WO2018186485A1 - Humidity control unit, and air conditioner using same - Google Patents

Humidity control unit, and air conditioner using same Download PDF

Info

Publication number
WO2018186485A1
WO2018186485A1 PCT/JP2018/014703 JP2018014703W WO2018186485A1 WO 2018186485 A1 WO2018186485 A1 WO 2018186485A1 JP 2018014703 W JP2018014703 W JP 2018014703W WO 2018186485 A1 WO2018186485 A1 WO 2018186485A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
moisture
control unit
air
humidity control
Prior art date
Application number
PCT/JP2018/014703
Other languages
French (fr)
Japanese (ja)
Inventor
木澤 敏浩
勝哉 葛西
武馬 中澤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018186485A1 publication Critical patent/WO2018186485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag

Definitions

  • the present invention relates to a humidity control unit used in an air conditioner.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-228182
  • moisture in the air is adsorbed by a desiccant rotor (adsorption member), and the moisture is heated by a heat exchanger for heating. It is released by exposing it to air.
  • An object of the present invention is to provide a humidity control unit that can improve the moisture release property of an adsorbing member in a humidity control unit that uses a heat exchanger as an air heating source.
  • the humidity control unit includes an adsorbing member and a heat exchanger.
  • the adsorption member is rotatably held and has a moisture adsorption area and a moisture release area.
  • the moisture adsorption area adsorbs moisture in the air.
  • the moisture release area releases moisture when heated.
  • the heat exchanger has a heat transfer tube group facing the moisture release area.
  • a heat exchanger produces
  • the straight tube portion of the heat transfer tube group extends in a direction orthogonal to the tangent at an arbitrary point on the arc-shaped outer periphery of the moisture release area of the adsorption member.
  • this humidity control unit it is possible to supply high-temperature air having a more appropriate temperature distribution to the moisture release area, and to efficiently release moisture.
  • the humidity control unit according to the second aspect of the present invention is the humidity control unit according to the first aspect, wherein the straight pipe portion of the heat transfer tube group separates the moisture adsorption area and the moisture release area, and the moisture release area. It extends in parallel to the imaginary line that connects the intersections with the peripheral edge of.
  • this humidity control unit it is possible to supply high-temperature air having a more appropriate temperature distribution to the moisture release area, and to efficiently release moisture.
  • the humidity control unit according to the third aspect of the present invention is the humidity control unit according to the first or second aspect, wherein the straight pipe portion of the heat transfer tube group has a diameter on the downstream side in the rotation direction of the adsorption member in the moisture release area. Extending in the direction.
  • the humidity control unit according to the fourth aspect of the present invention is the humidity control unit according to any one of the first to third aspects, and is directed to the heat transfer tube group downstream in the rotation direction of the adsorption member in the moisture release area. There is a refrigerant inlet.
  • a humidity control unit is the humidity control unit according to any one of the first to fourth aspects, wherein the moisture separation area is divided into a moisture adsorption area and a moisture release area, and the moisture release area. And the central angle of the moisture release area formed by the peripheral edge of each is greater than 90 °.
  • the humidity control unit according to the sixth aspect of the present invention is the humidity control unit according to any one of the first to fifth aspects, wherein the heat exchanger includes a plurality of refrigerants configured by heat transfer tube groups.
  • the heat exchanger includes a plurality of refrigerants configured by heat transfer tube groups.
  • the inlet of each path faces the downstream side in the rotation direction of the adsorption member in the moisture release area, and the outlet of each pass faces the upstream side in the rotation direction of the adsorption member in the moisture release area. From the downstream side in the rotation direction of the moisture release area, the temperature becomes high-temperature air, and the high-to-low temperature gradient of the high-temperature air that has passed through the heat exchanger is opposed to the rotation direction. Improved and efficient humidification.
  • a humidity control unit is the humidity control unit according to any one of the first to sixth aspects, wherein the shortest distance between the heat exchanger and the moisture release area is 20 to 30 mm. Within range.
  • the temperature distribution of the heat exchanger that changes depending on the flow of the refrigerant in the heat exchanger is released as it is by releasing the distance between the heat exchanger and the moisture release area within the range of 20 to 30 mm. Since it can be reflected in the area, the distribution of the amount of released water can be controlled by the way the refrigerant flows.
  • the humidity control unit according to the eighth aspect of the present invention is the humidity control unit according to any one of the first to seventh aspects, wherein the heat exchanger is a refrigerant that has become superheated steam after the compression step. A part of the section up to the refrigerant inlet of the heat exchanger is caused to function as an effective heat exchange area of the heat exchanger.
  • the air conditioner according to the ninth aspect of the present invention includes the humidity control unit according to any one of the first to eighth aspects.
  • the hot air that has passed through the heat exchanger is used to flow the hot air from the downstream side in the rotation direction of the moisture release area.
  • the temperature gradient from higher to lower is opposed to the rotational direction, the amount of moisture released from the adsorbing member is averaged, and humidification is performed efficiently.
  • the temperature gradient from the higher to the lower temperature of the hot air that has passed through the heat exchanger becomes the same as the rotation direction, and the moisture adsorption area Since the temperature difference between the moisture releasing area and the moisture adsorbing area is relatively small when moving to, the temperature becomes relatively low when entering the moisture adsorbing portion, and adsorption can be started earlier by that amount.
  • the inlet of each path faces the downstream side in the rotation direction of the adsorption member in the moisture release area
  • the outlet of each path is the rotation direction of the adsorption member in the moisture release area. Since it faces the upstream side, it becomes high-temperature air from the downstream region side in the rotation direction of the moisture release area, and the high-to-low temperature gradient of the high-temperature air that has passed through the heat exchanger is opposed to the rotation direction. The distribution of the amount of released water is improved and humidification is performed efficiently.
  • the distance between the heat exchanger and the moisture discharge area is brought within the range of 20 to 30 mm, so that the heat exchanger changes depending on how the refrigerant flows in the heat exchanger. Therefore, the distribution of the amount of released water can be controlled by the flow of the refrigerant.
  • the high temperature of the refrigerant that has become superheated steam can be used effectively.
  • FIG. 1A Schematic of the refrigerant circuit of the air conditioner which mounts the humidity control unit which concerns on 1st Embodiment of this invention.
  • FIG. 1A The conceptual diagram of the humidity control unit described in FIG. 1A.
  • the perspective view of the said humidity control unit when the humidity control unit which concerns on this embodiment is seen from one direction.
  • the perspective view of the said humidity control unit when the humidity control unit which concerns on this embodiment is seen from another direction.
  • the longitudinal cross-sectional view of the humidity control unit which concerns on this embodiment. The perspective view of a rotor heating part.
  • FIG. 10B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 10A in a planar manner.
  • FIG. 11B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 11A in a planar manner.
  • FIG. 12B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 12A in a planar manner.
  • the ph diagram which displayed the vapor compression refrigerating cycle and the refrigerant
  • FIG. 14B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 14A in a plane.
  • FIG. 1A is a schematic diagram of a refrigerant circuit 40 of an air conditioner 10 equipped with a humidity control unit according to the first embodiment of the present invention.
  • the air conditioner 10 is a pair type air conditioner in which one outdoor unit 30 and one indoor unit 20 are connected in parallel by a refrigerant pipe.
  • the air conditioner 10 can perform a humidifying operation for humidifying the room in addition to a cooling operation, a dehumidifying operation, and a heating operation.
  • the air conditioner 10 of the present embodiment is a pair type air conditioner, but is not limited to this, and is a multi-type air conditioner in which a plurality of indoor units 20 are connected to a single outdoor unit 30. It may be a device.
  • the compressor 31 As shown in FIG. 1A, in the air conditioner 10, the compressor 31, the four-way switching valve 32, the heat exchanger 72 for heating of the humidity control unit 100, the indoor heat exchanger 21, the electric expansion valve 34,
  • the refrigerant circuit 40 is formed by connecting the outdoor heat exchanger 33 in order.
  • the indoor unit 20 is a wall-mounted indoor unit that is installed on a wall surface of a room.
  • the indoor unit 20 houses an indoor heat exchanger 21 and an indoor fan 22 inside.
  • one end of the air transfer duct 15 is disposed in the indoor unit 20.
  • One end of the air conveyance duct 15 is, for example, on the downstream side of the airflow when viewed from the air intake port of the indoor unit 20 in a state where the indoor fan 22 rotates and an airflow is generated, and It is arranged in the space on the upstream side of the air flow when viewed from the indoor heat exchanger 21.
  • the indoor heat exchanger 21 includes a heat transfer tube that is bent back and forth at both ends in the longitudinal direction, and a plurality of fins through which the heat transfer tube is inserted.
  • the indoor heat exchanger 21 is for exchanging heat with the refrigerant using indoor air as a heat source, and the indoor fan 22 generates an air flow that passes through the surface of the indoor heat exchanger 21, so that the indoor air and the indoor heat are generated. Heat can be exchanged with the refrigerant flowing through the exchanger 21.
  • the indoor heat exchanger 21 functions as a radiator (condenser) during heating operation and functions as an evaporator during cooling operation.
  • the indoor fan 22 is a fan that sucks indoor air into the indoor unit 20 and blows out air after heat exchange is performed with the indoor heat exchanger 21.
  • the indoor fan 22 in this embodiment is a crossflow fan which produces
  • Outdoor unit 30 The outdoor unit 30 is installed outdoors.
  • the outdoor unit 30 houses therein a compressor 31, a four-way switching valve 32, an outdoor heat exchanger 33, an electric expansion valve 34, an accumulator 35, and an outdoor fan 36.
  • the compressor 31 is an inverter type compressor having a variable rotation speed, and compresses the sucked gas refrigerant.
  • the four-way switching valve 32 constitutes a switching mechanism that changes the flow path of the refrigerant flowing through the refrigerant circuit 40.
  • the four-way switching valve 32 connects the discharge part of the compressor 31 and the heat exchanger 72 for heating of the humidity control unit 100, and connects the outdoor heat exchanger 33 and the suction part of the compressor 31 in a first state. (Refer to the solid line in FIG. 1A) and the discharge section of the compressor 31 and the outdoor heat exchanger 33 are connected, and the heat exchanger 72 for heating of the humidity control unit 100 and the suction section of the compressor 31 are connected.
  • the refrigerant circulation direction in the refrigerant circuit 40 is configured to be reversible.
  • Outdoor heat exchanger 33 is composed of a heat transfer tube that is bent back and forth at both ends in the longitudinal direction and a plurality of fins through which the heat transfer tube is inserted.
  • the outdoor heat exchanger 33 is for exchanging heat with the refrigerant using outdoor air as a heat source, and the outdoor fan 36 generates an air flow passing through the surface of the outdoor heat exchanger 33, so that the outdoor air and the outdoor heat are generated. Heat can be exchanged with the refrigerant flowing through the exchanger 33.
  • the outdoor heat exchanger 33 functions as an evaporator during heating operation, and functions as a radiator (condenser) during cooling operation.
  • Electric expansion valve 34 is a valve for adjusting the refrigerant pressure and the refrigerant flow rate between the indoor heat exchanger 21 and the outdoor heat exchanger 33.
  • the accumulator 35 is for separating liquid refrigerant and gas refrigerant, and is provided in a refrigerant pipe connecting the suction portion of the compressor 31 and the four-way switching valve 32 in the refrigerant circuit 40.
  • Outdoor fan 36 is a fan that takes outdoor air into the outdoor unit 30, exchanges heat with the refrigerant in the outdoor heat exchanger 33, and then discharges the air outside the outdoor unit 30.
  • the outdoor fan 36 in the present embodiment is a propeller fan driven by a fan motor.
  • FIG. 1B is a conceptual diagram of the humidity control unit 100 described in FIG. 1A. 1B, the humidity control unit 100 includes a humidification rotor 50, an adsorption fan 55, a humidification fan 54, and a heat exchanger 72 for heating.
  • an air conveyance duct 15 is provided between the humidity control unit 100 and the indoor unit 20 so that the internal space of the humidity control unit 100 and the internal space of the indoor unit 20 can communicate with each other.
  • the humidity control unit 100 After the humidification rotor 50 adsorbs moisture from the outdoor air flowing through the adsorption flow path 70, the moisture is released in the humidification flow path 71 through which the outdoor air heated by the heating heat exchanger 72 flows. To do. Moisture released into the high-temperature air becomes humidified air and is sent to the air transport duct 15 and finally reaches the room.
  • the humidity control unit 100 can humidify the outdoor air and supply it to the room via the air transfer duct 15.
  • FIG. 2 is a perspective view of the humidity control unit 100 when the humidity control unit 100 according to this embodiment is viewed from one direction.
  • FIG. 3 is a perspective view of the humidity control unit 100 when the humidity control unit 100 according to the present embodiment is viewed from another direction.
  • FIG. 4 is a longitudinal sectional view of the humidity control unit 100 according to the present embodiment.
  • the casing 101 houses a humidification rotor 50, a heat exchanger 72 for heating, a humidification fan 54, a flow path switching device 53, and an adsorption fan 55.
  • a surface on the side facing the wall when the humidity control unit 100 is installed along the wall is a back surface
  • a surface facing the back surface is a front surface.
  • the surface that is located at the uppermost vertical position is the top surface
  • the surface that is the most vertically lower is the bottom surface.
  • Adsorption channel 70 An adsorption flow path 70 is formed in the casing 101 as an air path from the adsorption air intake port 101a to the adsorption air outlet 101b.
  • the adsorption flow path 70 is related to a plurality of members, and forms an air flow indicated by an arrow A as shown in FIGS. 1B and 2 to 4.
  • the adsorption air intake port 101 a is provided on the front surface of the casing 101.
  • the adsorption air intake port 101a is a rectangular opening, and outdoor air for adsorbing moisture to the humidification rotor 50 is taken in from the adsorption air intake port 101a.
  • the adsorption air outlet 101 b is provided on the bottom surface of the casing 101.
  • the adsorption air outlet 101b is a rectangular opening, and the air after moisture is adsorbed by the humidification rotor 50 is discharged out of the casing 101 from the adsorption air outlet 101b.
  • Humidification channel 71 Further, in the casing 101, a humidification flow path 71 having a humidification air intake port 101 d as an inlet is formed separately from the adsorption flow path 70.
  • the humidifying channel 71 is related to a plurality of members, and generates an air flow indicated by an arrow B as shown in FIGS. 1B and 2 to 4.
  • the rotor heating unit 73 see FIG. 4
  • the humidifying fan 54 and the flow path switching device 53, which are a part of the humidifying flow path 71, will be described.
  • FIG. 5 is a perspective view of the rotor heating unit 73.
  • FIG. 6 is an exploded perspective view of the rotor heating unit 73. 5 and 6, the rotor heating unit 73 is a path from the heating heat exchanger 72 to the humidification rotor 50 that constitutes a part of the humidification flow path 71.
  • the rotor heating unit 73 includes a humidifying rotor 50, a heat exchanger 72 for heating, a flow path forming wall 74, and a rotor support frame 75, and the function thereof is to generate high-temperature air by heating air.
  • the air passing through the surface of the heat exchanger 72 for heating is heated by heat exchange with the refrigerant to become high-temperature air, and is guided to the flow path forming wall 74 and guided to the fan-shaped opening of the rotor support frame 75.
  • the high-temperature air that has passed through the fan-shaped opening heats the humidification rotor 50 when passing through the humidification rotor 50, so that moisture is released from the humidification rotor 50.
  • the outdoor air taken in from the humidifying air intake port 101d is humidified in the course of flowing through the humidifying flow channel 71, and the connecting portion 715 forming the end of the humidifying flow channel 71 (see FIG. 4). ) Is supplied to the room through the air conveyance duct 15 attached to the room.
  • FIG. 7 is a detailed perspective view of the humidification rotor 50.
  • the humidification rotor 50 is a ceramic rotor having a honeycomb structure, and has a substantially disk-shaped outer shape. Further, the humidifying rotor 50 is provided with a gear 501 on the outer periphery, and rotational force is transmitted by meshing with the pinion gear 65a.
  • the humidifying rotor 50 has a shaft hole 505 in the center, is rotatably supported by the shaft hole 505, and is rotationally driven by receiving the rotational force of the pinion gear 65a rotated by the rotor driving motor 65. .
  • the portion having the adsorption function of the humidifying rotor 50 is fired from an adsorbent such as zeolite.
  • Adsorbents such as zeolite have the property of adsorbing moisture in the contacting air and releasing the adsorbed moisture when heated.
  • zeolite is used as the adsorbent, but silica gel, alumina or the like can be used as the adsorbent.
  • Heating heat exchanger 72 As shown in FIGS. 5 and 6, the heat exchanger 72 for heating is a fin-and-tube heat exchanger configured by penetrating a plurality of heat transfer tubes 721 in the thickness direction of the heat transfer fins 722. is there.
  • the heat exchanger 72 for heating is located on the upstream side of the humidification rotor 50 in the humidification flow path 71 and is disposed to face the humidification rotor 50.
  • the heating heat exchanger 72 is for causing heat exchange between the outdoor air and a refrigerant as a heat source, and heats the outdoor air sent to the humidification rotor 50 in order to release moisture from the humidification rotor 50. And generate hot air.
  • the heating heat exchanger 72 is connected in series with the indoor heat exchanger 21, the outdoor heat exchanger 33, the electric expansion valve 34, and the like in the refrigerant circuit 40.
  • the refrigerant flows in the order of the compressor 31, the heat exchanger 72 for heating, the indoor heat exchanger 21, the electric expansion valve 34, and the outdoor heat exchanger 33.
  • FIG. 8 is a plan view in which the projection surface of the heating heat exchanger 72 with respect to a virtual plane orthogonal to the rotation axis of the humidification rotor 50 and the projection surface of the moisture discharge area 50b with respect to the virtual plane are overlapped.
  • the area of the projection surface of the heating heat exchanger 72 (hereinafter referred to as the projection area Sh) is larger than the area of the projection surface of the moisture release area 50b (hereinafter referred to as the projection area Sr).
  • Sh / Sr the area of the projection surface of the heating heat exchanger 72
  • Sr the area of the projection surface of the moisture release area 50b
  • 50% or more of the projected area Sh of the heating heat exchanger 72 protrudes radially outward from the projected space of the moisture release area 50b, and more specifically, the heating heat exchanger. 72 protrudes outside the virtual projection space (fan shape drawn by a two-dot chain line in FIG. 8) obtained by enlarging the projection space of the moisture release area 50b 1.2 times outward in the radial direction.
  • a gap h of 20 to 30 mm is provided between the heat exchanger 72 for heating and the humidification rotor 50 (see FIG. 4).
  • the gap h is the shortest distance between the heating heat exchanger 72 and the humidification rotor 50.
  • the gap h is influenced by the size of the heat exchanger 72 for heating and the humidification rotor 50, in this embodiment, as a guideline, 0.4 ⁇ D ⁇ (Sr / Sh) 3 /h ⁇ 2.0
  • the gap h is set so that the above relationship is established.
  • D is the diameter of the humidification rotor 50.
  • a cylindrical wall surface 74 a is formed by the first inclined surface 741, the second inclined surface 742, the first curved surface 743, and the second curved surface 744.
  • One end of the lower long side of the rectangle of the entrance 740a is A1, the middle point is M, the other end is A2, one end of the upper long side of the rectangle of the entrance 740a is A3, the middle point is N, the other end is A4, and the outlet 740b
  • the center angle of the sector is C
  • one end of the sector arc is B1
  • the middle point is O
  • the other end is B2
  • the first inclined surface 741 is an inclined surface surrounded by A1, M, C, and B1. is there.
  • the second inclined surface 742 is an inclined surface surrounded by A2, M, C, and B2.
  • the first curved surface 743 is a curved surface surrounded by A1, A4, N, O, and B1.
  • the second curved surface 744 is a curved surface surrounded by A2, A3, N, O, and B2.
  • the flow path forming wall 74 gradually has a cross-sectional area of the flow path from the rectangular inlet 740a toward the fan-shaped outlet 740b by the first inclined surface 741, the second inclined surface 742, the first curved surface 743, and the second curved surface 744. Therefore, the high-temperature air is efficiently guided to the fan-shaped opening of the rotor support frame 75.
  • the flow path forming wall 74 is formed of a resin having a high moldability because the distance between the inlet 740a and the outlet 740b is short, the outlet area is smaller than the inlet area, and an asymmetric trapezoidal cylinder is formed. ing.
  • Rotor support frame 75 has two functions. The first function is to rotatably support the humidification rotor 50. The second function is to divide the humidification rotor 50 into a moisture adsorption area 50a and a moisture release area 50b.
  • the rotor support frame 75 includes a hollow cylindrical frame 751, a partition 752, and a support shaft 755.
  • the inner diameter dimension of the cylindrical frame 751 is set slightly larger than the outer diameter dimension of the humidification rotor 50.
  • the partition 752 partitions the opening end of the cylindrical frame 751 into two fan-shaped openings.
  • the first sector opening 75a having a large central angle (about 240 °) serves as an opening for allowing outdoor air taken in from the adsorption air intake port 101a to pass therethrough.
  • the second fan-shaped opening 75b having a small central angle (about 120 °) is an opening for allowing outdoor air heated by the heat exchanger 72 for heating to become high-temperature air.
  • the area facing the first fan-shaped opening 75a in the humidifying rotor 50 adsorbs moisture contained in the outdoor air, and this area becomes the moisture adsorption area 50a.
  • the area of the humidifying rotor 50 that faces the second fan-shaped opening 75b rises in temperature due to the high-temperature air and releases moisture, so that this area becomes the moisture release area 50b.
  • the support shaft 755 is positioned at the center of the cylindrical frame 751 and fits with a shaft hole 505 provided at the center of the humidification rotor 50.
  • the humidifying fan 54 is a centrifugal fan assembly (in this embodiment, a turbo fan) and is disposed above the humidifying rotor 50.
  • the humidifying fan 54 allows outdoor air to flow into the humidifying flow path 71 from the humidifying air intake port 101 d and pass through the humidifying rotor 50, and then passes through the flow path switching device 53 and the air transfer duct 15 to the indoor unit. An air stream flowing to 20 (arrow B) is generated.
  • the flow path switching device 53 is disposed between the humidification fan 54 and the air conveyance duct 15 and switches the connection state between the humidification fan 54 and the air conveyance duct 15 to either the supply state or the supply stop state. it can.
  • the supply state is a state in which the humidifying flow path 71 and the air conveyance duct 15 are connected.
  • the supply stop state refers to a state where the connection between the humidification flow path 71 and the air conveyance duct 15 is released.
  • the flow of air from the humidification flow path 71 to the air conveyance duct 15 or the flow of air from the air conveyance duct 15 to the humidification flow path 71 is allowed. That is, in the air supply state, the outdoor air taken in from the humidifying air intake port 101d is supplied to the indoor unit 20 (see arrow B in FIG. 1B), or the indoor air in the indoor unit 20 is exhausted to the outside. (See arrow C in FIG. 1B).
  • the high-pressure gas refrigerant that has entered the indoor heat exchanger 21 exchanges heat between the indoor air blown by the indoor fan 22 in the indoor heat exchanger 21 and the air blown out from the air transfer duct 15 to generate high pressure. As the gas refrigerant condenses, the air is heated to heat the room. The refrigerant that has exited the indoor heat exchanger 21 reaches the electric expansion valve 34.
  • the liquid refrigerant that has reached the electric expansion valve 34 is decompressed by the electric expansion valve 34 and then flows into the outdoor heat exchanger 33.
  • the flowing liquid refrigerant evaporates by exchanging heat with outdoor air.
  • the evaporated gas refrigerant is sucked into the compressor 31 through the accumulator 35 via the four-way switching valve 32.
  • the refrigerant circulates in the refrigerant circuit 40, whereby the indoor heat exchanger 21 can heat the room, and the heating heat exchanger 72 takes outdoor air taken in from the humidification air intake 101d. Can be heated.
  • outdoor air taken into the humidity control unit 100 from the adsorption air intake 101a is referred to as adsorption air, and from the humidification air intake 101d to the humidity control unit 100.
  • the outdoor air taken in is called humidification air.
  • the adsorption air taken in from the adsorption air intake port 101a flows through the adsorption flow path 70, thereby passing through the moisture adsorption area 50a of the humidification rotor 50.
  • the adsorption air that has passed through the moisture adsorption area 50 a is blown out of the humidity control unit 100 by the adsorption fan 55.
  • the humidifying air taken in from the humidifying air intake port 101d goes to the heat exchanger 72 for heating.
  • the humidifying air is heated when passing through the heating heat exchanger 72 to become high-temperature air, and passes through the moisture discharge area 50 b of the humidifying rotor 50.
  • the humidifying air that has passed through the moisture release area 50 b becomes humidified air, reaches the flow path switching device 53, is discharged to the air transfer duct 15 by the humidifying fan 54, and is transferred to the indoor unit 20.
  • the region where the humidification rotor 50 is the hottest is the moisture release area 50b of the humidification rotor 50. Since moisture is released from the moisture release area 50b, the humidification air before being humidified contains the released moisture. As a result, humidified air is generated.
  • the humidification rotor 50 since the humidification rotor 50 is rotating during the humidification operation, the moisture adsorption area 50a and the moisture release area 50b are sequentially switched in the humidification rotor 50.
  • the humidity control unit 100 generates high-temperature air to be supplied to the moisture release area 50b of the humidification rotor 50 with the heat exchanger 72 for heating.
  • the temperature distribution of the heat exchanger 72 for heating affects the moisture release performance in the moisture release area 50b, and further affects the moisture adsorption performance in the adjacent moisture adsorption area 50a.
  • the temperature distribution differs depending on how the refrigerant flows.
  • a heating method using the temperature distribution will be described.
  • a predetermined virtual line Li is defined on the moisture discharge area 50b.
  • FIG. 9 is a plan view of the humidification rotor 50 showing a virtual line Li on the moisture release area 50b.
  • the humidification rotor 50 is divided into a moisture adsorption area 50a and a moisture release area 50b by the first boundary Bry1 and the second boundary Bry2.
  • the first boundary Bry1 and the edge Cir intersect at the first intersection Pi1, and the second boundary Bry2 and the edge Cir intersect at the second intersection Pi2.
  • the virtual line Li is a straight line connecting the first intersection Pi1 and the second intersection Pi2.
  • FIG. 10A is a schematic perspective view of the heat exchanger 72 for heating arranged so that the straight pipe 721a of the heat transfer pipe 721 is orthogonal to the imaginary line Li, and the humidification rotor 50 located on the downstream side thereof.
  • FIG. 10B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 of FIG. 10A in a plan view.
  • the heat exchanger 72 for heating has two refrigerant paths through which the refrigerant path flows.
  • a first path 72a one is referred to as a first path 72a and the other is referred to as a second path 72b.
  • the refrigerant path is not limited to a plurality, and may be a single refrigerant path.
  • the first path 72a and the second path 72b are formed such that the refrigerant flow path meanders by the straight pipe 721a and the U-shaped pipe 721b of the plurality of heat transfer tubes 721.
  • the straight tube 721a of the heat transfer tube 721 of the heat exchanger 72 for heating is disposed so as to be orthogonal to the virtual line Li. That is, the refrigerant in the heating heat exchanger 72 flows so as to be orthogonal to the virtual line Li.
  • the straight pipe 721a is arranged so as to be orthogonal to not only the virtual line Li but also the rotation axis of the humidification rotor 50.
  • “orthogonal” does not mean strictly 90 °, but also allows a range of 80 ° to 100 °.
  • the respective inlets of the first pass 72a and the second pass 72b are opposed to the downstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b. Moreover, the exit of each of the first path 72a and the second path 72b is opposed to the upstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
  • the refrigerant changes from superheated steam to wet steam and further to supercooled liquid and enters the next expansion step (section from point 3 to point 4).
  • the refrigerant temperature in the superheated steam state is higher than the condensation temperature of the refrigerant, and a part of the section up to the refrigerant inlet of the heat exchanger 72 for heating is used to heat the humidification rotor 50 in the moisture discharge area 50b. It can function as a humidification area.
  • a high temperature in the superheated steam region is used for the downstream region side in the rotation direction of the moisture release area 50b, and two phases ( Medium temperature in wet steam) area is used. In this way, the superheated steam region and the two-phase region of the refrigerant can be used effectively.
  • the first modification aims at an effect different from that of the first embodiment, specifically, an effect that “adsorption is started early at a portion that reaches the moisture adsorption area 50a through the moisture release area 50b”. Changed to flow of refrigerant.
  • FIG. 11A is a schematic perspective view of the heat exchanger 72 for heating and the humidification rotor 50 located on the downstream side in the first modification of the first embodiment.
  • FIG. 11B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 in FIG. 11A in a planar manner.
  • the inlets of the first pass 72a and the second pass 72b are opposed to the upstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
  • the exit of each of the first pass 72a and the second pass 72b is opposed to the downstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b. That is, the heat exchanger 72 for heating in the first modification has a configuration in which the refrigerant inlet and the refrigerant outlet in FIG. 10A are interchanged.
  • This configuration results in high-temperature air from the upstream side in the rotation direction of the moisture discharge area 50b, and the high-to-low temperature gradient of the high-temperature air that has passed through the heating heat exchanger 72 is the same as the rotation direction.
  • the temperature difference between the moisture release area 50b and the moisture adsorption area 50a becomes relatively small, and when entering the moisture adsorption area 50a, the temperature is relatively quickly reduced. Adsorption can be started quickly.
  • FIG. 12A is a schematic perspective view of the heat exchanger 72 for heating and the humidification rotor 50 in the second modification of the first embodiment.
  • FIG. 12B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 in FIG. 12A in a planar manner.
  • the first path 72a in FIG. 12A is divided, and the first upstream path 72ac located closer to the upstream side in the rotation direction of the moisture release area 50b and the rotation direction of the moisture release area 50b.
  • a first downstream path 72ad located closer to the downstream side is formed.
  • the second path 72b in FIG. 12A is divided into a second upstream path 72bc located closer to the upstream side in the rotation direction of the moisture release area 50b and a second path 72bc located closer to the downstream side in the rotation direction of the moisture release area 50b. 2 downstream path 72bd.
  • each of the first upstream path 72ac and the second upstream path 72bc is located near the center of the moisture release area 50b.
  • the outlets of the first upstream path 72ac and the second upstream path 72bc are located closer to the upstream side in the rotation direction of the moisture discharge area 50b.
  • the respective inlets of the first downstream path 72ad and the second downstream path 72bd are located closer to the center of the moisture release area 50b.
  • the outlets of the first downstream path 72ad and the second downstream path 72bd are located closer to the downstream side in the rotation direction of the moisture discharge area 50b.
  • the temperature of the superheated refrigerant that has exited the compressor 31 decreases, the temperature does not change when it enters condensation. That is, the temperature distribution reaches a high temperature in the center of the moisture release area 50b, and falls toward both the upstream side and the downstream side in the rotation direction, and is balanced.
  • the superheat zone and the two-phase zone of the refrigerant can be used effectively.
  • the distribution of the moisture release amount in the moisture release area 50b is leveled compared to the case where the moisture release area 50b is heated uniformly.
  • the temperature gradient from the higher to the lower temperature gradient of the high temperature air that has passed through the heat exchanger 72 for heating becomes the same as the rotation direction.
  • the temperature difference between the moisture release area 50b and the moisture adsorption area 50a is relatively small. Therefore, when entering the moisture adsorption area 50a, the temperature becomes relatively low and the adsorption is accelerated accordingly. Can start.
  • the moisture release area 50b is fan-shaped or semicircular with a central angle larger than 90 °.
  • each pass faces the downstream side in the rotational direction of the humidification rotor 50 in the moisture release area 50b, and the exit of each pass is the upstream side in the rotational direction of the humidification rotor 50 in the moisture release area 50b. Since it opposes, it becomes a high temperature air from the downstream area side in the rotation direction of the moisture discharge area 50b, and the temperature gradient from the higher to the lower temperature of the high temperature air that has passed through the heating heat exchanger 72 is opposed to the rotation direction. The moisture release amount of the rotor 50 is averaged, and humidification is performed efficiently.
  • the heating heat that changes depending on the flow of the refrigerant in the heating heat exchanger 72 by bringing the distance between the heating heat exchanger 72 and the moisture release area 50b closer to the range of 20 to 30 mm. Since the temperature distribution of the exchanger 72 can be reflected as it is in the moisture discharge area 50b, the distribution of the moisture release amount can be controlled by the flow of the refrigerant.
  • Second Embodiment 1st Embodiment demonstrated the humidity control unit 100 of the type in which the refrigerant
  • the imaginary line Li is parallel to the tangent at the center point of the arc-shaped outer periphery of the moisture release area 50b
  • the refrigerant flowing through the straight pipe 721a of the heat transfer pipe 721 group in the heating heat exchanger 72 is: It can be said that it is orthogonal to the tangent at the center point of the arc-shaped outer periphery.
  • the type in which the refrigerant flowing through the straight pipe 721a of the heat transfer pipe 721 group flows in a direction perpendicular to the tangent at an arbitrary point of the arc-shaped outer periphery of the moisture discharge area 50b is also the first embodiment. It has been confirmed that it can be humidified with an efficiency equal to or higher than that. Further, the straight pipe 721a is arranged so as to be orthogonal to not only the tangent line but also the rotation axis of the humidification rotor 50. In the present embodiment, “orthogonal” does not mean strictly 90 °, but also allows a range of 80 ° to 100 °.
  • 2nd Embodiment changes the attitude
  • FIG. 14A shows a heat exchanger 72 for heating in which the straight pipe 721a of the heat transfer pipe 721 is arranged so as to be orthogonal to a tangent at an arbitrary point on the arc-shaped outer periphery of the moisture discharge area 50b, and heat for heating in the air flow 4 is a schematic perspective view of a humidification rotor 50 located on the downstream side of the exchanger 72.
  • FIG. FIG. 14B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 of FIG. 14A in a plan view.
  • the heat exchanger 72 for heating has two refrigerant paths through which the refrigerant path flows.
  • a first path 72a one is referred to as a first path 72a and the other is referred to as a second path 72b.
  • the refrigerant path is not limited to a plurality, and may be a single refrigerant path.
  • the first path 72a and the second path 72b are formed such that the refrigerant flow path meanders by the straight pipe 721a and the U-shaped pipe 721b of the plurality of heat transfer tubes 721.
  • the straight tube 721a of the heat transfer tube 721 of the heat exchanger 72 for heating is disposed so as to be orthogonal to the tangent line Lt. That is, the refrigerant in the heating heat exchanger 72 flows so as to be orthogonal to the tangent Lt.
  • the tangent Lt is a tangent at an arbitrary point on the arc-shaped outer periphery of the moisture discharge area 50b.
  • the rotation of the humidifying rotor 50 is greater than the center of the arc-shaped outer periphery of the moisture discharge area 50b.
  • a contact point Pt (see FIG. 14B) of the tangent line Lt is set on the downstream side in the direction.
  • the respective inlets of the first pass 72a and the second pass 72b are opposed to the downstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b. Moreover, the exit of each of the first path 72a and the second path 72b is opposed to the upstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
  • the temperature is equalized in the vicinity of the second boundary Bry2 of the moisture release area 50b ( The temperature becomes uniform in the radial direction from the center). Thereby, the efficiency in the moisture adsorption area 50a can also be improved.
  • the humidity control unit 100 according to the present invention is an independent unit separated from the outdoor unit 30, but is also useful as an integral type with the outdoor unit 30.
  • Air conditioner 50 Humidification rotor (adsorption member) 50a Moisture adsorption area 50b Moisture release area 72 Heat exchanger 72a Heating path 72a First path 72b Second path 72ac First upstream path 72bc Second upstream path 72ad First downstream path 72bd Second downstream path 100 Humidity control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

