WO2018192204A1 - 一种高频感应加热方法 - Google Patents

一种高频感应加热方法 Download PDF

Info

Publication number
WO2018192204A1
WO2018192204A1 PCT/CN2017/109046 CN2017109046W WO2018192204A1 WO 2018192204 A1 WO2018192204 A1 WO 2018192204A1 CN 2017109046 W CN2017109046 W CN 2017109046W WO 2018192204 A1 WO2018192204 A1 WO 2018192204A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
high frequency
frequency induction
workpiece
Prior art date
Application number
PCT/CN2017/109046
Other languages
English (en)
French (fr)
Inventor
仵希敏
Original Assignee
苏州宏创高频加热设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宏创高频加热设备有限公司 filed Critical 苏州宏创高频加热设备有限公司
Publication of WO2018192204A1 publication Critical patent/WO2018192204A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0242Magnetic drives, magnetic coupling devices

Definitions

  • the invention relates to a high frequency induction heating method.
  • a rare earth magnet made of a rare earth element such as a lanthanoid element is called a permanent magnet and is used to drive a motor of a hybrid vehicle, an electric vehicle, or the like, and a motor included in the hard disk and the MRIs.
  • a permanent magnet As an index indicating the performance of the magnet of these rare earth magnets, for example, remanence (remaining magnetic flux density) and coercive force can be used.
  • remanence residual magnetic flux density
  • coercive force can be used.
  • the size of the motor decreases and the current density increases, the amount of heat generation increases, so that the demand for high heat resistance in the rare earth magnet used is further improved. Therefore, one of the important research topics in this technical field is how to maintain the magnetic properties of the magnet when used at high temperatures.
  • the technical solution of the present invention is to design a high frequency induction heating method, which comprises the following steps:
  • Step one mixing Nd2Fe14B powder into the workpiece and sintering
  • Step 2 coating the surface of the workpiece, the composition of the coating comprises 50 to 100 parts by mass of the graphite lubricating fluid, 50 to 53 parts by mass of titanium carbonitride, 10 to 12 parts by mass of silica, 4 to 6 parts by mass of cobalt oxide, 2 ⁇ 4 parts by mass of vanadium oxide and 2 to 4 parts by mass of zinc oxide;
  • step three the workpiece is placed in a high frequency induction heating device for heating.
  • An advantage and an advantageous effect of the present invention resides in a high frequency induction heating method capable of heating an entire area on a surface of a workpiece to a preset temperature during high frequency induction heating.
  • Step one mixing Nd2Fe14B powder into the workpiece and sintering
  • Step 2 coating the surface of the workpiece, the composition of the coating comprises 50 to 100 parts by mass of the graphite lubricating fluid, 50 to 53 parts by mass of titanium carbonitride, 10 to 12 parts by mass of silica, 4 to 6 parts by mass of cobalt oxide, 2 ⁇ 4 parts by mass of vanadium oxide, 2 to 4 parts by mass of oxidation Zinc
  • step three the workpiece is placed in a high frequency induction heating device for heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种高频感应加热方法,包括如下步骤:步骤一,在工件中混入Nd2Fe14B粉末,并烧结;步骤二,在工件表面镀膜,镀膜的成分包括50~100质量份的石墨润滑液,50~53质量份碳氮化钛、10~12质量份二氧化硅、4~6质量份氧化钴、2~4质量份氧化钒、2~4质量份氧化锌;步骤三,将上述工件放入高频感应加热装置内加热。该方法能够在高频感应加热的过程中,将工件表面上的整个区域加热到预设温度。

Description

一种高频感应加热方法 技术领域
本发明涉及一种高频感应加热方法。
背景技术
由稀土元素,如镧系元素制成的稀土磁体被称作永磁体并用于驱动混合动力车辆、电动车等的电机以及包含在硬盘和MRIs中的电机。作为指示这些稀土磁体的磁体性能的指标,例如,可以使用剩磁(剩余磁通密度)和矫顽力。随电机尺寸降低和电流密度提高,发热量提高,因此在所用稀土磁体中对高耐热性的要求进一步提高。因此,这一技术领域中的重要研究课题之一是在高温下使用时如何保持磁体的磁特性。
发明内容
本发明的目的在于提供一种高频感应加热方法,能够在高频感应加热的过程中,将工件表面上的整个区域加热到预设温度。
为了实现上述目的,本发明的技术方案是设计一种高频感应加热方法,其特征在于包括如下步骤:
步骤一,在工件中混入Nd2Fe14B粉末,并烧结;
步骤二,在工件表面镀膜,镀膜的成分包括50~100质量份的石墨润滑液,50~53质量份碳氮化钛、10~12质量份二氧化硅、4~6质量份氧化钴、2~4质量份氧化钒、2~4质量份氧化锌;
步骤三,将上述工件放入高频感应加热装置内加热。
本发明的优点和有益效果在于:一种高频感应加热方法,能够在高频感应加热的过程中,将工件表面上的整个区域加热到预设温度。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例:
一种高频感应加热方法,其特征在于包括如下步骤:
步骤一,在工件中混入Nd2Fe14B粉末,并烧结;
步骤二,在工件表面镀膜,镀膜的成分包括50~100质量份的石墨润滑液,50~53质量份碳氮化钛、10~12质量份二氧化硅、4~6质量份氧化钴、2~4质量份氧化钒、2~4质量份氧化 锌;
步骤三,将上述工件放入高频感应加热装置内加热。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

