Verfahren zur schichtbildenden Zinkphosphatierung von metallischen Bauteilen in Serie
Vorliegende Erfindung betrifft ein Verfahren zur Zinkphosphatierung von Bauteilen umfassend Oberflächen von Zink zur Unterdrückung der Bildung von auf den Oberflächen von Zink lose anhaftenden, unlöslichen Bestandteilen der Phosphatierung und demnach zur weiteren
Verbesserung der Haftung nachträglich aufgebrachter Tauchlackbeschichtungen. In dem
Verfahren wird auf eine Aktivierung der Zinkoberflächen mittels Dispersionen enthaltend partikuläres Hopeit, Phosphophyllit, Scholzit und/oder Hureaulith zurückgegriffen, wobei der Anteil an partikulären Phosphaten in der Aktivierung der Menge an freiem Fluorid und gelöstem Silizium in der Zinkphosphatierung angepasst werden muss.
Im Stand der Technik wird die Zinkphosphatierung mit einer Aktivierung der Metalloberflächen des zu phosphatierenden Bauteils eingeleitet. Die nasschemische Aktivierung erfolgt dabei durch In- Kontakt-Bringen mit kolloidalen Dispersionen von Phosphaten, die insofern auf der
Metalloberfläche immobilisiert, in der nachfolgenden Phosphatierung als Wachstumskeim für die Ausbildung eines kristallinen Überzuges dienen. Geeignete Dispersionen sind dabei kolloidale zumeist alkalische wässrige Zusammensetzungen auf Basis von Phosphat-Kristalliten, die in ihrer Kristallstruktur nur geringe kristallographische Abweichungen von der Art der abzuscheidenden Zinkphosphatschicht aufweisen. Neben dem in der Literatur häufig als Jernstedt Salz
bezeichnetem Titanphosphat eignen sich auch wasserunlösliche bi- und trivalente Phosphate als Ausgangsmaterialien für die Bereitstellung einer kolloidalen Lösung, die geeignet ist, eine Metalloberfläche für die Zinkphosphatierung zu aktivieren. So lehrt die WO 98/39498 A1 in diesem Zusammenhang insbesondere bi- und trivalente Phosphate der Metalle Zn, Fe, Mn, Ni, Co, Ca und AI, wobei technisch bevorzugt Phosphate des Metalls Zink zur Aktivierung für eine nachfolgende Zinkphosphatierung verwendet werden.
Jede Art der Aktivierung weist ihre Eigenart bezogen auf die im nachfolgenden Schritt zu erfolgende Phosphatierung auf, die speziell bei der Behandlung von Bauteilen, die aus einem Mix verschiedener metallischer Materialien zusammengesetzt sind, bedeutsam wird. Geschlossene kristalline Zinkphosphatüberzüge können auf Stahloberflächen von mit Jernstedt Salzen aktivierten Bauteilen dann nicht mehr gebildet werden, wenn im Zinkphosphatierbad der Anteil an gelöstem Aluminium einen bestimmten Schwellenwert beispielsweise bei Bauteilen mit hohem
Aluminiumanteil überschreitet, so dass auf eine Aktivierung gemäß der WO 98/39498 A1
ausgewichen werden muss. Eine solche Aktivierung erbringt auch den Vorteil, dass im Vergleich zur Aktivierung mit Jernstedt-Salzen dünnere und besser vor Korrosion schützende
Phosphatüberzüge auf den Aluminiumoberflächen erzielt werden. Eine Aktivierung mit bi- und trivalenten Phosphaten liefert jedoch in Zinkphosphatierungsbädern, in denen auch schichtbildend Oberflächen von Aluminium behandelt werden sollen, häufig defektreiche Überzüge auf den Zinkoberflächen, die sich dadurch kennzeichnen, dass lose Anhaftungen von Bestandteilen des Zinkphosphatüberzuges beobachtbar sind, die in der nachfolgenden Tauchlackierung die Lackhaftung auf den Zinkoberflächen merklich herabsetzen. Des Weiteren werden die losen aus Phosphaten bestehenden Anhaftungen teilweise in eine der Zinkphosphatierung nachfolgende Tauchlackierung überschleppt und dort wiederum teilweise in der wässrigen Bindemitteldispersion aufgelöst. Die durch Überschleppung in die Tauchlackierung eingetragenen gelösten Phosphate können zum einen die Abscheidecharakteristik der dispergierten Lackbestandteile negativ beeinflussen und zum anderen die Effektivkonzentration essentieller Katalysatoren / Vernetzer auf Basis ausgewählter Schwermetalle durch Ausfällungsreaktionen herabsetzen. Eine
Überschleppung von Phosphaten kann also ursächlich für erhöhte Einbrenntemperaturen sein, insbesondere für Tauchlacke, die neben dem dispergierten Harz wasserslösliche Salze von Yttrium und/oder Bismut enthalten.