The present invention addresses the problem of providing a humidity control unit using a heat exchanger as a heat source for air, wherein the humidity control unit is capable of increasing the moisture release capacity of an adsorption member. In the humidity control unit (100) of an air conditioner (10), when a refrigerant is caused to flow such that the air is high-temperature air from the downstream region side in the rotational direction of a moisture release area (50b), the temperature gradient from high to low of high-temperature air that has passed through a heating heat exchanger (72) is opposite the rotational direction, the distribution of the amount of released moisture in a humidifying rotor (50) is improved, and humidification is performed efficiently.

Description

調湿ユニット、及びこれを用いた空気調和機Humidity control unit and air conditioner using the same
 本発明は、空気調和機に用いられる調湿ユニットに関する。 The present invention relates to a humidity control unit used in an air conditioner.
 近年、無給水加湿機能を備えた空気調和機が広く普及するようになった。例えば、特許文献1(特開2013-228182号公報)に開示されている加湿ユニットでは、デシカントロータ(吸着部材)に空気中の水分を吸着させ、その水分を、加熱用熱交換器で加熱された空気に晒すことによって放出させている。 In recent years, air conditioners equipped with a non-supply water humidification function have become widespread. For example, in a humidification unit disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2013-228182), moisture in the air is adsorbed by a desiccant rotor (adsorption member), and the moisture is heated by a heat exchanger for heating. It is released by exposing it to air.
 熱交換器を空気の加熱源として採用する場合、冷媒の流し方次第で吸着部材での水分の放出性に違いが生じる。すなわち、空気の温度が高いほど水分を多く放出する。しかしながら、この点について、上記引用文献1には何ら言及されていない。 When adopting a heat exchanger as a heating source of air, there is a difference in moisture release properties at the adsorbing member depending on how the refrigerant flows. That is, the higher the temperature of the air, the more moisture is released. However, there is no mention of this point in the cited document 1.
 本発明の課題は、熱交換器を空気の加熱源として用いる調湿ユニットにおいて、吸着部材における水分の放出性を高めることができる調湿ユニットを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a humidity control unit that can improve the moisture release property of an adsorbing member in a humidity control unit that uses a heat exchanger as an air heating source.
 本発明の第1観点に係る調湿ユニットは、吸着部材と、熱交換器とを備えている。吸着部材は、回転可能に保持され、水分吸着エリアと水分放出エリアとを有している。水分吸着エリアは、空気中の水分を吸着する。水分放出エリアは、加熱されることによって水分を放出する。熱交換器は、水分放出エリアと対峙する伝熱管群を有している。また、熱交換器は、伝熱管群を流れる冷媒によって水分放出エリアを加熱するための高温空気を生成する。伝熱管群の直管部分は、吸着部材のうち水分放出エリアの円弧状の外周縁の任意の一点における接線と直交する方向に延びている。 The humidity control unit according to the first aspect of the present invention includes an adsorbing member and a heat exchanger. The adsorption member is rotatably held and has a moisture adsorption area and a moisture release area. The moisture adsorption area adsorbs moisture in the air. The moisture release area releases moisture when heated. The heat exchanger has a heat transfer tube group facing the moisture release area. Moreover, a heat exchanger produces | generates the high temperature air for heating a water | moisture-content discharge | release area with the refrigerant | coolant which flows through a heat exchanger tube group. The straight tube portion of the heat transfer tube group extends in a direction orthogonal to the tangent at an arbitrary point on the arc-shaped outer periphery of the moisture release area of the adsorption member.
 この調湿ユニットでは、水分放出エリアに対して、より適切な温度分布となる高温空気を供給することができ、効率的に水分を放出させることができる。 In this humidity control unit, it is possible to supply high-temperature air having a more appropriate temperature distribution to the moisture release area, and to efficiently release moisture.
 本発明の第2観点に係る調湿ユニットは、第1観点に係る調湿ユニットであって、伝熱管群の直管部分が、水分吸着エリアと水分放出エリアとを分ける境界と、水分放出エリアの周縁と、の交点を結ぶ仮想線に対して平行に延びている。 The humidity control unit according to the second aspect of the present invention is the humidity control unit according to the first aspect, wherein the straight pipe portion of the heat transfer tube group separates the moisture adsorption area and the moisture release area, and the moisture release area. It extends in parallel to the imaginary line that connects the intersections with the peripheral edge of.
 この調湿ユニットでは、水分放出エリアに対して、より適切な温度分布となる高温空気を供給することができ、効率的に水分を放出させることができる。 In this humidity control unit, it is possible to supply high-temperature air having a more appropriate temperature distribution to the moisture release area, and to efficiently release moisture.
 本発明の第3観点に係る調湿ユニットは、第1観点又は第2観点に係る調湿ユニットであって、水分放出エリアにおける吸着部材の回転方向下流側で伝熱管群の直管部分が径方向に延びている。 The humidity control unit according to the third aspect of the present invention is the humidity control unit according to the first or second aspect, wherein the straight pipe portion of the heat transfer tube group has a diameter on the downstream side in the rotation direction of the adsorption member in the moisture release area. Extending in the direction.
 本発明の第4観点に係る調湿ユニットは、第1観点から第3観点のいずれか1つに係る調湿ユニットであって、水分放出エリアにおける吸着部材の回転方向下流側に伝熱管群への冷媒の入口がある。 The humidity control unit according to the fourth aspect of the present invention is the humidity control unit according to any one of the first to third aspects, and is directed to the heat transfer tube group downstream in the rotation direction of the adsorption member in the moisture release area. There is a refrigerant inlet.
 本発明の第5観点に係る調湿ユニットは、第1観点から第4観点のいずれか1つに係る調湿ユニットであって、水分吸着エリアと水分放出エリアとを分ける境界と、水分放出エリアの周縁と、によって形成される水分放出エリアの中心角が90°よりも大きい。 A humidity control unit according to a fifth aspect of the present invention is the humidity control unit according to any one of the first to fourth aspects, wherein the moisture separation area is divided into a moisture adsorption area and a moisture release area, and the moisture release area. And the central angle of the moisture release area formed by the peripheral edge of each is greater than 90 °.
 本発明の第6観点に係る調湿ユニットは、第1観点から第5観点のいずれか1つに係る調湿ユニットであって、熱交換器が、伝熱管群で構成された冷媒が流れる複数のパスを有している。パスそれぞれの入口は、水分放出エリアにおける吸着部材の回転方向下流側と対峙している。パスぞれぞれの出口は、水分放出エリアにおける吸着部材の回転方向上流側と対峙している。 The humidity control unit according to the sixth aspect of the present invention is the humidity control unit according to any one of the first to fifth aspects, wherein the heat exchanger includes a plurality of refrigerants configured by heat transfer tube groups. Have a path. The entrance of each path faces the downstream side in the rotation direction of the adsorption member in the moisture release area. The exit of each path is opposed to the upstream side in the rotation direction of the adsorption member in the moisture release area.
 この調湿ユニットでは、パスそれぞれの入口は水分放出エリアにおける吸着部材の回転方向下流側と対峙し、パスぞれぞれの出口は水分放出エリアにおける吸着部材の回転方向上流側と対峙するので、水分放出エリアの回転方向における下流域側から高温空気となり、熱交換器を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、吸着部材の水分放出量の分布が改善され、効率的に加湿が行われる。 In this humidity control unit, the inlet of each path faces the downstream side in the rotation direction of the adsorption member in the moisture release area, and the outlet of each pass faces the upstream side in the rotation direction of the adsorption member in the moisture release area. From the downstream side in the rotation direction of the moisture release area, the temperature becomes high-temperature air, and the high-to-low temperature gradient of the high-temperature air that has passed through the heat exchanger is opposed to the rotation direction. Improved and efficient humidification.
 本発明の第7観点に係る調湿ユニットは、第1観点から第6観点のいずれか1つに係る調湿ユニットであって、熱交換器と水分放出エリアとの最短距離が20~30mmの範囲内である。 A humidity control unit according to a seventh aspect of the present invention is the humidity control unit according to any one of the first to sixth aspects, wherein the shortest distance between the heat exchanger and the moisture release area is 20 to 30 mm. Within range.
 この調湿ユニットでは、熱交換器と水分放出エリアとの距離を20~30mmの範囲内に近づけることによって、熱交換器の冷媒の流し方次第で変化する熱交換器の温度分布をそのまま水分放出エリアに反映できるので、水分放出量の分布を冷媒の流し方でコントロールすることができる。 In this humidity control unit, the temperature distribution of the heat exchanger that changes depending on the flow of the refrigerant in the heat exchanger is released as it is by releasing the distance between the heat exchanger and the moisture release area within the range of 20 to 30 mm. Since it can be reflected in the area, the distribution of the amount of released water can be controlled by the way the refrigerant flows.
 本発明の第8観点に係る調湿ユニットは、第1観点から第7観点のいずれか1つに係る調湿ユニットであって、熱交換器が、圧縮工程を経て過熱蒸気となった冷媒が熱交換器の冷媒入口に至るまでの区間の一部を、熱交換器の有効熱交換領域として機能させる。 The humidity control unit according to the eighth aspect of the present invention is the humidity control unit according to any one of the first to seventh aspects, wherein the heat exchanger is a refrigerant that has become superheated steam after the compression step. A part of the section up to the refrigerant inlet of the heat exchanger is caused to function as an effective heat exchange area of the heat exchanger.
 本発明の第9観点に係る空気調和機は、第1観点から第8観点のいずれか1つに係る調湿ユニットを備えている。 The air conditioner according to the ninth aspect of the present invention includes the humidity control unit according to any one of the first to eighth aspects.
 本発明の第1観点から第5観点のいずれか1つに係る調湿ユニットでは、水分放出エリアの回転方向における下流域側から高温空気となるように流す場合、熱交換器を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、吸着部材の水分放出量が平均化され、効率的に加湿が行われる。 In the humidity control unit according to any one of the first to fifth aspects of the present invention, the hot air that has passed through the heat exchanger is used to flow the hot air from the downstream side in the rotation direction of the moisture release area. The temperature gradient from higher to lower is opposed to the rotational direction, the amount of moisture released from the adsorbing member is averaged, and humidification is performed efficiently.
 一方、水分放出エリアの回転方向における上流域側から高温空気となるように流す場合、熱交換器を通過した高温空気の高い方から低い方の温度勾配が回転方向とが同じとなり、水分吸着エリアへ移行する際に水分放出エリアと水分吸着エリアとの温度差が比較的小さいので、水分吸着部へ入った際に、比較的早く低温となり、その分だけ早く吸着を開始することができる。 On the other hand, when flowing so as to be hot air from the upstream region side in the rotation direction of the moisture release area, the temperature gradient from the higher to the lower temperature of the hot air that has passed through the heat exchanger becomes the same as the rotation direction, and the moisture adsorption area Since the temperature difference between the moisture releasing area and the moisture adsorbing area is relatively small when moving to, the temperature becomes relatively low when entering the moisture adsorbing portion, and adsorption can be started earlier by that amount.
 本発明の第6観点に係る調湿ユニットでは、パスそれぞれの入口は水分放出エリアにおける吸着部材の回転方向下流側と対峙し、パスぞれぞれの出口は水分放出エリアにおける吸着部材の回転方向上流側と対峙するので、水分放出エリアの回転方向における下流域側から高温空気となり、熱交換器を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、吸着部材の水分放出量の分布が改善され、効率的に加湿が行われる。 In the humidity control unit according to the sixth aspect of the present invention, the inlet of each path faces the downstream side in the rotation direction of the adsorption member in the moisture release area, and the outlet of each path is the rotation direction of the adsorption member in the moisture release area. Since it faces the upstream side, it becomes high-temperature air from the downstream region side in the rotation direction of the moisture release area, and the high-to-low temperature gradient of the high-temperature air that has passed through the heat exchanger is opposed to the rotation direction. The distribution of the amount of released water is improved and humidification is performed efficiently.
 本発明の第7観点に係る調湿ユニットでは、熱交換器と水分放出エリアとの距離を20~30mmの範囲内に近づけることによって、熱交換器の冷媒の流し方次第で変化する熱交換器の温度分布をそのまま水分放出エリアに反映できるので、水分放出量の分布を冷媒の流し方でコントロールすることができる。 In the humidity control unit according to the seventh aspect of the present invention, the distance between the heat exchanger and the moisture discharge area is brought within the range of 20 to 30 mm, so that the heat exchanger changes depending on how the refrigerant flows in the heat exchanger. Therefore, the distribution of the amount of released water can be controlled by the flow of the refrigerant.
 本発明の第8観点に係る調湿ユニットでは、過熱蒸気となった冷媒の高い温度を有効に利用することができる。 In the humidity control unit according to the eighth aspect of the present invention, the high temperature of the refrigerant that has become superheated steam can be used effectively.
 本発明の第9観点に係る空気調和機では、第1観点の効果を維持する。 In the air conditioner according to the ninth aspect of the present invention, the effect of the first aspect is maintained.
本発明の第1実施形態に係る調湿ユニットを搭載する空気調和機の冷媒回路の概略図。Schematic of the refrigerant circuit of the air conditioner which mounts the humidity control unit which concerns on 1st Embodiment of this invention. 図1Aに記載の調湿ユニットの概念図。The conceptual diagram of the humidity control unit described in FIG. 1A. 本実施形態に係る調湿ユニットを一方向から視たときの当該調湿ユニットの斜視図。The perspective view of the said humidity control unit when the humidity control unit which concerns on this embodiment is seen from one direction. 本実施形態に係る調湿ユニットを他の方向から視たときの当該調湿ユニットの斜視図。The perspective view of the said humidity control unit when the humidity control unit which concerns on this embodiment is seen from another direction. 本実施形態に係る調湿ユニットの縦断面図。The longitudinal cross-sectional view of the humidity control unit which concerns on this embodiment. ロータ加熱部の斜視図。The perspective view of a rotor heating part. ロータ加熱部の分解斜視図。The exploded perspective view of a rotor heating part. 加湿ロータの詳細斜視図。The detailed perspective view of a humidification rotor. 加湿ロータの回転軸と直交する仮想平面に対する加熱用熱交換器の投影面と、当該仮想平面に対する水分放出エリアの投影面とを重ねた平面図。The top view which accumulated the projection surface of the heat exchanger for a heating with respect to the virtual plane orthogonal to the rotating shaft of a humidification rotor, and the projection surface of the water | moisture-content discharge | release area with respect to the said virtual plane. 水分放出エリア上の仮想線を示す加湿ロータの平面図。The top view of a humidification rotor which shows the virtual line on a moisture discharge | release area. 伝熱管の直管が仮想線Liと直交するように配置された加熱用熱交換器、及び空気流れにおける加熱用熱交換器の下流側に位置する加湿ロータの概略斜視図。The schematic perspective view of the humidification rotor located in the downstream of the heat exchanger for a heating in which the straight pipe of the heat exchanger tube was orthogonally crossed with the virtual line Li, and the heat exchanger in an air flow. 図10Aの加熱用熱交換器と加湿ロータとを平面的に描いた概略平面図。FIG. 10B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 10A in a planar manner. 第1実施形態の第1変形例における加熱用熱交換器、及びその下流側に位置する加湿ロータの概略斜視図。The schematic perspective view of the heat exchanger for heating in the 1st modification of 1st Embodiment, and the humidification rotor located in the downstream. 図11Aの加熱用熱交換器と加湿ロータとを平面的に描いた概略平面図。FIG. 11B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 11A in a planar manner. 第1実施形態の第2変形例における加熱用熱交換器と加湿ロータとの概略斜視図。The schematic perspective view of the heat exchanger for heating and the humidification rotor in the 2nd modification of 1st Embodiment. 図12Aの加熱用熱交換器と加湿ロータとを平面的に描いた概略平面図。FIG. 12B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 12A in a planar manner. 蒸気圧縮式冷凍サイクルと冷媒状態を表示したp-h線図。The ph diagram which displayed the vapor compression refrigerating cycle and the refrigerant | coolant state. 伝熱管の直管が水分放出エリアの円弧状の外周縁の任意の一点における接線と直交するように配置された加熱用熱交換器、及び空気流れにおける加熱用熱交換器の下流側に位置する加湿ロータの概略斜視図。The heat transfer tube straight pipe is positioned downstream of the heating heat exchanger in the air flow and the heating heat exchanger arranged so as to be orthogonal to the tangent at any one point of the arc-shaped outer peripheral edge of the moisture discharge area The schematic perspective view of a humidification rotor. 図14Aの加熱用熱交換器と加湿ロータとを平面的に描いた概略平面図。FIG. 14B is a schematic plan view illustrating the heating heat exchanger and the humidification rotor of FIG. 14A in a plane.
