WO2018186337A1 - Humidity control unit - Google Patents

Humidity control unit Download PDF

Info

Publication number
WO2018186337A1
WO2018186337A1 PCT/JP2018/014078 JP2018014078W WO2018186337A1 WO 2018186337 A1 WO2018186337 A1 WO 2018186337A1 JP 2018014078 W JP2018014078 W JP 2018014078W WO 2018186337 A1 WO2018186337 A1 WO 2018186337A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
fan
rotor
regeneration
adsorption
Prior art date
Application number
PCT/JP2018/014078
Other languages
French (fr)
Japanese (ja)
Inventor
木澤 敏浩
晶子 白井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880022255.4A priority Critical patent/CN110476019B/en
Publication of WO2018186337A1 publication Critical patent/WO2018186337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements

Definitions

  • the present disclosure relates to a humidity control unit, and in particular, to a humidity control unit that is installed with a back surface of a casing facing a wall surface along a vertical direction.
  • a humidification unit that is configured separately from an air conditioner that performs indoor air conditioning and supplies humidification air to the indoor unit of the air conditioner.
  • Some of such humidification units are attached to a wall to which an indoor unit is attached, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-129950), for example.
  • the humidifier unit described in Patent Document 1 when the heater, the suction rotor, and the fan are disposed from the outside air inlet toward the through hole opened in the wall, the humidifier unit is It becomes thick and the humidification unit protrudes greatly from the wall. When the humidifying unit protrudes greatly from the wall in this way, it becomes difficult for the user to accept the design, or the cost for employing the humidifying unit to secure the installation strength of the humidifying unit increases. . Moreover, it is preferable that the planar shape of the humidification unit is small, and it is preferable that the humidification unit is compact in the in-plane direction of the humidification unit.
  • the problem of the present disclosure is to achieve compactness while suppressing the thickness of the humidity control unit that is installed with the back face facing the wall.
  • a humidity control unit is installed with a back surface facing a wall surface along the vertical direction, a casing having a front surface facing the back surface, and a first rotating shaft housed in the casing and inclined with respect to the back surface.
  • the adsorbing rotor that rotates around and the adsorbed air that is housed in the casing, guides the pre-adsorption air to the adsorbing rotor, and passes through the adsorbing rotor in the direction along the first rotation axis so that moisture is deprived by the adsorbing rotor.
  • a suction fan that blows out, and a regeneration that is housed in a casing guides the pre-regeneration air to the suction rotor, and blows out the post-regeneration air given moisture from the suction rotor by passing through the suction rotor in the direction along the first rotation axis. For fans.
  • the adjustment is performed while suppressing an increase in the gap in a narrow space in the casing. It becomes easy to arrange the equipment constituting the wet unit.
  • the humidity control unit according to the second aspect is the humidity control unit according to the first aspect, wherein the suction fan has a suction fan suction port for sucking air after suction from the suction rotor, and the regeneration fan is regenerated from the suction rotor.
  • the suction fan and the regeneration fan have at least one of the suction fan suction port and the regeneration fan suction port overlapped with a partial region of the suction rotor in a front view. As such, it is arranged.
  • At least one of the suction fan suction port and the regeneration fan suction port overlaps with a partial region of the suction rotor in a front view. If the suction fan suction port overlaps with a part of the suction rotor, the area occupied by the suction fan and the suction rotor decreases. If the regeneration fan suction port overlaps with a part of the suction rotor, the regeneration fan And the area occupied by the suction rotor is reduced.
  • the humidity control unit according to the third aspect is the humidity control unit according to the second aspect, wherein the adsorption rotor has a partial area disposed between the adsorption fan and the front of the casing.
  • the suction fan and the suction fan are arranged at a short distance by passing through the partial area of the suction rotor by disposing a part of the suction rotor between the suction fan and the front of the casing. Since the air flow of the pre-adsorption air flowing in the air can be formed, the flow path resistance when the pre-adsorption air is guided to the adsorption rotor can be kept low.
  • the humidity control unit according to the fourth aspect is the humidity control unit according to the third aspect, wherein the suction fan is a centrifugal fan having a bell mouth, and the suction rotor has a farthest separation point farthest from the suction hole of the bell mouth. It is arranged so as to be 10% or more away from the radius of the suction hole.
  • the farthest away part from the suction hole of the bell mouth is 10% or more of the radius of the suction hole. Air easily flows between the suction fan and the suction rotor in a region that does not overlap with the suction rotor.
  • the humidity control unit according to the fifth aspect is the humidity control unit according to the fourth aspect, wherein the adsorption rotor is located at a position where the furthest separation is 40% or more of the radius of the suction hole, and the closest point to the suction hole is the suction circle. Are less than 40% of the radius of the hole.
  • the closest part of the suction rotor is less than 40% of the radius of the suction mouth of the bell mouth, air can easily flow between the suction fan and the suction rotor.
  • the suction rotor and the suction fan can be brought close to each other.
  • the humidity control unit according to the sixth aspect is the humidity control unit according to the first aspect to the fifth aspect, so that the suction fan and the regeneration fan are positioned at points closer to the back than the front of the casing. It is the one that is arranged.
  • the humidity control unit since the gravity centers of the suction fan and the regeneration fan, which are heavy objects, are located close to the back surface of the casing, the humidity control unit is adjusted as compared with the case where the gravity center is close to the front surface. The moment of force acting in the direction of moving the wet unit away from the wall is reduced.
  • a humidity control unit is the humidity control unit according to any one of the first to sixth aspects, further comprising a regeneration heat exchanger for heating the pre-regeneration air that passes through the adsorption rotor, and regeneration heat exchange
  • the vessel is arranged so that the center of gravity is located at a point closer to the back side than the front side of the casing.
  • the center of gravity of the regeneration heat exchanger which is a heavy object, is located at a point close to the back surface of the casing, so that the humidity control unit is compared with the case where the center of gravity is close to the front surface. Since the moment of the force acting in the direction away from the wall becomes small, it becomes easy to install the wall with the back surface facing the wall surface.
  • the humidity control unit according to the eighth aspect is the humidity control unit according to the seventh aspect, in which the regeneration heat exchanger is disposed obliquely along the adsorption rotor.
  • the regeneration heat exchanger is disposed obliquely along at least one of the first main surface and the second main surface of the adsorption rotor.
  • the heat exchanger can be brought close to the adsorption rotor as a whole.
  • the humidity control unit is the humidity control unit according to any one of the first to eighth aspects, wherein the suction fan has a suction fan rotor that rotates about the second rotation axis, and is used for regeneration.
  • the fan has a regeneration fan rotor that rotates around a third rotation axis, and at least one of the second rotation axis and the third rotation axis is inclined with respect to the back surface of the suction fan and the regeneration fan. It is arranged so as to be along the first rotation axis.
  • the suction fan and the regeneration fan are arranged so that at least one of the second rotating shaft and the third rotating shaft is inclined with respect to the rear surface and along the first rotating shaft. Since they are arranged, the suction fan and / or the regeneration fan and the suction rotor can be arranged obliquely and close to each other.
  • a humidity control unit is the humidity control unit according to any one of the first to ninth aspects, wherein the adsorption rotor is housed in the adsorption rotor unit together with a heating device that heats the adsorption rotor for regeneration, and is adsorbed
  • the rotor unit is arranged so as to be in contact with or close to the front and back of the casing, and the suction fan is arranged so as to be in contact with or close to the front and / or back of the casing and used for regeneration.
  • the fan is arranged so as to come into contact with or close to the front and / or back of the casing.
  • the thickness of the casing is perpendicular to the back surface of the adsorption rotor unit. It will be the same size.
  • the humidity control unit according to the first aspect or the ninth aspect can be made compact while suppressing the thickness of the humidity control unit.
  • the in-plane dimensions of the humidity control unit can be made compact.
  • the suction fan can be easily downsized, and the humidity control unit can be easily downsized.
  • the humidity control unit it is easy to ensure humidity control performance even if it is made compact.
  • the humidity control unit according to the fifth aspect can improve the compactness of the humidity control unit while ensuring humidity control performance.
  • the force acting in the direction of separating the humidity control unit from the wall becomes small, and it becomes easy to install the humidity control unit with the back surface facing the wall surface.
  • the humidity control unit according to the eighth aspect can be made compact while reducing the loss of heat energy given to the pre-regeneration air from the regeneration heat exchanger.
  • the thickness can be reduced.
  • the conceptual diagram of the humidification unit of FIG. The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 1 attached to the wall.
  • the right view of the humidification unit of FIG. The left view of the humidification unit of FIG.
  • the circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 2nd Embodiment The conceptual diagram of the dehumidification unit of FIG.
  • the conceptual diagram of the humidification unit of FIG. The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 24 attached to the wall.
  • the circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 4th Embodiment The conceptual diagram of the dehumidification unit of FIG.
  • FIG. 2 shows the concept of the configuration of the humidifying unit 30 shown in FIG.
  • An air conditioner 1 shown in FIG. 1 includes an outdoor unit 2, an indoor unit 4, and refrigerant communication pipes 5 and 6, and a humidifying unit 30 is attached to the air conditioner 1.
  • the outdoor unit 2 is installed in the outdoor OD
  • the indoor unit 4 is attached to the indoor ID
  • the outdoor unit 2 and the indoor unit 4 are The refrigerant communication pipes 5 and 6 are used for communication.
  • the outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an electric valve 24, a closing valve 25, a closing valve 26, an outdoor fan 27, and an accumulator 28.
  • the indoor unit 4 includes an indoor heat exchanger 42 and an indoor fan 41.
  • a refrigerant circuit 10 for performing a vapor compression refrigeration cycle is formed in the air conditioner 1.
  • a compressor 21 is incorporated in the refrigerant circuit 10.
  • the compressor 21 sucks in the low-pressure gas refrigerant, compresses the sucked-in gas refrigerant, and discharges the high-temperature and high-pressure gas refrigerant.
  • the compressor 21 is, for example, a variable capacity inverter compressor that can perform rotation speed control by an inverter. As the operating frequency of the compressor 21 increases, the amount of refrigerant circulating in the refrigerant circuit 10 increases. Conversely, when the operating frequency decreases, the amount of refrigerant circulating in the refrigerant circuit 10 decreases.
  • the four-way valve 22 is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the four-way valve 22 has a discharge port (discharge pipe 21a) of the compressor 21 connected to a first port, an outdoor heat exchanger 23 connected to a second port, an accumulator 28 connected to a third port, and a fourth port.
  • the refrigerant communication pipe 6 is connected to the valve via a closing valve 26.
  • This four-way valve 22 is in a state indicated by a broken line in which the refrigerant flows between the first port and the second port and the refrigerant flows between the third port and the fourth port, and between the first port and the fourth port. And the state indicated by the solid line through which the refrigerant flows between the second port and the third port.
  • the humidification unit 30 includes a regeneration heat exchanger 31, and the regeneration heat exchanger 31 is inserted into the refrigerant communication tube 6. Therefore, in the heating operation state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 while maintaining the high temperature and pressure.
  • This humidifying unit 30 can generate post-regeneration air with high humidity by heating the pre-regeneration air that is sent to the adsorption rotor 32 by the regeneration heat exchanger 31. The ID will be humidified.
  • the outdoor heat exchanger 23 In the outdoor heat exchanger 23 disposed between the second port of the four-way valve 22 and the motor-operated valve 24, heat is exchanged between the refrigerant flowing through the heat transfer pipe (not shown) and the outdoor air.
  • the outdoor heat exchanger 23 functions as a radiator that releases heat from the refrigerant during the cooling operation, and functions as an evaporator that applies heat to the refrigerant during the heating operation.
  • the electric valve 24 is disposed between the outdoor heat exchanger 23 and the indoor heat exchanger 42.
  • the motor-operated valve 24 is an expansion valve having a function of expanding and depressurizing the refrigerant flowing between the outdoor heat exchanger 23 and the indoor heat exchanger 42.
  • the motor-operated valve 24 is configured so that the opening degree of the expansion valve can be changed, and the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be increased by reducing the opening degree of the expansion valve. By increasing the valve opening, the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be reduced.
  • Such an electric valve 24 expands and depressurizes the refrigerant flowing from the indoor heat exchanger 42 toward the outdoor heat exchanger 23 in the heating operation, and reduces the pressure in the cooling operation from the outdoor heat exchanger 23 to the indoor heat exchanger 42.
  • the refrigerant flowing toward is expanded and decompressed.
  • the outdoor unit 2 is provided with an outdoor fan 27.
  • the outdoor fan 27 sucks outdoor air into the outdoor unit 2 and supplies the outdoor air to the outdoor heat exchanger 23.
  • the air after heat exchange is discharged to the outside of 2.
  • the outdoor fan 27 promotes the function of the outdoor heat exchanger 23 that cools or evaporates the refrigerant using outdoor air as a cooling source or a heating source.
  • the outdoor fan 27 is driven by an outdoor fan motor 27a that can change the rotation speed. By changing the rotational speed of the outdoor fan 27, the air volume of the outdoor air passing through the outdoor heat exchanger 23 is changed.
  • the indoor unit 4 is provided with an indoor fan 41.
  • the indoor fan 41 sucks indoor air into the indoor unit 4 and supplies the indoor air to the indoor heat exchanger 42.
  • the air after heat exchange is discharged to the outside of 4.
  • the indoor fan 41 promotes the function of the indoor heat exchanger 42 that cools or evaporates the refrigerant using indoor air as a cooling source or a heating source.
  • the indoor fan 41 is driven by an indoor fan motor 41a whose rotation speed can be changed. By changing the rotation speed of the indoor fan 41, the air volume of the indoor air passing through the indoor heat exchanger 42 is changed.
  • the indoor ID is humidified by the humidifying unit 30 mainly when the indoor ID is dried, and there is no particular limitation on the timing when the indoor ID is humidified by the humidifying unit 30.
  • the room is often dried in winter, and is often humidified by the humidifying unit 30 during heating operation.
  • the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the solid line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
  • the compressor 21 When the compressor 21 is driven in the refrigerant circuit 10 during such heating operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 through the first port, the fourth port, the closing valve 26 and the refrigerant communication pipe 6 of the four-way valve 22.
  • the refrigerant heat-exchanged in the regeneration heat exchanger 31 enters the indoor heat exchanger 42 through the refrigerant communication pipe 6 and the connection pipe 71.
  • the high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with indoor air blown out from the indoor fan 41 in the indoor heat exchanger 42.
  • the high-pressure refrigerant after heat radiation is sent to the motor-operated valve 24 through the connection pipe 72, the refrigerant communication pipe 5, and the closing valve 25.
  • the refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant exiting the motor-operated valve 24 enters the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with outdoor air.
  • the low-pressure gas refrigerant discharged from the outdoor heat exchanger 23 passes through the second port and third port of the four-way valve 22 and the accumulator 28 and is sent again to the suction side (suction pipe 21b) of the compressor 21.
  • the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the broken line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
  • the low-pressure gas refrigerant When the compressor 21 is driven in the refrigerant circuit 10 during such cooling operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the first port and the second port of the four-way valve 22.
  • the high-temperature and high-pressure gas refrigerant radiates heat in the outdoor heat exchanger 23 by heat exchange with outdoor air.
  • the high-pressure refrigerant after heat radiation is sent to the motor operated valve 24.
  • the refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 42 through the closing valve 25, the refrigerant communication pipe 5 and the connection pipe 72.
  • the indoor heat exchanger 42 the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air blown out from the indoor fan 41 to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant discharged from the indoor heat exchanger 42 includes a connection pipe 71, a refrigerant communication pipe 6 into which the regeneration heat exchanger 31 is inserted, a closing valve 26, a four-way valve 22 (from the fourth port to the third port), And is again sent to the suction side (suction pipe 21b) of the compressor 21 through the accumulator 28.
  • FIG. 4 shows the external appearance of the humidifying unit 30 as viewed from the front.
  • the Z-axis direction shown in FIG. 4 is the vertical direction, and the X-axis direction is the left-right direction.
  • the humidification unit 30 shown in FIG. 4 is attached to the wall surface WS.
  • the wall surface WS extends parallel to the XZ plane.
  • 5 shows a right side surface 50e of the humidifying unit 30
  • FIG. 6 shows a left side surface 50f of the humidifying unit 30
  • FIG. 7 shows a lower side surface 50d of the humidifying unit 30.
  • 8 shows a state in which the humidification unit 30 is cut along the line II in FIG. 4 and viewed from the right side, and FIG.
  • FIG. 9 shows the humidification unit along the line II in FIG. The state which cut
  • the humidification unit 30 includes a regeneration heat exchanger 31, an adsorption rotor 32, a rotor motor 33, an adsorption fan 34, a regeneration fan 35, and a humidification hose 36.
  • the regeneration heat exchanger 31, the suction rotor 32, the rotor motor 33, the suction fan 34, and the regeneration fan 35 are accommodated in the casing 50 shown in FIGS.
  • pre-adsorption air is taken in from the pre-adsorption air intake 52 and sent to the adsorption region of the adsorption rotor 32.
  • the post-adsorption air deprived of moisture in the adsorption region of the adsorption rotor 32 is blown out from the adsorption fan outlet 56.
  • the pre-adsorption air and post-adsorption air streams are generated by the adsorption fan 34.
  • the pre-regeneration air is taken in from the pre-regeneration air intake 54, heated when passing through the regeneration heat exchanger 31, and sent to the regeneration region of the adsorption rotor 32.
  • the regenerated air given moisture in the regeneration region of the adsorption rotor 32 is blown out into the indoor unit 4 through the regenerated air duct 35e and the humidifying hose 36.
  • the airflow of the air before regeneration and the air after regeneration is generated by the regeneration fan 35.
  • the shape of the casing 50 of the humidifying unit 30 is designed based on a rectangular parallelepiped. Therefore, in the casing 50, the front 50a, the back 50b, the upper side 50c, the lower side 50d, the right side 50e, and the left side 50f occupy most of the appearance.
  • the front surface 50a is a surface facing the back surface 50b.
  • the upper side surface 50c, the lower side surface 50d, the right side surface 50e, and the left side surface 50f are side surfaces located between the front surface 50a and the back surface 50b.
  • the humidification unit 30 shown in FIG. 3 is attached so that the back surface 50b contacts the wall surface WS along the vertical direction.
  • the casing 50 may not be attached so as to be in contact with the wall surface WS, and may be attached so that the back surface 50b of the casing 50 faces the wall surface WS.
  • the casing 50 may be attached to a frame disposed in parallel with the wall surface WS.
  • a through hole 101 is formed in the wall 100 shown in FIG. The refrigerant communication pipes 5 and 6 and the humidifying hose 36 pass through the through hole 101.
  • a dimension M1 (distance between the front surface 50a and the back surface 50b) perpendicular to the back surface 50b (a distance between the front surface 50a and the back surface 50b) shown in FIG. 5 is parallel to the back surface 50b (parallel to the XZ plane).
  • Direction dimension.
  • the smallest dimension of the front surface 50a in the direction parallel to the back surface 50b is the distance between the right side surface 50e and the left side surface 50f (dimension M2 in the X-axis direction (see FIG. 7)).
  • the distance (dimension M1) between the front surface 50a and the back surface 50b is smaller than the distance (dimension M2) between the right side surface 50e and the left side surface 50f. That is, the casing 50 is thinned.
  • the first rotating shaft 32d of the suction rotor 32 is perpendicular to the back surface 50b (the surface 32a of the suction rotor 32 is parallel to the back surface 50b). )
  • the dimension M3 in the Z-axis direction can be reduced.
  • the longest side of the casing 50 is arranged along the Z-axis direction, and in order from the top (from the side closer to the upper side surface 50 c), the regeneration fan 35.
  • the suction rotor 32 and the suction fan 34 are arranged side by side.
  • FIG. 10 shows an appearance in which the grid 51 is removed from the front surface 50 a of the humidifying unit 30.
  • the casing 50 shown in FIG. 10 is viewed from the diagonally lower left.
  • a semicircular pre-adsorption air intake 52 is formed on the front surface 50a of the casing 50 at a position slightly below the central portion of the front surface 50a.
  • the longitudinal direction of the pre-adsorption air intake 52 is parallel to the X-axis direction.
  • the exposed adsorption rotor 32 is visible from the pre-adsorption air intake 52.
  • a pipe connection portion cover 53 is attached to the left side surface 50 f of the casing 50.
  • FIG. 11 shows an enlarged view of a portion of the external appearance of the humidifying unit 30 with the pipe connection portion cover 53 removed.
  • the pipe connection part cover 53 covers the pipe connection parts 31a and 31b.
  • the pipe connection part 31 a is connected to the refrigerant communication pipe 6 connected to the closing valve 26.
  • the pipe connection part 31 b is connected to the refrigerant communication pipe 6 connected to the indoor heat exchanger 42 of the indoor unit 4.
  • a pre-regeneration air intake 54 is formed on the left side surface 50f of the casing 50, and an opening 55 for taking out the humidification hose 36 from the inside of the casing 50 to the outside is formed (see FIG. 6). As shown in FIG. 5, the pre-regeneration air intake 54 is also formed on the right side surface 50e.
  • the lower surface 50d of the casing 50 is formed with a suction fan outlet 56 (see FIG. 7).
  • the adsorption rotor unit 39 includes a regeneration heat exchanger 31, an adsorption rotor 32, and a rotor motor 33.
  • the suction rotor 32 is a disk-shaped member.
  • a large number of through holes are formed in the rotor body 32c from the circular surface 32a to the circular back surface 32b of the adsorption rotor 32 so that air can pass through the adsorption rotor 32 from the surface 32a to the back surface 32b. It is configured.
  • the adsorption rotor 32 contains a polymeric adsorbent.
  • the adsorbent has a function of adsorbing moisture from the air passing through the adsorption rotor 32, and when air heated to a temperature higher than normal temperature passes through the adsorption rotor 32, moisture is absorbed into the heated air. It has a function to detach.
  • the adsorption region passes through the air taken in from the pre-adsorption air intake 52 until it is blown out from the adsorption fan blow-out port 56, and the air before regeneration.
  • the air taken in from the intake port 54 passes through the humidifying hose 36 before being sent to the indoor unit 4.
  • the adsorption area occupies the lower half of the generally disk-shaped area
  • the regeneration area occupies the upper half of the generally disk-shaped area.
  • the occupation ratio of the adsorption area and the reproduction area can be designed as appropriate.
  • the reproduction area may be a sector and the rest may be an adsorption area.
  • the suction rotor unit 39 supports the suction rotor 32 so that the suction rotor 32 rotates around the first rotation shaft 32d.
  • the suction rotor 32 rotates around a first rotation shaft 32d inclined with respect to the back surface 50b.
  • the suction rotor 32 is arranged such that an angle ⁇ formed by the first rotation shaft 32d and the X axis shown in FIG. 9 is, for example, 10 degrees to 30 degrees.
  • the angle ⁇ formed by the first rotation shaft 32d and the X axis is arranged to be about 15 degrees.
  • the suction rotor 32 rotates 30 times per hour.
  • the adsorption rotor 32 When the adsorption rotor 32 makes one rotation around the first rotation shaft 32d, the adsorption rotor 32 passes through the adsorption region and the regeneration region, and adsorbs moisture and desorbs moisture.
  • the adsorption rotor unit 39 holds the regeneration heat exchanger 31 and reproduces the heat for regeneration so that all the pre-regeneration air heated through the regeneration heat exchanger 31 can pass through the adsorption rotor 32.
  • An air path that passes through the regeneration region after passing through the vessel 31 is formed.
  • the regeneration heat exchanger 31 is arranged in parallel to the back surface 32b of the adsorption rotor 32 arranged in this way.
  • the envelope surface 31 ⁇ / b> P at the front side end of the fin of the regeneration heat exchanger 31 is substantially parallel to the back surface 32 b of the adsorption rotor 32.
  • the regeneration heat exchanger 31 is preferably disposed obliquely along the adsorption rotor 32 in order to reduce the heat energy loss by bringing the regeneration heat exchanger 31 close to the adsorption rotor 32.
  • those inclined by ⁇ 10 degrees with respect to the back surface 32 b of the adsorption rotor 32 are also included in the arrangement along the adsorption rotor 32.
  • the regeneration heat exchanger 31 is arranged so that the center of gravity is located at a point closer to the back surface 50 b than to the front surface 50 a of the casing 50.
  • the center of gravity of the regenerative heat exchanger 31 is located at a point close to the back surface 50b of the casing 50, the moment of force acting in the direction in which the humidifying unit 30 is separated from the wall 100 is greater than when the center of gravity is near the front surface 50a. Since it becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
  • the pre-regeneration air sent to the regeneration heat exchanger 31 is taken in from the pre-regeneration air intake 54 formed on the right side surface 50e and the left side surface 50f.
  • the pre-regeneration air intake 54 includes an oblique cut portion 54 a that is obliquely cut along the inclination of the adsorption rotor 32.
  • the pre-regeneration air intake 54 is increased by the amount of the opening being expanded by such an oblique cut portion 54a, and the flow path resistance of the pre-regeneration air is reduced.
  • suction fan 34 As an example in which a sirocco fan is used for the suction fan 34 is shown, but a fan that can be used for the suction fan 34 is not limited to a sirocco fan.
  • the suction fan 34 is preferably a centrifugal fan that easily satisfies the conditions of the occupied volume and the air volume.
  • the suction fan 34 includes a suction fan rotor 34a that rotates around the second rotation shaft 34b, a suction motor 34c, a suction fan case 34d, and a post-adsorption air duct 34e.
  • the second rotating shaft 34b extends in a direction perpendicular to the back surface 50b.
  • the suction motor 34c rotates the suction fan rotor 34a.
  • the adsorption fan 34 guides pre-adsorption air from the pre-adsorption air intake 52 to the adsorption rotor 32 by the adsorption fan rotor 34a. Then, the pre-adsorption air is sent by the adsorption fan rotor 34a and passes through the adsorption rotor 32 in the adsorption area. Air that has been deprived of moisture by the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after adsorption. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32.
  • a post-adsorption air duct 34e is disposed on the back surface 32b side of the adsorption rotor 32.
  • the post-adsorption air duct 34e is larger than the portion where the adsorption rotor 32 and the adsorption area overlap in front view, and larger than the suction circular hole 34f of the bell mouth 34g of the adsorption fan 34.
  • the post-adsorption air duct 34e is arranged so as to cover the portion where the adsorption rotor 32 and the adsorption region overlap and the suction circular hole 34f of the bell mouth 34g in a front view.
  • the adsorbed air sucked into the adsorbing fan 34 from the adsorbed air duct 34e through the suction circular hole 34f of the bell mouth 34g of the adsorbing fan 34 is blown out from the adsorbing fan outlet 56.
  • the suction fan 34 is arranged such that the region RE1 of the suction circular hole 34f of the bell mouth 34g and the partial region RE2 of the suction rotor 32 overlap in front view.
  • a partial region RE ⁇ b> 2 of the suction rotor 32 is disposed between the suction fan 34 and the front surface 50 a of the casing 50.
  • the projection range of the suction circular hole 34f of the bell mouth 34g (the portion overlapping the suction circular hole 34f in front view) is the farthest from the suction circular hole 34f.
  • the farthest separation point P1 is 60% away from the radius r1 of the suction circular hole 34f.
  • the furthest away point P1 Is preferably arranged so as to be at least 10% of the radius r1.
  • the suction rotor 32 has, for example, the farthest separation point P1 separated by 40% or more of the radius r1 of the suction circular hole 34f.
  • the distance at which the nearest closest point P2 is separated from the suction circular hole 34f is set to be less than 40% of the radius r1 of the suction circular hole 34f.
  • the distance from the suction circular hole 34f to the closest point P2 is about 35% of the radius r1 of the suction circular hole 34f.
  • the suction fan 34 is arranged so that its center of gravity is located closer to the back surface 50b than to the front surface 50a of the casing 50.
  • the center of gravity of the suction fan 34 and the regeneration fan 35 which are heavy objects, is located at a point close to the back surface 50b of the casing 50, the direction in which the humidifying unit 30 is separated from the wall 100 as compared with the case where the center of gravity is close to the front surface 50a. Since the moment of the force acting on the back surface 50b becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
  • the regeneration fan 35 includes a regeneration fan rotor 35a that rotates around the third rotation shaft 35b, a regeneration motor 35c, a regeneration fan case 35d, and a post-regeneration air duct 35e.
  • the third rotation shaft 35b extends in a direction perpendicular to the back surface 50b.
  • the reproduction motor 35c rotates the reproduction fan rotor 35a.
  • the regeneration fan 35 guides the pre-regeneration air from the pre-regeneration air intake 54 to the adsorption rotor 32 by the regeneration fan rotor 35a. Then, the pre-regeneration air is sent by the regeneration fan rotor 35a and passes through the adsorption rotor 32 in the regeneration region. The air given moisture to the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after regeneration. The pre-regeneration air is heated by the regeneration heat exchanger 31 before reaching the back surface 32 b of the adsorption rotor 32. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32.
  • a post-regeneration air duct 35e is disposed on the surface 32a side of the adsorption rotor 32.
  • the post-regeneration air duct 35e is larger than the portion where the suction rotor 32 and the regeneration region overlap in front view, and larger than the suction port 35f of the regeneration fan 35.
  • the post-regeneration air duct 35e is disposed so as to cover the portion where the suction rotor 32 and the regeneration region overlap and the suction port 35f when viewed from the front.
  • the regeneration fan 35 is a post-regeneration air duct 35e that is disposed along the front surface 50a of the casing 50, after the regeneration air that has passed from the regeneration heat exchanger 31 in the order of the back surface 32b and the front surface 32a of the adsorption rotor 32.
  • the post-regeneration air sucked into the regeneration fan 35 from the post-regeneration air duct 35e through the suction port 35f of the regeneration fan 35 is blown out through the humidification hose 36.
  • the reproduction fan 35 is arranged so that its center of gravity is located closer to the back surface 50b than to the front surface 50a of the casing 50.
  • the gravity centers of the suction fan 34 and the regeneration fan 35 which are heavy objects, are located at a point close to the back surface 50b of the casing 50, the humidifying unit 30 is moved away from the wall as compared with the case where the center of gravity is near the front surface 50a. Since the moment of the working force becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
  • the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are arranged in one direction (Z-axis) along the back surface 50b. Direction).
  • the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan rotor 34a, and the third rotation shaft 35b of the regeneration fan rotor 35a pass through one straight line L1 extending in the Z-axis direction. Are lined up.
  • the suction fan rotor 34a and the reproduction fan rotor 35a does not protrude from the suction rotor 32 in the X-axis direction, the dimension M2 of the casing 50 in the X-axis direction can be reduced.
  • the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the air before adsorption and the airflow of the air before regeneration are opposed to each other.
  • the humidifying ability can be improved as compared with the case where these airflows flow in the same direction.
  • the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other.
  • 35 may be arranged such that the airflow of the air before adsorption and the airflow of the air before regeneration flow in the same direction.
  • a pre-regeneration air intake 57 is formed on the front surface 50a of the casing 50A.
  • the pre-regeneration air intake 57 is formed in a rectangular shape having substantially the same size as that of the regeneration heat exchanger 31 in a front view.
  • a grid 58 is attached to the pre-regeneration air intake 57. Even when the pre-regeneration air inlet 57 is formed on the front surface 50a, the pre-regeneration air intake port may be provided on the right side surface 50e and the left side surface 50f close to the front surface 50a, as in the first embodiment. Good.
  • the pre-adsorption air intake 52 may be formed in the front surface 50a of the casing 50.
  • the pre-adsorption air intake may be formed on a side surface.
  • the pre-adsorption air intake 59 may be formed on the right side surface 50e and the left side surface 50f.
  • the opening part 55 may be formed in both the right side surface 50e and the left side surface 50f which oppose each other. Usually, since only one of the openings 55 is used, it is possible to cover the opening 55 with a cap made of resin or rubber, for example.
  • the through hole 101 is formed in the wall surface WS, the correspondence between the right side surface 50e facing the through hole 101 and the correspondence direction facing the left side surface 50f relative to the through hole 101 can be selected. The degree of freedom of installation of the humidification unit 30 can be improved as compared with the case where it is provided on one side.
  • the suction rotor 32 and the suction fan rotor 34a of the suction fan 34 are disposed so as to overlap each other in a front view.
  • the first rotating shaft 32d, the second rotating shaft 34b and the second rotating shaft 34b are arranged in the YZ plane extending in the Z direction at the center of the casing 50B.
  • the three rotation shafts 35b are arranged side by side.
  • the humidifying unit 30B shown in FIG. 18 is configured such that the first rotating shaft 32d and the second rotating shaft 34b are parallel to each other.
  • the first rotating shaft 32d and the second rotating shaft 34b are in the YZ plane.
  • the suction fan 34 is arranged so that the angle ⁇ formed by the second rotation shaft 34b and the X axis shown in FIG. 18 is, for example, 10 degrees to 30 degrees.
  • the third rotating shaft 35b of the regeneration fan 35 extends in a direction perpendicular to the back surface 50b.
  • the dimension M2 in the X-axis direction that is the smallest in the direction parallel to the back surface 50b is the same as in the first embodiment, and the dimension M4 in the vertical direction (Y-axis direction) is smaller than the dimension M2 in the X-axis direction. This is similar to the first embodiment. Further, by tilting the second rotation shaft 34b with respect to the back surface 50b, the dimension M5 in the Z-axis direction is made as small as the dimension M3 of the first embodiment.
  • the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan 34, and the third rotation shaft 35b of the regeneration fan 35 are relative to the back surface 50b. Inclined.
  • the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged so that the first rotation shaft 32d, the second rotation shaft 34b, and the third rotation shaft 35b are parallel to each other.
  • the first rotation shaft 32d of the suction rotor 32 and the suction fan rotor 34a of the suction fan 34 are arranged so as to overlap each other in a front view.
  • the dimension of the casing 50C in the Z-axis direction can be reduced as compared with the casing 50 of the first embodiment.
  • the suction rotor 32 and the regeneration fan 35 are arranged so as not to overlap except for the portion of the post-regeneration air duct 35e.
  • the regeneration fan 35 excluding the post-regeneration air duct 35e and the suction rotor 32 are arranged so as not to overlap in a front view. Good.
  • the first rotating shaft 32d, the second rotating shaft 34b, and the second rotating shaft are arranged in the YZ plane extending in the Z direction at the center of the casing 50C, similarly to the humidifying unit 30 of the first embodiment.
  • the three rotation shafts 35b are arranged side by side.
  • the humidifying unit 30C shown in FIG. 19 is configured such that the first rotating shaft 32d, the second rotating shaft 34b, and the third rotating shaft 35b are parallel to each other.
  • the first rotating shaft 32d and the first rotating shaft 32d The two rotation shafts 34b, the first rotation shaft 32d and the third rotation shaft 35b, and the second rotation shaft 34b and the third rotation shaft 35b may be arranged so as to have different inclination angles with respect to the back surface 50b so that they intersect in the YZ plane.
  • the reproduction fan 35 is arranged so that an angle ⁇ formed by the third rotation shaft 35b and the X axis shown in FIG. 19 is, for example, 10 degrees to 30 degrees.
  • the smallest dimension M2 in the X-axis direction in the direction parallel to the back surface 50b is the same as in the first embodiment, and the dimension M6 in the vertical direction (Y-axis direction) is smaller than the dimension M2 in the X-axis direction. This is the same as in the first embodiment. Further, the third rotation shaft 35b is also inclined with respect to the back surface 50b, so that the dimension M7 in the Z-axis direction is smaller than the dimension M3 of the first embodiment.
  • the suction circular hole 34f that is the suction fan suction port overlaps with a partial region of the suction rotor 32 in a front view (in other words, when viewed in the thickness direction).
  • the suction port 35f which is a regeneration fan suction port, may be disposed so as to overlap with a partial region of the suction rotor 32 in a front view.
  • the humidifying units 30, 30A to 30A to 50C are arranged so that the longitudinal direction of the casings 50, 50A to 50C (the direction in which the sides of the dimensions M3, M5, and M7 extend) coincides with the Z-axis direction.
  • 30C is mounted, even if the humidifying units 30, 30A to 30C are mounted so that the longitudinal direction of the casings 50 and 50A to 50C extends in the X-axis direction by rotating in a plane parallel to the back surface 50b, for example. Good.
  • the humidification unit 30 of 1st Embodiment, the humidification unit 30A of the modification 1A, and the humidification units 30B and 30C of the modification 1D are examples of a humidity control unit.
  • the suction rotor 32 rotates around a first rotation shaft 32d inclined with respect to the back surface 50b of the casing 50, 50A, 50B, 50C. Since the suction rotor 32 is disposed obliquely with respect to the back surface 50b, the humidification units 30, 30A to 30C such as the suction fan 34 and the regeneration fan 35 are suppressed while suppressing an increase in the gap in a narrow space inside the casing 50. It is easy to arrange the equipment that constitutes. As a result, it is possible to reduce the dimensions M3, M5, M7 in the in-plane direction parallel to the back surface 50b while reducing the thickness (dimensions M1, M4, M5) of the humidifying units 30, 30A to 30C. Yes.
  • At least one of the suction circular hole 34f that is the suction fan suction port and the suction port 35f that is the regeneration fan suction port is a partial region of the suction rotor 32.
  • the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged so as to overlap in a front view.
  • the suction circular hole 34f and a partial region of the suction rotor 32 overlap, the area occupied by the suction fan 34 and the suction rotor 32 is reduced with respect to the in-plane dimension parallel to the back surface 50b.
  • the dimensions M3, M5, and M7 in the direction in which 34 and the suction rotor 32 are arranged can be reduced, and the in-plane dimensions of the humidifying units 30, 30A to 30C can be made compact.
  • the suction port 35f and a partial area of the suction rotor 32 overlap the area occupied by the regeneration fan 35 and the suction rotor 32 is reduced with respect to the in-plane dimension parallel to the back surface 50b.
  • the dimension in the direction in which the fan 35 and the suction rotor 32 are arranged can be reduced, and the in-plane dimensions of the humidifying units 30 and 30A to 30C can be made compact.
  • the adsorption rotor 32 is partially disposed between the adsorption fan 34 and the front surface 50 a of the casing 50. With such an arrangement, it is possible to form an airflow of pre-adsorption air that passes through a partial region of the adsorption rotor 32 and flows to the adsorption fan 34 at a short distance.
  • the channel resistance can be kept low.
  • the suction capacity of the suction fan 34 can be small, the suction fan 34 can be easily downsized, and the humidification units 30 and 30A to 30C can be easily made compact.
  • the suction fan 34 is a centrifugal fan having a bell mouth 34g, and the suction rotor 32 is arranged such that the furthest away point P1 from the suction circular hole 34f of the bell mouth 34g is 10% or more of the radius of the suction circular hole 34f. Has been placed. With such a configuration, air easily flows between the suction fan 34 and the suction rotor 32 in a region that does not overlap with the suction rotor 32 in the suction circular hole 34f of the bell mouth 34g. Since the amount of pre-adsorption air can be easily guided, it is easy to ensure the humidification performance even if it is compact.
  • the most distant place P1 of the suction rotor 32 is separated from the suction circular hole 34f by 40% or more of the radius r1 (see FIG. 8) of the suction circular hole 34f, and the closest part P2 closest to the suction circular hole 34f It is separated from the circular hole 34f by less than 40% of the radius r1 of the suction circular hole 34f. Since the closest point P2 of the suction rotor 32 is less than 40% of the radius r1 of the suction circular hole 34f of the bell mouth 34g, air can easily flow between the suction fan 34 and the suction rotor 32. The suction rotor 32 and the suction fan 34 can be brought close to each other. As a result, the compactification of the humidification unit 30 can be improved while ensuring the humidification performance.
  • the gravity center of the suction fan 34 and the gravity center of the regeneration fan 35 are arranged so that they are located closer to the back surface 50b than the front surface 50a of the casings 50 and 50A to 50C.
  • the gravity centers of the suction fan 34 and the regeneration fan 35 which are heavy objects, are located near the rear surface 50b of the casings 50, 50A to 50C, humidification is performed as compared with the case where these gravity centers are located near the front surface 50a. The moment of force acting in the direction of separating units 30, 30A to 30C from wall 100 is reduced.
  • the humidification units 30, 30A to 30C are supported by the center in the Y-axis direction by hand, they will fall toward the wall 100.
  • the force acting in the direction of separating the humidifying units 30, 30A to 30C from the wall 100 is reduced, and the rear surface 50b is opposed to the wall surface WS and can be easily installed.
  • the humidifying units 30, 30A to 30C described above are arranged so that the center of gravity of the regeneration heat exchanger 31 is positioned closer to the back surface 50b than the front surface 50a of the casing 50, 50A to 50C. Compared with the case where the center of gravity of the heat exchanger 31 is close to the front surface 50a, the moment of the force acting in the direction of separating the humidifying units 30, 30A to 30C from the wall 100 is reduced, so that the rear surface 50b faces the wall surface WS. Easy to install.
  • the regeneration heat exchanger 31 Since the regeneration heat exchanger 31 is disposed obliquely along the adsorption rotor 32, the regeneration heat exchanger 31 can be brought close to the adsorption rotor 32 as a whole. As a result, the heat energy given to the pre-regeneration air from the regeneration heat exchanger 31 is unlikely to escape to the surrounding members, so that the compactness can be achieved while reducing the loss of heat energy.
  • the suction fan 34 and the regeneration fan 35 of the humidifying units 30B and 30C have at least one of the second rotating shaft 34b and the third rotating shaft 35b with respect to the back surface 50b. It arrange
  • the suction fan 34 and / or Alternatively, both the regeneration fan 35 and the suction rotor 32 can be arranged obliquely and close to each other. As a result, it is possible to reduce the size by reducing the dimensions M5 and M7 in the in-plane direction parallel to the back surface 50b while suppressing the thickness (dimensions M4 and M5) of the humidifying units 30B and 30C.
  • the adsorption rotor 32 is accommodated in the adsorption rotor unit 39 together with the regeneration heat exchanger 31 for heating the adsorption rotor for regeneration.
  • the suction rotor unit 39 is disposed so as to come into contact with the front surface 50 a and the back surface 50 b of the casing 50 at the contact points P ⁇ b> 3 and P ⁇ b> 4.
  • the suction fan 34 is disposed so as to contact the back surface 50 b of the casing 50, and the regeneration fan 35 is close to the front surface 50 a and the back surface 50 b of the casing 50.
  • the suction rotor unit 39 including the suction rotor 32 arranged obliquely is arranged so as to contact the front surface 50a and the rear surface 50b of the casing 50, the dimension M1 in the thickness direction of the casing 50 is the suction rotor unit.
  • the size in the vertical direction with respect to the back surface 50b of 39 is about the same. In this way, the humidification unit 30 is reduced in thickness.
  • the adsorption rotor unit does not need to be in contact with the front surface and the back surface of the casing, and may be disposed close to each other.
  • the suction fan is arranged so as to come into contact with or close to the front and / or back of the casing, and the regeneration fan comes into contact with or close to the front and / or back of the casing. It only has to be arranged.
  • the humidifying unit 30 of the first embodiment and the humidifying units 30A to 30C of the modified examples 1A to 1F are described as humidity control units that are incorporated in the air conditioner 1 and humidify the room ID.
  • These humidifying units 30, 30A to 30C can be used as a dehumidifying unit by installing the same unit in the room and discharging the air after regeneration to the outside.
  • FIG. 20 shows the air conditioner 1 to which the dehumidifying unit 30D is attached.
  • FIG. 21 shows the concept of the configuration of the dehumidifying unit 30D shown in FIG.
  • the dehumidifying unit 30D is an example of a humidity control unit in the second embodiment.
  • the dehumidifying unit 30D of the second embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50
  • the exhaust hose 37 is provided instead of the humidification hose 36 provided in the humidification unit 30 of the first embodiment. Since the configuration other than the exhaust hose 37 is the same as the dehumidifying unit 30D of the second embodiment and the humidifying unit 30 of the first embodiment, the description thereof is omitted.
  • FIG. 22 shows a state where the casing 50 of the dehumidification unit 30D is attached to the room ID.
  • the exhaust hose 37 extends to the outdoor OD through the through hole 101.
  • the refrigerant communication pipe 6 piped from the outdoor unit 2 to the room ID through the through hole 101 is connected to the pipe connection part 31a of the dehumidifying unit 30D, and is piped from the outdoor unit 2 to the room ID through the through hole 101.
  • the refrigerant communication pipe 5 is connected to the indoor unit 4 (connection pipe 72).
  • the indoor unit 4 (connection pipe 71) and the pipe connection part 31b of the dehumidifying unit 30D are connected by the refrigerant communication pipe 6 piped in the room ID.
  • the dehumidifying unit 30D is attached to a room different from the indoor unit 4, for example, and is arranged in a drying room, for example.
  • the pre-adsorption air is taken in from the indoor ID through the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. Then, the air after adsorption that has been dehydrated by the adsorption rotor 32 and dried is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID. Further, the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is blown out by the regeneration fan 35 through the exhaust hose 37 to the outdoor OD.
  • FIG. 25 shows the concept of the configuration of the humidifying unit 30E shown in FIG.
  • This humidification unit 30E is an example of a humidity control unit in the third embodiment.
  • the humidification unit 30E of the third embodiment is similar to the humidification unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And a humidifying hose 36.
  • the humidifying unit 30E according to the third embodiment further adsorbs to the outdoor OD through the through hole 101 and the air supply hose 38 for taking in pre-adsorption air from the outdoor OD through the through hole 101 (see FIG. 26). And an exhaust hose 37 for exhausting the rear air.
  • the humidifying hose 36 of the humidifying unit 30E is a hose that connects the humidifying unit 30E and the indoor unit 4 in the room ID. Since the configuration other than the exhaust hose 37 and the air supply hose 38 is the same as that of the humidifying unit 30E of the third embodiment and the humidifying unit 30 of the first embodiment, description thereof is omitted.
  • FIG. 26 shows a state where the casing 50 of the humidification unit 30E is attached to the room ID.
  • the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 and the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32.
  • the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 through the exhaust hose 37 to the outdoor OD.
  • the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32.
  • the regenerated air given moisture by the adsorption rotor 32 is sent to the indoor unit 4 through the humidifying hose 36 by the regeneration fan 35.
  • Modification 3A 3rd Embodiment demonstrated the humidification unit 30E installed in indoor ID. Moreover, 2nd Embodiment demonstrated dehumidification unit 30D installed in indoor ID.
  • a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
  • FIG. 27 shows a humidity control unit 30F having both a humidifying function and a dehumidifying function.
  • the humidity control unit 30F further includes four dampers 61 to 64 as compared with the configuration of the humidification unit 30E.
  • the dampers 61 and 62 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD.
  • the dampers 63 and 64 are switched so that one of the air after adsorption blown by the suction fan 34 and the air after regeneration blown by the regeneration fan 35 is blown out to the room ID and the other is blown out to the outdoor OD.
  • the dampers 61 and 62 are in the state shown by the solid line in FIG.
  • the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 by the adsorption fan 34 and sent to the adsorption rotor 32.
  • the pre-reproduction air is taken from the room ID by the reproduction fan 35 and sent to the adsorption rotor 32.
  • the dampers 63 and 64 are in the state indicated by the solid line in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 through the exhaust hose 37 to the outdoor OD, and the air after reproduction by the regeneration fan 35. Is blown out to the room ID through the humidity control hose 36A, and the room ID is humidified.
  • the pre-adsorption air is taken in from the room ID by the adsorption fan 34 and sent to the adsorption rotor 32, and the regeneration fan.
  • the pre-regeneration air is taken in from the outdoor OD through the air supply hose 38 and is sent to the adsorption rotor 32 by 35.
  • the dampers 61 to 64 may be constituted by shutters or may be provided outside the casing.
  • This dehumidifying unit 30G is an example of a humidity control unit in the fourth embodiment.
  • the dehumidifying unit 30G of the fourth embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And.
  • the dehumidifying unit 30G according to the fourth embodiment is further adsorbed to the room ID through the through hole 101 (see FIG. 30) and the air supply hose 38 for taking in pre-adsorption air from the room ID and the through hole 101.
  • a humidity control hose 36A for sending rear air is provided. Since the configuration other than the humidity control hose 36A and the air supply hose 38 is the same as the dehumidifying unit 30G of the fourth embodiment and the humidifying unit 30 of the first embodiment, the description thereof is omitted.
  • FIG. 30 shows a state where the casing 50 of the dehumidification unit 30G is attached to the outdoor OD.
  • the dehumidifying unit 30G performs dehumidification
  • the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 and the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32.
  • the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID through the humidity control hose 36A.
  • the pre-regeneration air is taken in from the outdoor OD through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32.
  • the regenerated air given moisture by the adsorption rotor 32 is blown out to the outdoor OD by the regeneration fan 35.
  • FIG. 31 shows a humidity control unit 30H having both a humidifying function and a dehumidifying function.
  • the humidity control unit 30H further includes four dampers 66 to 69 with respect to the configuration of the humidification unit 30.
  • the dampers 66 and 67 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD.
  • the dampers 68 and 69 switch so that one of the post-adsorption air blown by the suction fan 34 and the post-regeneration air blown by the regeneration fan 35 is blown to the room ID and the other is blown to the outdoor OD. .
  • the dampers 66 and 67 are in the state shown by the solid line in FIG. 31, the pre-adsorption air is taken in from the outdoor OD by the adsorption fan 34 and sent to the adsorption rotor 32, and before the reproduction by the reproduction fan 35. Air is taken from the room ID through the air supply hose 38 and sent to the adsorption rotor 32.
  • the dampers 68 and 69 are in the state shown by the solid line in FIG. 31, the air after adsorption is blown out to the outdoor OD by the adsorption fan 34, and the air after regeneration is supplied to the humidity control hose 36A by the regeneration fan 35. The room ID is blown out and the room ID is humidified.
  • the dampers 68 and 69 are in the state shown by the broken line in FIG. 31, the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 by the adsorption fan 34 and the adsorption rotor 32.
  • the air before regeneration is taken in from the outdoor OD by the regeneration fan 35 and is sent to the adsorption rotor 32.
  • the dampers 68 and 69 are in the state shown by the broken line in FIG. 31, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36 ⁇ / b> A and is regenerated by the regeneration fan 35. Air is blown to the outdoor OD, and the room ID is dehumidified.
  • the dampers 66 to 69 may be constituted by shutters or may be provided outside the casing.

