WO2018003103A1 - Air conditioner, air conditioning device, and refrigeration cycle device - Google Patents

Air conditioner, air conditioning device, and refrigeration cycle device Download PDF

Info

Publication number
WO2018003103A1
WO2018003103A1 PCT/JP2016/069553 JP2016069553W WO2018003103A1 WO 2018003103 A1 WO2018003103 A1 WO 2018003103A1 JP 2016069553 W JP2016069553 W JP 2016069553W WO 2018003103 A1 WO2018003103 A1 WO 2018003103A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
case
air
casing
air conditioner
Prior art date
Application number
PCT/JP2016/069553
Other languages
French (fr)
Japanese (ja)
Inventor
惇司 河野
池田 尚史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/069553 priority Critical patent/WO2018003103A1/en
Priority to JP2018524694A priority patent/JP6541881B2/en
Publication of WO2018003103A1 publication Critical patent/WO2018003103A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station

Definitions

  • the present invention relates to an air conditioner, an air conditioner including the air conditioner, and a refrigeration cycle apparatus.
  • Patent Document 1 discloses a diffuser unit in which a part of a vortex casing from a blower outlet of a blower unit to a position adjacent to a heat exchanger is expanded in a height direction and a width direction.
  • An indoor unit is disclosed.
  • the width of the heat exchanger is larger than the width of the air outlet of the blower, and therefore the wind speed distribution passing through the heat exchanger is not uniform in the width direction. For this reason, the pressure loss in the heat exchanger increases, which causes a decrease in fan driving efficiency and an increase in noise.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a highly efficient and low-noise air conditioner by enlarging an air flow along a diffuser portion, that is, a casing outlet, without providing a guide.
  • An air conditioner and a refrigeration cycle apparatus are provided.
  • the air conditioner of the present invention includes a case, a blower, and a heat exchanger.
  • the blower includes first and second casings. Each of the first and second casings includes a casing outlet. The width of the casing outlet in the width direction in which the first and second casings are arranged is closer to the case outlet so that the distance between the casing outlets in the first and second casings becomes narrower as it approaches the case outlet. Become wider.
  • the case includes a partition member that partitions a first region in which the heat exchanger is located, a second region in which the air blower is located, and a third region between the casing outlets.
  • the wind speed distribution in the heat exchanger is made uniform, and high efficiency and low noise can be achieved.
  • FIG. 1 is a schematic perspective view of an air conditioner according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the internal structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is the schematic diagram which looked at the internal structure of the air conditioner which concerns on Embodiment 1 from the side surface of the air conditioner.
  • FIG. 4 is a partial cross-sectional schematic view taken along line AA in FIG. 3.
  • It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on Embodiment 1 from upper direction.
  • It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on the modification of Embodiment 1 from upper direction.
  • FIG. 6 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5.
  • FIG. 1 is a schematic perspective view of an indoor unit as an air conditioner equipped with a multiblade centrifugal fan according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing an internal configuration of the indoor unit as the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic view of the internal configuration of the air conditioner according to Embodiment 1 of the present invention as viewed from the side of the air conditioner.
  • an indoor unit as an air conditioner includes a case 1 installed behind the ceiling of a space to be air-conditioned.
  • the shape of case 1 can employ
  • the case 1 is formed in a rectangular parallelepiped shape.
  • Case 1 includes an upper surface portion 1a, a lower surface portion 1b, and a side surface portion 1c.
  • a case outlet 2 is provided on one side of the side surface portion 1c of the case 1.
  • Arbitrary shapes can be adopted as the shape of the case outlet 2.
  • the shape of the case outlet 2 is, for example, a rectangular shape.
  • the case suction inlet 8 is formed in the surface on the opposite side to the surface in which the case blower outlet 2 was formed among the side surface parts 1c of the case 1.
  • FIG. Arbitrary shapes can be adopted as the shape of the case suction port 8.
  • the shape of the case suction port 8 is, for example, a rectangular shape.
  • the case suction port 8 may be provided with a filter that removes air. The case inlet 8 sucks in air, and the case outlet 2 facing the case sucks out air.
  • the case 1 Inside the case 1 is equipped with a blower.
  • the air blower is provided to send the air sucked into the case 1 from the case suction port 8 to the case blower outlet 2.
  • a heat exchanger 6 provided between the blower and the case outlet 2 is provided inside the case 1.
  • the case 1 includes a fan motor 4 and partition members 10 and 12 (see FIG. 5). The partition members 10 and 12 will be described later.
  • the blower section includes a multiblade centrifugal fan 3 and a vortex casing 7 as a casing having a vortex shape, for example.
  • the vortex casing 7 has a pair of a first casing 71 and a second casing 72 in the case 1 spaced apart from each other.
  • the fans 3 are arranged inside each of a plurality of, for example, a pair of vortex casings 7.
  • a bell mouth 5 is formed on the vortex casing 7.
  • the fan 3 is disposed so as to face the opening (vortex casing suction port 9) defined by the bell mouth 5.
  • the fan motor 4 is supported by a motor support 4a fixed to the upper surface portion 1a of the case 1, for example.
  • the fan motor 4 has a rotation axis X (see FIG. 3).
  • the rotation axis X is disposed so as to extend in parallel to the surface of the side surface portion 1c on which the case suction port 8 is formed and the surface on which the case outlet 2 is formed.
  • At least one multiblade centrifugal fan 3 is attached to the rotary shaft X. In the indoor unit shown in FIG. 2, two fans 3 are attached to the rotation shaft X.
  • the fan 3 creates a flow of air that is sucked into the case 1 from the case suction port 8 and blown out from the case outlet 2 to the target space.
  • the heat exchanger 6 is disposed in the air flow path inside the case 1. Specifically, the heat exchanger 6 is arrange
  • the structure and aspect of the heat exchanger 6 are not specifically limited, In this Embodiment 1, a well-known thing is used.
  • FIG. 4 is a schematic partial sectional view taken along line AA in FIG.
  • the fan 3 includes a main plate 3a, a side plate 3c, and a plurality of blades 3d.
  • the main plate 3a is disk-shaped and has a boss 3b at the center.
  • the output shaft of the fan motor 4 is connected to the center of the boss portion 3b.
  • the fan 3 is rotated by the driving force of the fan motor 4 via the output shaft.
  • the side plate 3c is provided to face the main plate 3a.
  • the side plate 3c is formed in a ring shape.
  • the plurality of blades 3d are provided so as to surround the rotation axis X from the main plate 3a toward the side plate 3c.
  • the plurality of blades 3d are provided in the same shape.
  • Each of the blades 3 d is formed by a forward blade that is positioned such that the blade trailing edge on the outer circumferential side from the blade leading edge on the inner circumferential side advances in the rotation direction
  • FIG. 5 is a schematic plan view of the inside of the case 1 of FIG.
  • the vortex casing 7 is provided so as to surround the fan 3.
  • vortex casing 7 includes a peripheral wall 7 a extending along the outer peripheral end of fan 3. Further, the vortex casing 7 has a tongue 7b at one location of the peripheral wall 7a.
  • the vortex casing 7 rectifies the air blown from the fan 3.
  • the side wall 7c of the vortex casing 7 is provided with at least one vortex casing suction port 9 (see FIG. 2), and a bell mouth 5 for guiding the airflow to the vortex casing suction port 9 is disposed.
  • the bell mouth 5 is formed so as to surround the spiral casing suction port 9.
  • the bellmouth 5 will be arrange
  • the bell mouth 5 rectifies the airflow flowing into the fan 3.
  • the bell mouth 5 has an inner diameter that gradually decreases toward the downstream of the airflow direction.
  • Each of the first casing 71 and the second casing 72 has a casing outlet 7d.
  • the casing air outlet 7d is arranged at a position facing the heat exchanger 6, that is, in a relatively region on the heat exchanger 6 side (left side in the drawing) in the entire vortex casing 7 of FIG.
  • the end of the casing outlet 7d closest to the heat exchanger 6 is the outlet 7e, from which air is blown toward the heat exchanger 6.
  • the casing air outlet 7d is disposed in a pair so as to face each other in the vertical direction of FIG. 5 in which the first casing 71 and the second casing 72 are arranged.
  • the casing blower outlet part 7d of each of the first casing 71 and the second casing 72 the distance between them becomes narrower toward the case blower outlet 2, that is, toward the left side of FIG. That is, the width of the pair of casing outlets 7d themselves in the width direction (the vertical direction in FIG. 5) in which the first casing 71 and the second casing 72 are arranged is closer to the case outlet 2, that is, toward the left side in FIG. It is getting wider as you go.
  • the dimension of the width direction of the casing blower outlet part 7d becomes the largest, and the space
  • Case 1 has a first region in which the heat exchanger 6 is located. Case 1 has the 2nd field where a blower part is located. Further, the case 1 has a third region as a space 11 sandwiched between a pair of casing outlets 7d. That is, the space in case 1 is divided into a first region, a second region, and a third region. In general, the first area is the left half area of FIG. 5, and the second area is the right half area of FIG. Further, the third region is a region sandwiched between a pair of opposed side surfaces 7g in the central portion in the vertical direction of FIG. 5 where the pair of casing outlets 7d of FIG.
  • the pair of casing outlets 7d has the opposite side surface 7g which is the side surface facing the third region.
  • the opposing side surface 7 g extends in an oblique direction with respect to the side surface portion 1 c of the case 1.
  • the pair of casing outlets 7d has a non-opposing side surface 7f that is a side surface opposite to the side facing the third region.
  • the non-opposing side surface 7f is the side surface closest to the side surface portion 1c of the case 1 in the pair of casing air outlet portions 7d in FIG.
  • the non-opposing side surface 7 f extends along the side surface portion 1 c of the case 1, that is, so as to extend substantially parallel to the side surface portion 1 c of the case 1.
  • partition members 10 and 12 that partition the first region, the second region, and the third region are disposed. That is, in the case 1, the partition member 10 extending in the vertical direction of FIG. 5 so as to partition the first region and the second region, and the vertical direction of FIG. 5 so as to partition the first region and the third region. And a partition member 12 extending so as to face along a pair of opposed side surfaces 7g of the casing outlet 7d.
  • the partition member 12 has a first portion 12p extending in the vertical direction in FIG. 5 so as to partition the first region and the third region.
  • the partition member 12 has the 2nd part 12q extended in the diagonal direction of FIG. 5 so that it may oppose along a pair of opposing side surface 7g of the casing blower outlet part 7d.
  • the partition member 12 has the 3rd part 12r which divides a 2nd area
  • the partition member 12 surrounds the space 11 that is the third region by the third portion 12r that partitions the second region and the third region, and the first and second portions 12p and 12q.
  • the partition member 10 has a first portion 10p that partitions the first region and the second region in the region between the vortex casing 7 and the side surface portion 1c of the case 1 in FIG. Moreover, the partition member 10 has the 2nd part 10q arrange
  • the third portion 12r of the partition member 12 and the second portion 10q of the partition member 10 are arranged as other partition members that partition the second region and the third region.
  • the third portion 12r of the partition member 12, which is another partition member, and the second portion 10q of the partition member 10 are the same as the first portion 10p of the partition member 10 that partitions the first region and the second region, and FIG. 5 are arranged at the same position in the left-right direction. This is because the other partition member divides the second region and the third region.
  • the other partition member may be arranged, for example, on the right side of the drawing, that is, on the case suction port 8 side from the above position.
  • the pair of casing outlets 7d and the third region are arranged so as to straddle the first region and the second region in the left-right direction of FIG.
  • FIG. 6 shows a modification of FIG.
  • the opposed side surface 7 g itself of the vortex casing 7 may be used as a part of the partition member 12, that is, the second portion 12 q of the partition member 12.
  • the partition member 12 a is configured to occupy a portion corresponding to the second portion 12 q along the opposing side surface 7 g of the partition member 12.
  • the first portion 12 p and the third portion 12 r of the partition member 12 are arranged so as to extend in the vertical direction of the drawing as in FIG. 5.
  • the partition members 10 and 12 may be formed of a generally known plate-like member, but may be formed of, for example, solid foamed polystyrene.
  • the vertical dimension (height dimension) in FIG. 3 of the spaces of the first to third regions partitioned by the partition members 10 and 12 is not less than the height dimension of the air outlet 7e of the vortex casing 7. It is preferable that the height of the partition members 10 and 12 is substantially equal.
  • the wide part regarding the width direction of the heat exchanger 6 opposes the casing blower outlet part 7d, and will receive supply of the air from the casing blower outlet part 7d. That is, the area where the supply of air from the casing outlet 7d is not received in the width direction of the heat exchanger 6 is reduced. For this reason, the wind speed distribution flowing into the heat exchanger 6 from the casing outlet 7d side can be made uniform.
  • the third region becomes narrower as it approaches the case outlet 2. Air flowing from the second region to the third region can be reduced. Therefore, even if the second portion 10q of the partition member 10 and the third portion 12r of the partition member 12 do not exist by the amount of the air flowing into the third region, the first direction that should originally flow. The amount of air from the two regions to the first region can be increased.
  • the partition member 10 which divides
  • a partition member 12 is provided that partitions the third region sandwiched between the first region and the first region. For this reason, the inflow of air from the first region to the second region and the inflow of air from the first region to the third region can be suppressed, and turbulence of airflow and generation of vortices can be suppressed. By suppressing the turbulence of the air current and the generation of vortices, noise and pressure loss can be suppressed.
  • the airflow from the heat exchanger 6 to the case outlet 2 can be expanded without providing a guide, and the passage of air supplied to the heat exchanger 6 can be achieved.
  • the wind speed can be made uniform. Further, the turbulence of the air flow to the heat exchanger 6 and the pressure loss and noise due to the vortex are reduced, and the efficiency of driving the fan 3 and the noise can be reduced.
  • FIG. FIG. 7 is a schematic plan view of the inside of the case 1 of the air conditioner according to Embodiment 2 as viewed from above.
  • the air conditioner of the present embodiment basically has the same configuration as the air conditioner of the first embodiment.
  • the hollow box 13 is arranged in at least a part of the space 11 as the third region (substantially the whole in FIG. 7).
  • the hollow box 13 is formed by a flat box-shaped wall member 13a constituting the wall surface.
  • the box wall member 13a includes a first portion 13p extending in the vertical direction in FIG. 7 so as to partition the first region and the third region, like the first portion 12p of the partition member 12, and the casing outlet portion. 7d and a second portion 13q extending in the oblique direction of FIG. 7 so as to face each other along a pair of opposing side surfaces 7g. Further, the box wall member 13a has a third portion 13r that partitions the second region and the third region.
  • the second portion 13q of the box wall member 13a is in contact with the opposing side surfaces 7g of the first casing 71 and the second casing 72, respectively.
  • the box wall member 13a has the opening part 13b in at least one part of the 2nd part 13q which contact
  • the opening 13b is also formed in a part of the opposing side surface 7g with which the box wall member 13a contacts.
  • the opening 13b of the box wall member 13a communicates with the opening of the opposing side surface 7g.
  • a portion surrounded by the box wall member 13 a of the hollow box 13, that is, the inside is a hollow 14, and the hollow 14 is disposed at a position overlapping the space 11. For this reason, the opening 13b communicates the inside of each of the pair of casing outlets 7d and the inside of the hollow box 13, that is, the hollow 14.
  • the hollow box 13 has the opening part 13b in the box wall member 13a, and, thereby, the inside of the casing blower outlet part 7d and the hollow 14 inside the hollow box 13 are connected. For this reason, the air which reached the inside of one casing blower outlet part 7d from the fan 3 can flow in the hollow 14 through one of the two opening parts 13b from there. As a result, the hollow box 13 can function as a resonance box, and the generation of noise can be suppressed.
  • FIG. FIG. 8 is a schematic plan view of the inside of the case 1 of the air conditioner according to Embodiment 3 as viewed from above.
  • the air conditioner of the present embodiment basically has the same configuration as the air conditioner of the first embodiment.
  • the surface on the side to be curved has a curved shape.
  • the opposing curved surface 7h corresponding to the opposing side surface 7g of the first embodiment which is the surface of each of the pair of vortex casings 7 that faces the third region, has a curved shape.
  • the present embodiment is structurally different from the first and second embodiments in which the opposing side surface 7g has a planar shape.
  • the opposing curved surface 7h has a curved surface shape
  • the dimensions inside the vortex casing 7 with respect to the width direction in which the pair of vortex casings 7 are arranged are from the case suction port 8 side to the case. It increases smoothly toward the outlet 2 side. For this reason, a sudden expansion of the air passage does not occur inside the vortex casing 7. Therefore, separation of the airflow on the inner wall surface of the air passage inside the vortex casing 7 is suppressed, and pressure loss due to separation can be reduced.
  • the opposed curved surface 7h expands the widthwise dimension of the vortex casing 7 toward the case outlet 2 side, the blown airflow can be sufficiently expanded at the outlet 7e of the vortex casing 7, and the same as in the first embodiment.
  • the passing air speed of the air supplied to can be made uniform.
  • the present embodiment can expand the airflow from the heat exchanger 6 to the case outlet 2 without providing a guide, and is supplied to the heat exchanger 6, as in the first embodiment.
  • the passing air speed of air can be made uniform. Further, the turbulence of the air flow to the heat exchanger 6 and the pressure loss and noise inside the vortex casing 7 due to the vortex are reduced, and the drive 3 can be driven with high efficiency and low noise.
  • FIG. 9 is a schematic plan view of the inside of the case 1 of the air conditioner according to Embodiment 4 as viewed from above.
  • the air conditioner of the present embodiment basically has the same configuration as the air conditioner of the first embodiment.
  • the pair of vortex casings 7 has the opposed curved surface 7h as in FIG. 8, but may have a configuration having opposed side surfaces 7g (see FIG. 5) instead of the opposed curved surface 7h.
  • FIG. 9 Since the configuration of FIG. 9 is the same as the configuration of FIG. 5 except for the above, the same components are denoted by the same reference numerals, and the description thereof will not be repeated.
  • the effect of this Embodiment is demonstrated.
  • the portion of the space 11 sandwiched between the pair of vortex casings 7 is formed as a continuous region from the third region to the second region. Can be enlarged.
  • the first region and the third region The size of the region from the first portion 12p of the partitioning member 12 to the bell mouth 5, that is, the size of the region in which air can flow into the bell mouth 5 from the space 11 side is larger than that of the above tentative case. can do. For this reason, the amount of airflow flowing from the space 11 side to the bellmouth 5 increases, and the distribution of the airflow flowing through the bellmouth 5 can be made more uniform. Therefore, the inflow distribution of the airflow to the fan 3 can be improved.
  • the present embodiment can expand the airflow from the heat exchanger 6 to the case outlet 2 without providing a guide, and is supplied to the heat exchanger 6, as in the first embodiment.
  • the passing air speed of air can be made uniform. Furthermore, the pressure loss in the fan 3 is reduced, and the driving efficiency of the fan 3 and the noise can be reduced.
  • FIG. 10 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5.
  • the air conditioner shown in FIG. 10 includes an outdoor unit 100 and an indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are connected by a refrigerant pipe to form a refrigerant circuit.
  • a refrigerant is circulated in the refrigerant circuit.
  • a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300.
  • a pipe through which a refrigerant containing liquid including a liquid refrigerant or a gas-liquid two-phase refrigerant
  • a liquid pipe 400 A pipe through which a refrigerant containing liquid (including a liquid refrigerant or a gas-liquid two-phase refrigerant) flows.
  • the outdoor unit 100 includes a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an outdoor blower 104, and a throttle device (expansion valve) 105 in the present embodiment.
  • Compressor 101 compresses and discharges the sucked refrigerant.
  • the compressor 101 includes an inverter device and the like, and can arbitrarily change the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operation frequency.
  • the four-way valve 102 switches the refrigerant flow path between the cooling operation and the heating operation based on an instruction from a control device (not shown).
  • the outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the liquid pipe 400 and the air. In this case, the outdoor heat exchanger 103 evaporates and vaporizes the refrigerant. Further, during the cooling operation, the outdoor heat exchanger 103 functions as a condenser. In this case, the refrigerant compressed in the compressor 101 flows into the outdoor heat exchanger 103 from the four-way valve 102 side. In the outdoor heat exchanger 103, heat is exchanged between the refrigerant and air, and the refrigerant is condensed and liquefied.
  • a normal propeller fan may be used as the outdoor blower 104.
  • the air blowing unit described in the above first to fourth embodiments may be used.
  • An outdoor fan 104 may be provided.
  • the rotational speed of the fan 3 as the blower fan may be finely changed by arbitrarily changing the operating frequency of the fan motor by the inverter device.
  • the expansion device 105 is provided to adjust the refrigerant pressure or the like by changing the opening degree.
  • the indoor unit 200 includes a load side heat exchanger 201 and a load side blower 202.
  • the load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation.
  • the load-side heat exchanger 201 performs heat exchange between the refrigerant flowing in from the gas pipe 300 and the air, and condenses and liquefies the refrigerant (or gas-liquid two-phase). As a result, the liquefied refrigerant flows out from the load side heat exchanger 201 to the liquid pipe 400 side.
  • the load-side heat exchanger 201 functions as an evaporator.
  • the load-side heat exchanger 201 heat is exchanged between the refrigerant and air that have been brought to a low pressure state by the expansion device 105.
  • the refrigerant is vaporized by causing the refrigerant to take heat of the air and evaporate it.
  • the refrigerant evaporated from the load side heat exchanger 201 flows out to the gas pipe 300 side.
  • the indoor unit 200 is provided with a load-side blower 202 for adjusting the flow of air for heat exchange.
  • the operating speed of the load-side blower 202 is determined by, for example, user settings.
  • the air blower described in Embodiments 1 to 4 can be used for the load-side blower 202.

