WO2020136797A1 - Outdoor unit and refrigeration cycle device - Google Patents

Outdoor unit and refrigeration cycle device Download PDF

Info

Publication number
WO2020136797A1
WO2020136797A1 PCT/JP2018/048112 JP2018048112W WO2020136797A1 WO 2020136797 A1 WO2020136797 A1 WO 2020136797A1 JP 2018048112 W JP2018048112 W JP 2018048112W WO 2020136797 A1 WO2020136797 A1 WO 2020136797A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor unit
heat exchanger
horizontal plane
flat
respect
Prior art date
Application number
PCT/JP2018/048112
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 康明
前田 剛志
中村 伸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/048112 priority Critical patent/WO2020136797A1/en
Publication of WO2020136797A1 publication Critical patent/WO2020136797A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape

Abstract

This outdoor unit is provided with: a housing; an axial flow blower that forms, by rotary blades, a flow of air passing through the housing; and a heat exchanger that has a plurality of flat pipes arranged in the vertical direction with gaps therebetween, that is disposed in the radial direction with respect to the rotation axis of the axial flow blower, and that is disposed on the windward side of the axial flow blower in the flow of air formed by the axial flow blower. The plurality of flat pipes each have a flat shape having a long axis passing a first end portion located on the disposition side of the axial flow blower and a second end portion located, relative to the first end portion, on the windward side of the flow of air passing through the heat exchanger. When a first vector represents a vector that is in the rotation direction of each of the rotary blades and that is a tangent line of an opposing part, in a rotation circle drawn by the leading end of the rotary blade, at a position closest to the heat exchanger, and a second vector represents a vector that passes the first end portion of a first flat pipe disposed at the position closest to the opposing part among the plurality of flat pipes from the second end portion as a starting point, an angle formed by the first vector and the second vector is less than 90 degrees.

Description

室外機、及び、冷凍サイクル装置Outdoor unit and refrigeration cycle device
 本発明は、伝熱管として扁平管を備えた空気調和機等の冷凍サイクル装置に用いられる室外機、及び、当該室外機を備えた冷凍サイクル装置に関するものである。 The present invention relates to an outdoor unit used for a refrigeration cycle apparatus such as an air conditioner having a flat tube as a heat transfer tube, and a refrigeration cycle apparatus having the outdoor unit.
 従来より、空気調和機等の冷凍サイクル装置に用いられる室外機において、扁平管を搭載した室外機が提案されている(特許文献1参照)。 Conventionally, as an outdoor unit used for a refrigeration cycle device such as an air conditioner, an outdoor unit equipped with a flat tube has been proposed (see Patent Document 1).
特開平10-220989号公報Japanese Patent Laid-Open No. 10-220989
 特許文献1の空気調和機の室外機は、複数の扁平管が上下方向に配置され、それぞれの扁平管は、水平方向に互いに平行に設けられている。また、それぞれの扁平管は、管路の垂直断面において長軸方向が水平方向と平行になるように設けられている。ここで、室外機内において、熱交換器が送風機の回転軸に対して半径方向に配置される場合、熱交換器と送風機との距離が近いため、熱交換器の扁平管の間を通過して送風機に流入する空気の風速が高くなる。そのため、風速の高い空気と、送風機の回転翼との衝突により通風抵抗が生じ、また、騒音が発生する。 In the outdoor unit of the air conditioner of Patent Document 1, a plurality of flat tubes are arranged in the vertical direction, and the flat tubes are provided in parallel with each other in the horizontal direction. Further, each of the flat tubes is provided so that the major axis direction is parallel to the horizontal direction in the vertical cross section of the conduit. Here, in the outdoor unit, when the heat exchanger is arranged in the radial direction with respect to the rotation axis of the blower, since the distance between the heat exchanger and the blower is short, the heat exchanger passes between the flat tubes of the heat exchanger. The wind velocity of the air flowing into the blower becomes high. Therefore, the collision of the air having a high wind speed with the rotor blades of the blower causes ventilation resistance, and noise is generated.
 本発明は、上記のような課題を解決するものであり、熱交換器が送風機の回転軸に対して半径方向に配置される場合に、通風抵抗を低減させて騒音を抑制する室外機、及び、当該室外機を備えた冷凍サイクル装置を提供するものである。 The present invention is to solve the above problems, when the heat exchanger is arranged in the radial direction with respect to the rotation axis of the blower, an outdoor unit that reduces ventilation resistance and suppresses noise, and Provided is a refrigeration cycle apparatus including the outdoor unit.
 本発明の室外機は、筐体と、筐体の内部に配置され、仮想の回転軸に対して半径方向に配置された複数の回転翼によって筐体内を通過する空気の流れを形成する軸流送風機と、上下方向に間隔をあけて配置された複数の扁平管を有し、筐体の内部において軸流送風機の回転軸に対して半径方向に配置されると共に、軸流送風機の形成する空気の流れにおいて軸流送風機の風上側に配置される熱交換器と、を備え、複数の扁平管のそれぞれは、軸流送風機の配置側に位置する第1端部と、第1端部に対して、熱交換器を通過する空気の流れの風上側に位置する第2端部と、を通る長軸を有する扁平形状であり、回転翼の先端部が描く回転円において、熱交換器に最も近い位置となる対向部の接線であって、回転翼の回転方向のベクトルを第1ベクトルと定義し、複数の扁平管の中で対向部に最も近い位置に配置された第1扁平管において、第2端部を基点として第1端部を通過するベクトルを第2ベクトルと定義した場合に、第1ベクトルと第2ベクトルとのなす角が90度未満である。 The outdoor unit of the present invention is an axial flow that forms a flow of air passing through the housing by a housing and a plurality of rotor blades arranged inside the housing and arranged in a radial direction with respect to a virtual rotation axis. An air blower and a plurality of flat tubes arranged at intervals in the up-and-down direction. The air blower is arranged inside the housing in a radial direction with respect to the rotation axis of the axial blower, and is formed by the axial blower. And a heat exchanger arranged on the windward side of the axial blower in the flow of, and each of the plurality of flat tubes has a first end located on the arrangement side of the axial blower and a first end. And has a flat shape with a long axis passing through the second end located on the windward side of the air flow passing through the heat exchanger, and is the most common in the heat exchanger in the rotary circle drawn by the tip of the rotor blade. A tangential line of the facing portion that is close to the rotor blade, and a vector in the rotating direction of the rotor blade is defined as a first vector, and in the first flat tubes arranged at the position closest to the facing portion among the plurality of flat tubes, When the vector passing through the first end with the second end as the base point is defined as the second vector, the angle formed by the first vector and the second vector is less than 90 degrees.
 本発明の室外機は、筐体の内部において軸流送風機の回転軸に対して半径方向に熱交換器が配置されている。そして、室外機は、第1ベクトルと第2ベクトルとのなす角が、90度未満である。この第1ベクトルは、回転翼の先端部が描く回転円において、熱交換器に最も近い位置となる対向部の接線であって、回転翼の回転方向のベクトルである。また、第2ベクトルは、複数の扁平管の中で対向部に最も近い位置に配置された第1扁平管において、第2端部を基点として第1端部を通過するベクトルである。室外機は、第1ベクトルと第2ベクトルとのなす角が90度未満であるため、回転翼に最も近い位置に配置された第1扁平管の傾斜に伴い熱交換器を通過する空気の流入方向と、軸流送風機の回転方向とが同じ方向である。その結果、室外機、及び、当該室外機を備えた冷凍サイクル装置は、筐体内に流入する風速の高い空気と、回転翼との相対速度が小さくなるため、熱交換器の通風抵抗を低減でき騒音を抑制することができる。 In the outdoor unit of the present invention, a heat exchanger is arranged inside the housing in a radial direction with respect to the rotation axis of the axial blower. In the outdoor unit, the angle formed by the first vector and the second vector is less than 90 degrees. The first vector is a tangent line of the facing portion that is closest to the heat exchanger in the rotation circle drawn by the tip of the rotor blade, and is a vector in the rotation direction of the rotor blade. The second vector is a vector that passes through the first end of the first flat pipe, which is arranged at the position closest to the facing portion among the plurality of flat pipes, with the second end as a reference point. In the outdoor unit, since the angle formed by the first vector and the second vector is less than 90 degrees, the inflow of air passing through the heat exchanger due to the inclination of the first flat tube arranged closest to the rotor blades. The direction and the rotation direction of the axial blower are the same direction. As a result, in the outdoor unit and the refrigeration cycle apparatus including the outdoor unit, the relative velocity between the air having a high wind velocity flowing into the housing and the rotating blades becomes small, so that the ventilation resistance of the heat exchanger can be reduced. Noise can be suppressed.
本発明の実施の形態1に係る室外機の正面方向の斜視図である。FIG. 3 is a front perspective view of the outdoor unit according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る室外機の背面方向の斜視図である。It is a perspective view of the back direction of the outdoor unit concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る室外機の概略正面図である。It is a schematic front view of the outdoor unit which concerns on Embodiment 1 of this invention. 図3に示す室外機のA-A線断面図である。FIG. 4 is a cross-sectional view taken along the line AA of the outdoor unit shown in FIG. 3. 図3に示す室外機のB部における扁平管と軸流送風機の拡大概念図である。FIG. 4 is an enlarged conceptual view of a flat tube and an axial blower in a B part of the outdoor unit shown in FIG. 3. 本発明の実施の形態2に係る室外機の概略正面図である。It is a schematic front view of the outdoor unit which concerns on Embodiment 2 of this invention. 図6に示す室外機のB部における扁平管と軸流送風機の拡大概念図である。FIG. 7 is an enlarged conceptual diagram of a flat tube and an axial flow blower in a B part of the outdoor unit shown in FIG. 6. 本発明の実施の形態3に係る室外機の概略断面図である。It is a schematic sectional drawing of the outdoor unit which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る室外機の概略断面図である。It is a schematic sectional drawing of the outdoor unit which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 5 of this invention.
 以下、本発明における室外機100、室外機110、室外機120、室外機130及び冷凍サイクル装置50について、図面を用いて詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。また、理解を容易にするために方向あるいは位置を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いる。しかし、これらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the outdoor unit 130, and the refrigeration cycle device 50 according to the present invention will be described in detail with reference to the drawings. In the drawings below, the relationship of the sizes of the respective constituent members may differ from the actual one. In addition, in the following drawings, the components denoted by the same reference numerals are the same or equivalent, and this is common to all the texts of the specification. Further, the forms of the constituent elements shown in the entire specification are merely examples, and the present invention is not limited to these descriptions. Further, in order to facilitate understanding, terms (eg, “upper”, “lower”, “right”, “left”, “front”, “rear”, etc.) indicating directions or positions are appropriately used. However, these notations are merely described as such for convenience of description, and do not limit the arrangement and orientation of the device or parts.
実施の形態1.
 図1は、本発明の実施の形態1に係る室外機100の正面方向の斜視図である。図2は、本発明の実施の形態1に係る室外機100の背面方向の斜視図である。図1及び図2を用いて、室外機100の外郭について説明する。図1を含む以下の図面に示すX軸は、室外機100の左右方向を示し、Y軸は室外機100の前後方向を示し、Z軸は室外機100の上下方向を示すものである。より詳細には、室外機100を正面から見たときX1側を左側、X2側を右側、Y軸においてY1側を前側、Y2側を後側、Z軸においてZ1側を上側、Z2側を下側として室外機100を説明する。また、明細書中における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、室外機100を使用可能な状態に設置したときのものである。
Embodiment 1.
FIG. 1 is a front perspective view of an outdoor unit 100 according to Embodiment 1 of the present invention. FIG. 2 is a rear perspective view of the outdoor unit 100 according to Embodiment 1 of the present invention. The outer shell of the outdoor unit 100 will be described with reference to FIGS. 1 and 2. The X axis shown in the following drawings including FIG. 1 indicates the left-right direction of the outdoor unit 100, the Y axis indicates the front-back direction of the outdoor unit 100, and the Z axis indicates the vertical direction of the outdoor unit 100. More specifically, when the outdoor unit 100 is viewed from the front, the X1 side is the left side, the X2 side is the right side, the Y1 side is the front side on the Y axis, the Y2 side is the rear side, the Z1 side is the upper side, and the Z2 side is the lower side on the Z axis. The outdoor unit 100 will be described as the side. In addition, the positional relationship (for example, the vertical relationship) between the constituent members in the specification is, in principle, when the outdoor unit 100 is installed in a usable state.