Abstract

The present invention achieves a compact form while limiting the thickness of a humidity control unit which is installed with the rear surface thereof facing a wall. A casing (50) is installed with the rear surface (50b) thereof facing a wall surface (WS) along the vertical direction. The casing (50) is provided with a front surface (50a) opposite the rear surface (50b). An adsorption rotor (32) rotates about a first rotational axis (32d) which is inclined with respect to the rear surface (50b). An adsorption fan guides pre-adsorption air to the adsorption rotor (32), and discharges post-adsorption air from which moisture has been removed by the adsorption rotor (32) by passing the air through the adsorption rotor (32) in a direction along the first rotational axis (32d). A regeneration fan (35) guides pre-regeneration air to the adsorption rotor (32), and discharges post-regeneration air to which moisture has been added from the adsorption rotor (32) by passing the air through the adsorption rotor (32) in a direction along the first rotational axis (32d).

Description

調湿ユニットHumidity control unit
 本開示は、調湿ユニット、特に、鉛直方向に沿う壁面にケーシングの背面を対向させて設置される調湿ユニットに関する。 The present disclosure relates to a humidity control unit, and in particular, to a humidity control unit that is installed with a back surface of a casing facing a wall surface along a vertical direction.
 従来より、室内の空気調和を行う空気調和機とは別体に構成され、空気調和機の室内機に加湿用空気を供給する加湿ユニットがある。このような加湿ユニットの中には、例えば特許文献1(特開2014-129950号公報)に記載されているように、室内機が取り付けられている壁に取り付けられるものもある。 Conventionally, there is a humidification unit that is configured separately from an air conditioner that performs indoor air conditioning and supplies humidification air to the indoor unit of the air conditioner. Some of such humidification units are attached to a wall to which an indoor unit is attached, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-129950), for example.
 しかしながら、特許文献1に記載されている加湿ユニットは、壁に取り付けられる場合に壁に開けられた貫通穴に向けて外気吸込口から、ヒータ、吸着ロータ及びファンが配置されると、加湿ユニットが厚くなって加湿ユニットが壁から大きく突出してしまう。このように加湿ユニットが壁から大きく突出する場合には、ユーザがデザイン的に受け入れ難いものとなったり、加湿ユニットの据え付け強度を確保するために加湿ユニットを採用するためのコストが増加したりする。また、加湿ユニットの平面形状も小さい方が好ましく、加湿ユニットの面内方向においてもコンパクト化が図られることが好ましい。 However, when the humidifier unit described in Patent Document 1 is attached to the wall, when the heater, the suction rotor, and the fan are disposed from the outside air inlet toward the through hole opened in the wall, the humidifier unit is It becomes thick and the humidification unit protrudes greatly from the wall. When the humidifying unit protrudes greatly from the wall in this way, it becomes difficult for the user to accept the design, or the cost for employing the humidifying unit to secure the installation strength of the humidifying unit increases. . Moreover, it is preferable that the planar shape of the humidification unit is small, and it is preferable that the humidification unit is compact in the in-plane direction of the humidification unit.
 本開示の課題は、壁に背面を対向させて設置される調湿ユニットの厚みを抑えつつコンパクト化を図ることである。 The problem of the present disclosure is to achieve compactness while suppressing the thickness of the humidity control unit that is installed with the back face facing the wall.
 第1観点に係る調湿ユニットは、鉛直方向に沿う壁面に背面を対向させて設置され、背面に対向する正面を有するケーシングと、ケーシングに収納され、背面に対して傾斜した第1回転軸の周りで回転する吸着ロータと、ケーシングに収納され、吸着前空気を吸着ロータに導き、且つ第1回転軸に沿う方向に吸着ロータを通過することで吸着ロータに水分を奪われた吸着後空気を吹き出す吸着用ファンと、ケーシングに収納され、再生前空気を吸着ロータに導き、且つ第1回転軸に沿う方向に吸着ロータを通過することで吸着ロータから水分を与えられた再生後空気を吹き出す再生用ファンとを備える。 A humidity control unit according to a first aspect is installed with a back surface facing a wall surface along the vertical direction, a casing having a front surface facing the back surface, and a first rotating shaft housed in the casing and inclined with respect to the back surface. The adsorbing rotor that rotates around and the adsorbed air that is housed in the casing, guides the pre-adsorption air to the adsorbing rotor, and passes through the adsorbing rotor in the direction along the first rotation axis so that moisture is deprived by the adsorbing rotor. A suction fan that blows out, and a regeneration that is housed in a casing, guides the pre-regeneration air to the suction rotor, and blows out the post-regeneration air given moisture from the suction rotor by passing through the suction rotor in the direction along the first rotation axis. For fans.
 第1観点に係る調湿ユニットにおいては、吸着ロータの第1主面及び第2主面が背面に対して斜めに配置されることから、ケーシング内の狭い空間において隙間の増加を抑制しながら調湿ユニットを構成する機器を配置しやすくなる。 In the humidity control unit according to the first aspect, since the first main surface and the second main surface of the adsorption rotor are disposed obliquely with respect to the back surface, the adjustment is performed while suppressing an increase in the gap in a narrow space in the casing. It becomes easy to arrange the equipment constituting the wet unit.
 第2観点に係る調湿ユニットは、第1観点の調湿ユニットにおいて、吸着用ファンは、吸着ロータから吸着後空気を吸い込む吸着用ファン吸込口を有し、再生用ファンは、吸着ロータから再生後空気を吸い込む再生用ファン吸込口を有し、吸着用ファン及び再生用ファンは、吸着用ファン吸込口及び再生用ファン吸込口のうちの少なくとも一方が吸着ロータの一部領域と正面視において重なるように、配置されている、ものである。 The humidity control unit according to the second aspect is the humidity control unit according to the first aspect, wherein the suction fan has a suction fan suction port for sucking air after suction from the suction rotor, and the regeneration fan is regenerated from the suction rotor. There is a regeneration fan suction port for sucking rear air, and the suction fan and the regeneration fan have at least one of the suction fan suction port and the regeneration fan suction port overlapped with a partial region of the suction rotor in a front view. As such, it is arranged.
 第2観点に係る調湿ユニットにおいては、吸着用ファン吸込口及び再生用ファン吸込口のうちの少なくとも一方が吸着ロータの一部領域と正面視において重なるので、背面に平行な面内寸法について、吸着用ファン吸込口と吸着ロータの一部領域が重なる場合には吸着用ファンと吸着ロータの占有面積が小さくなり、再生用ファン吸込口と吸着ロータの一部領域が重なる場合には再生用ファンと吸着ロータの占有面積が小さくなる。 In the humidity control unit according to the second aspect, at least one of the suction fan suction port and the regeneration fan suction port overlaps with a partial region of the suction rotor in a front view. If the suction fan suction port overlaps with a part of the suction rotor, the area occupied by the suction fan and the suction rotor decreases. If the regeneration fan suction port overlaps with a part of the suction rotor, the regeneration fan And the area occupied by the suction rotor is reduced.
 第3観点に係る調湿ユニットは、第2観点の調湿ユニットにおいて、吸着ロータは、一部領域が吸着用ファンとケーシングの正面の間に配置されている、ものである。 The humidity control unit according to the third aspect is the humidity control unit according to the second aspect, wherein the adsorption rotor has a partial area disposed between the adsorption fan and the front of the casing.
 第3観点に係る調湿ユニットにおいては、吸着用ファンとケーシングの正面の間に吸着ロータの一部領域が配置されることで、吸着ロータの一部領域を通過して短い距離で吸着用ファンに流れる吸着前空気の気流を形成することができるので、吸着ロータに吸着前空気を導くときの流路抵抗を低く抑えることができる。 In the humidity control unit according to the third aspect, the suction fan and the suction fan are arranged at a short distance by passing through the partial area of the suction rotor by disposing a part of the suction rotor between the suction fan and the front of the casing. Since the air flow of the pre-adsorption air flowing in the air can be formed, the flow path resistance when the pre-adsorption air is guided to the adsorption rotor can be kept low.
 第4観点に係る調湿ユニットは、第3観点の調湿ユニットにおいて、吸着用ファンは、ベルマウスを有する遠心ファンであり、吸着ロータは、ベルマウスの吸込円孔から最も遠い最離反箇所が吸込円孔の半径の10%以上離れるように配置されている、ものである。 The humidity control unit according to the fourth aspect is the humidity control unit according to the third aspect, wherein the suction fan is a centrifugal fan having a bell mouth, and the suction rotor has a farthest separation point farthest from the suction hole of the bell mouth. It is arranged so as to be 10% or more away from the radius of the suction hole.
 第4観点に係る調湿ユニットにおいては、ベルマウスの吸込円孔から最も遠い最離反箇所が吸込円孔の半径の10%以上になるので、吸着用ファンのベルマウスの吸込円孔のうちの吸着ロータと重なっていない領域について吸着用ファンと吸着ロータとの間で空気が流れやすくなる。 In the humidity control unit according to the fourth aspect, the farthest away part from the suction hole of the bell mouth is 10% or more of the radius of the suction hole. Air easily flows between the suction fan and the suction rotor in a region that does not overlap with the suction rotor.
 第5観点に係る調湿ユニットは、第4観点の調湿ユニットにおいて、吸着ロータは、最離反箇所が吸込円孔の半径の40%以上離れ、吸込円孔に最も近い最近接箇所が吸込円孔の半径の40%未満離れている、ものである。 The humidity control unit according to the fifth aspect is the humidity control unit according to the fourth aspect, wherein the adsorption rotor is located at a position where the furthest separation is 40% or more of the radius of the suction hole, and the closest point to the suction hole is the suction circle. Are less than 40% of the radius of the hole.
 第5観点に係る調湿ユニットにおいては、吸着ロータの最近接箇所がベルマウスの吸込円孔の半径の40%未満離れていることから、吸着用ファンと吸着ロータとの間で空気を流れ易くしながら吸着ロータと吸着用ファンとを近接させることができる。 In the humidity control unit according to the fifth aspect, since the closest part of the suction rotor is less than 40% of the radius of the suction mouth of the bell mouth, air can easily flow between the suction fan and the suction rotor. The suction rotor and the suction fan can be brought close to each other.
 第6観点に係る調湿ユニットは、第1観点から第5観点の調湿ユニットにおいて、吸着用ファン及び再生用ファンは、それぞれの重心がケーシングの正面よりも背面に近い点に位置するように配置されている、ものである。 The humidity control unit according to the sixth aspect is the humidity control unit according to the first aspect to the fifth aspect, so that the suction fan and the regeneration fan are positioned at points closer to the back than the front of the casing. It is the one that is arranged.
 第6観点に係る調湿ユニットにおいては、重量物である吸着用ファンと再生用ファンの重心がケーシングの背面に近い点に位置することから、重心が正面に近いところにある場合に比べて調湿ユニットを壁から離す方向に働く力のモーメントが小さくなる。 In the humidity control unit according to the sixth aspect, since the gravity centers of the suction fan and the regeneration fan, which are heavy objects, are located close to the back surface of the casing, the humidity control unit is adjusted as compared with the case where the gravity center is close to the front surface. The moment of force acting in the direction of moving the wet unit away from the wall is reduced.
 第7観点に係る調湿ユニットは、第1観点から第6観点のいずれかの調湿ユニットにおいて、吸着ロータを貫通する再生前空気を加熱する再生用熱交換器をさらに備え、再生用熱交換器は、重心がケーシングの正面よりも背面に近い点に位置するように配置されている、ものである。 A humidity control unit according to a seventh aspect is the humidity control unit according to any one of the first to sixth aspects, further comprising a regeneration heat exchanger for heating the pre-regeneration air that passes through the adsorption rotor, and regeneration heat exchange The vessel is arranged so that the center of gravity is located at a point closer to the back side than the front side of the casing.
 第7観点に係る調湿ユニットにおいては、重量物である再生用熱交換器の重心がケーシングの背面に近い点に位置することから、重心が正面に近いところにある場合に比べて調湿ユニットを壁から離す方向に働く力のモーメントが小さくなるので、壁面に背面を対向させて設置し易くなる。 In the humidity control unit according to the seventh aspect, the center of gravity of the regeneration heat exchanger, which is a heavy object, is located at a point close to the back surface of the casing, so that the humidity control unit is compared with the case where the center of gravity is close to the front surface. Since the moment of the force acting in the direction away from the wall becomes small, it becomes easy to install the wall with the back surface facing the wall surface.
 第8観点に係る調湿ユニットは、第7観点の調湿ユニットにおいて、再生用熱交換器は、吸着ロータに沿うように斜めに配置されている、ものである。 The humidity control unit according to the eighth aspect is the humidity control unit according to the seventh aspect, in which the regeneration heat exchanger is disposed obliquely along the adsorption rotor.
 第8観点に係る調湿ユニットにおいては、再生用熱交換器が、吸着ロータの前記第1主面及び前記第2主面の少なくとも一方に沿うように斜めに配置されていることから、再生用熱交換器を全体的に吸着ロータに近づけることができる。 In the humidity control unit according to the eighth aspect, the regeneration heat exchanger is disposed obliquely along at least one of the first main surface and the second main surface of the adsorption rotor. The heat exchanger can be brought close to the adsorption rotor as a whole.
 第9観点に係る調湿ユニットは、第1観点から第8観点のいずれかの調湿ユニットにおいて、吸着用ファンは、第2回転軸の周りで回転する吸着用ファンロータを有し、再生用ファンは、第3回転軸の周りで回転する再生用ファンロータを有し、吸着用ファン及び再生用ファンは、第2回転軸及び第3回転軸のうちの少なくとも一方が背面に対して斜めになって第1回転軸に沿うように、配置されている、ものである。 The humidity control unit according to the ninth aspect is the humidity control unit according to any one of the first to eighth aspects, wherein the suction fan has a suction fan rotor that rotates about the second rotation axis, and is used for regeneration. The fan has a regeneration fan rotor that rotates around a third rotation axis, and at least one of the second rotation axis and the third rotation axis is inclined with respect to the back surface of the suction fan and the regeneration fan. It is arranged so as to be along the first rotation axis.
 第9観点に係る調湿ユニットにおいては、第2回転軸及び第3回転軸のうちの少なくとも一方が背面に対して斜めになって第1回転軸に沿うように吸着用ファン及び再生用ファンが配置されることから、吸着用ファン及び/または再生用ファンと吸着ロータとをともに斜めに配置して互いに近づけることができる。 In the humidity control unit according to the ninth aspect, the suction fan and the regeneration fan are arranged so that at least one of the second rotating shaft and the third rotating shaft is inclined with respect to the rear surface and along the first rotating shaft. Since they are arranged, the suction fan and / or the regeneration fan and the suction rotor can be arranged obliquely and close to each other.
 第10観点に係る調湿ユニットは、第1観点から第9観点のいずれかの調湿ユニットにおいて、吸着ロータは、再生のために吸着ロータを加熱する加熱装置とともに吸着ロータユニットに収納され、吸着ロータユニットは、ケーシングの正面と背面とに接触するようにまたは近接するように配置され、吸着用ファンは、ケーシングの正面及び/または背面に接触するようにまたは近接するように配置され、再生用ファンは、ケーシングの正面及び/または背面に接触するようにまたは近接するように配置されている、ものである。 A humidity control unit according to a tenth aspect is the humidity control unit according to any one of the first to ninth aspects, wherein the adsorption rotor is housed in the adsorption rotor unit together with a heating device that heats the adsorption rotor for regeneration, and is adsorbed The rotor unit is arranged so as to be in contact with or close to the front and back of the casing, and the suction fan is arranged so as to be in contact with or close to the front and / or back of the casing and used for regeneration. The fan is arranged so as to come into contact with or close to the front and / or back of the casing.
 第10観点に係る調湿ユニットにおいては、吸着ロータユニットがケーシングの正面と背面とに接触するようにまたは近接するように配置されることから、ケーシングの厚みが吸着ロータユニットの背面に対する垂直方向の大きさと同程度になる。 In the humidity control unit according to the tenth aspect, since the adsorption rotor unit is disposed so as to be in contact with or close to the front surface and the back surface of the casing, the thickness of the casing is perpendicular to the back surface of the adsorption rotor unit. It will be the same size.
 第1観点または第9観点に係る調湿ユニットでは、調湿ユニットの厚みを抑えつつコンパクト化を図ることができる。 The humidity control unit according to the first aspect or the ninth aspect can be made compact while suppressing the thickness of the humidity control unit.
 第2観点に係る調湿ユニットでは、調湿ユニットの面内寸法についてコンパクト化を図ることができる。 In the humidity control unit according to the second aspect, the in-plane dimensions of the humidity control unit can be made compact.
 第3観点に係る調湿ユニットでは、吸着用ファンの小型化が容易になり、調湿ユニットのコンパクト化を図り易くなる。 In the humidity control unit according to the third aspect, the suction fan can be easily downsized, and the humidity control unit can be easily downsized.
 第4観点に係る調湿ユニットでは、コンパクト化しても調湿性能を確保し易くなる。 In the humidity control unit according to the fourth aspect, it is easy to ensure humidity control performance even if it is made compact.
 第5観点に係る調湿ユニットでは、調湿性能を確保しつつ調湿ユニットのコンパクト化を向上させることができる。 The humidity control unit according to the fifth aspect can improve the compactness of the humidity control unit while ensuring humidity control performance.
 第6観点または第7観点に係る調湿ユニットでは、調湿ユニットを壁から離す方向に働く力が小さくなって壁面に背面を対向させて設置し易くなる。 In the humidity control unit according to the sixth aspect or the seventh aspect, the force acting in the direction of separating the humidity control unit from the wall becomes small, and it becomes easy to install the humidity control unit with the back surface facing the wall surface.
 第8観点に係る調湿ユニットでは、再生用熱交換器から再生前空気に与えられる熱エネルギーのロスを小さくしながらコンパクト化を図ることができる。 The humidity control unit according to the eighth aspect can be made compact while reducing the loss of heat energy given to the pre-regeneration air from the regeneration heat exchanger.
 第10観点に係る調湿ユニットでは、薄型化を図ることができる。 In the humidity control unit according to the tenth aspect, the thickness can be reduced.
第1実施形態に係る加湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air harmony device containing the humidification unit concerning a 1st embodiment. 図1に記載の加湿ユニットの概念図。The conceptual diagram of the humidification unit of FIG. 壁に取り付けられている図1に記載の加湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 1 attached to the wall. 第1実施形態に係る加湿ユニットの正面図。The front view of the humidification unit which concerns on 1st Embodiment. 図4の加湿ユニットの右側面図。The right view of the humidification unit of FIG. 図4の加湿ユニットの左側面図。The left view of the humidification unit of FIG. 図4の加湿ユニットの下側面図。The lower side view of the humidification unit of FIG. 図4のI-I線に沿って切断して右から見た加湿ユニットの断面図。Sectional drawing of the humidification unit cut | disconnected along the II line | wire of FIG. 図4のI-I線に沿って切断して左から見た加湿ユニットの断面図。Sectional drawing of the humidification unit cut | disconnected along the II line | wire of FIG. 第1実施形態に係る加湿ユニットの斜視図。The perspective view of the humidification unit which concerns on 1st Embodiment. 図10の加湿ユニットの部分拡大斜視図。The partial expansion perspective view of the humidification unit of FIG. 位置関係を説明するための吸着ロータと吸着用ファンロータと再生用ファンロータの概念図。The conceptual diagram of the adsorption | suction rotor, the adsorption | suction fan rotor, and the reproduction | regeneration fan rotor for demonstrating positional relationship. 変形例1Aに係る加湿ユニットの断面図。Sectional drawing of the humidification unit which concerns on the modification 1A. 変形例1Bに係る加湿ユニットの右側面。The right side of the humidification unit concerning modification 1B. 変形例1Bに係る加湿ユニットの左側面。The left side of the humidification unit concerning modification 1B. 変形例1Cに係る加湿ユニットを右正面から見た斜視図。The perspective view which looked at the humidification unit which concerns on modification 1C from the right front. 変形例1Cに係る加湿ユニットを左背面から見た斜視図。The perspective view which looked at the humidification unit which concerns on modification 1C from the left back surface. 変形例1Dに係る加湿ユニットの一例を示す断面図。Sectional drawing which shows an example of the humidification unit which concerns on modification 1D. 変形例1Dに係る加湿ユニットの他の例を示す断面図。Sectional drawing which shows the other example of the humidification unit which concerns on modification 1D. 第2実施形態に係る除湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 2nd Embodiment. 図20に記載の除湿ユニットの概念図。The conceptual diagram of the dehumidification unit of FIG. 壁に取り付けられている図20に記載の除湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the dehumidification unit of FIG. 20 attached to the wall. 変形例2Aに係る除湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on modification 2A. 第3実施形態に係る加湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the humidification unit which concerns on 3rd Embodiment. 図24に記載の加湿ユニットの概念図。The conceptual diagram of the humidification unit of FIG. 壁に取り付けられている図24に記載の加湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 24 attached to the wall. 変形例3Aに係る調湿ユニットの構成を説明するための図。The figure for demonstrating the structure of the humidity control unit which concerns on the modification 3A. 第4実施形態に係る除湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 4th Embodiment. 図28に記載の除湿ユニットの概念図。The conceptual diagram of the dehumidification unit of FIG. 壁に取り付けられている図28に記載の除湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the dehumidification unit of FIG. 28 attached to the wall. 変形例4Aに係る調湿ユニットの構成を説明するための図。The figure for demonstrating the structure of the humidity control unit which concerns on the modification 4A.
 <第1実施形態>
 以下、本開示の第1実施形態に係る調湿ユニットについて図に基づいて説明する。第1実施形態では、空気調和装置に組み込まれた加湿ユニットを調湿ユニットの例に挙げて説明している。
<First Embodiment>
Hereinafter, the humidity control unit according to the first embodiment of the present disclosure will be described with reference to the drawings. In the first embodiment, the humidification unit incorporated in the air conditioner is described as an example of the humidity control unit.
 (1)全体構成
 図1には、実施形態に係る空気調和装置の全体構成が示されている。また、図2には、図1に示されている加湿ユニット30の構成の概念が示されている。図1に示されている空気調和装置1は、室外機2と室内機4と冷媒連絡管5,6とを備え、空気調和装置1には加湿ユニット30が取り付けられている。図3に示されているように、第1実施形態に係る空気調和装置1では、室外機2が室外ODに設置され、室内機4が室内IDに取り付けられ、室外機2と室内機4が冷媒連絡管5,6などで連絡されている。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、電動弁24と、閉鎖弁25と、閉鎖弁26と室外ファン27と、アキュムレータ28とを備えている。また、室内機4は、室内熱交換器42と室内ファン41とを備えている。