Abstract

Provided is a high-efficiency, low-noise air conditioner comprising a case (1), a blower section, and a heat exchanger (6). The blower section includes first and second casings (71, 72). Each of the first and second casings (71, 72) includes a casing discharge opening section (7d). The width of the casing discharge opening sections (7d), which is measured in the width direction in which the first and second casings (71, 72) are arranged side by side, increases toward a case discharge opening (2) so that the distance between the casing discharge opening sections (7d) of the first and second casings (71, 72) will decrease toward the case discharge opening (2). A partition member (12) is provided within the case (1), the partition member (12) defining a first region in which the heat exchanger (6) is located, a second region in which the blower section is located, and a third region located between the casing discharge opening sections (7d).

Description

空気調和機、空気調和装置および冷凍サイクル装置Air conditioner, air conditioner and refrigeration cycle apparatus
 この発明は、空気調和機、当該空気調和機を備えた空気調和装置および冷凍サイクル装置に関する。 The present invention relates to an air conditioner, an air conditioner including the air conditioner, and a refrigeration cycle apparatus.
 従来、空気調和機、および当該空気調和機を備えた空気調和装置に備えられる室内機が知られている。たとえば特開2010-117110号公報(特許文献1)には、送風部の吹出口から熱交換器に隣接する位置までの渦型ケーシングの部分を、高さ方向および幅方向に拡大させたディフューザ部を有する室内機が開示されている。 Conventionally, an air conditioner and an indoor unit provided in an air conditioner including the air conditioner are known. For example, Japanese Patent Laid-Open No. 2010-117110 (Patent Document 1) discloses a diffuser unit in which a part of a vortex casing from a blower outlet of a blower unit to a position adjacent to a heat exchanger is expanded in a height direction and a width direction. An indoor unit is disclosed.
特開2010-117110号公報JP 2010-117110 A
 従来の天井埋め込み型の空気調和機においては、送風部の吹出口の幅に対し、熱交換器の幅が大きいため、熱交換器を通過する風速分布が幅方向に不均一となっていた。このため熱交換器における圧力損失が増大し、ファンの駆動効率低下と騒音増大の原因となっていた。 In a conventional ceiling-embedded air conditioner, the width of the heat exchanger is larger than the width of the air outlet of the blower, and therefore the wind speed distribution passing through the heat exchanger is not uniform in the width direction. For this reason, the pressure loss in the heat exchanger increases, which causes a decrease in fan driving efficiency and an increase in noise.
 しかし特許文献1に開示された室内機においては、渦型ケーシングが熱交換器側に向けて幅方向の寸法が大きくなっている。このため送風部の吹出口の幅方向の寸法と熱交換器の幅方向の寸法との差が小さくなる。しかしディフューザ部が熱交換器側に向けて拡大する部分で急激に風路が拡大するため、風路壁面に沿って気流が広がりにくい。ディフューザ部にガイドを設けることにより気流が拡大しやすくなるが、ガイドにより圧力損失が発生するためディフューザ部の拡大による気流の改善の効果を十分に得ることが困難である。 However, in the indoor unit disclosed in Patent Document 1, the size in the width direction of the vortex casing increases toward the heat exchanger. For this reason, the difference of the dimension of the width direction of the blower outlet of a ventilation part and the dimension of the width direction of a heat exchanger becomes small. However, since the air passage suddenly expands at the portion where the diffuser portion expands toward the heat exchanger, the air flow hardly spreads along the air passage wall surface. By providing a guide in the diffuser portion, the airflow is easily expanded. However, pressure loss is generated by the guide, so that it is difficult to sufficiently obtain the effect of improving the airflow by expanding the diffuser portion.
 また1対の渦型ケーシングに挟まれた領域においては気流が乱れて渦が発生しやすい。このことも圧力損失の原因となる。 Also, in the region sandwiched between a pair of vortex casings, the airflow is disturbed and vortices are likely to occur. This also causes pressure loss.
 本発明は上記の課題に鑑みてなされたものであり、その目的は、ガイドを設けることなくディフューザ部すなわちケーシング吹出口部に沿って気流を拡大することで、高効率で低騒音の空気調和機、空気調和装置および冷凍サイクル装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly efficient and low-noise air conditioner by enlarging an air flow along a diffuser portion, that is, a casing outlet, without providing a guide. An air conditioner and a refrigeration cycle apparatus are provided.
 本発明の空気調和機は、ケースと、送風部と、熱交換器とを備える。送風部は、第1および第2ケーシングを含む。第1および第2ケーシングのそれぞれはケーシング吹出口部を含む。第1および第2ケーシングにおけるケーシング吹出口部の間隔が、ケース吹出口に近づくほど狭くなるように、第1および第2ケーシングが並ぶ幅方向におけるケーシング吹出口部の幅はケース吹出口に近づくほど広くなる。ケース内には、熱交換器が位置する第1領域と、送風部が位置する第2領域およびケーシング吹出口部の間の第3領域とを区画する仕切り部材を備える。 The air conditioner of the present invention includes a case, a blower, and a heat exchanger. The blower includes first and second casings. Each of the first and second casings includes a casing outlet. The width of the casing outlet in the width direction in which the first and second casings are arranged is closer to the case outlet so that the distance between the casing outlets in the first and second casings becomes narrower as it approaches the case outlet. Become wider. The case includes a partition member that partitions a first region in which the heat exchanger is located, a second region in which the air blower is located, and a third region between the casing outlets.
 本発明によれば、熱交換器における風速分布が均一化され、高効率化と低騒音化とを図ることができる。 According to the present invention, the wind speed distribution in the heat exchanger is made uniform, and high efficiency and low noise can be achieved.
実施の形態1に係る空気調和機の斜視模式図である。1 is a schematic perspective view of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和機の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の内部構成を空気調和機の側面から見た模式図である。It is the schematic diagram which looked at the internal structure of the air conditioner which concerns on Embodiment 1 from the side surface of the air conditioner. 図3の線分A-Aにおける部分断面模式図である。FIG. 4 is a partial cross-sectional schematic view taken along line AA in FIG. 3. 実施の形態1に係る空気調和機の内部構成を上方から見た概略平面図である。It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on Embodiment 1 from upper direction. 実施の形態1の変形例に係る空気調和機の内部構成を上方から見た概略平面図である。It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on the modification of Embodiment 1 from upper direction. 実施の形態2に係る空気調和機の内部構成を上方から見た概略平面図である。It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on Embodiment 2 from upper direction. 実施の形態3に係る空気調和機の内部構成を上方から見た概略平面図である。It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on Embodiment 3 from upper direction. 実施の形態4に係る空気調和機の内部構成を上方から見た概略平面図である。It is the schematic plan view which looked at the internal structure of the air conditioner which concerns on Embodiment 4 from upper direction. 実施の形態5に係る空気調和装置の構成図である。FIG. 6 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5.
 以下、本実施の形態について図に基づいて説明する。なお図中、同一符号は同一または対応部分を示すものとする。 Hereinafter, the present embodiment will be described with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本発明の実施の形態1に係る多翼遠心型のファンを搭載する空気調和機としての室内機の斜視模式図である。図2は、本発明の実施の形態1に係る空気調和機としての室内機の内部構成を示す模式図である。図3は、本発明の実施の形態1に係る空気調和機の内部構成を空気調和機の側面から見た模式図である。
Embodiment 1 FIG.
FIG. 1 is a schematic perspective view of an indoor unit as an air conditioner equipped with a multiblade centrifugal fan according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing an internal configuration of the indoor unit as the air conditioner according to Embodiment 1 of the present invention. FIG. 3 is a schematic view of the internal configuration of the air conditioner according to Embodiment 1 of the present invention as viewed from the side of the air conditioner.
 図1および図2に示すように、空気調和機としての室内機は、空調対象の空間の天井裏に設置されたケース1を備えている。なお、ケース1の形状は任意の形状を採用できる。たとえば一例として、ケース1は直方体状に形成されている。ケース1は、上面部1aと、下面部1bと、側面部1cとを含む。 As shown in FIGS. 1 and 2, an indoor unit as an air conditioner includes a case 1 installed behind the ceiling of a space to be air-conditioned. In addition, the shape of case 1 can employ | adopt arbitrary shapes. For example, as an example, the case 1 is formed in a rectangular parallelepiped shape. Case 1 includes an upper surface portion 1a, a lower surface portion 1b, and a side surface portion 1c.
 ケース1の側面部1cの内、1面にケース吹出口2が設けられている。ケース吹出口2の形状は任意の形状を採用し得る。ケース吹出口2の形状はたとえば矩形状である。また、ケース1の側面部1cのうち、ケース吹出口2が形成された面と反対側の面に、ケース吸込口8が形成されている。ケース吸込口8の形状は任意の形状を採用し得る。ケース吸込口8の形状はたとえば矩形状である。ケース吸込口8には、空気を除塵するフィルタが設けられていてもよい。ケース吸込口8は空気を吸い込み、これに対向するケース吹出口2は空気を吹き出す。 A case outlet 2 is provided on one side of the side surface portion 1c of the case 1. Arbitrary shapes can be adopted as the shape of the case outlet 2. The shape of the case outlet 2 is, for example, a rectangular shape. Moreover, the case suction inlet 8 is formed in the surface on the opposite side to the surface in which the case blower outlet 2 was formed among the side surface parts 1c of the case 1. FIG. Arbitrary shapes can be adopted as the shape of the case suction port 8. The shape of the case suction port 8 is, for example, a rectangular shape. The case suction port 8 may be provided with a filter that removes air. The case inlet 8 sucks in air, and the case outlet 2 facing the case sucks out air.
 ケース1の内部には送風部が備えられている。送風部は、ケース1内に吸い込まれた空気をケース吸込口8からケース吹出口2まで送り込むために設けられている。またケース1の内部には、送風部とケース吹出口2との間に設けられた熱交換器6を備えている。その他ケース1の内部には、ファンモータ4と仕切り部材10,12(図5参照)とを備えている。なお仕切り部材10,12については後述する。 * Inside the case 1 is equipped with a blower. The air blower is provided to send the air sucked into the case 1 from the case suction port 8 to the case blower outlet 2. In addition, a heat exchanger 6 provided between the blower and the case outlet 2 is provided inside the case 1. In addition, the case 1 includes a fan motor 4 and partition members 10 and 12 (see FIG. 5). The partition members 10 and 12 will be described later.