Es besteht daher die Aufgabe, für ein Verfahren zur Zinkphosphatierung von metallischen Bauteilen, das auch hohe Anteile an gelösten Aluminium toleriert, und daher auf einer Aktivierung auf Basis einer kolloidalen Lösung von bi- und/oder trivalenten Phosphaten beruht, geeignete Bedingungen aufzufinden, für die auf den Zinkoberflächen weitestgehend defektfreie, von losen Anhaftungen befreite Zinkphosphatüberzüge gelingen, so dass insgesamt eine hervorragende Lackhaftung resultiert. Insbesondere soll ein Verfahren bereitgestellt werden, bei dem metallische Bauteile in der Phosphatierstufe schichtbildend behandelt werden können, wobei die Bauteile sowohl Oberflächen von Zink als auch Oberflächen von Aluminium und vorzugsweise auch Stahl aufweisen.
Diese Aufgabe wird überraschenderweise dadurch gelöst, dass der Anteil an zur Aktivierung beitragenden partikulären Phosphaten auf die Menge an freiem Fluorid und Silizium in der Zinkphosphatierung angepasst wird.
Die vorliegende Erfindung betrifft also ein Verfahren zur korrosionsschützenden Behandlung einer Serie von metallischen Bauteilen, die metallische Bauteile umfasst, die zumindest teilweise Oberflächen von Zink aufweisen, bei dem die metallischen Bauteile der Serie nacheinander die folgenden nasschemischen Behandlungsschritte durchlaufen:
(I) Aktivierung durch In-Kontakt-Bringen mit einer alkalischen wässrigen Dispersion, die einen D50 Wert von weniger als 3 μιη aufweist und deren anorganischer partikulärer Bestandteil Phosphate umfasst, wobei die Gesamtheit dieser Phosphate zumindest teilweise aus Hopeit, Phosphophyllit, Scholzit und/oder Hureaulith zusammengesetzt ist;
(II) Zinkphosphatierung durch In-Kontakt-Bringen mit einer sauren wässrigen
Zusammensetzung enthaltend
(a) 5-50 g/l an Phosphat-Ionen,
(b) 0,3-3 g/l an Zink-Ionen, und
(c) mindestens eine Quelle für freies Fluorid,
wobei der Quotient aus der Konzentration der Phosphate im anorganischen partikulären
Bestandteil der alkalischen wässrigen Dispersion der Aktivierung in mmol/kg bezogen auf PÜ4 zur Summe aus der Konzentration an freiem Fluorid und der Konzentration an Silizium jeweils in der sauren wässrigen Zusammensetzung der Zinkphosphatierung und jeweils in mmol/kg größer als 0,5 ist.
Die gemäß vorliegender Erfindung behandelten Bauteile können alle beliebig geformten und gestalteten räumlichen Gebilde sein, die einem Fabrikationsprozess entstammen, insbesondere auch Halbzeuge wie Bänder, Bleche, Stangen, Rohre, etc. und Verbundkonstruktionen
zusammengefügt aus vorgenannten Halbzeugen, wobei die Halbzeuge vorzugsweise durch Kleben, Schweißen und/oder Bördeln zur Verbundkonstruktion miteinander verbunden sind. Ein Bauteil ist im Sinne der vorliegenden Erfindung dann metallisch, wenn dessen geometrische Oberfläche mindestens zu 10% von metallischen Oberflächen gebildet wird.
Wenn im Rahmen der vorliegenden Erfindung auf die Behandlung von Bauteilen mit Oberflächen von Zink, Eisen oder Aluminium verwiesen wird, so sind damit alle Oberflächen von metallischen Substraten oder metallischen Überzügen umfasst, die das jeweilige Element zu mehr als 50 At.-% enthalten. So bilden verzinkte Stahlsorten erfindungsgemäß Oberflächen von Zink, wohingegen an den Schnittkanten und Durchschliffsteilen beispielsweise einer Automobilkarosse, die allein aus verzinktem Stahl gefertigt ist, erfindungsgemäß Oberflächen von Eisen freigelegt sein können. Erfindungsgemäß weisen die Bauteile der Serie, die zumindest teilweise Oberflächen von Zink aufweisen, vorzugsweise zumindest 5 % bezogen auf die Bauteiloberfläche Oberflächen von Zink auf. Stahlsorten wie warmumgeformter Stahl können auch mit einer mehrere Mikrometer dicken metallischen Beschichtung von Aluminium und Silizium als Verzunderungsschutz und Umformhilfe versehen sein. Ein derartig beschichteter Stahlwerkstoff weist, obwohl der Grundwerkstoff Stahl ist, im Kontext der vorliegenden Erfindung eine Aluminiumoberfläche auf.