 以下、図面を参照しながら、本発明の一実施形態に係る空気調和装置について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。 Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.
 <第1実施形態>
 (1)空気調和機10の構成
 図1Aは、本発明の第1実施形態に係る調湿ユニットを搭載する空気調和機10の冷媒回路40の概略図である。図1Aにおいて、空気調和機10は、1台の室外ユニット30と、1台の室内ユニット20とが冷媒配管によって並列に接続されているペア型の空気調和機である。
<First Embodiment>
(1) Configuration of Air Conditioner 10 FIG. 1A is a schematic diagram of a refrigerant circuit 40 of an air conditioner 10 equipped with a humidity control unit according to the first embodiment of the present invention. In FIG. 1A, the air conditioner 10 is a pair type air conditioner in which one outdoor unit 30 and one indoor unit 20 are connected in parallel by a refrigerant pipe.
 この空気調和機10は、冷房運転、除湿運転及び暖房運転の他に、室内を加湿する加湿運転を行うことができる。なお、本実施形態の空気調和機10は、ペア型の空気調和機であるが、これに限定されず、1台の室外ユニット30に複数台の室内ユニット20が接続されたマルチ型の空気調和装置であってもよい。 The air conditioner 10 can perform a humidifying operation for humidifying the room in addition to a cooling operation, a dehumidifying operation, and a heating operation. The air conditioner 10 of the present embodiment is a pair type air conditioner, but is not limited to this, and is a multi-type air conditioner in which a plurality of indoor units 20 are connected to a single outdoor unit 30. It may be a device.
 図1Aに示すように、空気調和機10では、圧縮機31と、四方切換弁32と、調湿ユニット100の加熱用熱交換器72と、室内熱交換器21と、電動膨張弁34と、室外熱交換器33と、が順に接続されることによって、冷媒回路40が形成されている。 As shown in FIG. 1A, in the air conditioner 10, the compressor 31, the four-way switching valve 32, the heat exchanger 72 for heating of the humidity control unit 100, the indoor heat exchanger 21, the electric expansion valve 34, The refrigerant circuit 40 is formed by connecting the outdoor heat exchanger 33 in order.
 (1-1)室内ユニット20
 室内ユニット20は、室内の壁面等に設置される壁掛け型の室内ユニットである。また、室内ユニット20は、室内熱交換器21及び室内ファン22を内部に収納している。
(1-1) Indoor unit 20
The indoor unit 20 is a wall-mounted indoor unit that is installed on a wall surface of a room. The indoor unit 20 houses an indoor heat exchanger 21 and an indoor fan 22 inside.
 また、室内ユニット20内には、空気搬送ダクト15の一方の端部が配置されている。この空気搬送ダクト15の一方の端部は、例えば、室内ファン22が回転し空気流が生成されている状態において、室内ユニット20の空気取込口から見て空気流の下流側であり、かつ、室内熱交換器21から見て空気流の上流側の空間に配置されている。 Also, one end of the air transfer duct 15 is disposed in the indoor unit 20. One end of the air conveyance duct 15 is, for example, on the downstream side of the airflow when viewed from the air intake port of the indoor unit 20 in a state where the indoor fan 22 rotates and an airflow is generated, and It is arranged in the space on the upstream side of the air flow when viewed from the indoor heat exchanger 21.
 (1-1-1)室内熱交換器21
 室内熱交換器21は、長手方向両端で複数回折り返されてなる伝熱管と、伝熱管が挿通される複数のフィンとから構成されている。
(1-1-1) Indoor heat exchanger 21
The indoor heat exchanger 21 includes a heat transfer tube that is bent back and forth at both ends in the longitudinal direction, and a plurality of fins through which the heat transfer tube is inserted.
 室内熱交換器21は、室内空気を熱源として冷媒と熱交換を行うためのものであり、室内ファン22が室内熱交換器21表面を通過する空気流を生成することで、室内空気と室内熱交換器21を流れる冷媒との間で熱交換させることができる。 The indoor heat exchanger 21 is for exchanging heat with the refrigerant using indoor air as a heat source, and the indoor fan 22 generates an air flow that passes through the surface of the indoor heat exchanger 21, so that the indoor air and the indoor heat are generated. Heat can be exchanged with the refrigerant flowing through the exchanger 21.
 室内熱交換器21は、暖房運転時には、放熱器(凝縮器)として機能し、冷房運転時には蒸発器として機能する。 The indoor heat exchanger 21 functions as a radiator (condenser) during heating operation and functions as an evaporator during cooling operation.
 (1-1-2)室内ファン22
 室内ファン22は、室内の空気を室内ユニット20内に吸い込ませるとともに、室内熱交換器21との間で熱交換を行った後の空気を室内に吹き出させるファンである。なお、本実施形態における室内ファン22は、回転駆動することによって、回転軸と交わる方向に空気流れを生成するクロスフローファンである。
(1-1-2) Indoor fan 22
The indoor fan 22 is a fan that sucks indoor air into the indoor unit 20 and blows out air after heat exchange is performed with the indoor heat exchanger 21. In addition, the indoor fan 22 in this embodiment is a crossflow fan which produces | generates an air flow in the direction which crosses a rotating shaft by rotationally driving.
 (1-2)室外ユニット30
 室外ユニット30は、屋外に設置されている。室外ユニット30は、圧縮機31、四方切換弁32、室外熱交換器33、電動膨張弁34、アキュムレータ35、及び室外ファン36を内部に収納している。
(1-2) Outdoor unit 30
The outdoor unit 30 is installed outdoors. The outdoor unit 30 houses therein a compressor 31, a four-way switching valve 32, an outdoor heat exchanger 33, an electric expansion valve 34, an accumulator 35, and an outdoor fan 36.
 (1-2-1)圧縮機31
 圧縮機31は、回転数が可変なインバータ式の圧縮機であって、吸入したガス冷媒を圧縮するためのものである。
(1-2-1) Compressor 31
The compressor 31 is an inverter type compressor having a variable rotation speed, and compresses the sucked gas refrigerant.
 (1-2-2)四方切換弁
 四方切換弁32は、冷媒回路40を流れる冷媒の流路を変更する切換機構を構成している。四方切換弁32は、圧縮機31の吐出部と調湿ユニット100の加熱用熱交換器72とを接続し、かつ、室外熱交換器33と圧縮機31の吸入部とを接続する第1状態(図1Aの実線参照)と、圧縮機31の吐出部と室外熱交換器33とを接続し、かつ、調湿ユニット100の加熱用熱交換器72と圧縮機31の吸入部とを接続する第2状態(図1Aの破線参照)とに切り換わることで、冷媒回路40における冷媒の循環方向が可逆に構成されている。
(1-2-2) Four-way Switching Valve The four-way switching valve 32 constitutes a switching mechanism that changes the flow path of the refrigerant flowing through the refrigerant circuit 40. The four-way switching valve 32 connects the discharge part of the compressor 31 and the heat exchanger 72 for heating of the humidity control unit 100, and connects the outdoor heat exchanger 33 and the suction part of the compressor 31 in a first state. (Refer to the solid line in FIG. 1A) and the discharge section of the compressor 31 and the outdoor heat exchanger 33 are connected, and the heat exchanger 72 for heating of the humidity control unit 100 and the suction section of the compressor 31 are connected. By switching to the second state (see the broken line in FIG. 1A), the refrigerant circulation direction in the refrigerant circuit 40 is configured to be reversible.
 (1-2-3)室外熱交換器33
 室外熱交換器33は、長手方向両端で複数回折り返されてなる伝熱管と、伝熱管が挿通される複数のフィンとから構成されている。
(1-2-3) Outdoor heat exchanger 33
The outdoor heat exchanger 33 is composed of a heat transfer tube that is bent back and forth at both ends in the longitudinal direction and a plurality of fins through which the heat transfer tube is inserted.
 室外熱交換器33は、室外空気を熱源として冷媒と熱交換を行うためのものであり、室外ファン36が室外熱交換器33表面を通過する空気流を生成することで、室外空気と室外熱交換器33を流れる冷媒との間で熱交換させることができる。 The outdoor heat exchanger 33 is for exchanging heat with the refrigerant using outdoor air as a heat source, and the outdoor fan 36 generates an air flow passing through the surface of the outdoor heat exchanger 33, so that the outdoor air and the outdoor heat are generated. Heat can be exchanged with the refrigerant flowing through the exchanger 33.
 室外熱交換器33は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(凝縮器)として機能する。 The outdoor heat exchanger 33 functions as an evaporator during heating operation, and functions as a radiator (condenser) during cooling operation.
 (1-2-4)電動膨張弁34
 電動膨張弁34は、室内熱交換器21と室外熱交換器33との間の冷媒圧力の調整や冷媒流量の調整等を行うための弁である。
(1-2-4) Electric expansion valve 34
The electric expansion valve 34 is a valve for adjusting the refrigerant pressure and the refrigerant flow rate between the indoor heat exchanger 21 and the outdoor heat exchanger 33.
 (1-2-5)アキュムレータ35
 アキュムレータ35は、液冷媒とガス冷媒とを分離するためのものであり、冷媒回路40において、圧縮機31の吸入部と四方切換弁32とを接続する冷媒配管に設けられる。
(1-2-5) Accumulator 35
The accumulator 35 is for separating liquid refrigerant and gas refrigerant, and is provided in a refrigerant pipe connecting the suction portion of the compressor 31 and the four-way switching valve 32 in the refrigerant circuit 40.
 (1-2-6)室外ファン36
 室外ファン36は、室外空気を室外ユニット30内に取り込み、室外熱交換器33において冷媒と熱交換させた後に、室外ユニット30外に排出するファンである。なお、本実施形態における室外ファン36は、ファンモータによって駆動されるプロペラファンである。
(1-2-6) Outdoor fan 36
The outdoor fan 36 is a fan that takes outdoor air into the outdoor unit 30, exchanges heat with the refrigerant in the outdoor heat exchanger 33, and then discharges the air outside the outdoor unit 30. Note that the outdoor fan 36 in the present embodiment is a propeller fan driven by a fan motor.
 (1-3)調湿ユニット100
 図1Bは、図1Aに記載の調湿ユニット100の概念図である。図1Bにおいて、調湿ユニット100は、加湿ロータ50と、吸着用ファン55と、加湿用ファン54と、加熱用熱交換器72とを搭載している。また、調湿ユニット100と室内ユニット20との間には、調湿ユニット100の内部空間と室内ユニット20の内部空間とを連通させることが可能な空気搬送ダクト15が設けられている。
(1-3) Humidity control unit 100
FIG. 1B is a conceptual diagram of the humidity control unit 100 described in FIG. 1A. 1B, the humidity control unit 100 includes a humidification rotor 50, an adsorption fan 55, a humidification fan 54, and a heat exchanger 72 for heating. In addition, an air conveyance duct 15 is provided between the humidity control unit 100 and the indoor unit 20 so that the internal space of the humidity control unit 100 and the internal space of the indoor unit 20 can communicate with each other.
 調湿ユニット100では、加湿ロータ50が吸着用流路70を流れる室外空気から水分を吸着した後、加熱用熱交換器72で加熱された室外空気が流れる加湿用流路71において当該水分を放出する。高温の空気に放出された水分は加湿空気となって、空気搬送ダクト15へ送られ、最終的に室内に到達する。 In the humidity control unit 100, after the humidification rotor 50 adsorbs moisture from the outdoor air flowing through the adsorption flow path 70, the moisture is released in the humidification flow path 71 through which the outdoor air heated by the heating heat exchanger 72 flows. To do. Moisture released into the high-temperature air becomes humidified air and is sent to the air transport duct 15 and finally reaches the room.
 つまり、調湿ユニット100は、室外空気を加湿して、空気搬送ダクト15を介して室内へと供給することができる。 That is, the humidity control unit 100 can humidify the outdoor air and supply it to the room via the air transfer duct 15.
 (2)調湿ユニット100の詳細構成
 図2は、本実施形態に係る調湿ユニット100を一方向から視たときの当該調湿ユニット100の斜視図である。また、図3は、本実施形態に係る調湿ユニット100を他の方向から視たときの当該調湿ユニット100の斜視図である。さらに、図4は、本実施形態に係る調湿ユニット100の縦断面図である。
(2) Detailed Configuration of Humidity Control Unit 100 FIG. 2 is a perspective view of the humidity control unit 100 when the humidity control unit 100 according to this embodiment is viewed from one direction. FIG. 3 is a perspective view of the humidity control unit 100 when the humidity control unit 100 according to the present embodiment is viewed from another direction. Furthermore, FIG. 4 is a longitudinal sectional view of the humidity control unit 100 according to the present embodiment.
 (2-1)ケーシング101
 図1B、図2、図3及び図4において、ケーシング101は、加湿ロータ50、加熱用熱交換器72、加湿用ファン54、流路切換装置53および吸着用ファン55を収納している。ここで、ケーシング101では、調湿ユニット100が壁に沿って据付ける際の当該壁と対向する側の面を背面とし、その背面と対向する面を前面とする。また、前面と背面とに挟まれた面のうちの最も鉛直上方に位置する面を天面、最も鉛直下方にある面を底面とする。
(2-1) Casing 101
In FIG. 1B, FIG. 2, FIG. 3 and FIG. 4, the casing 101 houses a humidification rotor 50, a heat exchanger 72 for heating, a humidification fan 54, a flow path switching device 53, and an adsorption fan 55. Here, in the casing 101, a surface on the side facing the wall when the humidity control unit 100 is installed along the wall is a back surface, and a surface facing the back surface is a front surface. Of the surfaces sandwiched between the front surface and the back surface, the surface that is located at the uppermost vertical position is the top surface, and the surface that is the most vertically lower is the bottom surface.
 (2-2)吸着用流路70
 ケーシング101内には、吸着用空気取込口101aから吸着用空気吹出口101bに至るまでの空気の経路として、吸着用流路70が形成されている。吸着用流路70は、複数の部材が関係しており、図1B及び図2~図4に示すように、矢印Aで表示される空気流を形成する。
(2-2) Adsorption channel 70
An adsorption flow path 70 is formed in the casing 101 as an air path from the adsorption air intake port 101a to the adsorption air outlet 101b. The adsorption flow path 70 is related to a plurality of members, and forms an air flow indicated by an arrow A as shown in FIGS. 1B and 2 to 4.
 吸着用空気取込口101aは、ケーシング101の前面に設けられている。吸着用空気取込口101aは矩形状の開口であり、加湿ロータ50へ水分を吸着させるための室外空気がその吸着用空気取込口101aから取り込まれる。 The adsorption air intake port 101 a is provided on the front surface of the casing 101. The adsorption air intake port 101a is a rectangular opening, and outdoor air for adsorbing moisture to the humidification rotor 50 is taken in from the adsorption air intake port 101a.
 吸着用空気吹出口101bは、ケーシング101の底面に設けられている。吸着用空気吹出口101bは、矩形状の開口であり、加湿ロータ50によって水分が吸着された後の空気が、その吸着用空気吹出口101bからケーシング101の外へ排出される。 The adsorption air outlet 101 b is provided on the bottom surface of the casing 101. The adsorption air outlet 101b is a rectangular opening, and the air after moisture is adsorbed by the humidification rotor 50 is discharged out of the casing 101 from the adsorption air outlet 101b.
 (2-2-1)吸着用ファン55
 吸着用流路70における室外空気の取込と排出は、吸着用ファン55によって行われる。図4に示すように、吸着用ファン55は、羽根車55aがファンモータ55bによって回転駆動され、加湿ロータ50のうちの水分吸着部分となる領域を通過する空気流を生成する。
(2-2-1) Suction fan 55
The intake air is taken in and discharged from the adsorption flow path 70 by the adsorption fan 55. As shown in FIG. 4, in the adsorption fan 55, the impeller 55 a is rotationally driven by the fan motor 55 b, and generates an air flow that passes through a region that becomes a moisture adsorption portion of the humidification rotor 50.
 (2-3)加湿用流路71
 また、ケーシング101内には、吸着用流路70とは別に、加湿用空気取込口101dを入口とする加湿用流路71が形成されている。加湿用流路71は、複数の部材が関係しており、図1B及び図2~図4に示すように、矢印Bで表示される空気流を生成する。ここでは、加湿用流路71の一部であるロータ加熱部73(図4参照)、加湿用ファン54及び流路切換装置53について説明する。
(2-3) Humidification channel 71
Further, in the casing 101, a humidification flow path 71 having a humidification air intake port 101 d as an inlet is formed separately from the adsorption flow path 70. The humidifying channel 71 is related to a plurality of members, and generates an air flow indicated by an arrow B as shown in FIGS. 1B and 2 to 4. Here, the rotor heating unit 73 (see FIG. 4), the humidifying fan 54, and the flow path switching device 53, which are a part of the humidifying flow path 71, will be described.
 (2-3-1)ロータ加熱部73
 図5は、ロータ加熱部73の斜視図である。また、図6はロータ加熱部73の分解斜視図である。図5及び図6において、ロータ加熱部73は、加湿用流路71の一部を構成する、加熱用熱交換器72から加湿ロータ50までの経路である。
(2-3-1) Rotor heating unit 73
FIG. 5 is a perspective view of the rotor heating unit 73. FIG. 6 is an exploded perspective view of the rotor heating unit 73. 5 and 6, the rotor heating unit 73 is a path from the heating heat exchanger 72 to the humidification rotor 50 that constitutes a part of the humidification flow path 71.
 ロータ加熱部73は、加湿ロータ50、加熱用熱交換器72、流路形成壁74、及びロータ支持枠75で構成されており、その機能は空気を加熱し高温空気を生成することである。 The rotor heating unit 73 includes a humidifying rotor 50, a heat exchanger 72 for heating, a flow path forming wall 74, and a rotor support frame 75, and the function thereof is to generate high-temperature air by heating air.
 加熱用熱交換器72の表面を通過する空気は、冷媒との熱交換によって加熱され高温空気となり、流路形成壁74に案内されてロータ支持枠75の扇形開口へ導かれる。扇形開口を通過した高温空気は加湿ロータ50を通過する際に、加湿ロータ50を加熱するので、加湿ロータ50から水分が放出される。 The air passing through the surface of the heat exchanger 72 for heating is heated by heat exchange with the refrigerant to become high-temperature air, and is guided to the flow path forming wall 74 and guided to the fan-shaped opening of the rotor support frame 75. The high-temperature air that has passed through the fan-shaped opening heats the humidification rotor 50 when passing through the humidification rotor 50, so that moisture is released from the humidification rotor 50.
 それゆえ、加湿運転時、加湿用空気取込口101dから取り込まれた室外空気は、加湿用流路71を流れる途中で加湿され、加湿用流路71の終端を成す接続部715(図4参照)に取り付けられた空気搬送ダクト15を通って、室内へと供給される。 Therefore, during the humidifying operation, the outdoor air taken in from the humidifying air intake port 101d is humidified in the course of flowing through the humidifying flow channel 71, and the connecting portion 715 forming the end of the humidifying flow channel 71 (see FIG. 4). ) Is supplied to the room through the air conveyance duct 15 attached to the room.
 以下、加湿ロータ50、加熱用熱交換器72、流路形成壁74、ロータ支持枠75について詳細を説明する。 Hereinafter, the humidification rotor 50, the heat exchanger 72 for heating, the flow path forming wall 74, and the rotor support frame 75 will be described in detail.
 (2-3-1-1)加湿ロータ50
 図7は、加湿ロータ50の詳細斜視図である。図7において、加湿ロータ50は、ハニカム構造のセラミックロータであり、略円板状の外形を有している。また、加湿ロータ50は、外周にギア501が設けられており、ピニオンギア65aと噛み合うことによって回転力が伝達される。
(2-3-1-1) Humidification rotor 50
FIG. 7 is a detailed perspective view of the humidification rotor 50. In FIG. 7, the humidification rotor 50 is a ceramic rotor having a honeycomb structure, and has a substantially disk-shaped outer shape. Further, the humidifying rotor 50 is provided with a gear 501 on the outer periphery, and rotational force is transmitted by meshing with the pinion gear 65a.
 さらに、加湿ロータ50は、中心に軸孔505を有しており、軸孔505によって回転可能に支持され、ロータ駆動用モータ65によって回転する上記ピニオンギア65aの回転力を受けて回転駆動される。 Further, the humidifying rotor 50 has a shaft hole 505 in the center, is rotatably supported by the shaft hole 505, and is rotationally driven by receiving the rotational force of the pinion gear 65a rotated by the rotor driving motor 65. .
 加湿ロータ50の吸着機能を有する部分は、ゼオライト等の吸着剤から焼成されている。ゼオライト等の吸着剤は、接触する空気中の水分を吸着するとともに、吸着した水分を加熱されることによって放出するという性質を有している。 The portion having the adsorption function of the humidifying rotor 50 is fired from an adsorbent such as zeolite. Adsorbents such as zeolite have the property of adsorbing moisture in the contacting air and releasing the adsorbed moisture when heated.
 なお、本実施形態では、吸着剤としてゼオライトを用いているが、シリカゲルやアルミナ等を吸着剤として用いることも可能である。 In this embodiment, zeolite is used as the adsorbent, but silica gel, alumina or the like can be used as the adsorbent.
 (2-3-1-2)加熱用熱交換器72
 図5及び図6に示すように、加熱用熱交換器72は、複数の伝熱管721を伝熱フィン722の厚み方向に貫通させることによって構成されるフィン・アンド・チューブ式の熱交換器である。
(2-3-1-2) Heating heat exchanger 72
As shown in FIGS. 5 and 6, the heat exchanger 72 for heating is a fin-and-tube heat exchanger configured by penetrating a plurality of heat transfer tubes 721 in the thickness direction of the heat transfer fins 722. is there.
 加熱用熱交換器72は、加湿用流路71において、加湿ロータ50の上流側に位置しており、加湿ロータ50に対向して配置されている。加熱用熱交換器72は、室外空気と熱源としての冷媒との間で熱交換を行わせるためのものであり、加湿ロータ50から水分を放出させるために加湿ロータ50へ送られる室外空気を加熱し、高温空気を生成する。 The heat exchanger 72 for heating is located on the upstream side of the humidification rotor 50 in the humidification flow path 71 and is disposed to face the humidification rotor 50. The heating heat exchanger 72 is for causing heat exchange between the outdoor air and a refrigerant as a heat source, and heats the outdoor air sent to the humidification rotor 50 in order to release moisture from the humidification rotor 50. And generate hot air.
 また、図1Aに示すように、加熱用熱交換器72は、冷媒回路40において、室内熱交換器21、室外熱交換器33及び電動膨張弁34等と直列に接続されており、暖房時には、圧縮機31、加熱用熱交換器72、室内熱交換器21、電動膨張弁34、室外熱交換器33の順に冷媒が流れるように構成されている。 As shown in FIG. 1A, the heating heat exchanger 72 is connected in series with the indoor heat exchanger 21, the outdoor heat exchanger 33, the electric expansion valve 34, and the like in the refrigerant circuit 40. The refrigerant flows in the order of the compressor 31, the heat exchanger 72 for heating, the indoor heat exchanger 21, the electric expansion valve 34, and the outdoor heat exchanger 33.
 図8は、加湿ロータ50の回転軸と直交する仮想平面に対する加熱用熱交換器72の投影面と、当該仮想平面に対する水分放出エリア50bの投影面とを重ねた平面図である。 FIG. 8 is a plan view in which the projection surface of the heating heat exchanger 72 with respect to a virtual plane orthogonal to the rotation axis of the humidification rotor 50 and the projection surface of the moisture discharge area 50b with respect to the virtual plane are overlapped.
 図8において、加熱用熱交換器72の投影面の面積(以下、投影面積Shという。)は、水分放出エリア50bの投影面の面積(以下、投影面積Srという)よりも大きい。面積比で言えば、Sh/Sr≧2となる。 8, the area of the projection surface of the heating heat exchanger 72 (hereinafter referred to as the projection area Sh) is larger than the area of the projection surface of the moisture release area 50b (hereinafter referred to as the projection area Sr). In terms of area ratio, Sh / Sr ≧ 2.
 位置関係で言えば、加熱用熱交換器72の投影面積Shの50%以上が、水分放出エリア50bの投影空間よりも径方向外側にはみ出ており、さらに具体的には、加熱用熱交換器72は水分放出エリア50bの投影空間を径方向外側に1.2倍拡大した仮想投影空間(図8の二点鎖線で描いた扇形)よりも外側にはみ出ている。 In terms of the positional relationship, 50% or more of the projected area Sh of the heating heat exchanger 72 protrudes radially outward from the projected space of the moisture release area 50b, and more specifically, the heating heat exchanger. 72 protrudes outside the virtual projection space (fan shape drawn by a two-dot chain line in FIG. 8) obtained by enlarging the projection space of the moisture release area 50b 1.2 times outward in the radial direction.
 また、加熱用熱交換器72と加湿ロータ50との間には、20~30mmの隙間hが設けられている(図4参照)。隙間hは、加熱用熱交換器72と加湿ロータ50との最短距離である。 Further, a gap h of 20 to 30 mm is provided between the heat exchanger 72 for heating and the humidification rotor 50 (see FIG. 4). The gap h is the shortest distance between the heating heat exchanger 72 and the humidification rotor 50.
 隙間hがこの範囲よりも小さくなると、加熱用熱交換器72を通過した空気の通風抵抗が極端に増大する。逆に、隙間hがこの範囲よりも大きくなると、加熱用熱交換器72を通過して加熱された空気が温度低下する。 When the gap h is smaller than this range, the ventilation resistance of the air that has passed through the heating heat exchanger 72 is extremely increased. On the contrary, when the gap h is larger than this range, the temperature of the air heated through the heating heat exchanger 72 is lowered.
 隙間hは、加熱用熱交換器72及び加湿ロータ50のサイズに影響されるので、本実施形態では、目安として、
     0.4≦D×(Sr/Sh)/h≦2.0
の関係が成立するように隙間hが設定されている。なお、Dは加湿ロータ50の直径である。
Since the gap h is influenced by the size of the heat exchanger 72 for heating and the humidification rotor 50, in this embodiment, as a guideline,
0.4 ≦ D × (Sr / Sh) 3 /h≦2.0
The gap h is set so that the above relationship is established. Note that D is the diameter of the humidification rotor 50.
 (2-3-1-3)流路形成壁74
 隙間hの周囲は、加湿用流路71の一部を構成する流路形成壁74で覆われている。上記の通り、加熱用熱交換器72の投影面積Shが水分放出エリア50bの投影面積Srの2倍以上あり、且つ、加熱用熱交換器72と加湿ロータ50との隙間hは20~30mmの程度に短いので、加熱用熱交換器72を通過して生成された高温空気が漏れなく水分放出エリア50bへ導く必要があり、流路形成壁74は空気流路の流路断面積を徐々に縮小して、通風抵抗を抑えた構造に仕上げられている。
(2-3-1-3) Channel formation wall 74
The periphery of the gap h is covered with a flow path forming wall 74 that constitutes a part of the humidifying flow path 71. As described above, the projected area Sh of the heating heat exchanger 72 is more than twice the projected area Sr of the moisture release area 50b, and the gap h between the heating heat exchanger 72 and the humidifying rotor 50 is 20 to 30 mm. Therefore, it is necessary to guide the high-temperature air generated through the heating heat exchanger 72 to the moisture discharge area 50b without leakage, and the flow path forming wall 74 gradually increases the cross-sectional area of the air flow path. The structure is reduced to reduce ventilation resistance.
 流路形成壁74では、第1傾斜面741、第2傾斜面742、第1湾曲面743及び第2湾曲面744によって筒状の壁面74aが形成されている。 In the flow path forming wall 74, a cylindrical wall surface 74 a is formed by the first inclined surface 741, the second inclined surface 742, the first curved surface 743, and the second curved surface 744.
 入口740aの長方形の下側長辺の一端をA1、中点をM、他端をA2、入口740aの長方形の上側長辺の一端をA3、中点をN、他端をA4、出口740bの扇形の中心角中心をC、扇形の円弧の一端をB1、中点をO、他端をB2としたとき、第1傾斜面741は、A1、M、C及びB1で囲まれた傾斜面である。同様に、第2傾斜面742は、A2、M、C及びB2で囲まれた傾斜面である。 One end of the lower long side of the rectangle of the entrance 740a is A1, the middle point is M, the other end is A2, one end of the upper long side of the rectangle of the entrance 740a is A3, the middle point is N, the other end is A4, and the outlet 740b When the center angle of the sector is C, one end of the sector arc is B1, the middle point is O, and the other end is B2, the first inclined surface 741 is an inclined surface surrounded by A1, M, C, and B1. is there. Similarly, the second inclined surface 742 is an inclined surface surrounded by A2, M, C, and B2.
 また、第1湾曲面743は、A1、A4、N、O、B1で囲まれた湾曲面である。同様に、第2湾曲面744は、A2、A3、N、O、B2で囲まれた湾曲面である。 The first curved surface 743 is a curved surface surrounded by A1, A4, N, O, and B1. Similarly, the second curved surface 744 is a curved surface surrounded by A2, A3, N, O, and B2.
 流路形成壁74は、第1傾斜面741、第2傾斜面742、第1湾曲面743及び第2湾曲面744によって、長方形の入口740aから扇形の出口740bに向かって流路断面積を徐々に小さくしていくので、高温空気がロータ支持枠75の扇形開口へ効率よく導かれる。 The flow path forming wall 74 gradually has a cross-sectional area of the flow path from the rectangular inlet 740a toward the fan-shaped outlet 740b by the first inclined surface 741, the second inclined surface 742, the first curved surface 743, and the second curved surface 744. Therefore, the high-temperature air is efficiently guided to the fan-shaped opening of the rotor support frame 75.
 なお、本実施形態における流路形成壁74は入口740aと出口740bとの距離が短く、入口面積に比べて出口面積が小さく、さらに非対称な台形筒を成すため、成形性に富む樹脂で成形されている。 In this embodiment, the flow path forming wall 74 is formed of a resin having a high moldability because the distance between the inlet 740a and the outlet 740b is short, the outlet area is smaller than the inlet area, and an asymmetric trapezoidal cylinder is formed. ing.
 (2-3-1-4)ロータ支持枠75
 ロータ支持枠75は、2つの機能を有している。第1の機能は、加湿ロータ50を回転可能に支持することである。第2の機能は、加湿ロータ50を水分吸着エリア50aと水分放出エリア50bとに分けることである。
(2-3-1-4) Rotor support frame 75
The rotor support frame 75 has two functions. The first function is to rotatably support the humidification rotor 50. The second function is to divide the humidification rotor 50 into a moisture adsorption area 50a and a moisture release area 50b.
 図6に示すように、ロータ支持枠75は、中空の円筒枠751、仕切り752及び支持軸755を含んでいる。円筒枠751の内径寸法は、加湿ロータ50の外径寸法よりも少し大き目に設定されている。 As shown in FIG. 6, the rotor support frame 75 includes a hollow cylindrical frame 751, a partition 752, and a support shaft 755. The inner diameter dimension of the cylindrical frame 751 is set slightly larger than the outer diameter dimension of the humidification rotor 50.
 仕切り752は、円筒枠751の開口端を2つの扇形開口に仕切る。中心角が大きい(約240°)の第1扇形開口75aは、吸着用空気取込口101aから取り込まれた室外空気を通過させるための開口となる。 The partition 752 partitions the opening end of the cylindrical frame 751 into two fan-shaped openings. The first sector opening 75a having a large central angle (about 240 °) serves as an opening for allowing outdoor air taken in from the adsorption air intake port 101a to pass therethrough.
 中心角が小さい(約120°)の第2扇形開口75bは、加熱用熱交換器72で加熱されて高温空気となった室外空気を通過させるための開口となる。 The second fan-shaped opening 75b having a small central angle (about 120 °) is an opening for allowing outdoor air heated by the heat exchanger 72 for heating to become high-temperature air.
 したがって、加湿ロータ50のうちの上記第1扇形開口75aと対峙する領域は、室外空気に含まれる水分を吸着するので、この領域が水分吸着エリア50aとなる。一方、加湿ロータ50のうちの上記第2扇形開口75bと対峙する領域は、高温空気によって温度上昇して水分を放出するので、この領域が水分放出エリア50bとなる。 Therefore, the area facing the first fan-shaped opening 75a in the humidifying rotor 50 adsorbs moisture contained in the outdoor air, and this area becomes the moisture adsorption area 50a. On the other hand, the area of the humidifying rotor 50 that faces the second fan-shaped opening 75b rises in temperature due to the high-temperature air and releases moisture, so that this area becomes the moisture release area 50b.
 支持軸755は、円筒枠751の中心に位置し、加湿ロータ50の中心に設けられた軸孔505と嵌合する。 The support shaft 755 is positioned at the center of the cylindrical frame 751 and fits with a shaft hole 505 provided at the center of the humidification rotor 50.
 (2-3-2)加湿用ファン54
 図1B、図2、図3及び図4において、加湿用ファン54は遠心ファン組立体(本実施形態では、ターボファン)であり、加湿ロータ50の上方に配置される。加湿用ファン54は、加湿用空気取込口101dから室外空気を加湿用流路71に流入させ、加湿ロータ50を通過させた後、流路切換装置53及び空気搬送ダクト15を介して室内ユニット20へと流れる空気流(矢印B)を生成する。
(2-3-2) Humidification fan 54
In FIG. 1B, FIG. 2, FIG. 3 and FIG. 4, the humidifying fan 54 is a centrifugal fan assembly (in this embodiment, a turbo fan) and is disposed above the humidifying rotor 50. The humidifying fan 54 allows outdoor air to flow into the humidifying flow path 71 from the humidifying air intake port 101 d and pass through the humidifying rotor 50, and then passes through the flow path switching device 53 and the air transfer duct 15 to the indoor unit. An air stream flowing to 20 (arrow B) is generated.
 (2-3-3)流路切換装置53
 流路切換装置53は、加湿用ファン54と空気搬送ダクト15との間に配置され、加湿用ファン54と空気搬送ダクト15との接続状態を供給状態及び供給停止状態のいずれかに切り換えることができる。ここで、供給状態とは、加湿用流路71と空気搬送ダクト15とを接続した状態である。また、供給停止状態とは、加湿用流路71と空気搬送ダクト15との接続を解除した状態のことをいう。
(2-3-3) Channel switching device 53
The flow path switching device 53 is disposed between the humidification fan 54 and the air conveyance duct 15 and switches the connection state between the humidification fan 54 and the air conveyance duct 15 to either the supply state or the supply stop state. it can. Here, the supply state is a state in which the humidifying flow path 71 and the air conveyance duct 15 are connected. The supply stop state refers to a state where the connection between the humidification flow path 71 and the air conveyance duct 15 is released.
 供給状態では、加湿用流路71から空気搬送ダクト15への空気の流れ、或いは、空気搬送ダクト15から加湿用流路71への空気の流れを許容する。つまり、給気状態では、加湿用空気取込口101dから取り込まれた室外空気を室内ユニット20へ供給させたり(図1Bの矢印B参照)、室内ユニット20の室内空気を室外へと排気させたりすることが可能である(図1Bの矢印C参照)。 In the supply state, the flow of air from the humidification flow path 71 to the air conveyance duct 15 or the flow of air from the air conveyance duct 15 to the humidification flow path 71 is allowed. That is, in the air supply state, the outdoor air taken in from the humidifying air intake port 101d is supplied to the indoor unit 20 (see arrow B in FIG. 1B), or the indoor air in the indoor unit 20 is exhausted to the outside. (See arrow C in FIG. 1B).
 一方で、供給停止状態では、加湿用流路71から空気搬送ダクト15への空気の流れ、或いは、空気搬送ダクト15から加湿用流路71への空気の流れが遮断される。 On the other hand, in the supply stop state, the flow of air from the humidification flow path 71 to the air conveyance duct 15 or the flow of air from the air conveyance duct 15 to the humidification flow path 71 is blocked.
 (3)加湿運転時の動作
 ここでは、加湿運転時における冷媒の流れ及び空気の流れについて説明する。加湿運転は暖房運転と同時に行われるため、加湿運転時における冷媒の流れ、及び加湿運転時における空気の流れについて説明する。
(3) Operation during humidification operation Here, the refrigerant flow and the air flow during the humidification operation will be described. Since the humidification operation is performed simultaneously with the heating operation, the refrigerant flow during the humidification operation and the air flow during the humidification operation will be described.
 (3-1)加湿運転時における冷媒の流れ
 加湿運転時には、圧縮機31から吐出された高圧ガス冷媒は、四方切換弁32を介して、加熱用熱交換器72に流入する。加熱用熱交換器72に流入した高圧液冷媒は、加熱用熱交換器72において室外空気と熱交換を行った後に室内熱交換器21に至る。
(3-1) Flow of Refrigerant During Humidification Operation During the humidification operation, the high-pressure gas refrigerant discharged from the compressor 31 flows into the heating heat exchanger 72 via the four-way switching valve 32. The high-pressure liquid refrigerant flowing into the heating heat exchanger 72 reaches the indoor heat exchanger 21 after exchanging heat with outdoor air in the heating heat exchanger 72.
 室内熱交換器21に入った高圧ガス冷媒は、室内熱交換器21で室内ファン22により送風される室内空気、及び、空気搬送ダクト15から吹き出される空気との間で熱交換を行い、高圧ガス冷媒が凝縮するとともに、空気を加熱し、室内の暖房を行う。室内熱交換器21を出た冷媒は、電動膨張弁34に至る。 The high-pressure gas refrigerant that has entered the indoor heat exchanger 21 exchanges heat between the indoor air blown by the indoor fan 22 in the indoor heat exchanger 21 and the air blown out from the air transfer duct 15 to generate high pressure. As the gas refrigerant condenses, the air is heated to heat the room. The refrigerant that has exited the indoor heat exchanger 21 reaches the electric expansion valve 34.
 電動膨張弁34に至った液冷媒は、電動膨張弁34で減圧された後に、室外熱交換器33に流入する。室外熱交換器33では、流入した液冷媒が、室外空気と熱交換を行うことで蒸発する。そして、蒸発したガス冷媒は、四方切換弁32を介し、アキュムレータ35を経て、圧縮機31に吸入される。 The liquid refrigerant that has reached the electric expansion valve 34 is decompressed by the electric expansion valve 34 and then flows into the outdoor heat exchanger 33. In the outdoor heat exchanger 33, the flowing liquid refrigerant evaporates by exchanging heat with outdoor air. The evaporated gas refrigerant is sucked into the compressor 31 through the accumulator 35 via the four-way switching valve 32.
 このように、冷媒回路40内を冷媒が循環することで、室内熱交換器21において室内を暖房することができ、加熱用熱交換器72において加湿用空気取込口101dから取り込まれた室外空気を加熱することができる。 As described above, the refrigerant circulates in the refrigerant circuit 40, whereby the indoor heat exchanger 21 can heat the room, and the heating heat exchanger 72 takes outdoor air taken in from the humidification air intake 101d. Can be heated.
 (3-2)加湿運転時における空気の流れ
 図1B、図2~図4及び図7において、加湿運転時には、吸着用ファン55が駆動されて、吸着用流路70を通る空気流(矢印A)が生じる。同時に、加湿用ファン54が駆動されて、加湿用流路71を通る空気流(矢印B)が生じる。
(3-2) Air Flow during Humidification Operation In FIGS. 1B, 2 to 4 and 7, during the humidification operation, the suction fan 55 is driven and the air flow through the suction flow path 70 (arrow A) ) Occurs. At the same time, the humidifying fan 54 is driven to generate an air flow (arrow B) through the humidifying flow path 71.
 以下、説明の便宜上、室外空気のうち、吸着用空気取込口101aから調湿ユニット100内に取り込まれる室外空気を吸着用空気といい、加湿用空気取込口101dから調湿ユニット100内に取り込まれる室外空気を加湿用空気という。 Hereinafter, of the outdoor air, outdoor air taken into the humidity control unit 100 from the adsorption air intake 101a is referred to as adsorption air, and from the humidification air intake 101d to the humidity control unit 100. The outdoor air taken in is called humidification air.
 吸着用空気取込口101aから取り込まれた吸着用空気は、吸着用流路70を流れることにより、加湿ロータ50のうちの水分吸着エリア50aを通過する。水分吸着エリア50aを通過した吸着用空気は、吸着用ファン55によって調湿ユニット100から吹き出される。 The adsorption air taken in from the adsorption air intake port 101a flows through the adsorption flow path 70, thereby passing through the moisture adsorption area 50a of the humidification rotor 50. The adsorption air that has passed through the moisture adsorption area 50 a is blown out of the humidity control unit 100 by the adsorption fan 55.
 一方、加湿用空気取込口101dから取り込まれた加湿用空気は、加熱用熱交換器72へ向かう。加湿用空気は加熱用熱交換器72を通過する際に加熱されて高温空気となり、加湿ロータ50のうちの水分放出エリア50bを通過する。水分放出エリア50bを通過した加湿用空気は、加湿空気となって流路切換装置53に至り、加湿用ファン54によって空気搬送ダクト15へ排出され室内ユニット20へと搬送される。 On the other hand, the humidifying air taken in from the humidifying air intake port 101d goes to the heat exchanger 72 for heating. The humidifying air is heated when passing through the heating heat exchanger 72 to become high-temperature air, and passes through the moisture discharge area 50 b of the humidifying rotor 50. The humidifying air that has passed through the moisture release area 50 b becomes humidified air, reaches the flow path switching device 53, is discharged to the air transfer duct 15 by the humidifying fan 54, and is transferred to the indoor unit 20.
 加湿ロータ50が最も高温になる領域は加湿ロータ50の水分放出エリア50bであり、水分放出エリア50bから水分が放出されるので、加湿される前の加湿用空気がその放出された水分を含む空気ことによって加湿空気が生成される。 The region where the humidification rotor 50 is the hottest is the moisture release area 50b of the humidification rotor 50. Since moisture is released from the moisture release area 50b, the humidification air before being humidified contains the released moisture. As a result, humidified air is generated.
 なお、加湿運転時には、加湿ロータ50は回転しているので、加湿ロータ50において水分吸着エリア50aと水分放出エリア50bとは、順に入れ替わることになる。 In addition, since the humidification rotor 50 is rotating during the humidification operation, the moisture adsorption area 50a and the moisture release area 50b are sequentially switched in the humidification rotor 50.
 (4)加熱用熱交換器72の冷媒の流し方
 本実施形態に係る調湿ユニット100は、加湿ロータ50の水分放出エリア50bに供給する高温空気を加熱用熱交換器72で生成するので、加熱用熱交換器72の温度分布が水分放出エリア50bにおける水分放出性能に影響し、さらには隣接する水分吸着エリア50aにおける水分吸着性能にも影響する。
(4) How to flow the refrigerant of the heat exchanger 72 for heating The humidity control unit 100 according to the present embodiment generates high-temperature air to be supplied to the moisture release area 50b of the humidification rotor 50 with the heat exchanger 72 for heating. The temperature distribution of the heat exchanger 72 for heating affects the moisture release performance in the moisture release area 50b, and further affects the moisture adsorption performance in the adjacent moisture adsorption area 50a.
 加熱用熱交換器72では、冷媒の流し方次第でその温度分布が異なる。ここでは、その温度分布を利用した加熱方法について説明する。なお、加熱用熱交換器72を流れる冷媒の方向を、伝熱管721の直管の方向で特定するため、水分放出エリア50b上に所定の仮想線Liを定義することにした。 In the heat exchanger 72 for heating, the temperature distribution differs depending on how the refrigerant flows. Here, a heating method using the temperature distribution will be described. In addition, in order to specify the direction of the refrigerant flowing through the heat exchanger 72 for heating by the direction of the straight pipe of the heat transfer tube 721, a predetermined virtual line Li is defined on the moisture discharge area 50b.
 図9は、水分放出エリア50b上の仮想線Liを示す加湿ロータ50の平面図である。図9において、第1境界Bry1と第2境界Bry2とによって、加湿ロータ50は水分吸着エリア50aと水分放出エリア50bに分けられる。 FIG. 9 is a plan view of the humidification rotor 50 showing a virtual line Li on the moisture release area 50b. In FIG. 9, the humidification rotor 50 is divided into a moisture adsorption area 50a and a moisture release area 50b by the first boundary Bry1 and the second boundary Bry2.
 第1境界Bry1と周縁Cirとは第1交点Pi1で交差し、第2境界Bry2と周縁Cirとは第2交点Pi2で交差する。そして、仮想線Liは、第1交点Pi1と第2交点Pi2とを結ぶ直線である。 The first boundary Bry1 and the edge Cir intersect at the first intersection Pi1, and the second boundary Bry2 and the edge Cir intersect at the second intersection Pi2. The virtual line Li is a straight line connecting the first intersection Pi1 and the second intersection Pi2.
 図10Aは、伝熱管721の直管721aが仮想線Liと直交するように配置された加熱用熱交換器72、及びその下流側に位置する加湿ロータ50の概略斜視図である。図10Bは、図10Aの加熱用熱交換器72と加湿ロータ50とを平面的に描いた概略平面図である。 FIG. 10A is a schematic perspective view of the heat exchanger 72 for heating arranged so that the straight pipe 721a of the heat transfer pipe 721 is orthogonal to the imaginary line Li, and the humidification rotor 50 located on the downstream side thereof. FIG. 10B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 of FIG. 10A in a plan view.
 図10A及び図10Bにおいて、加熱用熱交換器72は、冷媒パスが流れる2つの冷媒パスを有しており、以下、一方を第1パス72a、他方を第2パス72bという。なお、冷媒パスは複数に限定されるものではなく、単一の冷媒パスであってもよい。 10A and 10B, the heat exchanger 72 for heating has two refrigerant paths through which the refrigerant path flows. Hereinafter, one is referred to as a first path 72a and the other is referred to as a second path 72b. Note that the refrigerant path is not limited to a plurality, and may be a single refrigerant path.
 第1パス72aおよび第2パス72bは、複数の伝熱管721の直管721aとU字管721bとによって冷媒流路が蛇行するように形成されている。加熱用熱交換器72の伝熱管721の直管721aは仮想線Liと直交するように配置されている。つまり、加熱用熱交換器72内の冷媒は、仮想線Liと直交するように流れる。また、直管721aは仮想線Liだけでなく加湿ロータ50の回転軸とも直交するように配置されている。なお、本実施形態において「直交」とは、厳格に90°を意味するものではなく、80°~100°の範囲をも許容するものである。 The first path 72a and the second path 72b are formed such that the refrigerant flow path meanders by the straight pipe 721a and the U-shaped pipe 721b of the plurality of heat transfer tubes 721. The straight tube 721a of the heat transfer tube 721 of the heat exchanger 72 for heating is disposed so as to be orthogonal to the virtual line Li. That is, the refrigerant in the heating heat exchanger 72 flows so as to be orthogonal to the virtual line Li. The straight pipe 721a is arranged so as to be orthogonal to not only the virtual line Li but also the rotation axis of the humidification rotor 50. In the present embodiment, “orthogonal” does not mean strictly 90 °, but also allows a range of 80 ° to 100 °.
 図10A及び図10Bに示すように、第1パス72aおよび第2パス72bそれぞれの入口は水分放出エリア50bにおける加湿ロータ50の回転方向下流側と対峙している。
また、第1パス72aおよび第2パス72bぞれぞれの出口は水分放出エリア50bにおける加湿ロータ50の回転方向上流側と対峙している。
As shown in FIGS. 10A and 10B, the respective inlets of the first pass 72a and the second pass 72b are opposed to the downstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
Moreover, the exit of each of the first path 72a and the second path 72b is opposed to the upstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
 この構成によって、水分放出エリア50bの回転方向における下流域側から高温空気となり、加熱用熱交換器72を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、加湿ロータ50の水分放出量の分布が改善され、効率的に加湿が行われる。 With this configuration, high-temperature air is generated from the downstream region side in the rotation direction of the moisture release area 50b, and the high-to-low temperature gradient of the high-temperature air that has passed through the heating heat exchanger 72 is opposed to the rotation direction. The distribution of the moisture release amount of the rotor 50 is improved, and humidification is performed efficiently.
 また、所定の条件下では、圧縮機31を出た過熱冷媒は温度低下するものの凝縮に入ると温度が変わらない。例えば、図13(蒸気圧縮式冷凍サイクルと冷媒状態を表示したp-h線図)を用いて説明すると、図13において、凝縮工程(点2から点3の区間)における熱交換の大半は加熱用熱交換器72でなされるが圧縮機31を出たところから凝縮が始まる。 In addition, under a predetermined condition, although the temperature of the superheated refrigerant that has exited the compressor 31 decreases, the temperature does not change when it enters condensation. For example, referring to FIG. 13 (ph diagram showing vapor compression refrigeration cycle and refrigerant state), in FIG. 13, most of the heat exchange in the condensation process (section from point 2 to point 3) is heated. Condensation begins when the compressor 31 exits the heat exchanger 72.
 図13の上段に示すように、冷媒は過熱蒸気から湿り蒸気、さらに過冷却液と変化して次の膨張工程(点3から点4の区間)に入る。過熱蒸気状態における冷媒温度は冷媒の凝縮温度よりも高い温度であり、加熱用熱交換器72の冷媒入口に至るまでの区間の一部を、水分放出エリア50bにおける加湿ロータ50を加熱するための加湿利用域として機能させることができる。 As shown in the upper part of FIG. 13, the refrigerant changes from superheated steam to wet steam and further to supercooled liquid and enters the next expansion step (section from point 3 to point 4). The refrigerant temperature in the superheated steam state is higher than the condensation temperature of the refrigerant, and a part of the section up to the refrigerant inlet of the heat exchanger 72 for heating is used to heat the humidification rotor 50 in the moisture discharge area 50b. It can function as a humidification area.
 つまり、温度分布としては、水分放出エリア50bの回転方向における下流域側に対しては過熱蒸気域の高い温度が利用され、水分放出エリア50bの回転方向における上流域側に対しては二相(湿り蒸気)域の中温が利用される。このように、冷媒の過熱蒸気域および二相域を有効に利用することができる。 That is, as the temperature distribution, a high temperature in the superheated steam region is used for the downstream region side in the rotation direction of the moisture release area 50b, and two phases ( Medium temperature in wet steam) area is used. In this way, the superheated steam region and the two-phase region of the refrigerant can be used effectively.
 (5)変形例
 (5-1)第1変形例
 上記実施形態では、「加湿ロータ50の水分放出量の平均化」という効果を狙って、高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となるような、冷媒の流し方を採用した。
(5) Modified Example (5-1) First Modified Example In the above embodiment, the temperature gradient from the higher to the lower temperature of the high-temperature air rotates with the aim of “averaging the amount of moisture released from the humidifying rotor 50”. The refrigerant flow method was adopted so as to face the direction.
 しかしながら、第1変形例では、第1実施形態とは異なる効果、具体的には、「水分放出エリア50bを経て水分吸着エリア50aに至った部分に早く吸着を開始させる」という効果を狙った、冷媒の流し方へ変更している。 However, the first modification aims at an effect different from that of the first embodiment, specifically, an effect that “adsorption is started early at a portion that reaches the moisture adsorption area 50a through the moisture release area 50b”. Changed to flow of refrigerant.
 図11Aは、第1実施形態の第1変形例における加熱用熱交換器72、及びその下流側に位置する加湿ロータ50の概略斜視図である。図11Bは、図11Aの加熱用熱交換器72と加湿ロータ50とを平面的に描いた概略平面図である。 FIG. 11A is a schematic perspective view of the heat exchanger 72 for heating and the humidification rotor 50 located on the downstream side in the first modification of the first embodiment. FIG. 11B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 in FIG. 11A in a planar manner.
 図11A及び図11Bにおいて、第1パス72aおよび第2パス72bぞれぞれの入口は水分放出エリア50bにおける加湿ロータ50の回転方向上流側と対峙している。また、第1パス72aおよび第2パス72bそれぞれの出口は水分放出エリア50bにおける加湿ロータ50の回転方向下流側と対峙している。つまり、第1変形例における加熱用熱交換器72は、図10Aの冷媒入口と冷媒出口とを入れ替えた構成である。 11A and 11B, the inlets of the first pass 72a and the second pass 72b are opposed to the upstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b. Moreover, the exit of each of the first pass 72a and the second pass 72b is opposed to the downstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b. That is, the heat exchanger 72 for heating in the first modification has a configuration in which the refrigerant inlet and the refrigerant outlet in FIG. 10A are interchanged.