(1) Whole structure The whole structure of the air conditioning apparatus which concerns on embodiment is shown by FIG. FIG. 2 shows the concept of the configuration of the humidifying unit 30 shown in FIG. An air conditioner 1 shown in FIG. 1 includes an outdoor unit 2, an indoor unit 4, and refrigerant communication pipes 5 and 6, and a humidifying unit 30 is attached to the air conditioner 1. As shown in FIG. 3, in the air conditioner 1 according to the first embodiment, the outdoor unit 2 is installed in the outdoor OD, the indoor unit 4 is attached to the indoor ID, and the outdoor unit 2 and the indoor unit 4 are The refrigerant communication pipes 5 and 6 are used for communication. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an electric valve 24, a closing valve 25, a closing valve 26, an outdoor fan 27, and an accumulator 28. The indoor unit 4 includes an indoor heat exchanger 42 and an indoor fan 41.
 室外機2と室内機4が冷媒連絡管5,6で接続されることにより、空気調和装置1の中には、蒸気圧縮式冷凍サイクルを行う冷媒回路10が形成されている。冷媒回路10には、圧縮機21が組み込まれている。圧縮機21は、低圧のガス冷媒を吸入し、吸入したガス冷媒を圧縮して、高温高圧のガス冷媒を吐出する。圧縮機21は、例えば、インバータによる回転数制御を行うことのできる容量可変のインバータ圧縮機である。圧縮機21の運転周波数が高くなるほど冷媒回路10の冷媒循環量が多くなり、逆に運転周波数が低くなると冷媒回路10の冷媒循環量が減少する。 By connecting the outdoor unit 2 and the indoor unit 4 with the refrigerant communication pipes 5 and 6, a refrigerant circuit 10 for performing a vapor compression refrigeration cycle is formed in the air conditioner 1. A compressor 21 is incorporated in the refrigerant circuit 10. The compressor 21 sucks in the low-pressure gas refrigerant, compresses the sucked-in gas refrigerant, and discharges the high-temperature and high-pressure gas refrigerant. The compressor 21 is, for example, a variable capacity inverter compressor that can perform rotation speed control by an inverter. As the operating frequency of the compressor 21 increases, the amount of refrigerant circulating in the refrigerant circuit 10 increases. Conversely, when the operating frequency decreases, the amount of refrigerant circulating in the refrigerant circuit 10 decreases.
 四方弁22は、冷房運転と暖房運転の切換時に、冷媒の流れの方向を切り換えるための弁である。四方弁22は、第1ポートに圧縮機21の吐出側(吐出管21a)が接続され、第2ポートに室外熱交換器23が接続され、第3ポートにアキュムレータ28が接続され、第4ポートに閉鎖弁26を介して冷媒連絡管6が接続されている。この四方弁22は、第1ポートと第2ポートの間を冷媒が流れるとともに第3ポートと第4ポートの間を冷媒が流れる破線で示された状態と、第1ポートと第4ポートの間を冷媒が流れるとともに第2ポートと第3ポートの間を冷媒が流れる実線で示された状態とを切り換えることができる。 The four-way valve 22 is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation. The four-way valve 22 has a discharge port (discharge pipe 21a) of the compressor 21 connected to a first port, an outdoor heat exchanger 23 connected to a second port, an accumulator 28 connected to a third port, and a fourth port. The refrigerant communication pipe 6 is connected to the valve via a closing valve 26. This four-way valve 22 is in a state indicated by a broken line in which the refrigerant flows between the first port and the second port and the refrigerant flows between the third port and the fourth port, and between the first port and the fourth port. And the state indicated by the solid line through which the refrigerant flows between the second port and the third port.
 加湿ユニット30の詳細な構成については後述するが、加湿ユニット30は、再生用熱交換器31を備えており、この再生用熱交換器31が冷媒連絡管6に挿入されている。従って、暖房運転状態のときには、圧縮機21から吐出される高温高圧のガス冷媒は、高温高圧のまま再生用熱交換器31に送られる。この加湿ユニット30は、再生用熱交換器31により吸着ロータ32に送り込む再生前空気を加熱することによって湿度の高い再生後空気を生成することができるので、主に、暖房運転状態のときに室内IDを加湿することになる。 Although the detailed configuration of the humidification unit 30 will be described later, the humidification unit 30 includes a regeneration heat exchanger 31, and the regeneration heat exchanger 31 is inserted into the refrigerant communication tube 6. Therefore, in the heating operation state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 while maintaining the high temperature and pressure. This humidifying unit 30 can generate post-regeneration air with high humidity by heating the pre-regeneration air that is sent to the adsorption rotor 32 by the regeneration heat exchanger 31. The ID will be humidified.
 四方弁22の第2ポートと電動弁24との間に配置されている室外熱交換器23では、伝熱管(図示せず)を流れる冷媒と室外空気との間で熱交換が行われる。室外熱交換器23は、冷房運転時には冷媒から熱を放出させる放熱器として機能し、暖房運転時には冷媒に熱を与える蒸発器として機能する。 In the outdoor heat exchanger 23 disposed between the second port of the four-way valve 22 and the motor-operated valve 24, heat is exchanged between the refrigerant flowing through the heat transfer pipe (not shown) and the outdoor air. The outdoor heat exchanger 23 functions as a radiator that releases heat from the refrigerant during the cooling operation, and functions as an evaporator that applies heat to the refrigerant during the heating operation.
 電動弁24は、室外熱交換器23と室内熱交換器42との間に配置されている。電動弁24は、室外熱交換器23と室内熱交換器42の間を流れる冷媒を膨張させて減圧する機能を有している膨張弁である。電動弁24は、膨張弁開度を変更することができるように構成されており、膨張弁開度を小さくすることにより電動弁24を通過する冷媒の流路抵抗を増加させることができ、膨張弁開度を大きくすることにより電動弁24を通過する冷媒の流路抵抗を減少させることができる。このような電動弁24は、暖房運転では、室内熱交換器42から室外熱交換器23に向かって流れる冷媒を膨張させて減圧し、冷房運転では、室外熱交換器23から室内熱交換器42に向かって流れる冷媒を膨張させて減圧する。 The electric valve 24 is disposed between the outdoor heat exchanger 23 and the indoor heat exchanger 42. The motor-operated valve 24 is an expansion valve having a function of expanding and depressurizing the refrigerant flowing between the outdoor heat exchanger 23 and the indoor heat exchanger 42. The motor-operated valve 24 is configured so that the opening degree of the expansion valve can be changed, and the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be increased by reducing the opening degree of the expansion valve. By increasing the valve opening, the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be reduced. Such an electric valve 24 expands and depressurizes the refrigerant flowing from the indoor heat exchanger 42 toward the outdoor heat exchanger 23 in the heating operation, and reduces the pressure in the cooling operation from the outdoor heat exchanger 23 to the indoor heat exchanger 42. The refrigerant flowing toward is expanded and decompressed.
 また、室外機2には、室外ファン27が設けられており、室外ファン27は、室外機2の内部に室外空気を吸入して、室外熱交換器23に室外空気を供給した後に、室外機2の外部に熱交換後の空気を排出する。この室外ファン27により、室外空気を冷却源または加熱源として冷媒を冷却したり蒸発させたりする室外熱交換器23の機能が促進される。室外ファン27は、回転数を変更できる室外ファンモータ27aによって駆動される。この室外ファン27の回転数が変更されることにより、室外熱交換器23を通過する室外空気の風量が変更される。 The outdoor unit 2 is provided with an outdoor fan 27. The outdoor fan 27 sucks outdoor air into the outdoor unit 2 and supplies the outdoor air to the outdoor heat exchanger 23. The air after heat exchange is discharged to the outside of 2. The outdoor fan 27 promotes the function of the outdoor heat exchanger 23 that cools or evaporates the refrigerant using outdoor air as a cooling source or a heating source. The outdoor fan 27 is driven by an outdoor fan motor 27a that can change the rotation speed. By changing the rotational speed of the outdoor fan 27, the air volume of the outdoor air passing through the outdoor heat exchanger 23 is changed.
 また、室内機4には、室内ファン41が設けられており、室内ファン41は、室内機4の内部に室内空気を吸入して、室内熱交換器42に室内空気を供給した後に、室内機4の外部に熱交換後の空気を排出する。この室内ファン41により、室内空気を冷却源または加熱源として冷媒を冷却したり蒸発させたりする室内熱交換器42の機能が促進される。室内ファン41は、回転数を変更できる室内ファンモータ41aによって駆動される。この室内ファン41の回転数が変更されることにより、室内熱交換器42を通過する室内空気の風量が変更される。 The indoor unit 4 is provided with an indoor fan 41. The indoor fan 41 sucks indoor air into the indoor unit 4 and supplies the indoor air to the indoor heat exchanger 42. The air after heat exchange is discharged to the outside of 4. The indoor fan 41 promotes the function of the indoor heat exchanger 42 that cools or evaporates the refrigerant using indoor air as a cooling source or a heating source. The indoor fan 41 is driven by an indoor fan motor 41a whose rotation speed can be changed. By changing the rotation speed of the indoor fan 41, the air volume of the indoor air passing through the indoor heat exchanger 42 is changed.
 なお、加湿ユニット30の設置時には、閉鎖弁25,26が閉じられた状態で行われる。そして、加湿ユニット30の設置が終わったときに、閉鎖弁25,26が開状態にされる。 In addition, when installing the humidification unit 30, it is performed in the state in which the closing valves 25 and 26 are closed. Then, when the installation of the humidifying unit 30 is finished, the closing valves 25 and 26 are opened.
 (2)基本動作
 加湿ユニット30により室内IDが加湿されるのは、主に、室内IDが乾燥するときであり、加湿ユニット30により室内IDが加湿される時期に特に制限はない。例えば、日本では、冬場に室内が乾燥することが多いので、暖房運転時に加湿ユニット30により加湿されることが多い。
(2) Basic operation The indoor ID is humidified by the humidifying unit 30 mainly when the indoor ID is dried, and there is no particular limitation on the timing when the indoor ID is humidified by the humidifying unit 30. For example, in Japan, the room is often dried in winter, and is often humidified by the humidifying unit 30 during heating operation.
 (2-1)暖房運転
 暖房運転時においては、冷媒回路10は、四方弁22が図1の実線で示される状態となっている。また、閉鎖弁25,26は開状態にされ、電動弁24は冷媒を減圧するように開度調節される。
(2-1) Heating Operation During the heating operation, the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the solid line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
 このような暖房運転時の冷媒回路10において圧縮機21が駆動されると、低圧のガス冷媒は、吸入管21bを通って圧縮機21に吸入され、圧縮機21において圧縮されて圧縮機21の吐出側(吐出管21a)から吐出される。圧縮機21から吐出された高温高圧のガス冷媒は、四方弁22の第1ポートと第4ポートと閉鎖弁26と冷媒連絡管6を通って再生用熱交換器31に送られる。再生用熱交換器31で熱交換された冷媒は、冷媒連絡管6及び接続管71を通って室内熱交換器42に入る。高温高圧のガス冷媒は、室内熱交換器42において室内ファン41から吹き出される室内空気との熱交換により放熱する。放熱後の高圧の冷媒は、接続管72、冷媒連絡管5及び閉鎖弁25を通って電動弁24に送られる。電動弁24を通過した冷媒は、電動弁24において減圧されて低圧の気液二相状態の冷媒となる。電動弁24を出た低圧の気液二相状態の冷媒は室外熱交換器23に入る。室外熱交換器23において、低圧の気液二相状態の冷媒は、室外空気との熱交換により蒸発する。室外熱交換器23から出た低圧のガス冷媒は、四方弁22の第2ポートと第3ポートとアキュムレータ28を通って圧縮機21の吸入側(吸入管21b)に再び送られる。 When the compressor 21 is driven in the refrigerant circuit 10 during such heating operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a). The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 through the first port, the fourth port, the closing valve 26 and the refrigerant communication pipe 6 of the four-way valve 22. The refrigerant heat-exchanged in the regeneration heat exchanger 31 enters the indoor heat exchanger 42 through the refrigerant communication pipe 6 and the connection pipe 71. The high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with indoor air blown out from the indoor fan 41 in the indoor heat exchanger 42. The high-pressure refrigerant after heat radiation is sent to the motor-operated valve 24 through the connection pipe 72, the refrigerant communication pipe 5, and the closing valve 25. The refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant exiting the motor-operated valve 24 enters the outdoor heat exchanger 23. In the outdoor heat exchanger 23, the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with outdoor air. The low-pressure gas refrigerant discharged from the outdoor heat exchanger 23 passes through the second port and third port of the four-way valve 22 and the accumulator 28 and is sent again to the suction side (suction pipe 21b) of the compressor 21.
 (2-2)冷房運転
 冷房運転時においては、冷媒回路10は、四方弁22が図1の破線で示される状態となっている。また、閉鎖弁25,26は開状態にされ、電動弁24は冷媒を減圧するように開度調節される。
(2-2) Cooling Operation During the cooling operation, the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the broken line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
 このような冷房運転時の冷媒回路10において圧縮機21が駆動されると、低圧のガス冷媒は、吸入管21bを通って圧縮機21に吸入され、圧縮機21において圧縮されて圧縮機21の吐出側(吐出管21a)から吐出される。圧縮機21から吐出された高温高圧のガス冷媒は、四方弁22の第1ポートと第2ポートを通って室外熱交換器23に送られる。高温高圧のガス冷媒は、室外熱交換器23において室外空気との熱交換により放熱する。放熱後の高圧の冷媒は、電動弁24に送られる。電動弁24を通過した冷媒は、電動弁24において減圧されて低圧の気液二相状態の冷媒となる。この低圧の気液二相状態の冷媒は、閉鎖弁25、冷媒連絡管5及び接続管72を通って室内熱交換器42に送られる。室内熱交換器42において、低圧の気液二相状態の冷媒は、室内ファン41から吹き出される室内空気との熱交換により蒸発して低圧のガス冷媒となる。室内熱交換器42から出た低圧のガス冷媒は、接続管71、再生用熱交換器31が挿入された冷媒連絡管6、閉鎖弁26、四方弁22(第4ポートから第3ポート)、及びアキュムレータ28を通って圧縮機21の吸入側(吸入管21b)に再び送られる。 When the compressor 21 is driven in the refrigerant circuit 10 during such cooling operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a). The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the first port and the second port of the four-way valve 22. The high-temperature and high-pressure gas refrigerant radiates heat in the outdoor heat exchanger 23 by heat exchange with outdoor air. The high-pressure refrigerant after heat radiation is sent to the motor operated valve 24. The refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 42 through the closing valve 25, the refrigerant communication pipe 5 and the connection pipe 72. In the indoor heat exchanger 42, the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air blown out from the indoor fan 41 to become a low-pressure gas refrigerant. The low-pressure gas refrigerant discharged from the indoor heat exchanger 42 includes a connection pipe 71, a refrigerant communication pipe 6 into which the regeneration heat exchanger 31 is inserted, a closing valve 26, a four-way valve 22 (from the fourth port to the third port), And is again sent to the suction side (suction pipe 21b) of the compressor 21 through the accumulator 28.
 (3)詳細構成
 (3-1)加湿ユニット30
 図4には、加湿ユニット30の正面から見た外観が示されている。図4に示されているZ軸方向が鉛直方向であり、X軸方向が左右方向である。図4に示されている加湿ユニット30は、壁面WSに取り付けられている。壁面WSは、XZ平面に対して平行に広がっている。また、図5には加湿ユニット30の右側面50eが示され、図6には加湿ユニット30の左側面50fが示され、図7には加湿ユニット30の下側面50dが示されている。また、図8には、図4のI-I線に沿って加湿ユニット30を切断して右側から見た状態が示され、図9には、図4のI-I線に沿って加湿ユニット30を切断して左側から見た状態が示されている。図8及び図9において、Y軸方向が前後方向である。なお、図8及び図9などの断面図において、図を見やすくするために一部斜線などのハッチングを省略している。
(3) Detailed configuration (3-1) Humidification unit 30
FIG. 4 shows the external appearance of the humidifying unit 30 as viewed from the front. The Z-axis direction shown in FIG. 4 is the vertical direction, and the X-axis direction is the left-right direction. The humidification unit 30 shown in FIG. 4 is attached to the wall surface WS. The wall surface WS extends parallel to the XZ plane. 5 shows a right side surface 50e of the humidifying unit 30, FIG. 6 shows a left side surface 50f of the humidifying unit 30, and FIG. 7 shows a lower side surface 50d of the humidifying unit 30. 8 shows a state in which the humidification unit 30 is cut along the line II in FIG. 4 and viewed from the right side, and FIG. 9 shows the humidification unit along the line II in FIG. The state which cut | disconnected 30 and was seen from the left side is shown. 8 and 9, the Y-axis direction is the front-rear direction. In the cross-sectional views of FIGS. 8 and 9 and the like, hatching such as oblique lines is partially omitted in order to make the drawings easy to see.
 図1に示されているように、加湿ユニット30は、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35と加湿ホース36とを備えている。再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35は、図4乃至図9に示されているケーシング50の内部に収納されている。 As shown in FIG. 1, the humidification unit 30 includes a regeneration heat exchanger 31, an adsorption rotor 32, a rotor motor 33, an adsorption fan 34, a regeneration fan 35, and a humidification hose 36. The regeneration heat exchanger 31, the suction rotor 32, the rotor motor 33, the suction fan 34, and the regeneration fan 35 are accommodated in the casing 50 shown in FIGS.
 加湿ユニット30においては、図2に示されているように、吸着前空気が吸着前空気取入口52から取り入れられて吸着ロータ32のうちの吸着領域に送られる。吸着ロータ32の吸着領域で水分を奪われた吸着後空気は、吸着用ファン吹出口56から吹出される。これら吸着前空気及び吸着後空気の気流は吸着用ファン34により発生される。また、再生前空気は、再生前空気取入口54から取り入れられ、再生用熱交換器31を通過するときに加熱されて吸着ロータ32のうちの再生領域に送られる。吸着ロータ32の再生領域で水分を与えられた再生後空気は、再生後空気用ダクト35e及び加湿ホース36を通って室内機4の内部に吹出される。これら再生前空気及び再生後空気の気流は再生用ファン35により発生される。 In the humidification unit 30, as shown in FIG. 2, pre-adsorption air is taken in from the pre-adsorption air intake 52 and sent to the adsorption region of the adsorption rotor 32. The post-adsorption air deprived of moisture in the adsorption region of the adsorption rotor 32 is blown out from the adsorption fan outlet 56. The pre-adsorption air and post-adsorption air streams are generated by the adsorption fan 34. The pre-regeneration air is taken in from the pre-regeneration air intake 54, heated when passing through the regeneration heat exchanger 31, and sent to the regeneration region of the adsorption rotor 32. The regenerated air given moisture in the regeneration region of the adsorption rotor 32 is blown out into the indoor unit 4 through the regenerated air duct 35e and the humidifying hose 36. The airflow of the air before regeneration and the air after regeneration is generated by the regeneration fan 35.
 (3-1-1)ケーシング50
 図4乃至図9に示されているように、加湿ユニット30のケーシング50の形状は、直方体を基礎として設計されている。そのため、ケーシング50においては、正面50a、背面50b、上側面50c、下側面50d、右側面50e、左側面50fが外観の大部分を占める。正面50aは背面50bに対向する面である。上側面50c、下側面50d、右側面50e及び左側面50fは、正面50aと背面50bとの間にある側面である。なお、右側面50eと背面50bの間には、斜めに傾斜した右傾斜面50gがあり、左側面50fと背面50bの間には、斜めに傾斜した左傾斜面50hがある(図7参照)。
(3-1-1) Casing 50
As shown in FIGS. 4 to 9, the shape of the casing 50 of the humidifying unit 30 is designed based on a rectangular parallelepiped. Therefore, in the casing 50, the front 50a, the back 50b, the upper side 50c, the lower side 50d, the right side 50e, and the left side 50f occupy most of the appearance. The front surface 50a is a surface facing the back surface 50b. The upper side surface 50c, the lower side surface 50d, the right side surface 50e, and the left side surface 50f are side surfaces located between the front surface 50a and the back surface 50b. Note that there is a right inclined surface 50g that is inclined obliquely between the right side surface 50e and the back surface 50b, and there is a left inclined surface 50h that is inclined obliquely between the left side surface 50f and the back surface 50b (see FIG. 7).
 図3に示されている加湿ユニット30は、鉛直方向に沿う壁面WSに背面50bが接触するように取り付けられている。しかし、ケーシング50は、壁面WSに接触するように取り付けられなくてもよく、ケーシング50の背面50bが壁面WSに対向するように取り付けられていればよい。例えば、壁面WSに平行に配置された枠体にケーシング50が取り付けられてもよい。図3に示されている壁100には、貫通孔101が形成されている。この貫通孔101の中を、冷媒連絡管5,6及び加湿ホース36が通っている。 The humidification unit 30 shown in FIG. 3 is attached so that the back surface 50b contacts the wall surface WS along the vertical direction. However, the casing 50 may not be attached so as to be in contact with the wall surface WS, and may be attached so that the back surface 50b of the casing 50 faces the wall surface WS. For example, the casing 50 may be attached to a frame disposed in parallel with the wall surface WS. A through hole 101 is formed in the wall 100 shown in FIG. The refrigerant communication pipes 5 and 6 and the humidifying hose 36 pass through the through hole 101.
 ケーシング50は、図5に示されている、背面50bに対する垂直方向(Y軸方向)の寸法M1(正面50aと背面50bの間の距離)が、背面50bに平行な方向(XZ平面に平行な方向)の寸法よりも小さい。背面50bに平行な方向で正面50aの寸法が最も小さいのは、右側面50eと左側面50fの間の距離(X軸方向の寸法M2(図7参照))である。図7において寸法M1,M2を比較して分かるように、正面50aと背面50bの間の距離(寸法M1)は、右側面50eと左側面50fの間の距離(寸法M2)より小さい。つまり、ケーシング50は、薄型化されている。また、後述するように、吸着ロータ32を背面50bに対して傾斜させることで、吸着ロータ32の第1回転軸32dを背面50bに垂直にする場合(吸着ロータ32の表面32aを背面50bと平行にする場合)に比べてZ軸方向の寸法M3(図4参照)を小さくすることができる。 In the casing 50, a dimension M1 (distance between the front surface 50a and the back surface 50b) perpendicular to the back surface 50b (a distance between the front surface 50a and the back surface 50b) shown in FIG. 5 is parallel to the back surface 50b (parallel to the XZ plane). Direction) dimension. The smallest dimension of the front surface 50a in the direction parallel to the back surface 50b is the distance between the right side surface 50e and the left side surface 50f (dimension M2 in the X-axis direction (see FIG. 7)). As can be seen by comparing the dimensions M1 and M2 in FIG. 7, the distance (dimension M1) between the front surface 50a and the back surface 50b is smaller than the distance (dimension M2) between the right side surface 50e and the left side surface 50f. That is, the casing 50 is thinned. As will be described later, when the suction rotor 32 is inclined with respect to the back surface 50b, the first rotating shaft 32d of the suction rotor 32 is perpendicular to the back surface 50b (the surface 32a of the suction rotor 32 is parallel to the back surface 50b). ), The dimension M3 in the Z-axis direction (see FIG. 4) can be reduced.
 図3及び図4に示されているケーシング50では、ケーシング50の最も長い辺がZ軸方向に沿うように配置されて、上から順に(上側面50cに近い方から順に)、再生用ファン35、吸着ロータ32、吸着用ファン34が並んでいる。 In the casing 50 shown in FIGS. 3 and 4, the longest side of the casing 50 is arranged along the Z-axis direction, and in order from the top (from the side closer to the upper side surface 50 c), the regeneration fan 35. The suction rotor 32 and the suction fan 34 are arranged side by side.
 ケーシング50の正面50aには、図4に示されているように、グリッド51が取り付けられている。図10には、加湿ユニット30の正面50aからグリッド51が取り外された外観が示されている。図10に示されているケーシング50は、左斜め下方から見たものである。ケーシング50の正面50aには、正面50aの中央部より少し下の箇所に半円形状の吸着前空気取入口52が形成されている。吸着前空気取入口52の長手方向は、X軸方向に平行である。吸着前空気取入口52からは、露出した吸着ロータ32が見えている。 As shown in FIG. 4, a grid 51 is attached to the front surface 50 a of the casing 50. FIG. 10 shows an appearance in which the grid 51 is removed from the front surface 50 a of the humidifying unit 30. The casing 50 shown in FIG. 10 is viewed from the diagonally lower left. A semicircular pre-adsorption air intake 52 is formed on the front surface 50a of the casing 50 at a position slightly below the central portion of the front surface 50a. The longitudinal direction of the pre-adsorption air intake 52 is parallel to the X-axis direction. The exposed adsorption rotor 32 is visible from the pre-adsorption air intake 52.
