion 32 side (front side) of the end surface interposed member 52, as shown in FIGS. 3 and 6, a concave fitting portion 525 into which the inner end surface 32 e side of the outer core portion 32 is fitted is formed.
  • the outer core portion 32 is positioned with respect to the end surface interposed member 52 by the fitting portion 525.
  • the end surface interposed member 52 extends in the length direction along the corner portion of the inner core piece 31 m located at the end portion of the inner core portion 31 on the inner core portion 31 side (rear surface side).
  • a protruding piece 521 is formed on the outer core portion 32 side (front side) of the end surface interposed member 52.
  • the projecting piece 521 holds the corner portion of the inner core piece 31m located at the end of the inner core portion 31, and is interposed between the inner peripheral surface of the winding portion 2c and the outer peripheral surface of the inner core piece 31m.
  • the inner core piece 31m (inner core portion 31) is positioned in the winding portion 2c.
  • the inner core portion 31 is positioned with respect to the end surface interposed member 52 by the projecting piece 521, and as a result, the inner core portion 31 and the outer core portion 32 can be positioned via the end surface interposed member 52.
  • the protruding piece 521 of the end surface interposed member 52 is abutted against and connected to the protruding piece 511 of the inner interposed member 51.
  • the gap between the inner peripheral surface of the winding portion 2 c and the outer peripheral surface of the inner core portion 31 is caused by the protruding pieces 511 and 521 over the length direction of the inner core portion 31. It is divided in the circumferential direction.
  • a spacer piece 55 interposed between the winding portions 2c is integrally formed on the end surface interposed member 52.
  • the spacer piece 55 protrudes from the inner core portion 31 side (rear surface side) of the end surface interposing member 52 and covers the entire area between the inner side surfaces facing each other of the winding portions 2c.
  • the spacer piece 55 has a size facing the entire inner surface of both winding portions 2c, and is formed so as to be in contact with the entire inner surface (full length and total height) between the winding portions 2c. Has been. In this example, as shown in FIGS.
  • the spacer piece 55 is formed over the entire length along the length direction of the inner side surface and is formed over the entire height along the height direction of the inner side surface.
  • the length of the spacer piece 55 is equal to the length of the inner surface, and the height of the spacer piece 55 is equal to the height of the inner surface.
  • the thickness of the spacer piece 55 is equivalent to the interval between the winding parts 2c, and for example, it may be 1 mm or more and 5 mm or less.
  • the spacer pieces 55 are integrally formed on both end surface interposed members 52, and the tip portions of the spacer pieces 55 are abutted to form a series. .
  • the lengths of the spacer pieces 55 may be the same as shown in FIGS. 2 and 5, or one may be long and the other short. Moreover, it is good also as a structure which forms an unevenness
  • the spacer piece 55 may be formed only on one end face interposed member 52. In this case, you may provide the recessed part into which the front-end
  • the inner resin portion 41 is formed by filling a resin between the inner peripheral surface of the winding portion 2 c and the outer peripheral surface of the inner core portion 31. It is in close contact with the inner peripheral surface of the portion 2 c and the outer peripheral surface of the inner core portion 31.
  • the inner resin portion 41 is formed by filling a resin by injection molding.
  • the inner resin portion 41 is made of a resin having electrical insulation.
  • a thermosetting resin such as epoxy resin, unsaturated polyester resin, urethane resin, and silicone resin
  • thermoplastic resins such as PPS resin, PTFE resin, LCP, PA resin, PI resin, PBT resin, and ABS resin
  • PPS resin PTFE resin
  • LCP unsaturated polyester resin
  • PA resin PA resin
  • PI resin PI resin
  • PBT resin polystyrene resin
  • ABS resin polystyrene resin
  • FIGS. 1 and 2 it has an outer resin portion 42 that covers at least a part of the surface of the outer core portion 32.
  • the outer resin portion 42 is integrally formed with the inner resin portion 41, and the inner resin portion 41 and the outer resin portion 42 constitute the mold resin portion 4 as shown in FIG.
  • the inner core portion 31 and the outer core portion 32 are integrated by the mold resin portion 4, and the coil 2, the magnetic core 3, and the insulating interposed member 5 constituting the combined body 10 are integrated. Further, as shown in FIG. 5, the gap between the end surface of the inner core portion 31 and the inner end surface 32 e of the outer core portion 32 is also filled with resin.
  • ⁇ Reactor manufacturing method> An example of a method for manufacturing the reactor 1 will be described. The method of manufacturing a reactor is roughly divided into an assembly assembly process and a resin filling process.
  • the combination assembly process In the combination assembly process, the combination 10 of the coil 2, the magnetic core 3, and the insulating interposed member 5 is assembled (see FIG. 3).
  • the inner interposition member 51 is disposed between the inner core pieces 31m to produce the inner core portion 31, and the inner core portions 31 are inserted into both winding portions 2c of the coil 2, respectively.
  • the end face interposed members 52 are respectively disposed at both ends of the winding portion 2c, and the outer core portions 32 are respectively disposed so as to sandwich the inner core portion 31 from both ends.
  • the inner core portion 31 and the outer core portion 32 constitute an annular magnetic core 3 (see FIG. 2).
  • the combined body 10 including the coil 2, the magnetic core 3, and the insulating interposed member 5 is assembled.