<室外機100>
 室外機100は、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される冷凍サイクル装置に用いられる。室外機100は、筐体1を有する。室外機100の筐体1は、室外機100の外郭を構成する。筐体1は、板金製であり、図1に示すように略直方体形状に構成されている。筐体1は、図1及び図2に示すように、円形状の吹出口1a1が形成されている前面パネル1aと、前面パネル1aと対向して設置され、後述する機械室4の背面を覆う背面パネル1bと、を有する。前面パネル1aには、吹出口1a1を覆って軸流送風機12のプロペラファン16を保護するファンガード1gが取り付けられている。背面パネル1bには、矩形の開口部1b1が形成されており、開口部1b1を介して筐体1の内部に熱交換器11が配置されている。また、筐体1は、筐体1を前方から見て後述する送風機室3側の側面に設けられた左側面パネル1cと、機械室4側の側面に設けられた右側面パネル1dと、を有する。なお、左側面パネル1cには、送風機室3内に外気を取り入れるための外気取入口(図示は省略)が形成されている。さらに、筐体1は、前面パネル1aと、背面パネル1bと、左側面パネル1cと、右側面パネル1dと、により形成された上部開口を覆う天面パネル1eと、下部開口を覆う底板1fとを有する。この天面パネル1eは、熱交換器11及び軸流送風機12の上方を覆う。また、底板1fは、熱交換器11及び軸流送風機12の下方に配置される。
<Outdoor unit 100>
The outdoor unit 100 is used for a refrigeration cycle device used for refrigeration or air conditioning, such as a refrigerator or freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater. The outdoor unit 100 has a housing 1. The housing 1 of the outdoor unit 100 constitutes an outer shell of the outdoor unit 100. The housing 1 is made of sheet metal and has a substantially rectangular parallelepiped shape as shown in FIG. As shown in FIGS. 1 and 2, the housing 1 is installed to face a front panel 1a having a circular outlet 1a1 and a front panel 1a, and covers a back surface of a machine room 4 described later. And a rear panel 1b. A fan guard 1g that covers the outlet 1a1 and protects the propeller fan 16 of the axial blower 12 is attached to the front panel 1a. A rectangular opening 1b1 is formed in the back panel 1b, and the heat exchanger 11 is arranged inside the housing 1 through the opening 1b1. In addition, the housing 1 includes a left side panel 1c provided on a side surface on the side of the blower chamber 3 and a right side panel 1d provided on a side surface on the side of the machine room 4, which will be described later when the housing 1 is viewed from the front. Have. The left side panel 1c is formed with an outside air inlet (not shown) for taking outside air into the blower chamber 3. Further, the housing 1 includes a front panel 1a, a rear panel 1b, a left side panel 1c, and a right side panel 1d, and a top panel 1e that covers an upper opening and a bottom plate 1f that covers the lower opening. Have. The top panel 1e covers the heat exchanger 11 and the axial blower 12 from above. Further, the bottom plate 1f is arranged below the heat exchanger 11 and the axial blower 12.
 図3は、本発明の実施の形態1に係る室外機100の概略正面図である。図4は、図3に示す室外機100のA-A線断面図である。次に、図3及び図4を用いて、室外機100の内部構成について説明する。なお、図3に示す白抜き矢印は、軸流送風機12によって形成される空気の流れを示したものである。空気は、左側面パネル1cに形成された外気取入口1c1を介して筐体1の外部から内部に流入する。室外機100は、図3及び図4に示すように、熱交換器11と、軸流送風機12とを有する。室外機100はまた、図4に示すように、圧縮機13を有する。室外機100は、筐体1内を送風機室3と機械室4とに隔てる仕切板2を有する。仕切板2は、筐体1の内部に設けられ、底板1fから上方向(Z軸方向)に設けられていると共に、底板1fの前後方向(Y軸方向)に設けられている。仕切板2は、例えば、板金等を折曲して形成されている。送風機室3には、熱交換器11と、熱交換器11に対向するように配置された軸流送風機12とが収納されており、機械室4には、圧縮機13が収納されている。これらの熱交換器11及び圧縮機13は、底板1f上に設置されている。 FIG. 3 is a schematic front view of the outdoor unit 100 according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view of the outdoor unit 100 shown in FIG. 3 taken along the line AA. Next, the internal configuration of the outdoor unit 100 will be described with reference to FIGS. 3 and 4. The white arrows shown in FIG. 3 indicate the flow of air formed by the axial blower 12. Air flows into the inside from the outside of the housing 1 through the outside air intake 1c1 formed in the left side panel 1c. As shown in FIGS. 3 and 4, the outdoor unit 100 includes a heat exchanger 11 and an axial blower 12. The outdoor unit 100 also has a compressor 13, as shown in FIG. 4. The outdoor unit 100 has a partition plate 2 that divides the inside of the housing 1 into a blower room 3 and a machine room 4. The partition plate 2 is provided inside the housing 1, is provided above the bottom plate 1f (Z-axis direction), and is provided in the front-back direction (Y-axis direction) of the bottom plate 1f. The partition plate 2 is formed by bending a sheet metal or the like, for example. The blower chamber 3 contains a heat exchanger 11 and an axial blower 12 arranged so as to face the heat exchanger 11, and the machine chamber 4 contains a compressor 13. The heat exchanger 11 and the compressor 13 are installed on the bottom plate 1f.
(熱交換器11)
 熱交換器11は、筐体1内に配置され、内部を流れる冷媒と外気との熱交換を行うものである。室外機100が空調用途の冷凍サイクル装置に使用される場合、熱交換器11は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。実施の形態1の熱交換器11は、図4に示すように、軸流送風機12の後方(Y2側)と側方(X1側)とを覆うように配置されており、底板1fに対して垂直方向に見た場合に、L字形状に形成されている。熱交換器11は、後方部11bと側方部11cとを有している。熱交換器11の後方部11bは、筐体1の内部において軸流送風機12に対向すると共に、軸流送風機12の形成する空気の流れにおいて軸流送風機12の風上側に配置される。熱交換器11の側方部11cは、筐体1の内部において軸流送風機12の回転軸S1に対する半径方向に配置される。すなわち、熱交換器11は、軸流送風機12の側方に配置されている。つまり、実施の形態1の熱交換器11は、室外機100の長手方向(X軸方向)及び短手方向(Y軸方向)において前述の如く、軸流送風機12と対向すると共に、軸流送風機12の風上側に配置されている。なお、熱交換器11は、底板1fに対して垂直方向に見た場合に、L字形状に形成された構成に限定されるものではなく、例えば、直線状に形成された構成であってもよい。この場合、複数の直線状に形成された各構成がそれぞれ軸流送風機12の後方と側方とを覆うように配置される。また、熱交換器11は、底板1fに対して垂直方向に見た場合に、U字形状に形成されたものでもよい。また、熱交換器11は、側方部11cのみを有してもよい。
(Heat exchanger 11)
The heat exchanger 11 is arranged in the housing 1 and exchanges heat between the refrigerant flowing inside and the outside air. When the outdoor unit 100 is used in a refrigeration cycle device for air conditioning, the heat exchanger 11 functions as an evaporator during heating operation and a condenser during cooling operation. As shown in FIG. 4, the heat exchanger 11 according to the first embodiment is arranged so as to cover the rear (Y2 side) and the side (X1 side) of the axial blower 12 with respect to the bottom plate 1f. When viewed in the vertical direction, it is formed in an L shape. The heat exchanger 11 has a rear part 11b and a side part 11c. The rear portion 11b of the heat exchanger 11 faces the axial blower 12 inside the housing 1 and is arranged on the windward side of the axial blower 12 in the air flow formed by the axial blower 12. The side portion 11c of the heat exchanger 11 is arranged inside the housing 1 in the radial direction with respect to the rotation axis S1 of the axial blower 12. That is, the heat exchanger 11 is arranged beside the axial blower 12. That is, the heat exchanger 11 according to the first embodiment faces the axial blower 12 in the longitudinal direction (X-axis direction) and the lateral direction (Y-axis direction) of the outdoor unit 100 as described above, and at the same time, the axial blower. It is located on the windward side of 12. The heat exchanger 11 is not limited to the L-shaped configuration when viewed in a direction perpendicular to the bottom plate 1f, and may have a linear configuration, for example. Good. In this case, each of the plurality of linearly formed components is arranged so as to cover the rear and side of the axial blower 12, respectively. Further, the heat exchanger 11 may be formed in a U shape when viewed in a direction perpendicular to the bottom plate 1f. Further, the heat exchanger 11 may have only the side portion 11c.
 熱交換器11は、間隔をあけて並列に配置された複数のフィン21と、複数のフィン21に直交し、かつ上下方向に間隔をあけて配置された複数の扁平管22と、を有する。扁平管22は、伝熱管であり、管内を冷媒が通過する。複数の扁平管22のそれぞれは、水平方向(例えば、X軸方向及びY軸方向)に延びるように設けられている。フィン21は、扁平管22を流れる冷媒と外気との間の伝熱面積を大きくするために設けられており、隣り合うフィン21とフィン21との間を空気が通過する。なお、図3及び図4では、熱交換器11において、複数の扁平管22がフィン21に直交した場合について例示しているが、フィン21が他の形態であってもよく、フィン21が設けられていなくてもよい。なお、扁平管22の詳細な構成については後述する。 The heat exchanger 11 has a plurality of fins 21 that are arranged in parallel at intervals and a plurality of flat tubes 22 that are orthogonal to the plurality of fins 21 and that are arranged at intervals in the vertical direction. The flat tube 22 is a heat transfer tube, and the refrigerant passes through the tube. Each of the plurality of flat tubes 22 is provided so as to extend in the horizontal direction (for example, the X-axis direction and the Y-axis direction). The fins 21 are provided to increase the heat transfer area between the refrigerant flowing through the flat tubes 22 and the outside air, and the air passes between the fins 21 adjacent to each other. 3 and 4, in the heat exchanger 11, the case where the plurality of flat tubes 22 are orthogonal to the fins 21 is illustrated, but the fins 21 may have other forms, and the fins 21 are provided. It does not have to be. The detailed configuration of the flat tube 22 will be described later.
(軸流送風機12)
 次に、図3及び図4を参照して、軸流送風機12について説明する。軸流送風機12は、筐体1の内部に配置され、回転軸S1に対して半径方向に配置された複数の回転翼18によって、筐体1内を通過する空気の流れを形成する。軸流送風機12は、モータ15とプロペラファン16とを備えた送風手段であり、熱交換器11における冷媒と空気との熱交換を効率的に行うための空気の循環を生成する。軸流送風機12のプロペラファン16は、軸心まわりに回転されるハブ部17と、ハブ部17の外周部に放射状に設けられた複数の回転翼18とを有する。すなわち、回転翼18は、回転軸S1に対して放射状に設けられている。なお、軸流送風機12では、3枚の回転翼18が設けられているが、回転翼18の枚数は限定されるものではない。回転翼18は、熱交換器11の配置側に位置する回転翼18の前縁部19において、径方向の先端に位置する先端部19aと、ハブ部17との境界部分である基部19bと、を有する。軸流送風機12は、図4に示すように、筐体1の内部において、熱交換器11の側方(X2側)及び前方(Y1側)に配置されている。すなわち、軸流送風機12は、室外機100の長手方向(X軸方向)及び短手方向(Y軸方向)において熱交換器11と対向すると共に、熱交換器11を通過する空気の流れの風下側に配置されている。
(Axial blower 12)
Next, the axial blower 12 will be described with reference to FIGS. 3 and 4. The axial blower 12 is arranged inside the housing 1 and forms a flow of air passing through the inside of the housing 1 by a plurality of rotor blades 18 arranged in the radial direction with respect to the rotation axis S1. The axial blower 12 is a blower including a motor 15 and a propeller fan 16, and generates air circulation for efficiently exchanging heat between the refrigerant and air in the heat exchanger 11. The propeller fan 16 of the axial blower 12 has a hub portion 17 that is rotated around the axis and a plurality of rotating blades 18 that are radially provided on the outer peripheral portion of the hub portion 17. That is, the rotary blades 18 are provided radially with respect to the rotation axis S1. Although the axial flow fan 12 is provided with three rotary blades 18, the number of rotary blades 18 is not limited. The rotor blade 18 has a base portion 19b, which is a boundary portion between the tip portion 19a located at the tip in the radial direction and the front edge portion 19 of the rotor blade 18 located on the arrangement side of the heat exchanger 11, and the hub portion 17, Have. As shown in FIG. 4, the axial blower 12 is arranged inside the housing 1 on the side (X2 side) and front (Y1 side) of the heat exchanger 11. That is, the axial blower 12 faces the heat exchanger 11 in the longitudinal direction (X-axis direction) and the lateral direction (Y-axis direction) of the outdoor unit 100, and is leeward of the flow of air passing through the heat exchanger 11. It is located on the side.