 ケーシング50の左側面50fには、配管接続部カバー53が取り付けられている。図11には、配管接続部カバー53が取り外された状態の加湿ユニット30の外観の一部が拡大されて示されている。配管接続部カバー53は、配管接続部31a,31bを覆っている。配管接続部31aは、閉鎖弁26に繋がっている冷媒連絡管6に接続される。配管接続部31bは、室内機4の室内熱交換器42に繋がっている冷媒連絡管6に接続される。ケーシング50の左側面50fには、再生前空気取入口54が形成されており、また加湿ホース36をケーシング50の内部から外部に取り出すための開口部55が形成されている(図6参照)。再生前空気取入口54は、図5に示されているように、右側面50eにも形成されている。ケーシング50の下側面50dには、吸着用ファン吹出口56が形成されている(図7参照)。 A pipe connection portion cover 53 is attached to the left side surface 50 f of the casing 50. FIG. 11 shows an enlarged view of a portion of the external appearance of the humidifying unit 30 with the pipe connection portion cover 53 removed. The pipe connection part cover 53 covers the pipe connection parts 31a and 31b. The pipe connection part 31 a is connected to the refrigerant communication pipe 6 connected to the closing valve 26. The pipe connection part 31 b is connected to the refrigerant communication pipe 6 connected to the indoor heat exchanger 42 of the indoor unit 4. A pre-regeneration air intake 54 is formed on the left side surface 50f of the casing 50, and an opening 55 for taking out the humidification hose 36 from the inside of the casing 50 to the outside is formed (see FIG. 6). As shown in FIG. 5, the pre-regeneration air intake 54 is also formed on the right side surface 50e. The lower surface 50d of the casing 50 is formed with a suction fan outlet 56 (see FIG. 7).
 (3-1-2)吸着ロータユニット39
 吸着ロータユニット39は、再生用熱交換器31と吸着ロータ32とロータ用モータ33とを含んで構成されている。吸着ロータ32は、円盤状の部材である。吸着ロータ32の円形の表面32aから円形の裏面32bまでのロータ本体32cには貫通した穴(図示せず)が多数形成さており、表面32aから裏面32bまで吸着ロータ32の中を空気が通り抜けるように構成されている。この吸着ロータ32には、高分子の吸着材が含まれている。吸着材は、吸着ロータ32を通り抜ける空気から水分を吸着する機能を有しており、常温よりも高い温度に加熱された空気が吸着ロータ32の中を通過すると水分をその加熱された空気中に脱離する機能を有している。吸着ロータ32が配置されている円盤状の領域において、吸着前空気取入口52から取り入れられた空気が吸着用ファン吹出口56から吹出されるまでに通過するのが吸着領域であり、再生前空気取入口54から取り入れられた空気が加湿ホース36を通って室内機4に送られるまでに通過するのが再生領域である。これら吸着領域と再生領域は重ならないように配置されている。第1実施形態の加湿ユニット30では、吸着領域は概ね円盤状の領域の下半分を占め、再生領域は概ね円盤状の領域の上半分を占める。なお、吸着領域と再生領域の占有割合は適宜設計することができ、例えば、再生領域を扇形にして残りを吸着領域とするように構成してもよい。
(3-1-2) Adsorption rotor unit 39
The adsorption rotor unit 39 includes a regeneration heat exchanger 31, an adsorption rotor 32, and a rotor motor 33. The suction rotor 32 is a disk-shaped member. A large number of through holes (not shown) are formed in the rotor body 32c from the circular surface 32a to the circular back surface 32b of the adsorption rotor 32 so that air can pass through the adsorption rotor 32 from the surface 32a to the back surface 32b. It is configured. The adsorption rotor 32 contains a polymeric adsorbent. The adsorbent has a function of adsorbing moisture from the air passing through the adsorption rotor 32, and when air heated to a temperature higher than normal temperature passes through the adsorption rotor 32, moisture is absorbed into the heated air. It has a function to detach. In the disk-shaped region where the adsorption rotor 32 is arranged, the adsorption region passes through the air taken in from the pre-adsorption air intake 52 until it is blown out from the adsorption fan blow-out port 56, and the air before regeneration. In the regeneration region, the air taken in from the intake port 54 passes through the humidifying hose 36 before being sent to the indoor unit 4. These adsorption area and regeneration area are arranged so as not to overlap. In the humidifying unit 30 of the first embodiment, the adsorption area occupies the lower half of the generally disk-shaped area, and the regeneration area occupies the upper half of the generally disk-shaped area. Note that the occupation ratio of the adsorption area and the reproduction area can be designed as appropriate. For example, the reproduction area may be a sector and the rest may be an adsorption area.
 吸着ロータユニット39は、図9に示されているように、吸着ロータ32が第1回転軸32dの周りで回転するように吸着ロータ32を支持している。吸着ロータ32は、背面50bに対して傾斜した第1回転軸32dの周りで回転する。図9に示されている第1回転軸32dとX軸とのなす角αが、例えば10度~30度になるように吸着ロータ32が配置される。ここでは、第1回転軸32dとX軸とのなす角αが約15度になるように配置されている。吸着ロータ32は、例えば1時間に30回転する。吸着ロータ32は、第1回転軸32dの周りを1回転すると、吸着領域と再生領域を通過して、水分の吸着と水分の脱離を行う。そのために、再生用熱交換器31を通過して加熱された再生前空気が全て吸着ロータ32を通過できるように、吸着ロータユニット39は、再生用熱交換器31を保持するとともに再生用熱交換器31を通過した後さらに再生領域を通過する空気の経路を形成している。 As shown in FIG. 9, the suction rotor unit 39 supports the suction rotor 32 so that the suction rotor 32 rotates around the first rotation shaft 32d. The suction rotor 32 rotates around a first rotation shaft 32d inclined with respect to the back surface 50b. The suction rotor 32 is arranged such that an angle α formed by the first rotation shaft 32d and the X axis shown in FIG. 9 is, for example, 10 degrees to 30 degrees. Here, the angle α formed by the first rotation shaft 32d and the X axis is arranged to be about 15 degrees. For example, the suction rotor 32 rotates 30 times per hour. When the adsorption rotor 32 makes one rotation around the first rotation shaft 32d, the adsorption rotor 32 passes through the adsorption region and the regeneration region, and adsorbs moisture and desorbs moisture. For this purpose, the adsorption rotor unit 39 holds the regeneration heat exchanger 31 and reproduces the heat for regeneration so that all the pre-regeneration air heated through the regeneration heat exchanger 31 can pass through the adsorption rotor 32. An air path that passes through the regeneration region after passing through the vessel 31 is formed.
 このように配置された吸着ロータ32の裏面32bに平行に再生用熱交換器31が配置されている。例えば、再生用熱交換器31のフィンの正面側端部の包絡面31Pが実質的に吸着ロータ32の裏面32bに平行になっている。再生用熱交換器31については、吸着ロータ32に再生用熱交換器31を近づけて熱エネルギーのロスを小さくするのに、吸着ロータ32に沿うように斜めに配置されていることが好ましい。この場合、吸着ロータ32の裏面32bに対して±10度傾くものも吸着ロータ32に沿うものに含まれる。再生用熱交換器31は、重心がケーシング50の正面50aよりも背面50bに近い点に位置するように配置されている。この再生用熱交換器31の重心がケーシング50の背面50bに近い点に位置すると、重心が正面50aに近いところにある場合に比べて加湿ユニット30を壁100から離す方向に働く力のモーメントが小さくなるので、壁面WSに背面50bを対向させて設置し易くなる。 The regeneration heat exchanger 31 is arranged in parallel to the back surface 32b of the adsorption rotor 32 arranged in this way. For example, the envelope surface 31 </ b> P at the front side end of the fin of the regeneration heat exchanger 31 is substantially parallel to the back surface 32 b of the adsorption rotor 32. The regeneration heat exchanger 31 is preferably disposed obliquely along the adsorption rotor 32 in order to reduce the heat energy loss by bringing the regeneration heat exchanger 31 close to the adsorption rotor 32. In this case, those inclined by ± 10 degrees with respect to the back surface 32 b of the adsorption rotor 32 are also included in the arrangement along the adsorption rotor 32. The regeneration heat exchanger 31 is arranged so that the center of gravity is located at a point closer to the back surface 50 b than to the front surface 50 a of the casing 50. When the center of gravity of the regenerative heat exchanger 31 is located at a point close to the back surface 50b of the casing 50, the moment of force acting in the direction in which the humidifying unit 30 is separated from the wall 100 is greater than when the center of gravity is near the front surface 50a. Since it becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
 再生用熱交換器31に送られる再生前空気は、右側面50e及び左側面50fに形成されている再生前空気取入口54から取り入れられる。再生前空気取入口54は、吸着ロータ32の傾斜に沿って斜めにカットされた斜めカット部54aを含んでいる。このような斜めカット部54aによって開口部が広がる分だけ再生前空気取入口54が大きくなっており、再生前空気の流路抵抗が小さくなっている。 The pre-regeneration air sent to the regeneration heat exchanger 31 is taken in from the pre-regeneration air intake 54 formed on the right side surface 50e and the left side surface 50f. The pre-regeneration air intake 54 includes an oblique cut portion 54 a that is obliquely cut along the inclination of the adsorption rotor 32. The pre-regeneration air intake 54 is increased by the amount of the opening being expanded by such an oblique cut portion 54a, and the flow path resistance of the pre-regeneration air is reduced.
 (3-1-3)吸着用ファン34
 ここでは、吸着用ファン34にシロッコファンが用いられている例を示しているが、吸着用ファン34に用いることができるファンはシロッコファンに限られるものではない。ただし、吸着用ファン34には、占有体積と送風量の条件を満たし易い遠心ファンが用いられることが好ましい。吸着用ファン34は、第2回転軸34bの周りで回転する吸着用ファンロータ34aと、吸着用モータ34cと、吸着用ファンケース34dと、吸着後空気用ダクト34eとを備えている。第2回転軸34bは、背面50bに対する垂直方向に延びている。吸着用モータ34cは、吸着用ファンロータ34aを回転させる。吸着用ファン34は、吸着用ファンロータ34aによって、吸着前空気を吸着前空気取入口52から吸着ロータ32に導く。そして、吸着前空気が、吸着用ファンロータ34aにより送られて吸着領域において吸着ロータ32を通過する。吸着ロータ32を通過することで吸着ロータ32に水分を奪われた空気が吸着後空気になる。このとき吸着ロータ32を通過する空気は、吸着ロータ32の第1回転軸32dと平行に吸着ロータ32を通過する。このように第1回転軸32dと平行に吸着ロータ32を空気が通過すると、第1回転軸32dに対して傾いて例えば30度よりも傾いて空気が通過する場合に比べて吸着ロータ32を通過する空気の受ける抵抗が小さくなる。
(3-1-3) Suction fan 34
Here, an example in which a sirocco fan is used for the suction fan 34 is shown, but a fan that can be used for the suction fan 34 is not limited to a sirocco fan. However, the suction fan 34 is preferably a centrifugal fan that easily satisfies the conditions of the occupied volume and the air volume. The suction fan 34 includes a suction fan rotor 34a that rotates around the second rotation shaft 34b, a suction motor 34c, a suction fan case 34d, and a post-adsorption air duct 34e. The second rotating shaft 34b extends in a direction perpendicular to the back surface 50b. The suction motor 34c rotates the suction fan rotor 34a. The adsorption fan 34 guides pre-adsorption air from the pre-adsorption air intake 52 to the adsorption rotor 32 by the adsorption fan rotor 34a. Then, the pre-adsorption air is sent by the adsorption fan rotor 34a and passes through the adsorption rotor 32 in the adsorption area. Air that has been deprived of moisture by the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after adsorption. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32. When air passes through the suction rotor 32 in parallel with the first rotation shaft 32d in this way, the air passes through the suction rotor 32 as compared with the case where the air passes through the first rotation shaft 32d with an inclination of, for example, more than 30 degrees. The resistance to air is reduced.
 吸着ロータ32の裏面32bの側には、吸着後空気用ダクト34eが配置されている。吸着後空気用ダクト34eは、正面視において、吸着ロータ32と吸着領域とが重なる部分よりも大きく、また吸着用ファン34のベルマウス34gの吸込円孔34fよりも大きい。そして、吸着後空気用ダクト34eは、正面視において、吸着ロータ32と吸着領域とが重なる部分及びベルマウス34gの吸込円孔34fを覆うように配置されている。吸着後空気用ダクト34eから吸着用ファン34のベルマウス34gの吸込円孔34fを通って吸着用ファン34に吸い込まれた吸着後空気は、吸着用ファン吹出口56から吹出される。 A post-adsorption air duct 34e is disposed on the back surface 32b side of the adsorption rotor 32. The post-adsorption air duct 34e is larger than the portion where the adsorption rotor 32 and the adsorption area overlap in front view, and larger than the suction circular hole 34f of the bell mouth 34g of the adsorption fan 34. Further, the post-adsorption air duct 34e is arranged so as to cover the portion where the adsorption rotor 32 and the adsorption region overlap and the suction circular hole 34f of the bell mouth 34g in a front view. The adsorbed air sucked into the adsorbing fan 34 from the adsorbed air duct 34e through the suction circular hole 34f of the bell mouth 34g of the adsorbing fan 34 is blown out from the adsorbing fan outlet 56.
 図8に示されているように、吸着用ファン34は、ベルマウス34gの吸込円孔34fの領域RE1と吸着ロータ32の一部領域RE2が正面視において重なるように配置されている。吸着ロータ32の一部領域RE2は、吸着用ファン34とケーシング50の正面50aの間に配置されている。吸着用ファン34とケーシング50の正面50aとの間に吸着ロータ32の一部領域RE2が配置されることで、吸着ロータに吸着前空気を導くときの流路抵抗を低く抑えることができ、吸着用ファン34の小型化ができている。 As shown in FIG. 8, the suction fan 34 is arranged such that the region RE1 of the suction circular hole 34f of the bell mouth 34g and the partial region RE2 of the suction rotor 32 overlap in front view. A partial region RE <b> 2 of the suction rotor 32 is disposed between the suction fan 34 and the front surface 50 a of the casing 50. By arranging the partial region RE2 of the suction rotor 32 between the suction fan 34 and the front surface 50a of the casing 50, the flow path resistance when the pre-adsorption air is guided to the suction rotor can be kept low, and the suction The fan 34 can be downsized.
 そして、図8に示されている吸着ロータ32の裏面32bのうち、ベルマウス34gの吸込円孔34fの投影範囲(正面視において吸込円孔34fと重なる部分)において、吸込円孔34fから最も遠い最離反箇所P1が吸込円孔34fの半径r1の60%離れている。吸着用ファン34のベルマウス34gの吸込円孔34fのうちの吸着ロータ32と重なっていない領域について吸着ロータ32と吸着用ファン34との間で空気を流れ易くするためには、最離反箇所P1が半径r1の10%以上離れるように配置されることが好ましい。また、吸着ロータ32が吸着用ファン34から離れすぎると、加湿ユニット30の薄型化が難しくなるので、吸着ロータ32は、例えば、最離反箇所P1が吸込円孔34fの半径r1の40%以上離れる場合においては、吸込円孔34fから最も近い最近接箇所P2が離れる距離は、吸込円孔34fの半径r1の40%未満になるように設定される。ここでは、吸込円孔34fから最近接箇所P2までの距離が吸込円孔34fの半径r1の約35%になっている。 Then, among the back surface 32b of the suction rotor 32 shown in FIG. 8, the projection range of the suction circular hole 34f of the bell mouth 34g (the portion overlapping the suction circular hole 34f in front view) is the farthest from the suction circular hole 34f. The farthest separation point P1 is 60% away from the radius r1 of the suction circular hole 34f. In order to make it easier for air to flow between the suction rotor 32 and the suction fan 34 in an area of the suction mouth 34f of the bell mouth 34g of the suction fan 34 that does not overlap with the suction rotor 32, the furthest away point P1 Is preferably arranged so as to be at least 10% of the radius r1. Further, if the suction rotor 32 is too far from the suction fan 34, it is difficult to reduce the thickness of the humidifying unit 30, so that the suction rotor 32 has, for example, the farthest separation point P1 separated by 40% or more of the radius r1 of the suction circular hole 34f. In some cases, the distance at which the nearest closest point P2 is separated from the suction circular hole 34f is set to be less than 40% of the radius r1 of the suction circular hole 34f. Here, the distance from the suction circular hole 34f to the closest point P2 is about 35% of the radius r1 of the suction circular hole 34f.
 吸着用ファン34は、重心がケーシング50の正面50aよりも背面50bに近い点に位置するように配置されている。重量物である吸着用ファン34と再生用ファン35の重心がケーシング50の背面50bに近い点に位置すると、重心が正面50aに近いところにある場合に比べて加湿ユニット30を壁100から離す方向に働く力のモーメントが小さくなるので、壁面WSに背面50bを対向させて設置し易くなる。 The suction fan 34 is arranged so that its center of gravity is located closer to the back surface 50b than to the front surface 50a of the casing 50. When the center of gravity of the suction fan 34 and the regeneration fan 35, which are heavy objects, is located at a point close to the back surface 50b of the casing 50, the direction in which the humidifying unit 30 is separated from the wall 100 as compared with the case where the center of gravity is close to the front surface 50a. Since the moment of the force acting on the back surface 50b becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
 (3-1-4)再生用ファン35
 ここでは、再生用ファン35にターボファンが用いられている例を示しているが、再生用ファン35に用いることができるファンはターボファンに限られるものではない。ただし、再生用ファン35には、占有体積と送風量の条件を満たし易い遠心ファンが用いられることが好ましい。再生用ファン35は、第3回転軸35bの周りで回転する再生用ファンロータ35aと、再生用モータ35cと、再生用ファンケース35dと、再生後空気用ダクト35eとを備えている。第3回転軸35bは、背面50bに対する垂直方向に延びている。再生用モータ35cは、再生用ファンロータ35aを回転させる。再生用ファン35は、再生用ファンロータ35aによって、再生前空気を再生前空気取入口54から吸着ロータ32に導く。そして、再生前空気が、再生用ファンロータ35aにより送られて再生領域において吸着ロータ32を通過する。吸着ロータ32を通過することで吸着ロータ32に水分を与えられた空気が再生後空気になる。再生前空気は、吸着ロータ32の裏面32bに達する前に、再生用熱交換器31によって加熱されている。このとき吸着ロータ32を通過する空気は、吸着ロータ32の第1回転軸32dと平行に吸着ロータ32を通過する。このように第1回転軸32dと平行に吸着ロータ32を空気が通過すると、第1回転軸32dに対して傾いて例えば30度よりも傾いて空気が通過する場合に比べて吸着ロータ32を通過する空気の受ける抵抗が小さくなる。
(3-1-4) Regeneration fan 35
Here, an example in which a turbo fan is used as the reproduction fan 35 is shown, but a fan that can be used as the reproduction fan 35 is not limited to a turbo fan. However, it is preferable to use a centrifugal fan that can easily satisfy the conditions of the occupied volume and the blowing amount as the regeneration fan 35. The regeneration fan 35 includes a regeneration fan rotor 35a that rotates around the third rotation shaft 35b, a regeneration motor 35c, a regeneration fan case 35d, and a post-regeneration air duct 35e. The third rotation shaft 35b extends in a direction perpendicular to the back surface 50b. The reproduction motor 35c rotates the reproduction fan rotor 35a. The regeneration fan 35 guides the pre-regeneration air from the pre-regeneration air intake 54 to the adsorption rotor 32 by the regeneration fan rotor 35a. Then, the pre-regeneration air is sent by the regeneration fan rotor 35a and passes through the adsorption rotor 32 in the regeneration region. The air given moisture to the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after regeneration. The pre-regeneration air is heated by the regeneration heat exchanger 31 before reaching the back surface 32 b of the adsorption rotor 32. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32. When air passes through the suction rotor 32 in parallel with the first rotation shaft 32d in this way, the air passes through the suction rotor 32 as compared with the case where the air passes through the first rotation shaft 32d with an inclination of, for example, more than 30 degrees. The resistance to air is reduced.
 吸着ロータ32の表面32aの側には、再生後空気用ダクト35eが配置されている。再生後空気用ダクト35eは、正面視において、吸着ロータ32と再生領域とが重なる部分よりも大きく、また再生用ファン35の吸込口35fよりも大きい。そして、再生後空気用ダクト35eは、正面視において、吸着ロータ32と再生領域とが重なる部分及び吸込口35fを覆うように配置されている。再生用ファン35は、再生用熱交換器31から吸着ロータ32の裏面32b、表面32aの順に通過してきた再生後空気を、ケーシング50の正面50aに沿って配置されている再生後空気用ダクト35eで吸着ロータ32の吸込口35fに送る。再生後空気用ダクト35eから再生用ファン35の吸込口35fを通って再生用ファン35に吸い込まれた再生後空気は、加湿ホース36を通って吹出される。 A post-regeneration air duct 35e is disposed on the surface 32a side of the adsorption rotor 32. The post-regeneration air duct 35e is larger than the portion where the suction rotor 32 and the regeneration region overlap in front view, and larger than the suction port 35f of the regeneration fan 35. The post-regeneration air duct 35e is disposed so as to cover the portion where the suction rotor 32 and the regeneration region overlap and the suction port 35f when viewed from the front. The regeneration fan 35 is a post-regeneration air duct 35e that is disposed along the front surface 50a of the casing 50, after the regeneration air that has passed from the regeneration heat exchanger 31 in the order of the back surface 32b and the front surface 32a of the adsorption rotor 32. To the suction port 35 f of the suction rotor 32. The post-regeneration air sucked into the regeneration fan 35 from the post-regeneration air duct 35e through the suction port 35f of the regeneration fan 35 is blown out through the humidification hose 36.
 再生用ファン35は、の重心がケーシング50の正面50aよりも背面50bに近い点に位置するように配置されている。重量物である吸着用ファン34と再生用ファン35の重心がケーシング50の背面50bに近い点に位置すると、重心が正面50aに近いところにある場合に比べて加湿ユニット30を壁から離す方向に働く力のモーメントが小さくなるので、壁面WSに背面50bを対向させて設置し易くなる。 The reproduction fan 35 is arranged so that its center of gravity is located closer to the back surface 50b than to the front surface 50a of the casing 50. When the gravity centers of the suction fan 34 and the regeneration fan 35, which are heavy objects, are located at a point close to the back surface 50b of the casing 50, the humidifying unit 30 is moved away from the wall as compared with the case where the center of gravity is near the front surface 50a. Since the moment of the working force becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
 (3-1-5)吸着ロータ32と吸着用ファン34と再生用ファン35の位置関係
 吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aは、背面50bに沿って一方向(Z軸方向)に並べて配列されている。吸着ロータ32の第1回転軸32dと吸着用ファンロータ34aの第2回転軸34bと再生用ファンロータ35aの第3回転軸35bとが、Z軸方向に延びる一つの直線L1を通るYZ平面内に並んでいる。吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aの配列方向視、つまり直線L1に沿って下側面50dから上側面50cの方を見ると、図12に示されているように、吸着ロータ32の一部と吸着用ファンロータ34aの一部とが再生用ファンロータ35aの一部と重なり、正面50aと背面50bの距離を縮めてY軸方向の寸法M1を小さくでき、加湿ユニット30Bが薄型化できている。
(3-1-5) Positional relationship among the suction rotor 32, the suction fan 34, and the regeneration fan 35 The suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are arranged in one direction (Z-axis) along the back surface 50b. Direction). In the YZ plane, the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan rotor 34a, and the third rotation shaft 35b of the regeneration fan rotor 35a pass through one straight line L1 extending in the Z-axis direction. Are lined up. When the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction, that is, when viewed from the lower side surface 50d to the upper side surface 50c along the straight line L1, as shown in FIG. Part of the rotor 32 and part of the suction fan rotor 34a overlap with part of the regeneration fan rotor 35a, and the distance M between the front surface 50a and the back surface 50b can be reduced to reduce the dimension M1 in the Y-axis direction. Can be made thinner.
 また、第1回転軸32dと第2回転軸34bとの第3回転軸35bとが、Z軸方向に延びる一つの直線L1を通るYZ平面内に並んでいることから、吸着用ファンロータ34aと再生用ファンロータ35aとが吸着ロータ32からX軸方向にはみ出さないの、X軸方向のケーシング50の寸法M2を小さくすることができる。 Further, since the third rotation shaft 35b of the first rotation shaft 32d and the second rotation shaft 34b is arranged in the YZ plane passing through one straight line L1 extending in the Z-axis direction, the suction fan rotor 34a and Since the reproduction fan rotor 35a does not protrude from the suction rotor 32 in the X-axis direction, the dimension M2 of the casing 50 in the X-axis direction can be reduced.
 吸着ロータ32において、吸着領域では、空気が吸着ロータ32の表面32aから裏面32bに向かって流れ、再生領域では、空気が吸着ロータ32の裏面32bから表面32aに向かって流れる。つまり、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置されている。着前空気の気流と再生前空気の気流が対向流となることにより、同じ方向にこれらの気流が流れる場合に比べて加湿能力を向上させることができる。 In the adsorption rotor 32, in the adsorption region, air flows from the front surface 32a of the adsorption rotor 32 toward the back surface 32b, and in the regeneration region, air flows from the back surface 32b of the adsorption rotor 32 toward the front surface 32a. That is, the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the air before adsorption and the airflow of the air before regeneration are opposed to each other. When the airflow before wearing and the airflow before regeneration are counterflows, the humidifying ability can be improved as compared with the case where these airflows flow in the same direction.
 (4)変形例
 (4-1)変形例1A
 上記第1実施形態では、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置されていたが、吸着用ファン34と再生用ファン35は、図13に示されているように、吸着前空気の気流と再生前空気の気流が同じ向きに流れるように配置されてもよい。図13に示されている加湿ユニット30Aでは、ケーシング50Aの正面50aに再生前空気取入口57が形成されている。再生前空気取入口57は、正面視において、再生用熱交換器31と実質的に同じ大きさを有している長方形状に形成されている。再生前空気取入口57にはグリッド58が取り付けられている。なお、正面50aに再生前空気取入口57を形成して場合でも、上記第1実施形態と同様に、再生前空気取入口を、正面50aに近づけて右側面50e及び左側面50fに設けてもよい。
(4) Modification (4-1) Modification 1A
In the first embodiment, the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other. As shown in FIG. 13, 35 may be arranged such that the airflow of the air before adsorption and the airflow of the air before regeneration flow in the same direction. In the humidifying unit 30A shown in FIG. 13, a pre-regeneration air intake 57 is formed on the front surface 50a of the casing 50A. The pre-regeneration air intake 57 is formed in a rectangular shape having substantially the same size as that of the regeneration heat exchanger 31 in a front view. A grid 58 is attached to the pre-regeneration air intake 57. Even when the pre-regeneration air inlet 57 is formed on the front surface 50a, the pre-regeneration air intake port may be provided on the right side surface 50e and the left side surface 50f close to the front surface 50a, as in the first embodiment. Good.
 (4-2)変形例1B
 上記第1実施形態では、吸着前空気取入口52がケーシング50の正面50aに形成されている場合について説明したが、吸着前空気取入口は側面に形成されてもよい。例えば、図14及び図15に示されているように、吸着前空気取入口59を右側面50e及び左側面50fに形成してもよい。
(4-2) Modification 1B
Although the case where the pre-adsorption air intake 52 is formed in the front surface 50a of the casing 50 has been described in the first embodiment, the pre-adsorption air intake may be formed on a side surface. For example, as shown in FIGS. 14 and 15, the pre-adsorption air intake 59 may be formed on the right side surface 50e and the left side surface 50f.
 (4-3)変形例1C
 上記第1実施形態では、加湿ホース36をケーシング50の内側から外側に出して配置するための開口部55が左側面50fに形成されている場合について説明したが、開口部55は、例えば図16及び図17に示されているように、右側面50eに形成されてもよい。
(4-3) Modification 1C
Although the said 1st Embodiment demonstrated the case where the opening part 55 for taking out and arrange | positioning the humidification hose 36 from the inner side of the casing 50 to the outer side was formed in the left side surface 50f, the opening part 55 is FIG. And as FIG. 17 shows, you may form in the right side surface 50e.
 また、互いに対向する右側面50eと左側面50fの両方に開口部55が形成されていてもよい。通常は、開口部55の一方しか使用しないため、例えば樹脂製またはゴム製のキャップで開口部55の一方に蓋をするように構成することもできる。壁面WSに貫通孔101が形成された場合に、貫通孔101に対して右側面50eを向ける対応と、貫通孔101に対して左側面50fを向ける対応を選択できるので、開口部55をいずれか一方に設ける場合に比べて加湿ユニット30の設置の自由度を向上させることができる。 Moreover, the opening part 55 may be formed in both the right side surface 50e and the left side surface 50f which oppose each other. Usually, since only one of the openings 55 is used, it is possible to cover the opening 55 with a cap made of resin or rubber, for example. When the through hole 101 is formed in the wall surface WS, the correspondence between the right side surface 50e facing the through hole 101 and the correspondence direction facing the left side surface 50f relative to the through hole 101 can be selected. The degree of freedom of installation of the humidification unit 30 can be improved as compared with the case where it is provided on one side.
 (4-4)変形例1D
 上記第1実施形態では、吸着ロータ32の第1回転軸32dのみが背面50bに対して傾斜している場合について説明したが、吸着用ファン34の第2回転軸34b及び/または再生用ファン35の第3回転軸35bが背面50bに対して傾斜するように構成されてもよい。図18に示されている加湿ユニット30Bにおいては、吸着ロータ32の第1回転軸32d及び吸着用ファン34の第2回転軸34bが背面50bに対して傾斜している。図18に示されている加湿ユニット30Bでは、第1回転軸32dと第2回転軸34bが平行になるように吸着ロータ32と吸着用ファン34が配置されている。また、正面視において吸着ロータ32と吸着用ファン34の吸着用ファンロータ34aとが重なるように配置されている。図18に示されている加湿ユニット30Bでは、第1実施形態の加湿ユニット30と同様に、ケーシング50Bの中心をZ方向に延びるYZ平面内に第1回転軸32dと第2回転軸34bと第3回転軸35bが並ぶように配置されている。図18に示されている加湿ユニット30Bは、第1回転軸32dと第2回転軸34bが平行になるように構成されているが、例えば第1回転軸32dと第2回転軸34bがYZ平面内において交わるように背面50bに対する傾斜角度が異なるように配置されてもよい。例えば、図18に示されている第2回転軸34bとX軸とのなす角βが、例えば10度~30度になるように吸着用ファン34が配置される。なお、加湿ユニット30Bでは、再生用ファン35の第3回転軸35bは背面50bに対する垂直方向に延びている。また、背面50bに平行な方向で最も小さいX軸方向の寸法M2は第1実施形態と同様であり、垂直方向(Y軸方向)の寸法M4が、X軸方向の寸法M2よりも小さいのは第1実施形態と同様である。また、第2回転軸34bを背面50bに対して傾斜させることで、Z軸方向の寸法M5が第1実施形態の寸法M3と同程度に小さくなっている。
(4-4) Modification 1D
In the first embodiment, the case where only the first rotation shaft 32d of the suction rotor 32 is inclined with respect to the back surface 50b has been described. However, the second rotation shaft 34b of the suction fan 34 and / or the regeneration fan 35 is described. The third rotation shaft 35b may be configured to be inclined with respect to the back surface 50b. In the humidifying unit 30B shown in FIG. 18, the first rotation shaft 32d of the suction rotor 32 and the second rotation shaft 34b of the suction fan 34 are inclined with respect to the back surface 50b. In the humidifying unit 30B shown in FIG. 18, the suction rotor 32 and the suction fan 34 are arranged so that the first rotary shaft 32d and the second rotary shaft 34b are parallel to each other. Further, the suction rotor 32 and the suction fan rotor 34a of the suction fan 34 are disposed so as to overlap each other in a front view. In the humidifying unit 30B shown in FIG. 18, similarly to the humidifying unit 30 of the first embodiment, the first rotating shaft 32d, the second rotating shaft 34b and the second rotating shaft 34b are arranged in the YZ plane extending in the Z direction at the center of the casing 50B. The three rotation shafts 35b are arranged side by side. The humidifying unit 30B shown in FIG. 18 is configured such that the first rotating shaft 32d and the second rotating shaft 34b are parallel to each other. For example, the first rotating shaft 32d and the second rotating shaft 34b are in the YZ plane. You may arrange | position so that the inclination angle with respect to the back surface 50b may differ so that it may cross | intersect inside. For example, the suction fan 34 is arranged so that the angle β formed by the second rotation shaft 34b and the X axis shown in FIG. 18 is, for example, 10 degrees to 30 degrees. In the humidification unit 30B, the third rotating shaft 35b of the regeneration fan 35 extends in a direction perpendicular to the back surface 50b. The dimension M2 in the X-axis direction that is the smallest in the direction parallel to the back surface 50b is the same as in the first embodiment, and the dimension M4 in the vertical direction (Y-axis direction) is smaller than the dimension M2 in the X-axis direction. This is similar to the first embodiment. Further, by tilting the second rotation shaft 34b with respect to the back surface 50b, the dimension M5 in the Z-axis direction is made as small as the dimension M3 of the first embodiment.
 図19に示されている加湿ユニット30Cにおいては、吸着ロータ32の第1回転軸32d、吸着用ファン34の第2回転軸34b及び再生用ファン35の第3回転軸35bが背面50bに対して傾斜している。図19に示されている加湿ユニット30Bでは、第1回転軸32dと第2回転軸34bと第3回転軸35bが平行になるように吸着ロータ32と吸着用ファン34と再生用ファン35が配置されている。また、正面視において吸着ロータ32の第1回転軸32dと吸着用ファン34の吸着用ファンロータ34aとが重なるように配置されている。そのため、Z軸方向のケーシング50Cの寸法を第1実施形態のケーシング50に比べて小さくすることができている。正面視において吸着ロータ32と再生用ファン35は、再生後空気用ダクト35eの部分を除き重ならないように配置されている。なお、図19の加湿ユニット30Cでは、再生後空気用ダクト35eを除く再生用ファン35と吸着ロータ32とが正面視において重ならないように配置されているが、これらが重なるように配置されてもよい。図19に示されている加湿ユニット30Cでは、第1実施形態の加湿ユニット30と同様に、ケーシング50Cの中心をZ方向に延びるYZ平面内に第1回転軸32dと第2回転軸34bと第3回転軸35bが並ぶように配置されている。図19に示されている加湿ユニット30Cは、第1回転軸32dと第2回転軸34bと第3回転軸35bが互いに平行になるように構成されているが、例えば第1回転軸32dと第2回転軸34b、第1回転軸32dと第3回転軸35b、第2回転軸34bと第3回転軸35bがYZ平面内において交わるように背面50bに対する傾斜角度が異なるように配置されてもよい。図19に示されている第3回転軸35bとX軸とのなす角γが、例えば10度~30度になるように再生用ファン35が配置される。なお、背面50bに平行な方向で最も小さいX軸方向の寸法M2は第1実施形態と同様であり、垂直方向(Y軸方向)の寸法M6が、X軸方向の寸法M2よりも小さいのは第1実施形態と同様である。また、第3回転軸35bも背面50bに対して傾斜させることで、Z軸方向の寸法M7が第1実施形態の寸法M3に比べて小さくなっている。 In the humidifying unit 30C shown in FIG. 19, the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan 34, and the third rotation shaft 35b of the regeneration fan 35 are relative to the back surface 50b. Inclined. In the humidifying unit 30B shown in FIG. 19, the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged so that the first rotation shaft 32d, the second rotation shaft 34b, and the third rotation shaft 35b are parallel to each other. Has been. Further, the first rotation shaft 32d of the suction rotor 32 and the suction fan rotor 34a of the suction fan 34 are arranged so as to overlap each other in a front view. Therefore, the dimension of the casing 50C in the Z-axis direction can be reduced as compared with the casing 50 of the first embodiment. In front view, the suction rotor 32 and the regeneration fan 35 are arranged so as not to overlap except for the portion of the post-regeneration air duct 35e. In the humidifying unit 30C of FIG. 19, the regeneration fan 35 excluding the post-regeneration air duct 35e and the suction rotor 32 are arranged so as not to overlap in a front view. Good. In the humidifying unit 30C shown in FIG. 19, the first rotating shaft 32d, the second rotating shaft 34b, and the second rotating shaft are arranged in the YZ plane extending in the Z direction at the center of the casing 50C, similarly to the humidifying unit 30 of the first embodiment. The three rotation shafts 35b are arranged side by side. The humidifying unit 30C shown in FIG. 19 is configured such that the first rotating shaft 32d, the second rotating shaft 34b, and the third rotating shaft 35b are parallel to each other. For example, the first rotating shaft 32d and the first rotating shaft 32d The two rotation shafts 34b, the first rotation shaft 32d and the third rotation shaft 35b, and the second rotation shaft 34b and the third rotation shaft 35b may be arranged so as to have different inclination angles with respect to the back surface 50b so that they intersect in the YZ plane. . The reproduction fan 35 is arranged so that an angle γ formed by the third rotation shaft 35b and the X axis shown in FIG. 19 is, for example, 10 degrees to 30 degrees. The smallest dimension M2 in the X-axis direction in the direction parallel to the back surface 50b is the same as in the first embodiment, and the dimension M6 in the vertical direction (Y-axis direction) is smaller than the dimension M2 in the X-axis direction. This is the same as in the first embodiment. Further, the third rotation shaft 35b is also inclined with respect to the back surface 50b, so that the dimension M7 in the Z-axis direction is smaller than the dimension M3 of the first embodiment.
 (4-5)変形例1E
 上記第1実施形態及び変形例1A~1Dでは、正面視(言い換えると、厚み方向に見た場合)において、吸着用ファン吸込口である吸込円孔34fが吸着ロータ32の一部領域と重なるように配置されている場合を説明したが、再生用ファン吸込口である吸込口35fが吸着ロータ32の一部領域と正面視において重なるように配置されてもよい。
(4-5) Modification 1E
In the first embodiment and the modified examples 1A to 1D, the suction circular hole 34f that is the suction fan suction port overlaps with a partial region of the suction rotor 32 in a front view (in other words, when viewed in the thickness direction). However, the suction port 35f, which is a regeneration fan suction port, may be disposed so as to overlap with a partial region of the suction rotor 32 in a front view.
 (4-6)変形例1F
 上記第1実施形態及び変形例1A~1Eでは、ケーシング50,50A~50Cの長手方向(寸法M3,M5,M7の辺が延びる方向)がZ軸方向に一致するように加湿ユニット30,30A~30Cが取り付けられているが、背面50bに平行な面内で回転させて、例えばケーシング50,50A~50Cの長手方向がX軸方向に延びるように加湿ユニット30,30A~30Cが取り付けられてもよい。
(4-6) Modification 1F
In the first embodiment and the modified examples 1A to 1E, the humidifying units 30, 30A to 30A to 50C are arranged so that the longitudinal direction of the casings 50, 50A to 50C (the direction in which the sides of the dimensions M3, M5, and M7 extend) coincides with the Z-axis direction. Although 30C is mounted, even if the humidifying units 30, 30A to 30C are mounted so that the longitudinal direction of the casings 50 and 50A to 50C extends in the X-axis direction by rotating in a plane parallel to the back surface 50b, for example. Good.
 (5)特徴
 (5-1)
 第1実施形態の加湿ユニット30、変形例1Aの加湿ユニット30A、変形例1Dの加湿ユニット30B,30Cは、調湿ユニットの一例である。吸着ロータ32は、ケーシング50,50A,50B,50Cの背面50bに対して傾斜した第1回転軸32dの周りで回転する。吸着ロータ32が背面50bに対して斜めに配置されることから、ケーシング50の内部の狭い空間において隙間の増加を抑制しながら吸着用ファン34及び再生用ファン35などの加湿ユニット30,30A~30Cを構成する機器を配置し易くなっている。その結果、加湿ユニット30,30A~30Cの厚み(寸法M1,M4,M5)を抑えつつ背面50bに平行な面内方向の寸法M3,M5,M7を小さくしてコンパクト化を図ることができている。
(5) Features (5-1)
The humidification unit 30 of 1st Embodiment, the humidification unit 30A of the modification 1A, and the humidification units 30B and 30C of the modification 1D are examples of a humidity control unit. The suction rotor 32 rotates around a first rotation shaft 32d inclined with respect to the back surface 50b of the casing 50, 50A, 50B, 50C. Since the suction rotor 32 is disposed obliquely with respect to the back surface 50b, the humidification units 30, 30A to 30C such as the suction fan 34 and the regeneration fan 35 are suppressed while suppressing an increase in the gap in a narrow space inside the casing 50. It is easy to arrange the equipment that constitutes. As a result, it is possible to reduce the dimensions M3, M5, M7 in the in-plane direction parallel to the back surface 50b while reducing the thickness (dimensions M1, M4, M5) of the humidifying units 30, 30A to 30C. Yes.
 (5-2)
 上述の第1実施形態及び変形例1A~1Fでは、吸着用ファン吸込口である吸込円孔34f及び再生用ファン吸込口である吸込口35fのうちの少なくとも一方が吸着ロータ32の一部領域と正面視において重なように吸着ロータ32と吸着用ファン34と再生用ファン35が配置される。吸込円孔34fと吸着ロータ32の一部領域が重なる場合には、背面50bに平行な面内寸法について、吸着用ファン34と吸着ロータ32の占有面積が小さくなり、具体的には吸着用ファン34と吸着ロータ32が並んでいる方向の寸法M3,M5,M7を小さくすることができ、加湿ユニット30,30A~30Cの面内寸法についてコンパクト化を図ることができる。同様に、吸込口35fと吸着ロータ32の一部領域が重なる場合には、背面50bに平行な面内寸法について、再生用ファン35と吸着ロータ32の占有面積が小さくなり、具体的には再生用ファン35と吸着ロータ32が並んでいる方向の寸法を小さくすることができ、加湿ユニット30,30A~30Cの面内寸法についてコンパクト化を図ることができる。
(5-2)
In the first embodiment and the modifications 1A to 1F described above, at least one of the suction circular hole 34f that is the suction fan suction port and the suction port 35f that is the regeneration fan suction port is a partial region of the suction rotor 32. The suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged so as to overlap in a front view. When the suction circular hole 34f and a partial region of the suction rotor 32 overlap, the area occupied by the suction fan 34 and the suction rotor 32 is reduced with respect to the in-plane dimension parallel to the back surface 50b. The dimensions M3, M5, and M7 in the direction in which 34 and the suction rotor 32 are arranged can be reduced, and the in-plane dimensions of the humidifying units 30, 30A to 30C can be made compact. Similarly, when the suction port 35f and a partial area of the suction rotor 32 overlap, the area occupied by the regeneration fan 35 and the suction rotor 32 is reduced with respect to the in-plane dimension parallel to the back surface 50b. The dimension in the direction in which the fan 35 and the suction rotor 32 are arranged can be reduced, and the in-plane dimensions of the humidifying units 30 and 30A to 30C can be made compact.
 (5-3)
 加湿ユニット30,30A~30Cにおいては、吸着ロータ32は、一部領域が吸着用ファン34とケーシング50の正面50aの間に配置されている。このような配置によって、吸着ロータ32の一部領域を通過して短い距離で吸着用ファン34に流れる吸着前空気の気流を形成することができるので、吸着ロータ32に吸着前空気を導くときの流路抵抗を低く抑えることができる。その結果、吸着用ファン34の送風能力が小さくて済むので、吸着用ファン34の小型化が容易になり、加湿ユニット30,30A~30Cのコンパクト化を図り易くなっている。
(5-3)
In the humidifying units 30, 30 A to 30 C, the adsorption rotor 32 is partially disposed between the adsorption fan 34 and the front surface 50 a of the casing 50. With such an arrangement, it is possible to form an airflow of pre-adsorption air that passes through a partial region of the adsorption rotor 32 and flows to the adsorption fan 34 at a short distance. The channel resistance can be kept low. As a result, since the suction capacity of the suction fan 34 can be small, the suction fan 34 can be easily downsized, and the humidification units 30 and 30A to 30C can be easily made compact.
 (5-4)
 吸着用ファン34は、ベルマウス34gを有する遠心ファンであり、吸着ロータ32は、ベルマウス34gの吸込円孔34fから最も遠い最離反箇所P1が吸込円孔34fの半径の10%以上離れるように配置されている。このような構成により、ベルマウス34gの吸込円孔34fのうちの吸着ロータ32と重なっていない領域について吸着用ファン34と吸着ロータ32との間で空気が流れやすくなり、吸着ロータ32に十分な量の吸着前空気を容易に導くことができるので、コンパクト化しても加湿性能を確保し易くなる。
(5-4)
The suction fan 34 is a centrifugal fan having a bell mouth 34g, and the suction rotor 32 is arranged such that the furthest away point P1 from the suction circular hole 34f of the bell mouth 34g is 10% or more of the radius of the suction circular hole 34f. Has been placed. With such a configuration, air easily flows between the suction fan 34 and the suction rotor 32 in a region that does not overlap with the suction rotor 32 in the suction circular hole 34f of the bell mouth 34g. Since the amount of pre-adsorption air can be easily guided, it is easy to ensure the humidification performance even if it is compact.
 (5-5)
 吸着ロータ32は、吸着ロータ32の最離反箇所P1が吸込円孔34fから吸込円孔34fの半径r1(図8参照)の40%以上離れ、吸込円孔34fに最も近い最近接箇所P2が吸込円孔34fから吸込円孔34fの半径r1の40%未満離れている。吸着ロータ32の最近接箇所P2がベルマウス34gの吸込円孔34fの半径r1の40%未満のところに在ることから、吸着用ファン34と吸着ロータ32との間で空気を流れ易くしながら吸着ロータ32と吸着用ファン34とを近接させることができている。その結果、加湿性能を確保しつつ加湿ユニット30のコンパクト化を向上させることができている。
(5-5)
In the suction rotor 32, the most distant place P1 of the suction rotor 32 is separated from the suction circular hole 34f by 40% or more of the radius r1 (see FIG. 8) of the suction circular hole 34f, and the closest part P2 closest to the suction circular hole 34f It is separated from the circular hole 34f by less than 40% of the radius r1 of the suction circular hole 34f. Since the closest point P2 of the suction rotor 32 is less than 40% of the radius r1 of the suction circular hole 34f of the bell mouth 34g, air can easily flow between the suction fan 34 and the suction rotor 32. The suction rotor 32 and the suction fan 34 can be brought close to each other. As a result, the compactification of the humidification unit 30 can be improved while ensuring the humidification performance.
 (5-6)
 第1実施形態の加湿ユニット30,30A~30Cでは、吸着用ファン34の重心及び再生用ファン35の重心がケーシング50,50A~50Cの正面50aよりも背面50bに近い点に位置するように配置されている。重量物である吸着用ファン34と再生用ファン35の重心がケーシング50,50A~50Cの背面50bに近い点に位置することから、これらの重心が正面50aに近いところにある場合に比べて加湿ユニット30,30A~30Cを壁100から離す方向に働く力のモーメントが小さくなる。例えば、加湿ユニット30,30A~30CのY軸方向の中央を手で支えると、壁100の方に倒れる。このように、加湿ユニット30,30A~30Cを壁100から離す方向に働く力が小さくなって壁面WSに背面50bを対向させて設置し易くなる。
(5-6)
In the humidifying units 30 and 30A to 30C of the first embodiment, the gravity center of the suction fan 34 and the gravity center of the regeneration fan 35 are arranged so that they are located closer to the back surface 50b than the front surface 50a of the casings 50 and 50A to 50C. Has been. Since the gravity centers of the suction fan 34 and the regeneration fan 35, which are heavy objects, are located near the rear surface 50b of the casings 50, 50A to 50C, humidification is performed as compared with the case where these gravity centers are located near the front surface 50a. The moment of force acting in the direction of separating units 30, 30A to 30C from wall 100 is reduced. For example, if the humidification units 30, 30A to 30C are supported by the center in the Y-axis direction by hand, they will fall toward the wall 100. Thus, the force acting in the direction of separating the humidifying units 30, 30A to 30C from the wall 100 is reduced, and the rear surface 50b is opposed to the wall surface WS and can be easily installed.
 (5-7)
 上述の加湿ユニット30,30A~30Cは、再生用熱交換器31の重心がケーシング50,50A~50Cの正面50aよりも背面50bに近い点に位置するように配置されていることから、再生用熱交換器31の重心が正面50aに近いところにある場合に比べて加湿ユニット30,30A~30Cを壁100から離す方向に働く力のモーメントが小さくなるので、壁面WSに背面50bを対向させて設置し易くなる。
(5-7)
The humidifying units 30, 30A to 30C described above are arranged so that the center of gravity of the regeneration heat exchanger 31 is positioned closer to the back surface 50b than the front surface 50a of the casing 50, 50A to 50C. Compared with the case where the center of gravity of the heat exchanger 31 is close to the front surface 50a, the moment of the force acting in the direction of separating the humidifying units 30, 30A to 30C from the wall 100 is reduced, so that the rear surface 50b faces the wall surface WS. Easy to install.
 (5-8)
 再生用熱交換器31は、吸着ロータ32に沿うように斜めに配置されていることから、再生用熱交換器31を全体的に吸着ロータ32に近づけることができる。その結果、再生用熱交換器31から再生前空気に与えられる熱エネルギーが周囲の部材に逃げ難くなるから、熱エネルギーのロスを小さくしながらコンパクト化を図ることができる。
(5-8)
Since the regeneration heat exchanger 31 is disposed obliquely along the adsorption rotor 32, the regeneration heat exchanger 31 can be brought close to the adsorption rotor 32 as a whole. As a result, the heat energy given to the pre-regeneration air from the regeneration heat exchanger 31 is unlikely to escape to the surrounding members, so that the compactness can be achieved while reducing the loss of heat energy.
 (5-9)
 変形例1Dで説明されているように、加湿ユニット30B,30Cの吸着用ファン34及び再生用ファン35は、第2回転軸34b及び第3回転軸35bのうちの少なくとも一方が背面50bに対して斜めになって第1回転軸32dに沿うように、配置されている。このように、第2回転軸34b及び第3回転軸35bのうちの少なくとも一方が背面50bに対して斜めになって第1回転軸32dに沿うように配置されると、吸着用ファン34及び/または再生用ファン35と吸着ロータ32とをともに斜めに配置して互いに近づけることができる。その結果、加湿ユニット30B,30Cの厚み(寸法M4,M5)を抑えつつ背面50bに平行な面内方向の寸法M5,M7を小さくしてコンパクト化を図ることができている。