 送風部は、多翼遠心型のファン3と、たとえば渦型形状を有するケーシングとしての渦型ケーシング7とを含んでいる。渦型ケーシング7としてはケース1内に1対、第1ケーシング71および第2ケーシング72を、互いに間隔をあけて有している。ファン3は、複数すなわちたとえば1対の渦型ケーシング7のそれぞれの内部に配置されている。渦型ケーシング7にベルマウス5が形成されている。当該ベルマウス5により規定される開口部(渦型ケーシング吸込口9)に面するように、ファン3が配置されている。 The blower section includes a multiblade centrifugal fan 3 and a vortex casing 7 as a casing having a vortex shape, for example. The vortex casing 7 has a pair of a first casing 71 and a second casing 72 in the case 1 spaced apart from each other. The fans 3 are arranged inside each of a plurality of, for example, a pair of vortex casings 7. A bell mouth 5 is formed on the vortex casing 7. The fan 3 is disposed so as to face the opening (vortex casing suction port 9) defined by the bell mouth 5.
 ファンモータ4は、たとえばケース1の上面部1aに固定されたモータサポート4aにより支持されている。ファンモータ4は回転軸X(図3参照)を有する。回転軸Xは、側面部1cのうちケース吸込口8が形成された面およびケース吹出口2が形成された面に対して平行に伸びるように配置されている。回転軸Xには、多翼遠心型のファン3が少なくとも1つ取り付けられている。図2に示した室内機では、2つのファン3が回転軸Xに取り付けられている。ファン3は、ケース吸込口8からケース1内に吸込まれケース吹出口2から対象空間へと吹出される空気の流れを作る。 The fan motor 4 is supported by a motor support 4a fixed to the upper surface portion 1a of the case 1, for example. The fan motor 4 has a rotation axis X (see FIG. 3). The rotation axis X is disposed so as to extend in parallel to the surface of the side surface portion 1c on which the case suction port 8 is formed and the surface on which the case outlet 2 is formed. At least one multiblade centrifugal fan 3 is attached to the rotary shaft X. In the indoor unit shown in FIG. 2, two fans 3 are attached to the rotation shaft X. The fan 3 creates a flow of air that is sucked into the case 1 from the case suction port 8 and blown out from the case outlet 2 to the target space.
 熱交換器6は、ケース1の内部において空気の流動路中に配置される。具体的には、熱交換器6は、図3に示すように送風部の吹出口7eとケース吹出口2との間に配置される。熱交換器6は空気の温度を調整する。なお、熱交換器6の構成や態様は特に限定されるものではなく、本実施の形態1では周知のものが用いられている。 The heat exchanger 6 is disposed in the air flow path inside the case 1. Specifically, the heat exchanger 6 is arrange | positioned between the blower outlet 7e of the ventilation part, and the case blower outlet 2, as shown in FIG. The heat exchanger 6 adjusts the temperature of the air. In addition, the structure and aspect of the heat exchanger 6 are not specifically limited, In this Embodiment 1, a well-known thing is used.
 このような構成において、ファン3が回転すると、空調対象の部屋の空気は、ケース吸込口8に吸い込まれる。ケース1の内部に吸い込まれた空気は、ベルマウス5によって案内されて、ファン3に吸い込まれる。さらに、ファン3では、吸い込まれた空気が、ファン3の径方向の外側に吹き出される。ファン3から吹き出された空気は、渦型ケーシング7の内部の風路を通過後、渦型ケーシング7の吹出口7e(図3参照)から吹出され、熱交換器6に供給される。熱交換器6に供給された空気は、熱交換器6を通過する際に、熱交換および湿度調整される。その後、空気はケース吹出口2から部屋に吹き出される。 In such a configuration, when the fan 3 rotates, the air in the air-conditioned room is sucked into the case suction port 8. The air sucked into the case 1 is guided by the bell mouth 5 and sucked into the fan 3. Further, in the fan 3, the sucked air is blown out to the outside in the radial direction of the fan 3. The air blown out from the fan 3 passes through the air passage inside the vortex casing 7 and is then blown out from the outlet 7 e (see FIG. 3) of the vortex casing 7 and supplied to the heat exchanger 6. The air supplied to the heat exchanger 6 is subjected to heat exchange and humidity adjustment when passing through the heat exchanger 6. Thereafter, air is blown out from the case outlet 2 into the room.
 図4は、図3の線分A-Aにおける部分断面模式図である。図4に示すように、ファン3は、主板3aと、側板3cと、複数の翼3dとを備える。主板3aは、円盤状であり、中心部にボス部3bを有する。ボス部3bの中央には、ファンモータ4の出力軸が接続される。ファン3は出力軸を介してファンモータ4の駆動力によって回転される。側板3cは、主板3aに対向し設けられる。側板3cはリング状に形成される。複数の翼3dは、主板3aから側板3cに向かって回転軸Xを囲むように設けられている。複数の翼3dは、相互に同一形状で設けられる。それぞれの翼3dは、内周側の翼前縁より外周側の翼後縁が、ファン3の回転方向に前進して位置した前向き羽根で形成されている。 FIG. 4 is a schematic partial sectional view taken along line AA in FIG. As shown in FIG. 4, the fan 3 includes a main plate 3a, a side plate 3c, and a plurality of blades 3d. The main plate 3a is disk-shaped and has a boss 3b at the center. The output shaft of the fan motor 4 is connected to the center of the boss portion 3b. The fan 3 is rotated by the driving force of the fan motor 4 via the output shaft. The side plate 3c is provided to face the main plate 3a. The side plate 3c is formed in a ring shape. The plurality of blades 3d are provided so as to surround the rotation axis X from the main plate 3a toward the side plate 3c. The plurality of blades 3d are provided in the same shape. Each of the blades 3 d is formed by a forward blade that is positioned such that the blade trailing edge on the outer circumferential side from the blade leading edge on the inner circumferential side advances in the rotation direction of the fan 3.
 図5は、実施の形態1における図2のケース1の内部を上方から見た概略平面図である。図5に示すように、渦型ケーシング7は、ファン3を囲うように設けられる。図3および図5を参照して、渦型ケーシング7は、ファン3の外周端に沿って延在する周壁7aを備える。また、渦型ケーシング7では、周壁7aの一か所に舌部7bを有する。渦型ケーシング7は、ファン3から吹出された空気を整流する。渦型ケーシング7の側壁7cには少なくとも1つの渦型ケーシング吸込口9(図2参照)が設けられ、渦型ケーシング吸込口9に気流を案内するベルマウス5が配置されている。ベルマウス5は渦型ケーシング吸込口9を囲むように形成されている。異なる観点から言えば、ベルマウス5はファン3の吸込口に対向する位置に配置されている。ベルマウス5はファン3に流入する気流を整流する。ベルマウス5は、気流の流れ方向の下流に向かって、徐々に内径が小さくなっている。 FIG. 5 is a schematic plan view of the inside of the case 1 of FIG. As shown in FIG. 5, the vortex casing 7 is provided so as to surround the fan 3. Referring to FIGS. 3 and 5, vortex casing 7 includes a peripheral wall 7 a extending along the outer peripheral end of fan 3. Further, the vortex casing 7 has a tongue 7b at one location of the peripheral wall 7a. The vortex casing 7 rectifies the air blown from the fan 3. The side wall 7c of the vortex casing 7 is provided with at least one vortex casing suction port 9 (see FIG. 2), and a bell mouth 5 for guiding the airflow to the vortex casing suction port 9 is disposed. The bell mouth 5 is formed so as to surround the spiral casing suction port 9. If it says from a different viewpoint, the bellmouth 5 will be arrange | positioned in the position facing the suction inlet of the fan 3. FIG. The bell mouth 5 rectifies the airflow flowing into the fan 3. The bell mouth 5 has an inner diameter that gradually decreases toward the downstream of the airflow direction.
 第1ケーシング71および第2ケーシング72のそれぞれは、ケーシング吹出口部7dを有している。ケーシング吹出口部7dは、熱交換器6に面する位置に、すなわち図5の渦型ケーシング7全体の中では比較的熱交換器6側(図の左側)の領域に、配置されている。ケーシング吹出口部7dのうち最も熱交換器6側の端部が吹出口7eであり、ここから空気が熱交換器6に向けて吹出される。 Each of the first casing 71 and the second casing 72 has a casing outlet 7d. The casing air outlet 7d is arranged at a position facing the heat exchanger 6, that is, in a relatively region on the heat exchanger 6 side (left side in the drawing) in the entire vortex casing 7 of FIG. The end of the casing outlet 7d closest to the heat exchanger 6 is the outlet 7e, from which air is blown toward the heat exchanger 6.
 ケーシング吹出口部7dは、第1ケーシング71および第2ケーシング72が並ぶ図5の上下方向に関して、互いに対向するように1対、配置されている。第1ケーシング71および第2ケーシング72のそれぞれのケーシング吹出口部7dは、それらの間隔が、ケース吹出口2に近づくにつれて、すなわち図5の左側に向かうにつれて狭くなっている。すなわち第1ケーシング71および第2ケーシング72が並ぶ幅方向(図5の上下方向)における1対のケーシング吹出口部7dそのものの幅は、ケース吹出口2に近づくにつれて、すなわち図5の左側に向かうにつれて広くなっている。そして吹出口7eにおいて、ケーシング吹出口部7dの幅方向の寸法が最大になり、1対のケーシング吹出口部7dの幅方向の間隔が最小となる。 The casing air outlet 7d is disposed in a pair so as to face each other in the vertical direction of FIG. 5 in which the first casing 71 and the second casing 72 are arranged. As for the casing blower outlet part 7d of each of the first casing 71 and the second casing 72, the distance between them becomes narrower toward the case blower outlet 2, that is, toward the left side of FIG. That is, the width of the pair of casing outlets 7d themselves in the width direction (the vertical direction in FIG. 5) in which the first casing 71 and the second casing 72 are arranged is closer to the case outlet 2, that is, toward the left side in FIG. It is getting wider as you go. And in the blower outlet 7e, the dimension of the width direction of the casing blower outlet part 7d becomes the largest, and the space | interval of the width direction of a pair of casing blower outlet part 7d becomes the minimum.
 ケース1は、熱交換器6が位置する第1領域を有している。またケース1は、送風部が位置する第2領域を有している。さらにケース1は、1対のケーシング吹出口部7dに挟まれた空間11としての第3領域を有している。つまりケース1内の空間は、第1領域と第2領域と第3領域とに区分される。概ね第1領域は図5の左側半分の領域であり、第2領域は図5の右側半分の領域である。また第3領域は、概ね図5の1対のケーシング吹出口部7d同士が互いに対向する、図5の上下方向の中央部の、1対の対向側面7gに挟まれた領域である。 Case 1 has a first region in which the heat exchanger 6 is located. Case 1 has the 2nd field where a blower part is located. Further, the case 1 has a third region as a space 11 sandwiched between a pair of casing outlets 7d. That is, the space in case 1 is divided into a first region, a second region, and a third region. In general, the first area is the left half area of FIG. 5, and the second area is the right half area of FIG. Further, the third region is a region sandwiched between a pair of opposed side surfaces 7g in the central portion in the vertical direction of FIG. 5 where the pair of casing outlets 7d of FIG.
 上記のように1対のケーシング吹出口部7dは、第3領域と対向する側の側面である対向側面7gを有している。この対向側面7gは、ケース1の側面部1cに対して斜め方向に延びている。また1対のケーシング吹出口部7dは、第3領域と対向する側と反対側の側面である非対向側面7fを有している。この非対向側面7fは、図5の1対のケーシング吹出口部7dにおいて最もケース1の側面部1c寄りの側面である。非対向側面7fは、ケース1の側面部1cに沿うように、すなわちケース1の側面部1cにほぼ平行に拡がるように延びている。 As described above, the pair of casing outlets 7d has the opposite side surface 7g which is the side surface facing the third region. The opposing side surface 7 g extends in an oblique direction with respect to the side surface portion 1 c of the case 1. The pair of casing outlets 7d has a non-opposing side surface 7f that is a side surface opposite to the side facing the third region. The non-opposing side surface 7f is the side surface closest to the side surface portion 1c of the case 1 in the pair of casing air outlet portions 7d in FIG. The non-opposing side surface 7 f extends along the side surface portion 1 c of the case 1, that is, so as to extend substantially parallel to the side surface portion 1 c of the case 1.