  • the inner resin portion 41 is formed by filling the resin between the inner peripheral surface of the winding portion 2c and the inner core portion 31 (see FIGS. 4 and 5).
  • the combined body 10 is set in a molding die (not shown), and the end surface interposed member 52 is fixed to the molding die.
  • This mold is formed such that when the combined body 10 is set, the outer surfaces of both winding portions 2c of the coil 2 are in contact with the inner surface of the mold.
  • resin is inject
  • the resin is also filled in the gap between the end face of the inner core portion 31 and the inner end face 32e of the outer core portion 32.
  • the inner resin part 41 is formed by solidifying the filled resin.
  • the outer resin portion 42 is formed so as to cover the outer core portion 32 with resin, and the inner resin portion 41 and the outer resin portion 42 are integrally molded. Accordingly, the inner resin portion 41 and the outer resin portion 42 constitute the mold resin portion 4, and the inner core portion 31 and the outer core portion 32 are integrated, and the coil 2, the magnetic core 3, and the insulating interposed member 5 are integrated. Turn into.
  • the resin may be filled by filling the gap between the winding portion 2c and the inner core portion 31 from the one outer core portion 32 side toward the other outer core portion 32 side, or both outer core portions.
  • the gap may be filled from the 32 side.
  • the projecting piece 511 of the inner interposed member 51 and the projecting piece 521 of the end surface interposed member 52 are connected in the length direction along the corners of the inner core portion 31 (see FIG. 2).
  • the gap between the portion 2c and the inner core portion 31 is divided in the circumferential direction (see FIG. 4). Therefore, it is possible to suppress the occurrence of welds due to the joining of the resins flowing through the gaps, and the formation of welds in the inner resin portion 41 can be avoided.
  • the reactor 1 of Embodiment 1 has the following effects.
  • the spacer piece 55 interposed between the winding parts 2c when filling the resin between the inner peripheral surface of the winding part 2c and the inner core part 31 to form the inner resin part 41, It can suppress that the inner surface of winding part 2c changes outside by pressure of resin. Therefore, it can avoid that the inner surface of both the winding parts 2c contacts.
  • the spacer piece 55 when the coil 2 is disposed so that the long side of the end face shape of the winding portion 2c is the inner surface, the spacer piece 55 can suppress the deformation of the inner surface of the winding portion 2c, which is highly effective.
  • the spacer piece 55 is interposed over the entire area between the inner surfaces of the winding portions 2c facing each other, deformation can be suppressed over the entire inner surface, and contact between the winding portions 2c can be avoided. .