(5-9)
As described in Modification Example 1D, the suction fan 34 and the regeneration fan 35 of the humidifying units 30B and 30C have at least one of the second rotating shaft 34b and the third rotating shaft 35b with respect to the back surface 50b. It arrange | positions so that it may become diagonal and may follow the 1st rotating shaft 32d. Thus, when at least one of the second rotating shaft 34b and the third rotating shaft 35b is inclined with respect to the back surface 50b and is arranged along the first rotating shaft 32d, the suction fan 34 and / or Alternatively, both the regeneration fan 35 and the suction rotor 32 can be arranged obliquely and close to each other. As a result, it is possible to reduce the size by reducing the dimensions M5 and M7 in the in-plane direction parallel to the back surface 50b while suppressing the thickness (dimensions M4 and M5) of the humidifying units 30B and 30C.
 (5-10)
 加湿ユニット30,30A~30Cでは、吸着ロータ32は、再生のために吸着ロータを加熱する加熱装置するための再生用熱交換器31とともに吸着ロータユニット39に収納されている。例えば、図8及び図9に示されているように、吸着ロータユニット39は、ケーシング50の正面50aと背面50bとに接触箇所P3,P4で接触するように配置されている。また、図8及び図9に示されているように、吸着用ファン34は、ケーシング50の背面50bに接触するように配置され、再生用ファン35は、ケーシング50の正面50a及び背面50bに近接するように配置されている。このように、斜め配置の吸着ロータ32を内包する吸着ロータユニット39がケーシング50の正面50aと背面50bとに接触するように配置されることから、ケーシング50の厚み方向の寸法M1が吸着ロータユニット39の背面50bに対する垂直方向の大きさと同程度になる。このようにして、加湿ユニット30の薄型化が図られている。
(5-10)
In the humidification units 30, 30A to 30C, the adsorption rotor 32 is accommodated in the adsorption rotor unit 39 together with the regeneration heat exchanger 31 for heating the adsorption rotor for regeneration. For example, as illustrated in FIGS. 8 and 9, the suction rotor unit 39 is disposed so as to come into contact with the front surface 50 a and the back surface 50 b of the casing 50 at the contact points P <b> 3 and P <b> 4. Further, as shown in FIGS. 8 and 9, the suction fan 34 is disposed so as to contact the back surface 50 b of the casing 50, and the regeneration fan 35 is close to the front surface 50 a and the back surface 50 b of the casing 50. Are arranged to be. Thus, since the suction rotor unit 39 including the suction rotor 32 arranged obliquely is arranged so as to contact the front surface 50a and the rear surface 50b of the casing 50, the dimension M1 in the thickness direction of the casing 50 is the suction rotor unit. The size in the vertical direction with respect to the back surface 50b of 39 is about the same. In this way, the humidification unit 30 is reduced in thickness.
 加湿ユニット30の薄型化が図れればよいので、吸着ロータユニットは、ケーシングの正面と背面とに接触する必要はなく、近接するように配置されてもよい。同様に、吸着用ファンは、ケーシングの正面及び/または背面に接触するようにまたは近接するように配置され、再生用ファンは、ケーシングの正面及び/または背面に接触するようにまたは近接するように配置されていればよい。 Since the humidification unit 30 only needs to be thinned, the adsorption rotor unit does not need to be in contact with the front surface and the back surface of the casing, and may be disposed close to each other. Similarly, the suction fan is arranged so as to come into contact with or close to the front and / or back of the casing, and the regeneration fan comes into contact with or close to the front and / or back of the casing. It only has to be arranged.
 <第2実施形態>
 (6)全体構成
 第1実施形態の加湿ユニット30及び変形例1A~1Fの加湿ユニット30A~30Cでは、空気調和装置1に組み込まれて室内IDの加湿を行う調湿ユニットとして説明されているが、これらの加湿ユニット30,30A~30Cと同じユニットを室内に設置して再生後空気を室外に排出することで、除湿ユニットとして用いることもできる。
Second Embodiment
(6) Overall Configuration The humidifying unit 30 of the first embodiment and the humidifying units 30A to 30C of the modified examples 1A to 1F are described as humidity control units that are incorporated in the air conditioner 1 and humidify the room ID. These humidifying units 30, 30A to 30C can be used as a dehumidifying unit by installing the same unit in the room and discharging the air after regeneration to the outside.
 図20には、除湿ユニット30Dが取り付けられた空気調和装置1が示されている。また、図21には、図20に示されている除湿ユニット30Dの構成の概念が示されている。この除湿ユニット30Dが第2実施形態における調湿ユニットの一例である。第2実施形態の除湿ユニット30Dは、第1実施形態の加湿ユニット30と同様に再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35とケーシング50とを備え、第1実施形態の加湿ユニット30が備える加湿ホース36の代わりに排気ホース37を備えている。排気ホース37以外の構成は、第2実施形態の除湿ユニット30Dと第1実施形態の加湿ユニット30とは同じであるので説明を省略する。 FIG. 20 shows the air conditioner 1 to which the dehumidifying unit 30D is attached. FIG. 21 shows the concept of the configuration of the dehumidifying unit 30D shown in FIG. The dehumidifying unit 30D is an example of a humidity control unit in the second embodiment. The dehumidifying unit 30D of the second embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 The exhaust hose 37 is provided instead of the humidification hose 36 provided in the humidification unit 30 of the first embodiment. Since the configuration other than the exhaust hose 37 is the same as the dehumidifying unit 30D of the second embodiment and the humidifying unit 30 of the first embodiment, the description thereof is omitted.
 (7)除湿ユニット30Dの動作
 図22には、室内IDに除湿ユニット30Dのケーシング50が取り付けられている状態が示されている。除湿ユニット30Dからは、貫通孔101を通って排気ホース37が室外ODまで延びている。貫通孔101を通って室外機2から室内IDまで配管されている冷媒連絡管6は、除湿ユニット30Dの配管接続部31aに接続され、貫通孔101を通って室外機2から室内IDまで配管されている冷媒連絡管5は、室内機4(接続管72)に接続されている。室内機4(接続管71)と除湿ユニット30Dの配管接続部31bとが室内IDにおいて配管されている冷媒連絡管6によって接続されている。除湿ユニット30Dは、例えば室内機4とは異なる部屋に取り付けられ、例えば乾燥室に配置される。
(7) Operation of Dehumidification Unit 30D FIG. 22 shows a state where the casing 50 of the dehumidification unit 30D is attached to the room ID. From the dehumidifying unit 30D, the exhaust hose 37 extends to the outdoor OD through the through hole 101. The refrigerant communication pipe 6 piped from the outdoor unit 2 to the room ID through the through hole 101 is connected to the pipe connection part 31a of the dehumidifying unit 30D, and is piped from the outdoor unit 2 to the room ID through the through hole 101. The refrigerant communication pipe 5 is connected to the indoor unit 4 (connection pipe 72). The indoor unit 4 (connection pipe 71) and the pipe connection part 31b of the dehumidifying unit 30D are connected by the refrigerant communication pipe 6 piped in the room ID. The dehumidifying unit 30D is attached to a room different from the indoor unit 4, for example, and is arranged in a drying room, for example.
 除湿ユニット30Dが除湿を行うときには、吸着用ファン34により吸着前空気が室内IDから吸着前空気取入口52を通って取り入れられて吸着ロータ32に送られる。そして、吸着ロータ32で水分を奪われて乾燥した吸着後空気が、吸着用ファン34によって吸着用ファン吹出口56から室内IDに吹出される。また、再生用ファン35により再生前空気が室内IDから再生前空気取入口54を通って取り入れられて吸着ロータ32に送られる。吸着ロータ32で水分を与えられた再生後空気が、再生用ファン35によって排気ホース37を通って室外ODに吹き出される。 When the dehumidifying unit 30D performs dehumidification, the pre-adsorption air is taken in from the indoor ID through the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. Then, the air after adsorption that has been dehydrated by the adsorption rotor 32 and dried is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID. Further, the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is blown out by the regeneration fan 35 through the exhaust hose 37 to the outdoor OD.
 (8)変形例
 (8-1)変形例2A
 上記第2実施形態では、図20において、室内機4と除湿ユニット30Dを併用する場合について説明したが、図23に示されているように、室内機4を除いて除湿ユニット30Dと室外機2とを直接接続して用いることもできる。
(8) Modification (8-1) Modification 2A
In the second embodiment, the case where the indoor unit 4 and the dehumidifying unit 30D are used in combination in FIG. 20 has been described. However, as shown in FIG. 23, the dehumidifying unit 30D and the outdoor unit 2 except for the indoor unit 4 are used. Can be directly connected to each other.
 <第3実施形態>
 (9)全体構成
 上記第2実施形態では、室内IDに除湿ユニット30Dを設置して室内IDを除湿する場合について説明したが、図24に示されている加湿ユニット30Eを室内IDに設置して室内IDを加湿するように構成することもできる。なお、図25には、図24に示されている加湿ユニット30Eの構成の概念が示されている。
<Third Embodiment>
(9) Overall Configuration In the second embodiment described above, the case has been described where the dehumidifying unit 30D is installed in the room ID to dehumidify the room ID, but the humidifying unit 30E shown in FIG. 24 is installed in the room ID. It can also comprise so that indoor ID may be humidified. FIG. 25 shows the concept of the configuration of the humidifying unit 30E shown in FIG.
 この加湿ユニット30Eが第3実施形態における調湿ユニットの一例である。第3実施形態の加湿ユニット30Eは、第1実施形態の加湿ユニット30と同様に、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35とケーシング50と加湿ホース36とを備えている。第3実施形態に係る加湿ユニット30Eは、さらに、貫通孔101(図26参照)を通って室外ODから吸着前空気を取り入れるための給気ホース38と、貫通孔101を通って室外ODに吸着後空気を排気するための排気ホース37とを備えている。なお、加湿ユニット30Eの加湿ホース36は、室内IDにおいて加湿ユニット30Eと室内機4とを接続するホースである。排気ホース37及び給気ホース38以外の構成は、第3実施形態の加湿ユニット30Eと第1実施形態の加湿ユニット30とは同じであるので説明を省略する。 This humidification unit 30E is an example of a humidity control unit in the third embodiment. The humidification unit 30E of the third embodiment is similar to the humidification unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And a humidifying hose 36. The humidifying unit 30E according to the third embodiment further adsorbs to the outdoor OD through the through hole 101 and the air supply hose 38 for taking in pre-adsorption air from the outdoor OD through the through hole 101 (see FIG. 26). And an exhaust hose 37 for exhausting the rear air. The humidifying hose 36 of the humidifying unit 30E is a hose that connects the humidifying unit 30E and the indoor unit 4 in the room ID. Since the configuration other than the exhaust hose 37 and the air supply hose 38 is the same as that of the humidifying unit 30E of the third embodiment and the humidifying unit 30 of the first embodiment, description thereof is omitted.
 (10)加湿ユニット30Eの動作
 図26には、室内IDに加湿ユニット30Eのケーシング50が取り付けられている状態が示されている。加湿ユニット30Eが加湿を行うときには、吸着用ファン34により吸着前空気が室外ODから給気ホース38及び吸着前空気取入口52を通って取り入れられて吸着ロータ32に送られる。そして、吸着ロータ32で水分を奪われて乾燥した吸着後空気が、吸着用ファン34によって吸着用ファン吹出口56から排気ホース37を通って室外ODに吹出される。また、再生用ファン35により再生前空気が室内IDから再生前空気取入口54を通って取り入れられて吸着ロータ32に送られる。吸着ロータ32で水分を与えられた再生後空気が、再生用ファン35によって加湿ホース36を通って室内機4に送られる。
(10) Operation of Humidification Unit 30E FIG. 26 shows a state where the casing 50 of the humidification unit 30E is attached to the room ID. When the humidification unit 30E performs humidification, the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 and the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. The adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 through the exhaust hose 37 to the outdoor OD. Further, the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is sent to the indoor unit 4 through the humidifying hose 36 by the regeneration fan 35.
 (11)変形例3A
 第3実施形態では室内IDに設置された加湿ユニット30Eについて説明した。また、第2実施形態では室内IDに設置された除湿ユニット30Dについて説明した。吸着用ファン34及び再生用ファン35の吸排気を切り換えるダンパを設けることで、これらの加湿機能と除湿機能を併せ持つ除加湿ユニットを構成することもできる。
(11) Modification 3A
3rd Embodiment demonstrated the humidification unit 30E installed in indoor ID. Moreover, 2nd Embodiment demonstrated dehumidification unit 30D installed in indoor ID. By providing a damper that switches between intake and exhaust of the suction fan 34 and the regeneration fan 35, a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
 図27には、加湿機能と除湿機能を併せ持つ調湿ユニット30Fが示されている。調湿ユニット30Fは、加湿ユニット30Eの構成に対して、4つのダンパ61~64をさらに備えている。ダンパ61,62は、吸着前空気と再生前空気のうちの一方を室内IDから取り入れ、他方を室外ODから取り入れるように切り換える。ダンパ63,64は、吸着用ファン34により吹出される吸着後空気と再生用ファン35により吹出される再生後空気のうちの一方を室内IDに吹出させ、他方を室外ODに吹出させるように切り換える。ダンパ61,62が図27の実線で示されている状態になっているときには、吸着用ファン34により給気ホース38を通って室外ODから吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が室内IDから取り入れられて吸着ロータ32に送られる。ダンパ63,64が図27に実線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が排気ホース37を通って室外ODに吹出され、再生用ファン35によって再生後空気が調湿ホース36Aを通って室内IDに吹出されて、室内IDの加湿が行われる。 FIG. 27 shows a humidity control unit 30F having both a humidifying function and a dehumidifying function. The humidity control unit 30F further includes four dampers 61 to 64 as compared with the configuration of the humidification unit 30E. The dampers 61 and 62 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD. The dampers 63 and 64 are switched so that one of the air after adsorption blown by the suction fan 34 and the air after regeneration blown by the regeneration fan 35 is blown out to the room ID and the other is blown out to the outdoor OD. . When the dampers 61 and 62 are in the state shown by the solid line in FIG. 27, the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 by the adsorption fan 34 and sent to the adsorption rotor 32. The pre-reproduction air is taken from the room ID by the reproduction fan 35 and sent to the adsorption rotor 32. When the dampers 63 and 64 are in the state indicated by the solid line in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 through the exhaust hose 37 to the outdoor OD, and the air after reproduction by the regeneration fan 35. Is blown out to the room ID through the humidity control hose 36A, and the room ID is humidified.
 それに対して、ダンパ61,62が図27の破線で示されている状態になっているときには、吸着用ファン34により室内IDから吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が給気ホース38を通って室外ODから再生前空気が取り入れられて吸着ロータ32に送られる。そして、ダンパ63,64が図27の破線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が調湿ホース36Aを通って室内IDに吹出され、再生用ファン35によって再生後空気が排気ホース37を通って室外ODに吹出されて、室内IDの除湿が行われる。なお、ダンパ61~64は、シャッタで構成してもよく、またケーシングの外に設けられてもよい。 On the other hand, when the dampers 61 and 62 are in the state indicated by the broken line in FIG. 27, the pre-adsorption air is taken in from the room ID by the adsorption fan 34 and sent to the adsorption rotor 32, and the regeneration fan. The pre-regeneration air is taken in from the outdoor OD through the air supply hose 38 and is sent to the adsorption rotor 32 by 35. When the dampers 63 and 64 are in the state shown by the broken lines in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36A, and the reproduction fan 35 After regeneration, the air is blown out to the outdoor OD through the exhaust hose 37, and the indoor ID is dehumidified. The dampers 61 to 64 may be constituted by shutters or may be provided outside the casing.
 <第4実施形態>
 (12)全体構成
 上記第1実施形態では、室外ODに加湿ユニット30を設置して室内IDを加湿する場合について説明したが、図28に示されている除湿ユニット30Gを室外ODに設置して室内IDを除湿するように構成することもできる。なお、図29には、図28に示されている除湿ユニット30Gの構成の概念が示されている。
<Fourth embodiment>
(12) Overall Configuration In the first embodiment, the case where the humidifying unit 30 is installed in the outdoor OD and the indoor ID is humidified has been described. However, the dehumidifying unit 30G shown in FIG. 28 is installed in the outdoor OD. It can also comprise so that indoor ID may be dehumidified. FIG. 29 shows the concept of the configuration of the dehumidifying unit 30G shown in FIG.
 この除湿ユニット30Gが第4実施形態における調湿ユニットの一例である。第4実施形態の除湿ユニット30Gは、第1実施形態の加湿ユニット30と同様に、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35とケーシング50とを備えている。第4実施形態に係る除湿ユニット30Gは、さらに、貫通孔101(図30参照)を通って室内IDから吸着前空気を取り入れるための給気ホース38と、貫通孔101を通って室内IDに吸着後空気を送るための調湿ホース36Aとを備えている。調湿ホース36A及び給気ホース38以外の構成は、第4実施形態の除湿ユニット30Gと第1実施形態の加湿ユニット30とは同じであるので説明を省略する。 This dehumidifying unit 30G is an example of a humidity control unit in the fourth embodiment. The dehumidifying unit 30G of the fourth embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And. The dehumidifying unit 30G according to the fourth embodiment is further adsorbed to the room ID through the through hole 101 (see FIG. 30) and the air supply hose 38 for taking in pre-adsorption air from the room ID and the through hole 101. A humidity control hose 36A for sending rear air is provided. Since the configuration other than the humidity control hose 36A and the air supply hose 38 is the same as the dehumidifying unit 30G of the fourth embodiment and the humidifying unit 30 of the first embodiment, the description thereof is omitted.
 (13)除湿ユニット30Gの動作
 図30には、室外ODに除湿ユニット30Gのケーシング50が取り付けられている状態が示されている。除湿ユニット30Gが除湿を行うときには、吸着用ファン34により吸着前空気が室内IDから給気ホース38及び吸着前空気取入口52を通って取り入れられて吸着ロータ32に送られる。そして、吸着ロータ32で水分を奪われて乾燥した吸着後空気が、吸着用ファン34によって吸着用ファン吹出口56から調湿ホース36Aを通って室内IDに吹出される。また、再生用ファン35により再生前空気が室外ODから再生前空気取入口54を通って取り入れられて吸着ロータ32に送られる。吸着ロータ32で水分を与えられた再生後空気が、再生用ファン35によって室外ODに吹出される。
(13) Operation of Dehumidification Unit 30G FIG. 30 shows a state where the casing 50 of the dehumidification unit 30G is attached to the outdoor OD. When the dehumidifying unit 30G performs dehumidification, the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 and the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. Then, the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID through the humidity control hose 36A. In addition, the pre-regeneration air is taken in from the outdoor OD through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is blown out to the outdoor OD by the regeneration fan 35.
 (14)変形例4A
 第4実施形態では室外ODに設置された除湿ユニット30Gについて説明した。また、第1実施形態では室外ODに設置された加湿ユニット30について説明した。吸着用ファン34及び再生用ファン35の吸排気を切り換えるダンパを設けることで、これらの加湿機能と除湿機能を併せ持つ除加湿ユニットを構成することもできる。
(14) Modification 4A
In the fourth embodiment, the dehumidifying unit 30G installed in the outdoor OD has been described. Moreover, 1st Embodiment demonstrated the humidification unit 30 installed in outdoor OD. By providing a damper that switches between intake and exhaust of the suction fan 34 and the regeneration fan 35, a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
 図31には、加湿機能と除湿機能を併せ持つ調湿ユニット30Hが示されている。調湿ユニット30Hは、加湿ユニット30の構成に対して、4つのダンパ66~69をさらに備えている。ダンパ66,67は、吸着前空気と再生前空気のうちの一方を室内IDから取り入れ、他方を室外ODから取り入れるように切り換える。ダンパ68,69は、吸着用ファン34により吹出される吸着後空気と再生用ファン35により吹出される再生後空気のうちの一方を室内IDに吹出させ、他方を室外ODに吹出させるように切り換える。 FIG. 31 shows a humidity control unit 30H having both a humidifying function and a dehumidifying function. The humidity control unit 30H further includes four dampers 66 to 69 with respect to the configuration of the humidification unit 30. The dampers 66 and 67 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD. The dampers 68 and 69 switch so that one of the post-adsorption air blown by the suction fan 34 and the post-regeneration air blown by the regeneration fan 35 is blown to the room ID and the other is blown to the outdoor OD. .
 ダンパ66,67が図31の実線で示されている状態になっているときには、吸着用ファン34により室外ODから吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が給気ホース38を通って室内IDから取り入れられて吸着ロータ32に送られる。ダンパ68,69が図31に実線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が室外ODに吹出され、再生用ファン35によって再生後空気が調湿ホース36Aを通って室内IDに吹出されて、室内IDの加湿が行われる。 When the dampers 66 and 67 are in the state shown by the solid line in FIG. 31, the pre-adsorption air is taken in from the outdoor OD by the adsorption fan 34 and sent to the adsorption rotor 32, and before the reproduction by the reproduction fan 35. Air is taken from the room ID through the air supply hose 38 and sent to the adsorption rotor 32. When the dampers 68 and 69 are in the state shown by the solid line in FIG. 31, the air after adsorption is blown out to the outdoor OD by the adsorption fan 34, and the air after regeneration is supplied to the humidity control hose 36A by the regeneration fan 35. The room ID is blown out and the room ID is humidified.
 それに対して、ダンパ68,69が図31の破線で示されている状態になっているときには、吸着用ファン34により室内IDから給気ホース38を通って吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が室外ODから取り入れられて吸着ロータ32に送られる。ダンパ68,69が図31の破線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が調湿ホース36Aを通って室内IDに吹出され、再生用ファン35によって再生後空気が室外ODに吹出されて、室内IDの除湿が行われる。なお、ダンパ66~69は、シャッタで構成してもよく、ケーシングの外に設けられてもよい。 On the other hand, when the dampers 68 and 69 are in the state shown by the broken line in FIG. 31, the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 by the adsorption fan 34 and the adsorption rotor 32. The air before regeneration is taken in from the outdoor OD by the regeneration fan 35 and is sent to the adsorption rotor 32. When the dampers 68 and 69 are in the state shown by the broken line in FIG. 31, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36 </ b> A and is regenerated by the regeneration fan 35. Air is blown to the outdoor OD, and the room ID is dehumidified. The dampers 66 to 69 may be constituted by shutters or may be provided outside the casing.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 While the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as set forth in the claims. .
 1 空気調和装置
 2 室外機
 4 室内機
 30,30A~30C,30E 加湿ユニット(調湿ユニットの例)
 30D,30G 除湿ユニット(調湿ユニットの例)
 30F,30H 調湿ユニット
 31 再生用熱交換器
 32 吸着ロータ
 34 吸着用ファン
 34a 吸着用ファンロータ
 34f 吸込円孔(吸着用ファン吸込口の例)
 34g ベルマウス
 35 再生用ファン
 35a 再生用ファンロータ
 35f 吸込口
 36 加湿ホース
 36A 調湿ホース
 37 排気ホース
 38 給気ホース
 39 吸着ロータユニット
 50,50A~50C ケーシング
 52 吸着前空気取入口
 54,57 再生前空気取入口
 56 吸着用ファン吹出口
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 4 Indoor unit 30,30A-30C, 30E Humidification unit (example of humidity control unit)
30D, 30G Dehumidification unit (example of humidity control unit)
30F, 30H Humidity control unit 31 Heat exchanger for regeneration 32 Adsorption rotor 34 Adsorption fan 34a Adsorption fan rotor 34f Suction hole (example of adsorption fan intake port)
34g Bell mouth 35 Regeneration fan 35a Regeneration fan rotor 35f Suction port 36 Humidification hose 36A Humidity control hose 37 Exhaust hose 38 Supply hose 39 Suction rotor unit 50, 50A to 50C Casing 52 Pre-adsorption air intake 54, 57 Before regeneration Air intake 56 Suction fan outlet
特開2014-129950号公報JP 2014-129950 A