Eine korrosionsschützende Behandlung der Bauteile in Serie liegt vor, wenn eine Vielzahl von Bauteilen mit in der in den jeweiligen Behandlungsschritten bereitgestellten und üblicherweise in Systemtanks vorgehaltenen Behandlungslösung in Kontakt gebracht wird, wobei das In-Kontakt-
Bringen der einzelnen Bauteile nacheinander und damit zeitlich voneinander getrennt erfolgt. Der Systemtank ist dabei das Behältnis, in dem sich die Vorbehandlungslösung, zum Zwecke der korrosionsschützenden Behandlung in Serie befindet.
Die Behandlungsschritte der Aktivierung und Zinkphosphatierung erfolgen für ein Bauteil der korrosionsschützenden Behandlung in Serie dann„nacheinander", wenn sie nicht durch eine andere als die jeweils vorgesehene nachfolgende nasschemische Behandlung unterbrochen werden.
Nasschemische Behandlungsschritte im Sinne der vorliegenden Erfindung sind
Behandlungsschritte, die durch In-Kontakt-Bringen des metallischen Bauteils mit einer im
Wesentlich aus Wasser bestehenden Zusammensetzung erfolgen und keine Spülschritte darstellen. Ein Spülschritt dient ausschließlich der vollständigen oder teilweisen Entfernung löslicher Rückstände, Partikel und Wirkkomponenten, die aus einem vorausgegangenem nasschemischen Behandlungsschritt auf dem Bauteil anhaftend verschleppt werden, vom zu behandelnden Bauteil, ohne dass in der Spülflüssigkeit selbst Wirkkomponenten auf Basis metallischer oder halbmetallischer Elemente enthalten sind, die sich bereits durch das bloße In- Kontakt-Bringen der metallischen Oberflächen des Bauteils mit der Spülflüssigkeit verbrauchen. So kann die Spülflüssigkeit lediglich Stadtwasser sein.
Der„pH-Wert", wie im Rahmen der vorliegenden Erfindung verwendet, entspricht dem negativen dekadischen Logarithmus der Hydronium-Ionen Aktivität bei 20 °C und kann mittels pH-sensitiver Glaselektroden bestimmt werden. Eine Zusammensetzung ist demgemäß dann sauer, wenn ihr pH-Wert unterhalb von 7 liegt, und alkalisch, wenn ihr pH-Wert oberhalb von 7 liegt.
Im erfindungsgemäßen Verfahren ist eine Abstimmung der einzelnen Behandlungsschritte Aktivierung und Zinkphosphatierung derart realisiert, dass auf den Zinkoberflächen der metallischen Bauteile im Rahmen der Zinkphosphatierung geschlossene Überzüge entstehen, auf denen keine feinteiligen Bestandteile des Zinkphosphatüberzuges abgeschieden sind. Demgemäß sind in der nachfolgenden Tauchlackierung Beschichtungen verfügbar, die hervorragend auf den erfindungsgemäß behandelten Zinkoberflächen haften. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist der Quotient aus der Konzentration der Phosphate, die im anorganischen partikulären Bestandteil der alkalischen wässrigen Dispersion der Aktivierung enthalten sind, in mmol/kg bezogen auf PO4 zur Summe aus der Konzentration an freiem Fluorid und der Konzentration an Silizium jeweils in der sauren wässrigen Zusammensetzung der Zinkphosphatierung und jeweils in mmol/kg größer als 0,6, besonders bevorzugt größer als 0,7. Die Konzentration an freiem Fluorid in der sauren wässrigen Zusammensetzung der
Zinkphosphatierung ist nach Kalibrierung mit Fluorid-haltigen Pufferlösungen ohne pH-Pufferung mittels einer fluoridsensitiven Messelektrode potentiometrisch bei 20 °C in der jeweiligen sauren
wässrigen Zusammensetzung der Zinkphosphatierung zu bestimmen. Die Konzentration an Silizium in der sauren wässrigen Zusammensetzung der Zinkphosphatierung ist im Filtrat einer Membranfiltration der sauren wässrigen Zusammensetzung, die unter Verwendung einer Membran mit einer nominalen Porengröße von 0,2 μιη erfolgt ist, mittels Atomemissionsspektrometrie (ICP- OES) zu bestimmen.