  • the spacer piece 55 is formed integrally with the end surface interposed member 52, it is not necessary to separately arrange or remove the spacer, and workability can be improved.
  • the reactor 1 of the first embodiment includes an in-vehicle converter (typically a DC-DC converter) mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle, or a converter for an air conditioner. It can utilize suitably for the various converters etc., and the component of a power converter device.
  • a DC-DC converter typically a DC-DC converter mounted on a vehicle
  • a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle, or a converter for an air conditioner. It can utilize suitably for the various converters etc., and the component of a power converter device.
  • the height of the spacer piece 55 was equivalent to the height of the inner surface of the winding part 2c was demonstrated.
  • the height of the spacer piece 55 may be larger than the height of the inner side surface of the winding portion 2 c, and the upper end portion and the lower end portion of the spacer piece 55 are lower than the inner side surface. It is good also as a form which protrudes.
  • the height of the spacer piece 55 is equal to the height (distance from the upper surface to the lower surface) of the winding portion 2c, and the upper end portion and the lower end portion of the spacer piece 55 face each other of the winding portions 2c.
  • the protruding lengths of the upper end portion and the lower end portion of the spacer piece 55 may be appropriately set so as to ensure a necessary creepage distance according to the applied voltage of the coil 2 or the use environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Abstract

コイルと、前記コイルの内外に配置される環状の磁性コアとを備えるリアクトルであって、前記コイルは、互いに横並びに配置される2つの巻回部を有し、前記磁性コアは、前記巻回部の内側に配置される2つの内側コア部と、前記巻回部の外側に配置されて前記両内側コア部の各端部同士を接続する2つの外側コア部とを有し、前記巻回部の内周面と前記内側コア部との間に充填される内側樹脂部と、前記巻回部の端面と前記外側コア部との間に介在される端面介在部材と、前記端面介在部材に一体に形成され、前記両巻回部の互いに対向する内側面同士間の全域に亘って介在されるスペーサ片と、を備えるリアクトル。

Description

リアクトル
 本発明は、リアクトルに関する。
 本出願は、2017年4月18日付の日本国出願の特願2017-082393に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。例えば特許文献1には、巻回部を有するコイルと、コイル(巻回部)の内外に配置されて閉磁路を形成する磁性コアと、コイル(巻回部)と磁性コアとの間に介在される絶縁介在部材とを備えるリアクトルが開示されている。上記コイルは、並列に配置される一対の巻回部を有し、各巻回部が四角筒状に形成されている。上記磁性コアは、巻回部の内部に配置される内側コア部と巻回部の外部に配置される外側コア部とで環状に構成されている。上記絶縁介在部材は、巻回部の内周面と内側コア部の外周面との間に介在される内側介在部材と、巻回部の端面と外側コア部との間に介在される端面介在部材とで構成されている。特許文献1に記載のリアクトルは、コイルの巻回部の内周面と内側コア部の外周面との間に充填される内側樹脂部を備える。
 特許文献1に記載のリアクトルでは、巻回部の内周面と内側コア部の外周面との間に内側介在部材を介在させて配置することにより、巻回部と内側コア部との間に隙間(樹脂流路)を確保する。そして、端面介在部材に形成された樹脂充填孔を介して、巻回部の端面側から巻回部と内側コア部との隙間に樹脂を充填することにより、内側樹脂部を形成している。
特開2017-28142号公報
 本開示に係るリアクトルは、
 コイルと、前記コイルの内外に配置される環状の磁性コアとを備えるリアクトルであって、
 前記コイルは、互いに横並びに配置される2つの巻回部を有し、
 前記磁性コアは、前記巻回部の内側に配置される2つの内側コア部と、前記巻回部の外側に配置されて前記両内側コア部の各端部同士を接続する2つの外側コア部とを有し、
 前記巻回部の内周面と前記内側コア部との間に充填される内側樹脂部と、
 前記巻回部の端面と前記外側コア部との間に介在される端面介在部材と、