Claims (10)

  1.  鉛直方向に沿う壁面に背面を対向させて設置され、前記背面に対向する正面を有するケーシング(50,50A~50C)と、
     前記ケーシングに収納され、前記背面に対して傾斜した第1回転軸の周りで回転する構成である吸着ロータ(32)と、
     前記ケーシングに収納され、吸着前空気を前記吸着ロータに導き、且つ前記第1回転軸に沿う方向に前記吸着ロータを通過することで前記吸着ロータに水分を奪われた吸着後空気を吹き出す構成である吸着用ファン(34)と、
     前記ケーシングに収納され、再生前空気を前記吸着ロータに導き、且つ前記第1回転軸に沿う方向に前記吸着ロータを通過することで前記吸着ロータから水分を与えられた再生後空気を吹き出す構成である再生用ファン(35)と
    を備える、調湿ユニット。
    A casing (50, 50A to 50C) which is installed with a rear surface facing a wall surface along the vertical direction and has a front surface facing the rear surface;
    An adsorption rotor (32) housed in the casing and configured to rotate around a first rotation axis inclined with respect to the back surface;
    It is housed in the casing, guides pre-adsorption air to the adsorption rotor, and blows out post-adsorption air deprived of moisture by the adsorption rotor by passing through the adsorption rotor in a direction along the first rotation axis. A suction fan (34);
    Contained in the casing, the pre-regeneration air is guided to the adsorption rotor, and passes through the adsorption rotor in a direction along the first rotation axis, thereby blowing out the post-regeneration air given moisture from the adsorption rotor. A humidity control unit comprising a certain reproducing fan (35).
  2.  前記吸着用ファンは、前記吸着ロータから前記吸着後空気を吸い込むための吸着用ファン吸込口(34f)を有し、
     前記再生用ファンは、前記吸着ロータから前記再生後空気を吸い込むための再生用ファン吸込口(35f)を有し、
     前記吸着用ファン及び前記再生用ファンは、前記吸着用ファン吸込口及び前記再生用ファン吸込口のうちの少なくとも一方が前記吸着ロータの一部領域と正面視において重なるように、配置されている、
    請求項1に記載の調湿ユニット。
    The suction fan has a suction fan suction port (34f) for sucking the air after suction from the suction rotor;
    The regeneration fan has a regeneration fan suction port (35f) for sucking the post-regeneration air from the adsorption rotor,
    The suction fan and the regeneration fan are arranged so that at least one of the suction fan suction port and the regeneration fan suction port overlaps a partial region of the suction rotor in a front view.
    The humidity control unit according to claim 1.
  3.  前記吸着ロータは、前記一部領域が前記吸着用ファンよりも前記ケーシングの前記正面に近い位置に配置されている、
    請求項2に記載の調湿ユニット。
    The suction rotor is arranged such that the partial region is closer to the front surface of the casing than the suction fan.
    The humidity control unit according to claim 2.
  4.  前記吸着用ファンは、ベルマウス(34g)を有する遠心ファンであり、
     前記吸着ロータは、前記ベルマウスの吸込円孔から最も遠い最離反箇所が前記吸込円孔の半径の10%以上になるように配置されている、
    請求項3に記載の調湿ユニット。
    The suction fan is a centrifugal fan having a bell mouth (34 g),
    The suction rotor is arranged so that the farthest away part from the suction hole of the bell mouth is 10% or more of the radius of the suction hole,
    The humidity control unit according to claim 3.
  5.  前記吸着ロータは、前記最離反箇所が前記吸込円孔の半径の40%以上離れ、前記吸込円孔に最も近い最近接箇所が前記吸込円孔の半径の40%未満離れている、
    請求項4に記載の調湿ユニット。
    In the suction rotor, the farthest separation point is separated by 40% or more of the radius of the suction circular hole, and the closest point closest to the suction circular hole is separated by less than 40% of the radius of the suction circular hole
    The humidity control unit according to claim 4.
  6.  前記吸着用ファン及び前記再生用ファンは、それぞれの重心が前記ケーシングの前記正面よりも前記背面に近い点に位置するように配置されている、
    請求項1から5のいずれか一項に記載の調湿ユニット。
    The suction fan and the regeneration fan are arranged such that the center of gravity of each of them is located at a point closer to the back surface than the front surface of the casing.
    The humidity control unit according to any one of claims 1 to 5.
  7.  前記吸着ロータを貫通する前記再生前空気を加熱する再生用熱交換器(31)をさらに備え、
     前記再生用熱交換器は、重心が前記ケーシングの前記正面よりも前記背面に近い点に位置するように配置されている、
    請求項1から6のいずれか一項に記載の調湿ユニット。
    A heat exchanger for regeneration (31) for heating the pre-regeneration air penetrating the adsorption rotor;
    The regeneration heat exchanger is disposed such that the center of gravity is located at a point closer to the back surface than the front surface of the casing.
    The humidity control unit according to any one of claims 1 to 6.
  8.  前記再生用熱交換器は、前記吸着ロータに沿うように斜めに配置されている、
    請求項7に記載の調湿ユニット。
    The regeneration heat exchanger is disposed obliquely along the adsorption rotor.
    The humidity control unit according to claim 7.
  9.  前記吸着用ファンは、第2回転軸の周りで回転する構成である吸着用ファンロータ(34a)を有し、
     前記再生用ファンは、第3回転軸の周りで回転する構成である再生用ファンロータ(35a)を有し、
     前記吸着用ファン及び前記再生用ファンは、前記第2回転軸及び前記第3回転軸のうちの少なくとも一方が前記背面に対して斜めになって前記第1回転軸に沿うように、配置されている、
    請求項1から8のいずれか一項に記載の調湿ユニット。
    The suction fan has a suction fan rotor (34a) configured to rotate around a second rotation axis;
    The regeneration fan has a regeneration fan rotor (35a) configured to rotate around a third rotation axis,
    The suction fan and the regeneration fan are arranged such that at least one of the second rotating shaft and the third rotating shaft is inclined with respect to the rear surface and along the first rotating shaft. Yes,
    The humidity control unit according to any one of claims 1 to 8.
  10.  前記吸着ロータは、再生のために前記吸着ロータを加熱するための加熱装置とともに吸着ロータユニット(39)に収納され、
     前記吸着ロータユニットは、前記ケーシングの前記正面と前記背面とに接触するようにまたは近接するように配置され、
     前記吸着用ファンは、前記ケーシングの前記正面及び/または前記背面に接触するようにまたは近接するように配置され、
     前記再生用ファンは、前記ケーシングの前記正面及び/または前記背面に接触するようにまたは近接するように配置されている、
    請求項1から9のいずれか一項に記載の調湿ユニット。
    The adsorption rotor is housed in an adsorption rotor unit (39) together with a heating device for heating the adsorption rotor for regeneration,
    The adsorption rotor unit is disposed so as to come into contact with or close to the front surface and the back surface of the casing,
    The suction fan is disposed so as to be in contact with or close to the front surface and / or the back surface of the casing;
    The regeneration fan is disposed so as to be in contact with or close to the front surface and / or the back surface of the casing.
    The humidity control unit according to any one of claims 1 to 9.
PCT/JP2018/014078 2017-04-07 2018-04-02 Humidity control unit WO2018186337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880022255.4A CN110476019B (en) 2017-04-07 2018-04-02 Humidity control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076981 2017-04-07
JP2017076981A JP2018179363A (en) 2017-04-07 2017-04-07 Humidity control unit