 この構成によって、水分放出エリア50bの回転方向における上流域側から高温空気となり、加熱用熱交換器72を通過した高温空気の高い方から低い方の温度勾配が回転方向とが同じとなる。 This configuration results in high-temperature air from the upstream side in the rotation direction of the moisture discharge area 50b, and the high-to-low temperature gradient of the high-temperature air that has passed through the heating heat exchanger 72 is the same as the rotation direction.
 それゆえ、水分吸着エリア50aへ移行する際に水分放出エリア50bと水分吸着エリア50aとの温度差が比較的小さくなり、水分吸着エリア50aへ入った際に、比較的早く低温となり、その分だけ早く吸着を開始することができる。 Therefore, when moving to the moisture adsorption area 50a, the temperature difference between the moisture release area 50b and the moisture adsorption area 50a becomes relatively small, and when entering the moisture adsorption area 50a, the temperature is relatively quickly reduced. Adsorption can be started quickly.
 (5-2)第2変形例
 また、第2変形例では、冷媒の過熱域を利用する場合、冷媒の2相域を利用する場合に有利な構成を採用している。
(5-2) Second Modification Also, in the second modification, an advantageous configuration is employed when the refrigerant overheating region is used and when the refrigerant two-phase region is used.
 図12Aは、第1実施形態の第2変形例における加熱用熱交換器72と加湿ロータ50との概略斜視図である。また、図12Bは、図12Aの加熱用熱交換器72と加湿ロータ50とを平面的に描いた概略平面図である。 FIG. 12A is a schematic perspective view of the heat exchanger 72 for heating and the humidification rotor 50 in the second modification of the first embodiment. FIG. 12B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 in FIG. 12A in a planar manner.
 図12A及び図12Bに示すように、図12Aの第1パス72aを分割して、水分放出エリア50bの回転方向上流側寄りに位置する第1上流側パス72acと、水分放出エリア50bの回転方向下流側寄りに位置する第1下流側パス72adとを成している。 As shown in FIGS. 12A and 12B, the first path 72a in FIG. 12A is divided, and the first upstream path 72ac located closer to the upstream side in the rotation direction of the moisture release area 50b and the rotation direction of the moisture release area 50b. A first downstream path 72ad located closer to the downstream side is formed.
 同様に、図12Aの第2パス72bを分割して、水分放出エリア50bの回転方向上流側寄りに位置する第2上流側パス72bcと、水分放出エリア50bの回転方向下流側寄りに位置する第2下流側パス72bdとを成している。 Similarly, the second path 72b in FIG. 12A is divided into a second upstream path 72bc located closer to the upstream side in the rotation direction of the moisture release area 50b and a second path 72bc located closer to the downstream side in the rotation direction of the moisture release area 50b. 2 downstream path 72bd.
 そして、第1上流側パス72acおよび第2上流側パス72bcそれぞれの入口は、水分放出エリア50bの中央寄りに位置している。また、第1上流側パス72acおよび第2上流側パス72bcそれぞれの出口は、水分放出エリア50bの回転方向上流側寄りに位置している。 And the entrance of each of the first upstream path 72ac and the second upstream path 72bc is located near the center of the moisture release area 50b. In addition, the outlets of the first upstream path 72ac and the second upstream path 72bc are located closer to the upstream side in the rotation direction of the moisture discharge area 50b.
 また、第1下流側パス72adおよび第2下流側パス72bdそれぞれの入口は、水分放出エリア50bの中央寄りに位置している。また、第1下流側パス72adおよび第2下流側パス72bdそれぞれの出口は、水分放出エリア50bの回転方向下流側寄りに位置している。 Further, the respective inlets of the first downstream path 72ad and the second downstream path 72bd are located closer to the center of the moisture release area 50b. In addition, the outlets of the first downstream path 72ad and the second downstream path 72bd are located closer to the downstream side in the rotation direction of the moisture discharge area 50b.
 この構成によって、圧縮機31を出た過熱冷媒は温度低下するものの凝縮に入ると温度が変わらない。つまり、温度分布は、水分放出エリア50b中央が高い温度となり、回転方向上流側および下流側の双方に向かって降下していって平衡する。このように、冷媒の過熱域、2相域を有効に使用することができる。 With this configuration, although the temperature of the superheated refrigerant that has exited the compressor 31 decreases, the temperature does not change when it enters condensation. That is, the temperature distribution reaches a high temperature in the center of the moisture release area 50b, and falls toward both the upstream side and the downstream side in the rotation direction, and is balanced. Thus, the superheat zone and the two-phase zone of the refrigerant can be used effectively.
 (6)第1実施形態の特徴
 (6-1)
 空気調和機10の調湿ユニット100では、水分放出エリア50bの回転方向における下流域側から高温空気となるように流す場合、加熱用熱交換器72を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、加湿ロータ50の水分放出量の分布が改善され、効率的に加湿が行われる。
(6) Features of the first embodiment (6-1)
In the humidity control unit 100 of the air conditioner 10, when flowing from the downstream side in the rotation direction of the moisture release area 50 b so as to become high-temperature air, the high-temperature air that has passed through the heating heat exchanger 72 is changed from the higher one to the lower one. The temperature gradient is opposite to the rotation direction, the distribution of the moisture release amount of the humidification rotor 50 is improved, and humidification is performed efficiently.
 その結果、水分放出エリア50bの水分放出量の分布は、水分放出エリア50bが一様に加熱される場合に比べて、平準化される。 As a result, the distribution of the moisture release amount in the moisture release area 50b is leveled compared to the case where the moisture release area 50b is heated uniformly.
 一方、水分放出エリア50bの回転方向における上流域側から高温空気となるように流す場合、加熱用熱交換器72を通過した高温空気の高い方から低い方の温度勾配が回転方向とが同じとなり、水分吸着エリア50aへ移行する際に水分放出エリア50bと水分吸着エリア50aとの温度差が比較的小さいので、水分吸着エリア50aへ入った際に、比較的早く低温となり、その分だけ早く吸着を開始することができる。 On the other hand, when flowing so as to be high temperature air from the upstream side in the rotation direction of the moisture release area 50b, the temperature gradient from the higher to the lower temperature gradient of the high temperature air that has passed through the heat exchanger 72 for heating becomes the same as the rotation direction. When moving to the moisture adsorption area 50a, the temperature difference between the moisture release area 50b and the moisture adsorption area 50a is relatively small. Therefore, when entering the moisture adsorption area 50a, the temperature becomes relatively low and the adsorption is accelerated accordingly. Can start.
 その結果、「加湿ロータ50が冷却され難くなり水分の吸着性が低下する」というような悪影響を抑制することができる。 As a result, it is possible to suppress an adverse effect such as “the humidification rotor 50 becomes difficult to be cooled and moisture adsorption is reduced”.
 (6-2)
 調湿ユニット100では、水分放出エリア50bが、中心角が90°よりも大きい扇状あるいは半円状である。
(6-2)
In the humidity control unit 100, the moisture release area 50b is fan-shaped or semicircular with a central angle larger than 90 °.
 (6-3)
 調湿ユニット100では、パスそれぞれの入口は水分放出エリア50bにおける加湿ロータ50の回転方向下流側と対峙し、パスぞれぞれの出口は水分放出エリア50bにおける加湿ロータ50の回転方向上流側と対峙するので、水分放出エリア50bの回転方向における下流域側から高温空気となり、加熱用熱交換器72を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、加湿ロータ50の水分放出量が平均化され、効率的に加湿が行われる。
(6-3)
In the humidity control unit 100, the inlet of each pass faces the downstream side in the rotational direction of the humidification rotor 50 in the moisture release area 50b, and the exit of each pass is the upstream side in the rotational direction of the humidification rotor 50 in the moisture release area 50b. Since it opposes, it becomes a high temperature air from the downstream area side in the rotation direction of the moisture discharge area 50b, and the temperature gradient from the higher to the lower temperature of the high temperature air that has passed through the heating heat exchanger 72 is opposed to the rotation direction. The moisture release amount of the rotor 50 is averaged, and humidification is performed efficiently.
 (6-4)
 調湿ユニット100では、加熱用熱交換器72と水分放出エリア50bとの距離を20~30mmの範囲内に近づけることによって、加熱用熱交換器72の冷媒の流し方次第で変化する加熱用熱交換器72の温度分布をそのまま水分放出エリア50bに反映できるので、水分放出量の分布を冷媒の流し方でコントロールすることができる。
(6-4)
In the humidity control unit 100, the heating heat that changes depending on the flow of the refrigerant in the heating heat exchanger 72 by bringing the distance between the heating heat exchanger 72 and the moisture release area 50b closer to the range of 20 to 30 mm. Since the temperature distribution of the exchanger 72 can be reflected as it is in the moisture discharge area 50b, the distribution of the moisture release amount can be controlled by the flow of the refrigerant.
 <第2実施形態>
 第1実施形態では、加熱用熱交換器72内の冷媒が仮想線Liと平行に流れるタイプの調湿ユニット100について説明した。仮想線Liは、水分放出エリア50bの円弧状の外周縁の中央点における接線と平行であることに鑑みれば、加熱用熱交換器72内の伝熱管721群の直管721aを流れる冷媒が、円弧状の外周縁の中央点における接線と直交している、と言える。
Second Embodiment
1st Embodiment demonstrated the humidity control unit 100 of the type in which the refrigerant | coolant in the heat exchanger 72 for a heating flows in parallel with the virtual line Li. In view of the fact that the imaginary line Li is parallel to the tangent at the center point of the arc-shaped outer periphery of the moisture release area 50b, the refrigerant flowing through the straight pipe 721a of the heat transfer pipe 721 group in the heating heat exchanger 72 is: It can be said that it is orthogonal to the tangent at the center point of the arc-shaped outer periphery.
 出願人の実験によれば、伝熱管721群の直管721aを流れる冷媒が、水分放出エリア50bの円弧状の外周縁の任意の一点における接線と直交する方向に流れるタイプも、第1実施形態と同等以上の効率で加湿することができることが確認されている。また、直管721aは接線だけでなく加湿ロータ50の回転軸とも直交するように配置されている。なお、本実施形態において「直交」とは、厳格に90°を意味するものではなく、80°~100°の範囲をも許容するものである。 According to the applicant's experiment, the type in which the refrigerant flowing through the straight pipe 721a of the heat transfer pipe 721 group flows in a direction perpendicular to the tangent at an arbitrary point of the arc-shaped outer periphery of the moisture discharge area 50b is also the first embodiment. It has been confirmed that it can be humidified with an efficiency equal to or higher than that. Further, the straight pipe 721a is arranged so as to be orthogonal to not only the tangent line but also the rotation axis of the humidification rotor 50. In the present embodiment, “orthogonal” does not mean strictly 90 °, but also allows a range of 80 ° to 100 °.
 以下、これを第2実施形態に係る調湿ユニット100として説明する。第2実施形態は、第1実施形態における加熱用熱交換器72の姿勢を変更したものであり、それ以外は第1実施形態の調湿ユニットと同じである。 Hereinafter, this will be described as the humidity control unit 100 according to the second embodiment. 2nd Embodiment changes the attitude | position of the heat exchanger 72 for a heating in 1st Embodiment, and other than that is the same as the humidity control unit of 1st Embodiment.
 図14Aは、伝熱管721の直管721aが水分放出エリア50bの円弧状の外周縁の任意の一点における接線と直交するように配置された加熱用熱交換器72、及び空気流れにおける加熱用熱交換器72の下流側に位置する加湿ロータ50の概略斜視図である。図14Bは、図14Aの加熱用熱交換器72と加湿ロータ50とを平面的に描いた概略平面図である。 FIG. 14A shows a heat exchanger 72 for heating in which the straight pipe 721a of the heat transfer pipe 721 is arranged so as to be orthogonal to a tangent at an arbitrary point on the arc-shaped outer periphery of the moisture discharge area 50b, and heat for heating in the air flow 4 is a schematic perspective view of a humidification rotor 50 located on the downstream side of the exchanger 72. FIG. FIG. 14B is a schematic plan view illustrating the heating heat exchanger 72 and the humidification rotor 50 of FIG. 14A in a plan view.
 図14A及び図14Bにおいて、加熱用熱交換器72は、冷媒パスが流れる2つの冷媒パスを有しており、以下、一方を第1パス72a、他方を第2パス72bという。なお、冷媒パスは複数に限定されるものではなく、単一の冷媒パスであってもよい。 14A and 14B, the heat exchanger 72 for heating has two refrigerant paths through which the refrigerant path flows. Hereinafter, one is referred to as a first path 72a and the other is referred to as a second path 72b. Note that the refrigerant path is not limited to a plurality, and may be a single refrigerant path.
 第1パス72aおよび第2パス72bは、複数の伝熱管721の直管721aとU字管721bとによって冷媒流路が蛇行するように形成されている。図14Bに示すように、加熱用熱交換器72の伝熱管721の直管721aは接線Ltと直交するように配置されている。つまり、加熱用熱交換器72内の冷媒は、接線Ltと直交するように流れる。 The first path 72a and the second path 72b are formed such that the refrigerant flow path meanders by the straight pipe 721a and the U-shaped pipe 721b of the plurality of heat transfer tubes 721. As shown in FIG. 14B, the straight tube 721a of the heat transfer tube 721 of the heat exchanger 72 for heating is disposed so as to be orthogonal to the tangent line Lt. That is, the refrigerant in the heating heat exchanger 72 flows so as to be orthogonal to the tangent Lt.
 ここで、接線Ltは、水分放出エリア50bの円弧状の外周縁の任意の一点における接線であり、本実施形態では、水分放出エリア50bの円弧状の外周縁の中央よりも加湿ロータ50の回転方向下流側に接線Ltの接点Pt(図14b参照)を設定している。 Here, the tangent Lt is a tangent at an arbitrary point on the arc-shaped outer periphery of the moisture discharge area 50b. In the present embodiment, the rotation of the humidifying rotor 50 is greater than the center of the arc-shaped outer periphery of the moisture discharge area 50b. A contact point Pt (see FIG. 14B) of the tangent line Lt is set on the downstream side in the direction.
 図14A及び図14Bに示すように、第1パス72aおよび第2パス72bそれぞれの入口は水分放出エリア50bにおける加湿ロータ50の回転方向下流側と対峙している。
また、第1パス72aおよび第2パス72bぞれぞれの出口は水分放出エリア50bにおける加湿ロータ50の回転方向上流側と対峙している。
As shown in FIGS. 14A and 14B, the respective inlets of the first pass 72a and the second pass 72b are opposed to the downstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
Moreover, the exit of each of the first path 72a and the second path 72b is opposed to the upstream side in the rotation direction of the humidification rotor 50 in the moisture discharge area 50b.
 この構成によって、水分放出エリア50bの回転方向における下流域側から高温空気となり、加熱用熱交換器72を通過した高温空気の高い方から低い方の温度勾配が回転方向と対向する態様となり、加湿ロータ50の水分放出量の分布が改善され、効率的に加湿が行われる。 With this configuration, high-temperature air is generated from the downstream region side in the rotation direction of the moisture release area 50b, and the high-to-low temperature gradient of the high-temperature air that has passed through the heating heat exchanger 72 is opposed to the rotation direction. The distribution of the moisture release amount of the rotor 50 is improved, and humidification is performed efficiently.
 特に、図14Bに示すように第2境界Bry2と直管721aとの成す角度θが0°~20°の範囲内の場合、水分放出エリア50bの第2境界Bry2付近で温度が均される(中心から半径方向に温度が均一化する)。これによって、水分吸着エリア50aにおける効率を向上させることもできる。 In particular, as shown in FIG. 14B, when the angle θ formed by the second boundary Bry2 and the straight pipe 721a is in the range of 0 ° to 20 °, the temperature is equalized in the vicinity of the second boundary Bry2 of the moisture release area 50b ( The temperature becomes uniform in the radial direction from the center). Thereby, the efficiency in the moisture adsorption area 50a can also be improved.
 本発明に係る調湿ユニット100は室外ユニット30とは分離された独立したものであるが、室外ユニット30との一体型としても有用である。 The humidity control unit 100 according to the present invention is an independent unit separated from the outdoor unit 30, but is also useful as an integral type with the outdoor unit 30.
10     空気調和機
50     加湿ロータ(吸着部材)
50a    水分吸着エリア
50b    水分放出エリア
72     加熱用熱交換器
72a    第1パス
72b    第2パス
72ac   第1上流側パス
72bc   第2上流側パス
72ad   第1下流側パス
72bd   第2下流側パス
100    調湿ユニット
10 Air conditioner 50 Humidification rotor (adsorption member)
50a Moisture adsorption area 50b Moisture release area 72 Heat exchanger 72a Heating path 72a First path 72b Second path 72ac First upstream path 72bc Second upstream path 72ad First downstream path 72bd Second downstream path 100 Humidity control unit
特開2013-228182号公報JP 2013-228182 A