  1. 一种高频感应加热方法,其特征在于包括如下步骤:
    步骤一,在工件中混入Nd2Fe14B粉末,并烧结;
    步骤二,在工件表面镀膜,镀膜的成分包括50~100质量份的石墨润滑液,50~53质量份碳氮化钛、10~12质量份二氧化硅、4~6质量份氧化钴、2~4质量份氧化钒、2~4质量份氧化锌;
    步骤三,将上述工件放入高频感应加热装置内加热。
PCT/CN2017/109046 2017-04-18 2017-11-02 一种高频感应加热方法 WO2018192204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710251431.9 2017-04-18
CN201710251431.9A CN107170544A (zh) 2017-04-18 2017-04-18 一种高频感应加热方法

Publications (1)

Publication Number Publication Date
WO2018192204A1 true WO2018192204A1 (zh) 2018-10-25

Family

ID=59849472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109046 WO2018192204A1 (zh) 2017-04-18 2017-11-02 一种高频感应加热方法

Country Status (2)

Country Link
CN (1) CN107170544A (zh)
WO (1) WO2018192204A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170544A (zh) * 2017-04-18 2017-09-15 苏州宏创高频加热设备有限公司 一种高频感应加热方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560444A (zh) * 2012-02-17 2012-07-11 湖南航天工业总公司 烧结钕铁硼化学复合镀镍铜磷工艺
CN103611667A (zh) * 2013-11-28 2014-03-05 中国科学院金属研究所 钕铁硼磁体材料表面水性无机有机复合涂层双层防护方法
CN103894587A (zh) * 2014-03-20 2014-07-02 华南理工大学 一种钕铁硼永磁材料及制备方法与磁场辅助直接铸造装置
US20160099104A1 (en) * 2014-10-03 2016-04-07 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnets
CN107170544A (zh) * 2017-04-18 2017-09-15 苏州宏创高频加热设备有限公司 一种高频感应加热方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560444A (zh) * 2012-02-17 2012-07-11 湖南航天工业总公司 烧结钕铁硼化学复合镀镍铜磷工艺
CN103611667A (zh) * 2013-11-28 2014-03-05 中国科学院金属研究所 钕铁硼磁体材料表面水性无机有机复合涂层双层防护方法
CN103894587A (zh) * 2014-03-20 2014-07-02 华南理工大学 一种钕铁硼永磁材料及制备方法与磁场辅助直接铸造装置
US20160099104A1 (en) * 2014-10-03 2016-04-07 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnets
CN107170544A (zh) * 2017-04-18 2017-09-15 苏州宏创高频加热设备有限公司 一种高频感应加热方法

Also Published As

Publication number Publication date
CN107170544A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
Akiya et al. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets
JP6204434B2 (ja) 磁気特性が向上したMnBiを含む異方性複合焼結磁石及びその製造方法
CN104851545B (zh) 一种具有晶界扩散层的永磁材料制备方法
JP2006203173A (ja) 永久磁石の着磁方法
CN104593625A (zh) 一种无稀土MnAl永磁合金的制备方法
TW559837B (en) Magnetic core comprising a bond magnet including magnetic powder whose particle's surface is coated with oxidation-resistant metal
CN105895358A (zh) 一种钕铁硼磁体晶界扩渗的制备方法
CN104505247A (zh) 一种改善钕铁硼磁体性能的固体扩散工艺
Wong et al. Comparison on the coercivity enhancement of sintered NdFeB magnets by grain boundary diffusion with low-melting (Tb, R) 75Cu25 alloys (R= None, Y, La, and Ce)
CN105957673A (zh) 一种各向同性稀土永磁粉及其制备方法
Slusarek et al. Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature
WO2018192204A1 (zh) 一种高频感应加热方法
Wong et al. Comparison on the coercivity enhancement of the sintered NdFeB magnets by grain boundary diffusion with Tb70Cu30 powders prepared by different milling methods
CN106816253A (zh) 一种Mn‑Ga合金磁硬化的方法
Jiang et al. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition
CN103219145B (zh) 一种钐钴与铁钴复合磁体的制备方法
Li et al. Temperature stability of coercivity in mischmetal-Fe-Co-B melt-spun ribbons
JP6596061B2 (ja) 希土類永久磁石材料及びその製造方法
KR102167222B1 (ko) 경화성 조성물
JP2011259593A (ja) インシュレータおよびその形成方法
Dospial et al. Influence of heat treatment on structure and reversal magnetization processes of Sm12. 5Co66. 5Fe8Cu13 alloy
CN103247401A (zh) 一种稀土永磁材料
CN202948801U (zh) 高性能烧结钕铁硼永磁材料
WO2019237424A1 (zh) 永磁材料的稳磁处理方法
Goto et al. Nd-Fe-B sintered magnets fabrication by using atomized powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906701

Country of ref document: EP

Kind code of ref document: A1