 軸流送風機12は、図3に示すように、プロペラファン16の回転翼18が回転方向R1に回転する。ここで回転方向R1とは、軸流送風機12を室外機100の前方から回転軸S1の軸方向に見た場合に、回転軸S1を中心として時計回りに回る方向である。換言すると、回転方向R1は、回転翼18の先端部19aが、底板1f側、熱交換器11側、天面パネル1e側、機械室4側、再び底板1f側の順に位置するように回転する方向である。軸流送風機12は、プロペラファン16が回転することで、熱交換器11とプロペラファン16との間を負圧にして、筐体1の側面側(X1側)及び背面側(Y2側)から筐体1の内部に外気を導入する。そして、軸流送風機12は、プロペラファン16が回転することで、室外機100の内部に導入された外気を室外機100の前面側(Y1側)に向かって排出する。この際、軸流送風機12は、熱交換器11を通過する空気の流れを形成している。なお、軸流送風機12と扁平管22との関係については後述する。 In the axial blower 12, the rotor blades 18 of the propeller fan 16 rotate in the rotation direction R1, as shown in FIG. Here, the rotation direction R1 is a direction that rotates clockwise around the rotation axis S1 when the axial blower 12 is viewed from the front of the outdoor unit 100 in the axial direction of the rotation axis S1. In other words, the rotation direction R1 rotates so that the tip end portion 19a of the rotary blade 18 is located in the order of the bottom plate 1f side, the heat exchanger 11 side, the top panel 1e side, the machine room 4 side, and the bottom plate 1f side again. Direction. In the axial blower 12, the propeller fan 16 rotates to create a negative pressure between the heat exchanger 11 and the propeller fan 16, and the side surface (X1 side) and the rear surface side (Y2 side) of the housing 1 are used. Outside air is introduced into the housing 1. Then, the axial blower 12 discharges the outside air introduced into the outdoor unit 100 toward the front surface side (Y1 side) of the outdoor unit 100 by the rotation of the propeller fan 16. At this time, the axial blower 12 forms a flow of air passing through the heat exchanger 11. The relationship between the axial blower 12 and the flat tube 22 will be described later.
(圧縮機13)
 圧縮機13は、吸入した冷媒を圧縮して高温高圧ガス冷媒の状態にして吐出するものである。圧縮機13は、例えば、ロータリー式、スクロール式又はベーン式等の圧縮機である。圧縮機13は、インバータ装置を備えていてもよく、インバータ装置によって運転周波数を変化させて、圧縮機13の容量を変更することができるように構成されてもよい。なお、圧縮機13の容量とは、単位時間当たりに送り出す冷媒の量である。
(Compressor 13)
The compressor 13 compresses the sucked refrigerant into a high-temperature high-pressure gas refrigerant and discharges it. The compressor 13 is, for example, a rotary type, scroll type, or vane type compressor. The compressor 13 may include an inverter device, and the inverter device may be configured to change the operating frequency to change the capacity of the compressor 13. The capacity of the compressor 13 is the amount of refrigerant sent out per unit time.
(扁平管22の詳細な構成)
 図5は、図3に示す室外機100のB部における扁平管22と軸流送風機12の拡大概念図である。次に、図3及び図5を用いて、熱交換器11における扁平管22の詳細な構成について更に説明する。複数の扁平管22のそれぞれの断面形状は、軸流送風機12の配置側に位置する第1端部23と、第1端部23に対して、熱交換器11を通過する空気の流れの風上側に位置する第2端部24とを通る長軸LSを有する扁平形状である。複数の扁平管22のそれぞれは、第1端部23と第2端部24とを通る長軸LSが仮想の水平面Fに対して同じ方向DRに傾斜している。なお、ここでいう方向DRとは、水平面Fに対して0度より大きく90度未満の角度において、扁平管22の長軸LSが水平面Fに対して傾く方向と定義する。なお、方向DRは傾き方向であって、角度を定義するものではない。また、長軸LSは、扁平管22の管が延びる方向に連続しており、扁平管22の管が延びる方向に長軸LSを見た場合に、長軸LSは、扁平管22内で面を形成する。そのため方向DRは、長軸LSが扁平管22の管の延びる方向に形成する面が水平面Fに対して傾く方向であるとも定義できる。そして、同じ方向DRに傾斜しているとは、複数の扁平管22におけるそれぞれの長軸LSが、上下方向において水平面Fに対して同じ側に傾いていることと定義される。すなわち、ここでいう同じ方向に傾斜しているとは、複数の扁平管22におけるそれぞれの長軸LSが扁平管22の延びる方向に形成する面が、上下方向において、水平面Fに対して同じ側に傾いていることと定義される。実施の形態1の熱交換器11において、扁平管22は、長軸LSの第1端部23が第2端部24よりも上側に位置するように傾斜している。
(Detailed configuration of the flat tube 22)
FIG. 5 is an enlarged conceptual diagram of the flat tubes 22 and the axial blower 12 in the B section of the outdoor unit 100 shown in FIG. Next, the detailed configuration of the flat tubes 22 in the heat exchanger 11 will be further described with reference to FIGS. 3 and 5. The cross-sectional shape of each of the plurality of flat tubes 22 is different from the first end portion 23 located on the arrangement side of the axial blower 12 and the wind of the air flow passing through the heat exchanger 11 with respect to the first end portion 23. It is a flat shape having a long axis LS passing through the second end portion 24 located on the upper side. In each of the plurality of flat tubes 22, the major axis LS passing through the first end 23 and the second end 24 is inclined in the same direction DR with respect to the virtual horizontal plane F. Note that the direction DR here is defined as a direction in which the major axis LS of the flat tube 22 is inclined with respect to the horizontal plane F at an angle of greater than 0 degrees and less than 90 degrees with respect to the horizontal plane F. The direction DR is a tilt direction and does not define an angle. Further, the long axis LS is continuous in the direction in which the tube of the flat tube 22 extends, and when the long axis LS is seen in the direction in which the tube of the flat tube 22 extends, the long axis LS is a plane in the flat tube 22. To form. Therefore, the direction DR can also be defined as a direction in which the plane formed by the long axis LS in the extending direction of the flat tube 22 is inclined with respect to the horizontal plane F. The inclination in the same direction DR is defined as that the major axes LS of the plurality of flat tubes 22 are inclined to the same side with respect to the horizontal plane F in the vertical direction. That is, the term “inclined in the same direction” here means that the surfaces formed by the long axes LS of the plurality of flat tubes 22 in the extending direction of the flat tubes 22 are the same side with respect to the horizontal plane F in the vertical direction. Is defined as leaning toward. In the heat exchanger 11 of the first embodiment, the flat tube 22 is inclined such that the first end 23 of the long axis LS is located above the second end 24.
 ここで、扁平管22の第2端部24を通る仮想の水平面Fを、第1仮想水平面F1と定義する。実施の形態1の、複数の扁平管22のそれぞれは、長軸LSの第1仮想水平面F1に対する傾斜角度αが同じ角度である。すなわち、扁平管22の長軸LSが扁平管22の延びる方向に形成する面が、第1仮想水平面F1に対して形成する角度を傾斜角度αとした場合において、複数の扁平管22それぞれは、傾斜角度αが同じ角度である。しかし、複数の扁平管22のそれぞれは、長軸LSの傾斜角度αが同じ角度であることに限定されるものではない。複数の扁平管22のそれぞれは、第1端部23と第2端部24とを通る長軸LSが第1仮想水平面F1に対して同じ方向に傾斜していれば、それぞれの長軸LSの傾斜角度αが異なる角度であってもよい。なお、実施の形態1のように、複数の扁平管22において、長軸LSの傾斜角度αが同じ角度である場合には、長軸LSの傾斜角度αを調整する必要が無いため室外機100を更に簡易な構造及び方法で製造することができる。 Here, the virtual horizontal plane F passing through the second end 24 of the flat tube 22 is defined as the first virtual horizontal plane F1. In each of the plurality of flat tubes 22 of the first embodiment, the inclination angle α of the long axis LS with respect to the first virtual horizontal plane F1 is the same. That is, when the surface formed by the long axis LS of the flat tube 22 in the extending direction of the flat tube 22 is the inclination angle α with respect to the first virtual horizontal plane F1, each of the plurality of flat tubes 22 has The inclination angles α are the same. However, each of the plurality of flat tubes 22 is not limited to the same inclination angle α of the long axis LS. In each of the plurality of flat tubes 22, if the long axis LS passing through the first end portion 23 and the second end portion 24 is inclined in the same direction with respect to the first virtual horizontal plane F1, the respective long axes LS of The inclination angles α may be different. As in the first embodiment, in the plurality of flat tubes 22, when the inclination angle α of the long axis LS is the same, it is not necessary to adjust the inclination angle α of the long axis LS, and therefore the outdoor unit 100. Can be manufactured with a simpler structure and method.
(扁平管22と軸流送風機12との関係)
 次に、図3及び図5を用いて、扁平管22と軸流送風機12との関係について説明する。まず、軸流送風機12が作動している状態で、軸流送風機12を軸流送風機12の回転軸S1方向に見た場合に、回転翼18の回転によって回転翼18の先端部19aが描く回転円を回転円C1と定義する。次に、室外機100を軸流送風機12の回転軸S1方向に見た場合に、この回転円C1において、熱交換器11に最も近い位置を対向部P1と定義する。次に、回転円C1における対向部P1の接線であって、回転翼18の回転方向R1のベクトルを第1ベクトルL1と定義する。次に、熱交換器11を軸流送風機12の回転軸S1方向に見た場合に、複数の扁平管22の中で対向部P1に最も近い位置に配置された扁平管22を第1扁平管22aと定義する。そして、第1扁平管22aの第2端部24を基点として第1端部23を通過するベクトルを第2ベクトルL2と定義する。室外機100は、軸流送風機12の回転軸S1方向に見た場合に、第1ベクトルL1と、第2ベクトルL2とのなす角θが90度未満である。なお、回転軸S1を通る仮想の水平面を第2仮想水平面F2と定義した場合に、対向部P1は、第2仮想水平面F2と、回転円C1とが接する点であると定義することもできる。また、角θは、第1ベクトルL1と第2ベクトルL2とのなす角である。そして、室外機100を軸流送風機12の回転軸S1方向に見た場合に、角θは、熱交換器11と軸流送風機12との間で第1ベクトルL1に対して軸流送風機12側の角度である。また、室外機100を軸流送風機12の回転軸S1方向に見た場合に、角θは、天面パネル1eと底板1fとの間で第2ベクトルL2に対して天面パネル1e側の角度である。
(Relationship between the flat tube 22 and the axial blower 12)
Next, the relationship between the flat tube 22 and the axial blower 12 will be described with reference to FIGS. 3 and 5. First, when the axial blower 12 is viewed in the direction of the rotation axis S1 of the axial blower 12 while the axial blower 12 is operating, the rotation of the rotary blade 18 causes the tip portion 19a of the rotary blade 18 to rotate. The circle is defined as a rotating circle C1. Next, when the outdoor unit 100 is viewed in the direction of the rotation axis S1 of the axial blower 12, the position closest to the heat exchanger 11 in the rotation circle C1 is defined as the facing portion P1. Next, a vector that is a tangent to the facing portion P1 in the rotation circle C1 and that is in the rotation direction R1 of the rotary blade 18 is defined as a first vector L1. Next, when the heat exchanger 11 is viewed in the direction of the rotation axis S1 of the axial blower 12, the flat tube 22 arranged closest to the facing portion P1 among the plurality of flat tubes 22 is the first flat tube. 22a. Then, a vector passing through the first end portion 23 with the second end portion 24 of the first flat tube 22a as a base point is defined as a second vector L2. In the outdoor unit 100, the angle θ formed by the first vector L1 and the second vector L2 is less than 90 degrees when viewed in the rotation axis S1 direction of the axial blower 12. When the virtual horizontal plane passing through the rotation axis S1 is defined as the second virtual horizontal plane F2, the facing portion P1 can also be defined as the point where the second virtual horizontal plane F2 and the rotation circle C1 are in contact with each other. The angle θ is an angle formed by the first vector L1 and the second vector L2. When the outdoor unit 100 is viewed in the direction of the rotation axis S1 of the axial blower 12, the angle θ is between the heat exchanger 11 and the axial blower 12 with respect to the first vector L1 on the axial blower 12 side. Is the angle. When the outdoor unit 100 is viewed in the direction of the rotation axis S1 of the axial blower 12, the angle θ is the angle between the top panel 1e and the bottom plate 1f on the top panel 1e side with respect to the second vector L2. Is.
