WO2018190269A1 - 成膜装置及び成膜方法 - Google Patents

成膜装置及び成膜方法 Download PDF

Info

Publication number
WO2018190269A1
WO2018190269A1 PCT/JP2018/014736 JP2018014736W WO2018190269A1 WO 2018190269 A1 WO2018190269 A1 WO 2018190269A1 JP 2018014736 W JP2018014736 W JP 2018014736W WO 2018190269 A1 WO2018190269 A1 WO 2018190269A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
film
hydroxyl group
film forming
substrate
Prior art date
Application number
PCT/JP2018/014736
Other languages
English (en)
French (fr)
Inventor
亦周 長江
充祐 宮内
芳幸 大瀧
勇輝 重田
真悟 佐守
Original Assignee
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シンクロン filed Critical 株式会社シンクロン
Priority to US16/499,972 priority Critical patent/US20200024723A1/en
Priority to KR1020197030242A priority patent/KR20190128204A/ko
Priority to EP18783637.4A priority patent/EP3611290A1/en
Priority to JP2018559402A priority patent/JP6531230B2/ja
Publication of WO2018190269A1 publication Critical patent/WO2018190269A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Definitions

  • optical films including antireflection films
  • optical materials such as optical lenses and optical filters
  • the optical properties are slightly reduced, the properties of the final product are significantly reduced. For this reason, the improvement of the optical characteristics (for example, light transmittance etc.) of an optical film is desired.
  • Patent Document 1 a technique for forming an antifouling film is known as an example of a functional film by the steps shown below.
  • the method is as follows. First, two or more substrates to be processed are held on the entire surface of the substrate holding surface of the substrate holder, and then the substrate holder is rotated in a vacuum chamber. Next, ions are continuously irradiated to all of the two or more substrates while maintaining the rotation (overall irradiation of ions). Then, the film forming material made of the raw material for forming the antifouling film is evaporated and attached to the entire substrate on which the surface irregularities are formed by ion irradiation (entire supply of the film forming material).
  • the antifouling film can be deposited on the uneven surface of all the substrates in two or more substrates.
  • an antifouling film having abrasion resistance that can withstand practical use can be formed (see paragraph 0029 of Patent Document 1).
  • An object of the present invention is to provide a film forming apparatus and a film forming method for a functional film having high wear resistance and various properties such as water repellency, oil repellency, and antifouling.
  • the introduction mechanism may be capable of introducing two or more kinds of hydroxyl group-containing gas.
  • the introduction mechanism may include a vaporizer capable of vaporizing water, and the vacuum chamber may be connected to the vaporizer via a pipe provided with a vacuum valve. .
  • a gas flow meter may be provided in the pipe.
  • the gas flow meter may be installed between the vacuum valve and the vaporizer.
  • one end of the pipe may be inserted into a lower portion of the vacuum chamber.
  • the thin film may include an antifouling film or a hard film.
  • a film forming method according to the present invention includes a gas supply step for introducing a hydroxyl group-containing gas into a vacuum chamber and a film formation step for forming a thin film on a substrate. The film process is performed simultaneously.
  • a film forming method according to the present invention includes a gas supply step for introducing a hydroxyl group-containing gas into a vacuum chamber, and a film formation step for forming a thin film on a substrate, wherein the gas supply step includes the film formation step. Performed after the process.
  • the film forming method according to the present invention includes a gas supply step of intermittently supplying a hydroxyl group-containing gas to the substrate by moving the substrate, and a film forming step of forming a thin film on the substrate. Good.
  • the film forming method according to the present invention may further include a gas pre-feeding step of introducing a hydroxyl group-containing gas into the vacuum chamber before the film forming step.
  • the hydroxyl group-containing gas may contain at least one gas selected from water vapor and alcohol.
  • two or more kinds of hydroxyl group-containing gas may be introduced.
  • a hydroxyl group-containing gas is introduced into a vacuum chamber up to a first set pressure P1, and the first set pressure P1 is 1 ⁇ 10 ⁇ 3 Pa ⁇ P1 ⁇ 1 ⁇ 10 5 Pa may be set.
  • a hydroxyl group-containing gas is introduced into the vacuum chamber up to a second set pressure P2, and the second set pressure P2 is 1 ⁇ 10 ⁇ 3 Pa. ⁇ P2 ⁇ 2 ⁇ 10 4 Pa may be set.
  • the film forming step may be performed directly after the gas pre-feeding step.
  • the time (t) for introducing the hydroxyl group-containing gas in the gas supply step, may be t ⁇ 60 min.
  • the time (t) for introducing the hydroxyl group-containing gas in the gas pre-supplying step, may be t ⁇ 60 min.
  • the introduction rate of the hydroxyl group-containing gas may be 1 to 10,000 sccm.
  • the film forming method according to the present invention may include a silicon dioxide film forming step of forming silicon dioxide on the substrate before the gas pre-feeding step.
  • the hydroxyl group-containing gas may contain water vapor.
  • the material of the substrate is at least one of glass, sapphire, aluminum, stainless steel, aluminum oxide, PET, polycarbonate (PC), and triacetyl cellulose film (TAC). May be included.
  • the thin film may include an antifouling film or a hard film.
  • the present invention can form a functional film having high wear resistance and having various properties such as water repellency, oil repellency, and antifouling.
  • FIG. 1 is a schematic view of a film forming apparatus provided by an embodiment of the present invention.
  • FIG. 2 is a schematic view of a substrate having a thin film formed by the apparatus shown in FIG.
  • FIG. 3 is a schematic diagram of film formation without a step of introducing a hydroxyl group-containing gas in the prior art.
  • FIG. 4 is a schematic diagram of film formation in the present embodiment when there is a step of introducing a hydroxyl group-containing gas.
  • An exhaust port is provided in the upper part of the vacuum vessel, and an exhaust mechanism is connected by the exhaust port.
  • the exhaust mechanism is connected to the vacuum chamber 100 by an exhaust port, and the inside of the vacuum chamber 100 can be exhausted, and the vacuum container forms the vacuum chamber 100 on the inner wall.
  • the evacuation mechanism may be a vacuum pump.
  • the vacuum pump operates the vacuum pump to set a set pressure (for example, 1 ⁇ 10 ⁇ 4 Pa to 3 ⁇ in the vacuum chamber 100). Exhaust to about 10-2 Pa).
  • a substrate holder is provided above the vacuum chamber 100.
  • the substrate holder (that is, the substrate holding mechanism 101) is held so as to be rotatable about a vertical axis.
  • the substrate holder is formed of a stainless steel member in a dome shape and is connected to an output shaft of a motor (moving mechanism).
  • the bottom surface of the substrate holder is a substrate holding surface, and two or more substrates 300 are supported on the substrate holding surface during film formation.
  • an opening is provided in the center of the substrate holder of the present embodiment, and a crystal monitor can be disposed here.
  • the quartz monitor since the vapor deposition substance (deposition material of the film forming material) is attached to the surface, the resonance frequency changes. Based on the change in the resonance frequency, the film thickness detector detects the physical film thickness formed on the surface of the substrate 300. The detection result of the film thickness is sent to a control device (not shown).
  • An electric heating device (heating means) is disposed above the vacuum chamber 100 so as to wrap the substrate holder from above.
  • the temperature of the substrate holder is detected by a temperature sensor such as a thermocouple, and the result is sent to the control device.
  • the control device controls the open / close state of a shutter of a vapor deposition source, which will be described later, based on the output from the film thickness detector, and suitably controls the film thickness of the film formed on the substrate 300. Further, the control device controls the electric heating device based on the output from the temperature sensor, and suitably manages the temperature of the substrate 300. Further, the control device manages the start and stop of operation of the vapor deposition source.