Publications (1)

Publication Number Publication Date
WO2018186337A1 true WO2018186337A1 (en) 2018-10-11

Family

ID=63713462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014078 WO2018186337A1 (en) 2017-04-07 2018-04-02 Humidity control unit

Country Status (3)

Country Link
JP (1) JP2018179363A (en)
CN (1) CN110476019B (en)
WO (1) WO2018186337A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299882A (en) * 2000-04-25 2001-10-30 Daikin Ind Ltd Air cleaner
JP2005185891A (en) * 2003-12-24 2005-07-14 Mitsubishi Chemicals Corp Dehumidifier and adsorbent for dehumidifier
JP2006275486A (en) * 2005-03-30 2006-10-12 Daikin Ind Ltd Humidity adjustment device
JP2008126205A (en) * 2006-11-24 2008-06-05 Zojirushi Corp Dehumidifier
JP2008249211A (en) * 2007-03-29 2008-10-16 Toshiba Carrier Corp Air conditioner
JP2009168281A (en) * 2008-01-11 2009-07-30 Toshiba Carrier Corp Humidifier device for air conditioner
JP2011007408A (en) * 2009-06-25 2011-01-13 Panasonic Corp Air conditioner
JP2013128866A (en) * 2011-12-20 2013-07-04 Panasonic Corp Dehumidification apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073651A (en) * 2006-09-22 2008-04-03 Daikin Ind Ltd Humidity control apparatus and air conditioner
JP5126443B1 (en) * 2011-07-11 2013-01-23 ダイキン工業株式会社 Humidity control device
JP2014202426A (en) * 2013-04-05 2014-10-27 株式会社デンソー Humidifier
WO2015061739A1 (en) * 2013-10-25 2015-04-30 Ail Research Inc. Methods for enhancing the dehumidification of heat pumps

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299882A (en) * 2000-04-25 2001-10-30 Daikin Ind Ltd Air cleaner
JP2005185891A (en) * 2003-12-24 2005-07-14 Mitsubishi Chemicals Corp Dehumidifier and adsorbent for dehumidifier
JP2006275486A (en) * 2005-03-30 2006-10-12 Daikin Ind Ltd Humidity adjustment device
JP2008126205A (en) * 2006-11-24 2008-06-05 Zojirushi Corp Dehumidifier
JP2008249211A (en) * 2007-03-29 2008-10-16 Toshiba Carrier Corp Air conditioner
JP2009168281A (en) * 2008-01-11 2009-07-30 Toshiba Carrier Corp Humidifier device for air conditioner
JP2011007408A (en) * 2009-06-25 2011-01-13 Panasonic Corp Air conditioner
JP2013128866A (en) * 2011-12-20 2013-07-04 Panasonic Corp Dehumidification apparatus

Also Published As

Publication number Publication date
CN110476019A (en) 2019-11-19
CN110476019B (en) 2021-03-16
JP2018179363A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2016098727A1 (en) Outdoor unit for air conditioner
JP6307701B2 (en) Dehumidifier
JP2012251692A (en) Outdoor unit of air conditioner
JP2012102887A (en) Air conditioning system
WO2022264786A1 (en) Dehumification/humidification unit
WO2018186337A1 (en) Humidity control unit
WO2018186336A1 (en) Humidity control unit
JP2010117112A (en) Air conditioner
JP4961987B2 (en) Air conditioner indoor unit and air conditioner equipped with the same
JP2015055391A (en) Air conditioner
JP2018179364A (en) Humidity control unit
JP6881578B2 (en) Humidity control unit
JP7335521B2 (en) air conditioner
WO2022270513A1 (en) Air-conditioning device
WO2023085166A1 (en) Air-conditioning device
JP3731570B2 (en) Humidification unit for air conditioner and air conditioner
JP7368751B2 (en) air conditioner
JP2014119180A (en) Humidity controller
JP5949112B2 (en) Humidity control device
JP5621535B2 (en) Air conditioner
JP6888283B2 (en) Humidifier
JP2024039432A (en) air conditioner
KR20230068190A (en) Damper for Air conditioner and Duct having the same
JP2023080694A (en) Ventilation device
JP2014119182A (en) Humidity controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780689

Country of ref document: EP

Kind code of ref document: A1