 前記端面介在部材に一体に形成され、前記両巻回部の互いに対向する内側面同士間の全域に亘って介在されるスペーサ片と、を備える。
実施形態1に係るリアクトルの概略斜視図である。 実施形態1に係るリアクトルの概略上面図である。 実施形態1に係るリアクトルに備える組合体の概略斜視図である。 図1に示す(IV)-(IV)線で切断した概略横断面図である。 図1に示す(V)-(V)線で切断した概略平断面図である。 実施形態1に係るリアクトルに備える端面介在部材を正面側から見た概略正面図である。 スペーサ片の変形例を示す概略横断面図である。
 [本開示が解決しようとする課題]
 上述したような2つの巻回部を有するコイルと、コイル(巻回部)の内外に配置される環状の磁性コアとを備えるリアクトルにおいて、巻回部の内周面と内側コア部の外周面との間に樹脂を充填して内側樹脂部を形成する際に巻回部が変形することがある。
 一般に、内側樹脂部を形成する樹脂の充填は、射出成形により樹脂に圧力をかけて行うが、巻回部の内周面と内側コア部の外周面との狭い隙間に樹脂を十分に行き渡らせるために高い圧力をかける必要がある。そのため、樹脂の圧力によって巻回部が外方に向かって膨らむように変形することがあり、場合によっては、巻回部同士(具体的には、両巻回部の互いに対向する内側面同士)が接触することが起こり得る。巻回部同士が接触すると、巻回部間の電気的絶縁を確保できない虞がある。特に、巻回部の端面形状が矩形状であり、端面形状の長辺側が内側面になるように巻回部が配置されている場合は、内側面で変形が大きくなり、巻回部同士の接触が起こり易い。
 そこで、本開示は、コイルの巻回部の内周面と磁性コアの内側コア部との間に樹脂を充填して内側樹脂部を形成する際に、巻回部の変形を抑制して巻回部同士の接触を回避できるリアクトルを提供することを目的の一つとする。
 [本開示の効果]
 本開示のリアクトルは、コイルの巻回部の内周面と磁性コアの内側コア部との間に樹脂を充填して内側樹脂部を形成する際に、巻回部の変形を抑制して巻回部同士の接触を回避できる。
 [本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。
 (1)本願発明の一態様に係るリアクトルは、
 コイルと、前記コイルの内外に配置される環状の磁性コアとを備えるリアクトルであって、
 前記コイルは、互いに横並びに配置される2つの巻回部を有し、
 前記磁性コアは、前記巻回部の内側に配置される2つの内側コア部と、前記巻回部の外側に配置されて前記両内側コア部の各端部同士を接続する2つの外側コア部とを有し、
 前記巻回部の内周面と前記内側コア部との間に充填される内側樹脂部と、
 前記巻回部の端面と前記外側コア部との間に介在される端面介在部材と、
 前記端面介在部材に一体に形成され、前記両巻回部の互いに対向する内側面同士間の全域に亘って介在されるスペーサ片と、を備える。
 上記リアクトルによれば、スペーサ片を備えることで、巻回部の内周面と内側コア部との間に樹脂を充填して内側樹脂部を形成する際に、樹脂の圧力によって巻回部の内側面が外方に変形することを抑制でき、両巻回部の内側面同士が接触することを回避できる。また、巻回部の間にスペーサ片が介在されることで、スペーサ片によって巻回部間の電気的絶縁を確保できる。
 スペーサ片が両巻回部の互いに対向する内側面同士間の全域に亘って介在されることで、内側面の全面に亘って変形を抑制でき、巻回部の変形による巻回部同士の接触を回避できる。「内側面同士間の全域に亘って介在される」とは、両巻回部の内側面の全面に亘って対向し、巻回部の間に内側面の全面(全長及び全高)に亘って接触するように設けられていることを意味する。ここで、スペーサ片が巻回部の内側面の全面に亘って設けられていない場合は、スペーサ片に接触しない箇所で内側面の一部が変形することがあり、内側面同士の接触を回避できない可能性がある。
 また、スペーサ片が端面介在部材に一体に形成されていることで、作業性を改善できる。巻回部の変形を抑制して巻回部同士の接触を回避する手段の1つとして、巻回部と内側コア部との隙間に樹脂を充填する際に、巻回部の間に板状のスペーサを配置して樹脂の充填を行うことが考えられる。しかし、この場合は、スペーサを別途配置したり、樹脂を充填して成形した後にスペーサを抜き取る作業が必要になる。また、スペーサの取り忘れや、スペーサを抜き取る際に巻回部を形成する巻線の絶縁被覆を傷付ける可能性がある。上記リアクトルでは、スペーサ片が端面介在部材に一体に形成されているため、スペーサを別途配置したり、抜き取る作業が不要になり、また、巻回部の内側面を傷付ける虞も少ない。
 (2)上記リアクトルの一形態として、前記スペーサ片の上下方向の高さが前記巻回部の内側面の高さよりも大きく、前記スペーサ片の上端部及び下端部が前記内側面よりも突出していることが挙げられる。
 スペーサ片の上端部及び下端部が内側面よりも上下方向に突出していることで、巻回部間の沿面距離を確保して、巻回部間の電気的絶縁を高めることができる。
 (3)上記リアクトルの一形態として、前記巻回部は、軸方向から見た端面形状が矩形状で、その端面形状の長辺側が前記内側面になるように配置されていることが挙げられる。
 巻回部の端面形状が矩形状である場合、巻回部の外周面のうち、端面形状の長辺側の面の方が短辺側の面よりも樹脂の圧力によって変形し易い。そのため、端面形状の長辺側が内側面になるように巻回部が配置されている場合は、内側面で変形が生じ易く、巻回部同士の接触が起き易い。上記リアクトルによれば、端面形状の長辺側が内側面になるように巻回部が配置されている場合に、スペーサ片で巻回部の内側面の変形を抑制できるので効果が大きい。
 [本願発明の実施形態の詳細]
 本願発明の実施形態に係るリアクトルの具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。なお、本願発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 [実施形態1]
 <リアクトルの構成>
 図1~図6を参照して、実施形態1に係るリアクトル1を説明する。実施形態1のリアクトル1は、図1~図3に示すように、2つの巻回部2cを有するコイル2と、巻回部2cの内外に配置される磁性コア3と、端面介在部材52を含む絶縁介在部材5との組合体10を備える。両巻回部2cは、互いに横並びに配置されている。磁性コア3は、巻回部2cの内側に配置される2つの内側コア部31と、巻回部2cの外側に配置されて両内側コア部31の各端部同士を接続する2つの外側コア部32とを有する。また、リアクトル1は、図4、図5に示すように、巻回部2cの内周面と内側コア部31との間に充填される内側樹脂部41(モールド樹脂部4)を備える。リアクトル1の特徴の1つは、両巻回部2cの互いに対向する内側面同士間に介在されるスペーサ片55を備える点にある。
 リアクトル1は、例えば、コンバータケースなどの設置対象(図示せず)に設置される。ここでは、リアクトル1(コイル2及び磁性コア3)において、図1、図4における紙面下側が、設置対象に面する設置側であり、設置側を「下」、その反対側を「上」とし、上下方向を高さ方向とする。また、巻回部2c(内側コア部31)の並び方向(図2の紙面左右方向)を横方向とし、巻回部2c(内側コア部31)の軸方向に沿った方向(図2の紙面上下方向)を長さ方向とする。図4は、巻回部2cの長さ方向に直交する横方向に切断した横断面図であり、図5は、巻回部2cを上下に分断する平面で切断した平断面図である。以下、リアクトル1の構成について詳しく説明する。
 (コイル)
 コイル2は、図1~図3に示すように、2本の巻線2wをそれぞれ螺旋状に巻回してなる2つの巻回部2cを有し、両巻回部2cを形成するそれぞれの巻線2wの一方の端部同士が接合部20を介して接続されている。両巻回部2cは、互いの軸方向が平行するように横並び(並列)に配置されている。接合部20は、各巻回部2cから引き出された巻線2wの一方の端部同士を溶接や半田付け、ロウ付けなどの接合方法によって接合することで形成されている。巻線2wの他方の端部はそれぞれ、各巻回部2cから適宜な方向(この例では上方)に引き出され、端子金具(図示せず)が適宜取り付けられて、電源などの外部装置(図示せず)に電気的に接続される。コイル2は、公知のものを利用でき、例えば、両巻回部2cが1本の連続する巻線で形成されたものでもよい。
 〈巻回部〉
 両巻回部2cは、同じ仕様の巻線2wからなり、形状・大きさ・巻回方向・ターン数が同じであり、巻回部2cを形成する隣り合うターン同士が密着している。巻線2wは、例えば、導体(銅など)と、導体の外周に絶縁被覆(ポリアミドイミドなど)とを有する被覆線(いわゆるエナメル線)である。この例では、巻回部2cが被覆平角線の巻線2wをエッジワイズ巻きした四角筒状(具体的には、矩形筒状)のエッジワイズコイルであり、軸方向から見た巻回部2cの端面形状は角部が丸められた矩形状である(図4も参照)。巻回部2cの外周面は、図4に示すように、4つの平面(上面、下面及び2つの側面)と4つの角部とを有し、2つの側面のうち、両巻回部2cの互いに対向する側面を内側面、その反対側に位置する側面を外側面とする。巻回部2cは、その端面形状の一対の短辺側が上面及び下面になり、一対の長辺側が内側面及び外側面になるように配置されている。巻回部2cの形状は、特に限定されるものではなく、例えば、長円筒状(レーストラック形状)などであってもよい。
 巻回部2cの内側面の高さ(端面形状の長辺の長さ。角部を除く)は、例えば30mm以上100mm以下、巻回部2c間の間隔(内側面同士間の空間距離)は、例えば1mm以上5mm以下であることが挙げられる。
 この例では、コイル2(巻回部2c)が後述するモールド樹脂部4で覆われておらず、リアクトル1を構成したとき、図1に示すように、コイル2の外周面が露出された形態になる。そのため、コイル2から外部に放熱し易く、コイル2の放熱性を高めることができる。
 その他、コイル2は、電気絶縁性を有する樹脂でモールドされたモールドコイルであってもよい。この場合、コイル2を外部環境(粉塵や腐食など)から保護したり、コイル2の機械的強度や電気絶縁性を高めることができる。例えば、巻回部2cの内周面が樹脂で覆われていることで、巻回部2cと内側コア部31との間の電気的絶縁を高めることができる。コイル2をモールドする樹脂には、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂などの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6やナイロン66といったポリアミド(PA)樹脂、ポリイミド(PI)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などの熱可塑性樹脂が利用できる。
 或いは、コイル2は、巻回部2cを形成する隣り合うターン間に融着層を備え、隣り合うターン同士が熱融着された熱融着コイルであってもよい。この場合、隣り合うターン同士をより密着させることができる。
 磁性コア3は、図2、図3及び図5に示すように、巻回部2cの内側に配置される2つの内側コア部31と、巻回部2cの外側に配置される2つの外側コア部32とを有する。内側コア部31は、横並びに配置された巻回部2cの内側に位置し、コイル2が配置される部分である。つまり、両内側コア部31は、巻回部2cと同様に、横並び(並列)に配置される。内側コア部31は、その軸方向の端部の一部が巻回部2cから突出していてもよい。外側コア部32は、巻回部2cの外側に位置し、コイル2が実質的に配置されない(即ち、巻回部2cから突出(露出)する)部分である。外側コア部32は、両内側コア部31の各端部同士を接続するように設けられる。この例では、内側コア部31を両端から挟むように外側コア部32がそれぞれ配置され、両内側コア部31の各端面が外側コア部32の内端面32eにそれぞれ対向して接続されることによって環状の磁性コア3が構成されている。磁性コア3には、コイル2に通電して励磁した際に磁束が流れ、閉磁路が形成される。
 〈内側コア部〉
 内側コア部31の形状は、巻回部2cの内周面に対応した形状である。この例では、内側コア部31が四角柱状(矩形柱状)に形成されており、軸方向から見た内側コア部31の端面形状は角部が面取りされた矩形状である(図4も参照)。内側コア部31の外周面は、図4に示すように、4つの平面(上面、下面及び2つの側面)と4つの角部とを有する。また、この例では、図2、図3及び図5に示すように、内側コア部31が複数の内コア片31mを有し、内コア片31mが長さ方向に連結されて構成されている。
 内側コア部31(内コア片31m)は、軟磁性材料を含有する材料で形成されている。内コア片31mは、例えば、鉄又は鉄合金(Fe-Si合金、Fe-Si-Al合金、Fe-Ni合金など)といった軟磁性粉末や更に絶縁被覆を有する被覆軟磁性粉末などを圧縮成形した圧粉成形体や、軟磁性粉末と樹脂とを含む複合材料の成形体などで形成されている。複合材料の樹脂には、熱硬化性樹脂、熱可塑性樹脂、常温硬化性樹脂、低温硬化性樹脂などが利用できる。熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などが挙げられる。熱可塑性樹脂としては、例えば、PPS樹脂、PTFE樹脂、LCP、PA樹脂、PI樹脂、PBT樹脂、ABS樹脂などが挙げられる。その他、不飽和ポリエステルに炭酸カルシウムやガラス繊維が混合されたBMC(Bulk molding compound)、ミラブル型シリコーンゴム、ミラブル型ウレタンゴムなども利用できる。この例では、内コア片31mが圧粉成形体で形成されている。
 〈外側コア部〉
 外側コア部32は、1つのコア片で構成されている。外側コア部32は、内コア片31mと同様に、軟磁性材料を含有する材料で形成されており、上述した圧粉成形体や複合材料などが利用できる。この例では、外側コア部32が圧粉成形体で形成されている。
 (絶縁介在部材)
 絶縁介在部材5は、コイル2(巻回部2c)と磁性コア3(内側コア部31及び外側コア部32)との間に介在され、コイル2と磁性コア3との間の電気的絶縁を確保する部材であり、内側介在部材51と端面介在部材52とを有する。絶縁介在部材5(内側介在部材51及び端面介在部材52)は、電気絶縁性を有する樹脂で形成され、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、PPS樹脂、PTFE樹脂、LCP、PA樹脂、PI樹脂、PBT樹脂、ABS樹脂などの樹脂で形成することが挙げられる。
 〈内側介在部材〉
 内側介在部材51は、図3~図5に示すように、巻回部2cの内周面と内側コア部31の外周面との間に介在され、巻回部2cと内側コア部31との間の電気的絶縁を確保する。この例では、図3、図5に示すように、内側介在部材51は、内コア片31m間に介在される矩形状の板部510と、板部510の角部に形成され、隣接する両内コア片31mの角部に沿って長さ方向に延在する突片511とを有する。更に、この例では、板部510の外縁部に、隣接する両内コア片31mの端面の周縁部を囲む枠部512が形成されている。板部510は、内コア片31m間の間隔を保持してギャップとして機能する。突片511は、内コア片31mの角部を保持すると共に、巻回部2cの内周面と内コア片31mの外周面との間に介在して、巻回部2c内に内コア片31m(内側コア部31)を位置決めする。図4に示すように、突片511により巻回部2cの内周面と内側コア部31の外周面との間に隙間が形成され、内側コア部31の4面(上面、下面及び両側面)にそれぞれ隙間が確保される。各隙間は、後述する内側樹脂部41(図4、図5参照)を形成する樹脂の流路になり、各隙間に樹脂が充填されることで、内側樹脂部41が形成される。また、図3に示すように、隣り合う内側介在部材51の突片511同士が突き合わされて連結される。
 〈端面介在部材〉
 端面介在部材52は、図3、図5に示すように、巻回部2cの端面と外側コア部32の内端面32eとの間に介在され、巻回部2cと外側コア部32との間の電気的絶縁を確保する。端面介在部材52は、巻回部2cの両端にそれぞれ配置され、図3に示すように、内側コア部31が挿入される2つの貫通孔520が形成された矩形状の枠状体である。この例では、図6に示すように、端面介在部材52を外側コア部32側(正面側)から見たとき、内側コア部31(内コア片31m)の端面の角部に当接するように、貫通孔520の内方に突出する突起523が形成されている。突起523が内側コア部31の端面の角部と外側コア部32の内端面32eとの間に介在して、図5に示すように、内側コア部31の端面と外側コア部32の内端面32eとの間に隙間が形成される。また、図6に示すように、各貫通孔520が十字状に形成されており、組合体10の状態において、貫通孔520には、巻回部2cの内周面と内側コア部31の外周面との各隙間に連通する樹脂充填孔524が形成される。この樹脂充填孔524を介して、巻回部2cと内側コア部31との各隙間に樹脂を充填することが可能である。
 端面介在部材52の外側コア部32側(正面側)には、図3、図6に示すように、外側コア部32の内端面32e側が嵌合される凹状の嵌合部525が形成されており、嵌合部525により端面介在部材52に対して外側コア部32が位置決めされる。端面介在部材52の内側コア部31側(裏面側)には、図3に示すように、内側コア部31の端部に位置する内コア片31mの角部に沿って長さ方向に延在する突片521が形成されている。突片521は、内側コア部31の端部に位置する内コア片31mの角部を保持すると共に、巻回部2cの内周面と内コア片31mの外周面との間に介在して、巻回部2c内に内コア片31m(内側コア部31)を位置決めする。突片521により端面介在部材52に対して内側コア部31が位置決めされ、結果的に、端面介在部材52を介して内側コア部31と外側コア部32とを位置決めできる。また、端面介在部材52の突片521は、図2に示すように、内側介在部材51の突片511と突き合わされて連結される。これにより、内側コア部31の長さ方向に亘って、図4に示すように、巻回部2cの内周面と内側コア部31の外周面との隙間が突片511及び突片521によって周方向に分断されている。
 (スペーサ片)
 端面介在部材52には、図1~図5に示すように、巻回部2cの間に介在されるスペーサ片55が一体に形成されている。スペーサ片55は、図3~図5に示すように、端面介在部材52の内側コア部31側(裏面側)から突出して、両巻回部2cの互いに対向する内側面同士間の全域に亘って介在されるように設けられる。スペーサ片55は、両巻回部2cの内側面の全面に亘って対向する大きさを有し、巻回部2cの間に内側面の全面(全長及び全高)に亘って接触するように形成されている。この例では、図4、図5に示すように、スペーサ片55が内側面の長さ方向に沿って全長に亘って形成されると共に内側面の高さ方向に沿って全高に亘って形成されており、スペーサ片55の長さが内側面の長さと同等でかつ、スペーサ片55の高さが内側面の高さと同等である。スペーサ片55の厚さは、巻回部2c間の間隔と同等であり、例えば1mm以上5mm以下であることが挙げられる。
 また、この例では、図2、図5に示すように、両方の端面介在部材52にスペーサ片55が一体に形成されており、互いのスペーサ片55の先端部同士が突き合わされて一連になる。互いのスペーサ片55の長さは、図2、図5に示すように同じであってもよいし、一方が長く他方が短くてもよい。また、互いのスペーサ片55の先端部に凹凸や段差を形成して、スペーサ片55の先端部同士が係合する構成としてもよい。或いは、一方の端面介在部材52にのみスペーサ片55を形成する構成とすることも可能である。この場合、他方の端面介在部材52にスペーサ片55の先端部が挿入される凹部を設けてもよい。
 (内側樹脂部)
 内側樹脂部41は、図4、図5に示すように、巻回部2cの内周面と内側コア部31の外周面との間に樹脂が充填されることで形成されており、巻回部2cの内周面及び内側コア部31の外周面に密着している。この内側樹脂部41は、射出成形により樹脂を充填することによって形成されている。
 内側樹脂部41は、電気絶縁性を有する樹脂で形成されている。内側樹脂部41を形成する樹脂には、熱硬化性樹脂、熱可塑性樹脂、常温硬化性樹脂、低温硬化性樹脂などが利用できる。例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂などの熱硬化性樹脂や、PPS樹脂、PTFE樹脂、LCP、PA樹脂、PI樹脂、PBT樹脂、ABS樹脂などの熱可塑性樹脂が利用できる。
 この例では、図1、図2に示すように、外側コア部32の表面の少なくとも一部を覆う外側樹脂部42を有する。外側樹脂部42は、内側樹脂部41と一体成形されており、図5に示すように、内側樹脂部41と外側樹脂部42とでモールド樹脂部4が構成されている。このモールド樹脂部4により内側コア部31及び外側コア部32が一体化されると共に、組合体10を構成するコイル2、磁性コア3及び絶縁介在部材5が一体化される。また、図5に示すように、内側コア部31の端面と外側コア部32の内端面32eとの隙間にも樹脂が充填されている。
 <リアクトルの製造方法>
 リアクトル1の製造方法の一例を説明する。リアクトルの製造方法は、大別すると、組合体組立工程と、樹脂充填工程とを備える。
 (組合体組立工程)
 組合体組立工程では、コイル2と磁性コア3と絶縁介在部材5との組合体10を組み立てる(図3参照)。
 この例では、内コア片31m間に内側介在部材51を配置して内側コア部31を作製して、コイル2の両巻回部2cに内側コア部31をそれぞれ挿入する。その後、巻回部2cの両端に端面介在部材52をそれぞれ配置して、内側コア部31を両端から挟むように外側コア部32をそれぞれ配置する。これにより、内側コア部31と外側コア部32とで環状の磁性コア3(図2参照)を構成する。以上のようにして、コイル2と磁性コア3と絶縁介在部材5とを備える組合体10を組み立てる。
 (樹脂充填工程)
 樹脂充填工程では、巻回部2cの内周面と内側コア部31との間に樹脂を充填して内側樹脂部41を形成する(図4、図5参照)。
 この例では、組合体10を図示しない成形型にセットして、成形型に端面介在部材52を固定する。この成形型は、組合体10をセットしたとき、コイル2の両巻回部2cの外側面が成形型の内面に接触するように形成されている。そして、組合体10の外側コア部32側から樹脂を射出し、端面介在部材52の樹脂充填孔524を介して、巻回部2cと内側コア部31との隙間に樹脂を充填する。このとき、内側コア部31の端面と外側コア部32の内端面32eとの隙間にも樹脂が充填される。その後、充填した樹脂を固化させることで、内側樹脂部41を形成する。また、この例では、内側樹脂部41の形成と同時に、外側コア部32も樹脂で覆うように外側樹脂部42を形成して、内側樹脂部41と外側樹脂部42とを一体成形する。これにより、内側樹脂部41と外側樹脂部42とでモールド樹脂部4を構成し、内側コア部31及び外側コア部32を一体化すると共に、コイル2、磁性コア3及び絶縁介在部材5を一体化する。
 樹脂の充填は、一方の外側コア部32側から他方の外側コア部32側に向かって巻回部2cと内側コア部31との隙間に樹脂を充填してもよいし、両方の外側コア部32側から隙間に樹脂を充填してもよい。
 この例では、内側介在部材51の突片511と端面介在部材52の突片521とが内側コア部31の角部に沿って長さ方向に連結されることにより(図2参照)、巻回部2cと内側コア部31との隙間が周方向に分断されている(図4参照)。そのため、各隙間に流れる樹脂同士が合流することによるウェルドの発生を抑制でき、内側樹脂部41にウェルドが形成されることを回避できる。
 {作用効果}
 実施形態1のリアクトル1は、次の作用効果を奏する。
 巻回部2cの間に介在されるスペーサ片55を備えることで、巻回部2cの内周面と内側コア部31との間に樹脂を充填して内側樹脂部41を形成する際に、樹脂の圧力によって巻回部2cの内側面が外方に変形することを抑制できる。よって、両巻回部2cの内側面同士が接触することを回避できる。特に、巻回部2cの端面形状の長辺側が内側面になるようにコイル2が配置されている場合に、スペーサ片55で巻回部2cの内側面の変形を抑制できるので効果が大きい。
 スペーサ片55が両巻回部2cの互いに対向する内側面同士間の全域に亘って介在されることで、内側面の全面に亘って変形を抑制でき、巻回部2c同士の接触を回避できる。また、スペーサ片55が端面介在部材52に一体に形成されていることで、スペーサを別途配置したり、抜き取る作業が不要になり、作業性を改善できる。
 〈用途〉
 実施形態1のリアクトル1は、例えば、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や、空調機のコンバータなど種々のコンバータ、並びに電力変換装置の構成部品に好適に利用可能である。
 [変形例]
 上述した実施形態1のリアクトル1では、図4に示すように、スペーサ片55の高さが巻回部2cの内側面の高さと同等である形態を説明した。これに限らず、例えば、図7に示すように、スペーサ片55の高さが巻回部2cの内側面の高さよりも大きくてもよく、スペーサ片55の上端部及び下端部が内側面よりも突出している形態としてもよい。図7では、スペーサ片55の高さが巻回部2cの高さ(上面から下面までの距離)と同等であり、スペーサ片55の上端部及び下端部が両巻回部2cの互いに対向する内側に位置する上下の角部の間の空間に突出している。図7の変形例に示すスペーサ片55のように、スペーサ片55の上端部及び下端部が内側面よりも上下方向に突出している場合、巻回部2c間の沿面距離を長くして、巻回部2c間の電気的絶縁を高めることができる。スペーサ片55の上端部及び下端部の突出長さは、コイル2の印加電圧や使用環境などに応じて必要な沿面距離を確保できるように適宜設定すればよい。
 1 リアクトル
 10 組合体
 2 コイル
 2w 巻線
  2c 巻回部
 20 接合部
 3 磁性コア
 31 内側コア部
  31m 内コア片
 32 外側コア部
  32e 内端面
 4 モールド樹脂部
  41 内側樹脂部
  42 外側樹脂部
 5 絶縁介在部材
 51 内側介在部材
  510 板部
  511 突片
  512 枠部
 52 端面介在部材
  520 貫通孔
  521 突片
  523 突起
  524 樹脂充填孔
  525 嵌合部
 55 スペーサ片

Claims (3)

  1.  コイルと、前記コイルの内外に配置される環状の磁性コアとを備えるリアクトルであって、
     前記コイルは、互いに横並びに配置される2つの巻回部を有し、
     前記磁性コアは、前記巻回部の内側に配置される2つの内側コア部と、前記巻回部の外側に配置されて前記両内側コア部の各端部同士を接続する2つの外側コア部とを有し、
     前記巻回部の内周面と前記内側コア部との間に充填される内側樹脂部と、
     前記巻回部の端面と前記外側コア部との間に介在される端面介在部材と、
     前記端面介在部材に一体に形成され、前記両巻回部の互いに対向する内側面同士間の全域に亘って介在されるスペーサ片と、を備えるリアクトル。
  2.  前記スペーサ片の上下方向の高さが前記巻回部の内側面の高さよりも大きく、
     前記スペーサ片の上端部及び下端部が前記内側面よりも突出している請求項1に記載のリアクトル。
  3.  前記巻回部は、軸方向から見た端面形状が矩形状で、その端面形状の長辺側が前記内側面になるように配置されている請求項1又は請求項2に記載のリアクトル。
PCT/JP2018/014468 2017-04-18 2018-04-04 リアクトル WO2018193853A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880023798.8A CN110494940B (zh) 2017-04-18 2018-04-04 电抗器
US16/603,383 US11495388B2 (en) 2017-04-18 2018-04-04 Reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082393A JP6628155B2 (ja) 2017-04-18 2017-04-18 リアクトル
JP2017-082393 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018193853A1 true WO2018193853A1 (ja) 2018-10-25

Family

ID=63856718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014468 WO2018193853A1 (ja) 2017-04-18 2018-04-04 リアクトル

Country Status (4)

Country Link
US (1) US11495388B2 (ja)
JP (1) JP6628155B2 (ja)
CN (1) CN110494940B (ja)
WO (1) WO2018193853A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110863B2 (ja) * 2018-03-05 2022-08-02 株式会社オートネットワーク技術研究所 リアクトル
WO2020111160A1 (ja) * 2018-11-29 2020-06-04 株式会社オートネットワーク技術研究所 リアクトル
JP2021093456A (ja) * 2019-12-11 2021-06-17 株式会社村田製作所 コイル部品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130410A (ja) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 ボビン、リアクトル及びリアクトルの製造方法
WO2015170571A1 (ja) * 2014-05-07 2015-11-12 株式会社オートネットワーク技術研究所 リアクトル
JP2016082043A (ja) * 2014-10-15 2016-05-16 株式会社オートネットワーク技術研究所 リアクトル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969755B2 (ja) * 2011-11-01 2016-08-17 株式会社日立産機システム アモルファス鉄心変圧器
JP6288513B2 (ja) * 2013-12-26 2018-03-07 株式会社オートネットワーク技術研究所 リアクトル
JP6292398B2 (ja) * 2014-05-07 2018-03-14 株式会社オートネットワーク技術研究所 リアクトル
JP6358565B2 (ja) 2015-07-24 2018-07-18 株式会社オートネットワーク技術研究所 リアクトル、およびリアクトルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130410A (ja) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 ボビン、リアクトル及びリアクトルの製造方法
WO2015170571A1 (ja) * 2014-05-07 2015-11-12 株式会社オートネットワーク技術研究所 リアクトル
JP2016082043A (ja) * 2014-10-15 2016-05-16 株式会社オートネットワーク技術研究所 リアクトル

Also Published As

Publication number Publication date
US20200035398A1 (en) 2020-01-30
JP6628155B2 (ja) 2020-01-08
CN110494940A (zh) 2019-11-22
US11495388B2 (en) 2022-11-08
CN110494940B (zh) 2020-12-22
JP2018182173A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6937992B2 (ja) リアクトル
WO2018193853A1 (ja) リアクトル
JP2023073439A (ja) リアクトル
US10600557B2 (en) Reactor having air discharge paths
JP6747383B2 (ja) リアクトル
JP6662347B2 (ja) リアクトル
JP6796259B2 (ja) リアクトル
US11923121B2 (en) Reactor
CN111316389B (zh) 电抗器
JP6459141B2 (ja) リアクトル
CN111344822A (zh) 电抗器
JP2018200965A (ja) リアクトル
CN110520949B (zh) 电抗器
CN111656470B (zh) 电抗器
WO2020105469A1 (ja) リアクトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787107

Country of ref document: EP

Kind code of ref document: A1