  • a film forming mechanism 102 is disposed below the vacuum chamber 100.
  • the film forming mechanism 102 may be a vapor deposition source.
  • the deposition source is a resistance heating method (the resistance heating method may be a direct heating method, an indirect heating method, or the like).
  • the vapor deposition source can be opened and closed at a position where the crucible having a concave groove for placing the film forming material on the upper part and the vapor deposited material (film forming material) released in the direction from the crucible to the substrate 300 are all blocked.
  • Has a shutter The shutter is controlled to open and close by a command from the control device.
  • the evaporation source is not limited to the resistance heating method, and may be an electron beam heating method evaporation source.
  • the deposition source is an electron beam heating system
  • the deposition source is provided with an electron gun and an electron that irradiates the film-forming material with an electron beam (e ⁇ ) and evaporates it, except that the same crucible and shutter as described above are provided.
  • a gun power source (all not shown) may be provided.
  • a thin film 301 that may have an (organic) silicon compound is applied (coated) on a substrate 300 after film formation.
  • a thin film 301 is formed by a hydrolytic condensation reaction of a silicon compound described later on the film formation surface of the substrate 300 (the substrate 300 may be transparent), so that the thin film has water repellency and oil repellency.
  • 301 for example, the thin film 301 may be an antifouling film.
  • the antifouling film may include an oleophobic film, an oil repellent film, a hydrophobic film, etc.).
  • the substrate 300 may be any material that can realize antifouling performance by using the thin film 301, and is not particularly limited in the present embodiment.
  • the material of the substrate 300 may include at least one of glass, sapphire, aluminum, stainless steel, aluminum oxide, PET, polycarbonate (PC), and triacetyl cellulose film (TAC).
  • the substrate 300 may be made of a transparent glass material, such as soda lime glass, borosilicate glass, or quartz glass (silica glass). Quartz glass can be employed as a common one.
  • the resin examples include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as carbonate of bisphenol A, and aromatic polyester resins such as polyethylene terephthalate (PET). Of these, PET is preferred. In addition, it is particularly preferable to use glass as the substrate 300 because the abrasion resistance of the glass generated after the treatment with the hydroxyl group-containing gas is remarkably improved as compared with the resin.
  • the introduction mechanism 200 introduces (or feeds) a hydroxyl group-containing gas into the vacuum chamber 100 to form a hydroxyl group for film formation when the thin film 301 is formed on the film formation surface of the substrate 300.
  • the film surface (thin film 301) that resists wear is formed.
  • the introduction mechanism 200 is connected to the vacuum chamber 100 and feeds a hydroxyl group-containing gas into the vacuum chamber 100.
  • the hydroxyl group-containing gas is a gas containing a hydroxyl radical in a vaporized state.
  • the hydroxyl group-containing gas may include at least one of water and alcohol in a gaseous state.
  • alcohol may be a general term for materials having an OH group (for example, methanol, ethanol, isopropanol).
  • the hydroxyl group-containing gas may be an alcohol in a gaseous state.
  • the introduction mechanism 200 can introduce two or more hydroxyl group-containing gases.
  • the gas introduced by the introduction mechanism 200 may be a mixed gas of water vapor, ethanol, or other alcohol gas, or a mixed gas formed by mixing a plurality of types of alcohol gas.
  • the hydroxyl group-containing gas is preferably water vapor.
  • the vacuum valve 203 is provided in the pipe 204 and controls conduction and closing of the pipe 204. By opening and closing the vacuum valve 203, the introduction of the hydroxyl group-containing gas into the vacuum chamber 100 can be controlled.
  • the vacuum valve 203 can control the transfer rate of the hydroxyl group-containing gas by controlling the size of the opening.
  • the introduction direction of the hydroxyl group-containing gas may be a direction facing or facing the direction of the film formation surface of the substrate 300.
  • the film formation surface of the substrate 300 is directed downward in the direction of gravity, it is preferable that the direction in which the hydroxyl group-containing gas enters the vacuum chamber 100 (introduction direction) is introduced upward.
  • the substrate 300 and its film formation surface are positioned so that the introduction direction of the hydroxyl group-containing gas is upwind with respect to the substrate 300 and its film formation surface.
  • the introduction mechanism 200 in the present embodiment is not limited to the above structure. In the present embodiment, the introduction mechanism 200 only needs to be able to introduce a hydroxyl group-containing gas into the vacuum chamber 100.
  • the introduction mechanism 200 can introduce a hydroxyl group-containing gas into the vacuum chamber 100 during or after film formation by the film forming mechanism 102.
  • the hydroxyl group-containing gas may be introduced into the vacuum chamber 100 during or after the film formation.
  • the introduction mechanism 200 introduces (or feeds) a hydroxyl group-containing gas into the vacuum chamber 100 in this step.
  • the coating start or coating end of the thin film 301 is not directly related to the introduction start or introduction end of the hydroxyl group-containing gas.
  • the introduction mechanism 200 includes a hydroxyl group in the vacuum chamber 100 during film formation. What is necessary is just to introduce gas.
  • the introduction start time of the introduction mechanism 200 may be earlier than the coating end time of the thin film 301.
  • the introduction mechanism 200 can introduce (or send in) a hydroxyl group-containing gas into the vacuum chamber 100 in this step.
  • the coating start or coating end of the thin film 301 is not directly related to the introduction start or introduction end of the hydroxyl group-containing gas.
  • the introduction mechanism 200 is placed in the vacuum chamber 100 after the film formation. Can be introduced.
  • the introduction end time of the introduction mechanism 200 only needs to be later than the coating end time of the thin film 301.
  • the film forming apparatus may be further provided with a moving mechanism.
  • This moving mechanism moves the substrate holding mechanism 101 in the vacuum chamber 100 so that the hydroxyl group-containing gas can be intermittently supplied to the substrate 300 twice or more.
  • the hydroxyl group-containing gas since the hydroxyl group-containing gas is consumed in the film formation step, the hydroxyl group-containing gas may be introduced without interruption in the film formation step so that many hydroxyl groups are maintained in the vacuum chamber 100. In the film forming step, the hydroxyl group-containing gas may be intermittently introduced, and is not particularly limited in the present embodiment.
  • the film formation process is performed immediately after the gas pre-supply process.
  • the process proceeds from the gas pre-feed process to the film forming process without interruption.
  • the film forming process is performed immediately after the gas pre-supply process, and no other process exists between the two processes.
  • the film-forming quality of the thin film 301 can be ensured by suitably utilizing the hydroxyl environment formed in the vacuum chamber 100 by the gas pre-supplying step.
  • the density of hydroxyl groups on the film formation surface is increased. Accordingly, the adhesion between the film formation surface and the thin film 301 can be improved, the wiping operation can be repeated repeatedly, the wear resistance is high, and the substrate 300 having an antifouling film can be obtained.
  • the adhesion (adhesion) of the thin film also increases. Furthermore, the chemical quality (corrosion resistance) and UV resistance (ultraviolet resistance) of the thin film Contributes to improvement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は薄膜形成用の成膜装置及び成膜方法を開示している。成膜装置は、真空チャンバーと、真空チャンバーに接続し、排気する排気機構と、真空チャンバー内にて基板を保持する基板保持機構と、真空チャンバー内に配置する成膜機構と、真空チャンバーに接続され、成膜機構にて成膜中に真空チャンバー内に水酸基含有気体を導入可能な導入機構と、を含む。