 換言すると、第1扁平管22aの長軸LSは、回転翼18の回転方向R1に向かって傾斜する。より詳細には、図5に示すように、第1扁平管22aの長軸LSは、第1端部23が、上下方向において、第2端部24よりも上側に位置するように傾斜している。また、軸流送風機12は、図3に示すように、回転翼18が、熱交換器11と隣接する位置、天面パネル1eと隣接する位置、底板1fと隣接する位置の順となる回転方向R1に回転する。 In other words, the long axis LS of the first flat tube 22a is inclined toward the rotation direction R1 of the rotary blade 18. More specifically, as shown in FIG. 5, the long axis LS of the first flat tube 22a is inclined so that the first end portion 23 is located above the second end portion 24 in the vertical direction. There is. Further, in the axial blower 12, as shown in FIG. 3, the rotation direction in which the rotary blades 18 are adjacent to the heat exchanger 11, adjacent to the top panel 1e, and adjacent to the bottom plate 1f. Rotate to R1.
 また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22bについて検討する。この扁平管22bの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向DRと同じ方向に傾斜してもよい。また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22bの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜してもよい。 Also, consider the flat tube 22b arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a. The long axis LS of the flat tube 22b may be inclined with respect to the first virtual horizontal plane F1 in the same direction DR as the long axis LS of the first flat tube 22a is inclined with respect to the first virtual horizontal plane F1. .. Further, the long axis LS of the flat tube 22b arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a has a first axis with respect to the first virtual horizontal plane F1. The long axis LS of the flat tube 22a may be inclined at the same angle as the inclination angle α with respect to the first virtual horizontal plane F1.
 また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向と同じ方向に傾斜してもよい。また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜してもよい。 Further, the respective long axes LS of the plurality of flat tubes 22 are inclined with respect to the first virtual horizontal plane F1 in the same direction as the long axis LS of the first flat tubes 22a is inclined with respect to the first virtual horizontal plane F1. You may. Moreover, the long axis LS of each of the plurality of flat tubes 22 is inclined at the same angle as the tilt angle α with respect to the first virtual horizontal plane F1 with respect to the first virtual horizontal plane F1. Good.
(室外機100の動作)
 次に、室外機100における空気の流れを説明する。まず、室外機100は、軸流送風機12が作動することにより、送風機室3の軸流送風機12と熱交換器11との間の空間が負圧状態となる。そして、室外機100は、軸流送風機12と熱交換器11との間の空間が負圧状態となることにより、筐体1に形成された開口部1b1及び外気取入口1c1を介して筐体1の外から筐体1の内部に空気が流入する。この流入した空気は、熱交換器11の隣接するフィン21とフィン21との間を通過し、また、隣接する扁平管22と扁平管22との間を通過することで熱交換器11を通過する。このとき熱交換器11では、軸流送風機12によって筐体1内に流入した空気と、扁平管22の内部を流れる冷媒との間で熱交換が行われる。熱交換器11において、扁平管22の内部を流れる冷媒との間で熱交換が行われた空気は、軸流送風機12によって、筐体1の外に排出される。
(Operation of the outdoor unit 100)
Next, the flow of air in the outdoor unit 100 will be described. First, in the outdoor unit 100, the space between the axial blower 12 and the heat exchanger 11 in the blower chamber 3 is in a negative pressure state due to the operation of the axial blower 12. Then, the outdoor unit 100 has a housing through the opening 1b1 and the outside air intake 1c1 formed in the housing 1 when the space between the axial blower 12 and the heat exchanger 11 is in a negative pressure state. Air flows into the housing 1 from outside 1. The inflowing air passes between the fins 21 and 21 adjacent to each other in the heat exchanger 11, and also passes between the adjacent flat tubes 22 to pass through the heat exchanger 11. To do. At this time, in the heat exchanger 11, heat is exchanged between the air flowing into the housing 1 by the axial blower 12 and the refrigerant flowing inside the flat tube 22. In the heat exchanger 11, the air that has exchanged heat with the refrigerant flowing inside the flat tube 22 is discharged to the outside of the housing 1 by the axial blower 12.
 以上のように、室外機100は、筐体1の内部において軸流送風機12の回転軸S1に対して半径方向に熱交換器11が配置されている。そして、室外機100は、第1ベクトルL1と第2ベクトルL2とのなす角θが90度未満である。この第1ベクトルL1は、回転翼18の先端部19aが描く回転円C1において、熱交換器11に最も近い位置となる対向部P1の接線であって、回転翼18の回転方向R1のベクトルである。また、第2ベクトルL2は、複数の扁平管22の中で対向部P1に最も近い位置に配置された第1扁平管22aにおいて、第2端部24を基点として第1端部23を通過するベクトルである。室外機100は、第1ベクトルL1と第2ベクトルL2とのなす角θが90度未満であるため、回転翼18に最も近い位置に配置された第1扁平管22aの傾斜に伴い熱交換器11を通過する空気の流入方向と、軸流送風機12の回転方向R1とが同じ方向である。その結果、室外機100は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機100は、通風抵抗を低減できることで、室外機100が必要とする出力を低減させることができる。 As described above, in the outdoor unit 100, the heat exchanger 11 is arranged inside the housing 1 in the radial direction with respect to the rotation axis S1 of the axial blower 12. In the outdoor unit 100, the angle θ formed by the first vector L1 and the second vector L2 is less than 90 degrees. The first vector L1 is a tangent line of the facing portion P1 that is closest to the heat exchanger 11 in the rotation circle C1 drawn by the tip end portion 19a of the rotary blade 18, and is a vector in the rotation direction R1 of the rotary blade 18. is there. In addition, the second vector L2 passes through the first end portion 23 with the second end portion 24 as a base point in the first flat pipe 22a arranged at the position closest to the facing portion P1 among the plurality of flat pipes 22. Is a vector. In the outdoor unit 100, since the angle θ formed by the first vector L1 and the second vector L2 is less than 90 degrees, the heat exchanger is accompanied by the inclination of the first flat tubes 22a arranged closest to the rotor blades 18. The inflow direction of the air passing through 11 and the rotation direction R1 of the axial blower 12 are the same direction. As a result, in the outdoor unit 100, since the relative speed between the air having a high wind speed flowing into the housing 1 and the rotary blades 18 becomes small, the ventilation resistance of the heat exchanger 11 can be reduced and the noise can be suppressed. .. Further, the outdoor unit 100 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 100.
 また、第1扁平管22aの長軸LSは、回転翼18の回転方向R1に向かって傾斜する。その結果、室外機100は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機100は、通風抵抗を低減できることで、室外機100が必要とする出力を低減させることができる。 Further, the long axis LS of the first flat tube 22a is inclined toward the rotation direction R1 of the rotary blade 18. As a result, in the outdoor unit 100, since the relative speed between the air having a high wind speed flowing into the housing 1 and the rotary blades 18 becomes small, the ventilation resistance of the heat exchanger 11 can be reduced and the noise can be suppressed. .. Further, the outdoor unit 100 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 100.
 また、第1扁平管22aの長軸LSは、第1端部23が、上下方向において、第2端部24よりも上側に位置するように傾斜している。そして、軸流送風機12は、回転翼18が、熱交換器11と隣接する位置、天面パネル1eと隣接する位置、底板1fと隣接する位置の順となる回転方向R1に回転する。そのため、室外機100は、回転翼18に最も近い位置に配置された第1扁平管22aの傾斜に伴い熱交換器11を通過する空気の流入方向と、軸流送風機12の回転方向R1とが同じ方向である。その結果、室外機100は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機100は、通風抵抗を低減できることで、室外機100が必要とする出力を低減させることができる。 Further, the major axis LS of the first flat tube 22a is inclined such that the first end portion 23 is located above the second end portion 24 in the vertical direction. Then, in the axial blower 12, the rotating blades 18 rotate in the rotation direction R1 in the order of the position adjacent to the heat exchanger 11, the position adjacent to the top panel 1e, and the position adjacent to the bottom plate 1f. Therefore, in the outdoor unit 100, the inflow direction of the air passing through the heat exchanger 11 due to the inclination of the first flat tube 22a arranged closest to the rotary blades 18 and the rotation direction R1 of the axial blower 12 are different. In the same direction. As a result, in the outdoor unit 100, since the relative speed between the air having a high wind speed flowing into the housing 1 and the rotary blades 18 becomes small, the ventilation resistance of the heat exchanger 11 can be reduced and the noise can be suppressed. .. Further, the outdoor unit 100 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 100.
 また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22bの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向DRと同じ方向に傾斜している。室外機100は、第1扁平管22aに隣接する複数の扁平管22bによって第1扁平管22aと共に空気の流路を形成することで更に空気の流入方向を特定することができる。その結果、室外機100は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が更に小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。 Further, the long axis LS of the flat tube 22b arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a has a first axis with respect to the first virtual horizontal plane F1. The long axis LS of the flat tube 22a is inclined in the same direction as the direction DR inclined with respect to the first virtual horizontal plane F1. The outdoor unit 100 can further specify the inflow direction of air by forming a flow path of air with the first flat tubes 22a by the plurality of flat tubes 22b adjacent to the first flat tubes 22a. As a result, in the outdoor unit 100, the relative velocity between the air having a high wind velocity flowing into the housing 1 and the rotary blades 18 is further reduced, so that the ventilation resistance of the heat exchanger 11 can be reduced and noise can be suppressed. it can.
 また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22bの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜している。室外機100は、第1扁平管22aに隣接する複数の扁平管22bと、第1扁平管22aとが同じ角度で傾斜して共に空気の流路を形成することで更に空気の流入方向を特定することができる。その結果、室外機100は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が更に小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。 Further, the long axis LS of the flat tube 22b arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a has a first axis with respect to the first virtual horizontal plane F1. The long axis LS of the flat tube 22a is inclined at the same angle as the inclination angle α with respect to the first virtual horizontal plane F1. In the outdoor unit 100, the plurality of flat tubes 22b adjacent to the first flat tubes 22a and the first flat tubes 22a are inclined at the same angle to form an air flow path, thereby further identifying the inflow direction of air. can do. As a result, in the outdoor unit 100, the relative velocity between the air having a high wind velocity flowing into the housing 1 and the rotary blades 18 is further reduced, so that the ventilation resistance of the heat exchanger 11 can be reduced and noise can be suppressed. it can.
 また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向DRと同じ方向に傾斜している。そのため、室外機100は、熱交換器11の着霜に対して除霜運転を行う際に、除霜水を長軸LSが下方を向く方向に速やかに排水することができ、除霜に要する時間を短縮することができる。 Further, the respective long axes LS of the plurality of flat tubes 22 are in the same direction as the direction DR in which the long axes LS of the first flat tubes 22a are inclined with respect to the first virtual horizontal plane F1 with respect to the first virtual horizontal plane F1. It is inclined. Therefore, when performing the defrosting operation for the frost formation of the heat exchanger 11, the outdoor unit 100 can quickly drain the defrosted water in the direction in which the major axis LS faces downward, which is required for defrosting. The time can be shortened.
 また、実施の形態1の複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜している。そのため、室外機100は、扁平管22毎に長軸LSの傾斜角度αを調整する必要が無いため、室外機100は簡易な構造で製造することができる。 Further, the long axis LS of each of the plurality of flat tubes 22 of the first embodiment is the same as the inclination angle α with respect to the first virtual horizontal plane F1 with respect to the first virtual tube F1. It is inclined at an angle. Therefore, the outdoor unit 100 does not need to adjust the inclination angle α of the long axis LS for each flat tube 22, so that the outdoor unit 100 can be manufactured with a simple structure.
実施の形態2.
 図6は、本発明の実施の形態2に係る室外機110の概略正面図である。図7は、図6に示す室外機110のB部における扁平管22と軸流送風機12の拡大概念図である。室外機110は、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される冷凍サイクル装置に用いられる。実施の形態2に係る室外機110は、扁平管22の設置角度及び軸流送風機12の回転方向が実施の形態1に係る室外機100と異なる。図1~図5の室外機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係る室外機110において特に記述しない項目については、発明の実施の形態1に係る室外機100と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2.
FIG. 6 is a schematic front view of the outdoor unit 110 according to Embodiment 2 of the present invention. FIG. 7 is an enlarged conceptual diagram of the flat tube 22 and the axial blower 12 in the B section of the outdoor unit 110 shown in FIG. The outdoor unit 110 is used for a refrigeration cycle device used for refrigeration or air conditioning, such as a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater. The outdoor unit 110 according to the second embodiment is different from the outdoor unit 100 according to the first embodiment in the installation angle of the flat tubes 22 and the rotation direction of the axial blower 12. Portions having the same configuration as the outdoor unit 100 of FIGS. 1 to 5 are designated by the same reference numerals and the description thereof will be omitted. Items that are not particularly described in the outdoor unit 110 according to the second embodiment are similar to those of the outdoor unit 100 according to the first embodiment of the invention, and the same functions and configurations will be described using the same reference numerals.