 ケース1内には、第1領域と、第2領域および第3領域とを区画する仕切り部材10,12が配置されている。すなわちケース1内には、第1領域と第2領域とを区画するように図5の上下方向に延びる仕切り部材10と、第1領域と第3領域とを区画するように図5の上下方向に延びかつケーシング吹出口部7dの1対の対向側面7gに沿って対向するように延びる仕切り部材12とを有している。 In the case 1, partition members 10 and 12 that partition the first region, the second region, and the third region are disposed. That is, in the case 1, the partition member 10 extending in the vertical direction of FIG. 5 so as to partition the first region and the second region, and the vertical direction of FIG. 5 so as to partition the first region and the third region. And a partition member 12 extending so as to face along a pair of opposed side surfaces 7g of the casing outlet 7d.
 仕切り部材12は、第1領域と第3領域とを区画するように図5の上下方向に延びる第1の部分12pを有する。仕切り部材12はケーシング吹出口部7dの1対の対向側面7gに沿って対向するように図5の斜め方向に延びる第2の部分12qを有する。また仕切り部材12は、第2領域と第3領域とを区画する第3の部分12rを有している。この第2領域と第3領域とを区画する第3の部分12rと、上記第1および第2の部分12p,12qとにより、仕切り部材12は第3領域である空間11を取り囲んでいる。 The partition member 12 has a first portion 12p extending in the vertical direction in FIG. 5 so as to partition the first region and the third region. The partition member 12 has the 2nd part 12q extended in the diagonal direction of FIG. 5 so that it may oppose along a pair of opposing side surface 7g of the casing blower outlet part 7d. Moreover, the partition member 12 has the 3rd part 12r which divides a 2nd area | region and a 3rd area | region. The partition member 12 surrounds the space 11 that is the third region by the third portion 12r that partitions the second region and the third region, and the first and second portions 12p and 12q.
 また仕切り部材10は、図5の渦型ケーシング7とケース1の側面部1cとの間の領域において、第1領域と第2領域とを区画する第1の部分10pを有する。また仕切り部材10は、上記仕切り部材12の第2領域側に配置される第2の部分10qを有している。以上の仕切り部材12の第3の部分12r、および仕切り部材10の第2の部分10qは、第2領域と第3領域とを区画する、他の仕切り部材として配置されている。 Further, the partition member 10 has a first portion 10p that partitions the first region and the second region in the region between the vortex casing 7 and the side surface portion 1c of the case 1 in FIG. Moreover, the partition member 10 has the 2nd part 10q arrange | positioned at the 2nd area | region side of the said partition member 12. FIG. The third portion 12r of the partition member 12 and the second portion 10q of the partition member 10 are arranged as other partition members that partition the second region and the third region.
 他の仕切り部材である仕切り部材12の第3の部分12rおよび仕切り部材10の第2の部分10qは、第1領域と第2領域とを区画する仕切り部材10の第1の部分10pと、図5の左右方向に関して同じ位置に配置されている。これは上記他の仕切り部材は第2領域と第3領域とを区画するためである。しかし他の仕切り部材はたとえば上記の位置よりも図の右側すなわちケース吸込口8側に配置されてもよい。この場合は、1対のケーシング吹出口部7dおよび第3領域が、図5の左右方向に関して、第1領域と第2領域とを跨ぐように配置されることになる。 The third portion 12r of the partition member 12, which is another partition member, and the second portion 10q of the partition member 10 are the same as the first portion 10p of the partition member 10 that partitions the first region and the second region, and FIG. 5 are arranged at the same position in the left-right direction. This is because the other partition member divides the second region and the third region. However, the other partition member may be arranged, for example, on the right side of the drawing, that is, on the case suction port 8 side from the above position. In this case, the pair of casing outlets 7d and the third region are arranged so as to straddle the first region and the second region in the left-right direction of FIG.
 図6は図5の変形例を示している。図6に示すように、渦型ケーシング7の対向側面7gそのものを仕切り部材12の一部すなわち仕切り部材12の第2の部分12qとして用いてもよい。図6においては、仕切り部材12aが上記仕切り部材12の対向側面7gに沿う第2の部分12qに相当する部分を占めるように構成されている。ただし図6においても、仕切り部材12の第1の部分12pおよび第3の部分12rについては図5と同様に、図の上下方向に延びるように配置されている。 FIG. 6 shows a modification of FIG. As shown in FIG. 6, the opposed side surface 7 g itself of the vortex casing 7 may be used as a part of the partition member 12, that is, the second portion 12 q of the partition member 12. In FIG. 6, the partition member 12 a is configured to occupy a portion corresponding to the second portion 12 q along the opposing side surface 7 g of the partition member 12. However, also in FIG. 6, the first portion 12 p and the third portion 12 r of the partition member 12 are arranged so as to extend in the vertical direction of the drawing as in FIG. 5.
 仕切り部材10,12は、一般公知の板状部材により形成されてもよいが、たとえば中実の発泡スチロールにより形成されてもよい。 The partition members 10 and 12 may be formed of a generally known plate-like member, but may be formed of, for example, solid foamed polystyrene.
 仕切り部材10,12により仕切られた第1~第3領域の空間の、図3の上下方向の寸法(高さの寸法)は、渦型ケーシング7の吹出口7eの高さ寸法以上であり、仕切り部材10,12の高さとほぼ等しいことが好ましい。 The vertical dimension (height dimension) in FIG. 3 of the spaces of the first to third regions partitioned by the partition members 10 and 12 is not less than the height dimension of the air outlet 7e of the vortex casing 7. It is preferable that the height of the partition members 10 and 12 is substantially equal.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の空気調和機は、複数の渦型ケーシング7のうち互いに隣り合う1対の渦型ケーシング7におけるケーシング吹出口部7dの間の距離(間隔)が、ケース吹出口2に近づくほど狭くなる。つまり1対の渦型ケーシング7が並ぶ幅方向における1対のケーシング吹出口部7dそのものの幅が、ケース吹出口2に近づくにつれて広くなっている。このため、上記幅方向に関するケーシング吹出口部7dの幅と熱交換器6の幅との差を小さくすることができる。このため熱交換器6の幅方向に関する広い部分がケーシング吹出口部7dと対向し、ケーシング吹出口部7dからの空気の供給を受けることになる。つまり熱交換器6の幅方向に関してケーシング吹出口部7dからの空気の供給を受けない領域が少なくなる。このため、ケーシング吹出口部7d側から熱交換器6に流入する風速分布を均一化することができる。
Next, the effect of this Embodiment is demonstrated.
In the air conditioner of the present embodiment, as the distance (interval) between the casing outlets 7d of the pair of adjacent vortex casings 7 among the plurality of vortex casings 7 approaches the case outlet 2. Narrow. That is, the width of the pair of casing outlets 7d itself in the width direction in which the pair of vortex casings 7 are arranged becomes wider as the case outlet 2 approaches. For this reason, the difference of the width | variety of the casing blower outlet part 7d regarding the said width direction and the width | variety of the heat exchanger 6 can be made small. For this reason, the wide part regarding the width direction of the heat exchanger 6 opposes the casing blower outlet part 7d, and will receive supply of the air from the casing blower outlet part 7d. That is, the area where the supply of air from the casing outlet 7d is not received in the width direction of the heat exchanger 6 is reduced. For this reason, the wind speed distribution flowing into the heat exchanger 6 from the casing outlet 7d side can be made uniform.
 また第3領域はケース吹出口2に近づくほど狭くなる。第2領域から第3領域へ流れ込む空気を少なくすることができる。したがって第3領域に流れ込む空気の量が少なくなる分だけ、たとえ仕切り部材10の第2の部分10qおよび仕切り部材12の第3の部分12rが存在しなかったとしても、本来流れるべき方向である第2領域から第1領域への空気の量を多くすることができる。 Also, the third region becomes narrower as it approaches the case outlet 2. Air flowing from the second region to the third region can be reduced. Therefore, even if the second portion 10q of the partition member 10 and the third portion 12r of the partition member 12 do not exist by the amount of the air flowing into the third region, the first direction that should originally flow. The amount of air from the two regions to the first region can be increased.
 また上記空気調和機では、熱交換器6が位置する第1領域と送風部が位置する第2領域とを区画する仕切り部材10が備えられているとともに、1対のケーシング吹出口部7dの間に挟まれた第3領域と上記第1領域を区画する仕切り部材12が備えられている。このため、第1領域から第2領域への空気の流入、および第1領域から第3領域への空気の流入を抑制することができ、気流の乱れや渦の発生を抑制することができる。気流の乱れや渦の発生を抑制することにより、騒音および圧力損失を抑制することができる。 Moreover, in the said air conditioner, while the partition member 10 which divides | segments the 1st area | region where the heat exchanger 6 is located, and the 2nd area | region where a ventilation part is located is provided, between a pair of casing blower outlet parts 7d A partition member 12 is provided that partitions the third region sandwiched between the first region and the first region. For this reason, the inflow of air from the first region to the second region and the inflow of air from the first region to the third region can be suppressed, and turbulence of airflow and generation of vortices can be suppressed. By suppressing the turbulence of the air current and the generation of vortices, noise and pressure loss can be suppressed.
 さらに第2領域と第3領域とを区画する他の仕切り部材10,12を有することにより、第2領域から第3領域への空気の流入を抑制することができ、気流の乱れや渦の発生を抑制することができる。 Furthermore, by having the other partition members 10 and 12 that divide the second region and the third region, it is possible to suppress the inflow of air from the second region to the third region, and turbulence of airflow and generation of vortices Can be suppressed.
 以上のように、本実施の形態によれば、ガイドを設けることなく、熱交換器6からケース吹出口2側への気流を拡大することができ、熱交換器6に供給される空気の通過風速を均一化することができる。また熱交換器6への気流の乱れおよび渦による圧力損失および騒音が低減され、ファン3の駆動の高効率化と低騒音化とを図ることができる。 As described above, according to the present embodiment, the airflow from the heat exchanger 6 to the case outlet 2 can be expanded without providing a guide, and the passage of air supplied to the heat exchanger 6 can be achieved. The wind speed can be made uniform. Further, the turbulence of the air flow to the heat exchanger 6 and the pressure loss and noise due to the vortex are reduced, and the efficiency of driving the fan 3 and the noise can be reduced.
 実施の形態2.
 図7は、実施の形態2における空気調和機のケース1の内部を上方から見た概略平面図である。図7に示すように、本実施の形態の空気調和機は、基本的に実施の形態1の空気調和機と同様の構成を有している。しかし本実施の形態においては、第3領域としての空間11の少なくとも一部(図7においてはほぼ全体)に中空箱13が配置されている。中空箱13は、その壁面を構成する平板状の箱壁部材13aにより形成されている。
Embodiment 2. FIG.
FIG. 7 is a schematic plan view of the inside of the case 1 of the air conditioner according to Embodiment 2 as viewed from above. As shown in FIG. 7, the air conditioner of the present embodiment basically has the same configuration as the air conditioner of the first embodiment. However, in the present embodiment, the hollow box 13 is arranged in at least a part of the space 11 as the third region (substantially the whole in FIG. 7). The hollow box 13 is formed by a flat box-shaped wall member 13a constituting the wall surface.
 図7の箱壁部材13aは、図5における仕切り部材12と同様の位置に、図5と同様に配置されている。すなわち箱壁部材13aは、仕切り部材12の第1の部分12pと同様に第1領域と第3領域とを区画するように図7の上下方向に延びる第1の部分13pと、ケーシング吹出口部7dの1対の対向側面7gに沿って対向するように図7の斜め方向に延びる第2の部分13qとを有している。さらに箱壁部材13aは、第2領域と第3領域とを区画する第3の部分13rを有している。 7 is disposed at the same position as the partition member 12 in FIG. 5 in the same manner as in FIG. That is, the box wall member 13a includes a first portion 13p extending in the vertical direction in FIG. 7 so as to partition the first region and the third region, like the first portion 12p of the partition member 12, and the casing outlet portion. 7d and a second portion 13q extending in the oblique direction of FIG. 7 so as to face each other along a pair of opposing side surfaces 7g. Further, the box wall member 13a has a third portion 13r that partitions the second region and the third region.
 箱壁部材13aの第2の部分13qは、第1ケーシング71および第2ケーシング72のそれぞれの対向側面7gに接している。そして箱壁部材13aは、対向側面7gに接する第2の部分13qの少なくとも一部に開口部13bを有している。開口部13bは箱壁部材13aが接触する対向側面7gの一部にも形成されている。箱壁部材13aの開口部13bと対向側面7gの開口部とは連通している。中空箱13の箱壁部材13aに囲まれた部分すなわち内部は中空14となっており、中空14は空間11と重なる位置に配置される。このため開口部13bは、1対のケーシング吹出口部7dのそれぞれの内部と中空箱13の内部すなわち中空14とを連通している。 The second portion 13q of the box wall member 13a is in contact with the opposing side surfaces 7g of the first casing 71 and the second casing 72, respectively. And the box wall member 13a has the opening part 13b in at least one part of the 2nd part 13q which contact | connects the opposing side surface 7g. The opening 13b is also formed in a part of the opposing side surface 7g with which the box wall member 13a contacts. The opening 13b of the box wall member 13a communicates with the opening of the opposing side surface 7g. A portion surrounded by the box wall member 13 a of the hollow box 13, that is, the inside is a hollow 14, and the hollow 14 is disposed at a position overlapping the space 11. For this reason, the opening 13b communicates the inside of each of the pair of casing outlets 7d and the inside of the hollow box 13, that is, the hollow 14.
 以上の他は図7に開示された空気調和機の構成は図5に示した構成と同様であるため、同一の構成要素には同一符号を付し、その説明を繰り返さない。 Since the configuration of the air conditioner disclosed in FIG. 7 is the same as the configuration shown in FIG. 5 except for the above, the same components are denoted by the same reference numerals, and the description thereof will not be repeated.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態においては、中空箱13が、箱壁部材13aに開口部13bを有し、これにより、ケーシング吹出口部7dの内部と中空箱13の内部の中空14とが連通される。このためファン3から一方のケーシング吹出口部7dの内部に達した空気は、そこから2つの開口部13bのうち一方を通って中空14内に流れることができる。これにより中空箱13を共鳴箱として機能させ、騒音の発生を抑制することができる。
Next, the effect of this Embodiment is demonstrated.
In this Embodiment, the hollow box 13 has the opening part 13b in the box wall member 13a, and, thereby, the inside of the casing blower outlet part 7d and the hollow 14 inside the hollow box 13 are connected. For this reason, the air which reached the inside of one casing blower outlet part 7d from the fan 3 can flow in the hollow 14 through one of the two opening parts 13b from there. As a result, the hollow box 13 can function as a resonance box, and the generation of noise can be suppressed.
 実施の形態3.
 図8は、実施の形態3における空気調和機のケース1の内部を上方から見た概略平面図である。図8に示すように、本実施の形態の空気調和機は、基本的に実施の形態1の空気調和機と同様の構成を有している。しかし本実施の形態においては、第1ケーシング71および第2ケーシング72におけるケーシング吹出口部7dの、互いに対向しておりその間隔がケース吹出口2に近づくほど狭くなる部分は、第3領域と面する側の表面が曲面形状を有している。すなわち本実施の形態においては、1対の渦型ケーシング7のそれぞれの、第3領域と対向する側の面であり実施の形態1の対向側面7gに相当する対向曲面7hが曲面形状を有している。この点において本実施の形態は、対向側面7gが平面形状を有している実施の形態1,2と構成上異なっている。
Embodiment 3 FIG.
FIG. 8 is a schematic plan view of the inside of the case 1 of the air conditioner according to Embodiment 3 as viewed from above. As shown in FIG. 8, the air conditioner of the present embodiment basically has the same configuration as the air conditioner of the first embodiment. However, in the present embodiment, the portions of the casing air outlet 7d in the first casing 71 and the second casing 72 that face each other and become narrower as the distance from the case air outlet 2 approaches the third region and the surface. The surface on the side to be curved has a curved shape. That is, in the present embodiment, the opposing curved surface 7h corresponding to the opposing side surface 7g of the first embodiment, which is the surface of each of the pair of vortex casings 7 that faces the third region, has a curved shape. ing. In this respect, the present embodiment is structurally different from the first and second embodiments in which the opposing side surface 7g has a planar shape.
 以上の他は図8に開示された空気調和機の構成は図5に示した構成と同様であるため、同一の構成要素には同一符号を付し、その説明を繰り返さない。 Since the configuration of the air conditioner disclosed in FIG. 8 is the same as the configuration shown in FIG. 5 except for the above, the same components are denoted by the same reference numerals, and the description thereof will not be repeated.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態においては、対向曲面7hが曲面形状を有しているため、1対の渦型ケーシング7が並ぶ幅方向に関する、渦型ケーシング7の内部の寸法は、ケース吸込口8側からケース吹出口2側に向けて、滑らかに増加する。このため渦型ケーシング7の内部において風路の急拡大が生じない。したがって、渦型ケーシング7の内部の風路の内壁面での気流の剥離が抑制され、剥離による圧力損失を低減できる。さらに対向曲面7hが渦型ケーシング7の幅方向の寸法をケース吹出口2側に向けて拡大するため、吹出気流を渦型ケーシング7の吹出口7eで十分に拡大でき、実施の形態1と同様に供給される空気の通過風速を均一化することができる。
Next, the effect of this Embodiment is demonstrated.
In the present embodiment, since the opposing curved surface 7h has a curved surface shape, the dimensions inside the vortex casing 7 with respect to the width direction in which the pair of vortex casings 7 are arranged are from the case suction port 8 side to the case. It increases smoothly toward the outlet 2 side. For this reason, a sudden expansion of the air passage does not occur inside the vortex casing 7. Therefore, separation of the airflow on the inner wall surface of the air passage inside the vortex casing 7 is suppressed, and pressure loss due to separation can be reduced. Further, since the opposed curved surface 7h expands the widthwise dimension of the vortex casing 7 toward the case outlet 2 side, the blown airflow can be sufficiently expanded at the outlet 7e of the vortex casing 7, and the same as in the first embodiment. The passing air speed of the air supplied to can be made uniform.
 以上より、本実施の形態は実施の形態1と同様に、ガイドを設けることなく、熱交換器6からケース吹出口2側への気流を拡大することができ、熱交換器6に供給される空気の通過風速を均一化することができる。また熱交換器6への気流の乱れおよび渦による渦型ケーシング7の内部での圧力損失および騒音が低減され、ファン3の駆動の高効率化と低騒音化とを図ることができる。 As described above, the present embodiment can expand the airflow from the heat exchanger 6 to the case outlet 2 without providing a guide, and is supplied to the heat exchanger 6, as in the first embodiment. The passing air speed of air can be made uniform. Further, the turbulence of the air flow to the heat exchanger 6 and the pressure loss and noise inside the vortex casing 7 due to the vortex are reduced, and the drive 3 can be driven with high efficiency and low noise.
 実施の形態4.
 図9は、実施の形態4における空気調和機のケース1の内部を上方から見た概略平面図である。図9に示すように、本実施の形態の空気調和機は、基本的に実施の形態1の空気調和機と同様の構成を有している。しかし本実施の形態においては、第2領域と第3領域とを区画する他の仕切り部材を有さず、第2領域と第3領域とは連通している。すなわち仕切り部材10は第1の部分10pのみを有し、仕切り部材12は第1の部分12pと第2の部分12qとのみを有している。なお図9においては図8と同様に1対の渦型ケーシング7は対向曲面7hを有するが、対向曲面7hの代わりに対向側面7g(図5参照)を有する構成であってもよい。
Embodiment 4 FIG.
FIG. 9 is a schematic plan view of the inside of the case 1 of the air conditioner according to Embodiment 4 as viewed from above. As shown in FIG. 9, the air conditioner of the present embodiment basically has the same configuration as the air conditioner of the first embodiment. However, in the present embodiment, there is no other partition member that partitions the second region and the third region, and the second region and the third region communicate with each other. That is, the partition member 10 has only the first portion 10p, and the partition member 12 has only the first portion 12p and the second portion 12q. In FIG. 9, the pair of vortex casings 7 has the opposed curved surface 7h as in FIG. 8, but may have a configuration having opposed side surfaces 7g (see FIG. 5) instead of the opposed curved surface 7h.
 以上の他は図9の構成は図5の構成と同様であるため、同一の構成要素には同一符号を付し、その説明を繰り返さない。 Since the configuration of FIG. 9 is the same as the configuration of FIG. 5 except for the above, the same components are denoted by the same reference numerals, and the description thereof will not be repeated.
 次に、本実施の形態の作用効果について説明する。
 本実施の形態のように第3領域を第2領域と連通させることにより、1対の渦型ケーシング7に挟まれた空間11の部分を、第3領域から第2領域まで一続きの領域として拡大させることができる。
Next, the effect of this Embodiment is demonstrated.
By connecting the third region to the second region as in the present embodiment, the portion of the space 11 sandwiched between the pair of vortex casings 7 is formed as a continuous region from the third region to the second region. Can be enlarged.
 上記のように基本的にはケース吸込口8側からベルマウス5を介してファン3に空気が流れるが、実際には一部の空気は空間11側から、ベルマウス5を介してファン3に流れ込む。このとき、仮に第2領域と第3領域とが仕切り部材10,12により区画されていると、空間11側からベルマウス5への気流の流入量が減少し、ベルマウス5に流れる気流に偏りが生じる。これはベルマウス5と、第2領域と第3領域とを区画する仕切り部材10,12との距離が相対的に短い分だけ、空間11側からベルマウス5への気流の流入量が、ケース吸込口8側からベルマウス5への気流の流入量に比べて少なくなるためである。 Basically, air flows from the case suction port 8 side to the fan 3 via the bell mouth 5 as described above, but in reality, a part of the air flows from the space 11 side to the fan 3 via the bell mouth 5. Flows in. At this time, if the second region and the third region are partitioned by the partition members 10 and 12, the inflow amount of the airflow from the space 11 side to the bell mouth 5 is reduced and biased to the airflow flowing through the bell mouth 5. Occurs. This is because the inflow amount of airflow from the space 11 side to the bell mouth 5 is the amount corresponding to the relatively short distance between the bell mouth 5 and the partition members 10 and 12 that partition the second region and the third region. This is because the amount of airflow from the suction port 8 side to the bell mouth 5 is reduced.
 そこで本実施の形態のように第2領域と第3領域とを区画する仕切り部材10,12を除去し、空間11を第2領域とつなげる態様とすることにより、第1領域と第3領域とを区画する仕切り部材12の第1の部分12pからベルマウス5までの領域、すなわち空間11側からベルマウス5への空気流入が可能な領域の大きさを、上記の仮の場合に比べて大きくすることができる。このため空間11側からベルマウス5へ気流が流れる量が多くなり、ベルマウス5に流れる気流の分布をより均一にすることができる。したがってファン3への気流の流入分布を改善させることができる。 Therefore, by removing the partition members 10 and 12 that divide the second region and the third region and connecting the space 11 to the second region as in the present embodiment, the first region and the third region The size of the region from the first portion 12p of the partitioning member 12 to the bell mouth 5, that is, the size of the region in which air can flow into the bell mouth 5 from the space 11 side is larger than that of the above tentative case. can do. For this reason, the amount of airflow flowing from the space 11 side to the bellmouth 5 increases, and the distribution of the airflow flowing through the bellmouth 5 can be made more uniform. Therefore, the inflow distribution of the airflow to the fan 3 can be improved.
 以上より、本実施の形態は実施の形態1と同様に、ガイドを設けることなく、熱交換器6からケース吹出口2側への気流を拡大することができ、熱交換器6に供給される空気の通過風速を均一化することができる。さらにファン3における圧力損失が低減され、ファン3の駆動の高効率化と低騒音化とを図ることができる。 As described above, the present embodiment can expand the airflow from the heat exchanger 6 to the case outlet 2 without providing a guide, and is supplied to the heat exchanger 6, as in the first embodiment. The passing air speed of air can be made uniform. Furthermore, the pressure loss in the fan 3 is reduced, and the driving efficiency of the fan 3 and the noise can be reduced.
 実施の形態5.
 図10は、実施の形態5に係る空気調和装置の構成図である。本実施の形態では、上述した送風部などを備える室内機200を有する冷凍サイクル装置としての空気調和装置について説明する。図10に示した空気調和装置は、室外機100と室内機200とを備える。これらの室外機100と室内機200とは冷媒配管で連結され、冷媒回路を構成している。冷媒回路中では冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とする。また、液体を含む冷媒(液冷媒、あるいは気液二相冷媒の場合も含む)が流れる配管を液配管400とする。
Embodiment 5 FIG.
FIG. 10 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5. In the present embodiment, an air conditioner as a refrigeration cycle apparatus having an indoor unit 200 including the above-described air blower and the like will be described. The air conditioner shown in FIG. 10 includes an outdoor unit 100 and an indoor unit 200. The outdoor unit 100 and the indoor unit 200 are connected by a refrigerant pipe to form a refrigerant circuit. A refrigerant is circulated in the refrigerant circuit. Among the refrigerant pipes, a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300. A pipe through which a refrigerant containing liquid (including a liquid refrigerant or a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400.
 室外機100は、本実施形態においては、圧縮機101、四方弁102、室外側熱交換器103、室外側送風機104、絞り装置(膨張弁)105を含む。 The outdoor unit 100 includes a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an outdoor blower 104, and a throttle device (expansion valve) 105 in the present embodiment.
 圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機101は、インバータ装置等を備え、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間当たりの冷媒を送り出す量)を細かく変化させることができる。四方弁102は、制御装置(図示せず)からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流路を切り換える。 Compressor 101 compresses and discharges the sucked refrigerant. Here, the compressor 101 includes an inverter device and the like, and can arbitrarily change the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operation frequency. The four-way valve 102 switches the refrigerant flow path between the cooling operation and the heating operation based on an instruction from a control device (not shown).
 また、室外側熱交換器103は、冷媒と空気(室外の空気)との熱交換を行なう。たとえば、暖房運転時においては蒸発器として機能し、液配管400から流入した低圧の冷媒と空気との熱交換を行なう。この場合、室外側熱交換器103では、冷媒を蒸発させ、気化させる。また、冷房運転時において室外側熱交換器103は凝縮器として機能する。この場合、圧縮機101において圧縮された冷媒が四方弁102側から室外側熱交換器103に流入する。室外側熱交換器103では、冷媒と空気との熱交換を行ない、冷媒を凝縮して液化させる。室外側熱交換器103では、通常のプロペラファンを室外側送風機104として用いてもよいが、冷媒と空気との熱交換を効率よく行なうため、上述の実施の形態1~4で説明した送風部である室外側送風機104が設けられてもよい。室外側送風機104についても、インバータ装置によりファンモータの運転周波数を任意に変化させて送風ファンとしてのファン3の回転速度を細かく変化させてもよい。絞り装置105は、開度を変化させることで、冷媒の圧力等を調整するために設けられる。 The outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the liquid pipe 400 and the air. In this case, the outdoor heat exchanger 103 evaporates and vaporizes the refrigerant. Further, during the cooling operation, the outdoor heat exchanger 103 functions as a condenser. In this case, the refrigerant compressed in the compressor 101 flows into the outdoor heat exchanger 103 from the four-way valve 102 side. In the outdoor heat exchanger 103, heat is exchanged between the refrigerant and air, and the refrigerant is condensed and liquefied. In the outdoor heat exchanger 103, a normal propeller fan may be used as the outdoor blower 104. However, in order to efficiently perform heat exchange between the refrigerant and the air, the air blowing unit described in the above first to fourth embodiments. An outdoor fan 104 may be provided. Regarding the outdoor blower 104, the rotational speed of the fan 3 as the blower fan may be finely changed by arbitrarily changing the operating frequency of the fan motor by the inverter device. The expansion device 105 is provided to adjust the refrigerant pressure or the like by changing the opening degree.
 一方、室内機200は、負荷側熱交換器201および負荷側送風機202で構成される。負荷側熱交換器201は冷媒と空気との熱交換を行なう。たとえば、暖房運転時においては凝縮器として機能する。この場合、負荷側熱交換器201では、ガス配管300から流入した冷媒と空気との熱交換を行ない、冷媒を凝縮させて液化(または気液二相化)させる。この結果、負荷側熱交換器201から液配管400側に液化した冷媒が流出する。一方、冷房運転時においては負荷側熱交換器201は蒸発器として機能する。たとえば、負荷側熱交換器201では、絞り装置105により低圧状態にされた冷媒と空気との熱交換を行なう。この場合、負荷側熱交換器201では、冷媒に空気の熱を奪わせて蒸発させることにより冷媒を気化させる。負荷側熱交換器201から気化した冷媒がガス配管300側に流出する。また、室内機200には、熱交換を行なう空気の流れを調整するための負荷側送風機202が設けられている。この負荷側送風機202の運転速度は、たとえば利用者の設定により決定される。特に限定するものではないが、負荷側送風機202にも実施の形態1~4で説明した送風部を用いることができる。 On the other hand, the indoor unit 200 includes a load side heat exchanger 201 and a load side blower 202. The load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation. In this case, the load-side heat exchanger 201 performs heat exchange between the refrigerant flowing in from the gas pipe 300 and the air, and condenses and liquefies the refrigerant (or gas-liquid two-phase). As a result, the liquefied refrigerant flows out from the load side heat exchanger 201 to the liquid pipe 400 side. On the other hand, during the cooling operation, the load-side heat exchanger 201 functions as an evaporator. For example, in the load-side heat exchanger 201, heat is exchanged between the refrigerant and air that have been brought to a low pressure state by the expansion device 105. In this case, in the load-side heat exchanger 201, the refrigerant is vaporized by causing the refrigerant to take heat of the air and evaporate it. The refrigerant evaporated from the load side heat exchanger 201 flows out to the gas pipe 300 side. Further, the indoor unit 200 is provided with a load-side blower 202 for adjusting the flow of air for heat exchange. The operating speed of the load-side blower 202 is determined by, for example, user settings. Although not particularly limited, the air blower described in Embodiments 1 to 4 can be used for the load-side blower 202.
 以上のように実施の形態5の空気調和装置では、実施の形態1~4において説明した送風部を室外機100、さらには室内機200に用いることで、高効率化、低騒音化等を実現することができる。 As described above, in the air conditioner of the fifth embodiment, high efficiency and low noise are realized by using the air blowing unit described in the first to fourth embodiments for the outdoor unit 100 and further the indoor unit 200. can do.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想および教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。たとえば、本発明の活用例としては、冷凍サイクル装置を構成する室内機、たとえば空気調和装置の室内機はもちろん、その他、遠心送風機が設置される各種装置や設備などに広く利用することができる。 Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, those skilled in the art can adopt various modifications based on the basic technical idea and teachings of the present invention. It is self-explanatory. For example, as an application example of the present invention, it can be widely used not only for an indoor unit constituting a refrigeration cycle apparatus, for example, an indoor unit of an air conditioner, but also for various devices and facilities in which a centrifugal blower is installed.
 以上に述べた各実施の形態(に含まれる各例)に記載した特徴を、技術的に矛盾のない範囲で適宜組み合わせるように適用してもよい。 The features described in the embodiments described above (each example included in the embodiments) may be applied so as to be appropriately combined within a technically consistent range.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ケース、1a 上面部、1b 下面部、1c 側面部、2 ケース吹出口、3 ファン、3a 主板、3b ボス部、3c 側板、3d 翼、4 ファンモータ、4a モータサポート、5 ベルマウス、6 熱交換器、7 渦型ケーシング、7a 周壁、7b 舌部、7c 側壁、7d ケーシング吹出口部、7e 吹出口、7f 非対向側面、7g 対向側面、7h 対向曲面、8 ケース吸込口、9 渦型ケーシング吸込口、10,12,12a 仕切り部材、11 空間、13 中空箱、13a 箱壁部材、13b 開口部、14 中空、71 第1ケーシング、72 第2ケーシング、100 室外機、101 圧縮機、102 四方弁、103 室外側熱交換器、104 室外側送風機、105 絞り装置、200 室内機、201 負荷側熱交換器、202 負荷側送風機、300 ガス配管、400 液配管。 1 case, 1a upper surface, 1b lower surface, 1c side surface, 2 case outlet, 3, fan, 3a main plate, 3b boss, 3c side plate, 3d blade, 4 fan motor, 4a motor support, 5 bell mouth, 6 heat Exchanger, 7 vortex casing, 7a peripheral wall, 7b tongue, 7c side wall, 7d casing outlet, 7e outlet, 7f non-facing side, 7g facing side, 7h facing curved surface, 8 case inlet, 9 vortex casing Suction port 10, 12, 12a Partition member, 11 space, 13 hollow box, 13a box wall member, 13b opening, 14 hollow, 71 first casing, 72 second casing, 100 outdoor unit, 101 compressor, 102 four sides Valve, 103 outdoor heat exchanger, 104 outdoor blower, 105 throttle device, 200 indoors , 201 load side heat exchanger, 202 load side blower 300 gas piping, 400 liquid pipe.

Claims (7)

  1.  空気を吸い込むケース吸込口と、空気を吹き出すケース吹出口とを含むケースと、
     前記ケース内に配置され、前記ケース吸込口から前記ケース内に吸い込まれた空気を前記ケース吹出口まで送り込むように構成された送風部と、
     前記送風部と前記ケース吹出口との間に設けられた熱交換器とを備え、
     前記送風部は、互いに間隔をあけて配置された第1および第2ケーシングを含み、
     前記第1および第2ケーシングのそれぞれは前記熱交換器に面する位置にケーシング吹出口部を含み、
     前記第1および第2ケーシングにおける前記ケーシング吹出口部の間隔が、前記ケース吹出口に近づくほど狭くなるように、前記第1および第2ケーシングが並ぶ幅方向における前記ケーシング吹出口部の幅は前記ケース吹出口に近づくほど広くなり、
     前記ケース内には、前記熱交換器が位置する第1領域と、前記送風部が位置する第2領域および前記ケーシング吹出口部の間の第3領域とを区画する仕切り部材を備える、空気調和機。
    A case including a case inlet for sucking air and a case outlet for blowing air;
    An air blower arranged in the case and configured to send air sucked into the case from the case suction port to the case outlet;
    A heat exchanger provided between the blower and the case outlet,
    The air blowing part includes first and second casings spaced apart from each other,
    Each of the first and second casings includes a casing outlet at a position facing the heat exchanger,
    The width of the casing outlet in the width direction in which the first and second casings are arranged is such that the interval between the casing outlets in the first and second casings becomes narrower as it approaches the case outlet. It gets wider as you get closer to the case outlet,
    In the case, an air conditioner is provided that includes a partition member that partitions a first region in which the heat exchanger is located, a second region in which the air blower is located, and a third region between the casing outlets. Machine.
  2.  前記第2領域と前記第3領域とを区画する他の仕切り部材をさらに備える、請求項1に記載の空気調和機。 The air conditioner according to claim 1, further comprising another partition member that partitions the second region and the third region.
  3.  前記第2領域と前記第3領域とは連通している、請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the second region and the third region communicate with each other.
  4.  前記第3領域の少なくとも一部には中空箱が配置されており、
     前記中空箱は、前記第1および第2ケーシングの吹出口部に面する部分の少なくとも一部に、前記1対のケーシング吹出口部の内部と前記中空箱の内部とを連通する開口部を有する、請求項1~3のいずれか1項に記載の空気調和機。
    A hollow box is disposed in at least a part of the third region,
    The hollow box has an opening that communicates the inside of the pair of casing outlets and the inside of the hollow box in at least a part of a portion facing the outlet part of the first and second casings. The air conditioner according to any one of claims 1 to 3.
  5.  前記第1および第2ケーシングにおける前記ケーシング吹出口部の間隔が、前記ケース吹出口に近づくほど狭くなる部分は、前記第3領域と面する側の表面が曲面形状を有している、請求項1~4のいずれか1項に記載の空気調和機。 The portion of the first and second casings that becomes narrower as the distance between the casing outlets approaches the case outlet has a curved surface on the side facing the third region. 5. The air conditioner according to any one of 1 to 4.
  6.  請求項1~5のいずれか1項に記載の空気調和機を備えた空気調和装置。 An air conditioner comprising the air conditioner according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか1項に記載の空気調和機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the air conditioner according to any one of claims 1 to 6.
PCT/JP2016/069553 2016-06-30 2016-06-30 Air conditioner, air conditioning device, and refrigeration cycle device WO2018003103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/069553 WO2018003103A1 (en) 2016-06-30 2016-06-30 Air conditioner, air conditioning device, and refrigeration cycle device
JP2018524694A JP6541881B2 (en) 2016-06-30 2016-06-30 Air conditioner, air conditioner and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069553 WO2018003103A1 (en) 2016-06-30 2016-06-30 Air conditioner, air conditioning device, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018003103A1 true WO2018003103A1 (en) 2018-01-04

Family

ID=60787420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069553 WO2018003103A1 (en) 2016-06-30 2016-06-30 Air conditioner, air conditioning device, and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6541881B2 (en)
WO (1) WO2018003103A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101424A (en) * 2017-06-30 2017-08-29 广东美芝制冷设备有限公司 Evaporator assemblies, mounted air conditioner system and vehicle
KR20220099420A (en) * 2021-01-06 2022-07-13 엘지전자 주식회사 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448512U (en) * 1987-09-17 1989-03-24
JP2004340495A (en) * 2003-05-16 2004-12-02 Fujitsu General Ltd Air conditioner
JP2010117110A (en) * 2008-11-14 2010-05-27 Panasonic Corp Indoor unit of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448512U (en) * 1987-09-17 1989-03-24
JP2004340495A (en) * 2003-05-16 2004-12-02 Fujitsu General Ltd Air conditioner
JP2010117110A (en) * 2008-11-14 2010-05-27 Panasonic Corp Indoor unit of air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101424A (en) * 2017-06-30 2017-08-29 广东美芝制冷设备有限公司 Evaporator assemblies, mounted air conditioner system and vehicle
KR20220099420A (en) * 2021-01-06 2022-07-13 엘지전자 주식회사 Air conditioner
WO2022149773A1 (en) * 2021-01-06 2022-07-14 엘지전자 주식회사 Air conditioner
KR102541596B1 (en) * 2021-01-06 2023-06-07 엘지전자 주식회사 Air conditioner

Also Published As

Publication number Publication date
JPWO2018003103A1 (en) 2018-09-13
JP6541881B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6732037B2 (en) Indoor unit and air conditioner
JP5805214B2 (en) Outdoor unit and refrigeration cycle apparatus including the outdoor unit
JP6600005B2 (en) Air conditioner outdoor unit and refrigeration cycle apparatus
JP7031061B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
JP6671469B2 (en) Centrifugal blower, air conditioner and refrigeration cycle device
WO2020129179A1 (en) Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
WO2017187570A1 (en) Air conditioner
JP6625305B1 (en) Blower, air conditioner indoor unit and air conditioner
WO2018003103A1 (en) Air conditioner, air conditioning device, and refrigeration cycle device
WO2020250363A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
US11885339B2 (en) Turbo fan, air sending device, air-conditioning device, and refrigeration cycle device
JP6695403B2 (en) Centrifugal blower and air conditioner
CN113195903B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
JP6463497B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP6925571B1 (en) Blower, indoor unit and air conditioner
JP7258099B2 (en) Air conditioning equipment and refrigeration cycle equipment
WO2021181695A1 (en) Indoor unit and air-conditioning device
JP7038839B2 (en) Outdoor unit and refrigeration cycle device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524694

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907336

Country of ref document: EP

Kind code of ref document: A1