Claims (9)

  1.  回転可能に保持され、空気中の水分を吸着する水分吸着エリア(50a)と、加熱されることによって水分を放出する水分放出エリア(50b)とを有する、吸着部材(50)と、
     前記水分放出エリア(50b)と対峙する伝熱管群を有し、前記伝熱管群を流れる冷媒によって前記水分放出エリア(50b)を加熱するための高温空気を生成する熱交換器(72)と、
    を備え、
     前記伝熱管群の直管部分が、前記吸着部材(50)のうち前記水分放出エリア(50b)の円弧状の外周縁の任意の一点における接線と直交する方向に延びる、
    調湿ユニット(100)。
    An adsorbing member (50) having a moisture adsorption area (50a) that is rotatably held and adsorbs moisture in the air, and a moisture release area (50b) that releases moisture when heated;
    A heat exchanger (72) having a heat transfer tube group facing the water discharge area (50b), and generating high-temperature air for heating the water discharge area (50b) by a refrigerant flowing through the heat transfer tube group;
    With
    The straight tube portion of the heat transfer tube group extends in a direction orthogonal to a tangent at an arbitrary point of the arc-shaped outer periphery of the moisture release area (50b) of the adsorption member (50).
    Humidity control unit (100).
  2.  前記伝熱管群の前記直管部分が、前記水分吸着エリア(50a)と前記水分放出エリア(50b)とを分ける境界と、前記水分放出エリア(50b)の前記外周縁と、の交点を結ぶ仮想線に対して直交する方向に延びる、
    請求項1に係る調湿ユニット(100)。
    A virtual section connecting the boundary between the straight pipe portion of the heat transfer tube group and the moisture adsorption area (50a) and the moisture release area (50b) and the outer peripheral edge of the moisture release area (50b). Extending in a direction perpendicular to the line,
    A humidity control unit (100) according to claim 1.
  3.  前記水分放出エリア(50b)における前記吸着部材(50)の回転方向下流側で前記伝熱管群の前記直管部分が径方向に延びる、
    請求項1又は請求項2に記載の調湿ユニット(100)。
    The straight pipe portion of the heat transfer tube group extends in the radial direction on the downstream side in the rotation direction of the adsorption member (50) in the moisture release area (50b).
    The humidity control unit (100) according to claim 1 or 2.
  4.  前記水分放出エリア(50b)における前記吸着部材(50)の回転方向下流側に前記伝熱管群への冷媒の入口がある、
    請求項1から請求項3のいずれか1項に記載の調湿ユニット(100)。
    There is a refrigerant inlet to the heat transfer tube group on the downstream side in the rotation direction of the adsorption member (50) in the moisture release area (50b).
    The humidity control unit (100) according to any one of claims 1 to 3.
  5.  前記水分吸着エリア(50a)と前記水分放出エリア(50b)とを分ける境界と、前記水分放出エリア(50b)の周縁とによって形成される前記水分放出エリア(50b)の中心角が90°よりも大きい、
    請求項1から請求項4のいずれか1項に記載の調湿ユニット(100)。
    The central angle of the moisture release area (50b) formed by the boundary separating the moisture adsorption area (50a) and the moisture release area (50b) and the peripheral edge of the moisture release area (50b) is more than 90 °. large,
    The humidity control unit (100) according to any one of claims 1 to 4.
  6.  前記熱交換器(72)は、前記伝熱管群で構成された冷媒が流れる複数のパスを有し、
     前記パスそれぞれの入口は、前記水分放出エリア(50b)における前記吸着部材(50)の回転方向下流側と対峙し、
     前記パスぞれぞれの出口は、前記水分放出エリア(50b)における前記吸着部材(50)の回転方向上流側と対峙する、
    請求項1から請求項5のいずれか1項に記載の調湿ユニット(100)。
    The heat exchanger (72) has a plurality of paths through which a refrigerant composed of the heat transfer tube group flows,
    The entrance of each of the paths faces the downstream side in the rotation direction of the adsorption member (50) in the moisture release area (50b),
    The exit of each path faces the upstream side in the rotation direction of the adsorption member (50) in the moisture release area (50b).
    The humidity control unit (100) according to any one of claims 1 to 5.
  7.  前記熱交換器(72)と前記水分放出エリア(50b)との最短距離が20~30mmの範囲内である、
    請求項1から請求項6のいずれか1項に記載の調湿ユニット(100)。
    The shortest distance between the heat exchanger (72) and the moisture release area (50b) is within a range of 20 to 30 mm.
    The humidity control unit (100) according to any one of claims 1 to 6.
  8.  前記熱交換器(72)は、圧縮工程を経て過熱蒸気となった冷媒が前記熱交換器(72)の冷媒入口に至るまでの区間の一部を、前記熱交換器(72)の有効熱交換領域として機能させる、
    請求項1から請求項7のいずれか1項に記載の調湿ユニット(100)。
    In the heat exchanger (72), a part of a section from the refrigerant that has become superheated steam through the compression process to the refrigerant inlet of the heat exchanger (72) is used as effective heat of the heat exchanger (72). Function as an exchange area,
    The humidity control unit (100) according to any one of claims 1 to 7.
  9.  請求項1から請求項8のいずれか1項に記載の調湿ユニットを備える、
    空気調和機。
    The humidity control unit according to any one of claims 1 to 8,
    Air conditioner.
PCT/JP2018/014703 2017-04-07 2018-04-06 Humidity control unit, and air conditioner using same WO2018186485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076893 2017-04-07
JP2017076893A JP2020098036A (en) 2017-04-07 2017-04-07 Humidity conditioning unit and air conditioner using the same