(軸流送風機12)
 軸流送風機12は、図6及び図7に示すように、プロペラファン16の回転翼18が回転方向R2に回転する。ここで回転方向R2とは、軸流送風機12を室外機100の前方から回転軸S1の軸方向に見た場合に、回転軸S1を中心として反時計回りに回る方向である。換言すると、回転方向R2は、回転翼18の先端部19aが、底板1f側、機械室4側、天面パネル1e側、熱交換器11側、再び底板1f側の順に位置するように回転する方向である。
(Axial blower 12)
In the axial blower 12, as shown in FIGS. 6 and 7, the rotating blades 18 of the propeller fan 16 rotate in the rotation direction R2. Here, the rotation direction R2 is a direction that rotates counterclockwise around the rotation axis S1 when the axial blower 12 is viewed from the front of the outdoor unit 100 in the axial direction of the rotation axis S1. In other words, the rotation direction R2 rotates so that the tip end portion 19a of the rotary blade 18 is located in the order of the bottom plate 1f side, the machine room 4 side, the top panel 1e side, the heat exchanger 11 side, and the bottom plate 1f side again. Direction.
(扁平管22の詳細な構成)
 次に、図6及び図7を用いて、熱交換器11における扁平管22の詳細な構成について説明する。実施の形態2の熱交換器11において、扁平管22は、長軸LSの第1端部23が第2端部24よりも下側に位置するように傾斜している。
(Detailed configuration of the flat tube 22)
Next, the detailed configuration of the flat tubes 22 in the heat exchanger 11 will be described with reference to FIGS. 6 and 7. In the heat exchanger 11 of the second embodiment, the flat tube 22 is inclined such that the first end 23 of the long axis LS is located below the second end 24.
(扁平管22と軸流送風機12との関係)
 次に、図6及び図7を用いて、扁平管22と軸流送風機12との関係について説明する。まず、軸流送風機12が作動している状態で、軸流送風機12を軸流送風機12の回転軸S1方向に見た場合に、回転翼18の回転によって回転翼18の先端部19aが描く回転円を回転円C1と定義する。次に、室外機110を軸流送風機12の回転軸S1方向に見た場合に、この回転円C1において、熱交換器11に最も近い位置を対向部P1と定義する。次に、回転円C1における対向部P1の接線であって、回転翼18の回転方向R2のベクトルを第1ベクトルL3と定義する。次に、熱交換器11を軸流送風機12の回転軸S1方向に見た場合に、複数の扁平管22の中で対向部P1に最も近い位置に配置された扁平管22を第1扁平管22aと定義する。そして、第1扁平管22aの第2端部24を基点として第1端部23を通過するベクトルを第2ベクトルL4と定義する。室外機110は、軸流送風機12の回転軸S1方向に見た場合に、第1ベクトルL3と、第2ベクトルL4とのなす角θ2が90度未満である。なお、回転軸S1を通る仮想水平面を第2仮想水平面F2と定義した場合に、対向部P1は、第2仮想水平面F2と、回転円C1とが接する点と定義してもよい。また、角θ2は、第1ベクトルL3と第2ベクトルL4とのなす角である。そして、室外機110を軸流送風機12の回転軸S1方向に見た場合に、角θ2は、熱交換器11と軸流送風機12との間で第1ベクトルL3に対して軸流送風機12側の角度である。また、室外機110を軸流送風機12の回転軸S1方向に見た場合に、角θ2は、天面パネル1eと底板1fとの間で第2ベクトルL4に対して底板1f側の角度である。
(Relationship between the flat tube 22 and the axial blower 12)
Next, the relationship between the flat tube 22 and the axial blower 12 will be described with reference to FIGS. 6 and 7. First, when the axial blower 12 is viewed in the direction of the rotation axis S1 of the axial blower 12 while the axial blower 12 is operating, the rotation of the rotary blade 18 causes the tip portion 19a of the rotary blade 18 to rotate. The circle is defined as a rotating circle C1. Next, when the outdoor unit 110 is viewed in the direction of the rotation axis S1 of the axial blower 12, the position closest to the heat exchanger 11 in the rotation circle C1 is defined as the facing portion P1. Next, a vector that is a tangent to the facing portion P1 in the rotation circle C1 and that is in the rotation direction R2 of the rotary blade 18 is defined as a first vector L3. Next, when the heat exchanger 11 is viewed in the direction of the rotation axis S1 of the axial blower 12, the flat tube 22 arranged closest to the facing portion P1 among the plurality of flat tubes 22 is the first flat tube. 22a. Then, a vector passing through the first end 23 with the second end 24 of the first flat tube 22a as a base point is defined as a second vector L4. In the outdoor unit 110, the angle θ2 formed by the first vector L3 and the second vector L4 is less than 90 degrees when viewed in the rotation axis S1 direction of the axial blower 12. When the virtual horizontal plane passing through the rotation axis S1 is defined as the second virtual horizontal plane F2, the facing portion P1 may be defined as the point where the second virtual horizontal plane F2 and the rotation circle C1 are in contact with each other. The angle θ2 is an angle formed by the first vector L3 and the second vector L4. When the outdoor unit 110 is viewed in the direction of the rotation axis S1 of the axial blower 12, the angle θ2 is between the heat exchanger 11 and the axial blower 12 with respect to the first vector L3 on the axial blower 12 side. Is the angle. Further, when the outdoor unit 110 is viewed in the direction of the rotation axis S1 of the axial blower 12, the angle θ2 is the angle between the top panel 1e and the bottom plate 1f on the bottom plate 1f side with respect to the second vector L4. ..
 換言すると、第1扁平管22aの長軸LSは、回転翼18の回転方向R2に向かって傾斜する。より詳細には、図7に示すように、第1扁平管22aの長軸LSは、第1端部23が、上下方向において、第2端部24よりも下側に位置するように傾斜している。また、軸流送風機12は、図6に示すように、回転翼18が、天面パネル1eと隣接する位置、熱交換器11と隣接する位置、底板1fと隣接する位置の順となる回転方向R2に回転する。 In other words, the long axis LS of the first flat tube 22a is inclined toward the rotation direction R2 of the rotary blade 18. More specifically, as shown in FIG. 7, the long axis LS of the first flat tube 22a is inclined so that the first end portion 23 is located below the second end portion 24 in the vertical direction. ing. Further, in the axial blower 12, as shown in FIG. 6, the rotation direction in which the rotary blade 18 is in the order of a position adjacent to the top panel 1e, a position adjacent to the heat exchanger 11, and a position adjacent to the bottom plate 1f. Rotate to R2.
 また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22bについて検討する。この扁平管22bの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向DRと同じ方向に傾斜してもよい。また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22bの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜してもよい。 Also, consider the flat tube 22b arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a. The long axis LS of the flat tube 22b may be inclined with respect to the first virtual horizontal plane F1 in the same direction DR as the long axis LS of the first flat tube 22a is inclined with respect to the first virtual horizontal plane F1. .. Further, the long axis LS of the flat tube 22b arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a has a first axis with respect to the first virtual horizontal plane F1. The long axis LS of the flat tube 22a may be inclined at the same angle as the inclination angle α with respect to the first virtual horizontal plane F1.
 また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向と同じ方向に傾斜してもよい。また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜してもよい。 Further, the respective long axes LS of the plurality of flat tubes 22 are inclined with respect to the first virtual horizontal plane F1 in the same direction as the long axis LS of the first flat tubes 22a is inclined with respect to the first virtual horizontal plane F1. You may. Moreover, the long axis LS of each of the plurality of flat tubes 22 is inclined at the same angle as the tilt angle α with respect to the first virtual horizontal plane F1 with respect to the first virtual horizontal plane F1. Good.
 以上のように、室外機110は、筐体1の内部において軸流送風機12の回転軸S1に対して半径方向に熱交換器11が配置されている。そして、室外機110は、第1ベクトルL3と第2ベクトルL4とのなす角θ2が90度未満である。この第1ベクトルL3は、回転翼18の先端部19aが描く回転円C1において、熱交換器11に最も近い位置となる対向部P1の接線であって、回転翼18の回転方向R2のベクトルである。また、第2ベクトルL4は、複数の扁平管22の中で対向部P1に最も近い位置に配置された第1扁平管22aにおいて、第2端部24を基点として第1端部23を通過するベクトルである。室外機110は、第1ベクトルL3と第2ベクトルL4とのなす角θ2が90度未満であるため、回転翼18に最も近い位置に配置された第1扁平管22aの傾斜に伴い熱交換器11を通過する空気の流入方向と、軸流送風機12の回転方向R2とが同じ方向である。その結果、室外機110は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機110は、通風抵抗を低減できることで、室外機110が必要とする出力を低減させることができる。 As described above, in the outdoor unit 110, the heat exchanger 11 is arranged inside the housing 1 in the radial direction with respect to the rotation axis S1 of the axial blower 12. In the outdoor unit 110, the angle θ2 formed by the first vector L3 and the second vector L4 is less than 90 degrees. The first vector L3 is a tangent line of the facing portion P1 that is closest to the heat exchanger 11 in the rotation circle C1 drawn by the tip end portion 19a of the rotary blade 18, and is a vector in the rotation direction R2 of the rotary blade 18. is there. In addition, the second vector L4 passes through the first end portion 23 with the second end portion 24 as a reference point in the first flat pipe 22a arranged at the position closest to the facing portion P1 among the plurality of flat pipes 22. Is a vector. In the outdoor unit 110, since the angle θ2 formed by the first vector L3 and the second vector L4 is less than 90 degrees, the heat exchanger is accompanied by the inclination of the first flat tubes 22a arranged closest to the rotor blades 18. The inflow direction of the air passing through 11 and the rotation direction R2 of the axial blower 12 are the same direction. As a result, in the outdoor unit 110, the relative speed between the air having a high wind speed flowing into the housing 1 and the rotary blades 18 becomes small, so that the ventilation resistance of the heat exchanger 11 can be reduced and noise can be suppressed. .. Further, the outdoor unit 110 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 110.
 また、第1扁平管22aの長軸LSは、回転翼18の回転方向R2に向かって傾斜する。その結果、室外機100は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機100は、通風抵抗を低減できることで、室外機100が必要とする出力を低減させることができる。 Further, the long axis LS of the first flat tube 22a is inclined toward the rotation direction R2 of the rotary blade 18. As a result, in the outdoor unit 100, since the relative speed between the air having a high wind speed flowing into the housing 1 and the rotary blades 18 becomes small, the ventilation resistance of the heat exchanger 11 can be reduced and the noise can be suppressed. .. Further, the outdoor unit 100 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 100.
 また、第1扁平管22aの長軸LSは、第1端部23が、上下方向において、第2端部24よりも下側に位置するように傾斜している。そして、軸流送風機12は、回転翼18が、天面パネル1eと隣接する位置、熱交換器11と隣接する位置、底板1fと隣接する位置の順となる回転方向R2に回転する。そのため、室外機110は、回転翼18に最も近い位置に配置された第1扁平管22aの傾斜に伴い熱交換器11を通過する空気の流入方向と、軸流送風機12の回転方向R2とが同じ方向である。その結果、室外機110は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機110は、通風抵抗を低減できることで、室外機110が必要とする出力を低減させることができる。 Further, the major axis LS of the first flat tube 22a is inclined so that the first end portion 23 is located below the second end portion 24 in the vertical direction. Then, in the axial blower 12, the rotary blades 18 rotate in the rotation direction R2 in the order of the position adjacent to the top panel 1e, the position adjacent to the heat exchanger 11, and the position adjacent to the bottom plate 1f. Therefore, in the outdoor unit 110, the inflow direction of the air passing through the heat exchanger 11 according to the inclination of the first flat tube 22a arranged closest to the rotary blades 18 and the rotation direction R2 of the axial blower 12 are determined. In the same direction. As a result, in the outdoor unit 110, the relative speed between the air having a high wind speed flowing into the housing 1 and the rotary blades 18 becomes small, so that the ventilation resistance of the heat exchanger 11 can be reduced and noise can be suppressed. .. Further, the outdoor unit 110 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 110.
 また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22の長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向DRと同じ方向に傾斜している。室外機110は、第1扁平管22aに隣接する複数の扁平管22によって第1扁平管22aと共に空気の流路を形成することで更に空気の流入方向を特定することができる。その結果、室外機110は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が更に小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。 Further, the long axis LS of the flat tube 22 arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a has a first axis with respect to the first virtual horizontal plane F1. The long axis LS of the flat tube 22a is inclined in the same direction as the direction DR inclined with respect to the first virtual horizontal plane F1. The outdoor unit 110 can further specify the inflow direction of air by forming a flow path of air with the first flat tubes 22a by the plurality of flat tubes 22 adjacent to the first flat tubes 22a. As a result, in the outdoor unit 110, the relative velocity between the air having a high wind velocity flowing into the housing 1 and the rotary blades 18 is further reduced, so that the ventilation resistance of the heat exchanger 11 can be reduced and noise can be suppressed. it can.
 また、第1扁平管22aの上方又は下方に配置され、かつ、第1扁平管22aと対向する位置に配置された扁平管22の長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜している。室外機110は、第1扁平管22aに隣接する複数の扁平管22と、第1扁平管22aとが同じ角度で傾斜して共に空気の流路を形成することで更に空気の流入方向を特定することができる。その結果、室外機110は、筐体1内に流入する風速の高い空気と、回転翼18との相対速度が更に小さくなるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。 Further, the long axis LS of the flat tube 22 arranged above or below the first flat tube 22a and at a position facing the first flat tube 22a has a first axis with respect to the first virtual horizontal plane F1. The long axis LS of the flat tube 22a is inclined at the same angle as the inclination angle α with respect to the first virtual horizontal plane F1. In the outdoor unit 110, the plurality of flat tubes 22 adjacent to the first flat tubes 22a and the first flat tubes 22a are inclined at the same angle to form an air flow path together, thereby further identifying the inflow direction of air. can do. As a result, in the outdoor unit 110, the relative velocity between the air having a high wind velocity flowing into the housing 1 and the rotary blades 18 is further reduced, so that the ventilation resistance of the heat exchanger 11 can be reduced and noise can be suppressed. it can.
 また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対して傾斜する方向DRと同じ方向に傾斜している。そのため、室外機110は、熱交換器11の着霜に対して除霜運転を行う際に、除霜水を長軸LSが下方を向く方向に速やかに排水することができ、除霜に要する時間を短縮することができる。 Further, the respective long axes LS of the plurality of flat tubes 22 are in the same direction as the direction DR in which the long axes LS of the first flat tubes 22a are inclined with respect to the first virtual horizontal plane F1 with respect to the first virtual horizontal plane F1. It is inclined. Therefore, when performing the defrosting operation for the frost formation of the heat exchanger 11, the outdoor unit 110 can quickly drain the defrosted water in the direction in which the long axis LS faces downward, which is required for defrosting. The time can be shortened.
 また、複数の扁平管22のそれぞれの長軸LSは、第1仮想水平面F1に対して、第1扁平管22aの長軸LSが第1仮想水平面F1に対する傾斜角度αと同じ角度で傾斜している。そのため、室外機110は、扁平管22毎に長軸LSの傾斜角度αを調整する必要が無いため、室外機110は簡易な構造で製造することができる。 Moreover, the long axis LS of each of the plurality of flat tubes 22 is inclined at the same angle as the tilt angle α with respect to the first virtual horizontal plane F1 with respect to the first virtual horizontal plane F1. There is. Therefore, the outdoor unit 110 does not need to adjust the inclination angle α of the long axis LS for each flat tube 22, so that the outdoor unit 110 can be manufactured with a simple structure.
実施の形態3.
<室外機120>
 図8は、本発明の実施の形態3に係る室外機120の概略断面図である。室外機120は、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される冷凍サイクル装置に用いられる。実施の形態1に係る室外機100は、伝熱管が全て扁平管22で構成されているのに対し、実施の形態3に係る室外機120は、伝熱管の一部に円管22cが含まれている点で異なる。実施の形態3に係る室外機120の構成は、伝熱管の構成が実施の形態1に係る室外機100と異なるだけであり、他の構成は実施の形態1に係る室外機100と同一である。図1~図7の室外機100及び室外機110と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係る室外機120において特に記述しない項目については、発明の実施の形態1に係る室外機100と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 3.
<Outdoor unit 120>
FIG. 8 is a schematic cross-sectional view of the outdoor unit 120 according to Embodiment 3 of the present invention. The outdoor unit 120 is used for a refrigeration cycle device used for refrigeration or air conditioning, such as a refrigerator or freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater. In the outdoor unit 100 according to the first embodiment, all the heat transfer tubes are composed of the flat tubes 22, whereas in the outdoor unit 120 according to the third embodiment, a circular tube 22c is included in a part of the heat transfer tubes. The difference is. The configuration of the outdoor unit 120 according to the third embodiment is different only in the configuration of the heat transfer tube from the outdoor unit 100 according to the first embodiment, and the other configurations are the same as the outdoor unit 100 according to the first embodiment. .. Portions having the same configurations as the outdoor unit 100 and the outdoor unit 110 of FIGS. Items that are not particularly described in the outdoor unit 120 according to the third embodiment are the same as those in the outdoor unit 100 according to the first embodiment of the invention, and the same functions and configurations will be described using the same reference numerals.
 熱交換器111は、筐体1内に配置され、内部を流れる冷媒と外気との熱交換を行うものである。室外機120が空調用途の冷凍サイクル装置に使用される場合、熱交換器111は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。熱交換器111は、筐体1の内部において軸流送風機12に対向すると共に、軸流送風機12の形成する空気の流れにおいて軸流送風機12の風上側に配置される。熱交換器111は、間隔をあけて並列に配置された複数のフィン21と、複数のフィン21に直交し、かつ上下方向に間隔をあけて配置された複数の扁平管22と、を有する。熱交換器111は、フィン21に直交し、内部に冷媒が流通する少なくとも1つの円管22cを更に有する。熱交換器111は、伝熱管の一部に円管22cを有する点で、伝熱管の全てが扁平管22で構成されている熱交換器11と相違するだけであり、他の構成は熱交換器11と同一である。なお、円管22cの数は、1本以上であればよい。また、円管22cは、熱交換器111の下端部11a側に配置されることが一般的であるが、円管22cは、熱交換器111の上下方向においてどの位置に配置されてもよい。 The heat exchanger 111 is arranged in the housing 1 and exchanges heat between the refrigerant flowing inside and the outside air. When the outdoor unit 120 is used in a refrigeration cycle device for air conditioning, the heat exchanger 111 functions as an evaporator during heating operation and a condenser during cooling operation. The heat exchanger 111 faces the axial blower 12 inside the housing 1, and is arranged on the windward side of the axial blower 12 in the flow of air formed by the axial blower 12. The heat exchanger 111 has a plurality of fins 21 arranged in parallel at intervals and a plurality of flat tubes 22 orthogonal to the plurality of fins 21 and arranged at intervals in the vertical direction. The heat exchanger 111 further includes at least one circular pipe 22c which is orthogonal to the fins 21 and through which the refrigerant flows. The heat exchanger 111 is different from the heat exchanger 11 in which all of the heat transfer tubes are formed of the flat tubes 22 in that a circular tube 22c is provided in a part of the heat transfer tubes, and the other configurations are heat exchange. It is the same as the container 11. The number of the circular tubes 22c may be one or more. Further, the circular pipe 22c is generally arranged on the lower end 11a side of the heat exchanger 111, but the circular pipe 22c may be arranged at any position in the vertical direction of the heat exchanger 111.
 以上のように、熱交換器111は、内部に冷媒が流通する少なくとも1つの円管22cを更に有する。一般的に、扁平管22は、内部を構成する管が細径化されているために冷媒が流れにくい場合がある。しかし、熱交換器111は、熱交換器111全体として一部分的には冷媒が通りやすいところが必要な場合もある。熱交換器111は、少なくとも1つの円管22c有することで、冷媒が通りやすい部分を形成することができる。また、実施の形態1に係る室外機100と同様に扁平管22と軸流送風機12との構成を有するため、室外機110は、通風抵抗を低減させ、騒音を抑制させることができる。 As described above, the heat exchanger 111 further includes at least one circular pipe 22c in which the refrigerant flows. In general, the flat tube 22 may have difficulty in flowing the refrigerant because the tube forming the inside thereof has a reduced diameter. However, in the heat exchanger 111, there is a case where a part of the heat exchanger 111 as a whole is required to pass the refrigerant easily. Since the heat exchanger 111 has at least one circular pipe 22c, it can form a portion through which the refrigerant easily passes. Further, since the outdoor unit 110 has the configuration of the flat tube 22 and the axial blower 12 like the outdoor unit 100 according to the first embodiment, the outdoor unit 110 can reduce ventilation resistance and suppress noise.
実施の形態4.
<室外機130>
 図9は、本発明の実施の形態4に係る室外機130の概略断面図である。室外機130は、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される冷凍サイクル装置に用いられる。実施の形態4に係る室外機130は、熱交換器112の構成が、実施の形態1に係る室外機100の熱交換器11の構成と異なるだけであり、他の構成は実施の形態1に係る室外機100と同一である。図1~図8の室外機100、室外機110又は室外機120と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態4に係る室外機130において特に記述しない項目については、室外機100、室外機110又は室外機120と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Fourth Embodiment
<Outdoor unit 130>
FIG. 9 is a schematic cross-sectional view of the outdoor unit 130 according to Embodiment 4 of the present invention. The outdoor unit 130 is used for a refrigeration cycle device used for refrigeration or air conditioning such as a refrigerator or freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater. The outdoor unit 130 according to the fourth embodiment is different only in the configuration of the heat exchanger 112 from the configuration of the heat exchanger 11 of the outdoor unit 100 according to the first embodiment, and other configurations are the same as those of the first embodiment. It is the same as the outdoor unit 100. Parts having the same configurations as those of the outdoor unit 100, the outdoor unit 110 or the outdoor unit 120 of FIGS. 1 to 8 are designated by the same reference numerals, and the description thereof will be omitted. Items that are not particularly described in the outdoor unit 130 according to Embodiment 4 are the same as those in the outdoor unit 100, the outdoor unit 110, or the outdoor unit 120, and the same functions and configurations will be described using the same reference numerals.
 室外機130は、熱交換器112を有する。熱交換器112は、底板1fに対して垂直方向に見た場合に、直線状に形成された第1熱交換器112aと、直線状に形成された第2熱交換器112bとを有する。第1熱交換器112aは、軸流送風機12の回転軸S1に対する半径方向に配置されており、軸流送風機12の側方(X1側)に配置されている。第2熱交換器112bは、軸流送風機12に対して、軸流送風機12が形成する空気の流れの上流側に配置されており、軸流送風機12の後方(Y2側)に配置されている。熱交換器112は、第1熱交換器112aと第2熱交換器112bとが配管112cによって接続されている。第1熱交換器112a及び第2熱交換器112bは、それぞれ、扁平管22を有する。なお、室外機130の扁平管22と軸流送風機12との関係は、室外機100、室外機110又は室外機120の扁平管22と軸流送風機12との関係と同じである。 The outdoor unit 130 has the heat exchanger 112. The heat exchanger 112 has a linearly formed first heat exchanger 112a and a linearly formed second heat exchanger 112b when viewed in a direction perpendicular to the bottom plate 1f. The first heat exchanger 112a is arranged in the radial direction with respect to the rotation axis S1 of the axial blower 12, and is arranged laterally (X1 side) of the axial blower 12. The second heat exchanger 112b is arranged upstream of the flow of air formed by the axial blower 12 with respect to the axial blower 12, and is arranged behind the axial blower 12 (on the Y2 side). .. In the heat exchanger 112, the first heat exchanger 112a and the second heat exchanger 112b are connected by a pipe 112c. The first heat exchanger 112a and the second heat exchanger 112b each have a flat tube 22. The relationship between the flat tubes 22 of the outdoor unit 130 and the axial blower 12 is the same as the relationship between the flat tubes 22 of the outdoor unit 100, the outdoor unit 110, or the outdoor unit 120 and the axial blower 12.
 以上のように、室外機130は、熱交換器112を有する。そして、熱交換器112は、底板1fに対して垂直方向に見た場合に、直線状に形成された第1熱交換器112aと、直線状に形成された第2熱交換器112bとを有する。したがって、室外機130は、底板1fに対して垂直方向に見た場合に、扁平管22を曲げる必要がなく、簡易な構造で構成することができる。 As described above, the outdoor unit 130 has the heat exchanger 112. And the heat exchanger 112 has the linearly formed 1st heat exchanger 112a and the linearly formed 2nd heat exchanger 112b, when it sees in the perpendicular direction with respect to the bottom plate 1f. .. Therefore, the outdoor unit 130 does not need to bend the flat tube 22 when viewed in the direction perpendicular to the bottom plate 1f, and can be configured with a simple structure.
実施の形態5.
[冷凍サイクル装置50]
 図10は、本発明の実施の形態5に係る冷凍サイクル装置50の構成を示す図である。なお、実施の形態5に係る冷凍サイクル装置50の室外機150には、実施の形態1~3に係る室外機100、室外機110、室外機120又は室外機130等が用いられる。また、以下の説明では、冷凍サイクル装置50について、空調用途に使用される場合について説明するが、冷凍サイクル装置50は、空調用途に使用されるものに限定されるものではない。冷凍サイクル装置50は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される。
Embodiment 5.