Description

成膜装置及び成膜方法
 本発明は、光学フィルム及び機能性フィルムなどの各種のフィルムに適した成膜装置及び成膜方法に関する。
 本出願は、2017年4月10日に出願された中国特許出願の201710229298.7に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 光学レンズ及び光学フィルタなどの光学材料に用いられる光学フィルム(反射防止フィルムを含む)の分野では、その光学特性がやや低下すると、最終製品の特性は顕著に低下することになる。このため、光学フィルムの光学特性(例えば、光透過率など)の向上が望まれている。
 また、下記に示される工程により、機能性フィルムの一つの例として防汚フィルムを成膜する技術(特許文献1)が知られている。該方法は以下のとおりである。まず、処理対象である二つ以上の基板を基板ホルダの基板保持面の全面に保持し、その後、該基板ホルダを真空チャンバー内で回転させる。次に、回転を維持した状態で、二つ以上の基板の全部にイオンを連続して照射する(イオンの全面照射)。そして、防汚フィルムの形成原料からなる成膜材料を、イオン照射によって表面凹凸が形成された基板の全部に、蒸発して付着させる(成膜材料の全面供給)。
 以上の工程により、二つ以上の基板における全部の基板の凹凸形成面に防汚フィルムを堆積することができる。該方法を採用すると、実用に耐えうる耐摩耗性を具備する防汚フィルムを形成することができる(特許文献1の第0029段落を参照)。しかし、近年、防汚フィルムに対する耐摩耗性を更に向上させることが望まれている。
特開2010-90454号公報
 本発明は、耐摩耗性を高め撥水、撥油、防汚などの各特性を有する機能性フィルムの成膜装置及び成膜方法を提供することを目的とする。
 [1]本発明に係る成膜装置は、真空チャンバーと、前記真空チャンバーに接続され、排気する排気機構と、前記真空チャンバー内にて基板を保持する基板保持機構と、前記真空チャンバー内に配置される成膜機構と、前記真空チャンバーに接続され、前記成膜機構による成膜中に前記真空チャンバー内に水酸基含有気体を導入可能な導入機構と、を含む。
 [2]本発明に係る成膜装置は、真空チャンバーと、前記真空チャンバーに接続され、排気する排気機構と、前記真空チャンバー内にて基板を保持するための基板保持機構と、前記真空チャンバー内に配置される成膜機構と、前記真空チャンバーに接続され、前記成膜機構による成膜後に前記真空チャンバー内に水酸基含有気体を導入可能な導入機構と、を含む。
 [3]本発明に係る成膜装置は、真空チャンバーと、前記真空チャンバーに接続され、排気する排気機構と、前記真空チャンバー内にて基板を保持するための基板保持機構と、前記真空チャンバー内に配置される成膜機構と、前記真空チャンバーに接続され、前記基板に水酸基含有気体を導入可能な導入機構と、前記真空チャンバー内の基板保持機構を移動させることで前記基板に水酸基含有気体を間欠的に2回以上供給可能にさせる移動機構と、を含む。
 [4]本発明に係る成膜装置において、前記水酸基含有気体は、気体状態にある、水、アルコールの内の少なくとも1種類を含んでもよい。
 [5]本発明に係る成膜装置において、前記導入機構は、2種以上の水酸基含有気体を導入可能としてもよい。
 [6]本発明に係る成膜装置において、前記導入機構は、水を気化可能な気化装置を含み、前記気化装置に、真空バルブが設けられる配管を介して前記真空チャンバーが接続されてもよい。
 [7]本発明に係る成膜装置において、前記配管にガス流量計が設けられてもよい。
 [8]本発明に係る成膜装置において、前記ガス流量計は、前記真空バルブと前記気化装置の間に設置されてもよい。
 [9]本発明に係る成膜装置において、前記配管の一端は、前記真空チャンバーの下部に挿通されもよい。
 [10]本発明に係る成膜装置において、前記薄膜は、防汚フィルム又は硬質膜を含んでもよい。
 [11]本発明に係る成膜方法は、真空チャンバー内に水酸基含有気体を導入するガス供給工程と、基板上に薄膜を成膜する成膜工程と、を含み、前記ガス供給工程と前記成膜工程は同時に行われる。
 [12]本発明に係る成膜方法は、真空チャンバー内に水酸基含有気体を導入するガス供給工程と、基板に薄膜を成膜する成膜工程と、を含み、前記ガス供給工程は前記成膜工程の後に行われる。
 [13]本発明に係る成膜方法は、基板を移動させることで、基板に水酸基含有気体を間欠的に供給するガス供給工程と、基板に薄膜を成膜する成膜工程と、を含んでもよい。
 [14]本発明に係る成膜方法は、前記成膜工程の前に、真空チャンバー内に水酸基含有気体を導入するガス予供給工程を更に含んでもよい。
 [15]本発明に係る成膜方法において、前記水酸基含有気体は、水蒸気、アルコールの内の少なくとも1種のガスを含んでもよい。
 [16]本発明に係る成膜方法において、2種以上の水酸基含有気体を導入してもよい。
 [17]本発明に係る成膜方法において、前記ガス供給工程では真空チャンバー内に水酸基含有気体を第1の設定圧力P1まで導入し、前記第1の設定圧力P1は1×10-3Pa≦P1<1×10Paに設定されてもよい。
 [18]本発明に係る成膜方法において、前記ガス予供給工程では真空チャンバー内に水酸基含有気体を第2の設定圧力P2まで導入し、前記第2の設定圧力P2は1×10-3Pa≦P2≦2×10Paに設定されてもよい。
 [19]本発明に係る成膜方法において、前記ガス予供給工程の直接に前記成膜工程を行ってもよい。
 [20]本発明に係る成膜方法において、ガス供給工程では、前記水酸基含有気体を導入する時間(t)はt≦60minとしてもよい。
 [21]本発明に係る成膜方法において、ガス予供給工程において、前記水酸基含有気体を導入する時間(t)はt≦60minとしてもよい。
 [22]本発明に係る成膜方法において、前記水酸基含有気体を導入する速度は1~10000sccmとしてもよい。
 [23]本発明に係る成膜方法は、前記ガス予供給工程の前、基板上に二酸化ケイ素の成膜を行う二酸化ケイ素成膜工程を含んでもよい。
 [24]本発明に係る成膜方法において、前記水酸基含有気体は水蒸気を含んでもよい。
 [25]本発明に係る成膜方法において、前記基板の材料は、ガラス、サファイア、アルミニウム、ステンレススチール、酸化アルミニウム、PET、ポリカーボネート(PC)、トリアセチルセルロースフィルム(TAC)の内の少なくとも1種を含んでもよい。
 [26]本発明に係る成膜方法において、前記薄膜は、防汚フィルム又は硬質膜を含んでもよい。
 本発明は、耐摩耗性が高く、撥水、撥油、防汚などの各特性を有した機能性フィルムを成膜できる。
図1は本発明のある実施形態により提供された成膜装置の概略図である。 図2は図1に示される装置により成膜された薄膜を有する基板の概略図である。 図3は従来技術における、水酸基含有気体を導入する工程がない成膜の概略図である。 図4は本実施形態における、水酸基含有気体を導入する工程がある場合の成膜の概略図である。
 当業者が本発明における技術内容をより良好に理解するために、以下、本図面を参照し、本実施形態を説明する。説明する実施形態は本発明の全ての形態ではなく、一部の形態にすぎないことが明らかである。
 なお、素子がほかの素子に「設けられる」と称される場合、ほかの素子に直接に位置してもよく、又は真ん中に素子が存在してもよい。一つの素子がほかの素子に「接続される」と考えられる場合、ほかの素子に直接に接続されてもよく、又は真ん中に素子が同時に存在する可能性もある。本文で使用される用語である「垂直な」、「水平な」、「左」、「右」及び類似する記載は説明のためのものに過ぎず、唯一の実施形態であることを表すものではない。
 特に定義のない限り、本文で使用される全ての技術と科学用語は、当業者が一般的に理解する意味と同一である。本文において、本願明細書で使用される用語は、具体的な実施形態を説明することを目的とするだけで、本発明を制限するためではない。本文で使用される用語である「及び/又は」は、一つ又は複数の関連の列記された項目の任意及び全部の組み合わせを含む。
 図1及び図2を参照して、本実施形態により提供された成膜装置の構造概略を説明する。本実施形態において、製膜装置は薄膜301(薄膜は、防汚フィルム又は硬質膜を含んでもよい)を形成するために用いられている。薄膜301を有する基板300はスマートフォン及びタブレット・コンピュータに用いられるタッチスパネル、ディスプレイ、光学素子、衛星装置などに特に適している。成膜装置は、真空チャンバー100と、真空チャンバー100に接続し、排気する排気機構と、真空チャンバー100内にて基板300を保持する基板保持機構101と、真空チャンバー100内に配置される成膜機構102と、真空チャンバー100に接続し、真空チャンバー100内に水酸基含有気体を導入可能な導入機構200と、を含む。
 図1に示すように、本実施形態における成膜装置は真空チャンバー100を含む。真空チャンバー100は真空容器内に設けられる。そのうち、真空容器は公知の成膜装置であり、通常使用されている、略円筒形状を有するステンレススチール製の容器であり、アースに接地される。
 真空容器の上部に排気口が設けられ、排気口によって排気機構が接続される。排気機構は排気口によって真空チャンバー100に接続され、真空チャンバー100内を排気することができ、真空容器は内壁に真空チャンバー100を形成する。
 具体的には、排気機構(不図示)は真空ポンプであってもよく、真空ポンプは、真空ポンプを運転させることによって、真空チャンバー100内に設定圧力(例えば、1×10-4Pa~3×10-2Pa程度)まで排気する。
 真空チャンバー100の上方に基板ホルダが設けられている。基板ホルダ(即ち基板保持機構101)は垂直軸を中心に回転可能に保持されている。基板ホルダはステンレススチール製の部材でドーム状に形成され、モータ(移動機構)の出力軸に接続される。
 基板ホルダの底面は基板保持面であり、成膜時に、基板保持面に二つ以上の基板300が支持される。また、本実施形態の基板ホルダの中心に開口が設けられ、ここで水晶モニタを配設できる。水晶モニタについて、蒸着物質(成膜材料の蒸着物)がその表面に付着されているため、共振周波数が変化する。この共振周波数の変化に基づいて、膜厚検出部にて基板300の表面に形成された物理膜厚を検出する。膜厚の検出結果は制御装置(不図示)に送られる。
 真空チャンバー100の上方に、上方から基板ホルダを包み込むように電気加熱装置(加熱手段)が配設されている。熱電対などの温度センサで基板ホルダの温度が検出され、その結果が制御装置に送られる。
 制御装置は、膜厚検出部からの出力に基づいて後述の蒸着源のシャッターの開閉状態を制御し、基板300上に形成されるフィルムの膜厚を好適に制御する。また、制御装置は温度センサからの出力に基づいて、電気加熱装置を制御し、基板300の温度を好適に管理する。また、制御装置は蒸着源の運転開始及び運転停止を管理する。
 本実施形態において、真空チャンバー100の下方に成膜機構102が配設されている。成膜機構102は蒸着源であってもよい。成膜源の一例として、蒸着源は抵抗加熱方式(抵抗加熱方式は直接加熱方式、間接加熱方式などであってもよい)の蒸着源である。蒸着源は、上部に成膜材料を載置するための凹溝を有する坩堝と、坩堝から基板300への方向に放出される蒸着物(成膜材料)を全部遮断する位置に、開閉可能なシャッターを備えている。シャッターは制御装置からの指令によって開閉制御される。
 蒸着源は抵抗加熱方式に限定されておらず、電子線加熱方式の蒸着源であってもよい。蒸着源が電子線加熱方式である場合、その蒸着源は、上記と同一の坩堝とシャッターを具備する以外、成膜材料に電子線(e-)を照射し、それを蒸発させる電子銃及び電子銃電源(全部不図示)を具備すればよい。
 本実施形態において、成膜後の基板300上に、(有機)ケイ素化合物を有してもよい薄膜301が塗布(被覆)されている。後述のケイ素化合物が基板300(基板300は透明であってもよい)の被成膜面上で加水分解縮合反応を行うことによって、薄膜301が形成され、撥水性と撥油性を有するので、薄膜301(例えば、薄膜301は防汚フィルムであってもよい。そのうち、防汚フィルムは、疎油膜、撥油フィルム、疎水膜などを含んでもよい)の作用を奏する。
 また、例示的に、図3及び図4の比較から分かるように、水酸基含有気体を導入することにより、基板もしくは二酸化ケイ素膜(ケイ素化合物からなる膜)の最表層にOH基(水酸基)を増やし、加水分解後の蒸着材料のOH部分と反応(例えば、脱水縮合反応、加水分解反応)させることによって、更にシラノール(-SiOH)を形成する。それらが分子間の脱水縮合を更に行い、-Si-O-Si-で表されるシロキサン結合を生成することにより、薄膜の密接性(密着性)が増加し、薄膜に優れた耐摩耗性をもたせるとともに、薄膜の耐薬品性(耐食性)、耐UV性(耐紫外線性)などの品質の向上にも貢献する。
 本実施形態において、図2に示すように、基板300は被成膜面を有し、薄膜301はこの被成膜面上に形成されている。そのうち、被成膜面は導入機構200の真空チャンバー100内に形成する水酸基含有環境内に露出することができ、これによって密着で摩耗に耐える薄膜301が形成される。
 基板300は、通常、薄膜301を利用すれば防汚性能を実現できる材質であればよく、本実施形態においては特に限定されない。具体的に、前記基板300の材料は、ガラス、サファイア、アルミニウム、ステンレススチール、酸化アルミニウム、PET、ポリカーボネート(PC)、トリアセチルセルロースフィルム(TAC)の内の少なくとも1種を含んでもよい。好ましくは、基板300は透明なガラス材質であってもよく、例えば、ソーダライムガラス、ボロシリケイトガラス、石英ガラス(シリカガラス)などが挙げられる。常用のものとして、石英ガラスを採用することができる。
 樹脂として、ポリメチルメタクリレートなどのアクリル系樹脂、またはビスフェノールAのカーボネートなどの芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)などの芳香族ポリエステル系樹脂などが挙げられる。そのうち、PETは好ましい。また、樹脂に比べて、水酸基含有気体で処理された後に生じるガラスの耐摩耗性が顕著に向上するので、基板300としては、ガラスを使用することが特に好ましい。
 本実施形態において、導入機構200は真空チャンバー100内に水酸基含有気体を導入する(又は送り込む)ことによって、基板300の被成膜面上に薄膜301を形成する際に、成膜するための水酸基をより多く提供して、摩耗に耐えるフィルム面(薄膜301)を形成する。導入機構200は真空チャンバー100に接続され、真空チャンバー100に水酸基含有気体を送り込む。
 本実施形態において、水酸基含有気体は、気化した状態においてヒドロキシラジカルを含有するガスである。具体的に、水酸基含有気体は、気体状態にある、水、アルコールの内の少なくとも1種類を含んでもよい。そのうち、アルコールはOH基を有する材料(例えば、メタノール、エタノール、イソプロパノール)の総称であってもよい。水酸基含有気体は、気体状態にあるアルコールであってもよい。
 更に、導入機構200は、2種以上の水酸基含有気体を導入可能である。例えば、導入機構200が導入するガスは、水蒸気、エタノール、又は、他のアルコール類ガスの混合ガスであってもよく、複数種のアルコールガスが混合して形成した混合ガスであってもよい。実際には、水蒸気の製造コスト及び材料を取得しやすいという特徴を考慮すると、本実施形態において、水酸基含有気体は水蒸気であることが好ましい。
 水は真空環境(相対真空)で沸点が低いことを考慮すると、理想的には、導入機構200は液状水を真空チャンバー100内に導入してもよい。液状水が真空チャンバー100に入ってから気化して水蒸気を形成し、水酸基含有気体を形成する。
 成膜の品質を向上させるために、図1に示す導入機構200は水を気化可能な気化装置201を含んでもよい。気化装置201は配管204を介して真空チャンバー100に接続される。配管204に真空バルブ203が設けられる。本実施形態において、気化装置201はまず液状水205を気化して水蒸気を形成してから、配管204によって生成した水蒸気を真空チャンバー100内に送り込むことで、真空チャンバー100内で気化現象が生じて真空チャンバー100内の温度に影響を及ぼすことを避ける。
 真空バルブ203は配管204に設けられ、配管204の導通及び閉鎖を制御する。この真空バルブ203の開閉によって、真空チャンバー100内への水酸基含有気体の導入を制御することができる。真空バルブ203は開度の大きさを制御することで、水酸基含有気体の転送速度を制御することができる。
 水酸基含有気体の送り込みを良好に制御するために、配管204にはガス流量計202が更に設けられてもよい。このガス流量計202は、真空チャンバー100内への水酸基含有気体の転送速度を測定できる。気化装置201、ガス流量計202、及び真空バルブ203は配管204によって直列に接続される。ガス流量計202と真空バルブ203との直列接続の順序は、本実施形態では特に限定されない。好ましくは、ガス流量計202は、真空バルブ203と気化装置201との間に設置される。
 導入機構200は配管204によって、真空チャンバー100に水酸基含有気体を導入する際に、水酸基含有気体の導入方向は、基板300の被成膜面の方向に対面または対向する方向であってもよい。通常、基板300の被成膜面は重力方向で下方に向かっているので、水酸基含有気体が真空チャンバー100に入る方向(導入方向)は、上方に向かって導入することが好ましい。このため、基板300及びその被成膜面に対して、水酸基含有気体の導入方向が風上になるように、基板300及びその被成膜面が位置する。当然ながら、本実施形態における導入機構200は上記構造に制限されない。本実施形態において、導入機構200は真空チャンバー100内に水酸基含有気体を導入できればよい。
 図1に示すように、配管204の一端は、真空チャンバー100の下部に挿通する。基板保持機構101は、基板300を真空チャンバー100内の上部に保持する。このような設置によって、配管204から排出された水酸基含有気体が基板300の被成膜面の下方に位置することで、被成膜面は水酸基含有気体に直接に露出することができ、成膜に有利である。当然ながら、配管204の管口(又は排出口)は、基板300に対面して(垂直する必要がなく、おおよそ対面すればよい)設けられてもよく、これによって排出された水酸基含有気体は被成膜面に順調に接触することができる。
 本実施形態における導入機構200は上述した気化装置201に制限されず、導入機構200は生成された水蒸気を真空チャンバー100に直接に導入できる。例えば、導入機構200は、水酸基含有気体(水蒸気)を貯留する貯留タンクに接続される。
 良好な成膜効果を取得して、良好な成膜品質を取得するために、導入機構200は成膜機構102にて成膜中又は成膜後に真空チャンバー100内に水酸基含有気体を導入できる。本実施形態は成膜前に水酸基含有気体を導入するか否かについては特に限定されず、成膜中又は成膜後に真空チャンバー100内に水酸基含有気体を導入すればよい。
 基板300の被成膜面に薄膜301が形成される際に、導入機構200はこの工程において、真空チャンバー100内に水酸基含有気体を導入する(又は送り込む)。薄膜301のコーティング開始又はコーティング終了は、水酸基含有気体の導入開始又は導入終了とは、直接に関連しておらず、本実施形態において、成膜中に導入機構200は真空チャンバー100内に水酸基含有気体を導入できればよい。本実施形態において、導入機構200の導入開始時間は、薄膜301のコーティング終了時間よりも早ければよい。
 また、基板300の被成膜面に薄膜301が形成された後に、導入機構200はこの工程において、真空チャンバー100内に水酸基含有気体を導入する(又は送り込む)ことができる。薄膜301のコーティング開始又はコーティング終了は、水酸基含有気体の導入開始又は導入終了とは、直接に関連しておらず、本実施形態において、成膜後に導入機構200は真空チャンバー100内に水酸基含有気体を導入できればよい。本実施形態において、導入機構200の導入終了時間は、薄膜301のコーティング終了時間よりも遅ければよい。
 本実施形態において、薄膜301の成膜工程は、成膜材料が蒸発された後、被成膜面にコーティングされる工程に相当する。具体的に、薄膜301の成膜工程は、蒸着源の蒸発工程であってもよい。即ち、蒸発源の蒸発中又は蒸発後に、導入機構200は真空チャンバー100内に水酸基含有気体を導入する。当然ながら、蒸着源の蒸発工程はその加熱される時間に関連していることを考慮すると、ほかの実施例において、薄膜301の成膜工程は蒸着源の加熱工程であってもよい。
 本実施形態において、成膜装置は移動機構が更に設けられてもよい。この移動機構は、真空チャンバー100内で基板保持機構101を移動させることにより、基板300に水酸基含有気体を間欠的に2回以上供給可能とさせる。
 基板保持機構101は複数の基板300を保持できる。基板保持機構101には、複数の載置領域が区画され、各領域に基板300が載置されている。通常、基板保持機構101は真空チャンバー100の上方に設置され、導入機構200は真空チャンバー100の下方に水酸基含有気体を導入する。図1に示すように、基板保持機構101は通常「傘形状」であり、蒸着源はその下方に位置する。
 移動機構は基板保持機構101を移動させて、空間的に基板300を移動させることができる。基板保持機構101の移動は平行移動、又は回転移動であってもよく、平行移動と回転移動を共に行ってもよい。基板保持機構101は移動機構によって、空間的に少なくとも1つの方向の自由度で動くことができ、基板300に水酸基含有気体を間欠的に2回以上供給可能である。
 導入機構200は、真空チャンバー100内における水酸基含有気体の排出位置に基板保持機構101に対して動かさない。基板300が基板保持機構101によって移動する工程において、基板300に水酸基含有気体が間欠的に2回以上供給される。このとき、移動機構は、基板保持機構101を循環運動(例えば、往復運動、円周運動)をさせることができる。
 図1に示すように、移動機構は、基板保持機構101を連動して、垂直軸線A-Aの周りに、すなわち垂直軸線A-Aを回転軸として回転させることができる。導入機構200は、真空チャンバー100内における水酸基含有気体の排出位置(例えば、上記配管204の管口)が軸線A-Aから外れるように、設置される。すなわち、導入機構200の排出位置が回転軸と同一線上に並ばないように、導入機構200が真空チャンバー100内に配置されている。基板保持機構101が回転する工程において、基板300の被成膜面に間欠に水酸基含有気体が供給される。移動機構はモータを含んでもよい。基板保持機構101はモータに接続される回転軸を有し、モータの回転により、基板保持機構101が回転する。
 なお、本実施形態において、水酸基含有気体の導入と薄膜301の成膜との順序はどちらを先にしてもよい。水酸基含有気体の導入と成膜を同時に行ってもよく、水酸基含有気体の導入を成膜に先行して行ってもよい。水酸基含有気体の導入を成膜後に行ってもよく、本実施形態はこれについて何ら限定もされない。
 図1及び図2を参照して、本実施形態により提供された成膜方法のステップを説明する。本実施形態において、成膜方法は薄膜301(該薄膜は、防汚フィルム、硬質膜などの薄膜を含んでもよい)を形成するために用いられる。成膜方法は、真空チャンバー100内に水酸基含有気体を導入するガス供給工程と、基板300上に薄膜301の成膜を行う成膜工程、という工程(ステップ)を含む。
 なお、以下に説明する成膜方法は、上記の成膜装置に限らず、他の成膜装置を使用してもよい。
 良好な成膜効果を取得して、良好な成膜品質を取得するために、ガス供給工程を成膜工程と同時に行い、又は成膜工程後に行う。本実施形態において、成膜前に水酸基含有気体を導入するか否かについては特に限定されず、成膜工程と同時に又は成膜後にガス供給工程が行われればよい。
 成膜工程とガス供給工程とを同時に行う実施形態において、基板300の被成膜面に薄膜301が形成される際に、真空チャンバー100内に水酸基含有気体を導入する(又は送り込む)。薄膜301のコーティング開始又はコーティング終了は、水酸基含有気体の導入開始又は導入終了とは、直接に関連しておらず、本実施形態において、成膜中に真空チャンバー100内に水酸基含有気体を導入すればよい。本実施形態において、導入開始時間は、薄膜301のコーティング終了時間よりも早ければよい。
 ガス供給工程を成膜工程の後に行う実施形態において、基板300の被成膜面に薄膜301が形成された後に、導入機構200は、真空チャンバー100内に水酸基含有気体を導入する(又は送り込む)ことができる。薄膜301のコーティング開始又はコーティング終了は、水酸基含有気体の導入開始又は導入終了とは、直接に関連しておらず、成膜後に真空チャンバー100内に水酸基含有気体を導入すればよい。本実施形態において、導入終了時間は、薄膜301のコーティング終了時間よりも遅ければよい。
 また他の実施形態において、成膜方法は、ガス供給工程と成膜工程を含む。具体的に、ガス供給工程は、基板300を移動させることで、基板300に水酸基含有気体を間欠的に供給する工程であり、成膜工程は、基板300に薄膜301を成膜する工程である。
 本実施形態において、ガス供給工程と成膜工程はどちらを先に行ってもよい。ガス供給工程と成膜工程を同時に行ってもよく、ガス供給工程を成膜工程に先行して行ってもよい。当然ながら、ガス供給工程を成膜工程の後に行ってもよく、本実施形態はこれについて何ら限定もされない。
 ガス供給工程において、基板300は空間的に移動することができる。そのうち、基板300の移動は平行移動、回転であってもよく、この両者の結び付けであってもよい。基板300は空間的に少なくとも一つの自由度で動くことができ、前記基板300に水酸基含有気体を間欠的に2回以上供給可能であると考えられる。
 上記実施形態において、薄膜301の成膜工程は、成膜材料が蒸発された後、被成膜面にコーティングされる工程と考えられてもよい。具体的に、薄膜301の成膜工程は、蒸着源の蒸発工程であってもよい。即ち、蒸発源の蒸発工程中又は蒸発後に、真空チャンバー100内に水酸基含有気体が導入される。当然ながら、蒸着源の蒸発工程はその加熱される時間に関連していることを考慮すると、ほかの実施例において、薄膜301の成膜工程は蒸着源の加熱工程であってもよい。
 本実施形態では、ガス供給工程において、真空チャンバー100内に水酸基含有気体を第1の設定圧力P1まで導入する。第1の設定圧力P1は、例えば1×10-3Pa≦P1<1×10Paである。第1の設定圧力で、薄膜301の耐摩耗性を有効に改善して、品質の高い成膜を実現できる。
 上記成膜方法を採用した成膜装置には、真空チャンバー100内の圧力を検出する検出手段が設けられてもよい。この検出手段には、通常、圧力センサが使用される。検出手段は真空チャンバー100内の圧力をリアルタイムに検出することで、検出した圧力に応じて、導入する水酸基含有気体の量をリアルタイムにコントロールする。
 本実施形態では、成膜工程において水酸基含有気体が消耗されていくので、真空チャンバー100内に多くの水酸基を維持するように、成膜工程において、水酸基含有気体は途切れなく導入されてもよい。成膜工程において、水酸基含有気体を断続的に導入してもよく、本実施形態では特に制限されない。
 なお、ガス供給工程において、水酸基含有気体による圧力は一定圧力であってもよく、設定の範囲内で変更してもよい。成膜工程からガス供給工程に移行する際に、圧力を変更してもよく、圧力を一定に維持してもよく、また成膜工程とガス供給工程との間には所定の時間が設けられてもよい。
 本実施形態において、水酸基含有気体は、気化した状態においてヒドロキシラジカルを含有するガスである。水酸基含有気体は、気体状態にある、水、アルコールの内の少なくとも1種類を含んでもよい。アルコールとは、OH基を有する材料(例えば、メタノール、エタノール、イソプロパノールなど)の総称であってもよい。
 更に、ガス供給工程において、2種以上の水酸基含有気体が導入される。例えば、ガス供給工程において導入するガスは、水蒸気、気体状態にあるエタノール又は他のアルコール類ガスの混合ガスであってもよく、複数種のアルコールガスが混合して形成された混合ガスであってもよい。水蒸気の製造コスト及び材料の取得しやすいという特徴を考慮すると、水酸基含有気体は水蒸気であることが好ましい。
 発明者は試験において、ガスを導入する速度により、成膜の品質及び速度が同様に影響することを発見した。良好な成膜効果を取得するために、ガス供給工程において、水酸基含有気体を導入する時間tはt≦60minである。更に、水酸基含有気体を導入する速度は1~10000sccmである。
 本実施形態に係る成膜方法は、成膜工程の前に、真空チャンバー100内に水酸基含有気体を予め(成膜工程の前に予め)導入するガス予供給工程をさらに含んでもよい。ガス予供給工程を含めることによって、成膜前に(蒸着源を加熱する前に又は成膜材料を蒸発する前に)真空チャンバー100内の水酸基の含有量を向上させることができる。これによって、基板300の被成膜面に利用可能な水酸基をより多く形成し、成膜開始時に成膜するための水酸基を十分に具備することができ、更に、薄膜301の品質を一層向上させることができる。
 成膜の品質を向上させるために、ガス予供給工程において、真空チャンバー100内に水酸基含有気体を第2の設定圧力P2まで導入する。第2の設定圧力P2は1×10-3Pa≦P2≦2×10Paであってもよい。
 ガス予供給工程の直後に成膜工程を行う。この場合には、ガス予供給工程から成膜工程に途切れなく移行している。つまり、ガス予供給工程を実行した後直ちに成膜工程を実行し、この両工程の間には他の工程が存在しない。これにより、ガス予供給工程により真空チャンバー100内に形成された水酸基環境を好適に利用して、薄膜301の成膜品質を保証することができる。
 ガス予供給工程において、水酸基含有気体を導入する時間はt≦60minである。ガス予供給工程の前、基板300上に二酸化ケイ素の成膜を行う二酸化ケイ素成膜工程を更に含む。二酸化ケイ素膜は水酸基含有気体により提供された水酸基を良好に利用して、蒸発後の成膜材料と相互に作用する。これによって、二酸化ケイ素膜の外面に耐摩耗性が良好な薄膜301を形成できる。
 上記実施形態において、図4に示すように、薄膜301は下記の工程によって形成される。即ち、上記加水分解性ケイ素化合物の加水分解性シリルは加水分解によってシラノール基になり、更に分子間で脱水縮合を行い、-Si-O-Si-で示されるシロキサン結合を生成する。得られた薄膜301において、シロキサン結合のケイ素原子に結合された上記含フッ素有機基(例示)は、ほとんど基板300とは反対側である薄膜301の表面近傍に存在する。含フッ素有機基の作用によって、撥水性及び撥油性を有することができる。また、上記生成したシラノール基は、被成膜面の水酸基(基板300-OH)と脱水縮合反応を行って化学結合を形成することによって、密着点(基板-O-Si)を形成する。
 ここで、上記工程によって被成膜面で形成された薄膜301を有する基板300において、被成膜面の水酸基の密度を高くする。これにより被成膜面と薄膜301との密着性を向上させることができ、繰り返し払拭操作などに耐えることができ、耐摩耗性が高く、防汚フィルムを有する基板300を得ることができる。同時に、被成膜面の水酸基の密度の増加により、薄膜の密接性(密着性)も増加し、更に、薄膜の耐薬品性(耐食性)、耐UV性(耐紫外線性)などの総合品質の向上にも寄与する。
 得られた防汚フィルムを有する基板300の耐摩耗性を高いレベルに引き上げることについて、詳しいメカニズムは明確ではないが、本実施形態において、上記処理によって、被成膜面の水酸基の密度が上昇し、基板300と薄膜301との密着点が増やすことによって、耐摩耗性が向上されると考えられる。また、水酸基の密度が増加する原因は、水分子の存在によって新しい水酸基の生成が誘起されるなどと考えられてもよい。
 上記効果は下記の試験において同様に検証された。
基板300を上記実施形態によって成膜処理を行い、薄膜301を有する基板300(実施例)が得られた。同様の基板を成膜工程のみによって成膜処理を行い、薄膜301を有する基板300(比較例)が得られた。そして、実施例の薄膜301を有する基板300と、比較例の薄膜301を有する基板300とに対して、耐摩耗性試験を行った。
 この耐摩耗性試験では、材料が同一、形状が同一のスチールウール(steel wool)で、SW試験機で同じ付勢力及び同じ摩擦回数で摩擦を、実施例の基板300及び比較例の基板300に与えて、それぞれの基板300を評価した。試験の条件は下記の表に示される。
Figure JPOXMLDOC01-appb-T000001
 
 試験終了後、上記実施例及び比較例の薄膜301の水接触角を測定する。
結果は下記の表に示される。
Figure JPOXMLDOC01-appb-T000002
 
 上記の試験結果から分かるように、上記実施形態により提供された成膜装置及び成膜方法は、撥水性及び撥油性などの性能を有することで、優れた防汚性又は撥油性を取得し、且つ繰り返し払拭操作などに対して防汚性の低下を抑制でき、耐摩耗性に優れた基板を提供することができる。
 デジタル値は、いずれも下限値ないし上限値の間の、1単位で逓増する下値と上値という全ての値を含み、任意の下値と任意のより高い値の間に、少なくとも2単位の間隔が存在すればよい。例えば、一つの部品の数量又はプロセス変数(例えば、温度、圧力、時間など)の値が1~90、好ましくは20~80、より好ましくは30~70であると述べると、該明細書には、例えば15~85、22~68、43~51、30~32などの値も明確に列挙されることを説明することを目的とする。1未満の値について、1単位が0.0001、0.001、0.01、0.1であると適切に考えられる。これらは明確に表現するための例示に過ぎず、最低値と最高値の間に列挙される数値の全ての可能な組み合わせは、ともに類似の方式で該明細書で明確に述べられていると考えられることができる。
 特に説明のない限り、全ての範囲はエンドポイント及びエンドポイントの間の全ての数字を含む。範囲とともに使用される「約」又は「ほぼ」は、該範囲の二つのエンドポイントに適用可能である。従って、「約20~30」は、「約20~約30」を覆うことを図り、少なくとも明示されたエンドポイントを含む。
 開示された全ての文章及び参考資料(特許出願と出版物を含む)は、種々の目的のために引用によってここに記載されている。組み合わせを説明するための用語である「基本的に…からなる」は、確定した素子、成分、部品又はステップ及び実質的に該組み合わせの基本的な新規性要件に影響を及ぼさないほかの素子、成分、部品又はステップを含むと考えられる。用語である「含む」又は「含める」などでここの素子、成分、部品又はステップの組合せを説明することについて、基本的にこれらの素子、成分、部品又はステップからなる実施形態も考えられる。ここで、用語である「できる(であってもよい、可能)」を使用することによって、含む「できる(であってもよい、可能)」説明したいかなる属性も選択可能であると説明することを図る。
 複数の素子、成分、部品又はステップは単独な集積素子、成分、部品又はステップによって提供されることができる。又は、単独な集積素子、成分、部品又はステップは分離した複数の素子、成分、部品又はステップに分けることができる。素子、成分、部品又はステップを説明するために開示した「ある」又は「一つ」は、ほかの素子、成分、部品又はステップを除外するものではない。
 以上の説明は制限するためのものではなく、図は説明するためのものであると考えられることができる。
 100…真空チャンバー
 101…基板保持機構
 200…導入機構
 201…気化装置
 202…ガス流量計
 203…真空バルブ
 204…配管
 300…基板
 301…薄膜
 

Claims (26)

  1.  薄膜形成用の成膜装置であって、
     真空チャンバーと、
     前記真空チャンバーに接続され、排気する排気機構と、
     前記真空チャンバー内にて基板を保持する基板保持機構と、
     前記真空チャンバー内に配置される成膜機構と、
     前記真空チャンバーに接続され、前記成膜機構による成膜中に前記真空チャンバー内に水酸基含有気体を導入可能な導入機構と、を含むことを特徴とする成膜装置。
  2.  薄膜形成用の成膜装置であって、
     真空チャンバーと、
     前記真空チャンバーに接続され、排気する排気機構と、
     前記真空チャンバー内にて基板を保持する基板保持機構と、
     前記真空チャンバー内に配置される成膜機構と、
     前記真空チャンバーに接続され、前記成膜機構による成膜後に前記真空チャンバー内に水酸基含有気体を導入可能な導入機構と、を含むことを特徴とする成膜装置。
  3.  薄膜形成用の成膜装置であって、
     真空チャンバーと、
     前記真空チャンバーに接続され、排気する排気機構と、
     前記真空チャンバー内にて基板を保持する基板保持機構と、
     前記真空チャンバー内に配置される成膜機構と、
     前記真空チャンバーに接続され、前記基板に水酸基含有気体を導入可能な導入機構と、
     前記真空チャンバー内の基板保持機構を移動させることで前記基板に水酸基含有気体を間欠的に2回以上供給可能にする移動機構と、を含むことを特徴とする成膜装置。
  4.  前記水酸基含有気体は、気体状態にある、水、アルコールの内の少なくとも1種類を含むことを特徴とする請求項1~3のいずれか1項に記載の成膜装置。
  5.  前記導入機構は、2種以上の水酸基含有気体を導入可能であることを特徴とする請求項4に記載の成膜装置。
  6. 前記導入機構は、水を気化可能な気化装置を含み、前記気化装置に、真空バルブが設けられる配管を介して前記真空チャンバーが接続されることを特徴とする請求項1~3のいずれか1項に記載の成膜装置。
  7.  前記配管にガス流量計が設けられることを特徴とする請求項6に記載の成膜装置。
  8.  前記ガス流量計は、前記真空バルブと前記気化装置の間に設置されることを特徴とする請求項7に記載の成膜装置。
  9.  前記配管の一端は、前記真空チャンバーの下部に挿通することを特徴とする請求項8に記載の成膜装置。
  10.  薄膜は、防汚フィルム又は硬質膜を含むことを特徴とする請求項1~3のいずれか1項に記載の成膜装置。
  11.  真空チャンバー内に水酸基含有気体を導入するガス供給工程と、
     基板上に薄膜を成膜する成膜工程と、を含み、
     前記ガス供給工程と前記成膜工程は同時に行われることを特徴とする成膜方法。
  12.  真空チャンバー内に水酸基含有気体を導入するガス供給工程と、
     基板に薄膜を成膜する成膜工程と、を含み、
     前記ガス供給工程は前記成膜工程の後に行われることを特徴とする成膜方法。
  13.  基板を移動させることで、基板に水酸基含有気体を間欠的に供給するガス供給工程と、
     基板に薄膜を成膜する成膜工程と、を含むことを特徴とする成膜方法。
  14.  前記成膜工程の前に、真空チャンバー内に水酸基含有気体を予め導入するガス予供給工程を含むことを特徴とする請求項11~13のいずれか1項に記載の方法。
  15.  前記水酸基含有気体は、水蒸気、アルコールの内の少なくとも1種のガスを含むことを特徴とする請求項11~13のいずれか1項に記載の方法。
  16.  前記ガス供給工程において、2種以上の水酸基含有気体を導入することを特徴とする請求項15に記載の方法。
  17.  前記ガス供給工程において、真空チャンバー内に水酸基含有気体を第1の設定圧力P1まで導入し、前記第1の設定圧力P1は1×10-3Pa≦P1<1×10Paであることを特徴とする請求項11~13のいずれか1項に記載の方法。
  18.  前記ガス予供給工程において、真空チャンバー内に水酸基含有気体を第2の設定圧力P2まで導入し、前記第2の設定圧力P2は1×10-3Pa≦P2≦2×10Paであることを特徴とする請求項14に記載の方法。
  19.  前記ガス予供給工程の直後に前記成膜工程を行うことを特徴とする請求項18に記載の方法。
  20.  前記ガス供給工程において、前記水酸基含有気体を導入する時間(t)はt≦60minであることを特徴とする請求項11~13のいずれか1項に記載の方法。
  21.  前記ガス予供給工程において、前記水酸基含有気体を導入する時間(t)はt≦60minであることを特徴とする請求項14に記載の方法。
  22.  前記水酸基含有気体を導入する速度は1~10000sccmであることを特徴とする請求項11~13のいずれか1項に記載の方法。
  23.  前記ガス予供給工程の前、基板上に二酸化ケイ素の成膜を行う二酸化ケイ素成膜工程を含むことを特徴とする請求項14に記載の方法。
  24.  前記水酸基含有気体は水蒸気であることを特徴とする請求項11~13のいずれか1項に記載の方法。
  25.  基板の材料は、ガラス、サファイア、アルミニウム、ステンレススチール、酸化アルミニウム、PET、ポリカーボネート(PC)、トリアセチルセルロースフィルム(TAC)の内の少なくとも1種を含むことを特徴とする請求項11~13のいずれか1項に記載の方法。
  26.  前記薄膜は、防汚フィルム又は硬質膜を含むことを特徴とする請求項11~13のいずれか1項に記載の方法。
     
PCT/JP2018/014736 2017-04-10 2018-04-06 成膜装置及び成膜方法 WO2018190269A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/499,972 US20200024723A1 (en) 2017-04-10 2018-04-06 Film formation device and film formation method
KR1020197030242A KR20190128204A (ko) 2017-04-10 2018-04-06 성막 장치 및 성막 방법
EP18783637.4A EP3611290A1 (en) 2017-04-10 2018-04-06 Film formation device and film formation method
JP2018559402A JP6531230B2 (ja) 2017-04-10 2018-04-06 成膜装置及び成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710229298.7 2017-04-10
CN201710229298.7A CN108690954B (zh) 2017-04-10 2017-04-10 成膜装置及成膜方法

Publications (1)

Publication Number Publication Date
WO2018190269A1 true WO2018190269A1 (ja) 2018-10-18

Family

ID=63793476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014736 WO2018190269A1 (ja) 2017-04-10 2018-04-06 成膜装置及び成膜方法

Country Status (7)

Country Link
US (1) US20200024723A1 (ja)
EP (1) EP3611290A1 (ja)
JP (1) JP6531230B2 (ja)
KR (1) KR20190128204A (ja)
CN (1) CN108690954B (ja)
TW (1) TWI736757B (ja)
WO (1) WO2018190269A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265288A (zh) * 2019-06-05 2019-09-20 深圳市华星光电技术有限公司 一种在基板上制备二氧化硅膜的方法及装置、阵列基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143277A (ja) * 1990-10-05 1992-05-18 Fujitsu Ltd 水蒸気供給方法及び水蒸気供給装置
JP2010090454A (ja) 2008-10-09 2010-04-22 Shincron:Kk 成膜方法
JP2011526833A (ja) * 2008-06-30 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー 無機又は無機/有機ハイブリッドバリアフィルムの製造方法
JP2012254579A (ja) * 2011-06-09 2012-12-27 Oike Ind Co Ltd ガスバリアフィルムの製造方法及びガスバリアフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390882B2 (ja) * 1997-12-10 2009-12-24 大日本印刷株式会社 透明バリアフィルム、それを使用した積層材および包装用容器
JP5307072B2 (ja) * 2009-06-17 2013-10-02 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
CN102345111B (zh) * 2010-07-29 2015-03-04 东京毅力科创株式会社 成膜方法和成膜装置
FR2989691B1 (fr) * 2012-04-24 2014-05-23 Commissariat Energie Atomique Reacteur pour le depot de couche atomique (ald), application a l'encapsulage d'un dispositif oled par depot de couche transparente en al2o3.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143277A (ja) * 1990-10-05 1992-05-18 Fujitsu Ltd 水蒸気供給方法及び水蒸気供給装置
JP2011526833A (ja) * 2008-06-30 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー 無機又は無機/有機ハイブリッドバリアフィルムの製造方法
JP2010090454A (ja) 2008-10-09 2010-04-22 Shincron:Kk 成膜方法
JP2012254579A (ja) * 2011-06-09 2012-12-27 Oike Ind Co Ltd ガスバリアフィルムの製造方法及びガスバリアフィルム

Also Published As

Publication number Publication date
JPWO2018190269A1 (ja) 2019-04-18
KR20190128204A (ko) 2019-11-15
EP3611290A1 (en) 2020-02-19
US20200024723A1 (en) 2020-01-23
CN108690954B (zh) 2021-03-23
CN108690954A (zh) 2018-10-23
TWI736757B (zh) 2021-08-21
JP6531230B2 (ja) 2019-06-12
TW201903194A (zh) 2019-01-16

Similar Documents

Publication Publication Date Title
JP2007332433A (ja) 真空蒸着装置
US6142097A (en) Optical membrane forming apparatus and optical device produced by the same
CN1891848A (zh) 光学镀膜装置
KR100791142B1 (ko) 기판 코팅 장치
TWI437111B (zh) 蒸鍍構件、薄膜沉積裝置及提供原料予其裝置之方法
JP4906014B1 (ja) 成膜方法及び成膜装置
WO2018190269A1 (ja) 成膜装置及び成膜方法
JP4877510B2 (ja) イオンプレーティング用蒸発源材料の原料粉末、イオンプレーティング用蒸発源材料及びその製造方法、及びガスバリア性シートの製造方法
KR101925111B1 (ko) 박막 증착 장치 및 이를 이용한 박막 증착 방법
KR100624767B1 (ko) 유기물의 연속증착장치
Drabik et al. Composite TiOx/hydrocarbon plasma polymer films prepared by magnetron sputtering of TiO2 and poly (propylene)
TW533228B (en) Hardcoats for flat panel display substrates
JP5923276B2 (ja) 表面コーティング方法及びその装置
JP2004107788A (ja) シリコン酸化薄膜またはチタン酸化薄膜の製造方法
US20100059367A1 (en) Sputter-coating apparatus
KR101028044B1 (ko) 소스가스 공급장치
TW201523644A (zh) 用於使抗指紋塗層退火之設備及方法
JP2007277645A (ja) 蒸着装置、蒸着方法および無機配向膜の形成方法
JPH05239243A (ja) 物体の表面処理方法
CN109841510A (zh) 蚀刻方法和蚀刻装置
WO2021075384A1 (ja) 成膜方法及び成膜装置
JPH10121223A (ja) 真空装置及びその製造方法
JP5206111B2 (ja) イオンプレーティング用蒸発源材料の原料粉末、イオンプレーティング用蒸発源材料及びその製造方法、ガスバリア性シートの製造方法
WO2022255179A1 (ja) 複合膜の製造方法、及び有機無機ハイブリッド膜の製造方法
KR20090130459A (ko) 투명산화물박막과 실리콘계화합물을 포함하는 투습방지막이구비된 기판 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559402

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030242

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018783637

Country of ref document: EP

Effective date: 20191111