Der partikuläre Bestandteil der alkalischen wässrigen Dispersion ist derjenige Feststoffanteil, der nach Trocknung des Retentats einer Ultrafiltration eines definierten Teilvolumens der alkalischen wässrigen Dispersion mit einer nominalen Ausschlussgrenze von 10 kD (NMWC, Nominal Molecular Weight Cut Off) verbleibt. Die Ultrafiltration wird unter Zuspeisung von entionisiertem Wasser (κ<1 μ8αττ1) solange durchgeführt, bis im Filtrat eine Leitfähigkeit unterhalb von 10 μ8ϋητ gemessen wird. Der anorganische partikuläre Bestandteil der alkalischen wässrigen Dispersion ist wiederum derjenige, der verbleibt, wenn der aus der Trocknung des Retentats der Ultrafiltration gewonnene partikuläre Bestandteil in einem Reaktionsofen unter Zuführung eines C02-freien Sauerstoffstromes bei 900 °C ohne Beimischung von Katalysatoren oder anderen Zuschlagsstoffen solange pyrolysiert wird, bis ein Infrarot-Sensor im Auslass des Reaktionsofens ein mit dem CO2- freien Trägergas (Blindwert) identisches Signal liefert. Die im anorganischen partikulären
Bestandteil enthaltenen Phosphate werden nach Säureaufschluss desselben mit wässriger 10 Gew.-% HNO3 Lösung bei 25 °C für 15 min als Phosphorgehalt mittels
Atomemissionsspektrometrie (ICP-OES) unmittelbar aus dem Säureaufschluss bestimmt.
Entscheidend für eine Aktivierung ist ebenso, dass die alkalische wässrige Dispersion einen D50 Wert von weniger als 3 μιη aufweist, da anderenfalls nur sehr über sehr hohe und damit nicht wirtschaftliche Anteile an partikulären Bestandteilen eine ausreichende Belegung der
Metalloberflächen mit Partikeln, die Kristallisationskeime für die Zinkphosphatierung darstellen, erfolgen kann. Zudem neigen Dispersionen, deren Partikel durchschnittlich größer sind, zur Sedimentation.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist der D50-Wert der alkalischen wässrigen Dispersion der Aktivierung daher kleiner als 2 μιη, besonders bevorzugt kleiner als 1 μιη, wobei der D90-Wert, vorzugsweise kleiner als 5 μιη ist, so dass mindestens 90 Vol.-% der in der alkalischen wässrigen Zusammensetzung enthaltenden partikulären
Bestandteile diesen Wert unterschreiten.
Der D50-Wert bezeichnet in diesem Zusammenhang den volumenmittleren Teilchendurchmesser den 50 Vol.-% der in der alkalischen wässrigen Zusammensetzung enthaltenden partikulären Bestandteile nicht überschreiten. Der volumenmittlere Teilchendurchmesser kann gemäß ISO 13320:2009 mittels Streulichtanalyse nach der Mie-Theorie aus volumengewichteten kumulativen Partikelgrößenverteilungen als sogenannter D50-Wert unmittelbar in der jeweiligen
Zusammensetzung bei 20 °C bestimmt werden, wobei sphärische Partikel und ein Brechungsindex der streuenden Partikel von nD = 1 ,5240,1 unterstellt werden.
Die Aktivkomponenten der alkalischen Dispersion, die effektiv die Bildung eines geschlossenen Zinkphosphatüberzuges auf den Metalloberflächen des Bauteils in der nachfolgenden
Phosphatierung fördern und in diesem Sinne die Metalloberflächen aktivieren, sind vornehmlich aus Phosphaten zusammengesetzt, die wiederum zumindest teilweise Hopeit, Phosphophyllit, Scholzit und/oder Hureaulith umfassen. Insofern ist eine solche Aktivierung bevorzugt, bei der der Phosphatanteil der anorganischen partikulären Bestandteile der alkalischen wässrigen Dispersion der Aktivierung bei zumindest 30 Gew.-%, besonders bevorzugt bei zumindest 35 Gew.-%, insbesondere bevorzugt bei zumindest 40 Gew.-% berechnet als PC und bezogen auf den anorganischen partikulären Bestandteil der Dispersion liegt.
Eine Aktivierung im Sinne der vorliegenden Erfindung beruht also im Wesentlichen auf den erfindungsgemäß enthaltenden Phosphaten in partikulärer Form, wobei die Phosphate vorzugsweise zumindest teilweise aus Hopeit, Phosphophyllit und/oder Scholzit, besonders bevorzugt auf Hopeit und/oder Phosphophyllit und insbesondere bevorzugt auf Hopeit, zusammengesetzt sind. Die Phosphate Hopeit, Phosphophyllit, Scholzit und/oder Hureaulith können zur Bereitstellung der alkalischen wässrigen Dispersion als fein gemahlene Pulver oder als mit einem Stabilisator verriebene Pulverpaste in eine wässrige Lösung eindispergiert werden. Hopeite umfassen ohne Berücksichtigung von Kristallwasser stöchiometrisch Zn3(P04)2 sowie die Nickel- und Manganhaitigen Varianten Zn2Mn(PÜ4)3, Zn2Ni(P04)3, wohingegen Phosphophyllit aus Zn2Fe(PÜ4)3, Scholzit aus Zn2Ca(P04)3 und Hureaulith aus Mn3(PÜ4)2 besteht. Die Existenz der kristallinen Phasen Hopeit, Phosphophyllit, Scholzit und/oder Hureaulith in der alkalischen wässrigen Dispersion kann nach Abtrennung des partikulären Bestandteils mittels Ultrafiltration mit einer nominalen Ausschlussgrenze von 10 kD (NMWC, Nominal Molecular Weight Cut Off) wie oben beschrieben und Trocknung des Retentats bis zur Massenkonstanz bei 105°C mittels röntgendiffraktometrischer Methoden (XRD) nachgewiesen werden.