Publications (1)

Publication Number Publication Date
WO2018186485A1 true WO2018186485A1 (en) 2018-10-11

Family

ID=63712535

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/014404 WO2018186439A1 (en) 2017-04-07 2018-04-04 Humidity control unit, and air conditioner using same
PCT/JP2018/014703 WO2018186485A1 (en) 2017-04-07 2018-04-06 Humidity control unit, and air conditioner using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014404 WO2018186439A1 (en) 2017-04-07 2018-04-04 Humidity control unit, and air conditioner using same

Country Status (2)

Country Link
JP (1) JP2020098036A (en)
WO (2) WO2018186439A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388386B (en) * 2017-08-25 2023-07-04 广东美的制冷设备有限公司 Air conditioner and indoor unit thereof
CN111578373B (en) * 2020-05-08 2022-09-06 青岛海尔空调器有限总公司 Energy-saving air conditioning system with independent temperature and humidity control function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979735U (en) * 1982-11-19 1984-05-30 三洋電機株式会社 Dehumidifier for cooling equipment
JP2001066015A (en) * 1999-08-31 2001-03-16 Ebara Corp Heat pump and dehumidifier
JP2002282641A (en) * 2001-03-29 2002-10-02 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2006000713A (en) * 2004-06-15 2006-01-05 Mitsubishi Electric Corp Dehumidifying drier
JP2008207046A (en) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd Hybrid dehumidifying apparatus
JP2012050928A (en) * 2010-09-01 2012-03-15 Mitsubishi Plastics Inc Heat exchanger for desiccant rotor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228182A (en) * 2012-03-30 2013-11-07 Daikin Industries Ltd Air conditioner
JP6023982B2 (en) * 2012-12-20 2016-11-09 パナソニックIpマネジメント株式会社 Dehumidifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979735U (en) * 1982-11-19 1984-05-30 三洋電機株式会社 Dehumidifier for cooling equipment
JP2001066015A (en) * 1999-08-31 2001-03-16 Ebara Corp Heat pump and dehumidifier
JP2002282641A (en) * 2001-03-29 2002-10-02 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2006000713A (en) * 2004-06-15 2006-01-05 Mitsubishi Electric Corp Dehumidifying drier
JP2008207046A (en) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd Hybrid dehumidifying apparatus
JP2012050928A (en) * 2010-09-01 2012-03-15 Mitsubishi Plastics Inc Heat exchanger for desiccant rotor

Also Published As

Publication number Publication date
JP2020098036A (en) 2020-06-25
WO2018186439A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP6732037B2 (en) Indoor unit and air conditioner
US8322408B2 (en) Heat exchanger and air conditioner
CN101688675B (en) Humidity adjusting device
US7895856B2 (en) Humidity controller
JP2014025635A (en) Air conditioner
WO2020129179A1 (en) Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
WO2018186485A1 (en) Humidity control unit, and air conditioner using same
JP2016200338A (en) Air conditioner
WO2018186438A1 (en) Humidity control unit, and air conditioner using same
JPWO2018131121A1 (en) Dehumidifier
JPWO2017187570A1 (en) Air conditioner
EP3594591B1 (en) Heat exchanger and air conditioner
JP2007327684A (en) Desiccant air conditioner
GB2546202A (en) Indoor unit for air conditioning device
WO2018186411A1 (en) Humidity control unit, and air conditioner using same
WO2022201514A1 (en) Air conditioning device
JP7126611B2 (en) air conditioner
WO2020008799A1 (en) Humidification unit
JPWO2018003103A1 (en) Air conditioner, air conditioner and refrigeration cycle apparatus
WO2018186337A1 (en) Humidity control unit
JP7378574B2 (en) Indoor unit and air conditioner
JP6925571B1 (en) Blower, indoor unit and air conditioner
WO2020136797A1 (en) Outdoor unit and refrigeration cycle device
JP2024048908A (en) Air Conditioning Equipment
JP2001330309A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP