WO2022201514A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2022201514A1
WO2022201514A1 PCT/JP2021/012941 JP2021012941W WO2022201514A1 WO 2022201514 A1 WO2022201514 A1 WO 2022201514A1 JP 2021012941 W JP2021012941 W JP 2021012941W WO 2022201514 A1 WO2022201514 A1 WO 2022201514A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
refrigerant
heat transfer
chamber
Prior art date
Application number
PCT/JP2021/012941
Other languages
French (fr)
Japanese (ja)
Inventor
皓亮 宮脇
智哉 福井
健一 迫田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21933119.6A priority Critical patent/EP4317811A4/en
Priority to US18/283,214 priority patent/US20240175586A1/en
Priority to CN202180096107.9A priority patent/CN117043519A/en
Priority to PCT/JP2021/012941 priority patent/WO2022201514A1/en
Priority to JP2023508389A priority patent/JP7442731B2/en
Publication of WO2022201514A1 publication Critical patent/WO2022201514A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0325Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05341Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications

Definitions

  • the present disclosure relates to an air conditioner equipped with a heat exchanger that functions both as a condenser and as an evaporator.
  • Patent Document 1 discloses a heat exchanger functioning as a condenser in an air conditioner, in which both ends of a plurality of flat tubes are connected to a pair of horizontally extending headers, and the inside of the headers is partitioned by a partition plate. A heat exchanger is shown in which the refrigerant flows meanderingly through flat tubes.
  • Patent Document 1 the number of flat tubes from the inlet to the outlet is gradually reduced, and the flow channel cross-sectional area of the heat exchanger downstream of the refrigerant flow can be made smaller than the flow channel cross-sectional area of the heat exchanger upstream of the refrigerant flow. Proposed. As a result, the flow velocity of the refrigerant on the downstream side is increased, suppressing a decrease in heat transfer coefficient and maintaining high heat exchange performance.
  • the heat exchanger that functions as a condenser also functions as an evaporator when the operation switches.
  • a heat exchanger using flat tubes as in Patent Document 1 is suitable for reducing the amount of refrigerant, ie, so-called refrigerant saving.
  • the heat exchanger of Patent Document 1 functions as an evaporator, the cross-sectional area of the flow path on the side where the refrigerant flows is smaller than the cross-sectional area of the flow path on the side where the refrigerant flows out.
  • Refrigerant pressure loss may increase. When the refrigerant pressure loss increases, the saturation temperature of the refrigerant decreases and the air conditioning performance deteriorates.
  • an object of the present disclosure is to realize an air conditioner equipped with a heat exchanger capable of achieving both refrigerant saving and high performance.
  • the air conditioner of the present disclosure is A heat exchanger in which a compressor, a condenser, a decompression device, and an evaporator are connected by piping to circulate refrigerant, and the function is switched between the evaporator and the condenser by switching the direction of refrigerant flow; and a fan that generates an airflow so that is sent to the heat exchanger,
  • the heat exchanger is A plurality of first heat transfer tubes and a first heat transfer tube extending in the horizontal direction and partitioned into a plurality of chambers including a first chamber and a second chamber, to which one end of the plurality of first heat transfer tubes is connected a first heat exchanger having one header and a second header extending horizontally to which the other ends of the plurality of first heat transfer tubes are connected; a plurality of second heat transfer tubes; a third header extending horizontally to which one ends of the plurality of second heat transfer tubes are connected; and a horizontally extending other end of the plurality of second heat transfer tubes.
  • a second heat exchanger having a connected fourth header; a connection pipe that connects one of the first header and the second header of the first heat exchanger and the third header of the second heat exchanger; with In the operation in which the heat exchanger functions as the evaporator, the refrigerant to be evaporated flows from the pipe into the first chamber of the first header, flows from the first chamber to the second header, The plurality of first heat transfer pipes are connected so as to flow from the second header to the second chamber of the first header, and the refrigerant that has passed through the first heat exchanger passes through the connection pipe to the second heat exchange pipe.
  • the plurality of second heat transfer tubes are connected so that the refrigerant flows from the third header to the fourth header after flowing into the third header of the vessel, and the refrigerant that has passed through the second heat exchanger is compressed into the compression
  • the pipe is connected so as to be sucked into the machine, In the operation in which the heat exchanger functions as the condenser, the refrigerant to be condensed passes through the second heat exchanger from the pipe, and then passes through the connection pipe to the first header of the first heat exchanger.
  • the piping is connected so that the refrigerant that flows into one of the plurality of chambers or the second header and has passed through the first heat exchanger flows out of the first chamber of the first header;
  • the length of the plurality of first heat transfer tubes is longer than the length of the plurality of second heat transfer tubes.
  • the pressure loss is reduced in the operation in which the first heat exchanger and the second heat exchanger function as evaporators, and the first heat exchanger and the second heat exchanger are In the operation of functioning as a condenser, the refrigerant density is reduced, and both high performance and refrigerant saving can be achieved.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner according to Embodiment 1.
  • FIG. 2 is a schematic diagram of an indoor heat exchanger provided in the air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing an air conditioner having an indoor heat exchanger according to Embodiment 1.
  • FIG. 4 is a diagram showing the relationship between the evaporator performance of the indoor heat exchanger according to Embodiment 1 and the heat transfer tube length ratio.
  • FIG. 1 is a schematic diagram showing an air conditioner having an indoor heat exchanger according to Embodiment 1.
  • FIG. 4 is a diagram showing the relationship between the amount of refrigerant in the indoor heat exchanger according to Embodiment 1 and the length ratio of heat transfer tubes.
  • FIG. 11 is a schematic diagram for explaining the relationship between the indoor fan of the indoor unit according to Embodiment 3 and the wind speed; 14. It is a figure which shows the relationship between the position of the rotating shaft direction of the indoor fan in FIG. 14, and wind speed, and the relationship between the position of the rotating shaft of the indoor fan in the circumferential direction, and wind speed.
  • FIG. 10 is a schematic diagram showing a refrigerant channel configuration of a heat exchanger according to Embodiment 3
  • FIG. 11 is a characteristic diagram showing an improvement effect on the coolant channel configuration according to Embodiment 3
  • FIG. 11 is a perspective view of an indoor unit according to Embodiment 4
  • FIG. 19 is a schematic diagram of the BB cross section of the indoor unit of FIG. 18;
  • FIG. 10 is a schematic diagram showing a refrigerant channel configuration of a heat exchanger according to Embodiment 3
  • FIG. 11 is a characteristic diagram showing an improvement effect on the coolant channel configuration according to Embodiment 3
  • FIG. 20 is a schematic diagram showing the wind speed distribution of the airflow flowing through the indoor unit of FIG. 19;
  • FIG. 11 is a schematic diagram showing an outline of a cross section of an indoor unit according to Embodiment 5;
  • FIG. 11 is a cross-sectional view schematically showing an AA cross section of an indoor unit 202 according to Embodiment 5;
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner 200 according to Embodiment 1.
  • the air conditioner 200 is a heat pump device that includes a circuit in which a refrigerant circulates and transfers heat by means of a refrigeration cycle in which the refrigerant compresses, condenses, expands, and evaporates in the circuit.
  • a compressor, a condenser, a decompression device such as a throttle device, and an evaporator are connected by pipes to circulate the refrigerant.
  • an air conditioner 200 according to Embodiment 1 has an outdoor unit 201 and an indoor unit 202 .
  • the air conditioner 200 performs cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the outdoor unit 201 is provided with an outdoor blower 13a, a compressor 14, a four-way valve 15, an outdoor heat exchanger 16, and a throttle device 17.
  • the indoor unit 202 includes an indoor heat exchanger 10 including a first heat exchanger 21 and a second heat exchanger 22, and an indoor fan 13b.
  • the indoor heat exchanger 10 is a heat exchanger that exchanges heat between indoor air and refrigerant.
  • the indoor blower 13 b is a blower that generates an airflow so that indoor air is sent to the indoor heat exchanger 10 .
  • the outdoor unit 201 is an example of a heat source side heat exchanger.
  • the indoor unit 202 is an example of a user-side heat exchanger.
  • the four-way valve 15 and the outdoor heat exchanger 16 are connected by a pipe 11a.
  • the outdoor heat exchanger 16 and the expansion device 17 are connected by a pipe 11b.
  • the expansion device 17 and the first heat exchanger 21 of the indoor heat exchanger 10 are connected by a pipe 11c.
  • the expansion device 17 is a decompression device that reduces the pressure after passage of the refrigerant from the pressure before passage by reducing the cross-sectional area through which the refrigerant passes.
  • the second heat exchanger 22 of the indoor heat exchanger 10 and the four-way valve 15 are connected by a pipe 11d.
  • Refrigerant flows through the compressor 14, the four-way valve 15, the outdoor heat exchanger 16, the expansion device 17, and the indoor heat exchanger 10, thereby forming a refrigeration cycle.
  • the four-way valve 15 is a switching valve that switches the flow direction of the refrigerant discharged from the compressor 14, and the flow direction of the refrigerant is directed to the outdoor heat exchanger 16 through the pipe 11a and the indoor heat exchange through the pipe 11d. The flow is switched to either one of the flows toward the vessel 10. Switching between the cooling operation and the heating operation of the air conditioner 200 is performed by switching the direction of the refrigerant flow through the four-way valve 15 .
  • this switching valve can also be configured by combining other valves, such as a combination of a plurality of two-way valves, piping, and the like.
  • the indoor heat exchanger 10 functions as an evaporator
  • the outdoor heat exchanger 16 functions as a condenser. acts as an evaporator.
  • the air conditioner 200 includes a heat exchanger whose function is switched between an evaporator and a condenser when the refrigerant flows in the opposite direction.
  • FIG. 2 is a schematic diagram of the indoor heat exchanger 10 provided in the air conditioner 200 according to Embodiment 1.
  • the indoor heat exchanger 10 includes a first heat exchanger 21, a second heat exchanger 22, and a connection pipe 12 that connects the first heat exchanger 21 and the second heat exchanger 22. , is composed of
  • the first heat exchanger 21 has a plurality of first heat transfer tubes 212, a plurality of first fins 211, a first header 213, and a second header 214.
  • the second heat exchanger 22 also has a plurality of second heat transfer tubes 222 , a plurality of second fins 221 , a third header 223 and a fourth header 224 .
  • the first heat exchanger 21 and the second heat exchanger 22 are connected by a connecting pipe 12 .
  • the first heat transfer tube 212 and the second heat transfer tube 222 are heat transfer tubes through which the refrigerant passes and exchange heat with the surrounding air outside.
  • Each of the first heat transfer tube 212 and the second heat transfer tube 222 is arranged with a gap from the adjacent heat transfer tube, and air passes through the gap.
  • first header 213, the second header 214, the third header 223, and the fourth header 224 distribute the refrigerant to a plurality of heat transfer tubes such as the plurality of first heat transfer tubes 212 or the plurality of second heat transfer tubes 222, or distribute the refrigerant to a plurality of heat transfer tubes.
  • collect refrigerant from the heat transfer tubes of Refrigerant flows into or out of either the first header 213 or the second header 214 of the first heat exchanger 21 or the third header 223 or the fourth header 224 of the second heat exchanger 22. Plumbing is connected.
  • connection pipe 12 connects the first heat exchanger 21 and the second heat exchanger 22 in series. That is, the refrigerant that has passed through either one of the first heat exchanger 21 and the second heat exchanger 22 flows into the other through the connecting pipe 12 .
  • both the first heat exchanger 21 and the second heat exchanger 22 function as evaporators
  • refrigerant containing a liquid phase flows into the second heat exchanger 22 through the first heat exchanger 21 and the connecting pipe 12.
  • both the first heat exchanger 21 and the second heat exchanger 22 function as condensers
  • refrigerant containing a gas phase flows into the first heat exchanger 21 through the second heat exchanger 22 and the connecting pipe 12. do.
  • the header connected to the pipes so that the refrigerant containing the liquid phase flows into the first heat exchanger 21 is arranged to flow into the first header 213 and the second heat exchanger 22.
  • a third header 223 is a header to which the connection pipe 12 is connected.
  • the refrigerant flows into the second heat exchanger 22 from the connecting pipe 12 connected to the second header 214 of the first heat exchanger 21, and the refrigerant flows from the fourth header 224 of the second heat exchanger 22. is configured to flow out to the outside, but it is not necessarily limited to this configuration.
  • Refrigerant may flow into the second heat exchanger 22 from the connecting pipe 12 connected to the first header 213 of the first heat exchanger 21, and may flow outside from the third header 223 of the second heat exchanger 22.
  • a configuration in which the refrigerant flows out may be adopted.
  • the multiple first heat transfer tubes 212 of the first heat exchanger 21 are flat tubes, and are alternately stacked with the multiple first fins 211 .
  • the multiple first fins 211 are, for example, corrugated fins.
  • the flattened tube has a flattened shape with one longitudinal section perpendicular to its extending direction.
  • An air conditioner in which a high-pressure refrigerant flows generally uses a multi-hole pipe in which the internal flow path is divided into a plurality of pieces in the longitudinal direction.
  • a corrugated fin is formed by corrugating a metal sheet with good thermal conductivity such as aluminum.
  • the first fins 211 and the second fins 221 increase the heat exchange area of the first heat exchanger 21 to improve heat exchange between the air passing around the flat tubes and the heat transfer tubes.
  • the plurality of first heat transfer tubes 212 are arranged in parallel in the longitudinal direction and spaced apart in the widthwise direction, and the corrugated tops of the corrugated fins are joined to the surfaces of the flattened
  • the first header 213 and the second header 214 of the first heat exchanger 21 extend horizontally.
  • One ends of the plurality of first heat transfer tubes 212 are connected to the first header 213
  • the other ends of the plurality of first heat transfer tubes 212 are connected to the second header 214 .
  • the first header 213 and the second header 214 have a tubular structure in which the internal flow channel cross-sectional area is larger than the internal flow channel cross-sectional area of the first heat transfer tube 212 .
  • Each of the plurality of first heat transfer tubes 212 is a tube extending in the vertical direction, and they are horizontally spaced and arranged side by side.
  • the first heat exchanger 21 and the second heat exchanger 22 are not in a windward-downward relationship with respect to the air blown from the indoor fan 13b or the like, that is, they are shifted from each other when viewed from the fan or the windward side of the air duct. are placed in the same position.
  • one of the first header 213 and the second header 214 is arranged adjacent to the one of the third header 223 and the fourth header 224 so that the first header 213 and the second header 214 are separated.
  • the other is arranged far away from the other of the third header 223 and the fourth header 224 .
  • the multiple second heat transfer tubes 222 of the second heat exchanger 22 are flat tubes, and are alternately stacked with the multiple second fins 221 .
  • the multiple second fins 221 are, for example, corrugated fins. Like the first fins 211 , the second fins 221 expand the heat exchange area of the second heat exchanger 22 . Either or both of the first heat exchanger 21 and the second heat exchanger 22 may use plate fins or the like instead of corrugated fins.
  • the third header 223 and fourth header 224 of the second heat exchanger 22 extend horizontally. One ends of the plurality of second heat transfer tubes 222 are connected to the third header 223 , and the other ends of the plurality of second heat transfer tubes 222 are connected to the fourth header 224 .
  • the third header 223 and the fourth header 224 have a tubular structure in which the inner cross-sectional area of the flow path is larger than the cross-sectional area of the inner flow path of the second heat transfer tube 222 .
  • the second heat exchanger 22 has a structure similar to that of the first heat exchanger 21, but differs in the length of the heat transfer tubes, the inside of the header, etc., as will be described later.
  • Each of the plurality of second heat transfer tubes 222 is a tube extending in the vertical direction, and they are arranged side by side at intervals in the horizontal direction.
  • the plurality of first heat transfer tubes 212 and the plurality of second heat transfer tubes 222 are shown as being on a plane, but the first heat transfer tubes 212 and the second heat transfer tubes 222 are configured to extend in the vertical direction. is not limited to At least one of the first heat transfer tube 212 and the second heat transfer tube 222 may be configured to extend obliquely or extend in directions having an angle with each other.
  • the space inside the first header 213 is partitioned into a plurality of rooms including a first room 213a and a second room 213b by the partition member 4.
  • the space partitioned by the partition member 4 is called a room, and when the rooms partitioned by each header are individually called, they will be described as the first room, the second room, and the like.
  • the first header 213 is partitioned into three chambers from a first chamber 213a to a third chamber 213c.
  • the space inside the second header 214 is partitioned into a plurality of chambers from the first chamber 214a to the third chamber 214c by the partition member 4 in the illustrated example.
  • the space inside the third header 223 is partitioned by the partition member 4 into a first chamber 223a and a second chamber 223b.
  • the fourth header 224 is partitioned by the partition member 4 into a first chamber 224a and a second chamber 224b.
  • the interior spaces of some headers may be configured as a single room without being partitioned.
  • the number of rooms divided between the first header 213 and the second header 214 may be different, and the number of rooms divided between the third header 223 and the fourth header 224 may be different.
  • connection pipe 12 connects either the first header 213 or the second header 214 of the first heat exchanger 21 and the third header 223 of the second heat exchanger 22 .
  • the connecting pipe 12 connects the fourth chamber 213 d of the first header 213 and the first chamber 223 a of the third header 223 .
  • the fourth chamber 213d of the first header 213 and the first chamber 223a of the third header 223 to which the connection pipe 12 is connected are arranged horizontally in the first header 213 and the third header 223, respectively. at the same end. In this way, if the connecting pipes 12 are configured to connect the chambers of the headers at the ends on the same side, the length of the connecting pipes 12 can be shortened.
  • connection pipe 12 can be shortened, but the connection pipe 12 or the pipes 11c and 11d may be connected to the rooms at the opposite ends in the horizontal direction. Also, the connection pipe 12 may be connected to any one of the plurality of rooms of the third header 223 .
  • the refrigerant to be evaporated flows into the first chamber 213a of the first header 213 of the first heat exchanger 21 through the pipe 11c. Then, the refrigerant flows into the first chamber 214a of the second header 214 from the first heat transfer pipes 212 connected to the first chamber 213a, changes its flow direction in the first chamber 214a, and flows out of the second header 214. do. Furthermore, the refrigerant flows from the second header 214 into the second chamber 213b of the first header 213 through the first heat transfer tubes 212 connected to the second chamber 213b of the first header 213 .
  • first heat transfer tubes 212 connected to the first chamber 214a of the second header 214
  • first heat transfer pipes 212 connected to the first chamber 213a of the first header 213 and the second heat transfer pipes 213b of the first header 213
  • the flow direction of the refrigerant is upside down.
  • the refrigerant changes its flow direction in the second chamber 213b of the first header 213, flows out from the second chamber 213b, and flows into the second chamber 214b of the second header 214. Then, the flow direction of the refrigerant is reversed in the second chamber 214 b , flows out from the second chamber 214 b of the second header 214 , and flows into the third chamber 213 c of the first header 213 . Then, the flow direction of the refrigerant is reversed in the third chamber 213 c , flows out from the third chamber 213 c of the first header 213 , and flows into the third chamber 214 c of the second header 214 .
  • the refrigerant flows from the third chamber 213 c of the first header 213 to the first chamber 223 a of the third header 223 of the second heat exchanger 22 via the connecting pipe 12 .
  • the refrigerant flows from the second heat transfer pipes 222 connected to the first chambers 223a of the third header 223 into the first chambers 224a of the fourth header 224, and flows in the first chambers 224a of the fourth header 224. It is diverted and flows into the second chamber 223 b of the third header 223 .
  • the refrigerant changes its flow direction in the second chamber 223 b and flows into the second chamber 224 b of the fourth header 224 .
  • the refrigerant flows in the opposite direction as in the case of the evaporator. That is, the refrigerant flows from the pipe 11 d into the second chamber 224 b of the fourth header 224 of the second heat exchanger 22 and flows out of the first chamber 213 a of the first header 213 of the first heat exchanger 21 .
  • the refrigerant discharged from the compressor 14 and to be condensed passes through the second heat exchanger 22 from the pipe 11d, it passes through the connecting pipe 12 to one of the plurality of chambers of the first header 213 of the first heat exchanger 21. , or into the second header 214 .
  • the connecting pipe 12 is connected from the first chamber 223a of the third header 223 of the second heat exchanger 22 to the third chamber 213c of the first header 213, but is connected to the second header 214. good too.
  • the refrigerant condensed through the first heat exchanger 21 flows out from the first chamber 213 a of the first header 213 and flows toward the expansion device 17 .
  • the refrigerant entering from the room at one end of the horizontal direction of the header is diverted in direction between the pair of headers connected by the first heat transfer tubes 212, thereby making it horizontal to the inflow side. proceed in a meandering manner toward the opposite direction. After flowing to the room on the farthest opposite side, the refrigerant flows through the connecting pipe 12 to the other heat exchanger or to the outside through the pipe 11c or 11d.
  • the sum of the number of rooms in the third header 223 of the second heat exchanger 22 and the number of rooms in the fourth header 224 is equal to the number of rooms in the first header 213 of the first heat exchanger 21 and the number of rooms in the second header less than the sum of 214 rooms. Therefore, the number of times the flow direction of the refrigerant changes in the second heat exchanger 22 is smaller than the number of times the flow direction of the refrigerant changes in the first heat exchanger 21 .
  • the structure will be simple.
  • the internal space of the third header 223 and the fourth header 224 of the second heat exchanger may be larger than the internal space of the first header 213 and the second header 214, so that the third header 223 and the fourth header
  • the pipe diameter of the header 224 may be larger than the pipe diameters of the first header 213 and the second header 214 .
  • the length L1 of the multiple first heat transfer tubes 212 is longer than the length L2 of the multiple second heat transfer tubes 222 .
  • the length L1 of the first heat transfer tube 212 is the length from one end of the first heat transfer tube 212 connected to the first header 213 to the other end of the first heat transfer tube 212 connected to the second header 214.
  • the length L2 of the second heat transfer tubes 222 is the length from one end of the second heat transfer tubes 222 connected to the third header 223 to the other end of the second heat transfer tubes 222 connected to the fourth header 224. say.
  • the number of first heat transfer tubes 212 connected to each of the first chamber 213a to the third chamber 213c of the first header 213 is not the same in the rooms of the first header 213 (the first chamber 213a to the third chamber 213c). not different.
  • the number of first heat transfer tubes 212 connected to each of the first to third chambers 214a to 214c of the second header 214 is the same in the rooms of the second header 214 (first to third chambers 214a to 214c). but different. That is, the number of the plurality of first heat transfer tubes 212 connected to the first chamber 213a to the third chamber 213c of the first header 213 and the first chamber 214a to the third chamber 214c of the second header 214 is adjusted. It is As a result, the cross-sectional area of the flow path of the refrigerant does not decrease before and after the direction of flow of the refrigerant changes during operation of the condenser, and remains the same or increases.
  • the average number of the second heat transfer tubes 222 connected to the rooms of the third header 223 is is greater than the average number of first heat transfer tubes 212 connected to .
  • the first chamber 213a of the first header 213 is connected to the pipe 11c
  • the second chamber 224b of the fourth header 224 is connected to the pipe 11d
  • the connection pipe 12 is connected.
  • the third chamber 214c of the second header 214 and the first chamber 223a of the third header 223 since the refrigerant does not fold back between the connected heat transfer tubes, the length of the room is longer than that of the adjacent rooms where the folding occurs. length is getting shorter.
  • FIG. 3 is a schematic diagram showing an air conditioner 200 having the indoor heat exchanger 10 according to Embodiment 1.
  • FIG. 3 arrows indicate the flow of refrigerant during cooling operation.
  • the indoor heat exchanger 10 functions as an evaporator
  • the outdoor heat exchanger 16 functions as a condenser.
  • the refrigerant becomes a high-temperature and high-pressure gas in the compressor 14, flows through the four-way valve 15 into the outdoor heat exchanger 16 mounted on the outdoor unit 201, heats the heat to the outdoor air blown by the outdoor fan 13a, and becomes a liquid phase. It becomes a refrigerant or a liquid-based refrigerant. Then, the refrigerant is depressurized by the expansion device 17, flows into the first heat exchanger 21 of the indoor heat exchanger 10 of the indoor unit 202, and is the indoor air blown by the indoor fan 13b in the first heat exchanger 21.
  • the refrigerant changes from the low-temperature, low-pressure two-phase refrigerant to the low-pressure gas refrigerant. , and returns to the compressor 14 again via the four-way valve 15 .
  • FIG. 4 is a diagram showing the relationship between the evaporator performance of the indoor heat exchanger 10 according to Embodiment 1 and the heat transfer tube length ratio.
  • the vertical axis indicates the evaporator performance
  • the horizontal axis indicates the heat transfer tube length ratio.
  • the heat transfer tube length ratio is the ratio of the length L 1 of the first heat transfer tube 212 to the total length L 1 +L 2 of the first heat transfer tube 212 and the second heat transfer tube 222 .
  • the refrigerant decompressed by the expansion device 17 absorbs heat from the indoor air in the first heat transfer pipe 212 of the first heat exchanger 21, and the dryness increases. Then, it flows through the second heat transfer tube 222 of the second heat exchanger 22 .
  • the volumetric flow rate of the refrigerant flowing through the second heat exchanger 22 is larger than that of the first heat exchanger 21 . Therefore, when the length L2 of the second heat transfer tube 222 is longer than the length L1 of the first heat transfer tube 212, that is, when the heat transfer tube length ratio is small, the pressure in the second heat transfer tube 222 is Evaporator performance is reduced because losses increase and the saturation temperature in the indoor heat exchanger 10 decreases.
  • FIG. 5 is a schematic diagram showing an air conditioner 200 having the indoor heat exchanger 10 according to Embodiment 1.
  • FIG. 5 arrows indicate the flow of refrigerant during heating operation.
  • the indoor heat exchanger 10 functions as a condenser
  • the outdoor heat exchanger 16 functions as an evaporator
  • the refrigerant becomes a high-temperature and high-pressure gas in the compressor 14, flows into the indoor heat exchanger 10 of the indoor unit 202 via the four-way valve 15, and enters the first heat exchanger 21 and the second heat exchanger of the indoor heat exchanger 10. At 22, the heat is radiated to the indoor air blown by the indoor fan 13b, and the refrigerant flows out as a liquid-phase refrigerant or a liquid-based refrigerant.
  • the refrigerant is depressurized by the expansion device 17, absorbs heat from the outside air blown by the outdoor fan 13a in the outdoor heat exchanger 16 of the outdoor unit 201, and changes from a low-temperature, low-pressure two-phase refrigerant to a low-pressure gas refrigerant.
  • the refrigerant then flows out from the outdoor heat exchanger 16 and returns to the compressor 14 via the four-way valve 15 .
  • FIG. 6 is a diagram showing the relationship between the amount of refrigerant in the indoor heat exchanger 10 according to Embodiment 1 and the heat transfer tube length ratio.
  • the vertical axis indicates the refrigerant amount
  • the horizontal axis indicates the heat transfer tube length ratio.
  • the dry refrigerant flows from the second heat exchanger 22 and passes through the second heat exchanger 22 and the first heat exchanger 21 while radiating heat to the indoor air. flow. Then, the refrigerant flows out of the first heat exchanger 21 in a state of reduced dryness.
  • the indoor heat exchanger 10 when the indoor heat exchanger 10 functions as an evaporator, the saturation temperature in the indoor heat exchanger 10 rises, and when the indoor heat exchanger 10 functions as a condenser, the indoor heat exchanger The average refrigerant density at 10 is reduced.
  • the number of partition members 4 that partition the internal spaces of the first header 213, the second header 214, the third header 223, and the fourth header 224, and the number of rooms partitioned by the partition members 4 can be changed as appropriate.
  • the third header 223 and the fourth header 224 may be configured to have only one room without the partition member 4 .
  • the sum of the number of rooms in the third header 223 of the second heat exchanger 22 and the number of rooms in the fourth header 224 is equal to the number of rooms in the first header 213 of the first heat exchanger 21 and the number of rooms in the fourth header 224 2 header 214 less than the sum of the number of rooms.
  • the number of rooms in the first header 213 or the second header 214 of the first heat exchanger 21 connected by the connection pipes 12 is greater than the number of rooms in the third header 223 of the second heat exchanger 22 connected by the connection pipes 12.
  • the number of times the flow direction of the refrigerant changes in the second heat exchanger 22 becomes smaller than the number of times the flow direction of the refrigerant changes in the first heat exchanger 21, and the insides of the third header 223 and the fourth header 224 Pressure loss due to collision or friction between the wall surface and the coolant is reduced.
  • the second heat exchanger 22 may be configured so that the cross-sectional area of the flow path does not fluctuate throughout the refrigerant path.
  • the first chamber 223a of the third header 223 and the second chamber 224b of the fourth header 224 are the same in size, and the refrigerant flows in and out of the third header 223 and has no folded refrigerant.
  • the second chamber 223b and the first chamber 224a of the fourth header 224 may have the same size.
  • the number of the second heat transfer tubes 222 connected to the first chamber 223a of the third header 223 and the second chamber 224b of the fourth header 224 are the same, and the second chamber 223b of the third header 223 and the fourth header 224 It is desirable that the number of the second heat transfer tubes 222 connected to each of the first chambers 224a is the same. That is, the number of the second heat transfer tubes 222 in which the refrigerant flows from one of the chambers of the third header 223 and the fourth header 224 to the chamber of the opposing fourth header 224 and the third header 223 is the same. Therefore, the second heat exchanger 22 having a short heat transfer tube length can maintain a large flow passage cross-sectional area over the entire length of the heat transfer tube.
  • the quotient obtained by dividing the number of second heat transfer tubes 222 connected to the third header 223 by the number of rooms in the third header 223 may not be an integer.
  • the number of the third headers 223 to be connected to each room should be adjusted to an integer by adding or subtracting less than 1 to the quotient, and the difference between the numbers should be 1 or less.
  • the numbers in each room are not exactly the same, they are approximately the same, so the effects described above can be obtained.
  • the number of second heat transfer tubes 222 connected to the third header 223 is 21 and the number of rooms in the third header 223 is 2, the number of tubes connected to each room is 10 and 11. becomes.
  • the size of each chamber of the third header 223 may change by about 10% along with this, but even in such a case, the plurality of chambers are of the same size in the present disclosure, and the second heat transfer tubes connected 222 are assumed to be the same.
  • Refrigerant having a higher degree of dryness than the refrigerant flowing through the first header 213 flows through the third header 223 and the fourth header 224 .
  • pressure loss in the second heat exchanger 22 when the indoor heat exchanger 10 is operating as an evaporator can be reduced.
  • the average size of the rooms in the first header 213 (first room 213a to third room 213c) is partitioned so as to be smaller than the average size of the rooms in the third header 223 (first room 223a and second room 223b). ing. That is, during the condenser operation of the indoor heat exchanger 10, the average size of the chambers (first chamber 213a to third chamber 213c) of the first heat exchanger 21 arranged on the downstream side of the refrigerant is the second heat exchange It is partitioned so as to be smaller than the average size of the chambers of the container 22 (the first chamber 223a and the second chamber 223b). As a result, in the indoor heat exchanger 10, the region in which the supercooled refrigerant having a high refrigerant density exists is reduced, and the amount of refrigerant can be reduced.
  • the indoor heat exchanger 10 is composed of the first heat exchanger 21 and the second heat exchanger 22 is shown. It may be composed of one heat exchanger 21 and a second heat exchanger 22 .
  • the indoor heat exchanger 10 is composed of the first heat exchanger 21 and the second heat exchanger 22
  • the outdoor heat exchanger 16 is also composed of the first heat exchanger 21 and the second heat exchanger 22. good too.
  • the pipe 11c through which the two-phase refrigerant flows when the indoor heat exchanger 10 performs condenser operation is longer than the pipe 11b through which the two-phase refrigerant flows when the outdoor heat exchanger 16 performs condenser operation. Therefore, from the viewpoint of reducing the amount of refrigerant during operation of the condenser, by configuring the indoor heat exchanger 10 with the first heat exchanger 21 and the second heat exchanger 22, the effect of reducing the amount of refrigerant is increased.
  • the indoor heat exchanger 10 functions as a condenser
  • the heat exchange of the first heat exchanger 21 is promoted, so the circulation of refrigerant with a high degree of dryness is promoted.
  • the average refrigerant density of the first header 213, the second header 214, the third header 223, and the fourth header 224 is reduced, and the refrigerant can be saved.
  • the refrigerant pipe through which the refrigerant with high dryness flows when the indoor heat exchanger 10 functions as a condenser is circulated with the refrigerant with high dryness when the outdoor heat exchanger 16 functions as a condenser. Longer than refrigerant piping. Therefore, by configuring the indoor heat exchanger 10 with the first heat exchanger 21 and the second heat exchanger 22, the refrigerant saving effect can be obtained more greatly.
  • first header 213a to third room 213c the number of rooms (first room 213a to third room 213c) in the first header 213 is greater than the number of rooms (first room 223a, second room 223b) in the third header 223, Pressure loss in the third header 223 is reduced when the heat exchanger 10 functions as an evaporator. Thereby, it is possible to improve the performance of the indoor heat exchanger 10 .
  • the first chamber 213a which is located downstream in the refrigerant flow direction when the indoor heat exchanger 10 functions as a condenser, is located upstream. It is smaller than the second chamber 213b and the third chamber 213c. For this reason, the refrigerant with low dryness and in a supercooled state is less likely to stay in the first header 213 .
  • first chamber 223a and the second chamber 223b of the third header 223 are partitioned to have the same size. Since the partitions are equally sized in this way, when the indoor heat exchanger 10 functions as an evaporator, it is possible to increase the cross-sectional area of the flow path through which the refrigerant with high dryness flows. , pressure loss is reduced, and performance can be improved.
  • refrigerant having a lower gas density than the R32 refrigerant or the R410A refrigerant
  • refrigerant flow velocity per capacity increases, so the performance improvement effect due to the pressure loss reduction is large.
  • refrigerants include olefinic refrigerants having double bonds in their molecules such as HFO1234yf and HFP1234ze(E), propane, and DME (dimethyl ether).
  • first heat exchanger 21 and the second heat exchanger 22 may be integrally molded as long as the length restrictions of the first heat transfer tube 212 and the second heat transfer tube 222 are secured.
  • FIG. 7 is a schematic diagram of a first modification of the indoor heat exchanger 10 according to Embodiment 1.
  • FIG. 7 is a schematic diagram of a first modification of the indoor heat exchanger 10 according to Embodiment 1.
  • the indoor heat exchanger 10 differs from the configuration in FIG. 2 in connection positions of the pipes 11c and 11d.
  • the pipe 11c in the first heat exchanger 21, the pipe 11c is connected to the first header 213 and the connection pipe 12 is connected to the second header 214.
  • the pipe 11c and the connection pipe 12 are connected to different headers.
  • the pipe 11d is connected to the fourth header 224 in the second heat exchanger 22, and the connection pipe 12 is connected to the third header 223.
  • the pipe 11d and the connection pipe 12 are connected to different headers.
  • the pipe 11c and the connection pipe 12 are connected to the same first header 213.
  • the pipe 11d and the connection pipe 12 are connected to the same third header 223.
  • the space inside the third header 223 is partitioned so that a plurality of rooms (the first room 223a and the second room 223b) have the same size.
  • the second header 214 and the fourth header 224 are positioned farthest apart from each other, and the first header 213 and the third header 223 are positioned closest to each other.
  • the connecting pipes 12 are configured to connect rooms at one end of the adjacent first header 213 and third header 223, as in FIG. Such connection of the horizontal ends of adjacent headers is effective in shortening the connecting pipe 12 .
  • pipes 11c and 11d for inflow and outflow of the refrigerant are connected to rooms at the other ends in the horizontal direction of the adjacent first and third headers 213 and 223, respectively. No piping is connected to the second header 214 and the fourth header 224 . Therefore, this configuration is advantageous in simplifying the routing of the pipes and downsizing the indoor heat exchanger 10, and is also effective in reducing the amount of refrigerant.
  • a first header 213 to which the pipe 11c and the connection pipe 12 are connected is divided into four chambers 213a to 213d by three partition members 4.
  • FIG. The number of partition members 4 and the number of rooms of the first header are greater than those of the second header 214 which is not connected to piping.
  • the third header 223 to which the pipe 11d and the connection pipe 12 are connected is divided into two chambers 213a and 213b by one partition member 4.
  • the fourth header 224 does not have the partition member 4 and is composed of one room.
  • the number of partition members 4 and the number of rooms of the third header are greater than those of the fourth header 224 which is not connected to piping.
  • the first heat transfer tube 212 of the first heat exchanger 21 is longer than the second heat transfer tube 222 of the second heat exchanger 22 is the same as in FIG.
  • the number of partition members 4 in the first header 213 is greater than the number of partition members 4 in the third header 223, the number of rooms in the first header 213 is greater than the number of rooms in the third header 223, and the number of rooms in the first header 213 is greater than that in the third header 223.
  • the average size of the rooms in the header 213 is smaller than the average size of the rooms in the third header 223 . For this reason, the first modification can achieve both saving of refrigerant and reduction of pressure loss in the same manner as the configuration of FIG. 2, and the size of the heat exchanger can be reduced.
  • FIG. 8 is a schematic diagram of a second modification of the indoor heat exchanger 10 according to Embodiment 1.
  • the indoor heat exchanger 10 according to the second modification includes a first heat exchanger 21 , a second heat exchanger 22 and a third heat exchanger 23 .
  • a first header 213 of the first heat exchanger 21 is partitioned into a plurality of chambers 213a to 213c by a plurality of partition members 4, and a second header 214 is partitioned into a plurality of chambers 214a to 214c by a plurality of partition members 4. ing.
  • the third header 223 of the second heat exchanger 22 is partitioned into a first chamber 223a and a second chamber 223b.
  • the third heat exchanger 23 is a serpentine heat exchanger in which one third heat transfer tube 6 rotates multiple times.
  • the third heat transfer pipe 6 of the third heat exchanger 23 has one end 8 connected to the pipe 11 c and the other end 7 connected to the first chamber 213 a of the first header 213 .
  • the length L3 from one turning position of the third heat transfer tube 6 to the next turning position is shorter than the length L1 of the first heat transfer tube 212 of the first heat exchanger 21 . Further, the total length of the pipeline of the third heat transfer tube 6 is longer than the length L1 of the first heat transfer tube 212 .
  • the refrigerant flows from the pipe 11c into the one end 8 of the third heat transfer tube 6, and the other end 7 of the third heat transfer tube 6 flowing towards The refrigerant then flows from the other end 7 into the first chamber 213 a of the first header 213 .
  • the refrigerant flows from the first chamber 213a of the first header 213 through the first chamber 214a of the second header 214, the second chamber 213b of the first header 213, and the second chamber 214b of the second header 214 to the first It flows into the third chamber 213 c of the header 213 .
  • the refrigerant flows from the third chamber 213c of the first header 213, through the third chamber 214c of the second header 214, through the connecting pipe 12, and into the first chamber 223a of the third header 223.
  • the refrigerant After passing through the fourth header 224, the refrigerant reaches the second chamber 223b of the third header 223 and flows out from the pipe 11d.
  • a second modification is a configuration in which a third heat exchanger 23 is installed between the pipe 11c and the first chamber 213a of the first header 213 to which the pipe 11c is connected, in the structures of FIGS. can be considered.
  • the third heat exchanger 23 is longer and fewer in number than the first heat transfer tubes 212 connected to the first chamber 213a of the first header 213 chamber, and therefore has a small flow cross-sectional area. Therefore, the density of refrigerant flowing into the second header 214 is reduced, and the average amount of refrigerant in the entire first header 213, second header 214, third header 223, and fourth header 224 can be reduced.
  • FIG. 9 is a schematic diagram showing an indoor unit 202 according to Embodiment 2.
  • the indoor unit 202 according to Embodiment 2 is an example of the indoor unit 202 of the air conditioner 200 according to Embodiment 1.
  • FIG. 9 is a schematic diagram showing an indoor unit 202 according to Embodiment 2.
  • the indoor unit 202 according to Embodiment 2 is an example of the indoor unit 202 of the air conditioner 200 according to Embodiment 1.
  • the height position of the second header 214 of the first heat exchanger 21 is the height position of the fourth header 224 of the second heat exchanger 22. It is arranged so as to be lower in the vertical direction 31 than the . Also, the first header 213 of the first heat exchanger 21 and the third header 223 of the second heat exchanger 22 have the same height.
  • the first heat transfer pipes 212 of the first heat exchanger 21 and the second heat transfer pipes 222 of the second heat exchanger 22 are both oblique with respect to the vertical direction. and the third header 223 are horizontally adjacent to each other, and the second header 214 and the fourth header 224 located at the lower ends thereof are horizontally separated from each other.
  • the lowest portion 41 of the first heat exchanger 21 is located below the lowest portion 42 of the second heat exchanger 22 in the vertical direction 31. .
  • FIG. 10 is a schematic diagram showing refrigerant flowing through the connecting pipe 12 of the indoor heat exchanger 10 of FIG.
  • FIG. 10 shows how the indoor heat exchanger 10 operates as a condenser.
  • the coolant is a mixture of liquid-phase coolant 61 and gas-phase coolant 62 , which flow through the connecting pipe 12 .
  • the connection pipe 12 in this figure shows a configuration in which the upper surface of the first header 213 and the upper surface of the third header 223 are connected by the U-shaped connection pipe 12 .
  • the connecting pipes 12 may connect the horizontal ends of the first header 213 and the third header 223, that is, the connecting pipes 12 may form a U shape in the depth direction of the paper.
  • the refrigerant flows from the second heat exchanger 22 to the first heat exchanger 21 through the connecting pipe 12 in the refrigerant flow direction 30.
  • the refrigerant flowing through the first heat exchanger 21 has a lower degree of dryness than the refrigerant flowing through the second heat exchanger 22 .
  • Refrigerant having dryness between the refrigerant flowing through the first heat exchanger 21 and the refrigerant flowing through the second heat exchanger 22 flows through the connection pipe 12 .
  • Inertial force 52 acting in the flow direction of the refrigerant and gravity 51 act on the liquid-phase refrigerant 61 moving in the connecting pipe 12 . Since the channel cross-sectional area inside each header is larger than the channel cross-sectional area of each heat transfer tube and the flow velocity is reduced, the inertial force 52 is reduced and the effect of gravity 51 is increased.
  • the inertial force 52 acting on the liquid-phase refrigerant 61 is greater than the gravity force 51, so the liquid-phase refrigerant 61 in the connection pipe 12 moves in the direction from the second heat exchanger 22 to the first heat exchanger 21, that is, , in the coolant flow direction 30 .
  • the inertial force 52 decreases due to the decrease in the refrigerant flow rate, and the effect of gravity 51 increases.
  • the effect of gravity 51 acting in the direction of the second heat exchanger 22 is Increase.
  • the gravity force 51 acting in the direction of the second heat exchanger 22 increases the influence of the inertial force 52 acting on the liquid-phase refrigerant 61 in the connecting pipe 12, and the liquid-phase refrigerant 61 flows in the refrigerant flow direction 30. becomes difficult.
  • the liquid-phase refrigerant 61 tends to stay in the header and the connecting pipe 12, where the inertial force 52 is particularly small.
  • the density of the refrigerant in the second heat exchanger 22 increases and the amount of refrigerant increases.
  • Embodiment 2 since the first heat transfer tubes 212 of the first heat exchanger 21 are longer than the second heat transfer tubes 222 of the second heat exchanger 22, the The effect of the gravity 51 acting in the direction of the second heat exchanger 22 is greater than the effect of the gravity 51 acting in the direction of the second heat exchanger 22 .
  • the refrigerant can be driven in the refrigerant flow direction 30, thereby suppressing an increase in refrigerant density during low-capacity operation and saving refrigerant. be able to.
  • the lowest portion 41 of the first heat exchanger 21 is positioned vertically with respect to the lowest portion 42 of the second heat exchanger 22. It is arranged so as to be positioned below 31 .
  • the indoor heat exchanger 10 functions as a condenser, the liquid-phase refrigerant 61 flowing in the first heat exchanger 21 becomes difficult to flow in the refrigerant flow direction 30, and the refrigerant density of the second heat exchanger 22 increases. The increase is reduced, and refrigerant can be saved.
  • the second heat transfer tubes 222 are shorter than the first heat transfer tubes 212, the amount of heat exchanged by the second heat exchanger 22 is smaller than when they are the same length. For this reason, the dryness of the second heat exchanger 22 is relatively high, and even if the liquid-phase refrigerant 61 stays in the header and the connecting pipe 12, the amount of the liquid-phase refrigerant 61 is reduced.
  • the dryness of the first heat exchanger 21 is low, and the dryness of the first header 213 and the second header 214 is slightly reduced in some parts.
  • a supercooled state is generally used, and the amount of refrigerant does not change at locations where only the liquid-phase refrigerant 61 flows. As a result, the amount of the liquid-phase refrigerant 61 decreases overall in the heat exchanger having the configuration of the second embodiment.
  • Embodiment 3 refers to the relationship between the indoor heat exchanger 10 and the indoor fan 13b in the indoor unit 202 in the air conditioner 200 of Embodiment 1.
  • the indoor fan 13b a horizontal flow fan such as a cross-flow fan is used.
  • a blower with a rotating shaft extending in the direction is adopted. Since the configurations of the air conditioner 200 and the indoor heat exchanger 10 are the same as those of the first embodiment, the description is omitted, and the same or corresponding parts are given the same reference numerals.
  • FIG. 11 is a perspective view of the indoor unit 202 according to Embodiment 3.
  • the indoor unit 202 is equipped with a cross-flow fan such as a cross-flow fan that operates at low pressure and high air volume as the indoor fan 13b.
  • the indoor fan 13b generates an airflow in the circumferential direction of the rotating shaft 18.
  • the first heat exchanger 21 is arranged so that the extending directions of the first header 213 and the second header 214 are parallel to the axial direction of the rotating shaft 18 of the indoor fan 13b.
  • the extension directions of the third header 223 and the fourth header 224 are arranged parallel to the axial direction of the rotation shaft 18 of the indoor fan 13b.
  • FIG. 12 is a schematic diagram of the AA cross section of the indoor unit 202 in FIG.
  • the first heat exchanger 21 and the second heat exchanger 22 are arranged at different positions in the circumferential direction of the rotating shaft 18 of the indoor fan 13b. That is, the first header 213 , the second header 214 , the third header 223 and the fourth header 224 do not overlap in the radial direction of the rotating shaft 18 .
  • the first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the airflow flowing into the indoor fan 13b.
  • the static pressure of the airflow is reduced and the air volume is improved.
  • the heat transfer performance is improved, the supercooled region of the refrigerant formed during the operation of the condenser of the indoor heat exchanger 10 is reduced, and the density of the refrigerant is reduced, thereby saving refrigerant.
  • FIG. 13 is a schematic diagram of the AA cross section of the indoor unit 202 according to the comparative example.
  • the first heat exchanger 21 and the second heat exchanger 22 are arranged at the same position in the circumferential direction with respect to the rotating shaft 18 of the indoor fan 13b. It is That is, the first heat exchanger 21 and the second heat exchanger 22 are arranged in series with respect to the airflow of the indoor fan 13b.
  • the airflow flowing through the indoor heat exchanger 10 is likely to be obstructed. This is due to the difference in length between the first heat transfer tubes 212 of the first heat exchanger 21 and the second heat transfer tubes 222 of the second heat exchanger 22, resulting in the first header 213, the second header 214, and the This is because the height positions of the third header 223 and the fourth header 224 are different.
  • FIG. 14 is a schematic diagram for explaining the relationship between the indoor fan 13b of the indoor unit 202 according to Embodiment 3 and the wind speed.
  • the corner portion C of one end of the second header 214 is positioned at 0%, and the corner portion D of the other end of the second header 214 when moved from the corner portion C along the rotation axis direction 33 is positioned at 100%.
  • the corner E of one end of the fourth header 224 when moved along the first heat transfer tube 212 and the second heat transfer tube 222 in the circumferential direction 34 of the rotating shaft 18 from the corner C is positioned 100 %.
  • FIG. 15 is a diagram showing the relationship between the position of the indoor fan 13b in the rotation axis direction 33 in FIG. 14 and the wind speed, and the relationship between the position of the rotation shaft 18 of the indoor fan 13b in the circumferential direction 34 and the wind speed.
  • the solid line indicates the relationship between the position of the indoor fan 13b in the rotation axis direction 33 and the wind speed
  • the dashed line indicates the relationship between the position of the rotation shaft 18 of the indoor fan 13b in the circumferential direction 34 and the wind speed. ing.
  • the refrigerant saturation temperature required to blow air at a certain temperature or higher becomes smaller. This increases the performance per air temperature provided to the user.
  • the first heat transfer tube 212 and the second heat transfer tube 222 are arranged in the circumferential direction of the rotation shaft 18 of the indoor fan 13b and in the tangential direction of the circle centered on the rotation shaft 18.
  • the refrigerant flows in the circumferential direction of the rotation shaft 18 of the indoor fan 13b, where the wind speed deviation in the rotation axis direction 33 is small, and the variation in the heat exchange capacity of the first heat transfer tube 212 and the second heat transfer tube 222 is reduced. .
  • the air conditioner 200 according to Embodiment 3 described above employs a cross-flow fan as the indoor fan 13b, and the first heat exchanger 21 and the second heat exchanger 22 are connected to the rotating shaft 18 of the indoor fan 13b. are arranged in parallel in the circumferential direction. As a result, the static pressure of the airflow is reduced and the air volume is improved, so that the heat transfer of the first heat exchanger 21 and the second heat exchanger 22 is improved, and the supercooled region during condenser operation is reduced.
  • FIG. 16 is a schematic diagram showing the configuration of refrigerant passages of the indoor heat exchanger 10 according to Embodiment 3.
  • FIG. 17 is a characteristic diagram showing the effects of refrigerant saving and improvement of heat exchange performance with respect to the refrigerant channel configuration.
  • the first heat transfer tube 212 connects between the first header 213 and the second header 214
  • the second heat transfer tube connects between the third header 223 and the fourth header 224.
  • the heat pipes 222 allow the refrigerant to flow meanderingly between the two opposing headers as indicated by the white arrows.
  • FIG. 16 is a schematic diagram showing the configuration of refrigerant passages of the indoor heat exchanger 10 according to Embodiment 3.
  • FIG. 17 is a characteristic diagram showing the effects of refrigerant saving and improvement of heat exchange performance with respect to the refrigerant channel configuration.
  • the first heat transfer tube 212 connects between the first header 213 and the second header 214
  • the second heat transfer tube connects between the third header
  • the refrigerant flows from the piping 11c of the first heat exchanger 21, the first chamber 213a of the first header 213, the two first heat transfer tubes 212, the first chamber 214a of the second header 214, three the first heat transfer tubes 212, the second chamber 213b of the first header 213, the three first heat transfer tubes 212, the second chamber 214b of the second header 214, the three first heat transfer tubes 212, the first header 213 From the connecting pipe 12 through the third chamber 213c, the five first heat transfer pipes 212, the third chamber 214c of the second header 214, the five first heat transfer pipes 212, and the fourth chamber 213d of the first header 213, 2 flow to heat exchanger 22;
  • the total number of first heat transfer tubes 212 connecting the first header 213 and the second header 214 is twenty-one.
  • the first heat transfer tubes 212 that connect the rooms of the opposing headers are divided into six groups that flow in different directions as indicated by white arrows.
  • a plurality of first heat transfer tubes 212 are included in the same group when the chamber of the first header 213 to which one end is connected and the chamber of the second header 214 to which the other end is connected are the same. are grouped to be included in different groups on different occasions.
  • the fact that the direction in which the refrigerant flows in the heat transfer tubes is turned back in the chamber of the header is called “turning", and the number of times of turning in one heat exchanger is called “turning number”.
  • the square value of the number of first heat transfer tubes 212 for each group is summed for all groups and divided by the number of first heat transfer tubes 212 in all groups.
  • N1 ⁇ (n 1,k ⁇ n 1,k )/ ⁇ n 1,k .
  • the first heat exchanger 21 has a total of 21 first heat transfer tubes 212, the number of turns is 5, the number of groups is 6, the sum of the squares of the number of groups is 81, The average number of branches N1 is approximately 3.9.
  • the refrigerant is supplied from the connecting pipe 12 to the first chamber 223a of the third header 223, ten second heat transfer tubes 222, the first chamber 224a of the fourth header 224, eleven
  • the total number of second heat transfer tubes 222 connecting the first header 213 and the second header 214 is 21, like the first heat exchanger 21 .
  • the second heat transfer tubes 222 connecting the chambers of the opposing headers are divided into two groups that flow in different directions as indicated by the hollow arrows.
  • the plurality of second heat transfer tubes 222 are included in the same group when the room of the third header 223 to which one end is connected and the room of the fourth header 224 to which the other end is connected are the same, and are different. divided into groups so that they are included in different groups on occasion.
  • the numbers of the second heat transfer tubes 222 divided into groups are indicated as n 2,1 and n 2,2 , respectively.
  • the number of turns is one and the number of groups is two for a total of 21 second heat transfer tubes 222.
  • the sum of the squares of the numbers in each group is 221, and the average number of branches N2 is about 10.5.
  • ⁇ Mg be the heat exchanger refrigerant saving effect of the condenser 50% load operation when the first heat transfer tube length L1 and the second heat transfer tube length L2 are equal.
  • Ga ⁇ be the heat exchanger performance when the evaporator is operated under a 50% load.
  • the product of ⁇ Mg and Ga ⁇ is defined as figure of merit FM.
  • a heat exchanger with a large figure of merit FM is superior in terms of refrigerant saving effect and figure of merit.
  • FIG. 17 shows the maximum value of the figure of merit FM as 100% of the reference.
  • (L1/N1) ⁇ (N2/L2) 1, but compared to that case, the average branch
  • (L1/N1) ⁇ (N2/L2) 1, but compared to that case, the average branch
  • the figure of merit FM changes somewhat due to the influence of N1 and N2, but if the ratio of N1 and N2 is the same, the influence is small.
  • the refrigerant type is changed from R32 to R410A, or to olefinic refrigerants, propane, dimethyl ether, etc., which are refrigerants with lower gas densities, the relative change in N2 to N1 at which the figure of merit FM peaks is 8 % or less. Therefore, even if the refrigerant type changes, it is expected that the effect of improving the figure of merit FM will be obtained in the range of (L1/N1) ⁇ (N2/L2) where the effect was seen with the above refrigerant R32. can.
  • Embodiment 4 refers to the relationship between the indoor heat exchanger 10 in the indoor unit 202 and the indoor fan 13b in the air conditioner 200 of Embodiment 1, and an axial flow fan is adopted as the indoor fan 13b. is doing. Since the configurations of the air conditioner 200 and the indoor heat exchanger 10 are the same as those of the first embodiment, the description is omitted, and the same or corresponding parts are given the same reference numerals.
  • FIG. 18 is a perspective view of the indoor unit 202 according to Embodiment 3.
  • the indoor unit 202 is equipped with an axial flow fan such as a propeller fan that operates at low pressure and high air volume as the indoor fan 13b.
  • An air current is generated from the inlet 35 toward the outlet 36 in the direction of the rotating shaft 18 by the indoor blower 13b.
  • the indoor heat exchanger 10 is arranged so that the extending direction of the first header 213 and the second header 214 of the first heat exchanger 21 is parallel to the direction orthogonal to the rotating shaft 18 of the indoor fan 13b.
  • the second heat exchanger 22 is arranged such that the extending direction of the third header 223 and the fourth header 224 is parallel to the direction perpendicular to the rotating shaft 18 of the indoor fan 13b. That is, the extending directions of the first header 213, the second header 214, the third header 223, and the fourth header 224 extend in the tangential direction of a circle centered on the rotating shaft 18 of the indoor fan 13b.
  • the first heat exchanger 21 and the second heat exchanger 22 are arranged at positions that do not overlap each other around the rotating shaft 18 when viewed from the axial direction of the rotating shaft 18 .
  • the angular range in which the first heat exchanger 21 is positioned around the rotation axis 18 and the angular range in which the second heat exchanger 22 is positioned around the rotation axis 18 are different.
  • FIG. 19 is a schematic diagram of the BB cross section of the indoor unit 202 in FIG. 19 .
  • straight line F is a straight line connecting second header 214 of first heat exchanger 21 and fourth header 224 of second heat exchanger 22 .
  • the bottom G indicates the height positions of the first heat exchanger 21 and the second heat exchanger 22 in the vertical direction 31 . Further, in FIG. 19, the straight line F is set at 100% height position, and the bottom G is set at 0% height position.
  • the first heat exchanger 21 and the second heat exchanger 22 are located between the straight line F and the rotation axis 18 in a cross section passing through the rotation axis 18 of the indoor fan 13b and perpendicular to the extending direction. Centering on the intersection 45, they are arranged at different positions in the circumferential direction.
  • the static pressure of the airflow is reduced compared to the case of arranging them in series with respect to the airflow. Smaller, better airflow and improved heat transfer.
  • the indoor heat exchanger 10 operates as a condenser, the supercooled region of the refrigerant is reduced, the density of the refrigerant is reduced, and the refrigerant can be saved.
  • FIG. 20 is a schematic diagram showing the wind speed distribution of the airflow flowing through the indoor unit 202 of FIG.
  • the vertical axis indicates the height position in the vertical direction 31 from the bottom G to the straight line F in the indoor unit 202
  • the horizontal axis indicates the wind speed.
  • the extension directions of the first header 213, the second header 214, the third header 223, and the fourth header 224 are provided along the tangential direction of a circle centered on the rotation axis 18. ing.
  • One end of the first heat transfer tube 212 of the first heat exchanger 21 and the second heat transfer tube 222 of the second heat exchanger 22 are positioned at the height of the straight line F, and the other end is positioned at the height of the bottom G. is located.
  • the air conditioner 200 according to Embodiment 4 described above employs an axial flow fan as the indoor fan 13b, and the first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the air flow. ing.
  • the static pressure of the airflow is reduced and the air volume is increased, which improves heat transfer and reduces the supercooled region during condenser operation.
  • variations in heat exchange capacity between the first heat transfer tubes 212 and between the second heat transfer tubes 222 are reduced, so refrigerant can be saved during condenser operation and performance can be improved during evaporator operation.
  • Embodiment 5 refers to the relationship between the indoor heat exchanger 10 and the indoor blower 13b in the indoor unit 202 in the air conditioner 200 of Embodiment 1, and the scroll casing 5 is provided as the indoor blower 13b.
  • a centrifugal blower is used. Since the configurations of the air conditioner 200 and the indoor heat exchanger 10 are the same as those of the first embodiment, the description is omitted, and the same or corresponding parts are given the same reference numerals.
  • FIG. 21 is a schematic diagram showing a schematic cross section of the indoor unit 202 according to Embodiment 5.
  • the indoor unit 202 includes a centrifugal blower such as a multi-blade blower as the indoor blower 13b, and an indoor blower configured by a scroll casing 5 (hereinafter referred to as a casing) housing the centrifugal blower. 13b is installed.
  • a centrifugal blower there is a sirocco fan or the like.
  • a typical centrifugal fan has a structure in which a plurality of blades are arranged in a cylindrical shape.
  • the casing 5 has a rotation angle position at which the distance between the casing 5 and the blades is the closest in the rotation angle around the rotation axis of the centrifugal fan, and the distance from the blades gradually increases from that position in the rotation direction of the blades.
  • a winding start position 19 is defined as a position in the casing 5 where the distance to the blade is closest. That is, the outer shape of the scroll casing 5 when viewed from the rotation axis direction is closest to the rotation outer circumference of the internal blade at the winding start position 19, and gradually becomes farther from the rotation outer circumference of the blade as it progresses in the rotation direction of the blade. It is a shape.
  • the indoor blower 13b sucks air from the direction of the rotation axis, and the casing 5 has an outlet for blowing air in the tangential direction of the rotation of the blades before making one turn from the winding start position 19 in the rotation direction of the blades.
  • viewing the casing 5 in the rotation direction of the blade is viewed in the winding direction 32 .
  • a winding start position 19 is immediately adjacent in the winding direction 32 from the outlet. Therefore, the winding start position 19 is constricted at an acute angle when viewed in the rotation axis direction, and is also called a tongue.
  • position H is the position where the first heat exchanger 21 is closest to the casing 5 .
  • Position I is the position where the second heat exchanger 22 is closest to the casing 5 .
  • FIG. 22 is a schematic cross-sectional view showing an outline of the AA cross section of the indoor unit 202 according to Embodiment 5. As shown in FIG.
  • the extension directions of the first header 213 and the second header 214 of the first heat exchanger 21 are arranged parallel to the axial direction of the rotation shaft 18 of the indoor fan 13b.
  • the extension direction of the third header 223 and the fourth header 224 of the second heat exchanger 22 is arranged parallel to the axial direction of the rotating shaft 18 of the indoor fan 13b.
  • the first heat transfer tube 212 and the second heat transfer tube 222 extend in a direction perpendicular to the rotation axis of the indoor fan 13b.
  • the second heat exchanger 22 when viewed in the winding direction 32 of the casing 5, the distance from the winding start position 19 of the casing 5 to the position I is shorter than the distance from the winding start position 19 of the casing 5 to the position H. . That is, the second heat exchanger 22 is arranged at a position close to the winding start position 19 of the casing 5, and the first heat exchanger 21 is arranged at a position far from the winding start position 19 of the casing 5 when viewed in the winding direction 32 of the casing 5. are placed.
  • the airflow is relatively small near the winding start position 19 of the casing 5, and increases with increasing distance.
  • the amount of air flowing through the first heat exchanger 21 increases, so the heat transfer of the first heat exchanger 21 is promoted, and the refrigerant in the first heat exchanger 21 is subcooled. area becomes smaller. As a result, the refrigerant density is reduced, and the refrigerant can be saved.
  • the distance from the winding start position 19 of the casing 5 is the distance from the winding start position 19 of the casing 5 to the first heat exchanger 21 . It is arranged so that it is closer than the distance to. Therefore, when the condenser is operated, the air volume of the first heat exchanger 21 increases, so that the supercooled region becomes smaller and the density of the refrigerant is reduced, which makes it possible to save the refrigerant.
  • the second heat exchanger 22 is arranged on the upstream side of the airflow during evaporator operation, the inertial force of the airflow that blows off the condensed water into the indoor space is reduced, and the quality of the indoor heat exchanger 10 is reduced. It is possible to increase the air volume without
  • the length of the blower casing 5 in the direction of the rotation axis 18 is shorter than the length of the first heat exchanger 21 in the direction of the rotation axis 18 .
  • the casing 5 is formed with an intake port 5a for sucking air in the direction of the rotating shaft 18 .
  • the first chamber 213a of the second heat exchanger 22, which is the most downstream when operating as a condenser, is located at a position where at least a portion, preferably the entire region, is deviated from the casing 5 in the direction of the rotation axis 18. It is in.
  • the first chamber 213a Since the first chamber 213a is located at a position where the casing 5 cannot be provided in the rotation circumferential direction of the rotating shaft 18 of the blower, the amount of air passing through the first heat transfer pipes 212 and the first fins 211 connected to the first chamber 213a is small. , the air volume increases compared to the region overlapping the casing 5 in the direction of the rotation axis 18 . Therefore, in the heat exchanger of Embodiment 5, it is possible to promote heat transfer of the liquid refrigerant and achieve both refrigerant saving and high performance. Further, the same effect can be obtained even if the indoor fan 13b is provided with a centrifugal fan such as a multi-blade fan, a scroll casing accommodating the centrifugal fan, and a cross-flow fan in a part thereof.
  • a centrifugal fan such as a multi-blade fan, a scroll casing accommodating the centrifugal fan, and a cross-flow fan in a part thereof.
  • first heat exchanger 21 and the second heat exchanger 22 are arranged at positions that do not overlap each other around the rotation shaft 18 when viewed from the axial direction of the rotation shaft 18 of the centrifugal fan 13b. ing.
  • the angular range in which the first heat exchanger 21 is positioned around the rotation axis 18 and the angular range in which the second heat exchanger 22 is positioned around the rotation axis 18 are different. Therefore, as described in the fourth embodiment, by arranging the first heat exchanger 21 and the second heat exchanger 22 in parallel with respect to the airflow, compared with the case of arranging in series with respect to the airflow As a result, the static pressure of the airflow is reduced, air volume is increased, and heat transfer is improved. As a result, when the indoor heat exchanger 10 operates as a condenser, the supercooled region of the refrigerant is reduced, the density of the refrigerant is reduced, and the refrigerant can be saved.
  • first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the airflow, the static pressure of the airflow is reduced, and the air volume is improved, thereby improving heat transfer.
  • the supercooling zone during operation is reduced.
  • the present disclosure can be used for an air conditioner equipped with a heat exchanger that functions both as a condenser and as an evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is an air conditioning device (200) having a heat exchanger (10) that switches between being an evaporator and being a condenser, the air conditioning device characterized in that the heat exchanger (10) comprises: a first heat exchanger (21) having a first header (213) which is partitioned into a plurality of chambers and to which one end of a plurality of first heat transfer pipes (212) are connected, and a second header (214) which extends in the horizontal direction and to which the other end of the plurality of first heat transfer pipes (212) are connected; a second heat exchanger (22) having a plurality of second heat transfer pipes (222), a third header (223) which extends in the horizontal direction and to which one end of the plurality of second heat transfer pipes (222) are connected, and a fourth header (224) which extends in the horizontal direction and to which the other end of the plurality of second heat transfer pipes (222) are connected; and a connection pipe (12) that connects the first heat exchanger (21) and the second heat exchanger (22), wherein the length of the plurality of first heat transfer pipes (212) is longer than the length of the plurality of second heat transfer pipes (222).

Description

空気調和装置air conditioner
 本開示は、凝縮器としても、蒸発器としても機能する熱交換器を備えた空気調和装置に関する。 The present disclosure relates to an air conditioner equipped with a heat exchanger that functions both as a condenser and as an evaporator.
 断面が扁平な扁平管を伝熱管として、扁平管の内部を流れる冷媒と扁平管の外部の流体とで熱交換する熱交換器を空気調和装置に利用することが知られている。例えば、特許文献1には、空気調和装置に凝縮器として機能する熱交換器として、複数の扁平管の両端のそれぞれを水平方向にのびる一対のヘッダーに接続し、ヘッダーの内部を仕切り板で仕切ることにより冷媒が扁平管を蛇行して流れるようにした熱交換器が示されている。 It is known that a flat tube with a flat cross section is used as a heat transfer tube, and a heat exchanger that exchanges heat between a refrigerant flowing inside the flat tube and a fluid outside the flat tube is used in an air conditioner. For example, Patent Document 1 discloses a heat exchanger functioning as a condenser in an air conditioner, in which both ends of a plurality of flat tubes are connected to a pair of horizontally extending headers, and the inside of the headers is partitioned by a partition plate. A heat exchanger is shown in which the refrigerant flows meanderingly through flat tubes.
 特許文献1では、入口から出口までの扁平管の本数を順次減少し、冷媒流れ下流における熱交換器の流路断面積を冷媒流れ上流における熱交換器の流路断面積よりも小さくすることが提案されている。これにより、下流側における冷媒の流速が向上し、熱伝達率の低下を抑制し、高い熱交換性能を維持する。 In Patent Document 1, the number of flat tubes from the inlet to the outlet is gradually reduced, and the flow channel cross-sectional area of the heat exchanger downstream of the refrigerant flow can be made smaller than the flow channel cross-sectional area of the heat exchanger upstream of the refrigerant flow. Proposed. As a result, the flow velocity of the refrigerant on the downstream side is increased, suppressing a decrease in heat transfer coefficient and maintaining high heat exchange performance.
特開2015-230129号公報JP 2015-230129 A
 冷房と暖房とに運転が切り替わるような空気調和装置において、凝縮器として機能する熱交換器は運転が切り替わると蒸発器としても機能する。特許文献1のような扁平管を用いた熱交換器は冷媒量の低減、いわゆる省冷媒、に適している。しかしながら、特許文献1の熱交換器が蒸発器として機能する場合には、冷媒が流入する側の流路断面積が、冷媒が流出する側の流路断面積よりも小さく、流路全長での冷媒圧力損失が増大するおそれがある。冷媒圧力損失が増大すると冷媒の飽和温度が低下して空調性能が低下する。 In an air conditioner that switches between cooling and heating, the heat exchanger that functions as a condenser also functions as an evaporator when the operation switches. A heat exchanger using flat tubes as in Patent Document 1 is suitable for reducing the amount of refrigerant, ie, so-called refrigerant saving. However, when the heat exchanger of Patent Document 1 functions as an evaporator, the cross-sectional area of the flow path on the side where the refrigerant flows is smaller than the cross-sectional area of the flow path on the side where the refrigerant flows out. Refrigerant pressure loss may increase. When the refrigerant pressure loss increases, the saturation temperature of the refrigerant decreases and the air conditioning performance deteriorates.
 そこで、本開示は、省冷媒化と高性能化とを両立できる熱交換器を備えた空気調和装置を実現することを目的とする。 Therefore, an object of the present disclosure is to realize an air conditioner equipped with a heat exchanger capable of achieving both refrigerant saving and high performance.
 本開示の空気調和装置は、
 圧縮機と凝縮器と減圧装置と蒸発器とが配管により接続されて冷媒が循環し、冷媒の流れる向きを切り替えることで、機能が前記蒸発器と前記凝縮器とに切り替わる熱交換器と、空気が前記熱交換器に送られるように気流を発生する送風機と、を有する空気調和装置において、
 前記熱交換器が、
 複数の第1伝熱管と、水平方向に延びて内部の空間が第1室と第2室とを含む複数の部屋に仕切られて前記複数の第1伝熱管の一方の端が接続された第1ヘッダーと、水平方向に延びて前記複数の第1伝熱管の他方の端が接続された第2ヘッダーと、を有する第1熱交換器と、
 複数の第2伝熱管と、水平方向に延びて前記複数の第2伝熱管の一方の端が接続された第3ヘッダーと、水平方向に延びて前記複数の第2伝熱管の他方の端が接続された第4ヘッダーと、を有する第2熱交換器と、
 前記第1熱交換器の前記第1ヘッダー及び前記第2ヘッダーのいずれかと、前記第2熱交換器の前記第3ヘッダーと、を接続する接続配管と、
を備え、
 前記熱交換器を前記蒸発器として機能させる運転において、前記配管から蒸発させるべき冷媒が前記第1ヘッダーの前記第1室に流入したのち、前記第1室から前記第2ヘッダーへと流れ、前記第2ヘッダーから前記第1ヘッダーの前記第2室へと流れるように前記複数の第1伝熱管が接続され、前記第1熱交換器を経た冷媒が前記接続配管を介して前記第2熱交換器の前記第3ヘッダーに流入したのち、前記第3ヘッダーから前記第4ヘッダーへと流れるように前記複数の第2伝熱管が接続され、さらに、前記第2熱交換器を経た冷媒が前記圧縮機に吸入されるように前記配管が接続され、
 前記熱交換器を前記凝縮器として機能させる運転において、凝縮させるべき冷媒が前記配管から前記第2熱交換器を経たのち、前記接続配管を介して前記第1熱交換器の前記第1ヘッダーの前記複数の部屋のいずれか、または前記第2ヘッダーに流入し、前記第1熱交換器を経た冷媒が前記第1ヘッダーの前記第1室から流出するように前記配管が接続され、
 前記複数の第1伝熱管の長さが前記複数の第2伝熱管の長さよりも長いことを特徴とする。
The air conditioner of the present disclosure is
A heat exchanger in which a compressor, a condenser, a decompression device, and an evaporator are connected by piping to circulate refrigerant, and the function is switched between the evaporator and the condenser by switching the direction of refrigerant flow; and a fan that generates an airflow so that is sent to the heat exchanger,
The heat exchanger is
A plurality of first heat transfer tubes and a first heat transfer tube extending in the horizontal direction and partitioned into a plurality of chambers including a first chamber and a second chamber, to which one end of the plurality of first heat transfer tubes is connected a first heat exchanger having one header and a second header extending horizontally to which the other ends of the plurality of first heat transfer tubes are connected;
a plurality of second heat transfer tubes; a third header extending horizontally to which one ends of the plurality of second heat transfer tubes are connected; and a horizontally extending other end of the plurality of second heat transfer tubes. a second heat exchanger having a connected fourth header;
a connection pipe that connects one of the first header and the second header of the first heat exchanger and the third header of the second heat exchanger;
with
In the operation in which the heat exchanger functions as the evaporator, the refrigerant to be evaporated flows from the pipe into the first chamber of the first header, flows from the first chamber to the second header, The plurality of first heat transfer pipes are connected so as to flow from the second header to the second chamber of the first header, and the refrigerant that has passed through the first heat exchanger passes through the connection pipe to the second heat exchange pipe. The plurality of second heat transfer tubes are connected so that the refrigerant flows from the third header to the fourth header after flowing into the third header of the vessel, and the refrigerant that has passed through the second heat exchanger is compressed into the compression The pipe is connected so as to be sucked into the machine,
In the operation in which the heat exchanger functions as the condenser, the refrigerant to be condensed passes through the second heat exchanger from the pipe, and then passes through the connection pipe to the first header of the first heat exchanger. the piping is connected so that the refrigerant that flows into one of the plurality of chambers or the second header and has passed through the first heat exchanger flows out of the first chamber of the first header;
The length of the plurality of first heat transfer tubes is longer than the length of the plurality of second heat transfer tubes.
 本開示に係る空気調和装置によれば、第1熱交換器及び第2熱交換器を蒸発器として機能させる運転においてには圧力損失が低減され、第1熱交換器及び第2熱交換器を凝縮器として機能させる運転においては冷媒密度が低減されて、高性能化と省冷媒化とを両立できる。 According to the air conditioner according to the present disclosure, the pressure loss is reduced in the operation in which the first heat exchanger and the second heat exchanger function as evaporators, and the first heat exchanger and the second heat exchanger are In the operation of functioning as a condenser, the refrigerant density is reduced, and both high performance and refrigerant saving can be achieved.
実施の形態1に係る空気調和装置の構成を示す模式図である。1 is a schematic diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置に設けられた室内熱交換器の模式図である。2 is a schematic diagram of an indoor heat exchanger provided in the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る室内熱交換器を有する空気調和装置を示す模式図である。1 is a schematic diagram showing an air conditioner having an indoor heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る室内熱交換器の蒸発器性能と、伝熱管長さ比との関係を示す図である。4 is a diagram showing the relationship between the evaporator performance of the indoor heat exchanger according to Embodiment 1 and the heat transfer tube length ratio. FIG. 実施の形態1に係る室内熱交換器を有する空気調和装置を示す模式図である。1 is a schematic diagram showing an air conditioner having an indoor heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る室内熱交換器の冷媒量と、伝熱管長さ比との関係を示す図である。4 is a diagram showing the relationship between the amount of refrigerant in the indoor heat exchanger according to Embodiment 1 and the length ratio of heat transfer tubes. FIG. 実施の形態1に係る室内熱交換器の第1の変形例の模式図である。FIG. 4 is a schematic diagram of a first modification of the indoor heat exchanger according to Embodiment 1; 実施の形態1に係る室内熱交換器の第2の変形例の模式図である。FIG. 5 is a schematic diagram of a second modification of the indoor heat exchanger according to Embodiment 1; 実施の形態2に係る室内機を示す模式図である。FIG. 6 is a schematic diagram showing an indoor unit according to Embodiment 2; 図9の室内熱交換器の接続配管を流れる冷媒を示す模式図である。FIG. 10 is a schematic diagram showing refrigerant flowing through connection pipes of the indoor heat exchangers of FIG. 9 ; 実施の形態3に係る室内機の内部構成を示す斜視図である。FIG. 11 is a perspective view showing an internal configuration of an indoor unit according to Embodiment 3; 図11の室内機のA-A断面における模式図である。FIG. 12 is a schematic diagram of the AA cross section of the indoor unit of FIG. 11; 比較例に係る室内機のA-A断面における模式図である。FIG. 3 is a schematic diagram of an indoor unit taken along line AA of a comparative example; 実施の形態3に係る室内機の室内送風機と、風速の関係を説明する模式図である。FIG. 11 is a schematic diagram for explaining the relationship between the indoor fan of the indoor unit according to Embodiment 3 and the wind speed; 図14における室内送風機の回転軸方向の位置と、風速との関係、及び、室内送風機の回転軸の周方向の位置と、風速との関係を示す図である。14. It is a figure which shows the relationship between the position of the rotating shaft direction of the indoor fan in FIG. 14, and wind speed, and the relationship between the position of the rotating shaft of the indoor fan in the circumferential direction, and wind speed. 実施の形態3に係る熱交換器の冷媒流路構成を示す模式図である。FIG. 10 is a schematic diagram showing a refrigerant channel configuration of a heat exchanger according to Embodiment 3; 実施の形態3に係る冷媒流路構成に対する改善効果を示す特性図である。FIG. 11 is a characteristic diagram showing an improvement effect on the coolant channel configuration according to Embodiment 3; 実施の形態4に係る室内機の斜視図である。FIG. 11 is a perspective view of an indoor unit according to Embodiment 4; 図18の室内機のB-B断面における模式図である。FIG. 19 is a schematic diagram of the BB cross section of the indoor unit of FIG. 18; 図19の室内機に流れる気流の風速分布を示す模式図である。FIG. 20 is a schematic diagram showing the wind speed distribution of the airflow flowing through the indoor unit of FIG. 19; 実施の形態5に係る室内機の断面の概略を示す模式図である。FIG. 11 is a schematic diagram showing an outline of a cross section of an indoor unit according to Embodiment 5; 実施の形態5に係る室内機202のA-A断面の概略を示す断面図である。FIG. 11 is a cross-sectional view schematically showing an AA cross section of an indoor unit 202 according to Embodiment 5;
 以下に、本開示に係る空気調和装置の実施の形態について説明する。なお、図面で表した形態は一例であり、本開示を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 An embodiment of an air conditioner according to the present disclosure will be described below. In addition, the form represented by drawing is an example, and does not limit this indication. In addition, the same reference numerals in each drawing are the same or equivalent, and this is common throughout the specification. Furthermore, in the drawings below, the size relationship of each component may differ from the actual size.
 実施の形態1
 <空気調和装置200の構成>
 図1は、実施の形態1に係る空気調和装置200の構成を示す模式図である。空気調和装置200は冷媒が循環する回路を備え、その回路内で冷媒が圧縮、凝縮、膨張、蒸発する冷凍サイクルにより熱を移動するヒートポンプ装置である。このようなヒートポンプ装置では、圧縮機と、凝縮器と、絞り装置などの減圧装置と、蒸発器と、が配管で接続されて冷媒が循環する。図1に示すように、実施の形態1に係る空気調和装置200は、室外機201及び室内機202を有する。空気調和装置200は、冷媒の流れ方向を切り替えることで、冷房運転及び暖房運転を行う。
Embodiment 1
<Configuration of air conditioner 200>
FIG. 1 is a schematic diagram showing the configuration of an air conditioner 200 according to Embodiment 1. FIG. The air conditioner 200 is a heat pump device that includes a circuit in which a refrigerant circulates and transfers heat by means of a refrigeration cycle in which the refrigerant compresses, condenses, expands, and evaporates in the circuit. In such a heat pump device, a compressor, a condenser, a decompression device such as a throttle device, and an evaporator are connected by pipes to circulate the refrigerant. As shown in FIG. 1 , an air conditioner 200 according to Embodiment 1 has an outdoor unit 201 and an indoor unit 202 . The air conditioner 200 performs cooling operation and heating operation by switching the flow direction of the refrigerant.
 室外機201には、室外送風機13a、圧縮機14、四方弁15、室外熱交換器16、及び、絞り装置17が配置されている。室内機202には、第1熱交換器21及び第2熱交換器22から構成された室内熱交換器10、及び、室内送風機13bが配置されている。室内熱交換器10は室内の空気と冷媒の温度を熱交換する熱交換器である。室内送風機13bは室内の空気が室内熱交換器10に送られるように気流を発生する送風機である。室外機201は、熱源側熱交換器の一例である。また、室内機202は、利用側熱交換器の一例である。 The outdoor unit 201 is provided with an outdoor blower 13a, a compressor 14, a four-way valve 15, an outdoor heat exchanger 16, and a throttle device 17. The indoor unit 202 includes an indoor heat exchanger 10 including a first heat exchanger 21 and a second heat exchanger 22, and an indoor fan 13b. The indoor heat exchanger 10 is a heat exchanger that exchanges heat between indoor air and refrigerant. The indoor blower 13 b is a blower that generates an airflow so that indoor air is sent to the indoor heat exchanger 10 . The outdoor unit 201 is an example of a heat source side heat exchanger. Also, the indoor unit 202 is an example of a user-side heat exchanger.
 四方弁15と、室外熱交換器16とは、配管11aにより接続されている。室外熱交換器16と、絞り装置17とは、配管11bにより接続されている。絞り装置17と、室内熱交換器10の第1熱交換器21とは、配管11cにより接続されている。絞り装置17は冷媒の通過する断面積を絞ることで通過前の圧力より通過後の圧力を小さくする減圧装置である。室内熱交換器10の第2熱交換器22と、四方弁15とは、配管11dにより接続されている。 The four-way valve 15 and the outdoor heat exchanger 16 are connected by a pipe 11a. The outdoor heat exchanger 16 and the expansion device 17 are connected by a pipe 11b. The expansion device 17 and the first heat exchanger 21 of the indoor heat exchanger 10 are connected by a pipe 11c. The expansion device 17 is a decompression device that reduces the pressure after passage of the refrigerant from the pressure before passage by reducing the cross-sectional area through which the refrigerant passes. The second heat exchanger 22 of the indoor heat exchanger 10 and the four-way valve 15 are connected by a pipe 11d.
 圧縮機14と、四方弁15と、室外熱交換器16と、絞り装置17と、室内熱交換器10とに冷媒が流れることで、冷凍サイクルが構成される。四方弁15は圧縮機14から吐出された冷媒の流れ方向を切り替える切替弁であり、冷媒の流れ方向が配管11aを通って室外熱交換器16に向かう流れと、配管11dを通って室内熱交換器10に向かう流れのいずれかとなるように切り替える。空気調和装置200の冷房運転と暖房運転との切り替えは、四方弁15は冷媒の流れの向きを切り替えることで行われる。この切替弁は、四方弁15のかわりに複数個の二方弁を組み合わせるなど他の弁、配管などを組み合わせて構成することもできる。 Refrigerant flows through the compressor 14, the four-way valve 15, the outdoor heat exchanger 16, the expansion device 17, and the indoor heat exchanger 10, thereby forming a refrigeration cycle. The four-way valve 15 is a switching valve that switches the flow direction of the refrigerant discharged from the compressor 14, and the flow direction of the refrigerant is directed to the outdoor heat exchanger 16 through the pipe 11a and the indoor heat exchange through the pipe 11d. The flow is switched to either one of the flows toward the vessel 10. Switching between the cooling operation and the heating operation of the air conditioner 200 is performed by switching the direction of the refrigerant flow through the four-way valve 15 . Instead of the four-way valve 15, this switching valve can also be configured by combining other valves, such as a combination of a plurality of two-way valves, piping, and the like.
 空気調和装置200の冷房運転時には、室内熱交換器10が蒸発器として、室外熱交換器16が凝縮器として機能し、暖房運転時には、室内熱交換器10が凝縮器として、室外熱交換器16が蒸発器として機能する。つまり、空気調和装置200は冷媒の流れる向きが反対になることで、機能が蒸発器と凝縮器とで切り替わる熱交換器を備えている。 During the cooling operation of the air conditioner 200, the indoor heat exchanger 10 functions as an evaporator, and the outdoor heat exchanger 16 functions as a condenser. acts as an evaporator. In other words, the air conditioner 200 includes a heat exchanger whose function is switched between an evaporator and a condenser when the refrigerant flows in the opposite direction.
 <室内熱交換器10の構成>
 図2は、実施の形態1に係る空気調和装置200に設けられた室内熱交換器10の模式図である。図2に示すように、室内熱交換器10は、第1熱交換器21と第2熱交換器22と、第1熱交換器21と第2熱交換器22とを接続する接続配管12と、により構成されている。
<Configuration of indoor heat exchanger 10>
FIG. 2 is a schematic diagram of the indoor heat exchanger 10 provided in the air conditioner 200 according to Embodiment 1. FIG. As shown in FIG. 2, the indoor heat exchanger 10 includes a first heat exchanger 21, a second heat exchanger 22, and a connection pipe 12 that connects the first heat exchanger 21 and the second heat exchanger 22. , is composed of
 第1熱交換器21は、複数の第1伝熱管212と、複数の第1フィン211と、第1ヘッダー213と、第2ヘッダー214と、を有する。また、第2熱交換器22は、複数の第2伝熱管222と、複数の第2フィン221と、第3ヘッダー223と、第4ヘッダー224と、を有する。第1熱交換器21と第2熱交換器22とは、接続配管12により接続されている。第1伝熱管212、第2伝熱管222は、内部に冷媒が通り、その外側の周囲の空気と熱を交換するための伝熱管である。第1伝熱管212、第2伝熱管222のそれぞれは隣の伝熱管と間隔をあけて配列し、その間隔に空気が通過するように構成される。また、第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、第4ヘッダー224は複数の第1伝熱管212または複数の第2伝熱管222などの複数の伝熱管に冷媒を分配、または複数の伝熱管から冷媒を収集する。第1熱交換器21の第1ヘッダー213、第2ヘッダー214のいずれか、第2熱交換器22の第3ヘッダー223、第4ヘッダー224のいずれかには冷媒が流入、または流出するように配管が接続される。 The first heat exchanger 21 has a plurality of first heat transfer tubes 212, a plurality of first fins 211, a first header 213, and a second header 214. The second heat exchanger 22 also has a plurality of second heat transfer tubes 222 , a plurality of second fins 221 , a third header 223 and a fourth header 224 . The first heat exchanger 21 and the second heat exchanger 22 are connected by a connecting pipe 12 . The first heat transfer tube 212 and the second heat transfer tube 222 are heat transfer tubes through which the refrigerant passes and exchange heat with the surrounding air outside. Each of the first heat transfer tube 212 and the second heat transfer tube 222 is arranged with a gap from the adjacent heat transfer tube, and air passes through the gap. In addition, the first header 213, the second header 214, the third header 223, and the fourth header 224 distribute the refrigerant to a plurality of heat transfer tubes such as the plurality of first heat transfer tubes 212 or the plurality of second heat transfer tubes 222, or distribute the refrigerant to a plurality of heat transfer tubes. collect refrigerant from the heat transfer tubes of Refrigerant flows into or out of either the first header 213 or the second header 214 of the first heat exchanger 21 or the third header 223 or the fourth header 224 of the second heat exchanger 22. Plumbing is connected.
 接続配管12は第1熱交換器21と第2熱交換器22とを直列に接続する。つまり、第1熱交換器21及び第2熱交換器22のいずれか一方を経た冷媒が接続配管12を通って他方に流れ入る。第1熱交換器21と第2熱交換器22とがともに蒸発器として機能する場合に、液相を含む冷媒が第1熱交換器21と接続配管12を経て第2熱交換器22に流入する。第1熱交換器21と第2熱交換器22とがともに凝縮器として機能する場合に、気相を含む冷媒が第2熱交換器22と接続配管12を経て第1熱交換器21に流入する。なお、蒸発器として機能する場合に、液相を含む冷媒が第1熱交換器21に流入するように配管が接続されたヘッダーを第1ヘッダー213、第2熱交換器22に流入するように接続配管12が接続されたヘッダーを第3ヘッダー223とした。また、この場合に、第1熱交換器21の第2ヘッダー214に接続された接続配管12から冷媒が第2熱交換器22に流入し、第2熱交換器22の第4ヘッダー224から冷媒が外部に流出する構成としたが、必ずしもこの構成に限定されない。第1熱交換器21の第1ヘッダー213に接続された接続配管12から冷媒が第2熱交換器22に流入してもよく、また、第2熱交換器22の第3ヘッダー223から外部に冷媒が流出する構成としてもよい。 The connection pipe 12 connects the first heat exchanger 21 and the second heat exchanger 22 in series. That is, the refrigerant that has passed through either one of the first heat exchanger 21 and the second heat exchanger 22 flows into the other through the connecting pipe 12 . When both the first heat exchanger 21 and the second heat exchanger 22 function as evaporators, refrigerant containing a liquid phase flows into the second heat exchanger 22 through the first heat exchanger 21 and the connecting pipe 12. do. When both the first heat exchanger 21 and the second heat exchanger 22 function as condensers, refrigerant containing a gas phase flows into the first heat exchanger 21 through the second heat exchanger 22 and the connecting pipe 12. do. When functioning as an evaporator, the header connected to the pipes so that the refrigerant containing the liquid phase flows into the first heat exchanger 21 is arranged to flow into the first header 213 and the second heat exchanger 22. A third header 223 is a header to which the connection pipe 12 is connected. Also, in this case, the refrigerant flows into the second heat exchanger 22 from the connecting pipe 12 connected to the second header 214 of the first heat exchanger 21, and the refrigerant flows from the fourth header 224 of the second heat exchanger 22. is configured to flow out to the outside, but it is not necessarily limited to this configuration. Refrigerant may flow into the second heat exchanger 22 from the connecting pipe 12 connected to the first header 213 of the first heat exchanger 21, and may flow outside from the third header 223 of the second heat exchanger 22. A configuration in which the refrigerant flows out may be adopted.
 第1熱交換器21の複数の第1伝熱管212は扁平管であり、複数の第1フィン211と交互に積層されている。複数の第1フィン211は、例えば、コルゲートフィンである。扁平管はその延びる方向に垂直な断面が一方に長手の偏平形状を有する。高圧冷媒が流れる空気調和装置では、一般に内部の流路を長手方向に複数に分割した多穴管を用いる。コルゲートフィンはアルミニウムなどの良熱伝導の金属薄板を波形に加工したものである。第1フィン211、第2フィン221は、第1熱交換器21の熱交換面積を拡大させて偏平管の周りを通過する空気と伝熱管との熱交換を向上させる。複数の第1伝熱管212は長手方向が平行となり、短手方向に間隔をあけて並び、その間隔をあけて対向する扁平管の面にコルゲートフィンの波形の頂部が接合される。 The multiple first heat transfer tubes 212 of the first heat exchanger 21 are flat tubes, and are alternately stacked with the multiple first fins 211 . The multiple first fins 211 are, for example, corrugated fins. The flattened tube has a flattened shape with one longitudinal section perpendicular to its extending direction. An air conditioner in which a high-pressure refrigerant flows generally uses a multi-hole pipe in which the internal flow path is divided into a plurality of pieces in the longitudinal direction. A corrugated fin is formed by corrugating a metal sheet with good thermal conductivity such as aluminum. The first fins 211 and the second fins 221 increase the heat exchange area of the first heat exchanger 21 to improve heat exchange between the air passing around the flat tubes and the heat transfer tubes. The plurality of first heat transfer tubes 212 are arranged in parallel in the longitudinal direction and spaced apart in the widthwise direction, and the corrugated tops of the corrugated fins are joined to the surfaces of the flattened tubes facing the spaced apart.
 第1熱交換器21の第1ヘッダー213、及び、第2ヘッダー214は、水平方向に延びている。第1ヘッダー213は、複数の第1伝熱管212の一方の端が接続され、第2ヘッダー214は、複数の第1伝熱管212の他方の端が接続されている。第1ヘッダー213、第2ヘッダー214は内部の流路断面積が第1伝熱管212の内部の流路断面積よりも大きい管状の構造を有する。複数の第1伝熱管212のそれぞれは上下方向にのびる管であり、それらは水平方向に間隔をあけて並列する。 The first header 213 and the second header 214 of the first heat exchanger 21 extend horizontally. One ends of the plurality of first heat transfer tubes 212 are connected to the first header 213 , and the other ends of the plurality of first heat transfer tubes 212 are connected to the second header 214 . The first header 213 and the second header 214 have a tubular structure in which the internal flow channel cross-sectional area is larger than the internal flow channel cross-sectional area of the first heat transfer tube 212 . Each of the plurality of first heat transfer tubes 212 is a tube extending in the vertical direction, and they are horizontally spaced and arranged side by side.
 第1熱交換器21と第2熱交換器22とは室内送風機13bなどから送られる風に対して風上風下の関係にならないように、すなわち、送風機、または送風路の風上側から見てずれた位置に配置されている。典型的には、第1ヘッダー213、第2ヘッダー214のいずれか一方が第3ヘッダー223、第4ヘッダー224のいずれか一方と近接して配置して、第1ヘッダー213、第2ヘッダー214の他方が第3ヘッダー223、第4ヘッダー224の他方と遠く離れるように配置される。 The first heat exchanger 21 and the second heat exchanger 22 are not in a windward-downward relationship with respect to the air blown from the indoor fan 13b or the like, that is, they are shifted from each other when viewed from the fan or the windward side of the air duct. are placed in the same position. Typically, one of the first header 213 and the second header 214 is arranged adjacent to the one of the third header 223 and the fourth header 224 so that the first header 213 and the second header 214 are separated. The other is arranged far away from the other of the third header 223 and the fourth header 224 .
 第2熱交換器22の複数の第2伝熱管222は扁平管であり、複数の第2フィン221と交互に積層されている。複数の第2フィン221は、例えば、コルゲートフィンである。第1フィン211と同様に第2フィン221は第2熱交換器22の熱交換面積を拡大させるものである。第1熱交換器21と第2熱交換器22とのいずれか、または両方は、コルゲートフィンのかわりにプレートフィンなどを使用してもよい。 The multiple second heat transfer tubes 222 of the second heat exchanger 22 are flat tubes, and are alternately stacked with the multiple second fins 221 . The multiple second fins 221 are, for example, corrugated fins. Like the first fins 211 , the second fins 221 expand the heat exchange area of the second heat exchanger 22 . Either or both of the first heat exchanger 21 and the second heat exchanger 22 may use plate fins or the like instead of corrugated fins.
 第2熱交換器22の第3ヘッダー223、及び、第4ヘッダー224は、水平方向に延びている。第3ヘッダー223は、複数の第2伝熱管222の一方の端が接続され、第4ヘッダー224は、複数の第2伝熱管222の他方の端が接続されている。第3ヘッダー223、第4ヘッダー224は内部の流路断面積が第2伝熱管222の内部の流路断面積よりも大きい管状の構造を有する。第2熱交換器22は第1熱交換器21とおおよそ類似の構造を有するが、後述するように伝熱管の長さ、ヘッダーの内部等が異なる。複数の第2伝熱管222のそれぞれは上下方向にのびる管であり、それらは水平方向の間隔をあけて並列する。なお、図1では複数の第1伝熱管212、複数の第2伝熱管222をいずれも平面にあるように示したが、第1伝熱管212と第2伝熱管222とが鉛直方向に延びる構成に限定されない。第1伝熱管212と第2伝熱管222の少なくとも一方が斜めに延びる、または互いに角度を有する方向に延びる構成としてもよい。 The third header 223 and fourth header 224 of the second heat exchanger 22 extend horizontally. One ends of the plurality of second heat transfer tubes 222 are connected to the third header 223 , and the other ends of the plurality of second heat transfer tubes 222 are connected to the fourth header 224 . The third header 223 and the fourth header 224 have a tubular structure in which the inner cross-sectional area of the flow path is larger than the cross-sectional area of the inner flow path of the second heat transfer tube 222 . The second heat exchanger 22 has a structure similar to that of the first heat exchanger 21, but differs in the length of the heat transfer tubes, the inside of the header, etc., as will be described later. Each of the plurality of second heat transfer tubes 222 is a tube extending in the vertical direction, and they are arranged side by side at intervals in the horizontal direction. In addition, in FIG. 1, the plurality of first heat transfer tubes 212 and the plurality of second heat transfer tubes 222 are shown as being on a plane, but the first heat transfer tubes 212 and the second heat transfer tubes 222 are configured to extend in the vertical direction. is not limited to At least one of the first heat transfer tube 212 and the second heat transfer tube 222 may be configured to extend obliquely or extend in directions having an angle with each other.
 第1ヘッダー213の内部の空間は、仕切り部材4により、第1室213aと第2室213bとを含む複数の部屋に仕切られている。なお、仕切り部材4によって仕切られた空間を部屋と呼び、各ヘッダーの仕切られた部屋を個別に呼ぶ場合は、第1室、第2室、などして説明するものとする。図の例で第1ヘッダー213は、第1室213aから第3室213cまで3つの部屋に仕切られている。第2ヘッダー214の内部の空間は、図の例では、仕切り部材4により、第1室214aから第3室214cまで複数の部屋に仕切られている。 The space inside the first header 213 is partitioned into a plurality of rooms including a first room 213a and a second room 213b by the partition member 4. The space partitioned by the partition member 4 is called a room, and when the rooms partitioned by each header are individually called, they will be described as the first room, the second room, and the like. In the illustrated example, the first header 213 is partitioned into three chambers from a first chamber 213a to a third chamber 213c. The space inside the second header 214 is partitioned into a plurality of chambers from the first chamber 214a to the third chamber 214c by the partition member 4 in the illustrated example.
 第3ヘッダー223の内部の空間は、仕切り部材4により、第1室223a及び第2室223bに仕切られている。第4ヘッダー224は、仕切り部材4により、第1室224a及び第2室224bに仕切られている。なお、以上はすべてのヘッダーの内部が仕切り部材4により複数の部屋に仕切られた例であるが、いくつかのヘッダーの内部空間が仕切られずに単一の部屋として構成されてもよい。第1ヘッダー213と第2ヘッダー214とで分割された部屋の数が異なっていても良く、第3ヘッダー223と第4ヘッダー224とで分割された部屋の数が異なっていてもよい。 The space inside the third header 223 is partitioned by the partition member 4 into a first chamber 223a and a second chamber 223b. The fourth header 224 is partitioned by the partition member 4 into a first chamber 224a and a second chamber 224b. Although the above is an example in which the interior of all headers is partitioned into a plurality of rooms by partition members 4, the interior spaces of some headers may be configured as a single room without being partitioned. The number of rooms divided between the first header 213 and the second header 214 may be different, and the number of rooms divided between the third header 223 and the fourth header 224 may be different.
 接続配管12は、第1熱交換器21の第1ヘッダー213及び前記第2ヘッダー214のいずれかと、第2熱交換器22の前記第3ヘッダー223と、を接続する。図の例では、接続配管12は、第1ヘッダー213の第4室213dと第3ヘッダー223の第1室223aとを接続している。また、図の例では、接続配管12が接続する第1ヘッダー213の第4室213dと第3ヘッダー223の第1室223aとは、それぞれ第1ヘッダー213と第3ヘッダー223とにおいて水平方向の同じ側の端にある。このように、接続配管12が同じ側の端にあるヘッダーの部屋どうしを接続する構成とすると、接続配管12の長さを短くすることができる。図では、第1熱交換器21、第2熱交換器22は水平方向の一方から冷媒が流入、流出するように配管11c,11d、が接続されて、接続配管12はその水平方向の反対側の端のヘッダーの部屋どうしを接続した構成を示した。第1ヘッダー213の第1室213aは前記第1ヘッダー213の水平方向の一方の端の部屋であり、接続配管12は、水平方向の他方の端にある第1ヘッダー213の複数の部屋のいずれか、または水平方向の他方の端にある前記第2ヘッダー214の複数の部屋のいずれかと第3ヘッダー223とを接続する。上記の構成としたので、接続配管12が短くできるが、接続配管12または配管11c,11dを水平方向で反対側の端の部屋に接続する構成としてもよい。また、接続配管12が第3ヘッダー223の複数の部屋のいずれかに接続されるようにしてもよい。 The connection pipe 12 connects either the first header 213 or the second header 214 of the first heat exchanger 21 and the third header 223 of the second heat exchanger 22 . In the illustrated example, the connecting pipe 12 connects the fourth chamber 213 d of the first header 213 and the first chamber 223 a of the third header 223 . In the example of the drawing, the fourth chamber 213d of the first header 213 and the first chamber 223a of the third header 223 to which the connection pipe 12 is connected are arranged horizontally in the first header 213 and the third header 223, respectively. at the same end. In this way, if the connecting pipes 12 are configured to connect the chambers of the headers at the ends on the same side, the length of the connecting pipes 12 can be shortened. In the figure, pipes 11c and 11d are connected so that the refrigerant flows in and out of the first heat exchanger 21 and the second heat exchanger 22 from one side in the horizontal direction. shows a configuration in which the chambers of the headers at the ends of the are connected. The first chamber 213a of the first header 213 is a chamber at one end of the first header 213 in the horizontal direction, and the connecting pipe 12 is connected to any one of the chambers of the first header 213 at the other end in the horizontal direction. or connect any of the plurality of rooms of the second header 214 at the other end in the horizontal direction to the third header 223 . With the above configuration, the connection pipe 12 can be shortened, but the connection pipe 12 or the pipes 11c and 11d may be connected to the rooms at the opposite ends in the horizontal direction. Also, the connection pipe 12 may be connected to any one of the plurality of rooms of the third header 223 .
 室内熱交換器10を蒸発器として機能させる運転において、蒸発させるべき冷媒は、配管11cから第1熱交換器21の第1ヘッダー213の第1室213aに流入する。そして、冷媒は、第1室213aに接続された第1伝熱管212から、第2ヘッダー214の第1室214aに流入し、第1室214aにおいて流れ方向が転向して第2ヘッダー214から流出する。さらに、冷媒は、第1ヘッダー213の第2室213bに接続された第1伝熱管212を通って第2ヘッダー214から第1ヘッダー213の第2室213bに流入する。第2ヘッダー214の第1室214aに接続された第1伝熱管212のうち、第1ヘッダー213の第1室213aに接続されたものと、第1ヘッダー213の第2室213bに接続されたものとでは、冷媒の流れ方向が上下逆である。 In the operation in which the indoor heat exchanger 10 functions as an evaporator, the refrigerant to be evaporated flows into the first chamber 213a of the first header 213 of the first heat exchanger 21 through the pipe 11c. Then, the refrigerant flows into the first chamber 214a of the second header 214 from the first heat transfer pipes 212 connected to the first chamber 213a, changes its flow direction in the first chamber 214a, and flows out of the second header 214. do. Furthermore, the refrigerant flows from the second header 214 into the second chamber 213b of the first header 213 through the first heat transfer tubes 212 connected to the second chamber 213b of the first header 213 . Of the first heat transfer tubes 212 connected to the first chamber 214a of the second header 214, the first heat transfer pipes 212 connected to the first chamber 213a of the first header 213 and the second heat transfer pipes 213b of the first header 213 The flow direction of the refrigerant is upside down.
 冷媒は、第1ヘッダー213の第2室213bにおいて流れ方向が転向して第2室213bから流出し、第2ヘッダー214の第2室214bに流入する。そして、冷媒は、第2室214bにおいて流れ方向が転向して第2ヘッダー214の第2室214bから流出し、第1ヘッダー213の第3室213cに流入する。そして、冷媒は、第3室213cにおいて流れ方向が転向して第1ヘッダー213の第3室213cから流出し、第2ヘッダー214の第3室214cに流入する。その後、冷媒は、第1ヘッダー213の第3室213cから接続配管12を介して、第2熱交換器22の第3ヘッダー223の第1室223aに流入する。そして、冷媒は、第3ヘッダー223の第1室223aに接続された第2伝熱管222から第4ヘッダー224の第1室224aに流入し、第4ヘッダー224の第1室224aにおいて流れ方向が転向され、第3ヘッダー223の第2室223bに流入する。そして、冷媒は、第2室223bにおいて流れ方向が転向して第4ヘッダー224の第2室224bに流入する。その後、冷媒は、第4ヘッダー224の第2室224bに接続された配管11dから流出する。第2熱交換器22を経た冷媒は、圧縮機14に吸入されるように配管11dが接続される。 The refrigerant changes its flow direction in the second chamber 213b of the first header 213, flows out from the second chamber 213b, and flows into the second chamber 214b of the second header 214. Then, the flow direction of the refrigerant is reversed in the second chamber 214 b , flows out from the second chamber 214 b of the second header 214 , and flows into the third chamber 213 c of the first header 213 . Then, the flow direction of the refrigerant is reversed in the third chamber 213 c , flows out from the third chamber 213 c of the first header 213 , and flows into the third chamber 214 c of the second header 214 . After that, the refrigerant flows from the third chamber 213 c of the first header 213 to the first chamber 223 a of the third header 223 of the second heat exchanger 22 via the connecting pipe 12 . The refrigerant flows from the second heat transfer pipes 222 connected to the first chambers 223a of the third header 223 into the first chambers 224a of the fourth header 224, and flows in the first chambers 224a of the fourth header 224. It is diverted and flows into the second chamber 223 b of the third header 223 . Then, the refrigerant changes its flow direction in the second chamber 223 b and flows into the second chamber 224 b of the fourth header 224 . After that, the refrigerant flows out from the pipe 11 d connected to the second chamber 224 b of the fourth header 224 . A pipe 11 d is connected so that the refrigerant that has passed through the second heat exchanger 22 is sucked into the compressor 14 .
 室内熱交換器10を凝縮器として機能させる運転において、冷媒は蒸発器の場合と逆の方向に流れる。すなわち、冷媒は、配管11dから第2熱交換器22の第4ヘッダー224の第2室224bに流入し、第1熱交換器21の第1ヘッダー213の第1室213aから流出する。圧縮機14から吐出された凝縮させるべき冷媒が前記配管11dから第2熱交換器22を経たのち、接続配管12を介して第1熱交換器21の第1ヘッダー213の複数の部屋のいずれか、または第2ヘッダー214に流入する。図では接続配管12が第2熱交換器22の第3ヘッダー223の第1室223aから第1ヘッダー213の第3室213cに接続されているが、第2ヘッダー214に接続されるようにしてもよい。第1熱交換器21を経て凝縮した冷媒は第1ヘッダー213の前記第1室213aから流出して、絞り装置17に向かって流れる。 In the operation in which the indoor heat exchanger 10 functions as a condenser, the refrigerant flows in the opposite direction as in the case of the evaporator. That is, the refrigerant flows from the pipe 11 d into the second chamber 224 b of the fourth header 224 of the second heat exchanger 22 and flows out of the first chamber 213 a of the first header 213 of the first heat exchanger 21 . After the refrigerant discharged from the compressor 14 and to be condensed passes through the second heat exchanger 22 from the pipe 11d, it passes through the connecting pipe 12 to one of the plurality of chambers of the first header 213 of the first heat exchanger 21. , or into the second header 214 . In the drawing, the connecting pipe 12 is connected from the first chamber 223a of the third header 223 of the second heat exchanger 22 to the third chamber 213c of the first header 213, but is connected to the second header 214. good too. The refrigerant condensed through the first heat exchanger 21 flows out from the first chamber 213 a of the first header 213 and flows toward the expansion device 17 .
 以上のように、ヘッダーの水平方法の一方の端の部屋から入った冷媒は、第1伝熱管212で接続された1対のヘッダー間で流れの向きを転向させられることで、流入側と水平方向の反対側に向かって蛇行するように進む。そして、冷媒は最も反対側端の部屋まで流れたのちに接続配管12によってもう一方の熱交換器、あるいは配管11cまたは11dによって外部に流出する。 As described above, the refrigerant entering from the room at one end of the horizontal direction of the header is diverted in direction between the pair of headers connected by the first heat transfer tubes 212, thereby making it horizontal to the inflow side. proceed in a meandering manner toward the opposite direction. After flowing to the room on the farthest opposite side, the refrigerant flows through the connecting pipe 12 to the other heat exchanger or to the outside through the pipe 11c or 11d.
 第2熱交換器22の第3ヘッダー223の部屋の数と、第4ヘッダー224の部屋の数との合計は、第1熱交換器21の第1ヘッダー213の部屋の数と、第2ヘッダー214の部屋の数との合計よりも小さい。そのため、第2熱交換器22における冷媒の流れ方向の転向回数は、第1熱交換器21における冷媒の流れ方向の転向回数よりも少ない。 The sum of the number of rooms in the third header 223 of the second heat exchanger 22 and the number of rooms in the fourth header 224 is equal to the number of rooms in the first header 213 of the first heat exchanger 21 and the number of rooms in the second header less than the sum of 214 rooms. Therefore, the number of times the flow direction of the refrigerant changes in the second heat exchanger 22 is smaller than the number of times the flow direction of the refrigerant changes in the first heat exchanger 21 .
 複数の第1伝熱管212及び複数の第2伝熱管222の本数は同じである。複数の第1伝熱管212及び複数の第2伝熱管222は、一本あたりの流路断面積が同じである。第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、及び、第4ヘッダー224は、いずれも、長さが同じである。第1ヘッダー213と第2ヘッダー214とは同じ太さの管を用いており、従って仕切り部材4、各配管との接続部分のわずかな違いなどを除けばそれらの内部空間は基本的に同じ体積である。同様に第3ヘッダー223及び第4ヘッダー224の内部空間は基本的に同じ体積である。第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、及び第4ヘッダー224の内部空間も基本的に同じ体積とすると構成が単純になる。なお、第2熱交換器の第3ヘッダー223及び第4ヘッダー224の内部空間が第1ヘッダー213及び第2ヘッダー214の内部空間よりも大きくあってもよく、そのために第3ヘッダー223及び第4ヘッダー224の管径が第1ヘッダー213及び第2ヘッダー214の管径よりも大きくあってもよい。 The number of the plurality of first heat transfer tubes 212 and the number of the plurality of second heat transfer tubes 222 are the same. The plurality of first heat transfer tubes 212 and the plurality of second heat transfer tubes 222 have the same channel cross-sectional area per tube. The first header 213, second header 214, third header 223, and fourth header 224 all have the same length. The first header 213 and the second header 214 use pipes of the same diameter, and therefore their internal spaces are basically the same in volume except for slight differences in the connecting parts with the partition member 4 and each pipe. is. Similarly, the internal spaces of the third header 223 and the fourth header 224 are basically the same volume. If the internal spaces of the first header 213, the second header 214, the third header 223, and the fourth header 224 have basically the same volume, the structure will be simple. In addition, the internal space of the third header 223 and the fourth header 224 of the second heat exchanger may be larger than the internal space of the first header 213 and the second header 214, so that the third header 223 and the fourth header The pipe diameter of the header 224 may be larger than the pipe diameters of the first header 213 and the second header 214 .
 複数の第1伝熱管212の長さLは、複数の第2伝熱管222の長さLよりも長い。第1伝熱管212の長さLは、第1ヘッダー213に接続された第1伝熱管212の一端から、第2ヘッダー214に接続された第1伝熱管212の他端までの長さをいう。また、第2伝熱管222の長さLは、第3ヘッダー223に接続された第2伝熱管222の一端から、第4ヘッダー224に接続された第2伝熱管222の他端までの長さをいう。 The length L1 of the multiple first heat transfer tubes 212 is longer than the length L2 of the multiple second heat transfer tubes 222 . The length L1 of the first heat transfer tube 212 is the length from one end of the first heat transfer tube 212 connected to the first header 213 to the other end of the first heat transfer tube 212 connected to the second header 214. Say. The length L2 of the second heat transfer tubes 222 is the length from one end of the second heat transfer tubes 222 connected to the third header 223 to the other end of the second heat transfer tubes 222 connected to the fourth header 224. say.
 第1ヘッダー213の第1室213a~第3室213cの各々に接続される第1伝熱管212の本数は、第1ヘッダー213室の部屋(第1室213a~第3室213c)で同一ではなく異なっている。また、第2ヘッダー214の第1室214a~第3室214cの各々に接続される第1伝熱管212の本数は、第2ヘッダー214の部屋(第1室214a~第3室214c)で同一ではなく異なっている。つまり、第1ヘッダー213の第1室213a~第3室213c、及び、第2ヘッダー214の第1室214a~第3室214cに接続される複数の第1伝熱管212は、その本数が調整されている。これにより、凝縮器運転時における冷媒の流れ方向の転向前後で冷媒の流路断面積が減少せず、同じまたは増加する構成になっている。 The number of first heat transfer tubes 212 connected to each of the first chamber 213a to the third chamber 213c of the first header 213 is not the same in the rooms of the first header 213 (the first chamber 213a to the third chamber 213c). not different. In addition, the number of first heat transfer tubes 212 connected to each of the first to third chambers 214a to 214c of the second header 214 is the same in the rooms of the second header 214 (first to third chambers 214a to 214c). but different. That is, the number of the plurality of first heat transfer tubes 212 connected to the first chamber 213a to the third chamber 213c of the first header 213 and the first chamber 214a to the third chamber 214c of the second header 214 is adjusted. It is As a result, the cross-sectional area of the flow path of the refrigerant does not decrease before and after the direction of flow of the refrigerant changes during operation of the condenser, and remains the same or increases.
 また、第3ヘッダー223の部屋(第1室223a及び部屋223b)に接続される第2伝熱管222の平均本数は、第1ヘッダー213の複数の部屋(第1室213a~第3室213c)に接続される第1伝熱管212の平均本数よりも多い。 In addition, the average number of the second heat transfer tubes 222 connected to the rooms of the third header 223 (the first room 223a and the room 223b) is is greater than the average number of first heat transfer tubes 212 connected to .
 なお、配管11cと接続される部屋である第1ヘッダー213の第1室213a、配管11dと接続される部屋である第4ヘッダー224の第2室224b、接続配管12と接続される部屋である第2ヘッダー214の第3室214c及び第3ヘッダー223の第1室223a、では接続される伝熱管との間で冷媒の折り返しが生じないので、折り返しが生じる隣接する部屋と比べて部屋の長さは短くなっている。 The first chamber 213a of the first header 213 is connected to the pipe 11c, the second chamber 224b of the fourth header 224 is connected to the pipe 11d, and the connection pipe 12 is connected. In the third chamber 214c of the second header 214 and the first chamber 223a of the third header 223, since the refrigerant does not fold back between the connected heat transfer tubes, the length of the room is longer than that of the adjacent rooms where the folding occurs. length is getting shorter.
 次に、室内熱交換器10の動作について説明する。 Next, the operation of the indoor heat exchanger 10 will be explained.
 <冷房運転時>
 図3は、実施の形態1に係る室内熱交換器10を有する空気調和装置200を示す模式図である。図3において、矢印は、冷房運転時の冷媒の流れを示している。空気調和装置200の冷房運転において、室内熱交換器10は、蒸発器として機能し、室外熱交換器16は、凝縮器として機能する。
<During cooling operation>
FIG. 3 is a schematic diagram showing an air conditioner 200 having the indoor heat exchanger 10 according to Embodiment 1. FIG. In FIG. 3, arrows indicate the flow of refrigerant during cooling operation. In cooling operation of the air conditioner 200, the indoor heat exchanger 10 functions as an evaporator, and the outdoor heat exchanger 16 functions as a condenser.
 冷媒は、圧縮機14で高温高圧ガスとなり、四方弁15を介して室外機201に搭載された室外熱交換器16に流入し、室外送風機13aによって送風される屋外の空気へ放熱して液相冷媒または液主体冷媒となる。そして、冷媒は、絞り装置17にて減圧され、室内機202の室内熱交換器10の第1熱交換器21に流入し、第1熱交換器21において室内送風機13bによって送風される室内の空気から吸熱する。そして、冷媒は、室内熱交換器10の第1熱交換器21から室内熱交換器10の第2熱交換器22に流れながら低温低圧二相冷媒から低圧ガス冷媒となって室内熱交換器10から流出し、四方弁15を介して再び圧縮機14に戻る。 The refrigerant becomes a high-temperature and high-pressure gas in the compressor 14, flows through the four-way valve 15 into the outdoor heat exchanger 16 mounted on the outdoor unit 201, heats the heat to the outdoor air blown by the outdoor fan 13a, and becomes a liquid phase. It becomes a refrigerant or a liquid-based refrigerant. Then, the refrigerant is depressurized by the expansion device 17, flows into the first heat exchanger 21 of the indoor heat exchanger 10 of the indoor unit 202, and is the indoor air blown by the indoor fan 13b in the first heat exchanger 21. absorb heat from Then, while flowing from the first heat exchanger 21 of the indoor heat exchanger 10 to the second heat exchanger 22 of the indoor heat exchanger 10, the refrigerant changes from the low-temperature, low-pressure two-phase refrigerant to the low-pressure gas refrigerant. , and returns to the compressor 14 again via the four-way valve 15 .
 図4は、実施の形態1に係る室内熱交換器10の蒸発器性能と、伝熱管長さ比との関係を示す図である。図4において、縦軸は、蒸発器性能を示し、横軸は、伝熱管長さ比を示している。 FIG. 4 is a diagram showing the relationship between the evaporator performance of the indoor heat exchanger 10 according to Embodiment 1 and the heat transfer tube length ratio. In FIG. 4, the vertical axis indicates the evaporator performance, and the horizontal axis indicates the heat transfer tube length ratio.
 伝熱管長さ比は、第1伝熱管212と第2伝熱管222とを合計した長さL+Lに対する第1伝熱管212の長さLの比である。 The heat transfer tube length ratio is the ratio of the length L 1 of the first heat transfer tube 212 to the total length L 1 +L 2 of the first heat transfer tube 212 and the second heat transfer tube 222 .
 図4に示すように、伝熱管長さ比が大きくなると、圧力損失が低減しにくくなり蒸発器性能が向上する。また、伝熱管長さ比が小さくなると、圧力損失が低減することで蒸発器性能が低下する。 As shown in Fig. 4, when the heat transfer tube length ratio increases, it becomes difficult to reduce the pressure loss and the evaporator performance improves. Further, when the heat transfer tube length ratio becomes small, the evaporator performance deteriorates due to the reduction in pressure loss.
 室内熱交換器10が蒸発器として機能するとき、絞り装置17にて減圧された冷媒は、第1熱交換器21の第1伝熱管212において室内空気から吸熱し、乾き度が上昇した状態となって第2熱交換器22の第2伝熱管222を流れる。 When the indoor heat exchanger 10 functions as an evaporator, the refrigerant decompressed by the expansion device 17 absorbs heat from the indoor air in the first heat transfer pipe 212 of the first heat exchanger 21, and the dryness increases. Then, it flows through the second heat transfer tube 222 of the second heat exchanger 22 .
 このとき、第2熱交換器22を流れる冷媒の体積流量は、第1熱交換器21よりも大きい。このため、第2伝熱管222の長さLが第1伝熱管212の長さLよりも長い構成、すなわち、伝熱管長さ比の小さい構成であると、第2伝熱管222における圧力損失が増大し、室内熱交換器10における飽和温度が低下するため、蒸発器性能が低減する。 At this time, the volumetric flow rate of the refrigerant flowing through the second heat exchanger 22 is larger than that of the first heat exchanger 21 . Therefore, when the length L2 of the second heat transfer tube 222 is longer than the length L1 of the first heat transfer tube 212, that is, when the heat transfer tube length ratio is small, the pressure in the second heat transfer tube 222 is Evaporator performance is reduced because losses increase and the saturation temperature in the indoor heat exchanger 10 decreases.
 一方、第2伝熱管222の長さLを第1伝熱管212の長さLよりも短くした構成、すなわち、伝熱管長さ比が大きい構成であると、乾き度の高い冷媒が流通する経路が短くなる。このため、第2伝熱管222における圧力損失が低減され、室内熱交換器10における飽和温度が上昇し、蒸発器を高性能化できる。 On the other hand, when the length L2 of the second heat transfer tube 222 is shorter than the length L1 of the first heat transfer tube 212, that is, when the heat transfer tube length ratio is large, a refrigerant with a high degree of dryness flows. shorter route. Therefore, the pressure loss in the second heat transfer pipes 222 is reduced, the saturation temperature in the indoor heat exchanger 10 is increased, and the performance of the evaporator can be improved.
 <暖房運転時>
 図5は、実施の形態1に係る室内熱交換器10を有する空気調和装置200を示す模式図である。図5において、矢印は、暖房運転時の冷媒の流れを示している。
<During heating operation>
FIG. 5 is a schematic diagram showing an air conditioner 200 having the indoor heat exchanger 10 according to Embodiment 1. FIG. In FIG. 5, arrows indicate the flow of refrigerant during heating operation.
 空気調和装置200の暖房運転において、室内熱交換器10は、凝縮器として機能し、室外熱交換器16は、蒸発器として機能する。 In the heating operation of the air conditioner 200, the indoor heat exchanger 10 functions as a condenser, and the outdoor heat exchanger 16 functions as an evaporator.
 冷媒は、圧縮機14で高温高圧のガスとなり、四方弁15を介して室内機202の室内熱交換器10に流入し、室内熱交換器10の第1熱交換器21及び第2熱交換器22において室内送風機13bによって送風される室内の空気へ放熱して液相冷媒または液主体冷媒となって流出する。そして、冷媒は、絞り装置17にて減圧され、室外機201の室外熱交換器16において室外送風機13aによって送風される外気から吸熱し、低温低圧二相冷媒から低圧ガス冷媒となる。そして、冷媒は、室外熱交換器16から流出し、四方弁15を介して再び圧縮機14に戻る。 The refrigerant becomes a high-temperature and high-pressure gas in the compressor 14, flows into the indoor heat exchanger 10 of the indoor unit 202 via the four-way valve 15, and enters the first heat exchanger 21 and the second heat exchanger of the indoor heat exchanger 10. At 22, the heat is radiated to the indoor air blown by the indoor fan 13b, and the refrigerant flows out as a liquid-phase refrigerant or a liquid-based refrigerant. Then, the refrigerant is depressurized by the expansion device 17, absorbs heat from the outside air blown by the outdoor fan 13a in the outdoor heat exchanger 16 of the outdoor unit 201, and changes from a low-temperature, low-pressure two-phase refrigerant to a low-pressure gas refrigerant. The refrigerant then flows out from the outdoor heat exchanger 16 and returns to the compressor 14 via the four-way valve 15 .
 図6は、実施の形態1に係る室内熱交換器10中の冷媒量と、伝熱管長さ比との関係を示す図である。図6において、縦軸は、冷媒量を示し、横軸は、伝熱管長さ比を示している。 FIG. 6 is a diagram showing the relationship between the amount of refrigerant in the indoor heat exchanger 10 according to Embodiment 1 and the heat transfer tube length ratio. In FIG. 6, the vertical axis indicates the refrigerant amount, and the horizontal axis indicates the heat transfer tube length ratio.
 図6に示すように、伝熱管長さ比が小さいと、冷媒密度が増大するため、室内熱交換器10中の冷媒量も増大する。また、伝熱管長さ比が大きくなると、冷媒密度が低減するため、室内熱交換器10の冷媒量も低減する。 As shown in FIG. 6, when the heat transfer tube length ratio is small, the refrigerant density increases, so the amount of refrigerant in the indoor heat exchanger 10 also increases. Further, when the heat transfer tube length ratio increases, the refrigerant density decreases, so the amount of refrigerant in the indoor heat exchanger 10 also decreases.
 室内熱交換器10が凝縮器として機能するとき、乾き度の高い冷媒は、第2熱交換器22から流入し、室内空気に放熱しながら第2熱交換器22及び第1熱交換器21を流れる。そして、冷媒は、乾き度が低下した状態となって第1熱交換器21から流出する。 When the indoor heat exchanger 10 functions as a condenser, the dry refrigerant flows from the second heat exchanger 22 and passes through the second heat exchanger 22 and the first heat exchanger 21 while radiating heat to the indoor air. flow. Then, the refrigerant flows out of the first heat exchanger 21 in a state of reduced dryness.
 このとき、第2熱交換器22の第3ヘッダー223及び第4ヘッダー224の冷媒の乾き度が低いと、第3ヘッダー223及び第4ヘッダー224の平均冷媒密度が上昇する。そうすると、第3ヘッダー223及び第4ヘッダー224の冷媒量が増大するため、室内熱交換器10中の冷媒量も増大してしまう。 At this time, if the dryness of the refrigerant in the third header 223 and the fourth header 224 of the second heat exchanger 22 is low, the average refrigerant density in the third header 223 and the fourth header 224 increases. Then, since the amount of refrigerant in the third header 223 and the fourth header 224 increases, the amount of refrigerant in the indoor heat exchanger 10 also increases.
 一方、第1伝熱管212の長さLの長さを、第2伝熱管222の長さLよりも長い構成とすることで、第1熱交換器21における伝熱が促進され、第2熱交換器22の第3ヘッダー223及び第4ヘッダー224における乾き度が上昇する。これにより、室内熱交換器10の平均冷媒密度が低減し、冷媒量が減少する。 On the other hand, by making the length L1 of the first heat transfer tube 212 longer than the length L2 of the second heat transfer tube 222, heat transfer in the first heat exchanger 21 is promoted, The dryness in the third header 223 and the fourth header 224 of the second heat exchanger 22 increases. As a result, the average refrigerant density of the indoor heat exchanger 10 is reduced, and the amount of refrigerant is reduced.
 このように、室内熱交換器10を蒸発器として機能させる場合には、室内熱交換器10における飽和温度が上昇し、室内熱交換器10を凝縮器として機能させる場合には、室内熱交換器10における平均冷媒密度が低減する。 Thus, when the indoor heat exchanger 10 functions as an evaporator, the saturation temperature in the indoor heat exchanger 10 rises, and when the indoor heat exchanger 10 functions as a condenser, the indoor heat exchanger The average refrigerant density at 10 is reduced.
 これにより、空気調和装置200の高性能化と省冷媒化を両立させることができる。 As a result, both the high performance of the air conditioner 200 and the refrigerant saving can be achieved.
 なお、第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、及び第4ヘッダー224の内部空間を仕切る仕切り部材4の数と、仕切り部材4により仕切られた部屋の数は適宜変更することができる。また、第3ヘッダー223、第4ヘッダー224が仕切り部材4を備えず、1つの部屋のみを有する構成としてもよい。 The number of partition members 4 that partition the internal spaces of the first header 213, the second header 214, the third header 223, and the fourth header 224, and the number of rooms partitioned by the partition members 4 can be changed as appropriate. can. Also, the third header 223 and the fourth header 224 may be configured to have only one room without the partition member 4 .
 ただし、第2熱交換器22の第3ヘッダー223の部屋の数と、第4ヘッダー224の部屋の数との合計は、第1熱交換器21の第1ヘッダー213の部屋の数と、第2ヘッダー214の部屋の数との合計よりも少ない。または、接続配管12で接続された第1熱交換器21の第1ヘッダー213または第2ヘッダー214の部屋の数のほうが、接続配管12で接続された第2熱交換器22の第3ヘッダー223の部屋の数よりも多い。これにより、第2熱交換器22における冷媒の流れ方向の転向回数は、第1熱交換器21における冷媒の流れ方向の転向回数よりも小さくなり、第3ヘッダー223及び第4ヘッダー224の内部の壁面と冷媒との衝突または摩擦による圧力損失が低減される。 However, the sum of the number of rooms in the third header 223 of the second heat exchanger 22 and the number of rooms in the fourth header 224 is equal to the number of rooms in the first header 213 of the first heat exchanger 21 and the number of rooms in the fourth header 224 2 header 214 less than the sum of the number of rooms. Alternatively, the number of rooms in the first header 213 or the second header 214 of the first heat exchanger 21 connected by the connection pipes 12 is greater than the number of rooms in the third header 223 of the second heat exchanger 22 connected by the connection pipes 12. more than the number of rooms in As a result, the number of times the flow direction of the refrigerant changes in the second heat exchanger 22 becomes smaller than the number of times the flow direction of the refrigerant changes in the first heat exchanger 21, and the insides of the third header 223 and the fourth header 224 Pressure loss due to collision or friction between the wall surface and the coolant is reduced.
 蒸発器として運転したときに、配管11cに接続されて液含有冷媒が流入する第1熱交換器21の部屋に接続される伝熱管212の本数<接続配管12に冷媒が流出する第1熱交換器21の部屋に接続される第1伝熱管212の本数≦接続配管12から冷媒が流入する第2熱交換器22の部屋に接続される第2伝熱管222の本数≦配管11dに接続されて気化した冷媒が流出する第2熱交換器22の部屋に接続される第2伝熱管222の本数、となっている。 When operated as an evaporator, the number of heat transfer tubes 212 connected to the room of the first heat exchanger 21 connected to the pipe 11c and into which the liquid-containing refrigerant flows <the first heat exchange in which the refrigerant flows out to the connection pipe 12 The number of the first heat transfer pipes 212 connected to the chamber 21 ≤ the number of the second heat transfer pipes 222 connected to the chamber of the second heat exchanger 22 into which the refrigerant flows from the connecting pipe 12 ≤ the number of the second heat transfer pipes 222 connected to the pipe 11d It is the number of the second heat transfer tubes 222 connected to the room of the second heat exchanger 22 through which the vaporized refrigerant flows out.
 また、第2伝熱管222は、第3ヘッダー223及び第4ヘッダー224に突き出していることにより流れの拡大または縮小が生じても、冷媒の流動抵抗による圧力損失が低減できる。 In addition, since the second heat transfer tubes 222 protrude into the third header 223 and the fourth header 224, pressure loss due to refrigerant flow resistance can be reduced even if the flow expands or contracts.
 第1熱交換器21とは異なり、第2熱交換器22において、冷媒の経路の全体にわたり流路断面積が変動しないように構成してもよい。外部と冷媒が出入して冷媒の折り返しのない第3ヘッダー223の第1室223a及び第4ヘッダー224の第2室224bの大きさを同じとして、また、冷媒の折り返しがある第3ヘッダー223の第2室223b及び第4ヘッダー224の第1室224aの大きさを同じとしてもよい。第3ヘッダー223の第1室223a及び第4ヘッダー224の第2室224bにそれぞれ接続される第2伝熱管222の本数が同じであり、第3ヘッダー223の第2室223b及び第4ヘッダー224の第1室224aにそれぞれ接続される第2伝熱管222の本数が同じであると望ましい。つまり、第3ヘッダー223及び第4ヘッダー224のいずれかの部屋から、相対する第4ヘッダー224及び第3ヘッダー223の部屋に向けて冷媒が流れる第2伝熱管222の本数は同じとなる。このため、伝熱管長さの短い第2熱交換器22は、伝熱管の全長において大きな流路断面積を維持できる。なお、第3ヘッダー223に接続された第2伝熱管222の本数を第3ヘッダー223の部屋の数で割ったときの商が整数にならない場合がある。このような場合、第3ヘッダー223の各部屋に接続する本数をその商に対して1未満の加減を行って整数として、かつ、それらの本数どうしの差が1本以下となるようにするとよい。各部屋での本数が全く同一でないが、おおよそ同じとなるので上記で述べた効果を得ることができる。例えば、第3ヘッダー223に接続された第2伝熱管222が21本であり、第3ヘッダー223の部屋の数が2の場合には、各部屋に接続される本数は10本と、11本とになる。また、それに伴って第3ヘッダー223の各部屋の大きさが10%程度変わることがあるが、そのような場合も本開示では複数の部屋が等しい大きさであり、接続される第2伝熱管222の本数も同じ、とする。 Unlike the first heat exchanger 21, the second heat exchanger 22 may be configured so that the cross-sectional area of the flow path does not fluctuate throughout the refrigerant path. The first chamber 223a of the third header 223 and the second chamber 224b of the fourth header 224 are the same in size, and the refrigerant flows in and out of the third header 223 and has no folded refrigerant. The second chamber 223b and the first chamber 224a of the fourth header 224 may have the same size. The number of the second heat transfer tubes 222 connected to the first chamber 223a of the third header 223 and the second chamber 224b of the fourth header 224 are the same, and the second chamber 223b of the third header 223 and the fourth header 224 It is desirable that the number of the second heat transfer tubes 222 connected to each of the first chambers 224a is the same. That is, the number of the second heat transfer tubes 222 in which the refrigerant flows from one of the chambers of the third header 223 and the fourth header 224 to the chamber of the opposing fourth header 224 and the third header 223 is the same. Therefore, the second heat exchanger 22 having a short heat transfer tube length can maintain a large flow passage cross-sectional area over the entire length of the heat transfer tube. Note that the quotient obtained by dividing the number of second heat transfer tubes 222 connected to the third header 223 by the number of rooms in the third header 223 may not be an integer. In such a case, the number of the third headers 223 to be connected to each room should be adjusted to an integer by adding or subtracting less than 1 to the quotient, and the difference between the numbers should be 1 or less. . Although the numbers in each room are not exactly the same, they are approximately the same, so the effects described above can be obtained. For example, when the number of second heat transfer tubes 222 connected to the third header 223 is 21 and the number of rooms in the third header 223 is 2, the number of tubes connected to each room is 10 and 11. becomes. In addition, the size of each chamber of the third header 223 may change by about 10% along with this, but even in such a case, the plurality of chambers are of the same size in the present disclosure, and the second heat transfer tubes connected 222 are assumed to be the same.
 第3ヘッダー223及び第4ヘッダー224には、第1ヘッダー213を流れる冷媒よりも乾き度の高い冷媒が流通する。第2熱交換器22を流れる冷媒の経路の全体に渡り大きな流路断面積を維持することで、室内熱交換器10が蒸発器として運転している場合に第2熱交換器22における圧力損失を低減できる。 Refrigerant having a higher degree of dryness than the refrigerant flowing through the first header 213 flows through the third header 223 and the fourth header 224 . By maintaining a large flow cross-sectional area over the entire path of the refrigerant flowing through the second heat exchanger 22, pressure loss in the second heat exchanger 22 when the indoor heat exchanger 10 is operating as an evaporator can be reduced.
 第1ヘッダー213の部屋(第1室213a~第3室213c)の平均サイズは、第3ヘッダー223の部屋(第1室223a及び第2室223b)の平均サイズよりも小さくなるように仕切られている。つまり、室内熱交換器10の凝縮器運転時において、冷媒の下流側に配置される第1熱交換器21の部屋(第1室213a~第3室213c)の平均サイズが、第2熱交換器22の部屋(第1室223a及び第2室223b)の平均サイズよりも小さくなるように仕切られている。これにより、室内熱交換器10において、冷媒密度の大きい過冷却状態の冷媒が存在する領域が削減され、冷媒量が低減できる。 The average size of the rooms in the first header 213 (first room 213a to third room 213c) is partitioned so as to be smaller than the average size of the rooms in the third header 223 (first room 223a and second room 223b). ing. That is, during the condenser operation of the indoor heat exchanger 10, the average size of the chambers (first chamber 213a to third chamber 213c) of the first heat exchanger 21 arranged on the downstream side of the refrigerant is the second heat exchange It is partitioned so as to be smaller than the average size of the chambers of the container 22 (the first chamber 223a and the second chamber 223b). As a result, in the indoor heat exchanger 10, the region in which the supercooled refrigerant having a high refrigerant density exists is reduced, and the amount of refrigerant can be reduced.
 なお、上記では、室内熱交換器10を第1熱交換器21及び第2熱交換器22から構成した例を示しているが、室内熱交換器10に代えて、室外熱交換器16が第1熱交換器21及び第2熱交換器22から構成されてもよい。 In the above, an example in which the indoor heat exchanger 10 is composed of the first heat exchanger 21 and the second heat exchanger 22 is shown. It may be composed of one heat exchanger 21 and a second heat exchanger 22 .
 また、室内熱交換器10を第1熱交換器21及び第2熱交換器22から構成し、且つ、室外熱交換器16も第1熱交換器21及び第2熱交換器22から構成してもよい。 Further, the indoor heat exchanger 10 is composed of the first heat exchanger 21 and the second heat exchanger 22, and the outdoor heat exchanger 16 is also composed of the first heat exchanger 21 and the second heat exchanger 22. good too.
 室内熱交換器10が凝縮器運転をする際に二相冷媒が流通する配管11cは、室外熱交換器16が凝縮器運転をする際に二相冷媒が流通する配管11bよりも長い。従って、凝縮器運転時における冷媒量削減の観点からは、室内熱交換器10を第1熱交換器21及び第2熱交換器22より構成することで、冷媒量削減の効果が大きくなる。 The pipe 11c through which the two-phase refrigerant flows when the indoor heat exchanger 10 performs condenser operation is longer than the pipe 11b through which the two-phase refrigerant flows when the outdoor heat exchanger 16 performs condenser operation. Therefore, from the viewpoint of reducing the amount of refrigerant during operation of the condenser, by configuring the indoor heat exchanger 10 with the first heat exchanger 21 and the second heat exchanger 22, the effect of reducing the amount of refrigerant is increased.
 以上説明した、実施の形態1に係る空気調和装置200によれば、室内熱交換器10を構成する第1熱交換器21の第1伝熱管212の長さLが、第2熱交換器22の第2伝熱管222の長さLよりも長い。そのため、室内熱交換器10を蒸発器として機能させた場合に、第1熱交換器21の第1伝熱管212の長さLよりも長さが短い第2熱交換器22の第2伝熱管222を乾き度の高い冷媒が流通する。これにより、圧力損失が低減し、室内熱交換器10が高性能化する。また、室内熱交換器10を凝縮器として機能させた場合、第1熱交換器21の熱交換が促進されるため、乾き度の高い冷媒の流通が促進される。これにより、第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、及び、第4ヘッダー224の平均冷媒密度が低減し、省冷媒化することができる。 According to the air conditioner 200 according to Embodiment 1 described above, the length L1 of the first heat transfer tube 212 of the first heat exchanger 21 constituting the indoor heat exchanger 10 is equal to that of the second heat exchanger 22 is longer than the length L2 of the second heat transfer tube 222 . Therefore, when the indoor heat exchanger 10 functions as an evaporator, the second heat exchanger 22 of the second heat exchanger 22 having a length shorter than the length L1 of the first heat transfer tube 212 of the first heat exchanger 21 A refrigerant having a high degree of dryness flows through the heat pipe 222 . Thereby, the pressure loss is reduced, and the performance of the indoor heat exchanger 10 is enhanced. In addition, when the indoor heat exchanger 10 functions as a condenser, the heat exchange of the first heat exchanger 21 is promoted, so the circulation of refrigerant with a high degree of dryness is promoted. As a result, the average refrigerant density of the first header 213, the second header 214, the third header 223, and the fourth header 224 is reduced, and the refrigerant can be saved.
 また、室内熱交換器10が、凝縮器として機能した場合に乾き度の高い冷媒が流通する冷媒配管は、室外熱交換器16を、凝縮器として機能した場合に乾き度の高い冷媒が流通する冷媒配管よりも長い。そのため、室内熱交換器10を、第1熱交換器21及び第2熱交換器22により構成することで、省冷媒化の効果をより大きく得られる。 In addition, the refrigerant pipe through which the refrigerant with high dryness flows when the indoor heat exchanger 10 functions as a condenser is circulated with the refrigerant with high dryness when the outdoor heat exchanger 16 functions as a condenser. Longer than refrigerant piping. Therefore, by configuring the indoor heat exchanger 10 with the first heat exchanger 21 and the second heat exchanger 22, the refrigerant saving effect can be obtained more greatly.
 また、第1ヘッダー213における複数の部屋(第1室213a~第3室213c)の数が、第3ヘッダー223の部屋(第1室223a、第2室223b)の数よりも多いため、室内熱交換器10が蒸発器として機能する場合に、第3ヘッダー223内での圧力損失が低減する。これにより、室内熱交換器10の高性能化が可能となる。 In addition, since the number of rooms (first room 213a to third room 213c) in the first header 213 is greater than the number of rooms (first room 223a, second room 223b) in the third header 223, Pressure loss in the third header 223 is reduced when the heat exchanger 10 functions as an evaporator. Thereby, it is possible to improve the performance of the indoor heat exchanger 10 .
 また、第1ヘッダー213の複数の部屋213a~213cは、室内熱交換器10が凝縮器として機能している場合に冷媒の流れ方向の下流側に位置する第1室213aが、上流側に位置する第2室213b、第3室213cよりも小さい。このため、乾き度が低く過冷却状態の冷媒が第1ヘッダー213に滞留することが低減される。 Further, among the plurality of chambers 213a to 213c of the first header 213, the first chamber 213a, which is located downstream in the refrigerant flow direction when the indoor heat exchanger 10 functions as a condenser, is located upstream. It is smaller than the second chamber 213b and the third chamber 213c. For this reason, the refrigerant with low dryness and in a supercooled state is less likely to stay in the first header 213 .
 また、第3ヘッダー223の第1室223aと、第2室223bとは、同じ大きさになるように仕切られている。このように等しい大きさになるように仕切られていることにより、室内熱交換器10が蒸発器として機能する場合に、乾き度の高い冷媒が流れる流路の断面積を増大させることができるため、圧力損失が低減され、高性能化できる。 Also, the first chamber 223a and the second chamber 223b of the third header 223 are partitioned to have the same size. Since the partitions are equally sized in this way, when the indoor heat exchanger 10 functions as an evaporator, it is possible to increase the cross-sectional area of the flow path through which the refrigerant with high dryness flows. , pressure loss is reduced, and performance can be improved.
 また、冷媒として、R32冷媒またはR410A冷媒に対してガス密度の小さい冷媒を用いた場合、能力当たりの冷媒流速が大きくなるため、圧力損失低減による性能改善効果が大きい。そのような冷媒として、例えば、HFO1234yf、HFP1234ze(E)など分子内に二重結合を有するオレフィン系冷媒、プロパン、DME(ジメチルエーテル)などがある。 In addition, when a refrigerant having a lower gas density than the R32 refrigerant or the R410A refrigerant is used as the refrigerant, the refrigerant flow velocity per capacity increases, so the performance improvement effect due to the pressure loss reduction is large. Examples of such refrigerants include olefinic refrigerants having double bonds in their molecules such as HFO1234yf and HFP1234ze(E), propane, and DME (dimethyl ether).
 なお、第1熱交換器21と第2熱交換器22とは、第1伝熱管212と、第2伝熱管222との長さの制約を担保する限り、一体で成型してもよい。 Note that the first heat exchanger 21 and the second heat exchanger 22 may be integrally molded as long as the length restrictions of the first heat transfer tube 212 and the second heat transfer tube 222 are secured.
 <第1の変形例>
 図7は、実施の形態1に係る室内熱交換器10の第1の変形例の模式図である。
<First modification>
FIG. 7 is a schematic diagram of a first modification of the indoor heat exchanger 10 according to Embodiment 1. FIG.
 図7に示すように、第1の変形例に係る室内熱交換器10は、配管11c、11dの接続位置が図2の構成と異なっている。図2では、第1熱交換器21において配管11cが第1ヘッダー213に接続され、接続配管12が第2ヘッダー214に接続される。つまり配管11cと接続配管12とが異なるヘッダーに接続される。また、図2では、第2熱交換器22において配管11dが第4ヘッダー224に接続され、接続配管12が第3ヘッダー223に接続される。つまり配管11dと接続配管12とが異なるヘッダーに接続される。これに対して、図7の第1の変形例では第1熱交換器21において、配管11cと接続配管12とが同じ第1ヘッダー213に接続される。また、第1の変形例では第2熱交換器22において、配管11dと接続配管12とが同じ第3ヘッダー223に接続される。また、図7において、第3ヘッダー223の内部の空間は、複数の部屋(第1室223aと第2室223b)が等しい大きさになるように仕切られている。 As shown in FIG. 7, the indoor heat exchanger 10 according to the first modification differs from the configuration in FIG. 2 in connection positions of the pipes 11c and 11d. In FIG. 2, in the first heat exchanger 21, the pipe 11c is connected to the first header 213 and the connection pipe 12 is connected to the second header 214. As shown in FIG. That is, the pipe 11c and the connection pipe 12 are connected to different headers. 2, the pipe 11d is connected to the fourth header 224 in the second heat exchanger 22, and the connection pipe 12 is connected to the third header 223. As shown in FIG. That is, the pipe 11d and the connection pipe 12 are connected to different headers. 7, in the first heat exchanger 21, the pipe 11c and the connection pipe 12 are connected to the same first header 213. As shown in FIG. Further, in the first modification, in the second heat exchanger 22, the pipe 11d and the connection pipe 12 are connected to the same third header 223. As shown in FIG. Further, in FIG. 7, the space inside the third header 223 is partitioned so that a plurality of rooms (the first room 223a and the second room 223b) have the same size.
 室内熱交換器10において、第2ヘッダー214と第4ヘッダー224とは互いに最も遠く離れあう位置にあり、第1ヘッダー213と第3ヘッダー223とは最も近接しあう位置にある。そして、図2と同様に接続配管12は、第1の変形例においても、近接する第1ヘッダー213と第3ヘッダー223の一方の端の部屋どうしを接続する構成としている。このように近接しあうヘッダーの水平方向の一方の端どうしの接続は、接続配管12を短くすることに有効である。また、冷媒を流入、流出させる配管11c、11dが近接する第1ヘッダー213と第3ヘッダー223の水平方向の他方の端の部屋に接続される。第2ヘッダー214、第4ヘッダー224は配管が接続されない。このため、この構成は、配管の取り回しを単純にして、室内熱交換器10を小型にする場合に有利であり、冷媒量の減少にも有効である。 In the indoor heat exchanger 10, the second header 214 and the fourth header 224 are positioned farthest apart from each other, and the first header 213 and the third header 223 are positioned closest to each other. Also in the first modified example, the connecting pipes 12 are configured to connect rooms at one end of the adjacent first header 213 and third header 223, as in FIG. Such connection of the horizontal ends of adjacent headers is effective in shortening the connecting pipe 12 . In addition, pipes 11c and 11d for inflow and outflow of the refrigerant are connected to rooms at the other ends in the horizontal direction of the adjacent first and third headers 213 and 223, respectively. No piping is connected to the second header 214 and the fourth header 224 . Therefore, this configuration is advantageous in simplifying the routing of the pipes and downsizing the indoor heat exchanger 10, and is also effective in reducing the amount of refrigerant.
 なお、配管11c、11d、接続配管12の接続が図2と異なるため、図7の一部のヘッダーにおける部屋の数、仕切り部材4の数も図2と異なる。配管11c、接続配管12が接続される第1ヘッダー213は3枚の仕切り部材4により、213a~213dまでの4つの部屋に分割される。第1ヘッダーの仕切り部材4の数、部屋の数は配管と接続されない第2ヘッダー214よりも多い。同様に配管11d、接続配管12が接続される第3ヘッダー223は1枚の仕切り部材4により、213a、213bの2つの部屋に分割される。第4ヘッダー224は仕切り部材4を有さず、1つの部屋で構成される。第3ヘッダーの仕切り部材4の数、部屋の数は配管と接続されない第4ヘッダー224よりも多い。 Since the connections of the pipes 11c and 11d and the connecting pipe 12 are different from those in FIG. 2, the number of rooms and the number of partition members 4 in some headers in FIG. 7 are also different from those in FIG. A first header 213 to which the pipe 11c and the connection pipe 12 are connected is divided into four chambers 213a to 213d by three partition members 4. FIG. The number of partition members 4 and the number of rooms of the first header are greater than those of the second header 214 which is not connected to piping. Similarly, the third header 223 to which the pipe 11d and the connection pipe 12 are connected is divided into two chambers 213a and 213b by one partition member 4. As shown in FIG. The fourth header 224 does not have the partition member 4 and is composed of one room. The number of partition members 4 and the number of rooms of the third header are greater than those of the fourth header 224 which is not connected to piping.
 第1熱交換器21の第1伝熱管212が第2熱交換器22の第2伝熱管222よりも長い点は図2と同様である。また、第1ヘッダー213の仕切り部材4の数が第3ヘッダー223の仕切り部材4の数よりも多く、第1ヘッダー213の部屋の数が第3ヘッダー223の部屋の数よりも多く、第1ヘッダー213の部屋の平均サイズが第3ヘッダー223の部屋の平均サイズよりも小さい点も図2と同様である。このため、第1の変形例は図2の構成と同様に省冷媒化と圧力損失の低減とを両立することができ、また、熱交換器を小型にすることができる。 The point that the first heat transfer tube 212 of the first heat exchanger 21 is longer than the second heat transfer tube 222 of the second heat exchanger 22 is the same as in FIG. Also, the number of partition members 4 in the first header 213 is greater than the number of partition members 4 in the third header 223, the number of rooms in the first header 213 is greater than the number of rooms in the third header 223, and the number of rooms in the first header 213 is greater than that in the third header 223. Similarly to FIG. 2, the average size of the rooms in the header 213 is smaller than the average size of the rooms in the third header 223 . For this reason, the first modification can achieve both saving of refrigerant and reduction of pressure loss in the same manner as the configuration of FIG. 2, and the size of the heat exchanger can be reduced.
 <第2の変形例>
 図8は、実施の形態1に係る室内熱交換器10の第2の変形例の模式図である。図8に示すように、第2の変形例に係る室内熱交換器10は、第1熱交換器21と、第2熱交換器22と、第3熱交換器23とにより構成されている。
<Second modification>
FIG. 8 is a schematic diagram of a second modification of the indoor heat exchanger 10 according to Embodiment 1. FIG. As shown in FIG. 8 , the indoor heat exchanger 10 according to the second modification includes a first heat exchanger 21 , a second heat exchanger 22 and a third heat exchanger 23 .
 第1熱交換器21の第1ヘッダー213は、複数の仕切り部材4により複数室213a~213cに仕切られており、第2ヘッダー214は、複数の仕切り部材4により複数室214a~214cに仕切られている。 A first header 213 of the first heat exchanger 21 is partitioned into a plurality of chambers 213a to 213c by a plurality of partition members 4, and a second header 214 is partitioned into a plurality of chambers 214a to 214c by a plurality of partition members 4. ing.
 第2熱交換器22の第3ヘッダー223は、第1室223aと、第2室223bとに仕切られている。 The third header 223 of the second heat exchanger 22 is partitioned into a first chamber 223a and a second chamber 223b.
 第3熱交換器23は、一本の第3伝熱管6が複数回転向するサーペンタイン型の熱交換器である。 The third heat exchanger 23 is a serpentine heat exchanger in which one third heat transfer tube 6 rotates multiple times.
 第3熱交換器23の第3伝熱管6は、一端8が配管11cに接続されており、他端7が第1ヘッダー213の第1室213aに接続されている。 The third heat transfer pipe 6 of the third heat exchanger 23 has one end 8 connected to the pipe 11 c and the other end 7 connected to the first chamber 213 a of the first header 213 .
 第3伝熱管6におけるひとつの転向位置から、次の転向位置までの長さLは、第1熱交換器21の第1伝熱管212の長さLよりも短い。また、第3伝熱管6の管路の全長は、第1伝熱管212の長さLよりも長い。 The length L3 from one turning position of the third heat transfer tube 6 to the next turning position is shorter than the length L1 of the first heat transfer tube 212 of the first heat exchanger 21 . Further, the total length of the pipeline of the third heat transfer tube 6 is longer than the length L1 of the first heat transfer tube 212 .
 第2の変形例における室内熱交換器10では、室内熱交換器10の蒸発器運転時、冷媒が配管11cから第3伝熱管6の一端8に流入し、第3伝熱管6の他端7に向けて流れる。そして、冷媒は、他端7から第1ヘッダー213の第1室213aに流入する。 In the indoor heat exchanger 10 according to the second modification, when the indoor heat exchanger 10 is in evaporator operation, the refrigerant flows from the pipe 11c into the one end 8 of the third heat transfer tube 6, and the other end 7 of the third heat transfer tube 6 flowing towards The refrigerant then flows from the other end 7 into the first chamber 213 a of the first header 213 .
 冷媒は、第1ヘッダー213の第1室213aから、第2ヘッダー214の第1室214a、第1ヘッダー213の第2室213b、及び、第2ヘッダー214の第2室214bを経て、第1ヘッダー213の第3室213cに流入する。 The refrigerant flows from the first chamber 213a of the first header 213 through the first chamber 214a of the second header 214, the second chamber 213b of the first header 213, and the second chamber 214b of the second header 214 to the first It flows into the third chamber 213 c of the header 213 .
 そして、冷媒は、第1ヘッダー213の第3室213cから、第2ヘッダー214の第3室214cを経て、接続配管12を通り、第3ヘッダー223の第1室223aに流入する。そして、冷媒は、第4ヘッダー224を経た後、第3ヘッダー223の第2室223bに至り、配管11dから流出する。 Then, the refrigerant flows from the third chamber 213c of the first header 213, through the third chamber 214c of the second header 214, through the connecting pipe 12, and into the first chamber 223a of the third header 223. After passing through the fourth header 224, the refrigerant reaches the second chamber 223b of the third header 223 and flows out from the pipe 11d.
 このとき、第3伝熱管6のひとつの転向位置から、その次の転向位置までの長さLは、第1伝熱管212の長さLよりも短いが、第3伝熱管6の管路の全長は、第1伝熱管212の長さLよりも長い。第2の変形例は、図2、図7の構成の、配管11cと、配管11cが接続された第1ヘッダー213の第1室213aとの間に、第3熱交換器23を設置した構成と考えることができる。第3熱交換器23は第1ヘッダー213室の第1室213aに接続される第1伝熱管212よりも長く、また本数が少なく、従って流路断面積が小さい。そのため、第2ヘッダー214に流入する冷媒密度が低減し、第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、第4ヘッダー224全体の平均冷媒量を低減させることができる。 At this time, the length L3 from one turning position of the third heat transfer tube 6 to the next turning position is shorter than the length L1 of the first heat transfer tube 212, but the tube of the third heat transfer tube 6 The total length of the passage is longer than the length L1 of the first heat transfer tube 212 . A second modification is a configuration in which a third heat exchanger 23 is installed between the pipe 11c and the first chamber 213a of the first header 213 to which the pipe 11c is connected, in the structures of FIGS. can be considered. The third heat exchanger 23 is longer and fewer in number than the first heat transfer tubes 212 connected to the first chamber 213a of the first header 213 chamber, and therefore has a small flow cross-sectional area. Therefore, the density of refrigerant flowing into the second header 214 is reduced, and the average amount of refrigerant in the entire first header 213, second header 214, third header 223, and fourth header 224 can be reduced.
 実施の形態2
 図9は、実施の形態2に係る室内機202を示す模式図である。実施の形態2に係る室内機202は、実施の形態1に係る空気調和装置200の室内機202の一例である。
Embodiment 2
FIG. 9 is a schematic diagram showing an indoor unit 202 according to Embodiment 2. FIG. The indoor unit 202 according to Embodiment 2 is an example of the indoor unit 202 of the air conditioner 200 according to Embodiment 1. FIG.
 図9に示すように、実施の形態2に係る室内機202は、第1熱交換器21の第2ヘッダー214の高さ位置が、第2熱交換器22の第4ヘッダー224の高さ位置よりも鉛直方向31の下側となるように配置されている。また、第1熱交換器21の第1ヘッダー213と、第2熱交換器22の第3ヘッダー223とは、同じ高さである。第1熱交換器21の第1伝熱管212、第2熱交換器22の第2伝熱管222は、いずれも鉛直方向に対して斜めになっており、それぞれの上端に位置する第1ヘッダー213と第3ヘッダー223とが水平方向で近づきあって、それぞれの下端に位置する第2ヘッダー214と第4ヘッダー224とが水平方向で離れあうように配置される。 As shown in FIG. 9, in the indoor unit 202 according to Embodiment 2, the height position of the second header 214 of the first heat exchanger 21 is the height position of the fourth header 224 of the second heat exchanger 22. It is arranged so as to be lower in the vertical direction 31 than the . Also, the first header 213 of the first heat exchanger 21 and the third header 223 of the second heat exchanger 22 have the same height. The first heat transfer pipes 212 of the first heat exchanger 21 and the second heat transfer pipes 222 of the second heat exchanger 22 are both oblique with respect to the vertical direction. and the third header 223 are horizontally adjacent to each other, and the second header 214 and the fourth header 224 located at the lower ends thereof are horizontally separated from each other.
 すなわち、実施の形態2に係る室内機202においては、第1熱交換器21の最下部41が、第2熱交換器22の最下部42に対し、鉛直方向31の下側に位置している。 That is, in the indoor unit 202 according to Embodiment 2, the lowest portion 41 of the first heat exchanger 21 is located below the lowest portion 42 of the second heat exchanger 22 in the vertical direction 31. .
 図10は、図9の室内熱交換器10の接続配管12を流れる冷媒を示す模式図である。図10は、室内熱交換器10の凝縮器運転時の様子を示している。冷媒は液相冷媒61と気相冷媒62とが混在し、それらが接続配管12中を流れる。この図の接続配管12は第1ヘッダー213の上面と第3ヘッダー223の上面と間をU字形の接続配管12が接続する構成を示している。なお、接続配管12が第1ヘッダー213と第3ヘッダー223の水平方向の端どうしを接続する構成、すなわち、紙面奥行き方向に接続配管12がU字形を描く構成としてもよい。 FIG. 10 is a schematic diagram showing refrigerant flowing through the connecting pipe 12 of the indoor heat exchanger 10 of FIG. FIG. 10 shows how the indoor heat exchanger 10 operates as a condenser. The coolant is a mixture of liquid-phase coolant 61 and gas-phase coolant 62 , which flow through the connecting pipe 12 . The connection pipe 12 in this figure shows a configuration in which the upper surface of the first header 213 and the upper surface of the third header 223 are connected by the U-shaped connection pipe 12 . The connecting pipes 12 may connect the horizontal ends of the first header 213 and the third header 223, that is, the connecting pipes 12 may form a U shape in the depth direction of the paper.
 図10に示すように、室内熱交換器10の凝縮器運転時においては、第2熱交換器22から第1熱交換器21に、接続配管12を介して冷媒が冷媒流れ方向30に流れる。第1熱交換器21を流れる冷媒は、第2熱交換器22よりも乾き度の低い冷媒である。接続配管12中は第1熱交換器21を流れる冷媒と、第2熱交換器22を流れる冷媒との間の乾き度を有する冷媒が流れる。 As shown in FIG. 10, during condenser operation of the indoor heat exchanger 10, the refrigerant flows from the second heat exchanger 22 to the first heat exchanger 21 through the connecting pipe 12 in the refrigerant flow direction 30. The refrigerant flowing through the first heat exchanger 21 has a lower degree of dryness than the refrigerant flowing through the second heat exchanger 22 . Refrigerant having dryness between the refrigerant flowing through the first heat exchanger 21 and the refrigerant flowing through the second heat exchanger 22 flows through the connection pipe 12 .
 接続配管12を移動する液相冷媒61には、冷媒の流れ方向に作用する慣性力52、及び、重力51が作用する。各ヘッダーの内部の流路断面積は各伝熱管の流路断面積よりも大きく、流速が低下するので、慣性力52が低下して重力51の影響が大きくなる。 Inertial force 52 acting in the flow direction of the refrigerant and gravity 51 act on the liquid-phase refrigerant 61 moving in the connecting pipe 12 . Since the channel cross-sectional area inside each header is larger than the channel cross-sectional area of each heat transfer tube and the flow velocity is reduced, the inertial force 52 is reduced and the effect of gravity 51 is increased.
 冷媒流量が大きいと、液相冷媒61に作用する慣性力52が重力51より大きいため、接続配管12の液相冷媒61は、第2熱交換器22から第1熱交換器21の方向、すなわち、冷媒流れ方向30に流れることができる。 When the refrigerant flow rate is large, the inertial force 52 acting on the liquid-phase refrigerant 61 is greater than the gravity force 51, so the liquid-phase refrigerant 61 in the connection pipe 12 moves in the direction from the second heat exchanger 22 to the first heat exchanger 21, that is, , in the coolant flow direction 30 .
 低能力運転時には、冷媒流量の減少により、慣性力52が低下し、重力51の影響が大きくなる。 During low-capacity operation, the inertial force 52 decreases due to the decrease in the refrigerant flow rate, and the effect of gravity 51 increases.
 このとき、第1熱交換器21の第1伝熱管212が、第2熱交換器22の第2伝熱管222よりも短いと、第2熱交換器22の方向に作用する重力51の影響が増す。そうすると、接続配管12の液相冷媒61に作用する慣性力52に対して、第2熱交換器22の方向に作用する重力51の影響が大きくなり、液相冷媒61が冷媒流れ方向30に流れにくくなる。その結果、特に慣性力52が小さいヘッダー、接続配管12に液相冷媒61が滞留しやすくなる。これにより、第2熱交換器22における冷媒密度が増大し、冷媒量が増加してしまう。 At this time, if the first heat transfer tube 212 of the first heat exchanger 21 is shorter than the second heat transfer tube 222 of the second heat exchanger 22, the effect of gravity 51 acting in the direction of the second heat exchanger 22 is Increase. Then, the gravity force 51 acting in the direction of the second heat exchanger 22 increases the influence of the inertial force 52 acting on the liquid-phase refrigerant 61 in the connecting pipe 12, and the liquid-phase refrigerant 61 flows in the refrigerant flow direction 30. becomes difficult. As a result, the liquid-phase refrigerant 61 tends to stay in the header and the connecting pipe 12, where the inertial force 52 is particularly small. As a result, the density of the refrigerant in the second heat exchanger 22 increases and the amount of refrigerant increases.
 実施の形態2では、第1熱交換器21の第1伝熱管212を、第2熱交換器22の第2伝熱管222よりも長くしているため、第1熱交換器21の方向に作用する重力51の影響が第2熱交換器22の方向に作用する重力51の影響よりも大きくなる。これにより、低能力運転時に液相冷媒61に作用する慣性力52が低下した場合にも、冷媒を冷媒流れ方向30に駆動できるため、低能力運転における冷媒密度増大を抑制し、省冷媒化することができる。 In Embodiment 2, since the first heat transfer tubes 212 of the first heat exchanger 21 are longer than the second heat transfer tubes 222 of the second heat exchanger 22, the The effect of the gravity 51 acting in the direction of the second heat exchanger 22 is greater than the effect of the gravity 51 acting in the direction of the second heat exchanger 22 . As a result, even when the inertial force 52 acting on the liquid-phase refrigerant 61 is reduced during low-capacity operation, the refrigerant can be driven in the refrigerant flow direction 30, thereby suppressing an increase in refrigerant density during low-capacity operation and saving refrigerant. be able to.
 以上説明した、実施の形態2に係る空気調和装置200は、室内熱交換器10において、第1熱交換器21の最下部41が、第2熱交換器22の最下部42に対し、鉛直方向31の下側に位置するように配置されている。これにより、室内熱交換器10を凝縮器として機能させた場合に、第1熱交換器21に流れる液相冷媒61が冷媒流れ方向30に流れにくくなることによる第2熱交換器22の冷媒密度増大が低減され、省冷媒化できる。 In the air conditioner 200 according to Embodiment 2 described above, in the indoor heat exchanger 10, the lowest portion 41 of the first heat exchanger 21 is positioned vertically with respect to the lowest portion 42 of the second heat exchanger 22. It is arranged so as to be positioned below 31 . As a result, when the indoor heat exchanger 10 functions as a condenser, the liquid-phase refrigerant 61 flowing in the first heat exchanger 21 becomes difficult to flow in the refrigerant flow direction 30, and the refrigerant density of the second heat exchanger 22 increases. The increase is reduced, and refrigerant can be saved.
 また、第2伝熱管222が第1伝熱管212よりも短くしたので、同じ長さとした場合に比べて、第2熱交換器22の熱交換量が小さくなっている。このため、相対的に第2熱交換器22の乾き度が高くなり、ヘッダー、接続配管12に液相冷媒61が滞留する場合も、その量が少なくなる。一方、第1熱交換器21は乾き度が低くなり、第1ヘッダー213、第2ヘッダー214は一部に乾き度が少し減少する箇所もあるが、もともと凝縮器として機能させる際には冷媒を過冷却の状態とすることが一般的であり、液相冷媒61のみが流れる箇所では冷媒量は変化しない。その結果、実施の形態2の構成の熱交換器では総合的に液相冷媒61の量が減少する。 Also, since the second heat transfer tubes 222 are shorter than the first heat transfer tubes 212, the amount of heat exchanged by the second heat exchanger 22 is smaller than when they are the same length. For this reason, the dryness of the second heat exchanger 22 is relatively high, and even if the liquid-phase refrigerant 61 stays in the header and the connecting pipe 12, the amount of the liquid-phase refrigerant 61 is reduced. On the other hand, the dryness of the first heat exchanger 21 is low, and the dryness of the first header 213 and the second header 214 is slightly reduced in some parts. A supercooled state is generally used, and the amount of refrigerant does not change at locations where only the liquid-phase refrigerant 61 flows. As a result, the amount of the liquid-phase refrigerant 61 decreases overall in the heat exchanger having the configuration of the second embodiment.
 実施の形態3
 実施の形態3は、実施の形態1の空気調和装置200において、室内機202における室内熱交換器10と室内送風機13bとの関係について言及したものであり、室内送風機13bとして、横断流送風機など水平方向に回転軸が延びた送風機を採用している。空気調和装置200及び室内熱交換器10の構成は実施の形態1と同様であるため、説明を省略し、同様あるいは相当部分には同じ符号を付している。
Embodiment 3
Embodiment 3 refers to the relationship between the indoor heat exchanger 10 and the indoor fan 13b in the indoor unit 202 in the air conditioner 200 of Embodiment 1. As the indoor fan 13b, a horizontal flow fan such as a cross-flow fan is used. A blower with a rotating shaft extending in the direction is adopted. Since the configurations of the air conditioner 200 and the indoor heat exchanger 10 are the same as those of the first embodiment, the description is omitted, and the same or corresponding parts are given the same reference numerals.
 図11は、実施の形態3に係る室内機202の斜視図である。図11に示すように、室内機202には、室内送風機13bとして、低圧及び高風量で動作するクロスフローファンなどの横断流送風機が搭載されている。室内送風機13bは、回転軸18の周方向に気流を発生させる。 FIG. 11 is a perspective view of the indoor unit 202 according to Embodiment 3. FIG. As shown in FIG. 11, the indoor unit 202 is equipped with a cross-flow fan such as a cross-flow fan that operates at low pressure and high air volume as the indoor fan 13b. The indoor fan 13b generates an airflow in the circumferential direction of the rotating shaft 18. As shown in FIG.
 室内熱交換器10は、第1伝熱管212及び第2伝熱管222が、室内送風機13bの回転軸18を中心とする円の接線方向である回転軸18の周方向に配置され、室内送風機13bの回転軸18の周方向に冷媒が流れる。 In the indoor heat exchanger 10, the first heat transfer tube 212 and the second heat transfer tube 222 are arranged in the circumferential direction of the rotation axis 18, which is the tangential direction of a circle centered on the rotation axis 18 of the indoor fan 13b. The coolant flows in the circumferential direction of the rotating shaft 18 of the .
 第1熱交換器21は、第1ヘッダー213及び第2ヘッダー214の延伸方向が、室内送風機13bの回転軸18の軸方向と平行になるように配置されている。また、第2熱交換器22は、第3ヘッダー223及び第4ヘッダー224の延伸方向が、室内送風機13bの回転軸18の軸方向と平行に配置されている。 The first heat exchanger 21 is arranged so that the extending directions of the first header 213 and the second header 214 are parallel to the axial direction of the rotating shaft 18 of the indoor fan 13b. In the second heat exchanger 22, the extension directions of the third header 223 and the fourth header 224 are arranged parallel to the axial direction of the rotation shaft 18 of the indoor fan 13b.
 図12は、図11の室内機202のA-A断面における模式図である。図12に示すように、第1熱交換器21と、第2熱交換器22とは、室内送風機13bの回転軸18の周方向の異なる位置に配置されている。つまり、第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、及び、第4ヘッダー224は、回転軸18の放射方向において重なりあっていない。第1熱交換器21と、第2熱交換器22とは、室内送風機13bに流入する気流に対し並列に配置されている。 FIG. 12 is a schematic diagram of the AA cross section of the indoor unit 202 in FIG. As shown in FIG. 12, the first heat exchanger 21 and the second heat exchanger 22 are arranged at different positions in the circumferential direction of the rotating shaft 18 of the indoor fan 13b. That is, the first header 213 , the second header 214 , the third header 223 and the fourth header 224 do not overlap in the radial direction of the rotating shaft 18 . The first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the airflow flowing into the indoor fan 13b.
 このように第1熱交換器21と、第2熱交換器22とを気流に対し並列に配置することで、気流の静圧が小さくなり、風量が向上する。これにより、伝熱性能が改善し室内熱交換器10の凝縮器運転時に形成される冷媒過冷却域が低減され、冷媒密度が低減して省冷媒化できる。 By arranging the first heat exchanger 21 and the second heat exchanger 22 in parallel with the airflow in this way, the static pressure of the airflow is reduced and the air volume is improved. As a result, the heat transfer performance is improved, the supercooled region of the refrigerant formed during the operation of the condenser of the indoor heat exchanger 10 is reduced, and the density of the refrigerant is reduced, thereby saving refrigerant.
 図13は、比較例に係る室内機202のA-A断面における模式図である。図13に示すように、比較例に係る室内機202は、第1熱交換器21と、第2熱交換器22とが、室内送風機13bの回転軸18に対し、周方向の同じ位置に配置されている。すなわち、第1熱交換器21と、第2熱交換器22とは、室内送風機13bの気流に対し、直列に配置されている。 FIG. 13 is a schematic diagram of the AA cross section of the indoor unit 202 according to the comparative example. As shown in FIG. 13, in the indoor unit 202 according to the comparative example, the first heat exchanger 21 and the second heat exchanger 22 are arranged at the same position in the circumferential direction with respect to the rotating shaft 18 of the indoor fan 13b. It is That is, the first heat exchanger 21 and the second heat exchanger 22 are arranged in series with respect to the airflow of the indoor fan 13b.
 比較例に係る室内機202のように第1熱交換器21と第2熱交換器22とが配置されていると、室内熱交換器10を流れる気流が阻害されやすい。これは、第1熱交換器21の第1伝熱管212と、第2熱交換器22の第2伝熱管222との長さの違いにより、第1ヘッダー213と、第2ヘッダー214と、第3ヘッダー223と第4ヘッダー224との高さ位置が異なるからである。 If the first heat exchanger 21 and the second heat exchanger 22 are arranged like the indoor unit 202 according to the comparative example, the airflow flowing through the indoor heat exchanger 10 is likely to be obstructed. This is due to the difference in length between the first heat transfer tubes 212 of the first heat exchanger 21 and the second heat transfer tubes 222 of the second heat exchanger 22, resulting in the first header 213, the second header 214, and the This is because the height positions of the third header 223 and the fourth header 224 are different.
 実施の形態3に係る室内機202のように、第1熱交換器21と第2熱交換器22とが気流に対し並列に配置されることで、気流の静圧が小さくなり風量が向上し、伝熱性能が改善される。これにより、室内熱交換器10を凝縮器として運転した場合に形成される冷媒過冷却域を低減し、冷媒密度を低減して省冷媒化ができる。 As in the indoor unit 202 according to Embodiment 3, the first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the airflow, thereby reducing the static pressure of the airflow and increasing the air volume. , the heat transfer performance is improved. As a result, the refrigerant supercooled region formed when the indoor heat exchanger 10 is operated as a condenser can be reduced, and the refrigerant density can be reduced to save refrigerant.
 図14は、実施の形態3に係る室内機202の室内送風機13bと、風速の関係を説明する模式図である。図14において、第2ヘッダー214の一端の角部Cを位置0%とし、角部Cから回転軸方向33に沿って移動した場合の第2ヘッダー214の他端の角部Dを位置100%とする。また、図14において、角部Cから、回転軸18の周方向34に第1伝熱管212及び第2伝熱管222に沿って移動した場合の第4ヘッダー224の一端の角部Eを位置100%とする。 FIG. 14 is a schematic diagram for explaining the relationship between the indoor fan 13b of the indoor unit 202 according to Embodiment 3 and the wind speed. In FIG. 14, the corner portion C of one end of the second header 214 is positioned at 0%, and the corner portion D of the other end of the second header 214 when moved from the corner portion C along the rotation axis direction 33 is positioned at 100%. and 14, the corner E of one end of the fourth header 224 when moved along the first heat transfer tube 212 and the second heat transfer tube 222 in the circumferential direction 34 of the rotating shaft 18 from the corner C is positioned 100 %.
 図15は、図14における室内送風機13bの回転軸方向33の位置と、風速との関係、及び、室内送風機13bの回転軸18の周方向34の位置と、風速との関係を示す図である。図15において、実線は、室内送風機13bの回転軸方向33の位置と、風速との関係を示し、破線は、室内送風機13bの回転軸18の周方向34の位置と、風速との関係を示している。 FIG. 15 is a diagram showing the relationship between the position of the indoor fan 13b in the rotation axis direction 33 in FIG. 14 and the wind speed, and the relationship between the position of the rotation shaft 18 of the indoor fan 13b in the circumferential direction 34 and the wind speed. . In FIG. 15, the solid line indicates the relationship between the position of the indoor fan 13b in the rotation axis direction 33 and the wind speed, and the dashed line indicates the relationship between the position of the rotation shaft 18 of the indoor fan 13b in the circumferential direction 34 and the wind speed. ing.
 図14及び15に示すように、室内送風機13bの上流に第1熱交換器21と第2熱交換器22を備える構成であると、第1熱交換器21を通過した低温な空気と、第2熱交換器22を通過した高温の空気とが、室内送風機13bにより混合される。 As shown in FIGS. 14 and 15, when the configuration includes the first heat exchanger 21 and the second heat exchanger 22 upstream of the indoor fan 13b, the low-temperature air that has passed through the first heat exchanger 21 and the second The hot air that has passed through the second heat exchanger 22 is mixed with the indoor air blower 13b.
 このため、凝縮器運転時において、一定以上の空気温度を吹きだすのに必要な冷媒飽和温度が小さくなる。これにより、ユーザに提供される空気温度当たりの性能が向上する。 Therefore, when the condenser is in operation, the refrigerant saturation temperature required to blow air at a certain temperature or higher becomes smaller. This increases the performance per air temperature provided to the user.
 室内送風機13bの回転軸18に対して平行な方向に冷媒流れを設ける構成であると、室内送風機13bの回転軸18の周方向の風速の偏差が大きく異なる。そのため、伝熱管どうしの熱交換能力が大きくばらつき、凝縮器運転において冷媒の過冷却度が大きくなる領域が発生し、省冷媒効果が低減される。 With the configuration in which the refrigerant flow is provided in a direction parallel to the rotating shaft 18 of the indoor fan 13b, the deviation of the wind speed in the circumferential direction of the rotating shaft 18 of the indoor fan 13b greatly differs. Therefore, the heat exchange capacity of the heat transfer tubes varies greatly, and a region in which the degree of supercooling of the refrigerant becomes large occurs in the operation of the condenser, reducing the refrigerant saving effect.
 これに対し、実施の形態3では、第1伝熱管212及び第2伝熱管222が室内送風機13bの回転軸18の周方向であり、回転軸18を中心とする円の接線方向に配置されている。このため、回転軸方向33の風速偏差が小さい、室内送風機13bの回転軸18の周方向に冷媒が流れる構成となり、第1伝熱管212及び第2伝熱管222の熱交換能力のばらつきが小さくなる。これにより、凝縮運転時において過冷却度の差が低減し省冷媒化できるとともに、凝縮器運転時及び蒸発器運転時の熱負荷不均等が低減され高性能化が可能となり、省冷媒化と高性能化を両立できる。 In contrast, in Embodiment 3, the first heat transfer tube 212 and the second heat transfer tube 222 are arranged in the circumferential direction of the rotation shaft 18 of the indoor fan 13b and in the tangential direction of the circle centered on the rotation shaft 18. there is For this reason, the refrigerant flows in the circumferential direction of the rotation shaft 18 of the indoor fan 13b, where the wind speed deviation in the rotation axis direction 33 is small, and the variation in the heat exchange capacity of the first heat transfer tube 212 and the second heat transfer tube 222 is reduced. . This reduces the difference in the degree of subcooling during condensing operation and saves refrigerant, while reducing the heat load imbalance during condenser operation and evaporator operation, making it possible to improve performance. It is possible to achieve both performance improvement.
 以上説明した、実施の形態3に係る空気調和装置200は、室内送風機13bとして横断流送風機を採用し、第1熱交換器21と第2熱交換器22とが、室内送風機13bの回転軸18に対し、周方向に並列に配置されている。これにより、気流の静圧が小さくなり風量が向上するため、第1熱交換器21及び第2熱交換器22の伝熱が改善され、凝縮器運転時の過冷却域が低減される。 The air conditioner 200 according to Embodiment 3 described above employs a cross-flow fan as the indoor fan 13b, and the first heat exchanger 21 and the second heat exchanger 22 are connected to the rotating shaft 18 of the indoor fan 13b. are arranged in parallel in the circumferential direction. As a result, the static pressure of the airflow is reduced and the air volume is improved, so that the heat transfer of the first heat exchanger 21 and the second heat exchanger 22 is improved, and the supercooled region during condenser operation is reduced.
 また、図16は本実施の形態3における室内熱交換器10の冷媒流路構成を示す模式図である。図17は冷媒流路構成に対する省冷媒と熱交換性能の改善効果を示す特性図である。図16のように、室内熱交換器10では第1ヘッダー213と第2ヘッダー214との間をつなぐ第1伝熱管212、また第3ヘッダー223と第4ヘッダー224との間をつなぐ第2伝熱管222により、対向する2つのヘッダー間を白抜き矢印で示すように蛇行して冷媒が流れる。図16の例では、冷媒は第1熱交換器21の配管11cから、第1ヘッダー213の第1室213a、2本の第1伝熱管212、第2ヘッダー214の第1室214a、3本の第1伝熱管212、第1ヘッダー213の第2室213b、3本の第1伝熱管212、第2ヘッダー214の第2屋214b、3本の第1伝熱管212、第1ヘッダー213の第3室213c、5本の第1伝熱管212、第2ヘッダー214の第3室214c、5本の第1伝熱管212、第1ヘッダー213の第4室213d、を経て接続配管12から第2熱交換器22に流れる。第1ヘッダー213と第2ヘッダー214とをつなぐトータルの第1伝熱管212の本数は21本である。対向するヘッダーの各部屋間をつなぐ第1伝熱管212は、白抜き矢印で示すように向きを変えて流れる6つの群に分かれる。このように複数の第1伝熱管212は、その一方の端が接続される第1ヘッダー213の部屋と他方の端が接続される第2ヘッダー214の部屋とが同じ場合に同じ群に含まれて、異なる場合に異なる群に含まれるように群に分けられる。また、このように伝熱管の冷媒が流れる向きがヘッダーの部屋で折り返されることを転向と呼び、1つの熱交換器で転向する回数を転向回数と呼ぶ。図16では、配管11cから接続配管12までの間の各群に分かれた第1伝熱管212の本数をそれぞれn1,1、n1,2、n1,3、n1,4、n1,5、n1,6と示した。それぞれの群の第1伝熱管212では冷媒は転向せずに同じ方向に流れる。また、冷媒は隣り合う群どうしの第1伝熱管212ではでは逆方向に流れる。転向によって流れ方向が反対となる群の数は転向回数に1を加えた数となる。 FIG. 16 is a schematic diagram showing the configuration of refrigerant passages of the indoor heat exchanger 10 according to Embodiment 3. As shown in FIG. FIG. 17 is a characteristic diagram showing the effects of refrigerant saving and improvement of heat exchange performance with respect to the refrigerant channel configuration. As shown in FIG. 16, in the indoor heat exchanger 10, the first heat transfer tube 212 connects between the first header 213 and the second header 214, and the second heat transfer tube connects between the third header 223 and the fourth header 224. The heat pipes 222 allow the refrigerant to flow meanderingly between the two opposing headers as indicated by the white arrows. In the example of FIG. 16, the refrigerant flows from the piping 11c of the first heat exchanger 21, the first chamber 213a of the first header 213, the two first heat transfer tubes 212, the first chamber 214a of the second header 214, three the first heat transfer tubes 212, the second chamber 213b of the first header 213, the three first heat transfer tubes 212, the second chamber 214b of the second header 214, the three first heat transfer tubes 212, the first header 213 From the connecting pipe 12 through the third chamber 213c, the five first heat transfer pipes 212, the third chamber 214c of the second header 214, the five first heat transfer pipes 212, and the fourth chamber 213d of the first header 213, 2 flow to heat exchanger 22; The total number of first heat transfer tubes 212 connecting the first header 213 and the second header 214 is twenty-one. The first heat transfer tubes 212 that connect the rooms of the opposing headers are divided into six groups that flow in different directions as indicated by white arrows. Thus, a plurality of first heat transfer tubes 212 are included in the same group when the chamber of the first header 213 to which one end is connected and the chamber of the second header 214 to which the other end is connected are the same. are grouped to be included in different groups on different occasions. In addition, the fact that the direction in which the refrigerant flows in the heat transfer tubes is turned back in the chamber of the header is called "turning", and the number of times of turning in one heat exchanger is called "turning number". In FIG. 16, the numbers of the first heat transfer tubes 212 divided into groups from the pipe 11c to the connection pipe 12 are n 1,1 , n 1,2 , n 1,3 , n 1,4 , and n 1 respectively. , 5 and n 1,6 . In the first heat transfer tubes 212 of each group, the refrigerant flows in the same direction without turning. In addition, the refrigerant flows in opposite directions in the first heat transfer tubes 212 of adjacent groups. The number of groups in which the flow direction is reversed by turning is the number of times of turning plus one.
 ここで、群ごとの第1伝熱管212の本数の2乗の値を全群に対して総和して全群の第1伝熱管212の本数で除した値を第1熱交換器21の平均分岐数N1とする。これを数式で示せばN1=Σ(n1,k×n1,k)/Σn1,kである。図16の例では、第1熱交換器21については、トータル21本の第1伝熱管212に対して転向回数は5、群の数は6、各群の本数の2乗の総和は81、平均分岐数N1は約3.9である。 Here, the square value of the number of first heat transfer tubes 212 for each group is summed for all groups and divided by the number of first heat transfer tubes 212 in all groups. Let the number of branches be N1. Expressing this in a mathematical formula, N1=Σ(n 1,k ×n 1,k )/Σn 1,k . In the example of FIG. 16, the first heat exchanger 21 has a total of 21 first heat transfer tubes 212, the number of turns is 5, the number of groups is 6, the sum of the squares of the number of groups is 81, The average number of branches N1 is approximately 3.9.
 同様に、冷媒は第2熱交換器22では、接続配管12から、第3ヘッダー223の第1室223a、10本の第2伝熱管222、第4ヘッダー224の第1室224a、11本の第2伝熱管222、第3ヘッダー223の第2室223b、を経て配管11dから流れ出る。第1ヘッダー213と第2ヘッダー214とをつなぐトータルの第2伝熱管222の本数は第1熱交換器21と同様に21本である。対向するヘッダーの各部屋間をつなぐ第2伝熱管222は、白抜き矢印で示すように向きを変えて流れる2つの群に分かれる。複数の第2伝熱管222は、その一方の端が接続される第3ヘッダー223の部屋と他方の端が接続される第4ヘッダー224の部屋とが同じ場合に同じ群に含まれて、異なる場合に異なる群に含まれるように群に分けられる。図16では群に分かれた第2伝熱管222の本数をそれぞれn2,1、n2,2、と示した。それらの群ごとの第2伝熱管222の本数の2乗の総和を全群の本数で割った値を第2熱交換器22の平均分岐数N2とする。これを数式で示せばN2=Σ(n2,k×n2,k)/Σn2,kである。図16の例では、第2熱交換器22については、トータル21本の第2伝熱管222に対し、転向回数は1、群の数は2である。各群の本数の2乗の総和は221であり、平均分岐数N2は約10.5である。 Similarly, in the second heat exchanger 22, the refrigerant is supplied from the connecting pipe 12 to the first chamber 223a of the third header 223, ten second heat transfer tubes 222, the first chamber 224a of the fourth header 224, eleven Through the second heat transfer pipe 222 and the second chamber 223b of the third header 223, the heat flows out from the pipe 11d. The total number of second heat transfer tubes 222 connecting the first header 213 and the second header 214 is 21, like the first heat exchanger 21 . The second heat transfer tubes 222 connecting the chambers of the opposing headers are divided into two groups that flow in different directions as indicated by the hollow arrows. The plurality of second heat transfer tubes 222 are included in the same group when the room of the third header 223 to which one end is connected and the room of the fourth header 224 to which the other end is connected are the same, and are different. divided into groups so that they are included in different groups on occasion. In FIG. 16, the numbers of the second heat transfer tubes 222 divided into groups are indicated as n 2,1 and n 2,2 , respectively. The average branch number N2 of the second heat exchanger 22 is obtained by dividing the sum of the squares of the numbers of the second heat transfer tubes 222 for each group by the number of all groups. Expressing this in a mathematical formula, N2=Σ(n 2,k ×n 2,k )/Σn 2,k . In the example of FIG. 16, for the second heat exchanger 22, the number of turns is one and the number of groups is two for a total of 21 second heat transfer tubes 222. In FIG. The sum of the squares of the numbers in each group is 221, and the average number of branches N2 is about 10.5.
 次に、第1熱交換器21の第1伝熱管長さL1及び第2熱交換器22の第2伝熱管長さL2が冷媒を削減できる効果と、熱交換器としての性能に及ぼす影響について検討した。第1伝熱管長さL1及び第2伝熱管長さL2が等しい場合に対する凝縮器50%負荷運転の熱交換器省冷媒効果をΔMgとする。また、蒸発器50%負荷運転の熱交換器性能をGaεとする。そして、ΔMgとGaεとの積を性能指数FMとする。性能指数FMの大きい熱交換器が、省冷媒効果と性能指数との観点で優れたものとなる。 Next, the effect that the first heat transfer tube length L1 of the first heat exchanger 21 and the second heat transfer tube length L2 of the second heat exchanger 22 can reduce the refrigerant and the effect on the performance as a heat exchanger investigated. Let ΔMg be the heat exchanger refrigerant saving effect of the condenser 50% load operation when the first heat transfer tube length L1 and the second heat transfer tube length L2 are equal. Let Gaε be the heat exchanger performance when the evaporator is operated under a 50% load. Then, the product of ΔMg and Gaε is defined as figure of merit FM. A heat exchanger with a large figure of merit FM is superior in terms of refrigerant saving effect and figure of merit.
 図17は実施の形態3に係る熱交換器2の冷媒流路構成に対する性能指数FMを示す特性図である。図17の縦軸は性能指数FMを示す。試験では室内送風機13bの回転軸周りに第1熱交換器21と第2熱交換器22とを配置した構成とし、冷媒としてR32を用いた。図17は平均分岐数N1に対する第1伝熱管長さL1の比L1/N1、平均分岐数N2に対する第2伝熱管長さL2の比L2/N2として、性能指数FMがこれらの比(L1/N1)÷(L2/N2)、つまり(L1/N1)×(N2/L2)、ただし、L1>L2、に対してどのように変化するかを示している。図のように(L1/N1)×(N2/L2)が2~3の間で性能指数FMが最大値を有することが分かった。なお、図17では性能指数FMの最大値を基準の100%として示している。第1熱交換器21と第2熱交換器22の伝熱管の本数と長さが同一の構成では(L1/N1)×(N2/L2)=1であるが、その場合に比べて平均分岐数と長さとを調整することで1.5倍以上の性能指数FMが得られることを示している。また、(L1/N1)×(N2/L2)が1.3~5.2の範囲でも最大値の80%以上の性能が得られ性能指数FMの向上が大きいことが分かった。(L1/N1)×(N2/L2)を1.4~4.5とするとさらに良く、最大値の90%以上の性能が得られる。L2/N2に対してL1/N1を大きくしていく、つまりL1を長く、またはN1を小さくすると省冷媒効果は向上するが、あまり大きくすると熱交換性能が低下する。また、第1熱交換器21と第2熱交換器22とが同じ構成に近づいて(L1/N1)×(N2/L2)が1に近づくと省冷媒効果が低下する、と考えられる。 FIG. 17 is a characteristic diagram showing the figure of merit FM for the refrigerant channel configuration of the heat exchanger 2 according to the third embodiment. The vertical axis in FIG. 17 indicates the figure of merit FM. In the test, the first heat exchanger 21 and the second heat exchanger 22 were arranged around the rotating shaft of the indoor fan 13b, and R32 was used as the refrigerant. FIG. 17 shows the ratio L1/N1 of the first heat transfer tube length L1 to the average number of branches N1 and the ratio L2/N2 of the second heat transfer tube length L2 to the average number N2 of branches, and the figure of merit FM is the ratio (L1/ N1)÷(L2/N2), that is, (L1/N1)×(N2/L2), where L1>L2. As shown in the figure, it was found that the figure of merit FM has the maximum value when (L1/N1)×(N2/L2) is between 2 and 3. Note that FIG. 17 shows the maximum value of the figure of merit FM as 100% of the reference. In the configuration where the number and length of the heat transfer tubes of the first heat exchanger 21 and the second heat exchanger 22 are the same, (L1/N1) × (N2/L2) = 1, but compared to that case, the average branch It shows that the figure of merit FM of 1.5 times or more can be obtained by adjusting the number and length. In addition, even when (L1/N1)×(N2/L2) is in the range of 1.3 to 5.2, it was found that performance of 80% or more of the maximum value was obtained, and the figure of merit FM was greatly improved. It is even better when (L1/N1)×(N2/L2) is between 1.4 and 4.5, and a performance of 90% or more of the maximum value can be obtained. Increasing L1/N1 with respect to L2/N2, that is, increasing L1 or decreasing N1 improves the refrigerant saving effect, but if it is too large, the heat exchange performance decreases. Also, it is considered that when the first heat exchanger 21 and the second heat exchanger 22 have the same configuration and (L1/N1)×(N2/L2) approaches 1, the refrigerant saving effect decreases.
 なお、冷媒種が変わると運転冷媒圧Pと潜熱変化量ΔHに依存して、性能指数FMはN1及びN2から受ける影響により多少変化するが、N1とN2との比が同じであればその影響は小さい。たとえば、冷媒種をR32からR410A、また、それらよりもガス密度の小さい冷媒であるオレフィン系冷媒、プロパン、ジメチルエーテル、などに変えても、性能指数FMがピークとなるN1に対するN2の相対変化は8%以下と小さいことが確認できた。そのため、上記の冷媒R32で効果が見られた(L1/N1)×(N2/L2)の範囲は冷媒種が変わった場合であっても、同様に性能指数FM向上の効果が得られると期待できる。 When the refrigerant type changes, depending on the operating refrigerant pressure P and the amount of latent heat change ΔH, the figure of merit FM changes somewhat due to the influence of N1 and N2, but if the ratio of N1 and N2 is the same, the influence is small. For example, even if the refrigerant type is changed from R32 to R410A, or to olefinic refrigerants, propane, dimethyl ether, etc., which are refrigerants with lower gas densities, the relative change in N2 to N1 at which the figure of merit FM peaks is 8 % or less. Therefore, even if the refrigerant type changes, it is expected that the effect of improving the figure of merit FM will be obtained in the range of (L1/N1) × (N2/L2) where the effect was seen with the above refrigerant R32. can.
 また、第1熱交換器21を通過した空気の温度と、第2熱交換器22を通過した空気の温度とが異なっていても、室内送風機13bにより空気が混合されることで、室内に提供される空気温度あたりの性能が向上する。 In addition, even if the temperature of the air that has passed through the first heat exchanger 21 and the temperature of the air that has passed through the second heat exchanger 22 are different, the air is mixed by the indoor fan 13b, and the air is provided indoors. Better performance per applied air temperature.
 実施の形態4
 実施の形態4は、実施の形態1の空気調和装置200において、室内機202における室内熱交換器10と室内送風機13bとの関係について言及したものであり、室内送風機13bとして、軸流送風機を採用している。空気調和装置200及び室内熱交換器10の構成は実施の形態1と同様であるため、説明を省略し、同様あるいは相当部分には同じ符号を付している。
Embodiment 4
Embodiment 4 refers to the relationship between the indoor heat exchanger 10 in the indoor unit 202 and the indoor fan 13b in the air conditioner 200 of Embodiment 1, and an axial flow fan is adopted as the indoor fan 13b. is doing. Since the configurations of the air conditioner 200 and the indoor heat exchanger 10 are the same as those of the first embodiment, the description is omitted, and the same or corresponding parts are given the same reference numerals.
 図18は、実施の形態3に係る室内機202の斜視図である。図18に示すように、室内機202には、室内送風機13bとして、低圧及び高風量で動作するプロペラファンなどの軸流送風機が搭載されている。室内送風機13bにより、回転軸18の方向に、吸込口35から吹出口36に向けて気流が発生する。 18 is a perspective view of the indoor unit 202 according to Embodiment 3. FIG. As shown in FIG. 18, the indoor unit 202 is equipped with an axial flow fan such as a propeller fan that operates at low pressure and high air volume as the indoor fan 13b. An air current is generated from the inlet 35 toward the outlet 36 in the direction of the rotating shaft 18 by the indoor blower 13b.
 室内熱交換器10は、第1熱交換器21の第1ヘッダー213及び第2ヘッダー214の延伸方向が、室内送風機13bの回転軸18と直交する方向と平行になるように配置されている。また、第2熱交換器22は、第3ヘッダー223及び第4ヘッダー224の延伸方向が、室内送風機13bの回転軸18と直交する方向と平行になるように配置されている。つまり、第1ヘッダー213と、第2ヘッダー214と、第3ヘッダー223と、第4ヘッダー224との延伸方向が、室内送風機13bの回転軸18を中心とする円の接線方向に延びている。そして、第1熱交換器21と、第2熱交換器22とは、回転軸18との軸方向から見たときに、回転軸18の周りで相互に重なり合わない位置に配置されている。第1熱交換器21が回転軸18の周りに位置する角度範囲と、第2熱交換器22が回転軸18の周りに位置する角度範囲とが異なっている。 The indoor heat exchanger 10 is arranged so that the extending direction of the first header 213 and the second header 214 of the first heat exchanger 21 is parallel to the direction orthogonal to the rotating shaft 18 of the indoor fan 13b. In addition, the second heat exchanger 22 is arranged such that the extending direction of the third header 223 and the fourth header 224 is parallel to the direction perpendicular to the rotating shaft 18 of the indoor fan 13b. That is, the extending directions of the first header 213, the second header 214, the third header 223, and the fourth header 224 extend in the tangential direction of a circle centered on the rotating shaft 18 of the indoor fan 13b. The first heat exchanger 21 and the second heat exchanger 22 are arranged at positions that do not overlap each other around the rotating shaft 18 when viewed from the axial direction of the rotating shaft 18 . The angular range in which the first heat exchanger 21 is positioned around the rotation axis 18 and the angular range in which the second heat exchanger 22 is positioned around the rotation axis 18 are different.
 図19は、図18の室内機202のB-B断面における模式図である。図19において、直線Fは、第1熱交換器21の第2ヘッダー214と、第2熱交換器22の第4ヘッダー224と、を結ぶ直線である。最下部Gは、第1熱交換器21及び第2熱交換器22の鉛直方向31の高さ位置を示している。また、図19においては、直線Fを高さ位置100%とし、最下部Gを高さ位置0%とする。 FIG. 19 is a schematic diagram of the BB cross section of the indoor unit 202 in FIG. In FIG. 19 , straight line F is a straight line connecting second header 214 of first heat exchanger 21 and fourth header 224 of second heat exchanger 22 . The bottom G indicates the height positions of the first heat exchanger 21 and the second heat exchanger 22 in the vertical direction 31 . Further, in FIG. 19, the straight line F is set at 100% height position, and the bottom G is set at 0% height position.
 図19に示すように、第1熱交換器21と、第2熱交換器22とは、室内送風機13bの回転軸18を通り、延伸方向に垂直な断面において、直線Fと回転軸18との交点45を中心に、周方向の異なる位置に配置されている。 As shown in FIG. 19 , the first heat exchanger 21 and the second heat exchanger 22 are located between the straight line F and the rotation axis 18 in a cross section passing through the rotation axis 18 of the indoor fan 13b and perpendicular to the extending direction. Centering on the intersection 45, they are arranged at different positions in the circumferential direction.
 このように、第1熱交換器21と、第2熱交換器22とが、気流に対し並列に配置されることで、気流に対し直列に配置する場合と比較して、気流の静圧が小さくなり、風量が向上し、且つ、伝熱が改善される。これにより、室内熱交換器10の凝縮器運転時に冷媒過冷却域が低減し、冷媒密度が低減して省冷媒化できる。 By arranging the first heat exchanger 21 and the second heat exchanger 22 in parallel with respect to the airflow in this way, the static pressure of the airflow is reduced compared to the case of arranging them in series with respect to the airflow. Smaller, better airflow and improved heat transfer. As a result, when the indoor heat exchanger 10 operates as a condenser, the supercooled region of the refrigerant is reduced, the density of the refrigerant is reduced, and the refrigerant can be saved.
 図20は、図19の室内機202に流れる気流の風速分布を示す模式図である。図20においては、縦軸は室内機202における最下部Gから直線Fまでの鉛直方向31の高さ位置を示し、横軸は風速を示している。 FIG. 20 is a schematic diagram showing the wind speed distribution of the airflow flowing through the indoor unit 202 of FIG. In FIG. 20, the vertical axis indicates the height position in the vertical direction 31 from the bottom G to the straight line F in the indoor unit 202, and the horizontal axis indicates the wind speed.
 図20に示すように、室内送風機13bが軸流送風機であると、室内送風機13bと室内熱交換器10との距離に起因して、鉛直方向31の風速の偏差が大きくなる。 As shown in FIG. 20, if the indoor fan 13b is an axial fan, the difference in wind speed in the vertical direction 31 will increase due to the distance between the indoor fan 13b and the indoor heat exchanger 10.
 室内熱交換器10においては、第1ヘッダー213、第2ヘッダー214、第3ヘッダー223、及び、第4ヘッダー224の延伸方向が回転軸18を中心とする円の接線方向に沿うように設けられている。そして、第1熱交換器21の第1伝熱管212、及び、第2熱交換器22の第2伝熱管222は、一端が直線Fの高さに位置し、他端が最下部Gの高さに位置している。 In the indoor heat exchanger 10, the extension directions of the first header 213, the second header 214, the third header 223, and the fourth header 224 are provided along the tangential direction of a circle centered on the rotation axis 18. ing. One end of the first heat transfer tube 212 of the first heat exchanger 21 and the second heat transfer tube 222 of the second heat exchanger 22 are positioned at the height of the straight line F, and the other end is positioned at the height of the bottom G. is located.
 そのため、第1伝熱管212どうしで第1伝熱管212周りの気流の風量の差が生じず、第2伝熱管222どうしでも第2伝熱管222周りの気流の風量の差が生じない。このため、第1伝熱管212どうし、及び、第2伝熱管222どうしで熱交換量の差が低減され、凝縮器運転における過冷却域低減と、凝縮器運転または蒸発器運転における性能改善が可能となり、省冷媒化と高性能化を両立することができる。 Therefore, there is no difference in air volume around the first heat transfer tubes 212 between the first heat transfer tubes 212 , and there is no difference in air volume around the second heat transfer tubes 222 between the second heat transfer tubes 222 . Therefore, the difference in the amount of heat exchanged between the first heat transfer tubes 212 and between the second heat transfer tubes 222 is reduced, and it is possible to reduce the supercooling region in the condenser operation and improve the performance in the condenser operation or the evaporator operation. As a result, both refrigerant saving and high performance can be achieved.
 なお、上記において、気流が吸込口35から吹出口36に向けて流れる例を説明しているが、吸込口35から吹出口36までの流れが逆になっていても効果に影響はない。 In the above, an example in which the airflow flows from the suction port 35 to the blowout port 36 is described, but the effect is not affected even if the flow from the suction port 35 to the blowout port 36 is reversed.
 以上説明した、実施の形態4に係る空気調和装置200は、室内送風機13bとして軸流送風機を採用し、第1熱交換器21と第2熱交換器22とが気流に対して並列に配置されている。このため気流の静圧が小さくなり、風量が向上することで伝熱が改善され、凝縮器運転時の過冷却域が低減される。また第1伝熱管212どうし及び第2伝熱管222どうしで熱交換能力のばらつきが小さくなり、凝縮器運転時の省冷媒化と、蒸発器運転時の性能改善が可能となる。 The air conditioner 200 according to Embodiment 4 described above employs an axial flow fan as the indoor fan 13b, and the first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the air flow. ing. As a result, the static pressure of the airflow is reduced and the air volume is increased, which improves heat transfer and reduces the supercooled region during condenser operation. In addition, variations in heat exchange capacity between the first heat transfer tubes 212 and between the second heat transfer tubes 222 are reduced, so refrigerant can be saved during condenser operation and performance can be improved during evaporator operation.
 実施の形態5
 実施の形態5は、実施の形態1の空気調和装置200において、室内機202における室内熱交換器10と室内送風機13bとの関係について言及したものであり、室内送風機13bとして、スクロールケーシング5を備えた遠心送風機を採用している。空気調和装置200及び室内熱交換器10の構成は実施の形態1と同様であるため、説明を省略し、同様あるいは相当部分には同じ符号を付している。
Embodiment 5
Embodiment 5 refers to the relationship between the indoor heat exchanger 10 and the indoor blower 13b in the indoor unit 202 in the air conditioner 200 of Embodiment 1, and the scroll casing 5 is provided as the indoor blower 13b. A centrifugal blower is used. Since the configurations of the air conditioner 200 and the indoor heat exchanger 10 are the same as those of the first embodiment, the description is omitted, and the same or corresponding parts are given the same reference numerals.
 図21は、実施の形態5に係る室内機202の断面の概略を示す模式図である。図21に示すように、室内機202には、室内送風機13bとして、多翼送風機などの遠心送風機と、遠心送風機を収容するスクロールケーシング5(以下、ケーシングと説明する)とにより構成された室内送風機13bが搭載されている。このような遠心送風機としてシロッコファン等がある。典型的な遠心送風機は複数の翼が円筒状に配置された構造である。ケーシング5は遠心送風機の回転軸のまわりの回転角度において、ケーシング5と翼との距離が最も接近する回転角度位置があり、その位置から翼の回転方向に翼からの距離が徐々に長くなる。ケーシング5において、翼との距離が最も接近する位置を巻き始め位置19とする。すなわち、スクロールケーシング5の回転軸方向から見た外形は巻き始め位置19において、内部の翼の回転外周から最も近い位置にあり、翼の回転方向に進むにつれて徐々に翼の回転外周から遠くなっていく形状である。室内送風機13bは回転軸の方向から風を吸入し、ケーシング5は巻き始め位置19から翼の回転方向に1周する手前で翼の回転の接線方向に風を吹き出す吹出口を有している。なお、以下でケーシング5を翼の回転方向に見ることを巻き方向32に見る、として説明する。吹出口から巻き方向32のすぐとなりに巻き始め位置19がある。このため、巻き始め位置19は回転軸方向にみると鋭角にくびれた形状であり、舌部とも呼ばれる。図21において、位置Hは、第1熱交換器21がケーシング5に最も近接する位置である。位置Iは、第2熱交換器22がケーシング5に最も近接する位置である。図22は実施の形態5に係る室内機202のA-A断面の概略を示す断面模式図である。 FIG. 21 is a schematic diagram showing a schematic cross section of the indoor unit 202 according to Embodiment 5. FIG. As shown in FIG. 21, the indoor unit 202 includes a centrifugal blower such as a multi-blade blower as the indoor blower 13b, and an indoor blower configured by a scroll casing 5 (hereinafter referred to as a casing) housing the centrifugal blower. 13b is installed. As such a centrifugal blower, there is a sirocco fan or the like. A typical centrifugal fan has a structure in which a plurality of blades are arranged in a cylindrical shape. The casing 5 has a rotation angle position at which the distance between the casing 5 and the blades is the closest in the rotation angle around the rotation axis of the centrifugal fan, and the distance from the blades gradually increases from that position in the rotation direction of the blades. A winding start position 19 is defined as a position in the casing 5 where the distance to the blade is closest. That is, the outer shape of the scroll casing 5 when viewed from the rotation axis direction is closest to the rotation outer circumference of the internal blade at the winding start position 19, and gradually becomes farther from the rotation outer circumference of the blade as it progresses in the rotation direction of the blade. It is a shape. The indoor blower 13b sucks air from the direction of the rotation axis, and the casing 5 has an outlet for blowing air in the tangential direction of the rotation of the blades before making one turn from the winding start position 19 in the rotation direction of the blades. In the following description, viewing the casing 5 in the rotation direction of the blade is viewed in the winding direction 32 . A winding start position 19 is immediately adjacent in the winding direction 32 from the outlet. Therefore, the winding start position 19 is constricted at an acute angle when viewed in the rotation axis direction, and is also called a tongue. In FIG. 21 , position H is the position where the first heat exchanger 21 is closest to the casing 5 . Position I is the position where the second heat exchanger 22 is closest to the casing 5 . FIG. 22 is a schematic cross-sectional view showing an outline of the AA cross section of the indoor unit 202 according to Embodiment 5. As shown in FIG.
 室内熱交換器10は、第1熱交換器21の第1ヘッダー213及び第2ヘッダー214の延伸方向が、室内送風機13bの回転軸18の軸方向と平行に配置されている。第2熱交換器22は、第3ヘッダー223及び第4ヘッダー224の延伸方向が、室内送風機13bの回転軸18の軸方向と平行に配置されている。第1伝熱管212及び第2伝熱管222は、室内送風機13bの回転軸と直行する方向に延びる。 In the indoor heat exchanger 10, the extension directions of the first header 213 and the second header 214 of the first heat exchanger 21 are arranged parallel to the axial direction of the rotation shaft 18 of the indoor fan 13b. The extension direction of the third header 223 and the fourth header 224 of the second heat exchanger 22 is arranged parallel to the axial direction of the rotating shaft 18 of the indoor fan 13b. The first heat transfer tube 212 and the second heat transfer tube 222 extend in a direction perpendicular to the rotation axis of the indoor fan 13b.
 第2熱交換器22は、ケーシング5の巻き方向32に見た場合、ケーシング5の巻き始め位置19から位置Iまでの距離が、ケーシング5の巻き始め位置19から位置Hまでの距離よりも近い。つまり、ケーシング5の巻き始め位置19に近い位置に第2熱交換器22が配置され、ケーシング5の巻き方向32に見てケーシング5の巻き始め位置19から遠い位置に第1熱交換器21が配置されている。 In the second heat exchanger 22, when viewed in the winding direction 32 of the casing 5, the distance from the winding start position 19 of the casing 5 to the position I is shorter than the distance from the winding start position 19 of the casing 5 to the position H. . That is, the second heat exchanger 22 is arranged at a position close to the winding start position 19 of the casing 5, and the first heat exchanger 21 is arranged at a position far from the winding start position 19 of the casing 5 when viewed in the winding direction 32 of the casing 5. are placed.
 ケーシング5を有する室内送風機13bでは、ケーシング5の巻き始め位置19近くで気流が比較的小さく、遠くなるほど大きい。室内熱交換器10の凝縮器運転時においては、第1熱交換器21に流れる風量が大きくなるため、第1熱交換器21の伝熱が促進され、第1熱交換器21の冷媒過冷却域が小さくなる。これにより、冷媒密度が低減されて省冷媒化することができる。 In the indoor fan 13b having the casing 5, the airflow is relatively small near the winding start position 19 of the casing 5, and increases with increasing distance. During the condenser operation of the indoor heat exchanger 10, the amount of air flowing through the first heat exchanger 21 increases, so the heat transfer of the first heat exchanger 21 is promoted, and the refrigerant in the first heat exchanger 21 is subcooled. area becomes smaller. As a result, the refrigerant density is reduced, and the refrigerant can be saved.
 室内熱交換器10の蒸発器運転時には、第2熱交換器22の冷媒圧力が低圧側となるため、空気温度との冷媒温度差により結露水が発生し、第2熱交換器22を通過する気流が大きいと、結露水が第2フィン221の表面から室内空間へ吹出される。第2熱交換器22を、ケーシング5の巻き始め位置19に近い、気流の上流側に配置することで第2フィン221の表面から結露水を吹出す慣性力が低減される。これにより、室内熱交換器10の品質を低下させることなく高風量化することが可能になり空気調和装置200を高性能化できる。 During the evaporator operation of the indoor heat exchanger 10, the refrigerant pressure in the second heat exchanger 22 is on the low pressure side, so condensed water is generated due to the refrigerant temperature difference from the air temperature and passes through the second heat exchanger 22. When the airflow is large, the condensed water is blown out from the surfaces of the second fins 221 into the interior space. By arranging the second heat exchanger 22 on the upstream side of the airflow near the winding start position 19 of the casing 5, the inertial force that blows off the condensed water from the surface of the second fins 221 is reduced. As a result, the air volume can be increased without degrading the quality of the indoor heat exchanger 10, and the performance of the air conditioner 200 can be improved.
 以上説明した、実施の形態5に係る空気調和装置200は、第2熱交換器22を、ケーシング5の巻き始め位置19からの距離が、ケーシング5の巻き始め位置19から第1熱交換器21までの距離よりも近くなるように配置している。このため、凝縮器運転時には、第1熱交換器21の風量が大きくなることで過冷却域が小さくなり冷媒密度が低減して、省冷媒化が可能となる。また、蒸発器運転時には、第2熱交換器22が気流の上流側に配置されているため、結露水を室内空間に吹き出す気流の慣性力が低減され、室内熱交換器10の品質を低下させることなく高風量化することができる。 In the air conditioner 200 according to Embodiment 5 described above, the distance from the winding start position 19 of the casing 5 is the distance from the winding start position 19 of the casing 5 to the first heat exchanger 21 . It is arranged so that it is closer than the distance to. Therefore, when the condenser is operated, the air volume of the first heat exchanger 21 increases, so that the supercooled region becomes smaller and the density of the refrigerant is reduced, which makes it possible to save the refrigerant. In addition, since the second heat exchanger 22 is arranged on the upstream side of the airflow during evaporator operation, the inertial force of the airflow that blows off the condensed water into the indoor space is reduced, and the quality of the indoor heat exchanger 10 is reduced. It is possible to increase the air volume without
 また、図22に示すように、送風機のケーシング5の回転軸18の方向の長さは第1熱交換器21の回転軸18の方向の長さよりも短い。ケーシング5には回転軸18方向に空気を吸気する吸気口5aが形成されている。そして、凝縮器として動作する際に最も下流となる第2熱交換器22の第1室213aは、少なくとも一部、望ましくはすべての領域がケーシング5に対して回転軸18の方向に外れた位置にある。第1室213aが、送風機の回転軸18の回転周方向でケーシング5を設けられない位置にあるため、第1室213aに接続された第1伝熱管212及び第1フィン211を通過する風量が、回転軸18方向にケーシング5と重なる領域に比べて風量が多くなる。このため、実施の形態5の熱交換器では液冷媒の伝熱を促進し省冷媒化と高性能化の両立が可能となる。また室内送風機13bは多翼送風機などの遠心送風機と、遠心送風機を収容するスクロールケーシングと一部に横断流送風機を設ける構成であっても同様の効果を得ることができる。 Also, as shown in FIG. 22, the length of the blower casing 5 in the direction of the rotation axis 18 is shorter than the length of the first heat exchanger 21 in the direction of the rotation axis 18 . The casing 5 is formed with an intake port 5a for sucking air in the direction of the rotating shaft 18 . The first chamber 213a of the second heat exchanger 22, which is the most downstream when operating as a condenser, is located at a position where at least a portion, preferably the entire region, is deviated from the casing 5 in the direction of the rotation axis 18. It is in. Since the first chamber 213a is located at a position where the casing 5 cannot be provided in the rotation circumferential direction of the rotating shaft 18 of the blower, the amount of air passing through the first heat transfer pipes 212 and the first fins 211 connected to the first chamber 213a is small. , the air volume increases compared to the region overlapping the casing 5 in the direction of the rotation axis 18 . Therefore, in the heat exchanger of Embodiment 5, it is possible to promote heat transfer of the liquid refrigerant and achieve both refrigerant saving and high performance. Further, the same effect can be obtained even if the indoor fan 13b is provided with a centrifugal fan such as a multi-blade fan, a scroll casing accommodating the centrifugal fan, and a cross-flow fan in a part thereof.
 また、第1熱交換器21と、第2熱交換器22とは、遠心送風機13bの回転軸18の軸方向から見たときに、回転軸18の周りで相互に重なり合わない位置に配置されている。第1熱交換器21が回転軸18の周りに位置する角度範囲と、第2熱交換器22が回転軸18の周りに位置する角度範囲とが異なっている。従って、実施の形態4で述べたように、第1熱交換器21と、第2熱交換器22とが、気流に対し並列に配置されることで、気流に対し直列に配置する場合と比較して、気流の静圧が小さくなり、風量が向上し、且つ、伝熱が改善される。これにより、室内熱交換器10の凝縮器運転時に冷媒過冷却域が低減し、冷媒密度が低減して省冷媒化できる。 In addition, the first heat exchanger 21 and the second heat exchanger 22 are arranged at positions that do not overlap each other around the rotation shaft 18 when viewed from the axial direction of the rotation shaft 18 of the centrifugal fan 13b. ing. The angular range in which the first heat exchanger 21 is positioned around the rotation axis 18 and the angular range in which the second heat exchanger 22 is positioned around the rotation axis 18 are different. Therefore, as described in the fourth embodiment, by arranging the first heat exchanger 21 and the second heat exchanger 22 in parallel with respect to the airflow, compared with the case of arranging in series with respect to the airflow As a result, the static pressure of the airflow is reduced, air volume is increased, and heat transfer is improved. As a result, when the indoor heat exchanger 10 operates as a condenser, the supercooled region of the refrigerant is reduced, the density of the refrigerant is reduced, and the refrigerant can be saved.
 また、第1熱交換器21と第2熱交換器22とが気流に対して並列に配置されるため、気流の静圧が小さくなり、風量が向上することで伝熱が改善され、凝縮器運転時の過冷却域が低減される。 In addition, since the first heat exchanger 21 and the second heat exchanger 22 are arranged in parallel with respect to the airflow, the static pressure of the airflow is reduced, and the air volume is improved, thereby improving heat transfer. The supercooling zone during operation is reduced.
 本開示は、凝縮器としても、蒸発器としても機能する熱交換器を備えた空気調和装置に利用することができる。 The present disclosure can be used for an air conditioner equipped with a heat exchanger that functions both as a condenser and as an evaporator.
4 仕切り部材、5 ケーシング、6 第3伝熱管、7 他端、8 一端、10 室内熱交換器、11a 配管、11b 配管、11c 配管、11d 配管、12 接続配管、13a 室外送風機、13b 室内送風機、14 圧縮機、15 四方弁、16 室外熱交換器、17 絞り装置(減圧装置)、18 回転軸、19 ケーシング巻き始め位置、20 羽根車、21 第1熱交換器、22 第2熱交換器、23 第3熱交換器、30 冷媒流れ方向、31 鉛直方向、32 ケーシング巻き方向、33 回転軸方向、35 吸込口、36 吹出口、41 最下部、42 最下部、45 交点、51 重力、52 慣性力、61 液相冷媒、62 気相冷媒、71 扁平間断面、200 空気調和装置、201 室外機、202 室内機、211 第1フィン、212 第1伝熱管、213 第1ヘッダー、213a 部屋、213b 部屋、213c 部屋、213d 部屋、214 第2ヘッダー、214a 部屋、214b 部屋、214c 部屋、221 第2フィン、222 第2伝熱管、223 第3ヘッダー、223a 部屋、223b 部屋、224 第4ヘッダー、C 角部、D 角部、E 角部、F 直線、G 最下部。 4 partition member, 5 casing, 6 third heat transfer tube, 7 other end, 8 one end, 10 indoor heat exchanger, 11a piping, 11b piping, 11c piping, 11d piping, 12 connecting piping, 13a outdoor fan, 13b indoor fan, 14 compressor, 15 four-way valve, 16 outdoor heat exchanger, 17 expansion device (decompression device), 18 rotary shaft, 19 casing winding start position, 20 impeller, 21 first heat exchanger, 22 second heat exchanger, 23 Third heat exchanger, 30 Refrigerant flow direction, 31 Vertical direction, 32 Casing winding direction, 33 Rotation axis direction, 35 Suction port, 36 Outlet, 41 Bottom, 42 Bottom, 45 Intersection, 51 Gravity, 52 Inertia power, 61 liquid phase refrigerant, 62 gas phase refrigerant, 71 flat cross section, 200 air conditioner, 201 outdoor unit, 202 indoor unit, 211 first fin, 212 first heat transfer tube, 213 first header, 213a room, 213b Room 213c Room 213d Room 214 Second header 214a Room 214b Room 214c Room 221 Second fin 222 Second heat transfer tube 223 Third header 223a Room 223b Room 224 Fourth header C Corner, D corner, E corner, F straight line, G bottom.

Claims (14)

  1.  圧縮機と凝縮器と減圧装置と蒸発器とが配管により接続されて冷媒が循環し、冷媒の流れる向きを切り替えることで、機能が前記蒸発器と前記凝縮器とに切り替わる熱交換器と、空気が前記熱交換器に送られるように気流を発生する送風機と、を有する空気調和装置において、
     前記熱交換器が、
     複数の第1伝熱管と、水平方向に延びて内部の空間が第1室と第2室とを含む複数の部屋に仕切られて前記複数の第1伝熱管の一方の端が接続された第1ヘッダーと、水平方向に延びて前記複数の第1伝熱管の他方の端が接続された第2ヘッダーと、を有する第1熱交換器と、
     複数の第2伝熱管と、水平方向に延びて前記複数の第2伝熱管の一方の端が接続された第3ヘッダーと、水平方向に延びて前記複数の第2伝熱管の他方の端が接続された第4ヘッダーと、を有する第2熱交換器と、
     前記第1熱交換器の前記第1ヘッダー及び前記第2ヘッダーのいずれかと、前記第2熱交換器の前記第3ヘッダーと、を接続する接続配管と、
    を備え、
     前記熱交換器を前記蒸発器として機能させる運転において、前記配管から蒸発させるべき冷媒が前記第1ヘッダーの前記第1室に流入したのち、前記第1室から前記第2ヘッダーへと流れ、前記第2ヘッダーから前記第1ヘッダーの前記第2室へと流れるように前記複数の第1伝熱管が接続され、前記第1熱交換器を経た冷媒が前記接続配管を介して前記第2熱交換器の前記第3ヘッダーに流入したのち、前記第3ヘッダーから前記第4ヘッダーへと流れるように前記複数の第2伝熱管が接続され、さらに、前記第2熱交換器を経た冷媒が前記圧縮機に吸入されるように前記配管が接続され、
     前記熱交換器を前記凝縮器として機能させる運転において、凝縮させるべき冷媒が前記配管から前記第2熱交換器を経たのち、前記接続配管を介して前記第1熱交換器の前記第1ヘッダーの前記複数の部屋のいずれか、または前記第2ヘッダーに流入し、前記第1熱交換器を経た冷媒が前記第1ヘッダーの前記第1室から流出するように前記配管が接続され、
     前記複数の第1伝熱管の長さが前記複数の第2伝熱管の長さよりも長いことを特徴とする空気調和装置。
    A heat exchanger in which a compressor, a condenser, a decompression device, and an evaporator are connected by piping to circulate refrigerant, and the function is switched between the evaporator and the condenser by switching the direction of refrigerant flow; and a fan that generates an airflow so that is sent to the heat exchanger,
    The heat exchanger is
    A plurality of first heat transfer tubes and a first heat transfer tube extending in the horizontal direction and partitioned into a plurality of chambers including a first chamber and a second chamber, to which one end of the plurality of first heat transfer tubes is connected a first heat exchanger having one header and a second header extending horizontally to which the other ends of the plurality of first heat transfer tubes are connected;
    a plurality of second heat transfer tubes; a third header extending horizontally to which one ends of the plurality of second heat transfer tubes are connected; and a horizontally extending other end of the plurality of second heat transfer tubes. a second heat exchanger having a connected fourth header;
    a connection pipe that connects one of the first header and the second header of the first heat exchanger and the third header of the second heat exchanger;
    with
    In the operation in which the heat exchanger functions as the evaporator, the refrigerant to be evaporated flows from the pipe into the first chamber of the first header, flows from the first chamber to the second header, The plurality of first heat transfer pipes are connected so as to flow from the second header to the second chamber of the first header, and the refrigerant that has passed through the first heat exchanger passes through the connection pipe to the second heat exchange pipe. The plurality of second heat transfer tubes are connected so that the refrigerant flows from the third header to the fourth header after flowing into the third header of the vessel, and the refrigerant that has passed through the second heat exchanger is compressed into the compression The pipe is connected so as to be sucked into the machine,
    In the operation in which the heat exchanger functions as the condenser, the refrigerant to be condensed passes through the second heat exchanger from the pipe, and then passes through the connection pipe to the first header of the first heat exchanger. the piping is connected so that the refrigerant that flows into one of the plurality of chambers or the second header and has passed through the first heat exchanger flows out of the first chamber of the first header;
    The air conditioner, wherein the length of the plurality of first heat transfer tubes is longer than the length of the plurality of second heat transfer tubes.
  2.  前記第2ヘッダー及び前記第3ヘッダーは内部の空間が複数の部屋に仕切られ、前記接続配管は前記第1ヘッダーの複数の部屋のいずれか、または前記第2ヘッダーの複数の部屋のいずれかと、前記第3ヘッダーの複数の部屋のいずれかと、を接続する、請求項1に記載の空気調和装置。 The inner space of the second header and the third header is partitioned into a plurality of rooms, and the connection pipes are connected to either one of the plurality of rooms of the first header or one of the plurality of rooms of the second header, The air conditioner according to claim 1, wherein the third header is connected to any one of the plurality of rooms.
  3.  前記接続配管に接続された前記第1ヘッダーまたは前記第2ヘッダーの内部の部屋の数は前記接続配管に接続された前記第3ヘッダーの内部の部屋の数よりも多い、請求項2に記載の空気調和装置。 3. The method according to claim 2, wherein the number of rooms inside said first header or said second header connected to said connecting pipes is greater than the number of rooms inside said third header connected to said connecting pipes. Air conditioner.
  4.  前記第1ヘッダーの前記第1室は前記第2室よりも小さい、請求項1から3のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 3, wherein said first chamber of said first header is smaller than said second chamber.
  5.  前記第3ヘッダーの内部の空間は、前記複数の部屋が等しい大きさになるように仕切られている、請求項1から4のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 4, wherein the space inside the third header is partitioned so that the plurality of rooms have the same size.
  6.  前記第1熱交換器の最下部は、前記第2熱交換器の最下部よりも、鉛直方向の下側に位置している、請求項1から5のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 5, wherein the lowest portion of the first heat exchanger is located vertically below the lowest portion of the second heat exchanger. .
  7.  前記第1ヘッダーの前記第1室は前記第1ヘッダーの水平方向の一方の端の部屋であり、
     前記接続配管は、水平方向の他方の端にある前記第1ヘッダーの複数の部屋のいずれか、または水平方向の他方の端にある前記第2ヘッダーの複数の部屋のいずれかと前記第3ヘッダーとを接続する、請求項1から6のいずれか一項に記載の空気調和装置。
    said first chamber of said first header is a chamber at one horizontal end of said first header;
    The connecting pipes connect any of the plurality of rooms of the first header at the other horizontal end, or any of the plurality of rooms of the second header at the other horizontal end and the third header. The air conditioner according to any one of claims 1 to 6, wherein the air conditioner is connected to the
  8.  前記複数の第1伝熱管を、その一方の端が接続される前記第1ヘッダーの部屋と他方の端が接続される前記第2ヘッダーの部屋とが同じ場合に同じ群に含まれて、異なる場合に異なる群に含まれるように群に分けたときに、群ごとの前記第1伝熱管の本数の2乗の値を全群で総和して、その総和した値を全群の前記第1伝熱管の本数で除した値を前記第1熱交換器の平均分岐数N1とし、
     前記複数の第2伝熱管を、その一方の端が接続される前記第3ヘッダーの部屋と他方の端が接続される前記第4ヘッダーの部屋とが同じ場合に同じ群に含まれて、異なる場合に異なる群に含まれるように群に分けたときに、群ごとの前記第2伝熱管の本数の2乗の値を全群で総和して、その総和した値を全群の前記第2伝熱管の本数で除した値を前記第2熱交換器の平均分岐数N2とし、
     前記第1伝熱管の長さをL1、前記第2伝熱管の長さをL2、としたとき、
     (L1/N1)×(N2/L2)が1.3~5.2の範囲である、請求項1から7のいずれか一項に記載の空気調和装置。
    The plurality of first heat transfer tubes are included in the same group when the chamber of the first header to which one end is connected and the chamber of the second header to which the other end is connected are the same. When divided into groups so that they are included in different groups, the squared value of the number of the first heat transfer tubes for each group is summed in all groups, and the summed value is the first heat transfer tube in all groups. The value obtained by dividing by the number of heat transfer tubes is defined as the average number of branches N1 of the first heat exchanger,
    The plurality of second heat transfer tubes are included in the same group when the room of the third header to which one end is connected and the room of the fourth header to which the other end is connected are the same. When divided into groups so that they are included in different groups, the squared value of the number of the second heat transfer tubes in each group is summed in all groups, and the summed value is the second heat transfer tube in all groups. The value obtained by dividing by the number of heat transfer tubes is defined as the average number of branches N2 of the second heat exchanger,
    When the length of the first heat transfer tube is L1 and the length of the second heat transfer tube is L2,
    The air conditioner according to any one of claims 1 to 7, wherein (L1/N1) x (N2/L2) is in the range of 1.3 to 5.2.
  9.  前記送風機は羽根が回転軸の周りで回転する送風機であって、前記第1熱交換器と前記第2熱交換器とは前記回転軸の軸方向に見たときに、前記回転軸の周りで重なり合わない位置に配置されている、請求項1から8のいずれか一項に記載の空気調和装置。 The blower is a blower in which blades rotate around a rotation axis, and the first heat exchanger and the second heat exchanger are arranged around the rotation axis when viewed in the axial direction of the rotation axis. 9. The air conditioner according to any one of claims 1 to 8, arranged in a non-overlapping position.
  10.  前記送風機は、軸流送風機であって、
    前記第1ヘッダーと、前記第2ヘッダーと、前記第3ヘッダーと、前記第4ヘッダーとの延伸方向が、前記送風機の回転軸を中心とする円の接線方向に延びており、
     前記回転軸と直交する面において平面視したときに、前記第1熱交換器と、前記第2熱交換器とが、重なり合わない位置にある、請求項1から9のいずれか一項に記載の空気調和装置。
    The blower is an axial blower,
    the extension directions of the first header, the second header, the third header, and the fourth header extend in a tangential direction of a circle centered on the rotation axis of the blower;
    10. The first heat exchanger and the second heat exchanger according to any one of claims 1 to 9, wherein the first heat exchanger and the second heat exchanger are positioned so as not to overlap when viewed in plan on a plane perpendicular to the rotation axis. air conditioner.
  11.  前記送風機は、スクロールケーシングを備えた遠心送風機であって、
     前記第1伝熱管及び前記第2伝熱管が、前記送風機の回転軸と直行する方向に延び、
     前記第1ヘッダーと、前記第2ヘッダーと、前記第3ヘッダーと、前記第4ヘッダーとの延伸方向が、前記回転軸の軸方向と平行する方向に延びており、
     前記回転軸と直交する面において、前記スクロールケーシングの巻き方向に見て、前記第2熱交換器が前記第1熱交換器よりも前記スクロールケーシングの巻き始め側にある、請求項1から9のいずれか一項に記載の空気調和装置。
    The blower is a centrifugal blower with a scroll casing,
    The first heat transfer tube and the second heat transfer tube extend in a direction perpendicular to the rotation axis of the blower,
    extending directions of the first header, the second header, the third header, and the fourth header extend in a direction parallel to the axial direction of the rotating shaft;
    10. The heat exchanger according to any one of claims 1 to 9, wherein the second heat exchanger is closer to the winding start side of the scroll casing than the first heat exchanger when viewed in the winding direction of the scroll casing on a plane orthogonal to the rotating shaft. The air conditioner according to any one of claims 1 to 3.
  12.  前記第1熱交換器及び前記第2熱交換器は、室内機に搭載されている、請求項1から11のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 11, wherein the first heat exchanger and the second heat exchanger are mounted on an indoor unit.
  13.  前記冷媒は、オレフィン系冷媒、プロパン、または、ジメチルエーテルであって、R32冷媒、または、R410A冷媒に対してガス密度の小さい冷媒である、請求項1から12のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 12, wherein the refrigerant is an olefinic refrigerant, propane, or dimethyl ether, and has a lower gas density than R32 refrigerant or R410A refrigerant. Device.
  14.  少なくとも1つの前記圧縮機と、利用側熱交換器と、絞り装置と、熱源側熱交換器とで構成され、
     前記利用側熱交換器、または、前記熱源側熱交換器の少なくともいずれか一方が、
     前記第1熱交換器及び前記第2熱交換器から構成されている、請求項1から13のいずれか一項に記載の空気調和装置。
    Composed of at least one compressor, a utilization side heat exchanger, an expansion device, and a heat source side heat exchanger,
    at least one of the utilization side heat exchanger and the heat source side heat exchanger,
    The air conditioner according to any one of claims 1 to 13, comprising said first heat exchanger and said second heat exchanger.
PCT/JP2021/012941 2021-03-26 2021-03-26 Air conditioning device WO2022201514A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21933119.6A EP4317811A4 (en) 2021-03-26 2021-03-26 Air conditioning device
US18/283,214 US20240175586A1 (en) 2021-03-26 2021-03-26 Air-conditioning apparatus
CN202180096107.9A CN117043519A (en) 2021-03-26 2021-03-26 Air conditioning device
PCT/JP2021/012941 WO2022201514A1 (en) 2021-03-26 2021-03-26 Air conditioning device
JP2023508389A JP7442731B2 (en) 2021-03-26 2021-03-26 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012941 WO2022201514A1 (en) 2021-03-26 2021-03-26 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2022201514A1 true WO2022201514A1 (en) 2022-09-29

Family

ID=83396551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012941 WO2022201514A1 (en) 2021-03-26 2021-03-26 Air conditioning device

Country Status (5)

Country Link
US (1) US20240175586A1 (en)
EP (1) EP4317811A4 (en)
JP (1) JP7442731B2 (en)
CN (1) CN117043519A (en)
WO (1) WO2022201514A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593466A (en) * 2022-02-21 2022-06-07 青岛海信日立空调系统有限公司 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161106U (en) * 1988-04-30 1989-11-09
JPH04268128A (en) * 1991-02-20 1992-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2020180752A (en) * 2019-04-25 2020-11-05 パナソニックIpマネジメント株式会社 Heat exchanger, heat exchanger unit and indoor unit of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047330A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161106U (en) * 1988-04-30 1989-11-09
JPH04268128A (en) * 1991-02-20 1992-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2020180752A (en) * 2019-04-25 2020-11-05 パナソニックIpマネジメント株式会社 Heat exchanger, heat exchanger unit and indoor unit of air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317811A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593466A (en) * 2022-02-21 2022-06-07 青岛海信日立空调系统有限公司 Air conditioner
CN114593466B (en) * 2022-02-21 2023-09-12 青岛海信日立空调系统有限公司 air conditioner

Also Published As

Publication number Publication date
US20240175586A1 (en) 2024-05-30
JPWO2022201514A1 (en) 2022-09-29
JP7442731B2 (en) 2024-03-04
EP4317811A4 (en) 2024-05-01
CN117043519A (en) 2023-11-10
EP4317811A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10215444B2 (en) Heat exchanger having stacked coil sections
WO2017159726A1 (en) Finless-type heat exchanger, outdoor unit of air conditioner provided with finless-type heat exchanger, and indoor unit of air conditioner provided with finless-type heat exchanger
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
WO2008041656A1 (en) Indoor unit of air conditioner
WO2011005986A2 (en) Multichannel heat exchanger with differing fin spacing
JP6466047B1 (en) Heat exchanger and air conditioner
WO2021065913A1 (en) Evaporator and refrigeration cycle device equipped with same
WO2022201514A1 (en) Air conditioning device
JPWO2018131121A1 (en) Dehumidifier
WO2020240661A1 (en) Dehumidifier
JP2007192442A (en) Heat exchanger
WO2018186485A1 (en) Humidity control unit, and air conditioner using same
JP2018179361A (en) Humidity control unit and air conditioner using the same
JP2017133815A (en) Heat exchanger
WO2018061359A1 (en) Heat exchanger and refrigeration cycle device
WO2022224416A1 (en) Dehumidifying device
WO2022264375A1 (en) Dehumidifying device
WO2022145003A1 (en) Dehumidifying device
JP7050538B2 (en) Heat exchanger and air conditioner
WO2023233572A1 (en) Heat exchanger, and refrigeration cycle device
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device
WO2020136797A1 (en) Outdoor unit and refrigeration cycle device
JP2022024603A (en) Dehumidifier
JP2024048908A (en) Air Conditioning Equipment
CN115930307A (en) Finned tube heat exchanger and air conditioner provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508389

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18283214

Country of ref document: US

Ref document number: 202180096107.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021933119

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933119

Country of ref document: EP

Effective date: 20231026