Aufgrund der Präferenz für die Anwesenheit von Phosphaten, die Zink4onen umfassen und eine bestimmte Kristallinität aufweisen, sind für die Bildung fest anhaftender kristalliner
Zinkphosphatüberzüge erfindungsgemäß Verfahren bevorzugt, in denen die alkalische wässrige Dispersion der Aktivierung mindestens 20 Gew.-%, vorzugsweise mindestens 30 Gew.-%, besonders bevorzugt mindestens 40 Gew.-% an Zink im anorganischen partikulären Bestandteil der alkalischen wässrigen Dispersion bezogen auf den Phosphatanteil des anorganischen partikulären Bestanteils, berechnet als PÜ4, enthält.
Eine Aktivierung im Sinne der vorliegenden Erfindung soll jedoch nicht mittels kolloidaler Lösungen von Titanphosphaten erzielt werden, da anderenfalls die schichtbildende Zinkphosphatierung auf
Oberflächen von Eisen, insbesondere Stahl, nicht zuverlässig gelingt und der Vorteil dünner effektiv vor Korrosion schützender Phosphatüberzüge auf Aluminium nicht realisiert wird. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist daher der Anteil an Titan im anorganischen partikulären Bestandteil der alkalischen wässrigen Dispersion der Aktivierung vorzugsweise kleiner als 5 Gew.-%, besonders bevorzugt kleiner als 1 Gew.-% bezogen auf den anorganischen partikulären Bestandteil der Dispersion ist. In einer besonders bevorzugten Ausführungsform enthält die alkalische wässrige Dispersion der Aktivierung insgesamt weniger als 10 mg/kg, besonders bevorzugt weniger als 1 mg/kg an Titan.
Für eine hinreichende Aktivierung sämtlicher metallischer Oberflächen ausgewählt aus Zink, Aluminium und Eisen sollte der Anteil der anorganischen partikulären Bestandteile, der Phosphate umfasst, entsprechend angepasst werden. Hierfür ist es allgemein bevorzugt, wenn im
erfindungsgemäßen Verfahren der Anteil der Phosphate im anorganischen partikulären Bestandteil bezogen auf die alkalische wässrige Dispersion der Aktivierung mindestens 40 mg/kg,
vorzugsweise mindestens 80 mg/kg, besonders bevorzugt mindestens 150 mg/kg berechnet als PO4 beträgt. Aus wirtschaftlichen Gründen und für reproduzierbare Beschichtungsergebnisse sollte die Aktivierung mit möglichst verdünnten kolloidalen Lösungen erfolgen. Daher ist bevorzugt, dass der Anteil der Phosphate im anorganischen partikulären Bestandteil bezogen auf die alkalische wässrige Dispersion der Aktivierung geringer als 0,8 g/kg, besonders bevorzugt geringer als 0,6 g/kg, insbesondere bevorzugt geringer als 0,4 g/kg berechnet als PO4 ist.
Für eine gute Aktivierung von Bauteilen, die Zinkoberflächen aufweisen, ist es weiterhin vorteilhaft, wenn die Metalloberflächen während der Aktivierung nur gering gebeizt werden. Gleiches gilt auch für die Aktivierung auf den Oberflächen von Aluminium und Eisen. Gleichzeitig sollten die anorganischen partikulären Bestandteile, insbesondere die unlöslichen Phosphate nur einer geringgradigen Korrosion unterliegen. Demgemäß ist es im erfindungsgemäßen Verfahren bevorzugt, wenn der pH-Wert der alkalischen wässrigen Dispersion in der Aktivierung größer als 8, besonders bevorzugt größer als 9, jedoch vorzugsweise kleiner als 12, besonders bevorzugt kleiner als 1 1 ist.
Der zweite Behandlungsschritt der Zinkphosphatierung folgt der Aktivierung mit oder ohne dazwischenliegendem Spülschritt, unmittelbar, so dass jedes Bauteil der Serie nacheinander die Aktivierung gefolgt von der Zinkphosphatierung ohne dazwischenliegenden nasschemischen Behandlungsschritt durchläuft. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgen zwischen der Aktivierung und der Zinkphosphatierung weder ein Spül- noch ein Trocknungsschritt für die Bauteile der Serie. Ein Trocknungsschritt im Sinne der vorliegenden Erfindung bezeichnet einen Vorgang, bei dem die einen Nassfilm aufweisenden Oberflächen des metallischen Bauteils unter Zuhilfenahme technischer Maßnahmen getrocknet werden sollen, beispielsweise durch Zuführung thermischer Energie oder Überleiten eines Luftstromes.
Die Zinkphosphatierung gelingt, insofern die erfindungsgemäße Abstimmung mit der Aktivierung erfolgt ist, im Regelfall mit konventionellen Phosphatierbädern, die
(a) 5 - 50 g/kg, vorzugsweise 10-25 g/kg an Phosphat-Ionen,
(b) 0,3-3 g/kg, vorzugsweise 0,8-2 g/kg an Zink-Ionen, und
(c) mindestens eine Quelle für freies Fluorid
enthalten. In einer aus umwelthygienischen Gründen bevorzugten Ausführungsform sind insgesamt weniger als 10 ppm an Nickel- und/oder Kobalt-Ionen in der sauren wässrigen Zusammensetzung der Zinkphosphatierung enthalten.
Die Menge an Phosphat-Ionen umfasst erfindungsgemäß die Orthophosphorsäure sowie die in Wasser gelösten Anionen der Salze der Orthophosphorsäure berechnet als PO4.
Der bevorzugte pH-Wert der sauren wässrigen Zusammensetzung der Zinkphosphatierung liegt im erfindungsgemäßen Verfahren oberhalb von 2,5, besonders bevorzugt oberhalb von 2,7, jedoch vorzugsweise unterhalb von 3,5, besonders bevorzugt unterhalb von 3,3. Der Anteil der freien Säure in Punkten beträgt in der sauren wässrigen Zusammensetzung der Zinkphosphatierung vorzugsweise mindestens 0,4, jedoch vorzugsweise nicht mehr als 3, besonders bevorzugt nicht mehr als 2. Der Anteil der freien Säure in Punkten wird bestimmt, indem 10 ml Probevolumen der sauren wässrigen Zusammensetzung auf 50 ml verdünnt und mit 0,1 N Natronlauge bis zu einem pH-Wert von 3,6 titriert werden. Der Verbrauch an ml Natronlauge gibt die Punktzahl freier Säure an.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält die saure wässrige Zusammensetzung der Zinkphosphatierung zusätzlich Kationen der Metalle Mangan, Kalzium und/oder Eisen.
Auch die übliche Additivierung der Zinkphosphatierung kann erfindungsgemäß in analoger Weise durchgeführt werden, so dass die saure wässrige Zusammensetzung die üblichen Beschleuniger wie Wasserstoffperoxid, Nitrit, Hydroxylamin, Nitroguanidin und/oder N-Methylmorpholin-N-Oxid enthalten kann.
Eine Quelle für freie Fluorid-Ionen ist essentiell für den Prozess der schichtbildenden
Zinkphosphatierung auf allen metallischen Oberflächen des Bauteils, die ausgewählt sind aus Oberflächen von Zink, Eisen und/oder Aluminium. Sollen sämtliche Oberflächen der metallischen Materialien der Bauteile, die im Rahmen der Serie behandelt werden, mit einem Phosphatüberzug versehen werden, so ist die Menge der partikulären Bestandteile in der Aktivierung an die für die Schichtbildung in der Zinkphosphatierung erforderliche Menge an freiem Fluorid anzupassen. Sollen neben den Zinkoberflächen als auch die Oberflächen von Eisen, insbesondere Stahl, mit
einem geschlossenen und defektfreien Phosphatüberzug versehen werden, so ist im erfindungsgemäßen Verfahren bevorzugt, wenn die Menge an freiem Fluorid in der sauren wässrigen Zusammensetzung mindestens 0,5 mmol/kg beträgt. Sollen zudem auch Oberflächen von Aluminium mit einem geschlossenen Phosphatüberzug versehen werden, so ist im erfindungsgemäßen Verfahren bevorzugt, wenn die Menge an freiem Fluorid in der sauren wässrigen Zusammensetzung mindestens 2 mmol/kg beträgt. Die Konzentration an freiem Fluorid sollte keine Werte überschreiten, oberhalb derer die Phosphatüberzüge überwiegend Anhaftungen aufweisen, die leicht abwischbar sind, da diese auch durch eine überproportional erhöhte Menge an partikulären Phosphaten in der alkalischen wässrigen Dispersion der Aktivierung nicht vermieden werden können. Daher ist es auch aus wirtschaftlichen Erwägungen vorteilhaft, wenn im erfindungsgemäßen Verfahren die Konzentration an freiem Fluorid in der sauren wässrigen Zusammensetzung der Zinkphosphatierung unterhalb von 8 mmol/kg liegt.
Die Menge an freiem Fluorid ist nach Kalibrierung mit Fluorid-haltigen Pufferlösungen ohne pH- Pufferung mittels einer fluoridsensitiven Messelektrode potentiometrisch bei 20 °C in der jeweiligen sauren wässrigen Zusammensetzung zu bestimmen. Geeignete Quellen für freies Fluorid sind Flusssäure sowie deren wasserlöslichen Salze, wie Ammoniumbifluorid und Natriumfluorid, sowie komplexe Fluoride der Elemente Zr, Ti und/oder Si, insbesondere komplexe Fluoride des Elements Si. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Quelle für freies Fluorid daher ausgewählt aus Flusssäure sowie deren wasserlöslichen Salzen und/oder komplexen Fluoriden der Elemente Zr, Ti und/oder Si. Salze der Flusssäure sind dann wasserlöslich im Sinne der vorliegenden Erfindung, wenn ihre Löslichkeit in entionisiertem Wasser (□<^Scnr1) bei 60°C mindestens 1 g/L berechnet als F beträgt.
Zur Unterdrückung der sogenannten Stippenbildung auf den Zinkoberflächen des Bauteils ist es erfindungsgemäß bevorzugt, wenn die Quelle für freies Fluorid zumindest teilweise ausgewählt ist aus komplexen Fluoriden des Elements Si, insbesondere aus Hexafluorokieselsäure und ihren Salzen. Unter Stippenbildung versteht der Fachmann in der Phosphatierung das Phänomen der lokalen Abscheidung von amorphem, weißem Zinkphosphat in einer ansonsten kristallinen Phosphatschicht auf den behandelten Zinkoberflächen bzw. auf den behandelten verzinkten oder legierungsverzinkten Stahloberflächen. Die Stippenbildung wird dabei hervorgerufen durch eine lokal erhöhte Beizrate des Substrats. Derartige Punktdefekte in der Phosphatierung können Ausgangspunkt für die korrosive Enthärtung nachträglich aufgebrachter organischer Lacksysteme sein, so dass das Auftreten von Stippen in der Praxis weitgehend zu vermeiden ist. Bevorzugt ist in diesem Zusammenhang, wenn die Konzentration an Silizium in Wasser gelöster Form in der sauren wässrigen Zusammensetzung der Zinkphosphatierung mindestens 0,5 mmol/kg, besonders bevorzugt mindestens 1 mmol/kg, beträgt, jedoch vorzugsweise kleiner als 6 mmol/kg, besonders bevorzugt kleiner als 5 mmol/kg, insbesondere bevorzugt kleiner als 4,5 mmol/kg ist. Die
Obergrenzen für die Konzentration an Silizium sind bevorzugt, da oberhalb dieser Werte
Phosphatüberzüge begünstig werden, die überwiegend solche lose Anhaftungen aufweisen, die auch durch eine überproportional erhöhte Menge an partikulären Phosphaten in der alkalischen wässrigen Dispersion der Aktivierung nicht vermieden werden können. Die Konzentration an Silizium in der sauren wässrigen Zusammensetzung in Wasser gelöster Form ist im Filtrat einer Membranfiltration der sauren wässrigen Zusammensetzung, die unter Verwendung einer Membran mit einer nominalen Porengröße von 0,2 μιη erfolgt ist, mittels Atomemissionsspektrometrie (ICP- OES) zu bestimmen.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass in dessen Verlauf auch geschlossene Zinkphosphatüberzüge auf Oberflächen von Aluminium gebildet werden.
Konsequenterweise umfasst die zu behandelnde Serie an Bauteilen im erfindungsgemäßen Verfahren vorzugsweise auch die Behandlung von Bauteilen, die mindestens eine Oberfläche von Aluminium aufweisen. Hierbei ist es unerheblich, ob die Oberflächen von Zink und Aluminium in einem aus entsprechenden Materialien zusammengesetzten Bauteil oder in verschiedenen Bauteilen der Serie realisiert sind.
Im erfindungsgemäßen Verfahren wird ein guter Lackhaftgrund für eine nachfolgende
Tauchlackierung, in deren Verlauf eine im Wesentlichen organische Deckschicht aufgebracht wird, realisiert. Dementsprechend schließt sich in einer bevorzugten Ausführungsform des
erfindungsgemäßen Verfahrens der Zinkphosphatierung mit oder ohne dazwischenliegendem Spül- und/oder Trocknungsschritt, jedoch vorzugsweise mit Spülschritt, aber ohne
Trocknungsschritt, eine Tauchlackierung an, besonders bevorzugt eine Elektrotauchlackierung, insbesondere bevorzugt eine kathodische Elektrotauchlackierung, an.
Ausführungsbeispiele:
Es wurden verzinkte Stahlbleche (HDG) in Zinkphosphatierbädern mit unterschiedlichen Gehalten an freiem Fluorid nach vorheriger Aktivierung mit Dispersionen von partikulären Zinkphosphat behandelt und das Erscheinungsbild der Überzüge unmittelbar nach der Zinkphosphatierung bewertet. Die Tabelle 1 enthält eine Übersicht über die Zusammensetzungen der Aktivierung und der Zinkphosphatierung und die Ergebnisse hinsichtlich der Bewertung der Güte der Überzüge. Die Bleche durchliefen die im Folgenden aufgeführten Verfahrensschritte in der angegebenen Reihenfolge:
A) Reinigung und Entfettung im Spritzen bei 60 °C für 90 Sekunden
25 g/L BONDERITE® C-AK 1565 (Fa. Henkel AG & Co. KGaA)
2 g/L BONDERITE® C-AD 1270 (Fa. Henkel AG & Co. KGaA)
Ansatz mit VE-Wasser (κ<1 μ8αττ1 ); Einstellen des pH-Wertes mit Kalilauge auf 1 1 ,8.
B) Spüle mit VE-Wasser (κ<1 μ8αττ1) bei 20°C für 60 Sekunden
C) Tauchaktivierung bei 20 °C für 60 Sekunden
0,5-3 g/kg enthält 8,4 Gew.-% an Zink in Form von Ζη3(Ρθ4)2*4Η20
200 mg/kg K4P2O7 PREPALENE® X (Fa. Nihon Parkerizing Co., Ltd.)
Ansatz mit VE-Wasser (κ <^Scnr1); Einstellen des pH-Wertes mit H3PO4 auf 10,0.
Der D50 Wert der Dispersion zur Aktivierung betrug 0,25 μιη bei 20 °C bestimmt auf
Basis der statischen Streulichtanalyse gemäß Mie-Theorie nach ISO 13320:2009 mittels Partikelanalysator HORIBA LA-950 (Fa. Horiba Ltd.) unter Annahme eines
Brechungsindexes der streuenden Partikel von n = 1 ,52-i O, 1.
D) Zinkphosphatierung durch Eintauchen bei 50 °C für 180 Sekunden
1 , 1 g/kg Zink
1 ,0 g/kg Mangan
1 ,0 g/kg Nickel
15,7 g/kg Phosphat
2 g/kg Nitrat
Die Zugabe einer Menge einer Quelle für Fluorid erfolgte gemäß Tabelle 1.
Ansatz mit VE-Wasser (κ<1 μ8αττ1 ); Einstellen der freien Säure mit 10 %iger NaOH Freie Säure: 1 ,0 Punkt
Die freie Säure ist bestimmt aus 10 ml Probevolumen verdünnt auf 50 ml mit VE
Wasser und anschließender Titration mit 0, 1 N NaOH bis pH-Wert 3,6, wobei der Verbrauch an Natronlauge in Millilitern der Menge an freie Säure in Punkten entspricht.
Gesamtsäure: 20 Punkte
Die Gesamtsäure ist bestimmt aus 10 ml Probevolumen verdünnt auf 50 ml mit VE Wasser und anschließender Titration mit 0, 1 N NaOH bis zum pH-Wert 8,5, wobei der Verbrauch an Natronlauge in Millilitern der Menge an Gesamtsäure in Punkten entspricht. Natriumnitrit:
2,0 Gaspunkte gemessen im Azotometer nach Zugabe von
Amidosulfonsäure
Spüle mit entionisiertem Wasser (κ<1 μ8αττ1) bei 20°C für 60 Sekunden Trocknen in Umgebungsluft
Anhand der Tabelle 1 wird ersichtlich, dass zufriedenstellende Phosphatüberzüge, die also auf dem verzinktem Stahl keine losen Anhaftungen aufweisen, durch Anpassung der Menge an partikulärem Zinkphosphat in der Aktivierung an die Menge des freien Fluorids und der Hexafluorokieselsäure in der Zinkphosphatierung erzielt werden können. Fällt die Menge an partikulärem Zinkphosphat in der Aktivierung unterhalb des durch die freie Fluoridmenge und der Konzentration an Silizium definierten Wertes, so entstehen zum Teil staubig erscheinende Überzüge (A1-Si-300, A3-Si-600 und A1-F-90), die gänzlich ungeeignet für eine nachfolgende Tauchlackierung sind.
Tabelle 1
die letzten Ziffern nach dem Bindestrich geben die Menge der Quelle für freies Fluorid in mg/kg an
gemessen mit lonenmeter pMX 3000 / Ion (Fa. Xylem Inc.)
in eckigen Klammer die Konzentrationen an partikulären Phosphaten in der Aktivierung sowie an freiem Fluorid und Silizium in der Zinkphosphatierung