WO2018189914A1 - 触感提供装置、及び、シミュレーションシステム - Google Patents

触感提供装置、及び、シミュレーションシステム Download PDF

Info

Publication number
WO2018189914A1
WO2018189914A1 PCT/JP2017/015403 JP2017015403W WO2018189914A1 WO 2018189914 A1 WO2018189914 A1 WO 2018189914A1 JP 2017015403 W JP2017015403 W JP 2017015403W WO 2018189914 A1 WO2018189914 A1 WO 2018189914A1
Authority
WO
WIPO (PCT)
Prior art keywords
tactile sensation
vibrators
housing
vibrator
article
Prior art date
Application number
PCT/JP2017/015403
Other languages
English (en)
French (fr)
Inventor
谷中 聖志
井谷 司
遠藤 康浩
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2019512171A priority Critical patent/JPWO2018189914A1/ja
Priority to PCT/JP2017/015403 priority patent/WO2018189914A1/ja
Publication of WO2018189914A1 publication Critical patent/WO2018189914A1/ja
Priority to US16/559,725 priority patent/US20190391654A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators

Definitions

  • the present invention relates to a tactile sensation providing apparatus and a simulation system.
  • a stator having a coil, a mover having a permanent magnet, and a magnetic field generated by the coil corresponding to an input current to the coil and a magnetic action of the permanent magnet can be used to vibrate the mover.
  • the vibration generator including the stator and the elastic body that connects the mover, the vibration generator further includes a voltage input unit that inputs a pulse voltage corresponding to the natural period of the mover to the coil.
  • a characteristic vibration generator see, for example, Patent Document 1.
  • the conventional vibration generator vibrates one movable element (vibrator) so that a partial acceleration is generated.
  • the movable element In order to vibrate so that the partial acceleration is generated by one movable element, the movable element cannot be resonated, and therefore, it is necessary to vibrate with a very large amplitude. That is, the conventional vibration generator requires a large amount of electric power to generate a force sense (tactile sensation) given to the user, and is not efficient.
  • a tactile sensation providing apparatus includes a housing and N (N is an integer of 2 or more) vibrators that are attached to the housing, have different resonance frequencies, and vibrate the housing. And a drive control unit that simultaneously drives the N vibrators with N drive signals that vibrate the N vibrators in a resonance state, and the N drive signals are the N drive signals.
  • This is a drive signal that causes the casing to generate reciprocal vibrations in which the speeds of the first direction and the second direction opposite to the first direction are different by simultaneously driving the vibrators.
  • FIG. It is a figure which shows the simulation result at the time of making the phase difference of force into 0 with a simple model.
  • a simple model it is a figure which shows the time change of the force which arises in the permanent magnet of a vibrator
  • a simple model it is a figure which shows the simulation result in the case of driving only a vibrator
  • FIG. 1 is a diagram illustrating a simulation system according to a first embodiment. 1 is a perspective view of a computer system to which a processing apparatus according to a first embodiment is applied. It is a block diagram explaining the structure of the principal part in the main-body part of a computer system. It is a figure which shows article
  • ⁇ Embodiment> 1 and 2 are diagrams illustrating a tactile sensation providing apparatus 100 according to an embodiment.
  • description will be made using an XYZ coordinate system which is an example of an orthogonal coordinate system.
  • the tactile sensation providing apparatus 100 includes a housing 110, vibrators 120-1, 120-2, 120-3, and a drive control unit 140.
  • FIG. 1 shows the overall configuration of the tactile sensation providing apparatus 100
  • FIG. 2 shows the internal configurations of the vibrators 120-1, 120-2, 120-3 and the drive control unit 140.
  • the housing 110 is a housing of the tactile sensation providing apparatus 100, and is a part that a user of the tactile sensation providing apparatus 100 has by hand.
  • Vibrators 120-1, 120-2, and 120-3 are fixed to the casing 110.
  • the case 110 is a member made of a rectangular parallelepiped resin or the like, and the vibrators 120-1, 120-2, and 120-3 are fixed to the outer surface of the case 110.
  • the vibrators 120-1, 120-2, and 120-3 may be provided inside the casing 110, or may be configured so that a part thereof is arranged inside the casing 110. .
  • the mass of the casing 110 is about 10 to about 100 times the mass of the vibrators 120-1, 120-2, and 120-3. For this reason, when the vibrators 120-1, 120-2, and 120-3 each having a unique resonance mode are driven one by one, the housing 110 is connected to each of the vibrators 120-1, 120-2, and 120-3. Resonates in a state close to the resonance. Therefore, when the vibrators 120-1, 120-2, and 120-3 are vibrated simultaneously at the respective resonance frequencies, the casing 110 is vibrated by combining three resonances.
  • the housing 110 is gripped by the user's thumb A and index finger B.
  • the tactile sensation providing apparatus 100 is held by the user by gripping the side surface on the Y axis positive direction side and the side surface on the Y axis negative direction side of the housing 110 by the thumb A and the index finger B.
  • a mode in which both side surfaces of the housing 110 are gripped with the thumb A and the index finger B will be described.
  • the user may grip the housing 110 with a finger other than the thumb A and the index finger B.
  • both side surfaces of the housing 110 may be gripped by the palms of both hands.
  • the vibrator 120-1 includes a housing 121, a spring 122, a permanent magnet 123, a damper 124, and an electromagnetic coil 125.
  • the vibrators 120-1, 120-2, and 120-3 are each driven in a unique resonance state.
  • the ratio of the resonance frequencies of the vibrators 120-1, 120-2, 120-3 is set to 1: 2: 3.
  • the housing 121 is, for example, a cylindrical metal or resin hollow member. Inside the casing 121, a spring 122, a permanent magnet 123, a damper 124, and an electromagnetic coil 125 are disposed.
  • the spring 122 has one end fixed to the inner wall of the casing 121 and the other end fixed to the permanent magnet 123.
  • the end fixed to the inner wall of the spring 122 is a fixed end, and the end fixed to the opposite permanent magnet 123 is a free end.
  • the permanent magnet 123 is attached to the end (free end) of the spring 122.
  • the south pole is located on the spring 122 side
  • the north pole is located on the side opposite to the spring 122 (side closer to the electromagnetic coil 125).
  • the damper 124 is provided between the inner wall of the housing 121 and the permanent magnet 123 in parallel with the spring 122. Both ends of the damper 124 are fixed to the inner wall of the housing 121 and the permanent magnet 123, respectively, and damp the vibration of the spring 122.
  • the damper 124 for example, an oil damper or a gas-filled damper can be used.
  • the electromagnetic coil 125 attracts the permanent magnet 123 in the X-axis positive direction when a current is supplied (turned on) from a drive control unit (not shown). In this state, the spring 122 is extended in the positive direction of the X axis. In a state where no current is supplied to the electromagnetic coil 125 (off state), the permanent magnet 123 is pulled back in the X-axis negative direction by the contraction force of the spring 122. For this reason, the permanent magnet 123 can be reciprocated in the X-axis direction by causing a current to flow intermittently through the electromagnetic coil 125 at a predetermined frequency.
  • the spring constants of the springs 122 of the vibrators 120-1, 120-2, 120-3 and the permanent magnet 123 are used. Are set to different values.
  • the resonance frequencies of the vibrators 120-1, 120-2, and 120-3 are based on the resonance frequency of the vibrator 120-1, and the resonance frequency of the vibrator 120-2 is the resonance frequency of the vibrator 120-1.
  • the resonance frequency of the vibrator 120-3 is set to three times the resonance frequency of the vibrator 120-1. Therefore, the spring constants of the springs 122 and the masses of the permanent magnets 123 of the vibrators 120-1, 120-2, and 120-3 are set to values corresponding to the three resonance frequencies, respectively.
  • damping force of the damper 124 and / or the magnetic force generated when the electromagnetic coil 125 passes current may be different from each other in the vibrators 120-1, 120-2, and 120-3. This is for realizing a good tactile sensation.
  • the drive control unit 140 is connected to the vibrators 120-1, 120-2, and 120-3 via amplifiers 160-1, 160-2, and 160-3.
  • the drive control unit 140 drives the vibrators 120-1, 120-2, and 120-3 simultaneously, and causes the casing 110 to reciprocate in the X-axis direction.
  • the drive control unit 140 drives the vibrators 120-1, 120-2, and 120-3 simultaneously with separate drive signals.
  • the vibrators 120-1, 120-2, and 120-3 are each driven in a unique resonance state.
  • the forward vibration speed is higher than the backward vibration speed.
  • the tactile sensation felt in the backward direction is sensed.
  • the vibrators 120-1, 120-2, 120-3 are driven to reciprocate in the X direction.
  • the skin shear direction of the thumb A and the index finger B is the X-axis direction.
  • the vibrators 120-1, 120-2, 120-3 are reciprocated in the X-axis direction, the driving pattern in which the speed of vibration in the X-axis positive direction is higher than the speed of vibration in the X-axis negative direction.
  • the vibrators 120-1, 120-2, and 120-3 are driven, the user gets a tactile sensation in which the thumb A and the index finger B are pulled in the X-axis positive direction.
  • the vibrator 120-1 , 120-2, 120-3 are reciprocated in the X-axis direction, and the vibrators 120-1, 120- have a drive pattern in which the speed of vibration in the X-axis negative direction is higher than the speed of vibration in the X-axis positive direction. 2, 120-3 is driven, the user feels that the thumb A and the index finger B are pulled in the negative direction of the X-axis.
  • the tactile sensation providing apparatus 100 simultaneously drives the vibrators 120-1, 120-2, and 120-3 with a predetermined drive signal, whereby the tactile sensation pulled in the X-axis positive direction by the user's thumb A and index finger B, or The tactile sensation of being pulled in the negative direction of the X-axis is provided.
  • FIG. 3 is a diagram showing an ideal waveform of acceleration vibration generated in the casing 110 in order to present a tactile sensation to be pulled.
  • the horizontal axis is the time axis
  • the vertical axis is the acceleration.
  • the two vibration patterns shown in (A) and (B) are sawtooth vibration patterns, and the magnitude of the time change rate at which the acceleration rises is different from the magnitude of the time change rate at which the acceleration falls.
  • the rising motion is the motion from the point where the sawtooth acceleration is minimum to the maximum point
  • the falling motion is the motion from the point where the sawtooth acceleration is maximum to the minimum point.
  • the casing 110 When providing the tactile sensation of pulling in the positive direction of the X axis to the thumb A and the index finger B, the casing 110 is caused to generate acceleration vibration faster than rising and falling as shown in FIG. On the other hand, when providing the tactile sensation of pulling the thumb A and the index finger B in the negative direction of the X-axis, the casing 110 is caused to generate an acceleration vibration whose falling is faster than the rising as shown in FIG.
  • such pulling tactile sensation represents a reaction force when the pointer touches an article displayed on the screen when the pointer displayed on the screen is operated with the tactile sensation providing apparatus 100 in a simulation system described later. Used as a tactile sensation.
  • the two acceleration vibration patterns shown in FIG. 3 are merely examples, and any vibration pattern having any waveform may be used as long as the acceleration change time change rate and the fall time change rate are different. May be.
  • the frequency of the vibration pattern is preferably a frequency that falls within a range of about 40 Hz to 100 Hz. This is because the sensitivity of the human muscle spindle is in this frequency band.
  • the vibration pattern of acceleration as described above is generated in the casing 110 as a result of the motion response of the drive control unit 140, the vibrators 120-1, 120-2, and 120-3 and the casing.
  • the acceleration vibration pattern is not limited to a linearly increasing or decreasing form, but may increase or decrease nonlinearly.
  • the acceleration vibration pattern is a vibration pattern that is set so that the speed at which the housing 110 rises and the speed at which the housing 110 falls are different due to the difference between the acceleration when the waveform rises and the acceleration when the waveform falls. It may be used.
  • Acceleration vibration amplitude corresponds to the tactile sensation representing the reaction force described above. If the acceleration vibration amplitude increases, the tactile sensation representing the reaction force increases, and if the acceleration vibration amplitude decreases, the tactile sensation representing the reaction force decreases.
  • the amplitude of acceleration vibration may be set as follows.
  • the experimenter compares the reaction force (2) due to the pulling tactile sensation.
  • the measured value of the reaction force (1) when the reaction force (1) and the reaction force (2) are balanced is associated with the amplitude (voltage value) that generates the reaction force (2).
  • table-format data in which the measured values of the reaction force (1) and the reaction force (2) are associated with each other is generated.
  • the amplitude of the drive signal may be set according to the magnitude of the reaction force (2) to be provided to the user's hand of the tactile sensation providing device 100 using such table format data.
  • a drive signal for driving each of the vibrators 120-1, 120-2, and 120-3 is a voltage value represented by a sine wave, and is represented by the following equation (1).
  • i is any value from 1 to 3
  • a i represents the amplitude of the drive signal.
  • f is the resonance frequency of the vibrator 120-1.
  • ⁇ i is a predetermined phase included in the drive signal for driving the i-th transducer among the transducers 120-1, 120-2, and 120-3.
  • Expression (1) represents a drive signal for driving the i-th vibrator among the three vibrators 120-1, 120-2, and 120-3.
  • the drive signal of the vibrator 120-1 is a 1 sin (2 ⁇ ft + ⁇ 1 ).
  • the amplitude coefficient a i and the phase ⁇ i are necessary for adjusting the acceleration generated in the housing 110 as a result of inputting the drive signal of the formula (1) to the i-th vibrator to the following formula (2). It is a numerical value.
  • a 1 is the amplitude a 1 of the drive signal of the first vibrator and the acceleration amplitude generated as a result of the dynamic characteristics of the vibration system 100.
  • a 1 is related to the strength of tactile sensation.
  • Equation (3) corresponds to an equation obtained by multiplying the sawtooth wave shown in FIG. 3B by the sum constant up to the third term of the mathematical formula obtained by Fourier series expansion.
  • a mathematical expression obtained by expanding a sawtooth wave into a Fourier series is represented by Expression (4). Equation (4) includes up to the Nth term.
  • the vibrators 120-1, 120-2, and 120-3 are vibrators having different resonance frequencies as described above.
  • a system having mass, spring, and attenuation is connected to the casing 110 like the vibrator 120 and a sinusoidal acceleration is applied to the mass of the vibrator, a sinusoidal acceleration having a different amplitude and phase is applied to the casing. Occurs. .
  • the amplitude a i and phase ⁇ i in equation (1) are provided to adjust the relationship between the amplitude and phase of vibration generated in the housing 110 with respect to such drive vibration so as to satisfy equation (3).
  • the predetermined amplitude a i and phase ⁇ i are optimal in simulations and / or experiments depending on the mass of the casing 110 and the masses and spring constants of the vibrators 120-1, 120-2, 120-3. You can set it to any value.
  • Data representing the amplitude a i , frequency if, and phase ⁇ i of the drive signal may be stored in the internal memory of the drive control unit 140 or the like.
  • the drive control unit 140 may read the amplitude a i , the frequency if, and the phase ⁇ i from the internal memory or the like when generating the drive signal.
  • FIG. 4 is a diagram showing a sawtooth wave and a waveform obtained from Equation (3).
  • the horizontal axis represents time
  • the vertical axis represents acceleration amplitude.
  • the waveform (1) obtained only by the first term of Equation (3) is indicated by a broken line
  • the first and second terms of Equation (3) are synthesized.
  • the waveform (2) obtained in this way is indicated by a one-dot chain line
  • the waveform (3) obtained by synthesizing the first term, the second term, and the third term of the formula (3) is indicated by a two-dot chain line.
  • the sawtooth wave is indicated by a solid line.
  • the waveform (1) is a sine wave, but the waveforms (2) and (3) have a falling acceleration time change rate that is a rising acceleration time change rate like a sawtooth wave. It is a faster pattern. Further, the waveform (3) is closer to the sawtooth wave than the waveform (2).
  • a waveform (2) obtained by combining the first term and the second term, and a waveform (3) obtained by combining the first term, the second term, and the third term As shown, if the vibrators 120-1 and 120-2 and the vibrators 120-1, 120-2, and 120-3 are driven simultaneously, the acceleration vibrations represented by the waveform (2) and the waveform (3), respectively. Is considered to occur in the housing 110.
  • N is set to a value of 4 or more in the equation (4), it is considered that a waveform having a shape closer to a sawtooth than the waveform (3) can be obtained.
  • FIG. 5 is a diagram showing a simple model 100A for simulation of the tactile sensation providing apparatus 100.
  • the simple model 100A includes a casing 110 and vibrators 120-1 and 120-2.
  • the simplified model 100A includes two vibrators 120-1 and 120-2 and does not include the vibrator 120-3.
  • the spring constants of the springs 120-1 and 120-2 are k 1 and k 2
  • the mass of the permanent magnet 123 is m 1 and m 2
  • the damping coefficient of the damper 124 is c 1 and c 2 .
  • the displacements of the permanent magnets 123 of the vibrators 120-1 and 120-2 are x1 and x2, and the displacement of the housing 110 is x3.
  • the displacements x1, x2, and x3 are positive in the positive X-axis direction.
  • velocities obtained by differentiating the displacements x1, x2, and x3 with respect to time are denoted by v1, v2, and v3, respectively.
  • the force generated in the permanent magnet 123 by the electromagnetic force from the coil and f 1 and f 2 are assumed.
  • the directions of f 1 and f 2 are positive in the positive direction of the X axis as indicated by arrows.
  • spring forces of k 1 (x 1 ⁇ x 3 ) and k 2 (x 2 ⁇ x 3 ) are generated in the spring, and c 1 (x ′ 1 ) is generated in the damper.
  • c 2 (x ′ 2 ⁇ x ′ 3 ) damping force and m 1 x ′′ 1 , m 2 x ′′ 2 inertial force are generated.
  • a resultant force a resultant force F 1 or F 2 of these forces is generated in the housing 110.
  • the kinetic energy of the permanent magnet 123 of the vibrators 120-1 and 120-2 is expressed by the following equation (6).
  • the Lagrangian method may be generally applied to the energy equations (5) to (6).
  • FIG. 6 is a diagram showing temporal changes in the forces f 1 and f 2 generated in the permanent magnets 123 of the vibrators 120-1 and 120-2 of the simple model 100A.
  • FIG. 7 is a diagram illustrating a simulation result of the simple model 100A.
  • the vibrators 120-1 and 120-2 were driven so that the forces f 1 and f 2 shown on the left in FIG. 6 were generated in the mass 123 of the vibrators 120-1 and 120-2.
  • the forces f 1 and f 2 have amplitudes of ⁇ 0.14 (N) and ⁇ 0.08 (N), and the phase of the force f 2 is delayed by ⁇ / 2 with respect to the force f 1 .
  • the force F shown on the right in FIG.
  • the force F has a characteristic in which the waveform differs between when oscillating to the positive side and when oscillating to the negative side.
  • the acceleration of the housing 110 has a characteristic in which the waveform differs between when oscillating to the positive side and when oscillating to the negative side, like the force F.
  • the speed of the casing 110 was +0.25 m / s on the positive side and ⁇ 14 m / s on the negative side, and the speed was different between when vibrating on the positive side and when vibrating on the negative side. Further, the displacement had substantially the same amplitude when oscillating to the positive side and when oscillating to the negative side.
  • the speed of the housing 110 is different between when it vibrates on the positive side and when it vibrates on the negative side, the surface of the user's thumb A and index finger B has different shear deformations with different reciprocating speeds. It was possible to make it possible to provide a tactile sensation.
  • FIG. 8 shows temporal changes in the forces f 1 and f 2 generated in the masses 123 of the vibrators 120-1 and 120-2 when the phase difference between the forces f 1 and f 2 is set to 0 in the simple model 100A.
  • FIG. FIG. 9 is a diagram illustrating a simulation result when the phase difference between the force f 1 and the force f 2 is set to 0 in the simple model 100A.
  • the forces f 1 and f 2 have amplitudes of ⁇ 0.14 (N) and 0.08 (N), respectively, and the phase difference between the forces f 1 and f 2 is 0. It is.
  • the speed of the housing 110 is substantially the same. Therefore, when the phase difference between the force f 1 and the force f 2 is set to 0, It was found that the surface of the user's thumb A and index finger B cannot generate shear deformations with different speeds in a reciprocating manner, and cannot provide a tactile sensation.
  • the vibrator 120-1 of the simple model 100A is driven, the vibrator 120-2 is not driven, and the vibrator 120-1 does not resonate and vibrates to the positive side.
  • the simulation was performed under the condition that the acceleration was different from that when vibrating negatively.
  • the acceleration changes in a sawtooth shape as a condition that the acceleration is different between when oscillating to the positive side and when oscillating to the negative side.
  • FIG. 10 is a diagram illustrating temporal changes in the force f 1 generated in the mass 123 of the vibrator 120-1 and the force F generated in the housing 110 when only the vibrator 120-1 is driven in the simple model 100A. As shown in FIG. 10, the acceleration generated in the vibrator 120-1 is changed in a sawtooth shape.
  • FIG. 11 is a diagram showing a simulation result when only the vibrator 120-1 is driven by the simple model 100A.
  • the oscillator 120-1 changes the spring constant k 1 so as not to resonate with a drive signal of 40 to 100 Hz necessary for generating a tactile sensation, and the amplitude of the force f 1 is 0.675 as shown on the left in FIG. (N). This is a force that is four times or more the force f 1 when the vibrator 120-1 is resonated as shown in FIG.
  • casing 110 was the characteristic similar to the force F.
  • the speed of the housing 110 is +0.31 m / s on the positive side and ⁇ 0.23 m / s on the negative side, and the speed varies depending on whether it vibrates on the positive side or on the negative side. Became. Further, the displacement had substantially the same amplitude when oscillating to the positive side and when oscillating to the negative side.
  • the speed of the housing 110 is different between when it vibrates on the positive side and when it vibrates on the negative side, shear deformation having different speeds is generated on the surfaces of the user's thumb A and index finger B in a reciprocating manner. It was possible to make it possible to provide a tactile sensation.
  • the vibrator 120-1 is driven without resonating, the power consumption of the vibrator 120-1 is large and the tactile sensation cannot be provided efficiently.
  • FIG. 12 is a diagram showing temporal changes in the force f 1 generated in the mass of the vibrator 120-1 and the force F generated in the housing 110 when only the vibrator 120-1 is driven in the simple model 100A.
  • FIG. 13 is a diagram showing a simulation result when only the vibrator 120-1 is driven by the simple model 100A.
  • the amplitude of the force f 1 was set to 0.0675 (N). This is 1/10 of the force f 1 shown in FIG.
  • casing 110 was the characteristic similar to the force F.
  • the speed of the housing 110 is +0.21 m / s on the positive side and ⁇ 0.21 m / s on the negative side, and the speed is substantially the same when vibrating on the positive side and when vibrating on the negative side.
  • the displacement had substantially the same amplitude when oscillating to the positive side and when oscillating to the negative side.
  • the speed of the casing 110 is equal when it vibrates on the positive side and when it vibrates on the negative side.
  • the Fourier series of acceleration waveforms that are known to cause an illusion such as a sawtooth wave are used for a plurality of vibrators having different resonance frequencies. It is necessary to drive simultaneously with the acceleration vibration represented by the development, and further, in order to obtain such acceleration vibration, it is necessary that the drive signals have a predetermined amplitude ratio and phase difference.
  • the three oscillators 120-1, 120-2, and 120-3 having different resonance frequencies are represented by three terms when the sawtooth wave is expanded by Fourier series.
  • the housing 110 vibrates to the positive side and the negative side vibrates by simultaneously driving with the drive signal generated, the surface of the user's thumb A and index finger B can be reciprocated. Shear deformations with different speeds can be generated.
  • the vibration of the casing 110 for generating such shear deformation is realized by simultaneously resonating the three vibrators 120-1, 120-2, and 120-3. That is, the vibration amplitude of the large casing 110 can be realized with low power consumption.
  • the tactile sensation providing apparatus 100 including the three vibrators 120-1, 120-2, and 120-3 and the simplified model 100A including the two vibrators 120-1 and 120-2 have been described above.
  • N vibrators having different resonance frequencies and the housing 110 is driven by the acceleration represented by the N terms of the Fourier series expansion of the sawtooth, the number of vibrators is There can be any number.
  • the N terms of the Fourier series of the sine wave are N terms that are continuous from the first term.
  • the acceleration is a waveform of a form other than the saw wave. Also good. If N vibrators having different resonance frequencies are driven to generate vibrations having different speeds when the casing 110 vibrates to the positive side and to the negative side, N pieces can be generated.
  • the acceleration generated by the oscillator may be in a form other than the Fourier series expansion of the saw wave.
  • the drive signals of the N vibrators are the housings using the amplitude and phase of the drive signals of the vibrators as parameters.
  • the amplitude and phase of the drive signal of each vibrator may be obtained in the manner of solving the optimization problem so that the vibration amplitude of the body 110 is maximized.
  • an accelerometer may be attached to the housing 110 in order to measure the vibration of the housing 110.
  • a small and light accelerometer realized by MEMS (Micro Electro Mechanical Systems) may be used.
  • MEMS Micro Electro Mechanical Systems
  • Such an accelerometer outputs a vibration representing a change in capacitance when acceleration is applied.
  • FIG. 14 is a diagram showing an internal configuration of the tactile sensation providing apparatus 100.
  • the tactile sensation providing apparatus 100 includes vibrators 120-1, 120-2, 120-3, a drive control unit 140, a DA converter 150, an amplifier 160, a communication unit 170, and a memory 180.
  • the communication unit 170 will be mainly described.
  • the amplifier 160 collectively represents the amplifiers 160-1, 160-2, and 160-3 shown in FIG.
  • the communication unit 170 performs wireless communication with the processing device of the simulation system according to a standard such as Bluetooth (registered trademark) or WiFi.
  • the communication unit 170 is connected to the drive control unit 140, and outputs a drive command to the drive control unit 140 when receiving a drive command from the processing apparatus of the simulation system.
  • a standard such as Bluetooth (registered trademark) or WiFi.
  • the communication unit 170 is connected to the drive control unit 140, and outputs a drive command to the drive control unit 140 when receiving a drive command from the processing apparatus of the simulation system.
  • at least one of the vibrators 120-1, 120-2, and 120-3 is driven by the drive control unit 140.
  • Which amplitude or phase of the vibrators 120-1, 120-2, and 120-3 is driven depends on the magnitude of the components of the acceleration generated in the housing 110 in the X-axis direction, the Y-axis direction, and the Z-axis direction. And phase.
  • a general frequency transfer function identification method may be used for the relationship between the amplitude and
  • the memory 180 stores data that is a source of the drive signal generated by the drive control unit 140.
  • the drive signal is a sine wave signal
  • the memory 180 stores data representing a sine wave.
  • the frequency of the sine wave and the amplitude and phase difference of each vibrator are determined.
  • the drive control unit 140 sets the amplitude, a drive signal as shown in FIG. 6 can be generated. it can.
  • the drive control unit 140 When the drive control unit 140 receives data representing the amplitude and phase from the processing device of the simulation system described later, the drive control unit 140 generates a sinusoidal drive signal specified by the amplitude and phase. Note that the amplitude and phase values are determined by the transfer function between the drive signal and the acceleration generated in the housing 110 as described above.
  • FIG. 15 is a diagram illustrating a simulation system 200 according to the embodiment.
  • the simulation system 200 includes a tactile sensation providing device 100, a screen 210A, a projection device 210B, 3D (3-dimensional) glasses 210C, a processing device 220, and a position measurement device 240.
  • the simulation system 200 can be applied to an assembly support system in order to grasp assembly workability in a virtual space, for example.
  • an operation of assembling an electronic component such as a CPU (Central Processing Unit) module, a memory module, a communication module, or a connector on a mother board or the like can be performed in a virtual space.
  • a CPU Central Processing Unit
  • simulation system 200 can be applied not only to the assembly support system but also to various systems that confirm workability in a three-dimensional space.
  • the marker 130 is attached to the housing 110.
  • the marker 130 has a plurality of spheres, and reflects infrared rays in various directions when irradiated with infrared rays in a simulation system described later.
  • the marker 130 is used when the processing device of the simulation system detects the position of the tactile sensation providing device 100.
  • a projector screen can be used as the screen 210A.
  • the size of the screen 210A may be set as appropriate according to the application.
  • An image projected by the projection device 210B is displayed on the screen 210A.
  • images of the articles 211 and 212 are displayed on the screen 210A.
  • the projection device 210B may be any device that can project an image onto the screen 210A.
  • a projector can be used.
  • the projection device 210B is connected to the processing device 220 by a cable 210B1, and projects an image input from the processing device 220 onto the screen 210A.
  • the projection device 210B is of a type that can project a 3D image (stereoscopic image) onto the screen 210A.
  • the screen 210A and the projection device 210B are examples of a display unit.
  • the user using the simulation system 200 wears the 3D glasses 210C.
  • the 3D glasses 210C may be any glasses that can convert an image projected on the screen 210A by the projection device 210B into a 3D image.
  • polarized glasses for polarizing incident light or liquid crystal shutter glasses having a liquid crystal shutter are used. Can do.
  • a liquid crystal display panel may be used instead of the screen 210A and the projection device 210B.
  • the 3D glasses 210C may not be used.
  • a head mounted display may be used instead of the screen 210A and the projection device 210B.
  • the processing device 220 includes a position detection unit 221, a contact determination unit 222, a video output unit 223, a data holding unit 224, a drive control unit 225, and a communication unit 226.
  • the processing device 220 is realized by a computer having a memory, for example.
  • the position detection unit 221 performs image processing such as pattern matching on the image data input from the position measurement device 240, and detects the position and orientation of the marker 130 of the tactile sensation providing device 100.
  • the position of the tactile sensation providing device 100 is represented by coordinate values in three-dimensional coordinates, and the posture is represented by an angle with respect to the three-axis directions of the three-dimensional coordinates.
  • the position detection unit 221 converts the coordinate value in the three-dimensional coordinate into a coordinate in the image projected on the screen 210A, and outputs it as a coordinate representing the position of the pointer 230A.
  • the position detection unit 221 is an example of a second detection unit. That is, the position of the pointer 230A is determined by the position of the tactile sensation providing apparatus 100. In order to move the pointer 230A projected on the screen 210A, the tactile sensation providing apparatus 100 may be moved in real space. The tactile sensation providing apparatus 100 may be regarded as an operation terminal of the pointer 230A.
  • the position measurement device 240 may detect the position and orientation of the tactile sensation providing device 100.
  • the contact determination unit 222 determines whether the image of the article 211 or 212 projected on the screen 210A and the pointer 230A displayed on the screen 210A are in contact with each other.
  • the contact determination unit 222 uses the data representing the shape and position of the article 211 or 212 projected on the screen 210A and the data representing the position of the pointer 230A to contact the image of the article 211 or 212 with the pointer 230A. Determine if you did.
  • the contact determination unit 222 is an example of a determination unit.
  • the output terminal of the video output unit 223 is connected to the projection device 210B by a cable 210B1.
  • the video output unit 223 outputs an image specified by the article data of the articles 211 and 212 held in the data holding unit 224 to the projection device 210B and displays it on the screen 210A.
  • the video output unit 223 displays the pointer 230A on the projection device 210B.
  • the position of the pointer 230A in the image displayed on the screen 210A is determined by the position and posture of the tactile sensation providing apparatus 100 detected by the position detection unit 221.
  • the data holding unit 224 holds data such as article data representing the coordinates and shape of the articles 211 and 212, and image data of the pointer 230A.
  • the data holding unit 224 is realized by a memory and is an example of a data storage unit.
  • the drive control unit 225 represents a reaction force according to the direction in which the pointer 230 ⁇ / b> A contacts the article 211 or 212.
  • This drive signal is a signal for driving the vibrator of the tactile sensation providing apparatus 100.
  • the communication unit 226 is a communication unit that performs wireless communication with the tactile sensation providing apparatus 100, and can perform wireless communication according to a standard such as Bluetooth or WiFi (Wireless-Fidelity).
  • the communication unit 226 transmits a drive signal generated by the drive control unit 225 to the tactile sensation providing apparatus 100.
  • the communication unit 226 may be a communication unit that performs wired communication with the tactile sensation providing apparatus 100.
  • the position measuring device 240 has infrared cameras 240A and 240B, and is connected to the position detector 221 by cables 241A and 241B, respectively.
  • the infrared cameras 240 ⁇ / b> A and 240 ⁇ / b> B irradiate the tactile sensation providing apparatus 100 with infrared rays and photograph the reflected light reflected by the marker 130.
  • the position measurement device 240 transfers the image data output from the infrared cameras 240A and 240B to the position detection unit 221.
  • the position measurement device 240 is an example of a first detection unit.
  • FIG. 16 is a perspective view of a computer system to which the processing device 220 is applied.
  • a computer system 10 shown in FIG. 16 includes a main body 11, a display 12, a keyboard 13, a mouse 14, and a modem 15.
  • the main unit 11 includes a CPU (Central Processing Unit), an HDD (Hard Disk Drive), a disk drive, and the like.
  • the display 12 displays an analysis result or the like on the screen 12A according to an instruction from the main body 11.
  • the display 12 may be a liquid crystal monitor, for example.
  • the keyboard 13 is an input unit for inputting various information to the computer system 10.
  • the mouse 14 is an input unit that designates an arbitrary position on the screen 12 ⁇ / b> A of the display 12.
  • the modem 15 accesses an external database or the like and downloads a program or the like stored in another computer system.
  • a program for causing the computer system 10 to function as the processing device 220 is stored in a portable recording medium such as the disk 17 or downloaded from the recording medium 16 of another computer system using a communication device such as the modem 15. Are input to the computer system 10 and compiled.
  • a program for causing the computer system 10 to have a function as the processing device 220 causes the computer system 10 to operate as the processing device 220.
  • This program may be stored in a computer-readable recording medium such as the disk 17.
  • the computer-readable recording medium is limited to a portable recording medium such as a disk 17, an IC card memory, a magnetic disk such as a floppy (registered trademark) disk, a magneto-optical disk, a CD-ROM, or a USB (Universal Serial Bus) memory. It is not something.
  • the computer-readable recording medium includes various recording media accessible by a computer system connected via a communication device such as a modem 15 or a LAN.
  • FIG. 17 is a block diagram illustrating a configuration of a main part in the main body 11 of the computer system 10.
  • the main body 11 includes a CPU 21 connected by a bus 20, a memory unit 22 including a RAM or a ROM, a disk drive 23 for the disk 17, and a hard disk drive (HDD) 24.
  • the display 12, the keyboard 13, and the mouse 14 are connected to the CPU 21 via the bus 20, but these may be directly connected to the CPU 21.
  • the display 12 may be connected to the CPU 21 via a known graphic interface (not shown) that processes input / output image data.
  • the keyboard 13 and the mouse 14 are input units of the processing device 220.
  • the display 12 is a display unit that displays input contents and the like for the processing device 220 on the screen 12A.
  • the computer system 10 is not limited to the configuration shown in FIGS. 16 and 17, and various known elements may be added or alternatively used.
  • FIG. 18 is a diagram showing article data.
  • the article data is data representing the coordinates and shape of the article displayed on the screen 210A.
  • the article data has an article ID, a shape type, reference coordinates, a size, a rotation angle, and a reaction force coefficient k.
  • the shape type represents the outer shape of the article.
  • the shape types indicate Cuboid (cuboid) and Cylinder (cylindrical body).
  • the reference coordinate indicates the coordinate value of a point that serves as a reference for coordinates representing the entire article.
  • the unit of the coordinate value is meter (m).
  • An XYZ coordinate system is used as the coordinate system.
  • the size represents the length of the article in the X-axis direction, the length in the Y-axis direction, and the length in the Z-axis direction.
  • the unit is meters (m).
  • the length in the X-axis direction represents the vertical length
  • the length in the Y-axis direction represents the height
  • the length in the Z-axis direction represents the depth (the length in the horizontal direction).
  • the rotation angle is represented by rotation angles ⁇ x, ⁇ y, and ⁇ z with respect to the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the unit is degree (deg.).
  • the rotation angle ⁇ x is an angle for rotating the article about the X axis as a rotation axis.
  • the rotation angles ⁇ y and ⁇ z are angles at which the article is rotated about the Y axis and the Z axis as rotation axes, respectively.
  • the positive directions of the rotation angles ⁇ x, ⁇ y, and ⁇ z may be determined in advance.
  • the reaction force coefficient k is the hardness of the article in the real space corresponding to the article displayed on the screen 210A.
  • the reaction force coefficient is a coefficient that increases as the article in the real space becomes harder, and its unit is N / mm.
  • other physical quantities such as Young's modulus may be used.
  • reaction force coefficients k of articles having article IDs 001, 002, and 003 are set to 0.05, 0.03, and 0.01, respectively.
  • an article with an article ID of 001 is made of metal
  • an article with an article ID of 002 is made of resin
  • an article with an article ID of 003 is made of rubber.
  • the reaction force F is expressed by the following equation (8), and is obtained by multiplying the reaction force coefficient k by the amount of biting ⁇ L and the normal vector n.
  • the reaction force F is represented by a vector.
  • ⁇ L is the amount (biting amount) that the pointer 230A bites into the article displayed on the screen 210A.
  • the amount of biting represents the amount by which the pointer 230A bites into the inside of the article from the point where the article and the pointer 230A contact each other.
  • the vector n is a normal vector of a point where the pointer 230A has touched the article displayed on the screen 210A.
  • the vector of the reaction force F is obtained by multiplying the reaction force coefficient k by the normal vector n as shown in Expression (8).
  • the normal vector n of the article displayed on the screen 210A can be derived from the article data because the orientation of the surface with which the pointer 230A is in contact can be determined by using the article data shown in FIG.
  • an image specified by the article data can be represented in the same manner as the article image displayed by the CAD data.
  • the article data is stored in the data holding unit 224 of the processing device 220.
  • FIG. 19 is a diagram illustrating an example of an image of an article.
  • FIG. 19 shows three articles represented by the article data of FIG.
  • An article with an article ID of 001 has a shape type of Cuboid (cuboid), reference coordinates (X, Y, Z) of (0.0, 0.0, 0.0), and a size of (0.8, 0.2, 0.4), and the rotation angles ⁇ x, ⁇ y, ⁇ z are (0.0, 0.0, 0.0).
  • An article with an article ID of 002 has a shape type of Cuboid (cuboid), reference coordinates (X, Y, Z) of (0.6, 0.2, 0.0), and a size of (0.2, 0.2, 0.1), and the rotation angles ⁇ x, ⁇ y, ⁇ z are (0.0, 0.0, 0.0).
  • the article with the article ID 002 is arranged on the article with the article ID 001.
  • the article with the article ID 003 has a shape type of Cylinder, a reference coordinate (X, Y, Z) of (0.8, 0.3, 0.1), and a size of (0.2 , 1.0, 0.3), and the rotation angles ⁇ x, ⁇ y, ⁇ z are (0.0, 0.0, 90.0).
  • the article with the article ID 003 is connected to the X axis positive direction side of the article with the article ID 002 in a state where the article ID is rotated 90 degrees about the Z axis.
  • the article in the image projected on the screen 210A uses the article data having the article ID, the shape type, the reference coordinates, the size, and the rotation angle shown in FIG. 18, the article in the image projected on the screen 210A. Define coordinates and shape.
  • the coordinates of the eight vertices are the length in the X-axis direction, the length in the Y-axis direction, the length in the Y-axis direction, and the Z-axis direction with respect to the reference coordinates. Can be obtained by adding or subtracting the length.
  • the coordinates of the eight vertices represent the coordinates of the corner of the article whose shape type is Cuboid.
  • the expression representing the 12 sides is an expression representing the coordinates of the Edge of the article whose shape type is Cuboid.
  • the expressions representing the eight vertices and / or the expressions representing the 12 sides are obtained, the expressions representing the six surfaces of the article whose shape type is Cuboid are obtained, and the coordinates of the surface are obtained. be able to.
  • the shape type is Cylinder (cylindrical body)
  • An expression representing a certain circle (or ellipse) can be obtained.
  • an equation representing a circle (or ellipse) at both ends and a reference coordinate are used, an equation representing the coordinates of the circle (or ellipse) at both ends can be obtained.
  • the coordinates of the side surface of the cylinder can be obtained by using an expression representing the coordinates of the circles (or ellipses) at both ends.
  • FIG. 20 is a diagram showing data in a table format in which the reaction force F and the amplitude value are associated with each other.
  • the vector of the reaction force F is expressed as X, Y, Z components (Fx, Fy, Fz).
  • the amplitude value is expressed as X, Y, and Z components (Apx, Apy, Apz).
  • the X, Y, and Z components (Fx, Fy, and Fz) of the reaction force F are associated with the X, Y, and Z components (Apx, Apy, and Apz) of the amplitude value, respectively.
  • the values of the X, Y, and Z components (Fx, Fy, Fz) of the reaction force F are obtained, the values of the X, Y, and Z components (Apx, Apy, Apz) of the amplitude value are obtained.
  • the X, Y, Z components of the reaction force F are (Fx1, Fy1, Fz1)
  • the X, Y, Z components of the amplitude value are (Apx1, Apy1, Apz1).
  • FIG. 21 is a flowchart illustrating processing executed by the processing device 220 according to the embodiment.
  • FIG. 21 a case will be described in which images of articles 211 and 212 are displayed on a screen 210A as shown in FIG.
  • the processing device 220 starts processing after the power is turned on (start).
  • the processing apparatus 220 acquires article data from the data holding unit 224 (step S1).
  • the processing device 220 generates a video signal using the article data, and causes the projection device 210B to project an image (step S2).
  • the images of the stereoscopic models of the articles 211 and 212 are displayed on the screen 210A.
  • the images of the articles 211 and 212 displayed on the screen 210A represent virtual objects that exist in the virtual space.
  • steps S1 and S2 are performed by the video output unit 223.
  • the processing device 220 detects the position and orientation of the tactile sensation providing device 100 in the real space (step S3).
  • the process of step S3 is performed by the position detection unit 221.
  • the processing device 220 detects the coordinates of the pointer 230A in the virtual space (step S4).
  • the coordinates of the pointer 230A are detected by the position detection unit 221.
  • the coordinate data of the pointer 230 ⁇ / b> A is input to the contact determination unit 222 and the video output unit 223.
  • the processing device 220 causes the projection device 210B to display the pointer 230A on the screen 210A based on the coordinates of the pointer 230A obtained in step S4 (step S5).
  • the tactile sensation providing apparatus 100 has a direction in which the pointer 230A is pointed in advance, and the pointer 230A is displayed at, for example, the intersection of the screen 210A and a straight line determined by the position of the tactile sensation providing apparatus 100 and the predetermined direction.
  • the pointer 230A is displayed on the screen 210A on which the stereoscopic images of the articles 211 and 212 are displayed.
  • the pointer 230A may be displayed using image data representing the pointer 230A.
  • data corresponding to the article data of the articles 211 and 212 may be prepared and an image of a stereoscopic model of the pointer 230A may be displayed.
  • the pointer 230A can be displayed without using the image data of the pointer 230A, the image data of the pointer 230A does not have to be held in the data holding unit 224.
  • step S5 is performed by the video output unit 223. Note that the processing of steps S3 to S5 is performed in parallel with the processing of steps S1 to S2.
  • the processing apparatus 220 determines whether or not the article 211 or 212 and the pointer 230A are in contact (step S6).
  • the process in step S6 is performed by the contact determination unit 222.
  • the contact determination unit 222 determines whether the article 211 or 212 and the pointer 230A are in contact with each other based on the article data of the articles 211 and 212 and the coordinate data of the pointer 230A obtained in step S4.
  • Whether the article 211 or 212 is in contact with the pointer 230A is determined by whether or not there is an intersection between a corner, a side, or a surface represented by the article data of the article 211 or 212 and a position represented by the coordinate data of the pointer 230A. That's fine.
  • whether or not the article 211 or 212 and the pointer 230A are in contact is determined by whether or not the difference in position between the coordinate data of the pointer 230A and the coordinates included in the article data closest to the coordinate data is equal to or smaller than a predetermined value. May be.
  • the operation of the tactile sensation providing apparatus 100 in the simulation system 200 is more determined when the difference between the position included in the article data closest to the coordinate data and the position represented by the coordinate data is a predetermined value or less. Such a setting may be used when the property is good.
  • step S7 as an example, it is assumed that the article 211 and the pointer 230A are in contact with each other. The same processing is performed even when the article 212 and the pointer 230A come into contact with each other.
  • step S6 determines that the article 211 and the pointer 230A are in contact
  • the processing device 220 obtains the reaction force F using the equation (8) based on the coordinates of the contact point between the article 211 and the pointer 230A (step).
  • step S7 Note that the process of step S ⁇ b> 7 is performed by the contact determination unit 222.
  • the contact determination unit 222 obtains the amount of biting ⁇ L based on the coordinates of the pointer 230A and the article data of the article 211, obtains the normal vector n of the article 211 at the contact point, and according to the equation (8), the reaction force F Find the vector of.
  • the drive control unit 225 obtains an amplitude value (Apx, Apy, Apz) from the reaction force F obtained in step S7 based on data in a table format that associates the reaction force F with the amplitude value (see FIG. 20). It transmits to the tactile sensation providing apparatus 100 (step S8). As a result, the vibrators 120-1, 120-2, 120-3 of the tactile sensation providing apparatus 100 are driven.
  • step S6 If it is determined in step S6 that the article 211 or 212 is not in contact with the pointer 230A (S6: NO), the flow returns to steps S1 and S3.
  • FIG. 22 is a flowchart showing processing executed when the drive control unit 140 of the tactile sensation providing apparatus 100 drives the vibrators 120-1, 120-2, and 120-3.
  • the drive control unit 140 starts processing when the tactile sensation providing apparatus 100 is turned on (start).
  • the drive control unit 140 receives a drive signal from the processing device 220 via the communication unit 170 (step S21).
  • the drive control unit 140 generates a drive signal from the reaction force signal (step S22).
  • the drive control unit 140 drives the vibrators 120-1, 120-2, and 120-3 using the drive signal (step S23).
  • the vibration pattern for vibrating the vibrators 120-1, 120-2, and 120-3 is changed so as to provide a reaction force corresponding to the Young's modulus of the contacted article.
  • the simulation system 200 uses the tactile sensation providing apparatus 100 to provide the user with a tactile sensation that represents a reaction force according to the Young's modulus of the article that the tactile sensation providing apparatus 100 contacts.
  • the tactile sensation providing device 100 reciprocates the contacts 111 and 112 in the Z-axis direction.
  • the tactile sensation providing device 100 reciprocates the contacts 111 and 112 in the Z-axis direction.
  • the tactile sensation providing apparatus 100 that can provide the tactile sensation of pulling the surface of the skin.
  • position of the tactile sensation providing apparatus 100 using the marker 130 and the position measuring device 240 has been described above.
  • the position and orientation of the tactile sensation providing device 100 may be detected using at least one of an infrared depth sensor, a magnetic sensor, a stereo camera, an acceleration sensor, or an angular velocity sensor that does not require the marker 130.
  • the position measuring device 240 detects the position of the marker 130 attached to the tactile sensation providing device 100.
  • the position measuring device 240 for example, an infrared laser is irradiated toward a subject and reflected light is reflected.
  • a device that calculates the distance (depth) to a point included in the image based on the time until the light is received may be used.
  • an image of a user who performs an instruction operation toward the screen 210 ⁇ / b> A can be obtained without attaching the marker 130 to the tactile sensation providing device 100, and the user's posture and / or Based on the gesture or the like, the position of the pointer 130A can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

効率的に駆動できる触感提供装置、及び、シミュレーションシステムを提供する。 触感提供装置は、筐体と、前記筐体に取り付けられ、互いに異なる共振周波数を有し、前記筐体を振動させるN(Nは2以上の整数)個の振動子と、前記N個の振動子をそれぞれ共振状態で振動させるN個の駆動信号で前記N個の振動子を同時に駆動する駆動制御部とを含み、前記N個の駆動信号は、前記N個の振動子をそれぞれ同時に駆動することにより、第1方向と、前記第1方向の逆の第2方向との速度が異なる往復振動を前記筐体に生じさせる駆動信号である。

Description

触感提供装置、及び、シミュレーションシステム
 本発明は、触感提供装置、及び、シミュレーションシステムに関する。
 従来より、コイルを有する固定子と、永久磁石を有する可動子と、前記コイルへの入力電流に応じた前記コイルの発生磁界と前記永久磁石との磁気作用を用いて前記可動子が振動可能なように前記固定子と前記可動子を連結する弾性体と、を備えた振動発生装置において、前記可動子の固有周期に応じたパルス電圧を前記コイルに入力する電圧入力部を更に備えたことを特徴とする振動発生装置がある(例えば、特許文献1参照)。
特開2012-148233号公報
 ところで、従来の振動発生装置は、1つの可動子(振動子)を偏加速度が生じるように振動させている。1つの可動子で偏加速度が生じるように振動させるには、可動子を共振させることはできないため、非常に大きな振幅で振動させる必要がある。すなわち、従来の振動発生装置は、利用者に与える力覚(触感)を生じさせるために、大きな電力が必要であり、効率的でない。
 そこで、効率的に駆動できる触感提供装置、及び、シミュレーションシステムを提供することを目的とする。
 本発明の実施の形態の触感提供装置は、筐体と、前記筐体に取り付けられ、互いに異なる共振周波数を有し、前記筐体を振動させるN(Nは2以上の整数)個の振動子と、前記N個の振動子をそれぞれ共振状態で振動させるN個の駆動信号で前記N個の振動子を同時に駆動する駆動制御部とを含み、前記N個の駆動信号は、前記N個の振動子をそれぞれ同時に駆動することにより、第1方向と、前記第1方向の逆の第2方向との速度が異なる往復振動を前記筐体に生じさせる駆動信号である。
 効率的に駆動できる触感提供装置、及び、シミュレーションシステムを提供することができる。
実施の形態の触感提供装置を示す図である。 実施の形態の触感提供装置を示す図である。 筐体に生じる加速度振動の理想的な波形を示す図である。 鋸波と式(3)から得られる波形とを示す図である。 触感提供装置のシミュレーション用の簡易モデルを示す図である。 簡易モデルの振動子の永久磁石と、筐体110に生じる力の時間変化を示す図である。 簡易モデルのシミュレーション結果を示す図である。 簡易モデルにおいて、力同士の位相差を0にした場合に振動子の永久磁石と、筐体110に生じる力の時間変化を示す図である。 簡易モデルで力同士の位相差を0にした場合のシミュレーション結果を示す図である。 簡易モデルにおいて、振動子のみを駆動する場合に振動子の永久磁石と筐体110に生じる力の時間変化を示す図である。 簡易モデルで振動子のみを駆動する場合のシミュレーション結果を示す図である。 簡易モデルにおいて、振動子のみを駆動する場合に振動子の永久磁石と筐体110に生じる力Fの時間変化を示す図である。 簡易モデルで振動子のみを駆動する場合のシミュレーション結果を示す図である。 触感提供装置の内部構成を示す図である。 実施の形態1のシミュレーションシステムを示す図である。 実施の形態1の処理装置が適用されるコンピュータシステムの斜視図である。 コンピュータシステムの本体部内の要部の構成を説明するブロック図である。 物品データを示す図である。 物品の画像の一例を示す図である。 反力と振幅値とを関連付けたテーブル形式のデータを示す図である。 実施の形態の処理装置が実行する処理を示すフローチャートである。 触感提供装置の駆動制御部が振動子を駆動する際に実行する処理を示すフローチャートである。
 以下、本発明の触感提供装置、及び、シミュレーションシステムを適用した実施の形態について説明する。
 <実施の形態>
 図1及び図2は、実施の形態の触感提供装置100を示す図である。ここでは、直交座標系の一例であるXYZ座標系を用いて説明する。
 触感提供装置100は、筐体110、振動子120-1、120-2、120-3、及び駆動制御部140を含む。図1には触感提供装置100の全体構成を示し、図2には振動子120-1、120-2、120-3と駆動制御部140の内部構成とを示す。
 筐体110は、触感提供装置100の筐体であり、触感提供装置100の利用者が手で持つ部分である。筐体110には、振動子120-1、120-2、120-3が固定される。図1には、一例として、筐体110が直方体状の樹脂等で作製された部材であり、筐体110の外表面に振動子120-1、120-2、120-3が固定される形態を示すが、振動子120-1、120-2、120-3は、筐体110の内部に設けられていてもよく、一部が筐体110の内部に配置される構成であってもよい。
 筐体110の質量は、一例として、振動子120-1、120-2、120-3の質量の約10倍から約100倍程度である。このため、それぞれ固有の共振モードを有する振動子120-1、120-2、120-3を1つずつ駆動すると、筐体110は、振動子120-1、120-2、120-3の各々の共振に近い状態で共振する。従って、振動子120-1、120-2、120-3をそれぞれの共振周波数で同時に振動させると、筐体110には3つの共振を合成した振動が生じる。
 筐体110は、利用者の親指Aと人差し指Bによって把持される。このように、親指Aと人差し指Bとによって筐体110のY軸正方向側の側面とY軸負方向側の側面とが把持されることによって、触感提供装置100は、利用者によって保持される。なお、ここでは筐体110の両側面を親指Aと人差し指Bで把持する形態について説明するが、利用者は、筐体110を親指Aと人差し指B以外の指で把持してもよい。また、例えば、両手の手のひら等で筐体110の両側面を把持してもよい。
 振動子120-1、120-2、120-3は、互いに同様の構成を有するため、ここでは、振動子120-1の構成について説明する。振動子120-1は、筐体121、ばね122、永久磁石123、ダンパ124、及び電磁コイル125を有する。振動子120-1、120-2、120-3は、それぞれ固有の共振状態で駆動される。振動子120-1、120-2、120-3の共振周波数の比は、1:2:3に設定されている。
 筐体121は、一例として、円筒型の金属製又は樹脂製の中空の部材である。筐体121の内部には、ばね122、永久磁石123、ダンパ124、及び電磁コイル125が配設される。
 ばね122は、一方の端部が筐体121の内壁に固定され、他方の端部が永久磁石123に固定される。ばね122の内壁に固定される端部は固定端であり、反対側の永久磁石123に固定される端部は自由端である。
 永久磁石123は、ばね122の端部(自由端)に取り付けられている。一例として、S極がばね122側に位置し、N極がばね122とは反対側(電磁コイル125に近い側)に位置する。
 ダンパ124は、ばね122と並列に、筐体121の内壁と永久磁石123との間に設けられている。ダンパ124の両端は、それぞれ筐体121の内壁と永久磁石123とに固定されており、ばね122の振動を減衰する。ダンパ124には、例えば、オイルダンパ又はガス封入式のダンパを用いることができる。
 電磁コイル125は、図示しない駆動制御部から電流が供給(オン)されると、永久磁石123をX軸正方向に吸引する。この状態で、ばね122は、X軸正方向に引き延ばされる。電磁コイル125に電流が供給されない状態(オフの状態)では、永久磁石123は、ばね122の収縮力によってX軸負方向に引き戻される。このため、電磁コイル125に所定の周波数で断続的に電流を流すことにより、永久磁石123をX軸方向に往復運動させることができる。
 なお、振動子120-1、120-2、120-3をそれぞれ固有の共振状態で駆動するために、振動子120-1、120-2、120-3のばね122のばね定数と永久磁石123の質量は、互いに異なる値に設定される。
 振動子120-1、120-2、120-3の共振周波数は、一例として、振動子120-1の共振周波数を基準として、振動子120-2の共振周波数は振動子120-1の共振周波数の2倍、振動子120-3の共振周波数は振動子120-1の共振周波数の3倍に設定される。このため、振動子120-1、120-2、120-3のばね122のばね定数と永久磁石123の質量は、それぞれ、3つの共振周波数に対応した値に設定される。
 また、ダンパ124の減衰力、及び/又は、電磁コイル125が電流通流時に発生する磁力も振動子120-1、120-2、120-3で互いに異なっていてもよい。良好な触感を実現するためである。
 駆動制御部140は、アンプ160-1、160-2、160-3を介して振動子120-1、120-2、120-3に接続されている。駆動制御部140は、振動子120-1、120-2、120-3を同時に駆動し、筐体110にX軸方向の往復運動を生じさせる。
 駆動制御部140は、振動子120-1、120-2、120-3をそれぞれ別々の駆動信号で同時に駆動する。振動子120-1、120-2、120-3は、それぞれ固有の共振状態で駆動される。
 次に、振動子120-1、120-2、120-3を駆動することによって利用者の指先に触感を提供する原理について説明する。
 人間の皮膚のマイスナー小体は、皮膚に剪断方向(皮膚の表面に平行な方向)の往復振動が与えられる際に、往方向の振動の速度が、復方向の振動の速度よりも高いと、往方向に引っ張られている触感を感じ取る。また、復方向の振動の速度が、往方向の振動の速度よりも高いと、復方向に引っ張られている触感を感じ取る。
 また、利用者が親指Aと人差し指Bとによって筐体110の両側面を把持しているときに、振動子120-1、120-2、120-3を駆動してX方向に往復運動させると、親指Aと人差し指Bの皮膚の剪断方向は、X軸方向になる。
 このため、振動子120-1、120-2、120-3をX軸方向に往復運動させる際に、X軸正方向に振動する速度がX軸負方向に振動する速度よりも高い駆動パターンで振動子120-1、120-2、120-3を駆動すると、利用者は、親指Aと人差し指BがX軸正方向に引っ張られる触感を得る
 また、これとは逆に、振動子120-1、120-2、120-3をX軸方向に往復運動させる際に、X軸負方向に振動する速度がX軸正方向に振動する速度よりも高い駆動パターンで振動子120-1、120-2、120-3を駆動すると、利用者は、親指Aと人差し指BがX軸負方向に引っ張られる触感を得る。
 触感提供装置100は、振動子120-1、120-2、120-3を所定の駆動信号で同時に駆動することにより、利用者の親指Aと人差し指BにX軸正方向に引っ張られる触感、又は、X軸負方向に引っ張られる触感を提供する。
 図3は、引っ張られる触感を提示するために筐体110に生じさせる加速度振動の理想的な波形を示す図である。図3に示す筐体110の加速度振動のパターンは、横軸が時間軸であり、縦軸が加速度である。(A)、(B)に示す2つの振動パターンは、鋸波状の振動パターンであり、加速度が立ち上がる時間変化率の大きさと、立ち下がる時間変化率の大きさとが異なる。
 ここで、立ち上がる動作とは、鋸波の加速度が最小の点から最大の点に向かう動作であり、立ち下がる動作とは、鋸波の加速度が最大の点から最小の点に向かう動作である。立ち上がる際には、筐体110にかかる加速度はX軸正方向に増加し、立ち下がる際には、筐体110にかかる加速度がはX軸負方向に増加する。
 親指A及び人差し指BにX軸正方向に引っ張る触感を提供する場合には、筐体110に、(A)に示すような、立ち上がりが立ち下がりよりも速い加速度振動を生じさせる。一方、親指A及び人差し指BをX軸負方向に引っ張る触感を提供する場合には、筐体110に、(B)に示すような、立ち下がりが立ち上がりよりも速い加速度振動を生じさせる。
 このような引っ張る触感は、一例として、後述するシミュレーションシステムにおいて、スクリーンに表示されるポインタを触感提供装置100で操作する際に、スクリーンに表示される物品にポインタが接触したときの反力を表す触感として利用される。
 また、図3に示す2つの加速度振動のパターンは、一例に過ぎず、加速度の立ち上がる時間変化率と、立ち下がる時間変化率とが異なる振動パターンであれば、どのような波形の振動パターンであってもよい。ただし、振動パターンの周波数は、一例として、40Hz~100Hz程度の範囲に収まる周波数であることが好ましい。これは、人体の筋紡錘の感度がこの周波数帯域にあるからである。
 上述のような加速度の振動パターンは駆動制御部140と振動子120-1,120-2,120-3と筐体の運動の応答の結果として筐体110に生成される。加速度の振動パータンは、線形的に増大又は低下する形態に限らず、非線形的に増大又は低下してもよい。
 また、加速度の振動パターンは、波形が立ち上がる際の加速度と、波形が立ち下がる際の加速度が異なることによって、筐体110が立ち上がる速度と、立ち下がる速度とが異なるように設定された振動パターンを用いてもよい。
 加速度振動の振幅は、上述した反力を表す触感の大きさに対応する。加速度振動の振幅が大きくなれば、反力を表す触感は大きくなり、加速度振動の振幅が小さくなれば、反力を表す触感は小さくなる。
 加速度振動の振幅を設定するには、例えば、次のようにして行えばよい。ばねを手で引く際に手で受ける反力(1)と、触感提供装置100の振動子120-1、120-2、120-3をある振幅(電圧値)の駆動信号で駆動したときに引っ張る触感による反力(2)とを実験者が比較する。反力(1)と反力(2)がつり合うときの反力(1)の測定値と、反力(2)を生成する振幅(電圧値)とを関連付ける。
 このような作業を様々な大きさの反力(1)について行うことにより、反力(1)の測定値と、反力(2)とを関連付けたテーブル形式のデータを生成する。このようなテーブル形式のデータを用いて、触感提供装置100の利用者の手に提供すべき反力(2)の大きさに応じて、駆動信号の振幅を設定すればよい。
 次に、駆動制御部140が振動子120-1、120-2、120-3を駆動する際に用いる駆動信号について説明する。ここで、一例として、振動子120-1、120-2、120-3のうち、振動子120-1を基準の振動子とする。
 振動子120-1、120-2、120-3の各々を駆動する駆動信号は、正弦波で表される電圧値であり、次式(1)で表される。ここで、iは、1から3のうちのいずれかの値であり、aiは、駆動信号の振幅を表す。fは、振動子120-1の共振周波数である。また、φiは、振動子120-1、120-2、120-3のうちのi番目の振動子を駆動する駆動信号に含まれる所定の位相である。
Figure JPOXMLDOC01-appb-M000001
 すなわち、式(1)は、3個の振動子120-1、120-2、120-3のうちのi番目の振動子を駆動する駆動信号を表す。
 従って、振動子120-1の駆動信号はa1sin(2πft+φ1)である。振動子120-2の駆動信号は(a2sin{2π(2f)t+(φ2+π)}=-a2sin{2π(2f)t+φ2}である。また、振動子120-3の駆動信号はa3sin{2π(3f)t+(φ3+2π)}=a3sin{2π(3f)t+φ3}である。
 振幅の係数aiと位相φiは、i番目の振動子に式(1)の駆動信号を入力した結果筐体110に生じる加速度が次式(2)となるように調整するために必要な数値である。
Figure JPOXMLDOC01-appb-M000002
 ここでA1は1番目の振動子の駆動信号の振幅aと振動系100の動特性の結果生じる加速度振幅である。Aは触感の強さに関係する。
 これら3つの駆動信号によって筐体に生じる加速度(1')を合成すると、次式(3)が得られる。
Figure JPOXMLDOC01-appb-M000003
 式(3)は、図3の(B)に示す鋸波をフーリエ級数展開した数式の第3項までの和定数倍した式に相当する。鋸波をフーリエ級数展開した数式は、式(4)で表される。式(4)は、第N項まで含む。
Figure JPOXMLDOC01-appb-M000004
 なお、振動子120-1、120-2、120-3は、上述のように共振周波数が互いに異なる振動子である。振動子120のように質量、バネ、減衰を持つ系と筐体110を接続し、振動子の質量に正弦波の加速度を与えると、筐体にはそれと異なる振幅や位相を持つ正弦波の加速度が生じる。。式(1)の振幅aiと位相φiは、このような駆動振動に対して筐体110に生じる振動の振幅と位相の関係が式(3)を満たすように調整するために設けられている。所定の振幅aiおよび位相φiは、筐体110の質量と、振動子120-1、120-2、120-3の質量及びばね定数等とに応じて、シミュレーション及び/又は実験等で最適な値に設定すればよい。
 なお、駆動信号の振幅ai、周波数if、位相φiを表すデータは、駆動制御部140の内部メモリ等に格納しておけばよい。駆動制御部140は、駆動信号を生成する際に、内部メモリ等から振幅ai、周波数if、位相φiを読み出せばよい。
 図4は、鋸波と、式(3)から得られる波形とを示す図である。図4において、横軸は時間、縦軸は加速度振幅を表す。図4には、式(3)から得られる波形として、式(3)の第1項のみで得られる波形(1)を破線で示し、式(3)の第1項及び第2項を合成して得られる波形(2)を一点鎖線で示し、式(3)の第1項、第2項、及び第3項を合成して得られる波形(3)を二点差線で示す。また、鋸波を実線で示す。
 図4に示すように、波形(1)は正弦波であるが、波形(2)及び(3)は、鋸波のように、立ち下がりの加速度の時間変化率が立ち上がりの加速度の時間変化率よりも速いパターンになっている。また、波形(2)よりも波形(3)の方が、鋸波により近い形状になっている。
 ここでは、説明の便宜上、第1項及び第2項を合成して得られる波形(2)と、第1項、第2項、及び第3項を合成して得られる波形(3)とを示すが、振動子120-1及び120-2と、振動子120-1、120-2、120-3を同時に駆動すれば、それぞれ、波形(2)と波形(3)で表される加速度振動が筐体110に生じるものと考えられる。
 また、式(4)においてNを4以上の値にすれば、波形(3)よりもさらに鋸波に近い形状の波形が得られるものと考えられる。
 このことから、複数の振動子を式(1)、(2)の条件を満たし、互いにiの値が異なる駆動信号で同時に駆動すれば、筐体110に鋸波に近似させた加速度波形を生じさせることができると考えられる。
 図5は、触感提供装置100のシミュレーション用の簡易モデル100Aを示す図である。簡易モデル100Aは、筐体110と、振動子120-1及び120-2を含む。簡易モデル100Aは、2つの振動子120-1及び120-2を含み、振動子120-3は含まない。
 ここで、振動子120-1及び120-2のばね122のばね定数をk、k、永久磁石123の質量をm、m、ダンパ124の減衰係数をc、cとする。また、振動子120-1及び120-2の永久磁石123の変位をx1、x2、筐体110の変位をx3とする。変位x1、x2、x3は、X軸正方向を正とする。また、変位x1、x2、x3を時間で微分して得る速度をそれぞれv1、v2、v3とする。更に、コイルからの電磁力によって永久磁石123に生じる力とf、fとする。f、fの向きは、矢印で示すようにX軸正方向を正とする。f1、により永久磁石123が振動すると、バネにはk(x―x)、k(x―x)のバネ力が生じ、ダンパにはc(x'―x')、c(x'―x')の減衰力、mx"、mx"の慣性力が生じる。これらの合力として、筐体110には、これらの力の合力F、Fが生じる。
 このような簡易モデル100Aにおいて、振動子120-1及び120-2のばね122の位置エネルギは、次式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 また、振動子120-1及び120-2の永久磁石123の運動エネルギは、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 また、振動子120-1及び120-2のダンパ124によって失われるエネルギは、次式(7)で表される。
 簡易モデル100Aの運動方程式の導出は比較的複雑になるので、一般的にはエネルギーの式(5)~(6)にラグランジュ法を適用すれば良い。
Figure JPOXMLDOC01-appb-M000007
 このようにして求めた簡易モデル100Aの運動方程式を用いて、振動子120-1及び120-2を駆動した場合の筐体110の加速度、速度、及び変位を求めたところ、次のような結果を得た。
 図6は、簡易モデル100Aの振動子120-1及び120-2の永久磁石123に生じる力f、fの時間変化を示す図である。図7は、簡易モデル100Aのシミュレーション結果を示す図である。
 図6の左に示す力f、fが振動子120-1及び120-2の質量123に生じるように、振動子120-1及び120-2を駆動した。力f、fは、振幅が±0.14(N)、±0.08(N)であり、力fに対して力fは位相がπ/2遅れている。
 このように振動子120-1及び120-2を駆動したところ、図6の右に示す力Fが筐体110に生じた。力Fは、振動子120-1及び120-2の運動の結果発生する力F、Fの合成力である。すなわち、F=F+Fである。力Fは、正側に振動するときと、負側に振動するときとで波形が異なる特性になった。
 そして、図7に示すように、筐体110の加速度は、力Fと同様に、正側に振動するときと、負側に振動するときとで波形が異なる特性になった。筐体110の速度は、正側で+0.25m/s、負側で-14m/sであり、正側に振動するときと、負側に振動するときとで速度が異なる特性になった。また、変位は、正側に振動するときと、負側に振動するときとで略同様の振幅になった。
 このように、正側に振動するときと、負側に振動するときとで筐体110の速度が異なるため、利用者の親指Aと人差し指Bとの表面に往復の速度が異なる剪断変形を発生させることができ、触感を提供できることを確認することができた。
 次に、比較用に、力fと力fの位相差を0にした場合のシミュレーション結果について説明する。
 図8は、簡易モデル100Aにおいて、力fと力fの位相差を0にした場合に振動子120-1及び120-2の質量123に生じる力f、fの時間変化を示す図である。図9は、簡易モデル100Aで力fと力fの位相差を0にした場合のシミュレーション結果を示す図である。
 図8の左に示すように、力f、fは、各々の振幅が±0.14(N)および0.08(N)であり、力fと力fの位相差は0である。
 このように力fと力fの位相差を0に設定して振動子120-1及び120-2を駆動したところ、図8の右に示す力Fが筐体110に生じた。そして、図9に示すように、筐体110の加速度は、力Fと同様の特性であった。また、筐体110の速度は、正側で+0.22m/s、負側で-0.21m/sであり、正側に振動するときと、負側に振動するときとで速度が略同一であった。また、変位は、正側に振動するときと、負側に振動するときとで略同様の振幅になった。
 このように、正側に振動するときと、負側に振動するときとで筐体110の速度が略同一であるため、力fと力fの位相差を0にした場合には、利用者の親指Aと人差し指Bとの表面に往復で速度の異なる剪断変形を発生させることができず、触感を提供できないことが分かった。
 次に、比較用に、簡易モデル100Aの振動子120-1を駆動し、振動子120-2を駆動せずに、さらに振動子120-1を共振させずに、正側に振動するときと、負側に振動するときとで加速度が異なる条件でシミュレーションを行った。ここでは、正側に振動するときと、負側に振動するときとで加速度が異なる条件として、加速度が鋸波状に変化する用にした。
 図10は、簡易モデル100Aにおいて、振動子120-1のみを駆動する場合に振動子120-1の質量123に生じる力fおよび筐体110に生じる力Fの時間変化を示す図である。図10に示すように、振動子120-1に生じる加速度は、鋸波状に変化させている。図11は、簡易モデル100Aで振動子120-1のみを駆動する場合のシミュレーション結果を示す図である。
 振動子120-1は触感を生じるのに必要な40~100Hzの駆動信号で共振させないようにバネ定数k1を変更し、図10の左に示すように、力fの振幅を0.675(N)に設定した。これは、図6に示すように振動子120-1を共振させる場合の力fの4倍以上の力である。
 このように振動子120-1のみを駆動したところ、図10の右に示す力Fが筐体110に生じた。そして、図11に示すように、筐体110の加速度は、力Fと同様の特性であった。また、筐体110の速度は、正側で+0.31m/s、負側で-0.23m/sであり、正側に振動するときと、負側に振動するときとで速度が異なる特性になった。また、変位は、正側に振動するときと、負側に振動するときとで略同様の振幅になった。
 このように、正側に振動するときと、負側に振動するときとで筐体110の速度が異なるため、利用者の親指Aと人差し指Bとの表面に往復で速度の異なる剪断変形を発生させることができ、触感を提供できることを確認することができた。
 しかしながら、振動子120-1を共振させずに駆動するため、振動子120-1における消費電力が大きく、効率的に触感を提供することはできない。
 次に、比較用に、図10に示した振動子120-1に共振を生じさせるようにして、振動子120-1に生じさせる加速度を1/10にした条件でシミュレーションを行った。
 図12は、簡易モデル100Aにおいて、振動子120-1のみを駆動する場合に振動子120-1の質量に生じる力fおよび筐体110に生じる力Fの時間変化を示す図である。図13は、簡易モデル100Aで振動子120-1のみを駆動する場合のシミュレーション結果を示す図である。
 図12の左に示すように、力fの振幅を0.0675(N)に設定した。これは、図10に示す力fの1/10の力である。
 このように振動子120-1のみを共振状態で駆動したところ、図12の右に示す力Fが筐体110に生じた。そして、図13に示すように、筐体110の加速度は、力Fと同様の特性であった。また、筐体110の速度は、正側で+0.21m/s、負側で-0.21m/sであり、正側に振動するときと、負側に振動するときとで速度が略同一であった。また、変位は、正側に振動するときと、負側に振動するときとで略同様の振幅になった。
 このように、鋸波状のパターンで振動子120-1のみを共振状態で駆動すると、正側に振動するときと、負側に振動するときとで筐体110の速度は等しくなった。
 これでは、利用者の親指Aと人差し指Bとの表面に往復で速度の異なる剪断変形を発生させることができず、触感を提供できることはできない。このように、振動子120-1を共振させずに、鋸波状に駆動する場合には、振動子120-1がある程度大きな力を発生しないと、触感を提供できなことが分かった。1つの振動子120-1で触感を提供するには、図10及び図11で説明したように、振動子120-1における消費電力が大きくなるため、効率的に触感を提供することはできない。
 以上より、振動子の消費電力を少なくするために振動子の共振を利用するには、共振周波数の異なる複数の振動子を、鋸波など錯覚を生じることが知られている加速度波形のフーリエ級数展開で表される加速度振動で同時に駆動することが必要であり、さらに、このような加速度振動を得るには、駆動信号同士が所定の振幅比と位相差を有することが必要である。
 以上のように、実施の形態によれば、互いに異なる共振周波数を有する3個の振動子120-1、120-2、120-3を鋸波をフーリエ級数展開した時の3個の項で表される駆動信号で同時に駆動することにより、筐体110が正側に振動するときと、負側に振動するときとで速度が異なるため、利用者の親指Aと人差し指Bとの表面に往復で速度の異なる剪断変形を発生させることができる。
 そして、このような剪断変形を発生させるための筐体110の振動は、3個の振動子120-1、120-2、120-3を同時に共振させることで実現される。すなわち、大きな筐体110の振動の振幅を少ない消費電力で実現することができる。
 従って、効率的に駆動できる触感提供装置100を提供することができる。
 なお、以上では、3個の振動子120-1、120-2、120-3を含む触感提供装置100と、2個の振動子120-1、120-2を含む簡易モデル100Aとについて説明したが、互いに異なる共振周波数を有するN個の振動子であって、筐体110が鋸波のフーリエ級数展開のN個の項で表される加速度で駆動されるのであれば、振動子の数は幾つであってもよい。ただし、正弦波のフーリエ級数のN個の項は、第1項から連続するN個の項である。
 また、以上では、鋸波のフーリエ級数展開のN個の項に相当する加速度を用いてN個の振動子を駆動する形態について説明したが、加速度は、鋸波以外の形式の波形であってもよい。互いに異なる共振周波数を有するN個の振動子を駆動することによって、筐体110に正側に振動するときと、負側に振動するときとで速度が異なる振動を発生させることができれば、N個の振動子が生じる加速度は、鋸波のフーリエ級数展開以外の形式であってもよい。
 また、以上では、シミュレーションでN個の振動子の駆動信号を最適化する形態について説明したが、N個の振動子の駆動信号は、各振動子の駆動信号の振幅と位相をパラメータとして、筐体110の振動の振幅が最大になるように、最適化問題を解く要領で各振動子の駆動信号の振幅と位相を求めてもよい。このような場合に、筐体110の振動を測定するには、筐体110に加速度計を取り付ければよい。加速度計は、例えば、MEMS(Micro Electro Mechanical Systems)によって実現される小型軽量のものを用いればよい。このような加速度計は、加速度がかかったときの静電容量の変化を表す振動を出力する。
 最後に、図14乃至図22を用いて、触感提供装置100を含むシミュレーションシステムについて説明する。
 図14は、触感提供装置100の内部構成を示す図である。
 触感提供装置100は、振動子120-1、120-2、120-3、駆動制御部140、DAコンバータ150、アンプ160、通信部170、及びメモリ180を含む。ここでは、主に通信部170について説明する。アンプ160は、図2に示すアンプ160-1、160-2、160-3を1つに纏めて示すものである。
 通信部170は、例えば、Bluetooth(登録商標)又はWiFi等の規格でシミュレーションシステムの処理装置と無線通信を行う。通信部170は、駆動制御部140に接続されており、シミュレーションシステムの処理装置から駆動指令を受信すると、駆動指令を駆動制御部140に出力する。この結果、駆動制御部140によって振動子120-1、120-2、120-3のうちの少なくとも1つ以上が駆動される。振動子120-1、120-2、120-3のいずれをどのような振幅や位相で駆動するかは、筐体110に生じる加速度のX軸方向、Y軸方向、Z軸方向の成分の大きさと位相によって決まる。駆動信号と筐体110間に生じる加速度の振幅と位相の関係は、一般的な周波数伝達関数の同定手法を用いれば良い。
 メモリ180は、駆動制御部140が生成する駆動信号の元になるデータを格納する。ここで、駆動信号が正弦波状の信号である場合には、メモリ180には、正弦波を表すデータが格納される。正弦波を表すデータは、正弦波の周波数と、各振動子の振幅と位相差が決められており、駆動制御部140が振幅を設定すると、図6に示すような駆動信号を生成することができる。
 駆動制御部140は、後述するシミュレーションシステムの処理装置から、振幅と位相を表すデータを受信すると、振幅と位相によって特定される正弦波状の駆動信号を生成する。なお、振幅と位相の値は、上述したように、駆動信号と筐体110に生じる加速度間の伝達関数によって決まる。
 図15は、実施の形態のシミュレーションシステム200を示す図である。
 シミュレーションシステム200は、触感提供装置100、スクリーン210A、投影装置210B、3D(3 Dimension)眼鏡210C、処理装置220、及び位置計測装置240を含む。
 シミュレーションシステム200は、例えば、組み立て作業性を仮想空間において把握するため組立支援システムに適用することができる。組立支援システムでは、例えば、CPU(Central Processing Unit:中央演算処理装置)モジュール、メモリモジュール、通信モジュール、又はコネクタ等の電子部品をマザーボード等に組み付ける作業を仮想空間で模擬的に行うことができる。
 しかしながら、シミュレーションシステム200は、組立支援システムに限らず、三次元空間での作業性を確認する様々なシステムに適用することができる。
 なお、マーカ130は、筐体110に取り付けられている。マーカ130は、複数の球体を有し、後述するシミュレーションシステムにおいて赤外線が照射されると、赤外線を様々な方向に反射する。マーカ130は、シミュレーションシステムの処理装置が触感提供装置100の位置を検出する際に用いられる。
 スクリーン210Aは、例えば、プロジェクタ用スクリーンを用いることができる。スクリーン210Aのサイズは、用途に応じて適宜設定すればよい。スクリーン210Aには、投影装置210Bによって投影される画像が表示される。ここでは、物品211及び212の画像がスクリーン210Aに表示されていることとする。
 投影装置210Bは、スクリーン210Aに画像を投影できる装置であればよく、例えば、プロジェクタを用いることができる。投影装置210Bは、ケーブル210B1によって処理装置220に接続されており、処理装置220から入力される画像をスクリーン210Aに投影する。ここでは、投影装置210Bは、3D画像(立体視の画像)をスクリーン210Aに投影できるタイプのものである。
 なお、スクリーン210Aと投影装置210Bは、表示部の一例である。
 3D眼鏡210Cは、シミュレーションシステム200を利用する利用者が装着する。3D眼鏡210Cは、投影装置210Bによってスクリーン210Aに投影される画像を3D画像に変換できる眼鏡であればよく、例えば、入射光を偏光する偏光眼鏡、又は、液晶シャッターを有する液晶シャッター眼鏡を用いることができる。
 なお、スクリーン210A及び投影装置210Bの代わりに、例えば、液晶ディスプレイパネルを用いてもよい。また、3D眼鏡210Cが不要な場合は、3D眼鏡210Cを用いなくてもよい。また、スクリーン210A及び投影装置210Bの代わりに、ヘッドマウントディスプレイを用いてもよい。
 処理装置220は、位置検出部221、接触判定部222、映像出力部223、データ保持部224、駆動制御部225、及び通信部226を有する。処理装置220は、例えば、メモリを有するコンピュータによって実現される。
 位置検出部221は、位置計測装置240から入力される画像データに対してパターンマッチング等の画像処理を行い、触感提供装置100のマーカ130の位置と姿勢を検出する。触感提供装置100の位置は、3次元座標における座標値で表され、姿勢は、3次元座標の3軸方向に対する角度で表される。
 位置検出部221は、3次元座標における座標値をスクリーン210Aに投影される画像の中の座標に変換し、ポインタ230Aの位置を表す座標として出力する。位置検出部221は、第2検出部の一例である。すなわち、ポインタ230Aの位置は、触感提供装置100の位置によって決まる。スクリーン210Aに投影されるポインタ230Aを移動させるには、実空間で触感提供装置100を移動させればよい。触感提供装置100をポインタ230Aの操作端末機として捉えてもよい。
 なお、触感提供装置100の位置と姿勢の検出は、位置計測装置240で行ってもよい。
 接触判定部222は、スクリーン210Aに投影される物品211又は212の画像と、スクリーン210Aに表示されるポインタ230Aとが接触したかどうかを判定する。
 接触判定部222は、スクリーン210Aに投影される物品211又は212の形状及び位置を表すデータと、ポインタ230Aの位置を表すデータとを用いて、物品211又は212の画像と、ポインタ230Aとが接触したかどうかを判定する。接触判定部222は、判定部の一例である。
 映像出力部223の出力端子は、ケーブル210B1によって投影装置210Bに接続されている。映像出力部223は、データ保持部224に保持される物品211及び212の物品データによって特定される画像を投影装置210Bに出力し、スクリーン210Aに表示させる。
 また、映像出力部223は、投影装置210Bにポインタ230Aを表示させる。スクリーン210Aに表示される画像内におけるポインタ230Aの位置は、位置検出部221で検出される触感提供装置100の位置と姿勢によって決まる。
 データ保持部224は、物品211及び212の座標と形状を表す物品データ、及び、ポインタ230Aの画像データ等のデータを保持する。データ保持部224は、メモリによって実現され、データ格納部の一例である。
 駆動制御部225は、接触判定部222によって物品211又は212の画像と、ポインタ230Aとが接触したと判定されると、ポインタ230Aが物品211又は212に接触した方向に応じて、反力を表す振動パターンの駆動信号を出力する。この駆動信号は、触感提供装置100の振動子を駆動する信号である。
 通信部226は、触感提供装置100と無線通信を行う通信部であり、例えば、Bluetooth又はWiFi(Wireless Fidelity)等の規格で無線通信を行うことができる。通信部226は、駆動制御部225によって生成される駆動信号を触感提供装置100に送信する。なお、通信部226は、触感提供装置100と有線通信を行う通信部であってもよい。
 位置計測装置240は、赤外線カメラ240A及び240Bを有し、それぞれ、ケーブル241A及び241Bによって位置検出部221に接続されている。赤外線カメラ240A及び240Bは、赤外線を触感提供装置100に照射し、マーカ130で反射された反射光を撮影する。位置計測装置240は、赤外線カメラ240A及び240Bが出力する画像データを位置検出部221に転送する。位置計測装置240は、第1検出部の一例である。
 図16は、処理装置220が適用されるコンピュータシステムの斜視図である。図16に示すコンピュータシステム10は、本体部11、ディスプレイ12、キーボード13、マウス14、及びモデム15を含む。
 本体部11は、CPU(Central Processing Unit:中央演算装置)、HDD(Hard Disk Drive:ハードディスクドライブ)、及びディスクドライブ等を内蔵する。ディスプレイ12は、本体部11からの指示により画面12A上に解析結果等を表示する。ディスプレイ12は、例えば、液晶モニタであればよい。キーボード13は、コンピュータシステム10に種々の情報を入力するための入力部である。マウス14は、ディスプレイ12の画面12A上の任意の位置を指定する入力部である。モデム15は、外部のデータベース等にアクセスして他のコンピュータシステムに記憶されているプログラム等をダウンロードする。
 コンピュータシステム10に処理装置220としての機能を持たせるプログラムは、ディスク17等の可搬型記録媒体に格納されるか、モデム15等の通信装置を使って他のコンピュータシステムの記録媒体16からダウンロードされ、コンピュータシステム10に入力されてコンパイルされる。
 コンピュータシステム10に処理装置220としての機能を持たせるプログラムは、コンピュータシステム10を処理装置220として動作させる。このプログラムは、例えばディスク17等のコンピュータ読み取り可能な記録媒体に格納されていてもよい。コンピュータ読み取り可能な記録媒体は、ディスク17、ICカードメモリ、フロッピー(登録商標)ディスク等の磁気ディスク、光磁気ディスク、CD-ROM、USB(Universal Serial Bus)メモリ等の可搬型記録媒体に限定されるものではない。コンピュータ読み取り可能な記録媒体は、モデム15又はLAN等の通信装置を介して接続されるコンピュータシステムでアクセス可能な各種記録媒体を含む。
 図17は、コンピュータシステム10の本体部11内の要部の構成を説明するブロック図である。本体部11は、バス20によって接続されたCPU21、RAM又はROM等を含むメモリ部22、ディスク17用のディスクドライブ23、及びハードディスクドライブ(HDD)24を含む。実施の形態では、ディスプレイ12、キーボード13、及びマウス14は、バス20を介してCPU21に接続されているが、これらはCPU21に直接的に接続されていてもよい。また、ディスプレイ12は、入出力画像データの処理を行う周知のグラフィックインタフェース(図示せず)を介してCPU21に接続されていてもよい。
 コンピュータシステム10において、キーボード13及びマウス14は、処理装置220の入力部である。ディスプレイ12は、処理装置220に対する入力内容等を画面12A上に表示する表示部である。
 なお、コンピュータシステム10は、図16及び図17に示す構成のものに限定されず、各種周知の要素を付加してもよく、又は代替的に用いてもよい。
 図18は、物品データを示す図である。
 物品データは、スクリーン210Aに表示する物品の座標と形状を表すデータである。物品データは、物品ID、形状タイプ、基準座標、サイズ、回転角度、及び反力係数kを有する。
 形状タイプは、物品の外形を表す。図18では、一例として、形状タイプがCuboid(直方体)とCylinder(円柱体)を示す。
 基準座標は、物品の全体を表す座標の基準になる点の座標値を示す。座標値の単位はメートル(m)である。なお、座標系としては、XYZ座標系を用いる。
 サイズは、物品のX軸方向の長さ、Y軸方向の長さ、Z軸方向の長さを表す。単位はメートル(m)である。一例として、X軸方向の長さは縦の長さを表し、Y軸方向の長さは高さを表し、Z軸方向の長さは奥行き(横方向の長さ)を表す。
 回転角度は、X軸方向、Y軸方向、Z軸方向に対する回転角度θx、θy、θzで表される。単位は度(deg.)である。回転角度θxは、X軸を回転軸として物品を回転させる角度である。同様に、回転角度θy及びθzは、それぞれ、Y軸及びZ軸を回転軸として物品を回転させる角度である。回転角度θx、θy、θzの正方向は、予め決めておけばよい。
 反力係数kは、スクリーン210Aに表示する物品に対応する実空間における物品の硬さである。反力係数は、実空間における物品が硬いほど高くなる係数であり、単位はN/mmである。また、反力係数kとして、ヤング率等の他の物理量を用いてもよい。一例として、物品IDが001、002、003の物品の反力係数kは、それぞれ、0.05、0.03、0.01に設定されている。例えば、物品IDが001の物品は金属製であり、物品IDが002の物品は樹脂製であり、物品IDが003の物品はゴム製である。
 反力Fは、次式(8)で表され、反力係数kに、食い込み量ΔLと法線ベクトルnを乗じることで得られる。反力Fはベクトルで表される。
Figure JPOXMLDOC01-appb-M000008
 式(8)において、ΔLは、ポインタ230Aがスクリーン210Aに表示される物品に食い込んだ量(食い込み量)である。食い込み量は、物品とポインタ230Aが接触した点から、物品の内側にポインタ230Aが食い込んだ量を表す。
 また、ベクトルnは、ポインタ230Aがスクリーン210Aに表示される物品に接触した点の法線ベクトルである。反力Fのベクトルは、式(8)に示すように、反力係数kに、法線ベクトルnを乗じることによって求められる。スクリーン210Aに表示される物品の法線ベクトルnは、図18に示す物品データを用いると、ポインタ230Aが接触した面の向きが分かるため、物品データから導き出せばよい。
 また、このような物品データを用いれば、CADデータによって表示される物品の画像と同様に、物品データによって特定される画像を表すことができる。
 なお、物品データは、処理装置220のデータ保持部224に格納されている。
 図19は、物品の画像の一例を示す図である。
 図19には、図18の物品データによって表される3つの物品を示す。
 物品IDが001の物品は、形状タイプがCuboid(直方体)で、基準座標(X,Y,Z)が(0.0,0.0,0.0)であり、サイズが(0.8,0.2,0.4)であり、回転角度θx、θy、θzが(0.0,0.0,0.0)である。
 基準座標(X,Y,Z)が(0.0,0.0,0.0)であるため、物品IDが001の物品の1つの頂点は、XYZ座標系の原点Oと一致している。
 物品IDが002の物品は、形状タイプがCuboid(直方体)で、基準座標(X,Y,Z)が(0.6,0.2,0.0)であり、サイズが(0.2,0.2,0.1)であり、回転角度θx、θy、θzが(0.0,0.0,0.0)である。
 このため、物品IDが002の物品は、物品IDが001の物品の上に配置されている。
 物品IDが003の物品は、形状タイプがCylinder(円柱体)で、基準座標(X,Y,Z)が(0.8,0.3,0.1)であり、サイズが(0.2,1.0,0.3)であり、回転角度θx、θy、θzが(0.0,0.0,90.0)である。
 このため、物品IDが003の物品は、Z軸を回転軸として90度回転させた状態で、物品IDが002の物品のX軸正方向側に接続されている。
 なお、上述のように、実施の形態では、図18に示す物品ID、形状タイプ、基準座標、サイズ、及び回転角度を有する物品データを用いて、スクリーン210Aに投影される画像の中における物品の座標と形状を規定する。
 例えば、形状タイプがCuboid(直方体)の場合に、8つの頂点の座標は、基準座標に対して、サイズで表される物品のX軸方向の長さ、Y軸方向の長さ、Z軸方向の長さを加算又は減算することによって求めることができる。8つの頂点の座標は、形状タイプがCuboid(直方体)の物品のCorner(角)の座標を表す。
 8つの頂点の座標を求めれば、12本の辺を表す式を求めることができる。12本の辺を表す式は、形状タイプがCuboid(直方体)の物品のEdge(辺)の座標を表す式である。
 また、8つの頂点の座標、及び/又は、12本の辺を表す式を求めれば、形状タイプがCuboid(直方体)の物品の6つの表面を表す式が求まり、Surface(面)の座標を求めることができる。
 また、形状タイプがCylinder(円柱体)の場合には、サイズで表される物品のX軸方向の長さ、Y軸方向の長さ、Z軸方向の長さに基づいて、円柱の両端にある円(又は楕円)を表す式を求めることができる。また、両端の円(又は楕円)を表す式と基準座標とを用いれば、両端の円(又は楕円)の座標を表す式を求めることができる。円柱体の側面の座標は、両端の円(又は楕円)の座標を表す式を用いることよって求めることができる。
 ここでは、形状タイプがCuboid(直方体)とCylinder(円柱体)の物品について説明したが、球体、三角錐、凹部を有する直方体等の様々な形状の物品についても、同様にスクリーン210Aに投影される画像の中における座標と形状を求めることができる。
 図20は、反力Fと振幅値とを関連付けたテーブル形式のデータを示す図である。
 反力Fのベクトルは、X、Y、Z成分(Fx、Fy、Fz)として表されている。また、振幅値は、X、Y、Z成分(Apx、Apy、Apz)として表されている。反力FのX、Y、Z成分(Fx、Fy、Fz)は、それぞれ、振幅値のX、Y、Z成分(Apx、Apy、Apz)と関連付けられている。
 従って、反力FのX、Y、Z成分(Fx、Fy、Fz)の値が求まれば、振幅値のX、Y、Z成分(Apx、Apy、Apz)の値が求まる。例えば、反力FのX、Y、Z成分が(Fx1、Fy1、Fz1)である場合には、振幅値のX、Y、Z成分は(Apx1、Apy1、Apz1)になる。
 図21は、実施の形態の処理装置220が実行する処理を示すフローチャートである。ここでは、一例として、図15に示すように、スクリーン210Aに物品211及び212の画像を表示させる場合について説明する。
 処理装置220は、電源投入後に処理を開始する(スタート)。
 処理装置220は、データ保持部224から物品データを取得する(ステップS1)。
 処理装置220は、物品データを用いて映像信号を生成し、投影装置210Bに画像を投影させる(ステップS2)。これにより、スクリーン210Aに物品211及び212の立体視のモデルの画像が表示される。スクリーン210Aに表示される物品211及び212の画像は、仮想空間に存在する仮想物体を表す。
 なお、ステップS1及びS2の処理は、映像出力部223によって行われる。
 処理装置220は、触感提供装置100の現実空間における位置と姿勢を検出する(ステップS3)。ステップS3の処理は、位置検出部221によって行われる。
 処理装置220は、仮想空間におけるポインタ230Aの座標を検出する(ステップS4)。ポインタ230Aの座標は、位置検出部221によって検出される。ポインタ230Aの座標データは、接触判定部222及び映像出力部223に入力される。
 処理装置220は、ステップS4で得られたポインタ230Aの座標に基づき、投影装置210Bにポインタ230Aをスクリーン210Aに表示させる(ステップS5)。触感提供装置100は、ポインタ230Aを指示する方向が予め決められており、ポインタ230Aは、例えば、触感提供装置100の位置及び予め決められた方向によって定まる直線と、スクリーン210Aとの交点に表示される。
 これにより、物品211及び212の立体視の画像が表示されているスクリーン210Aにポインタ230Aが表示される。
 また、ステップS5では、ポインタ230Aを表す画像データを用いてポインタ230Aを表示すればよい。ポインタ230Aについても、物品211及び212の物品データに相当するデータを用意しておき、ポインタ230Aの立体視のモデルの画像を表示すればよい。ただし、特にポインタ230Aの画像データを用いなくてもポインタ230Aを表示できる場合は、ポインタ230Aの画像データをデータ保持部224に保持しておかなくてもよい。
 なお、ステップS5の処理は、映像出力部223によって行われる。なお、ステップS3~S5の処理は、ステップS1~S2の処理と平行して行われる。
 処理装置220は、物品211又は212とポインタ230Aが接触したかどうかを判定する(ステップS6)。ステップS6の処理は、接触判定部222によって行われる。接触判定部222は、物品211及び212の物品データと、ステップS4で得られたポインタ230Aの座標データとに基づき、物品211又は212とポインタ230Aとが接触したかどうかを判定する。
 物品211又は212とポインタ230Aとが接触したかどうかは、物品211又は212の物品データが表す角、辺、又は面と、ポインタ230Aの座標データが表す位置との交点があるかどうかで判定すればよい。
 また、物品211又は212とポインタ230Aとが接触したかどうかは、ポインタ230Aの座標データと、座標データに最も近い物品データに含まれる座標との位置の差が所定値以下であるかどうかで判定してもよい。例えば、座標データに最も近い物品データに含まれる位置と、座標データが表す位置との差が所定値以下になった場合に接触したと判定する方が、シミュレーションシステム200における触感提供装置100の操作性が良好である場合には、このような設定にすればよい。
 次に説明するステップS7では、一例として、物品211とポインタ230Aが接触したこととする。なお、物品212とポインタ230Aが接触した場合でも、同様の処理が行われる。
 処理装置220は、物品211とポインタ230Aが接触した(S6:YES)と判定すると、物品211とポインタ230Aの接触点の座標に基づいて、式(8)を用いて反力Fを求める(ステップS7)。なお、ステップS7の処理は、接触判定部222によって行われる。
 接触判定部222は、ポインタ230Aの座標と、物品211の物品データとに基づいて食い込み量ΔLを求めるとともに、接触点における物品211の法線ベクトルnを求め、式(8)に従って、反力Fのベクトルを求める。
 駆動制御部225は、反力Fと振幅値とを関連付けたテーブル形式のデータ(図20参照)に基づいて、ステップS7で求めた反力Fから振幅値(Apx、Apy、Apz)を求め、触感提供装置100に送信する(ステップS8)。この結果、触感提供装置100の振動子120-1、120-2、120-3が駆動される。
 以上で、一連の処理が終了する(エンド)。図21に示す処理は、所定の制御周期で繰り返し実行される。このため、ポインタ230Aがスクリーン210Aに表示される物品と接触している間は、振動子120-1、120-2、120-3が駆動される。
 なお、ステップS6で物品211又は212とポインタ230Aが接触していない(S6:NO)と判定した場合は、フローをステップS1及びS3にリターンする。
 図22は、触感提供装置100の駆動制御部140が振動子120-1、120-2、120-3を駆動する際に実行する処理を示すフローチャートである。
 駆動制御部140は、触感提供装置100の電源が投入されると、処理を開始する(スタート)。
 駆動制御部140は、通信部170を介して処理装置220から駆動信号を受信する(ステップS21)。
 駆動制御部140は、反力信号から駆動信号を生成する(ステップS22)。
 駆動制御部140は、駆動信号を用いて振動子120-1、120-2、120-3を駆動する(ステップS23)。
 以上で、一連の処理が終了する(エンド)。
 以上のように、実施の形態のシミュレーションシステム200によれば、触感提供装置100で操作するポインタ230Aが、スクリーン210Aに投影される画像の中で、物品211又は212のような物品と接触した場合に、接触した物品のヤング率に応じた反力を提供するように振動子120-1、120-2、120-3を振動させる振動パターンを変える。
 このため、物品のヤング率に応じた反力を表す触感を利用者に提供することができる。利用者は、反力の触感だけで物品への接触を認識することができる。
 また、実施の形態のシミュレーションシステム200は、触感提供装置100を利用することによって、触感提供装置100が接触した物品のヤング率に応じた反力を表す触感を利用者に提供している。
 触感提供装置100は、図6に示すように、利用者が人差し指Aと親指Bとによって接触子111、112を把持して保持した場合に、接触子111、112をZ軸方向に往復運動させて、人差し指AがZ軸正方向に押される触感と、親指BがZ軸負方向に押される触感とを実現することができる。
 従って、実施の形態によれば、皮膚の表面を引っ張る触感を提供することができる触感提供装置100を提供することができる。
 なお、以上では、マーカ130と位置計測装置240(赤外線カメラ240A及び240B)とを用いて触感提供装置100の位置と姿勢を検出する形態について説明した。しかしながら、マーカ130が不要な赤外線深度センサ、磁気センサ、ステレオカメラ、加速度センサ、又は、角速度センサのうち、少なくとも1つ以上を用いて触感提供装置100の位置と姿勢を検出してもよい。
 また、以上では、触感提供装置100に取り付けたマーカ130の位置を位置計測装置240で検出する形態について説明したが、位置計測装置240として、例えば、赤外線レーザを被写体に向けて照射し、反射光を受光するまでの時間に基づいて、画像に含まれる点までの距離(深度)を算出する装置を用いてもよい。このような位置計測装置240を用いれば、触感提供装置100にマーカ130を取り付けなくても、スクリーン210Aに向かって指示動作を行う利用者の画像を取得し、利用者の姿勢、及び/又は、ゼスチャー等に基づいて、ポインタ130Aの位置を決定することができる。
 以上、本発明の例示的な実施の形態の触感提供装置、及び、シミュレーションシステムについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 100 触感提供装置
 110 筐体
 120-1、120-2、120-3 振動子
 121 筐体
 122 ばね
 123 永久磁石
 124 ダンパ
 125 電磁コイル
 130 マーカ
 140 駆動制御部
 200 シミュレーションシステム
 210A スクリーン
 210B 投影装置
 210C 3D眼鏡
 220 処理装置
 221 位置検出部
 222 接触判定部
 223 映像出力部
 224 データ保持部
 225 駆動制御部
 226 通信部
 240 位置計測装置
 240A、240B 赤外線カメラ

Claims (4)

  1.  筐体と、
     前記筐体に取り付けられ、互いに異なる共振周波数を有し、前記筐体を振動させるN(Nは2以上の整数)個の振動子と、
     前記N個の振動子をそれぞれ共振状態で振動させるN個の駆動信号で前記N個の振動子を同時に駆動する駆動制御部と
     を含み、
     前記N個の駆動信号は、前記N個の振動子をそれぞれ同時に駆動することにより、第1方向と、前記第1方向の逆の第2方向との速度が異なる往復振動を前記筐体に生じさせる駆動信号である、触感提供装置。
  2.  前記N個の駆動信号は、それぞれ、正弦波のフーリエ級数のN個の項で表される駆動信号であり、
     1からNのうちのいずれかの値を取る値をi、i=1の振動子の共振周波数をfとすると、前記N個の駆動信号のうち、i番目の振動子を駆動する駆動信号は、asin[2π(if)t+{φ+(i-1)π}]で表され、
     前記i番目の振動子は、前記i番目の振動子を駆動する駆動信号によって共振周波数ifで振動する振動子であり、
     所定の位相φは、i番目の振動子を駆動する駆動信号について設定される位相、所定の係数aは、i番目の振動子を駆動する駆動信号について設定される振幅の調整値であり、
     1番目の振動子に前述の駆動信号を入力した時の筐体の加速度振幅をAとした時、i番目の振動子に前述の駆動信号を入力した時に筐体に生じる加速度が(A/i)sin[2π(if)t+{(i-1)π}]となるように決定される、請求項1記載の触感提供装置。
  3.  前記N個の振動子は、それぞれ、ばねと、前記ばねの端部に接続される永久磁石と、前記永久磁石に対して前記ばねと並列に接続されるダンパと、前記永久磁石を吸引する電磁力を発生する電磁コイルとを有し、前記駆動信号によって前記電磁コイルのオン/オフが切り替えられることにより、共振周波数で共振する振動子である、請求項1又は2記載の触感提供装置。
  4.  物品の形状と座標を表す物品データに基づいて前記物品の画像を表示する表示部と、
     利用者が手に持ちながら移動させることによって前記表示部に表示されるポインタの位置を操作する触感提供装置と、
     前記触感提供装置の位置及び姿勢を検出する第1検出部と、
     前記第1検出部によって検出される前記位置及び姿勢に基づき、前記表示部に表示される前記ポインタの座標を検出する第2検出部と、
     前記物品データに含まれる座標と、前記第2検出部によって検出される前記ポインタの座標とに基づき、前記表示部に表示される前記物品に、前記ポインタが接触したかどうかを判定する判定部と
     を含み、
     前記触感提供装置は、
     筐体と、
     前記筐体に取り付けられ、互いに異なる共振周波数を有し、前記筐体を振動させるN(Nは2以上の整数)個の振動子と、
     前記N個の振動子をそれぞれ共振状態で振動させるN個の駆動信号で前記N個の振動子を同時に駆動する駆動制御部と
     を含み、
     前記N個の駆動信号は、前記N個の振動子をそれぞれ同時に駆動することにより、第1方向と、前記第1方向の逆の第2方向との速度が異なる往復振動を前記筐体に生じさせる駆動信号である、シミュレーションシステム。
PCT/JP2017/015403 2017-04-14 2017-04-14 触感提供装置、及び、シミュレーションシステム WO2018189914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019512171A JPWO2018189914A1 (ja) 2017-04-14 2017-04-14 触感提供装置、及び、シミュレーションシステム
PCT/JP2017/015403 WO2018189914A1 (ja) 2017-04-14 2017-04-14 触感提供装置、及び、シミュレーションシステム
US16/559,725 US20190391654A1 (en) 2017-04-14 2019-09-04 Tactile sensation providing apparatus and simulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015403 WO2018189914A1 (ja) 2017-04-14 2017-04-14 触感提供装置、及び、シミュレーションシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/559,725 Continuation US20190391654A1 (en) 2017-04-14 2019-09-04 Tactile sensation providing apparatus and simulation system

Publications (1)

Publication Number Publication Date
WO2018189914A1 true WO2018189914A1 (ja) 2018-10-18

Family

ID=63793226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015403 WO2018189914A1 (ja) 2017-04-14 2017-04-14 触感提供装置、及び、シミュレーションシステム

Country Status (3)

Country Link
US (1) US20190391654A1 (ja)
JP (1) JPWO2018189914A1 (ja)
WO (1) WO2018189914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110439949A (zh) * 2019-09-03 2019-11-12 东南大学 一种带有非线性能量阱的周期结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092074B2 (ja) * 2019-03-08 2022-06-28 日本電信電話株式会社 振動装置
CN113852317A (zh) * 2021-09-26 2021-12-28 瑞声开泰声学科技(上海)有限公司 线性马达的驱动电压生成方法以及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308201A (ja) * 1995-04-27 1996-11-22 Foster Electric Co Ltd 振動アクチュエータ
JP2003117489A (ja) * 2001-10-10 2003-04-22 Citizen Electronics Co Ltd 軸方向駆動の振動体
JP2011125843A (ja) * 2009-09-29 2011-06-30 Sanyo Electric Co Ltd 加速度発生デバイス
JP2012034561A (ja) * 2010-04-21 2012-02-16 Sanyo Electric Co Ltd 振動デバイスおよび振動デバイスを備える電子機器
WO2012077502A1 (ja) * 2010-12-10 2012-06-14 株式会社ニコン 電子機器及び振動方法
WO2013133199A1 (ja) * 2012-03-05 2013-09-12 株式会社ニコン 電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5836202A (en) * 1990-03-01 1998-11-17 Qualmark Corporation Exciter mounting for random vibration generating table
JP3686686B2 (ja) * 1993-05-11 2005-08-24 松下電器産業株式会社 力覚呈示デバイス、データ入力装置、及びデータ入力デバイス装置
DE59601320D1 (de) * 1995-02-09 1999-04-01 Plasser Bahnbaumasch Franz Verfahren und Maschine zum Unterstopfen und Stabilisieren eines Gleises
JP2003309897A (ja) * 2002-04-17 2003-10-31 Sanyo Electric Co Ltd バイブレータ制御用回路
JP2012222718A (ja) * 2011-04-13 2012-11-12 Seiko Epson Corp 発振器
WO2013051400A1 (ja) * 2011-10-03 2013-04-11 株式会社村田製作所 超音波発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308201A (ja) * 1995-04-27 1996-11-22 Foster Electric Co Ltd 振動アクチュエータ
JP2003117489A (ja) * 2001-10-10 2003-04-22 Citizen Electronics Co Ltd 軸方向駆動の振動体
JP2011125843A (ja) * 2009-09-29 2011-06-30 Sanyo Electric Co Ltd 加速度発生デバイス
JP2012034561A (ja) * 2010-04-21 2012-02-16 Sanyo Electric Co Ltd 振動デバイスおよび振動デバイスを備える電子機器
WO2012077502A1 (ja) * 2010-12-10 2012-06-14 株式会社ニコン 電子機器及び振動方法
WO2013133199A1 (ja) * 2012-03-05 2013-09-12 株式会社ニコン 電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110439949A (zh) * 2019-09-03 2019-11-12 东南大学 一种带有非线性能量阱的周期结构

Also Published As

Publication number Publication date
JPWO2018189914A1 (ja) 2020-02-20
US20190391654A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US10936072B2 (en) Haptic information presentation system and method
US11385723B2 (en) Haptic information presentation system and method
US10421100B2 (en) Differential haptic guidance for personal navigation
CN107924236B (zh) 信息处理装置、方法和存储介质
US20190391654A1 (en) Tactile sensation providing apparatus and simulation system
US20080100588A1 (en) Tactile-feedback device and method
US20220094253A1 (en) Aerodynamic eccentric rotating mass attachment for vibration motor
KR20170123589A (ko) 촉각 액추에이터 및 그 제어 방법
JP2016530740A (ja) 音場を生成するための方法及び装置
KR20130094262A (ko) 프리미티브를 이용한 hd 햅틱 효과 생성
JP6955229B2 (ja) 触力覚情報提示システム
JP2011238068A (ja) 仮想力覚提示装置及び仮想力覚提示プログラム
WO2016181469A1 (ja) シミュレーションシステム
JP2016117121A (ja) 組立支援システム、及び、組立支援方法
WO2018011929A1 (ja) 触感提供装置、及び、シミュレーションシステム
JP3159045U (ja) 角速度センサ
Liu et al. Design and experiment of a novel bell-shaped vibratory gyro
JP2023164717A (ja) 触力覚情報提示システム
Hudin et al. INTACT: Instant interaction with 3D printed objects
JP6566028B2 (ja) シミュレーションシステム
WO2013023399A1 (zh) 二维/三维角速度检测装置、方法、姿态感知设备
JP2011238070A (ja) 仮想力覚提示装置及び仮想力覚提示プログラム
JP2016062428A (ja) 力覚提示装置、情報端末、力覚提示方法、及びプログラム
Tinoco Beam design for voice coil motors used for energy harvesting purpose with low frequency vibrations: A finite element analysis
WO2019043787A1 (ja) 振動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905284

Country of ref document: EP

Kind code of ref document: A1