[Refrigeration cycle device 50]
FIG. 10: is a figure which shows the structure of the refrigerating-cycle apparatus 50 which concerns on Embodiment 5 of this invention. As the outdoor unit 150 of the refrigeration cycle device 50 according to the fifth embodiment, the outdoor unit 100, the outdoor unit 110, the outdoor unit 120 or the outdoor unit 130 according to the first to third embodiments is used. Further, in the following description, the refrigeration cycle device 50 is described as being used for air conditioning purposes, but the refrigeration cycle device 50 is not limited to being used for air conditioning purposes. The refrigeration cycle device 50 is used for refrigerating or air conditioning applications such as a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater.
 実施の形態5に係る冷凍サイクル装置50は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房又は冷房して空気調和を行う。冷凍サイクル装置50は、室外機150と、室内機200とを有する。冷凍サイクル装置50は、室外機150と室内機200とが冷媒配管300及び冷媒配管400により配管接続されて、冷媒が循環する冷媒回路が構成されている。冷媒配管300は、気相の冷媒が流れるガス配管であり、冷媒配管400は、液相の冷媒が流れる液配管である。なお、冷媒配管400には、気液二相の冷媒を流してもよい。そして、冷凍サイクル装置50の冷媒回路では、圧縮機101、流路切替装置102、室外熱交換器103、膨張弁105、室内熱交換器201が冷媒配管を介して順次接続されている。 The refrigeration cycle device 50 according to the fifth embodiment heats or cools the room to perform air conditioning by transferring heat between the outside air and the room air via the refrigerant. The refrigeration cycle device 50 includes an outdoor unit 150 and an indoor unit 200. In the refrigeration cycle device 50, the outdoor unit 150 and the indoor unit 200 are connected by a refrigerant pipe 300 and a refrigerant pipe 400 to form a refrigerant circuit in which a refrigerant circulates. The refrigerant pipe 300 is a gas pipe through which a vapor-phase refrigerant flows, and the refrigerant pipe 400 is a liquid pipe through which a liquid-phase refrigerant flows. Note that a gas-liquid two-phase refrigerant may flow through the refrigerant pipe 400. In the refrigerant circuit of the refrigeration cycle device 50, the compressor 101, the flow path switching device 102, the outdoor heat exchanger 103, the expansion valve 105, and the indoor heat exchanger 201 are sequentially connected via the refrigerant pipe.
(室外機150)
 室外機150は、圧縮機101、流路切替装置102、室外熱交換器103、及び膨張弁105を有している。圧縮機101は、吸入した冷媒を圧縮して吐出する。圧縮機101には、上述した実施の形態1~3の室外機100、室外機110、室外機120又は室外機130等に使用される圧縮機13等が用いられる。ここで、圧縮機101は、インバータ装置を備えていてもよく、インバータ装置によって運転周波数を変化させて、圧縮機101の容量を変更することができるように構成されてもよい。流路切替装置102は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。冷凍サイクル装置50は、制御装置(図示は省略)からの指示に基づいて、流路切替装置102を用いて冷媒の流れを切り換えることで、暖房運転又は冷房運転を実現することができる。
(Outdoor unit 150)
The outdoor unit 150 includes a compressor 101, a flow path switching device 102, an outdoor heat exchanger 103, and an expansion valve 105. The compressor 101 compresses the drawn refrigerant and discharges it. As the compressor 101, the compressor 13 or the like used in the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the outdoor unit 130, or the like of the first to third embodiments described above is used. Here, the compressor 101 may include an inverter device, and the inverter device may change the operating frequency to change the capacity of the compressor 101. The flow path switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path. The refrigeration cycle device 50 can realize the heating operation or the cooling operation by switching the flow of the refrigerant using the flow path switching device 102 based on an instruction from a control device (not shown).
 室外熱交換器103は、冷媒と室外空気との熱交換を行う。冷凍サイクル装置50の室外熱交換器103には、上述した実施の形態1~3の室外機100、室外機110、室外機120又は室外機130等に使用される熱交換器11、熱交換器111又は熱交換器112等が用いられる。室外熱交換器103は、暖房運転時には蒸発器の働きをし、冷媒配管400から流入した低圧の冷媒と室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外熱交換器103は、冷房運転時には、凝縮器の働きをし、流路切替装置102側から流入した圧縮機101で圧縮済の冷媒と室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。室外熱交換器103には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機104が設けられている。室外送風機104には、上述した実施の形態1~3の室外機100、室外機110、室外機120又は室外機130等に使用される軸流送風機12等が用いられる。室外送風機104は、インバータ装置を取り付け、ファンモータの運転周波数を変化させてファンの回転速度を変更してもよい。膨張弁105は、絞り装置(流量制御手段)であり、膨張弁105を流れる冷媒の流量を調節することにより、膨張弁として機能し、開度を変化させることで、冷媒の圧力を調整する。例えば、膨張弁105が、電子式膨張弁等で構成された場合は、制御装置(図示は省略)等の指示に基づいて開度調整が行われる。 The outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air. The outdoor heat exchanger 103 of the refrigeration cycle apparatus 50 includes the heat exchanger 11 and the heat exchanger used in the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, or the outdoor unit 130 of the first to third embodiments described above. 111 or heat exchanger 112 etc. are used. The outdoor heat exchanger 103 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the refrigerant pipe 400 and the outdoor air to evaporate and evaporate the refrigerant. During the cooling operation, the outdoor heat exchanger 103 functions as a condenser, and performs heat exchange between the refrigerant that has been compressed by the compressor 101 that has flowed in from the flow path switching device 102 side and the outdoor air, and removes the refrigerant. Condensate and liquefy. The outdoor heat exchanger 103 is provided with an outdoor blower 104 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air. As the outdoor blower 104, the axial blower 12 or the like used in the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the outdoor unit 130, or the like of the first to third embodiments described above is used. The outdoor blower 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotation speed of the fan. The expansion valve 105 is an expansion device (flow rate control means), and functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the opening. For example, when the expansion valve 105 is composed of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from a control device (not shown) or the like.
(室内機200)
 室内機200は、冷媒と室内空気との間で熱交換を行う室内熱交換器201及び、室内熱交換器201が熱交換を行う空気の流れを調整する室内送風機202を有する。室内熱交換器201は、暖房運転時には、凝縮器の働きをし、冷媒配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管400側に流出させる。室内熱交換器201は、冷房運転時には蒸発器の働きをし、膨張弁105によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管300側に流出させる。室内送風機202は、室内熱交換器201と対面するように設けられている。室内送風機202の運転速度は、ユーザの設定により決定される。室内送風機202には、インバータ装置を取り付け、ファンモータの運転周波数を変化させて回転速度を変更してもよい。
(Indoor unit 200)
The indoor unit 200 has an indoor heat exchanger 201 that performs heat exchange between the refrigerant and indoor air, and an indoor blower 202 that adjusts the flow of air through which the indoor heat exchanger 201 performs heat exchange. The indoor heat exchanger 201 acts as a condenser during the heating operation, and performs heat exchange between the refrigerant flowing from the refrigerant pipe 300 and the indoor air to condense and liquefy the refrigerant, and to the refrigerant pipe 400 side. Drain. The indoor heat exchanger 201 functions as an evaporator during cooling operation, performs heat exchange between the refrigerant that has been brought to a low pressure state by the expansion valve 105 and indoor air, and causes the refrigerant to deprive the heat of the air to evaporate. To vaporize and flow out to the refrigerant pipe 300 side. The indoor blower 202 is provided so as to face the indoor heat exchanger 201. The operation speed of the indoor blower 202 is determined by the user setting. An inverter device may be attached to the indoor blower 202 to change the operating frequency of the fan motor to change the rotation speed.
[冷凍サイクル装置50の動作例]
 次に、冷凍サイクル装置50の動作例として冷房運転動作を説明する。圧縮機101によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置102を経由して、室外熱交換器103に流入する。室外熱交換器103に流入したガス冷媒は、室外送風機104により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器103から流出する。室外熱交換器103から流出した冷媒は、膨張弁105によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機200の室内熱交換器201に流入し、室内送風機202により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器201から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気の吹出風となって、室内機200の吹出口から空調対象空間に吹き出される。室内熱交換器201から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。
[Operation Example of Refrigeration Cycle Device 50]
Next, a cooling operation operation will be described as an operation example of the refrigeration cycle apparatus 50. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the outdoor heat exchanger 103 via the flow path switching device 102. The gas refrigerant flowing into the outdoor heat exchanger 103 is condensed by heat exchange with the outside air blown by the outdoor blower 104, becomes a low-temperature refrigerant, and flows out from the outdoor heat exchanger 103. The refrigerant flowing out of the outdoor heat exchanger 103 is expanded and decompressed by the expansion valve 105 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the indoor heat exchanger 201 of the indoor unit 200, evaporates by heat exchange with the indoor air blown by the indoor blower 202, and becomes a low-temperature low-pressure gas refrigerant to become the indoor heat exchanger. It flows out from 201. At this time, the indoor air cooled by the heat absorbed by the refrigerant becomes blown-out air of the conditioned air, and is blown out from the outlet of the indoor unit 200 to the air-conditioned space. The gas refrigerant flowing out from the indoor heat exchanger 201 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
 次に、冷凍サイクル装置50の動作例として暖房運転動作を説明する。圧縮機101によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置102を経由して、室内機200の室内熱交換器201に流入する。室内熱交換器201に流入したガス冷媒は、室内送風機202により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器201から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気の吹出風となって、室内機200の吹出口から空調対象空間に吹き出される。室内熱交換器201から流出した冷媒は、膨張弁105によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機150の室外熱交換器103に流入し、室外送風機104により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。 Next, a heating operation operation will be described as an operation example of the refrigeration cycle apparatus 50. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow path switching device 102. The gas refrigerant flowing into the indoor heat exchanger 201 is condensed by heat exchange with the indoor air blown by the indoor blower 202, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 201. At this time, the indoor air that has been heated by receiving heat from the gas refrigerant becomes the blast air of the conditioned air, and is blown from the outlet of the indoor unit 200 to the air-conditioned space. The refrigerant flowing out from the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 150, evaporates by heat exchange with the outside air blown by the outdoor blower 104, and becomes a low-temperature low-pressure gas refrigerant to become the outdoor heat exchanger 103. Drained from. The gas refrigerant flowing out of the outdoor heat exchanger 103 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
 実施の形態5に係る冷凍サイクル装置50は、実施の形態1~4に係る室外機100、室外機110、室外機120又は室外機130を備えるため、熱交換器11の通風抵抗を低減でき騒音を抑制することができる。また、室外機110は、通風抵抗を低減できることで、室外機110が必要とする出力を低減させることができる。 Since the refrigeration cycle device 50 according to the fifth embodiment includes the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, or the outdoor unit 130 according to the first to fourth embodiments, the ventilation resistance of the heat exchanger 11 can be reduced. Can be suppressed. Further, the outdoor unit 110 can reduce the ventilation resistance, and thus can reduce the output required by the outdoor unit 110.
 なお、本発明の実施の形態は、上記実施の形態1~5に限定されず、種々の変更を加えることができる。例えば、室外機100、室外機110、室外機120又は室外機130は、軸流送風機12を1つ備えているが、軸流送風機12を、複数備えていてもよい。また、室外機100、室外機110、室外機120又は室外機130は、例えば、重力方向に配置された複数の熱交換器11と、複数の熱交換器11と対向する複数の軸流送風機12と、を有してもよい。また、複数の扁平管22のそれぞれは、第1端部23と第2端部24とを通る長軸LSが仮想の水平面Fに対して同じ方向DRに傾斜しているものに限定されない。複数の扁平管22のそれぞれは、第1端部23と第2端部24とを通る長軸LSが仮想の水平面Fに対してそれぞれ異なる方向に傾斜してもよい。 The embodiment of the present invention is not limited to the above-described first to fifth embodiments, and various modifications can be added. For example, the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, or the outdoor unit 130 includes one axial blower 12, but may include a plurality of axial blowers 12. Further, the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, or the outdoor unit 130 is, for example, a plurality of heat exchangers 11 arranged in the direction of gravity and a plurality of axial blowers 12 facing the plurality of heat exchangers 11. And may be included. Further, each of the plurality of flat tubes 22 is not limited to one in which the major axis LS passing through the first end portion 23 and the second end portion 24 is inclined in the same direction DR with respect to the virtual horizontal plane F. Each of the plurality of flat tubes 22 may be inclined in different directions with respect to the virtual horizontal plane F, with the long axis LS passing through the first end 23 and the second end 24.
 1 筐体、1a 前面パネル、1a1 吹出口、1b 背面パネル、1b1 開口部、1c 左側面パネル、1c1 外気取入口、1d 右側面パネル、1e 天面パネル、1f 底板、1g ファンガード、2 仕切板、3 送風機室、4 機械室、11 熱交換器、11a 下端部、11b 後方部、11c 側方部、12 軸流送風機、13 圧縮機、15 モータ、16 プロペラファン、17 ハブ部、18 回転翼、19 前縁部、19a 先端部、19b 基部、21 フィン、22 扁平管、22a 第1扁平管、22b 扁平管、22c 円管、23 第1端部、24 第2端部、50 冷凍サイクル装置、100 室外機、101 圧縮機、102 流路切替装置、103 室外熱交換器、104 室外送風機、105 膨張弁、110 室外機、111 熱交換器、112 熱交換器、112a 第1熱交換器、112b 第2熱交換器、112c 配管、120 室外機、130 室外機、150 室外機、200 室内機、201 室内熱交換器、202 室内送風機、300 冷媒配管、400 冷媒配管。 1 housing, 1a front panel, 1a1 outlet, 1b rear panel, 1b1 opening, 1c left side panel, 1c1 outside air intake, 1d right side panel, 1e top panel, 1f bottom plate, 1g fan guard, 2 partition plates 3, blower room, 4 machine room, 11 heat exchanger, 11a lower end, 11b rear part, 11c lateral part, 12 axial blower, 13 compressor, 15 motor, 16 propeller fan, 17 hub part, 18 rotor blades , 19 front edge, 19a tip, 19b base, 21 fin, 22 flat tube, 22a first flat tube, 22b flat tube, 22c circular tube, 23 first end, 24 second end, 50 refrigeration cycle device , 100 outdoor unit, 101 compressor, 102 flow path switching device, 103 outdoor heat exchanger, 104 outdoor blower, 105 expansion valve, 110 outdoor unit, 111 heat exchanger, 112 heat exchanger, 112a first heat exchanger, 112b second heat exchanger, 112c piping, 120 outdoor unit, 130 outdoor unit, 150 outdoor unit, 200 indoor unit, 201 indoor heat exchanger, 202 indoor blower, 300 refrigerant pipe, 400 refrigerant pipe.

Claims (11)

  1.  筐体と、
     前記筐体の内部に配置され、仮想の回転軸に対して半径方向に配置された複数の回転翼によって前記筐体内を通過する空気の流れを形成する軸流送風機と、
     上下方向に間隔をあけて配置された複数の扁平管を有し、前記筐体の内部において前記軸流送風機の前記回転軸に対して半径方向に配置されると共に、前記軸流送風機の形成する空気の流れにおいて前記軸流送風機の風上側に配置される熱交換器と、
     を備え、
     前記複数の扁平管のそれぞれは、
     前記軸流送風機の配置側に位置する第1端部と、前記第1端部に対して、前記熱交換器を通過する空気の流れの風上側に位置する第2端部と、を通る長軸を有する扁平形状であり、
     前記回転翼の先端部が描く回転円において、前記熱交換器に最も近い位置となる対向部の接線であって、前記回転翼の回転方向のベクトルを第1ベクトルと定義し、
     前記複数の扁平管の中で前記対向部に最も近い位置に配置された第1扁平管において、前記第2端部を基点として前記第1端部を通過するベクトルを第2ベクトルと定義した場合に、前記第1ベクトルと前記第2ベクトルとのなす角が90度未満である室外機。
    Housing and
    An axial blower that is disposed inside the housing and that forms a flow of air passing through the housing by a plurality of rotating blades that are arranged in a radial direction with respect to a virtual rotation axis,
    It has a plurality of flat tubes arranged at intervals in the up-and-down direction, is arranged in the housing in a radial direction with respect to the rotation axis of the axial blower, and forms the axial blower. A heat exchanger arranged on the windward side of the axial blower in the flow of air,
    Equipped with
    Each of the plurality of flat tubes,
    A length passing through a first end located on the arrangement side of the axial blower and a second end located on the windward side of the flow of air passing through the heat exchanger with respect to the first end. It has a flat shape with a shaft,
    In the rotation circle drawn by the tip of the rotary blade, the tangent line of the facing portion that is closest to the heat exchanger, the vector in the rotation direction of the rotary blade is defined as a first vector,
    A case where a vector passing through the first end with the second end as a base point is defined as a second vector in the first flat pipe arranged at a position closest to the facing part among the plurality of flat pipes And an outdoor unit in which the angle formed by the first vector and the second vector is less than 90 degrees.
  2.  前記第1扁平管の前記長軸は、
     前記回転翼の回転方向に向かって傾斜する請求項1に記載の室外機。
    The long axis of the first flat tube is
    The outdoor unit according to claim 1, wherein the outdoor unit is inclined toward a rotation direction of the rotary blade.
  3.  前記筐体は、
     前記熱交換器及び前記軸流送風機の上方を覆う天面パネルと、
     前記熱交換器及び前記軸流送風機の下方に配置される底板と、
     を有し、
     前記第1扁平管の前記長軸は、
     前記第1端部が、前記上下方向において、前記第2端部よりも上側に位置するように傾斜しており、
     前記軸流送風機は、
     前記回転翼が、前記熱交換器と隣接する位置、前記天面パネルと隣接する位置、前記底板と隣接する位置の順となる回転方向に回転する請求項1又は2に記載の室外機。
    The housing is
    A top panel that covers the heat exchanger and the upper part of the axial blower;
    A bottom plate arranged below the heat exchanger and the axial blower,
    Have
    The long axis of the first flat tube is
    The first end portion is inclined so as to be located above the second end portion in the vertical direction,
    The axial blower is
    The outdoor unit according to claim 1 or 2, wherein the rotary blade rotates in a rotation direction in which a position adjacent to the heat exchanger, a position adjacent to the top panel, and a position adjacent to the bottom plate are sequentially arranged.
  4.  前記筐体は、
     前記熱交換器及び前記軸流送風機の上方を覆う天面パネルと、
     前記熱交換器及び前記軸流送風機の下方に配置される底板と、
     を有し、
     前記第1扁平管の前記長軸は、
     前記第1端部が、前記上下方向において、前記第2端部よりも下側に位置するように傾斜しており、
     前記軸流送風機は、
     前記回転翼が、前記天面パネルと隣接する位置、前記熱交換器と隣接する位置、前記底板と隣接する位置の順となる回転方向に回転する請求項1又は2に記載の室外機。
    The housing is
    A top panel that covers the heat exchanger and the upper part of the axial blower;
    A bottom plate arranged below the heat exchanger and the axial blower,
    Have
    The long axis of the first flat tube is
    The first end portion is inclined so as to be located below the second end portion in the vertical direction,
    The axial blower is
    The outdoor unit according to claim 1 or 2, wherein the rotary blade rotates in a rotation direction in which a position adjacent to the top panel, a position adjacent to the heat exchanger, and a position adjacent to the bottom plate are in this order.
  5.  前記複数の扁平管のそれぞれの前記第2端部を通る仮想水平面を第1仮想水平面と定義した場合に、
     前記第1扁平管の上方又は下方に配置され、かつ、前記第1扁平管と対向する位置に配置された前記扁平管の前記長軸は、前記第1仮想水平面に対して、前記第1扁平管の前記長軸が前記第1仮想水平面に対して傾斜する方向と同じ方向に傾斜している請求項1~4のいずれか1項に記載の室外機。
    When a virtual horizontal plane passing through the second end portions of each of the plurality of flat tubes is defined as a first virtual horizontal plane,
    The long axis of the flat tube arranged above or below the first flat tube and at a position facing the first flat tube has the first flat surface with respect to the first virtual horizontal plane. The outdoor unit according to any one of claims 1 to 4, wherein the long axis of the pipe is inclined in the same direction as the direction inclining with respect to the first virtual horizontal plane.
  6.  前記第1扁平管の上方又は下方に配置され、かつ、前記第1扁平管と対向する位置に配置された前記扁平管の前記長軸は、前記第1仮想水平面に対して、前記第1扁平管の前記長軸が前記第1仮想水平面に対する傾斜角度と同じ角度で傾斜している請求項5に記載の室外機。 The long axis of the flat tube arranged above or below the first flat tube and at a position facing the first flat tube has the first flat surface with respect to the first virtual horizontal plane. The outdoor unit according to claim 5, wherein the long axis of the pipe is inclined at the same angle as the inclination angle with respect to the first virtual horizontal plane.
  7.  前記複数の扁平管のそれぞれの前記第2端部を通る仮想水平面を第1仮想水平面と定義した場合に、
     前記複数の扁平管のそれぞれの前記長軸は、前記第1仮想水平面に対して、前記第1扁平管の前記長軸が前記第1仮想水平面に対して傾斜する方向と同じ方向に傾斜している請求項1~4のいずれか1項に記載の室外機。
    When a virtual horizontal plane passing through the second end portions of each of the plurality of flat tubes is defined as a first virtual horizontal plane,
    The long axis of each of the plurality of flat tubes is inclined with respect to the first virtual horizontal plane in the same direction as the direction in which the long axis of the first flat tube is inclined with respect to the first virtual horizontal plane. The outdoor unit according to any one of claims 1 to 4.
  8.  前記複数の扁平管のそれぞれの前記長軸は、前記第1仮想水平面に対して、前記第1扁平管の前記長軸が前記第1仮想水平面に対する傾斜角度と同じ角度で傾斜している請求項7に記載の室外機。 The long axis of each of the plurality of flat tubes is inclined with respect to the first virtual horizontal plane at the same angle as the inclination angle of the long axis of the first flat tube with respect to the first virtual horizontal plane. The outdoor unit according to 7.
  9.  前記熱交換器は、
     内部に冷媒が流通する少なくとも1つの円管を更に有する請求項1~8のいずれか1項に記載の室外機。
    The heat exchanger is
    The outdoor unit according to any one of claims 1 to 8, further comprising at least one circular pipe through which a refrigerant flows.
  10.  前記回転軸を通る仮想水平面を第2仮想水平面と定義した場合に、
     前記対向部は、前記第2仮想水平面と、前記回転円とが接する点である請求項1~9のいずれか1項に記載の室外機。
    When a virtual horizontal plane passing through the rotation axis is defined as a second virtual horizontal plane,
    The outdoor unit according to any one of claims 1 to 9, wherein the facing portion is a point where the second virtual horizontal plane and the rotating circle are in contact with each other.
  11.  請求項1~10のいずれか1項に記載の室外機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus including the outdoor unit according to any one of claims 1 to 10.
PCT/JP2018/048112 2018-12-27 2018-12-27 Outdoor unit and refrigeration cycle device WO2020136797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048112 WO2020136797A1 (en) 2018-12-27 2018-12-27 Outdoor unit and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048112 WO2020136797A1 (en) 2018-12-27 2018-12-27 Outdoor unit and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020136797A1 true WO2020136797A1 (en) 2020-07-02

Family

ID=71125971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048112 WO2020136797A1 (en) 2018-12-27 2018-12-27 Outdoor unit and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2020136797A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310940A (en) * 1996-05-20 1997-12-02 Hitachi Ltd Heat exchange device
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same
JP2012037154A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Fin tube heat exchanger and refrigerating cycle device using the same
WO2017126019A1 (en) * 2016-01-19 2017-07-27 三菱電機株式会社 Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310940A (en) * 1996-05-20 1997-12-02 Hitachi Ltd Heat exchange device
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same
JP2012037154A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Fin tube heat exchanger and refrigerating cycle device using the same
WO2017126019A1 (en) * 2016-01-19 2017-07-27 三菱電機株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
JP5805214B2 (en) Outdoor unit and refrigeration cycle apparatus including the outdoor unit
US9568221B2 (en) Indoor unit for air conditioning device
JP6600005B2 (en) Air conditioner outdoor unit and refrigeration cycle apparatus
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JPWO2018131121A1 (en) Dehumidifier
CN108027151B (en) Portable air conditioner
WO2020136797A1 (en) Outdoor unit and refrigeration cycle device
WO2020039552A1 (en) Outdoor unit and refrigeration cycle device
KR100550571B1 (en) Window type air conditioner
JP5558449B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
WO2020250363A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
WO2019087298A1 (en) Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
JPWO2020044482A1 (en) Outdoor unit and refrigeration cycle equipment
CN110462296B (en) Indoor unit of air conditioner
JP6545424B1 (en) Air conditioner
TWI676741B (en) Centrifugal blower, air supply device, air conditioner, and refrigeration cycle device
JP6625305B1 (en) Blower, air conditioner indoor unit and air conditioner
WO2021033263A1 (en) Blowout grille, and indoor unit of air conditioning device in which same is used
WO2021152775A1 (en) Centrifugal blower and air conditioner provided with same
JP2019158286A (en) Heat exchanger and air conditioner
WO2019180764A1 (en) Indoor unit and air conditioner
WO2020090005A1 (en) Turbo fan, blower device, air conditioning device, and refrigeration cycle device
WO2013183090A1 (en) Outdoor unit for air conditioning device, and air conditioning device with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE