WO2022270513A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2022270513A1
WO2022270513A1 PCT/JP2022/024773 JP2022024773W WO2022270513A1 WO 2022270513 A1 WO2022270513 A1 WO 2022270513A1 JP 2022024773 W JP2022024773 W JP 2022024773W WO 2022270513 A1 WO2022270513 A1 WO 2022270513A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
indoor
outdoor
temperature
ventilation
Prior art date
Application number
PCT/JP2022/024773
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 松本
康史 鵜飼
裕記 藤岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021104107A external-priority patent/JP2023003126A/en
Priority claimed from JP2021129794A external-priority patent/JP7335521B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280043034.1A priority Critical patent/CN117501052A/en
Publication of WO2022270513A1 publication Critical patent/WO2022270513A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0041Indoor units, e.g. fan coil units characterised by exhaustion of inside air from the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-032855 discloses an air conditioner equipped with a ventilation fan that exhausts indoor air to the outdoors. This air conditioner operates the indoor blower at a low speed and the ventilation blower after a first predetermined time has elapsed after the compressor has been activated at the start of cooling, dehumidification, and the beginning of the season.
  • the air conditioner according to the first aspect is an air conditioner that performs at least one of cooling operation and dehumidifying operation, and includes a ventilation device and a control unit.
  • the ventilation device performs a first ventilation operation for supplying outdoor air indoors and a second ventilation operation for discharging indoor air to the outdoors.
  • the control unit controls to perform the first ventilation operation or the second ventilation operation during the cooling operation or the dehumidifying operation.
  • the control unit determines whether or not to perform the second ventilation operation according to the heat load in the room.
  • the controller can perform the second ventilation operation by exhausting air when the heat load in the room is high. Therefore, the heat load in the room can be reduced by discharging the room air to the outside. Therefore, the efficiency of cooling operation or dehumidifying operation can be improved.
  • the air conditioner according to the second aspect is the air conditioner according to the first aspect, and the heat load is determined by at least one of the indoor air temperature and the indoor air humidity.
  • the heat load depends on at least one of the indoor air temperature and humidity. Therefore, at least one of the indoor air temperature and humidity is taken into consideration as a condition for the second ventilation operation by exhaust.
  • the air conditioner according to the third aspect is the air conditioner according to the first aspect or the second aspect, further comprising an indoor unit arranged indoors.
  • the indoor unit includes a heat exchanger.
  • the heat load is determined by the temperature of the frame that makes up the room in which the indoor unit is installed.
  • the heat load depends on the body temperature. Therefore, the building body temperature is considered as a condition for the second ventilation operation by exhaust.
  • An air conditioner according to a fourth aspect is the air conditioner according to the first aspect to the third aspect, wherein the control unit performs the second ventilation operation when the temperature of the indoor air is higher than the temperature of the outdoor air. conduct.
  • the air conditioner of the fourth aspect discharges the indoor air to the outside when the temperature of the indoor air is higher than the temperature of the outdoor air. As a result, it is possible to reduce the need to cool or dehumidify the indoor air having a high temperature, so that the efficiency of the cooling operation and the dehumidification operation can be further improved.
  • An air conditioner pertaining to a fifth aspect is the air conditioner pertaining to the fourth aspect, wherein at the start of the cooling operation or the dehumidifying operation, the control unit controls the temperature of the indoor air to be higher than the temperature of the outdoor air. , perform the second ventilation operation.
  • the heat load is often high at the start of cooling operation or dehumidification operation.
  • the second ventilation operation is performed using the exhaust air to perform the cooling operation. And the effect of improving the efficiency of the dehumidifying operation can be enhanced.
  • An air conditioner according to a sixth aspect is the air conditioner according to the first aspect to the fifth aspect, wherein the control unit performs the first ventilation operation when the temperature of the indoor air is lower than the temperature of the outdoor air. conduct.
  • the air conditioner according to the sixth aspect supplies the outdoor air indoors when the temperature of the indoor air is lower than the temperature of the outdoor air. As a result, indoor air having a low temperature is not discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
  • An air conditioner according to a seventh aspect is the air conditioner according to the first aspect to the third aspect, wherein the control unit controls the temperature difference between the indoor air temperature and the outdoor air temperature when the difference becomes equal to or less than a predetermined value. to end the second ventilation operation.
  • the air conditioner according to the seventh aspect when the difference between the temperature of the indoor air and the temperature of the outdoor air is equal to or less than a predetermined value, it is determined that the heat load in the room has been removed, and the second ventilation operation by exhaust is performed. exit. Therefore, it is possible to suppress the indoor air whose temperature has been lowered by the cooling operation or the dehumidifying operation from being discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
  • the air conditioner according to the eighth aspect is the air conditioner according to the first to seventh aspects, further comprising an indoor unit arranged indoors.
  • the indoor unit includes a heat exchanger.
  • the indoor unit is formed with a suction port for sucking indoor air during the second ventilation operation.
  • the suction port is provided upstream of the heat exchanger.
  • the intake port is provided upstream of the heat exchanger during the second ventilation operation using exhaust air, it is possible to suppress the indoor air heat-exchanged by the heat exchanger from being discharged to the outside. Therefore, the efficiency of the cooling operation and the dehumidifying operation can be further improved.
  • An air conditioner according to a ninth aspect is the air conditioner according to the first aspect to the eighth aspect, wherein the controller controls the temperature of the indoor air to be higher than the temperature of the outdoor air during the cooling operation or the dehumidifying operation. When it is low, the first ventilation operation and the second ventilation operation are not performed for a predetermined time.
  • both the first ventilation operation and the second ventilation operation are temporarily not performed when the temperature of the indoor air is lower than the temperature of the outdoor air. Therefore, the indoor air having a low temperature is not discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
  • FIG. 1 is an external view of an air conditioner according to an embodiment of the present disclosure
  • FIG. It is a system diagram of a refrigerant circuit used in an air conditioner with an outline of the air flow. It is an exploded perspective view of an outdoor unit and a ventilator. It is an exploded perspective view (first state) of the damper. It is an exploded perspective view (second state) of the damper. It is a cross-sectional perspective view which shows the flow of the air in the damper of a 1st state.
  • FIG. 7 is a cross-sectional perspective view showing air flow in the damper in the second state; (a) is a schematic diagram showing air flow in a damper in a first state, and (b) is a schematic diagram showing air flow in a damper in a second state.
  • FIG. 10 is a schematic diagram showing the air flow in the damper in the third state; 3 is a control block diagram of the air conditioner; FIG. It is a top view of a remote control. 4 is a schematic diagram for explaining a heat load L; FIG. 4 is a flow chart showing control of a ventilator by a control unit;
  • an air conditioner 1 air-conditions and ventilates a room such as a building.
  • the air conditioner 1 includes an air conditioner 1a that air-conditions the room, a ventilator 1b that ventilates the room, and a controller 100 (see FIG. 10).
  • the air conditioner 1a performs at least one of cooling operation and dehumidifying operation.
  • the air conditioner 1a of this embodiment performs a cooling operation, a dehumidifying operation, and a heating operation.
  • the air conditioner 1a has an indoor unit 2, an outdoor unit 3, and connecting pipes 31 and 32.
  • the indoor unit 2 is arranged indoors.
  • the outdoor unit 3 is arranged outdoors.
  • Communication pipes 31 and 32 connect the indoor unit 2 and the outdoor unit 3 .
  • a vapor compression refrigerant circuit is configured by connecting the indoor unit 2 and the outdoor unit 3 via connecting pipes 31 and 32 .
  • the ventilation device 1b performs a first ventilation operation (hereinafter also referred to as an air supply operation) for supplying outdoor air to the room and a second ventilation operation (hereinafter also referred to as an exhaust operation) for discharging the indoor air to the outside. .
  • the ventilation device 1b of the present embodiment performs an air supply operation, an exhaust operation, and a humidification operation in which outdoor air is humidified and supplied indoors.
  • the control unit 100 controls components of the air conditioner 1a and the ventilator 1b.
  • the control unit 100 performs control to perform the air supply operation or the exhaust operation during the cooling operation or the dehumidifying operation.
  • the control unit 100 determines whether or not to perform the exhaust operation according to the heat load in the room.
  • the indoor unit 2 of this embodiment is a wall-mounted type. As shown in FIG. 2 , the indoor unit 2 includes an indoor heat exchanger 11 , an indoor fan 12 and a fan motor 13 .
  • the indoor heat exchanger 11 includes a heat transfer tube that is folded back multiple times at both ends in the length direction, and a plurality of fins through which the heat transfer tube is inserted, and performs heat exchange with the air that comes into contact with the heat transfer tube.
  • the indoor fan 12 is, for example, a cross-flow fan.
  • the indoor fan 12 has a cylindrical shape, has a large number of blades on its peripheral surface, and generates an air flow in a direction intersecting the rotation axis.
  • the indoor fan 12 draws indoor air into the indoor unit 2 and blows out the air after heat exchange with the indoor heat exchanger 11 into the room.
  • the fan motor 13 rotates the indoor fan 12 .
  • the indoor unit 2 is formed with an inlet 18 and an outlet 19 .
  • the suction port 18 sucks indoor air during exhaust operation.
  • the suction port 18 also sucks indoor air during air-conditioning operation.
  • the air outlet 19 blows indoor air and outdoor air indoors.
  • the inlet 18 and the outlet 19 are formed in the casing of the indoor unit 2 .
  • the suction port 18 is provided upstream of the indoor heat exchanger 11 . Part of the room air introduced from the suction port 18 during exhaust operation is discharged to the outside from the air supply/exhaust port 14 without passing through the indoor heat exchanger 11 . The rest of the indoor air introduced from the suction port 18 during the exhaust operation exchanges heat with the indoor heat exchanger 11 when passing through the indoor heat exchanger 11, is cooled, dehumidified, or heated, and then flows through the outlet. 19 into the room.
  • the indoor air introduced from the suction port 18 during the air supply operation passes through the indoor heat exchanger 11, is cooled, dehumidified or heated, and then supplied from the air outlet 19 into the room.
  • the indoor unit 2 is formed with an air supply/exhaust port 14 .
  • the air supply/exhaust port 14 is an air supply port through which outdoor air is introduced during an air supply operation, and an exhaust port through which indoor air is discharged during an exhaust operation.
  • the outdoor air in the air supply operation, the outdoor air is supplied into the room through the air supply/exhaust port 14 , and in the exhaust operation, the indoor air is discharged to the outside through the air supply/exhaust port 14 .
  • the air supply/exhaust port 14 is a channel through which the outdoor air passes during the air supply operation and a channel through which the indoor air passes during the exhaust operation.
  • the air supply/exhaust port 14 is an opening formed in the wall W (see FIG. 12) of the room.
  • Indoor unit 2 further includes an air supply/exhaust port member that forms air supply/exhaust port 14 .
  • the air supply/exhaust port member is connected to a hose 6, which will be described later. Therefore, the air supply/exhaust port 14 and the internal space of the hose 6 communicate with each other.
  • the air supply/exhaust port 14 is provided upstream of the indoor heat exchanger 11 . Outdoor air introduced from the air supply/exhaust port 14 during the air supply operation passes through the indoor heat exchanger 11 . Therefore, during the cooling operation or the dehumidifying operation, the outdoor air is cooled or dehumidified by the indoor heat exchanger 11 and then supplied into the room from the outlet 19 . In addition, the outdoor air that is not humidified when the air supply operation is performed during the heating operation or the humidified outdoor air when the humidification operation is performed during the heating operation is heated by the indoor heat exchanger 11 and then blown. It is supplied into the room from the outlet 19 .
  • an indoor temperature sensor 15, an indoor humidity sensor 16, and a human detection sensor 17 are arranged in the indoor unit 2. As shown in FIG.
  • the indoor temperature sensor 15 detects the indoor temperature.
  • the indoor humidity sensor 16 detects indoor humidity.
  • the indoor temperature sensor 15 and the indoor humidity sensor 16 may be indoor temperature and humidity sensors that detect indoor temperature and indoor humidity.
  • the human detection sensor 17 detects the presence or absence of people in the room.
  • the human detection sensor 17 is, for example, an infrared sensor having one or more infrared light receiving elements.
  • the indoor temperature sensor 15, the indoor humidity sensor 16, and the human detection sensor 17 may be arranged somewhere in the room instead of the indoor unit 2.
  • Outdoor unit 3 includes a compressor 21, a four-way switching valve 22, an accumulator 23, an outdoor heat exchanger 24, an expansion valve 25, a filter 26, a liquid closing valve 27, It includes a gas shutoff valve 28 , an outdoor fan 29 and a fan motor 30 .
  • the compressor 21 is a mechanism that compresses the low-pressure refrigerant in the refrigeration cycle to high pressure.
  • the four-way switching valve 22 is connected to the discharge side of the compressor 21 .
  • the accumulator 23 is connected to the suction side of the compressor 21 .
  • the outdoor heat exchanger 24 is connected to the four-way switching valve 22 .
  • the expansion valve 25 is connected to the outdoor heat exchanger 24 .
  • the expansion valve 25 is connected to a connecting pipe 32 via a filter 26 and a liquid closing valve 27, and is connected to one end of the indoor heat exchanger 11 via this connecting pipe 32.
  • the four-way switching valve 22 is also connected to a connecting pipe 31 via a gas shutoff valve 28 , and is connected to the other end of the indoor heat exchanger 11 via this connecting pipe 31 .
  • the outdoor fan 29 exhausts the outdoor air after heat exchange in the outdoor heat exchanger 24 to the outside.
  • the outdoor fan 29 is, for example, a propeller fan.
  • the fan motor 30 rotationally drives the outdoor fan 29 .
  • the outdoor unit 3 is configured by casing members such as a front panel 51, side plates 52 and 53, a protective wire mesh (not shown), and a metal bottom plate 54, refrigerant circuit components housed inside, and the like. It is configured.
  • the front panel 51 is a member made of resin that covers the front surface of the outdoor unit 3 and is arranged downstream of the outdoor heat exchanger 24 for the air passing through the outdoor heat exchanger 24 .
  • the front panel 51 is provided with an air outlet 51a consisting of a plurality of slit-shaped openings, and the air that has passed through the outdoor heat exchanger 24 passes through the air outlet 51a from the inside of the outdoor unit 3 to the outdoor unit 3. blow out to the outside of A fan outlet member 56 and a partition plate 57 are attached to the rear of the front panel 51 .
  • the side plates 52 and 53 are metal members that cover the sides of the outdoor unit 3 .
  • a right side plate 52 is provided on the right side
  • a left side plate 53 is provided on the left side.
  • the side plates 52 and 53 are provided substantially parallel to the blowing direction of the air that passes through the outdoor heat exchanger 24 and blows out from the blowout port 51a.
  • a shut-off valve cover 55 is attached to the right side plate 52 to protect the liquid shut-off valve 27 and the gas shut-off valve 28 (see FIG. 2).
  • the outdoor heat exchanger 24 has a substantially L shape in plan view, and is arranged in front of the protective wire mesh that covers the back surface of the outdoor unit 3 .
  • An outdoor fan 29 and a fan motor 30 are provided in a ventilation space in front of the outdoor heat exchanger 24 and between the partition plate 57 and the left side plate 53 .
  • the outdoor fan 29 brings the air taken into the outdoor unit 3 into contact with the outdoor heat exchanger 24, and exhausts the air forward of the front panel 51 from the outlet 51a.
  • the parts that make up the refrigerant circuit such as the compressor 21, the accumulator 23, the four-way switching valve 22, and the expansion valve 25, are arranged in the machine room between the partition plate 57 and the right side plate 52.
  • An electric component unit 58 is attached to the upper portion of the outdoor unit 3 .
  • the electrical component unit 58 is composed of an electrical component box and a printed circuit board on which circuit components for controlling each part are mounted.
  • a flameproof plate 59 is attached above the electrical component unit 58 .
  • the outdoor unit 3 is provided with an outdoor temperature sensor 33 and an outdoor humidity sensor 34 .
  • the outdoor temperature sensor 33 detects the outdoor temperature.
  • the outdoor humidity sensor 34 detects outdoor humidity.
  • the outdoor temperature sensor 33 and the outdoor humidity sensor 34 may be outdoor temperature and humidity sensors that detect outdoor temperature and outdoor humidity.
  • outdoor temperature sensor 33 and the outdoor humidity sensor 34 may be arranged somewhere outside the outdoor unit 3 instead of the outdoor unit 3 .
  • the ventilation device 1 b has a ventilation unit 4 and a hose 6 .
  • the ventilation unit 4 is arranged indoors or outdoors, and is arranged in the outdoor unit 3 here.
  • a hose 6 connects the ventilation unit 4 and the indoor unit 2 .
  • Ventilation unit 4 performs an air supply operation (first ventilation operation) for supplying outdoor air to the room and an exhaust operation (second ventilation operation) for discharging indoor air to the outside. It is a unit that can Here, the ventilation unit 4 can perform an air supply operation, an exhaust operation, and a humidification operation. The air supply operation and the humidification operation are the same in that outdoor air is supplied indoors. It is different from the humidification operation performed.
  • the ventilation unit 4 of this embodiment is arranged above the outdoor unit 3 and integrated with it.
  • the configuration of the ventilation unit 4 will be described below mainly with reference to FIG.
  • the ventilation unit 4 includes a casing 40 , an absorbent/humidifying rotor 41 , a heater assembly 42 , a radial fan assembly 43 , a damper 44 , an adsorption side duct 45 and an adsorption fan 46 .
  • the casing 40 covers the front, rear and both sides of the ventilation unit 4 and is arranged so as to contact the top of the outdoor unit 3 .
  • Adsorption air outlets 40a consisting of a plurality of slit-shaped openings are provided on the front surface of the casing 40, and outdoor air is blown out of the outdoor unit 3 through the adsorption air outlets 40a.
  • an adsorption air suction port 40b and an air supply/exhaust port 40c are provided side by side in the left-right direction.
  • the adsorption air suction port 40b is an opening through which air taken in from the outside in order to cause the adsorption/humidification rotor 41 to adsorb moisture.
  • the air supply/exhaust port 40c is an opening through which the air taken in to be sent to the indoor unit 2 passes, or the air taken in from the indoor unit 2 and exhausted to the outside passes through.
  • the upper part of the casing 40 is covered with a top plate 66.
  • the right side is a space for housing the suction/humidification rotor 41 and the like, and the left side is a suction fan housing space SP1 for housing the suction fan 46 and the like.
  • an absorbent/humidifying rotor 41, a heater assembly 42, a radial fan assembly 43, a damper 44, an adsorption side duct 45, an adsorption fan 46, and the like are arranged.
  • the absorption/humidification rotor 41 is a ceramic rotor having a honeycomb structure having a generally disc shape, and has a structure through which air can easily pass.
  • the absorbent/humidifying rotor 41 has a circular shape in plan view.
  • the humidifying/absorbing rotor 41 has a fine honeycomb shape in a horizontal cross section. The air passes through a large number of cylindrical portions of the humidifying/absorbing rotor 41 having polygonal cross sections.
  • the main part of the humidifying rotor 41 is sintered from an adsorbent such as zeolite, silica gel, or alumina.
  • This adsorbent has the property of adsorbing moisture in the air it comes in contact with, and releasing the adsorbed moisture when heated.
  • the adsorption/humidification rotor 41 is rotatably supported by a support shaft 40d provided on the casing 40 side via a rotor guide (not shown).
  • a gear is formed on the peripheral surface of the humidifying/absorbing rotor 41 and meshes with a rotor drive gear 48 attached to the drive shaft of a rotor drive motor 47 .
  • the heater assembly 42 is composed of a heater cover 42a and a heater main body 42b (see FIG. 10) housed therein. It heats the air sent to the humidification rotor 41 .
  • the heater assembly 42 is attached above the absorbent/humidifying rotor 41 via a heater support plate 49 .
  • the radial fan assembly 43 is arranged on the side of the humidifying/absorbing rotor 41, and includes a radial fan 430 (see FIG. 8(a)) and a radial fan 430. and a radial fan motor 431 (see FIG. 10) for rotation. 4, the radial fan assembly 43 shares an upper lid 73 with the damper 44, and the upper lid 73 closes the bottom surface of the radial fan assembly 43. As shown in FIG. The upper lid 73 is provided with a blowout port 73a and an intake port 73b. The air outlet 73a is an opening through which air sent from the radial fan assembly 43 into the damper 44 passes.
  • the intake port 73b is an opening through which air sent from within the damper 44 to the radial fan assembly 43 passes.
  • the radial fan assembly 43 generates an air flow from the air supply/exhaust port 40c to the interior of the room through the humidification/humidification rotor 41 and the damper 44, and sends the air taken in from the outside to the indoor unit 2.
  • the radial fan assembly 43 can also discharge the air taken in from the indoor unit 2 to the outside.
  • the radial fan assembly 43 switches these operations by switching the damper 44 .
  • the radial fan assembly 43 When the outdoor air taken in from the outside is sent to the indoor unit 2 , the radial fan assembly 43 sends the outdoor air that has passed through the right half of the humidification/humidification rotor 41 through the damper 44 to the air supply/exhaust duct 61 . send to The air supply/exhaust duct 61 is connected to the hose 6 (see FIG. 1), and the radial fan assembly 43 supplies outdoor air to the indoor unit 2 via the air supply/exhaust duct 61 and the hose 6 .
  • the radial fan assembly 43 passes the air sent from the air supply/exhaust duct 61 to the outside through the air supply/exhaust port 40c provided on the back surface of the casing 40.
  • the damper 44 is rotary air flow path switching means arranged below the radial fan assembly 43, and switches between a first state, a second state and a third state.
  • the air blown out from the radial fan assembly 43 is supplied to the indoor unit 2 through the air supply/exhaust duct 61 and the hose 6 .
  • the air flows in the direction indicated by the solid-line arrow A1 in FIG.
  • the indoor air flows in the direction of the arrow indicated by the dashed arrow A2 in FIG.
  • the air is exhausted from the three-dimensional structure 43 to the outside through the air supply/exhaust port 40c.
  • Adsorption-side duct and adsorption fan The adsorption-side duct 45 covers a portion of the upper surface of the adsorption/humidification rotor 41 where the heater assembly 42 is not located (approximately half portion on the left). .
  • the suction-side duct 45 forms an air flow path leading from the left half of the suction/humidification rotor 41 to the suction fan storage space SP1, which will be described below, together with the suction-side bell mouth 63, which will be described later.
  • the suction fan 46 housed in the suction fan housing space SP1 is a centrifugal fan rotated by a suction fan motor 65.
  • An air current is generated that flows from the adsorption air suction port 40b to the opening 63a via the adsorption/humidification rotor 41.
  • the adsorption fan 46 exhausts the dry air having moisture adsorbed while passing through the adsorption/humidification rotor 41 toward the front of the casing 40 from the adsorption air outlet 40a.
  • the adsorption-side bell mouth 63 is provided above the adsorption fan storage space SP1, and plays a role of guiding the air coming through the air flow path formed by the adsorption-side duct 45 to the adsorption fan 46 .
  • the damper 44 as shown in FIG. It is composed of a motor 74 (see FIG. 10) and a limit switch 75 (see FIG. 10) for detecting whether the passage switching member 72 has moved normally.
  • the damper 44 is arranged below the radial fan assembly 43 and switches the flow of air by rotationally moving the flow path switching member 72 .
  • the casing 71 is composed of a casing side wall 71a and a casing bottom plate 71b, and is open at the top.
  • the casing side wall 71a extends upward from the casing bottom plate 71b and curves sideways in an arc shape.
  • a part of the casing 71 has a casing side opening 71c where the casing side wall 71a does not exist, and the space inside the casing 71 is a space opened to the side by the casing side opening 71c.
  • a rail 71d protruding upward from the casing bottom plate 71b is provided near the center of the casing bottom plate 71b, and is curved so as to be substantially parallel to the casing side wall 71a.
  • a space sandwiched between the rail 71d and the casing side wall 71a serves as a moving space in which the channel switching member 72 rotates.
  • a portion of the casing bottom plate 71b through which the passage switching member 72 passes is provided with a casing bottom opening 71e, which is connected to a hole of a connection pipe 71f provided on the outer surface of the casing bottom plate 71b.
  • the air supply/exhaust duct 61 is connected to the connecting pipe 71f.
  • the upper lid 73 is a plate-like member that covers the upper surface of the casing 71, and the radial fan assembly 43 is attached thereon. As described above, the upper lid 73 is provided with the blowout port 73a and the intake port 73b.
  • the air outlet 73 a is an opening through which air sent from the radial fan assembly 43 into the damper 44 passes, and is provided above the casing bottom opening 71 e of the casing 71 .
  • the intake port 73b is an opening through which air sent from the damper 44 to the radial fan assembly 43 passes, and is provided to face the space between the casing bottom opening 71e and the casing side opening 71c in the moving space. It is
  • the flow path switching member 72 is a member that switches the flow of air passing through the damper 44 by moving in the movement space.
  • the flow path switching member 72 divides the space inside the casing 71 formed by the casing 71 and the upper lid 73 into a space SP2 inside the flow path switching member 72 and a space SP3 outside the flow path switching member 72 ( 8(a), 8(b) and 9).
  • the channel switching member 72 is mainly composed of an inner wall 72a, an outer wall 72b, flat walls 72c and 72d, and a bottom plate 72e.
  • the channel switching member 72 is open at the top and closed at the top by the top cover 73 .
  • the inner wall 72a and the outer wall 72b are parallel to each other and curved laterally in an arc having a central angle of about 90 degrees.
  • the outer wall 72b is provided on the casing side wall 71a side, and the inner wall 72a is provided on the rail 71d side.
  • a gear 72 f is provided on the outer surface of the inner wall 72 a and meshes with a gear 740 of the damper drive motor 74 to transmit the rotation of the damper drive motor 74 to the flow path switching member 72 .
  • the flat side walls 72c and 72d are plate-like members connecting side ends of the inner wall 72a and the outer wall 72b, and the flat side wall 72c is provided with a side opening 72g. 72 g of side openings are connected with the hole of 72 h of piping provided in the outer surface of the flat side wall 72c.
  • the pipe 72h is curved downward by about 90 degrees from the outer surface of the flat side wall 72c, and the air entering from the lower hole of the pipe 72h is directed from the side opening 72g to the space SP2 inside the flow path switching member 72. and send.
  • a bottom opening 72i is provided in the bottom plate 72e.
  • the size of the flow path switching member 72, the position of the bottom opening 72i, and the like are determined when the bottom opening 72i is positioned right above the casing bottom opening 71e of the casing 71, as shown in FIG.
  • the space SP2 inside the flow path switching member 72 is determined to communicate with the intake port 73b of the upper lid 73 and not communicate with the blowout port 73a when positioned directly above the casing bottom opening 71e of the 71b. .
  • the damper drive motor 74 is provided to rotate the flow path switching member 72 as shown in FIGS.
  • the damper drive motor 74 rotates the flow path switching member 72, and the first state in which the flow path switching member 72 is in the rotational position shown in FIGS.
  • the second state in which the rotational position shown in FIG. 8B is reached and the third state in which the rotational position shown in FIG. 9 is reached are switched.
  • the limit switch 75 is provided so as to operate when the flow path switching member 72 moves normally. It can be detected whether the state, the second state and the third state could be switched.
  • the limit switch 75 is connected to the control section 100 and sends detection results to the control section 100 .
  • the space SP2 inside the flow path switching member 72 communicates with the blowout port 73a through the open upper portion, and the casing 71 through the bottom opening 72i. of the casing bottom opening 71e.
  • the space SP3 outside the channel switching member 72 communicates with the intake port 73b.
  • the passage for guiding the outdoor air that has passed through the heater assembly 42 and the humidifying/humidifying rotor 41 to the damper 44 and the space SP3 outside the flow path switching member 72 communicate through the casing side opening 71c.
  • the outdoor air passing through the heater assembly 42 and the humidifying/humidifying rotor 41 passes through the intake port 73b into the radial fan assembly 43 as the radial fan 430 accommodated in the radial fan assembly 43 rotates. come in.
  • the outdoor air blown out from the outlet 73a passes through the space SP2 inside the flow path switching member 72, the bottom opening 72i of the flow path switching member 72, the casing bottom opening 71e, and the connection pipe 71f to the outside of the damper 44. Sent. Since the connecting pipe 71f is connected to the hose 6 via the air supply/exhaust duct 61 (see FIGS.
  • connection pipe 71f communicates with the space SP2 inside the flow path switching member 72 via the pipe 72h.
  • space SP2 inside the flow path switching member 72 communicates with the intake port 73b of the radial fan assembly 43 through the open top.
  • the blowout port 73a of the radial fan assembly 43 communicates with the space SP3 outside the flow path switching member 72 and connects to a passage leading to the outside of the outdoor unit 3 via the casing side opening 71c. Therefore, in the second state, the indoor air flows in the direction of the arrows shown in FIGS. The air is blown out from the side opening 71 c and is exhausted to the outside of the outdoor unit 3 through the air supply/exhaust port 40 c of the casing 40 .
  • the channel switching member 72 is positioned between the first state and the second state.
  • the intake port 73b of the radial fan assembly 43 communicates with the space SP3 outside the flow path switching member 72.
  • the outlet 73 a of the radial fan assembly 43 communicates with the space SP ⁇ b>2 inside the flow path switching member 72 .
  • the bottom opening 72i of the channel switching member 72 and the lower opening 720h of the pipe 72h are closed by the casing bottom plate 71b of the casing 71 .
  • a casing bottom opening 71 e of the casing 71 is also closed by a bottom plate 72 e of the channel switching member 72 .
  • the air path connecting the outdoor unit 3 and the indoor unit 2 is closed by the damper 44 .
  • Hose As shown in Figures 1 and 2, between the ventilation unit 4 and the indoor unit 2 placed outdoors, the outdoor air from the ventilation unit 4 is supplied to the indoor unit 2 side.
  • a hose 6 is provided for use when the indoor air is discharged to the outside of the room.
  • the hose 6 connects the ventilation unit 4 and the indoor unit 2 .
  • one end of the hose 6 is connected to an air supply/exhaust port member (here, the wall W) forming the air supply/exhaust port 14 of the indoor unit 2, and the other end of the hose 6 is connected to the ventilation unit 4. be. Therefore, in the air supply operation, the outdoor air is supplied into the room through the hose 6, and in the exhaust operation, the indoor air is discharged to the outside through the hose 6.
  • the hose 6 is a member that forms a flow path for the outdoor air during the air supply operation, and a member that forms a flow path for the indoor air during the exhaust operation. Also, the hose 6 is a member that further configures a flow path through which humidified outdoor air passes during the humidification operation.
  • FIGS. 10 and 11 A remote controller 102 shown in FIGS. 10 and 11 is provided indoors.
  • the remote controller 102 may be wired or wirelessly connected to the control unit 100 via a transmission line, a communication line, or the like.
  • the remote control 102 allows the user to select various operations such as air conditioning operation and ventilation operation. As shown in FIG. 11, the remote controller 102 of the present embodiment selects heating operation, cooling operation and dehumidification operation as air conditioning operation, air supply operation, exhaust operation and humidification operation as ventilation operation, setting of air conditioning operation, and the like. Including buttons.
  • the remote controller 102 switches between air supply operation and exhaust operation.
  • the button 102a When the button 102a is pushed, the air supply operation is started.
  • the button 102b When the button 102b is pushed, the exhaust operation is started.
  • the user can select the air supply operation or the exhaust operation using the buttons 102a and 102b of the remote control 102.
  • the exhaust operation can be performed by the user pressing the button 102b when eating or when the number of people in the room increases.
  • the remote control 102 further includes a display section 102c.
  • the display unit 102c displays the selected operation, set temperature, humidity, message, and the like.
  • the controller 100 automatically performs the air supply operation or the exhaust operation during the cooling operation or the dehumidifying operation.
  • the control unit 100 shown in FIG. 10 is realized by, for example, a computer.
  • the computer for example, includes a control computing device and a storage device.
  • a processor can be used for the control computing unit.
  • the control unit 100 has a CPU as a processor.
  • the control arithmetic unit reads out a program stored in a storage device, for example, and performs predetermined image processing, arithmetic processing, or sequence processing according to the program. Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program, for example.
  • a storage device can be used as a database.
  • the control unit 100 has a memory as a storage device.
  • the control unit 100 of this embodiment is divided into the indoor unit 2, the outdoor unit 3, the ventilation unit 4, and the like of the air conditioner 1.
  • the controller 100 includes an outdoor temperature sensor 33, an outdoor humidity sensor 34, an indoor temperature sensor 15, an indoor humidity sensor 16, a limit switch 75, an indoor unit 2, an outdoor unit 3, and a ventilation unit 4. connected to each device in the
  • the control unit 100 operates each device according to various operations such as heating operation, cooling operation, dehumidification operation, air supply operation, exhaust operation, and humidification operation based on operation commands from the remote controller 102 or the like, or automatically. control.
  • the control unit 100 controls to perform air supply operation or exhaust operation during cooling operation or dehumidifying operation.
  • the control unit 100 of the present embodiment further controls to perform the air supply operation, the exhaust operation, or the humidification operation during the heating operation.
  • control unit 100 controls to continue the humidifying operation even if an instruction to perform the exhaust operation is received during the humidifying operation. Specifically, when the exhaust operation button 102b is pressed from the remote controller 102 during the humidification operation, the control unit 100 continues the humidification operation, and displays the message "The humidification operation is in progress, so it cannot be used.” ” to indicate that the exhaust operation cannot be used.
  • control unit 100 may stop the humidification operation and switch to the air supply operation when receiving an instruction to perform the air supply operation during the humidification operation, or may continue the humidification operation.
  • the control unit 100 determines whether to perform the exhaust operation according to the heat load in the room. In other words, the control unit 100 that causes the air supply operation or the exhaust operation to be performed during the cooling or dehumidifying operation determines whether or not to perform the exhaust operation according to the heat load in the room.
  • FIG. 12 shows the indoor (indoor space) SI to be air-conditioned defined by the room R. As shown in FIG. 12
  • the indoor SI has a heat load L.
  • the heat load L is the amount of heat that the air conditioner 1 needs to remove from the indoor air in order to bring the indoor temperature Ti to the target temperature Tt.
  • the heat load L includes an external load Lo and an internal load Li.
  • the external load Lo is caused by the outdoor temperature To.
  • An internal load Li exists in the indoor SI and is caused by heat sources 80 such as home appliances, electronic devices, and humans.
  • the air conditioner 1 produces an air conditioning capacity Q in order to reduce the heat load L of the room SI.
  • the control unit 100 calculates the heat load L of the indoor SI in order to generate an appropriate air conditioning capacity Q.
  • the heat load L calculated here may not be the heat load in the strict sense, but may be an amount related to the heat load.
  • the heat load L to be calculated is determined by a function of the target temperature Tt, the indoor temperature Ti, and the outdoor temperature To.
  • the control unit 100 automatically switches between the air supply operation and the exhaust operation according to the heat load L during the cooling operation or the dehumidifying operation. Automatic driving can be selected by the user with the remote controller 102 . However, the control unit 100 gives priority to the ventilation operation selected by the user using the remote control 102 or the like.
  • the control of the ventilator 1b by the control unit 100 when the button 102d (see FIG. 11) of the remote controller 102 is pressed will be described below mainly with reference to FIG.
  • the heat load L to be calculated is obtained from a function of the indoor temperature Ti and the outdoor temperature To.
  • the process starts from the starting point of the process start of step SS in FIG.
  • the control unit 100 checks whether air conditioning operation (here, cooling operation or dehumidifying operation) has started.
  • the controller 100 of the present embodiment defines the time when the operation of the compressor 21 is first started after the air conditioning operation is stopped as the start time of the cooling operation or the dehumidifying operation. In other words, the control unit 100 does not consider the time when the compressor starts to operate when the thermostat is switched from the thermo-off state to the thermo-on state as the start time of the cooling operation or the dehumidifying operation.
  • the control unit 100 shifts the process to S1 if the air conditioning operation has started, and returns the process to S0 if the air conditioning operation has not started.
  • step S1 the control unit 100 sets the heat load threshold value Lth, which is a variable managed by itself, to the first value V1.
  • step S2 the control unit 100 acquires the room temperature Ti as the temperature of the room air by the room temperature sensor 15.
  • step S3 the controller 100 acquires the outdoor temperature To by the outdoor temperature sensor 33 as the temperature of the outdoor air.
  • step S4 the control unit 100 calculates the heat load L of the indoor SI based on the indoor temperature Ti and the outdoor temperature To. For example, the control unit 100 compares the outdoor temperature To and the indoor temperature Ti, and calculates the heat load L according to the difference ⁇ T between the two.
  • step S5 the control unit 100 compares the heat load L with the heat load threshold Lth stored by itself.
  • the control unit 100 determines the difference ⁇ T based on the difference between the indoor temperature Ti and the outdoor temperature To.
  • step S6 the control unit 100 performs exhaust operation by the ventilator 1b. Specifically, the control unit 100 determines to perform the exhaust operation when the indoor temperature Ti is higher than the outdoor temperature To.
  • step S5 when the thermal load L is equal to or lower than the thermal load threshold Lth, the process proceeds to step S7.
  • the control unit 100 performs the air supply operation by the ventilator 1b. Specifically, the control unit 100 determines to perform the air supply operation when the indoor temperature Ti is lower than or equal to the outdoor temperature To. In other words, the controller 100 determines not to perform the exhaust operation when the indoor temperature Ti is lower than or equal to the outdoor temperature To.
  • step S6 when the controller 100 determines whether to perform the exhaust operation or the air supply operation during the cooling operation or the dehumidifying operation, the exhaust operation (step S6) or the air supply operation (step S7) is performed. Control unit 100 returns the process to step S2. Thus, even after the air conditioning operation is started, the control unit 100 determines whether or not to perform the exhaust operation according to the heat load of the indoor SI. Therefore, when the indoor temperature Ti is higher than the outdoor temperature To, the control unit 100 of this embodiment performs the exhaust operation (step S6). When the indoor temperature Ti is lower than the outdoor temperature To, the air supply operation is performed (step S7).
  • the air conditioner 1 of the present embodiment performs heating operation, cooling operation, and dehumidification operation as air conditioning operation, and performs air supply operation, exhaust operation, and humidification operation as ventilation operation.
  • Various operations are performed by the control unit 100 controlling each component.
  • control unit 100 When performing the cooling operation, the control unit 100 causes the outdoor heat exchanger 24 to function as a refrigerant radiator and the indoor heat exchanger 11 to function as a refrigerant evaporator.
  • the four-way selector valve 22 is switched.
  • low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed to high pressure in the refrigeration cycle, and then discharged.
  • a high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 24 through the four-way switching valve 22 .
  • the high-pressure refrigerant sent to the outdoor heat exchanger 24 exchanges heat with the outdoor air supplied by the outdoor fan 29 in the outdoor heat exchanger 24 to radiate heat.
  • the high-pressure refrigerant that has released heat in the outdoor heat exchanger 24 is sent to the expansion valve 25 and decompressed to a low pressure in the refrigeration cycle.
  • the low-pressure refrigerant decompressed by the expansion valve 25 is sent to the indoor heat exchanger 11 through the filter 26 , liquid closing valve 27 and connecting pipe 32 .
  • the low-pressure refrigerant sent to the indoor heat exchanger 11 exchanges heat with the indoor air supplied by the indoor fan 12 in the indoor heat exchanger 11 and evaporates. As a result, the indoor air is cooled and blown into the room.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 11 is sucked into the compressor 21 again through the connecting pipe 31 , the gas shutoff valve 28 , the four-way switching valve 22 and the accumulator 23 .
  • the controller 100 causes the refrigerant sealed in the refrigerant circuit to circulate through the compressor 21, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 11 in that order.
  • (3-2) Dehumidifying operation When performing the dehumidifying operation, the control unit 100 controls the outdoor heat exchanger 24 to function as a refrigerant radiator and the indoor heat exchanger 11 to function as a refrigerant evaporator, as in the cooling operation.
  • the four-way switching valve 22 is switched so as to function as a In the dehumidification operation, as in the cooling operation, the controller 100 causes the refrigerant sealed in the refrigerant circuit to circulate in the order of the compressor 21, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 11. done.
  • control unit 100 sets the outdoor heat exchanger 24 to function as a refrigerant evaporator and the indoor heat exchanger 11 to function as a refrigerant radiator.
  • the four-way selector valve 22 is switched.
  • the high-pressure refrigerant that has radiated heat in the indoor heat exchanger 11 is sent to the expansion valve 25 through the connecting pipe 32, the liquid closing valve 27 and the filter 26, and is decompressed to the low pressure in the refrigeration cycle.
  • the low-pressure refrigerant decompressed by the expansion valve 25 is sent to the outdoor heat exchanger 24 .
  • the low-pressure refrigerant sent to the outdoor heat exchanger 24 exchanges heat with the outdoor air supplied by the outdoor fan 29 in the outdoor heat exchanger 24 and evaporates.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 24 is sucked into the compressor 21 again through the four-way switching valve 22 and the accumulator 23 .
  • the controller 100 causes the refrigerant sealed in the refrigerant circuit to circulate through the compressor 21, the indoor heat exchanger 11, the expansion valve 25, and the outdoor heat exchanger 24 in this order.
  • the radial fan assembly 43 when the radial fan assembly 43 is driven, as shown in FIG. portion and into the heater assembly 42 .
  • the outdoor air that has entered the heater assembly 42 passes through the right half of the humidifying rotor 41, passes through the casing side opening 71c of the damper 44, and enters the radial fan assembly 43 through the interior of the damper 44. to reach.
  • Such airflow is produced by the radial fan assembly 43 .
  • the radial fan assembly 43 sends the outdoor air that has passed through the suction/humidification rotor 41 and the damper 44 as described above to the indoor unit 2 from the air supply/exhaust port 14 via the damper 44, the air supply/exhaust duct 61, and the hose 6. .
  • the outdoor air supplied to the indoor unit 2 passes through the indoor heat exchanger 11 and is blown indoors from the outlet 19 .
  • the radial fan assembly 43 When the radial fan assembly 43 is driven, the room air taken in from the suction port 18 of the indoor unit 2 passes through the air supply/exhaust port 14, the hose 6, and the air supply/exhaust duct 61 through the interior of the damper 44. The fan assembly 43 is reached.
  • the room air that has reached the radial fan assembly 43 passes through the interior of the damper 44 again and is blown out of the damper 44 through the casing side opening 71c of the damper 44 .
  • the room air blown out of the damper 44 passes through substantially the right half of the humidifying/absorbing rotor 41 and is introduced into the heater assembly 42 .
  • the room air that has entered the heater assembly 42 passes through the right half portion of the suction/humidification rotor 41 and is discharged to the outside through the air supply/exhaust port 40c.
  • the indoor air taken in from the indoor unit 2 passes in the opposite direction to the flow path during the air supply operation, and is discharged from the ventilation unit 4 to the outside.
  • the humidification operation is basically the same as the flow path through which the outdoor air is supplied to the indoor air during the air supply operation, but differs in that the outdoor air is humidified.
  • the ventilation unit 4 rotates the adsorption fan 46 to take air from the outside into the casing 40 through the adsorption air inlet 40b, as shown in FIG.
  • the air that has entered the casing 40 passes through the substantially left half of the humidifying/adsorbing rotor 41, and flows through the air flow path formed by the adsorption-side duct 45 and the adsorption-side bell mouth 63 shown in FIG.
  • the fan 46 the air is discharged from the adsorption fan storage space SP1 to the front of the outdoor unit 3 through the adsorption air outlet 40a (see arrow A3 in FIG. 2 and FIG. 3).
  • the humidifying/absorbing rotor 41 adsorbs moisture contained in the air.
  • the left approximately half portion of the adsorption/humidification rotor 41 that has adsorbed moisture in this adsorption step becomes the right approximately half portion of the adsorption/humidification rotor 41 as it rotates.
  • the moisture that has moved here is then released by the heat from the heater assembly 42 into the airflow generated by the radial fan assembly 43 .
  • the outdoor air sent to the indoor unit 2 contains moisture that has been adsorbed by the adsorption/humidification rotor 41 .
  • the ventilation unit 4 supplies outdoor air to the air supply/exhaust port 14 of the indoor unit 2 via the hose 6 in accordance with the air supply operation described above.
  • This outdoor air passes through the indoor heat exchanger 11, is cooled or dehumidified, and is supplied indoors. Therefore, the supplied outdoor air is supplied indoors together with the indoor air that has been cooled or dehumidified by the air conditioner 1a.
  • the ventilation unit 4 supplies indoor air from the air supply/exhaust port 14 of the indoor unit 2 to the ventilation unit 4 via the hose 6 .
  • This indoor air is discharged from the ventilation unit 4 to the outside. Therefore, part of the indoor air is discharged to the outside by the ventilation device 1b, and the other part of the indoor air is cooled or dehumidified through the indoor heat exchanger 11 by the air conditioner 1a, and is discharged indoors. supplied.
  • the control unit 100 performs control so that the air supply operation or the humidification operation is performed by the ventilator 1b while performing the above-described heating operation with the air conditioner 1a. .
  • the ventilation unit 4 supplies the outdoor air that has not been humidified according to the air supply operation or the outdoor air that has been humidified according to the humidification operation through the air supply/exhaust port of the indoor unit 2 via the hose 6. 14.
  • This outdoor air is heated and supplied through the indoor heat exchanger 11 . Therefore, the outdoor air introduced by the ventilator 1b is supplied indoors together with the indoor air heated by the air conditioner 1a.
  • control unit 100 performs control so that the air conditioner 1a performs the above-described heating operation and the ventilator 1b performs the above-described exhaust operation.
  • the ventilation unit 4 supplies indoor air from the air supply/exhaust port 14 of the indoor unit 2 to the ventilation unit 4 via the hose 6 .
  • This indoor air is discharged from the ventilation unit 4 to the outside. Therefore, part of the room air is discharged to the outside by the ventilation device 1b, and the other part of the room air is heated through the indoor heat exchanger 11 by the air conditioner 1a and supplied to the room. be.
  • the air conditioner 1 of this embodiment is an air conditioner that performs at least one of a cooling operation and a dehumidifying operation, and includes a ventilation device 1b and a control unit 100 .
  • the ventilator 1b performs a first ventilation operation (supply operation) for supplying outdoor air indoors and a second ventilation operation (exhaust operation) for discharging indoor air to the outdoors.
  • the control unit 100 controls to perform the air supply operation or the ventilation operation during the cooling operation or the dehumidifying operation.
  • the control unit 100 determines whether or not to perform the exhaust operation according to the heat load L of the indoor SI.
  • the exhaust operation can be performed by the control unit 100 when the heat load L of the indoor SI is high. Therefore, the heat load L of the indoor SI can be reduced by discharging the indoor air to the outdoor. Therefore, the efficiency of cooling operation or dehumidifying operation can be improved.
  • the heat load L is determined by the temperature of the indoor air and the temperature of the outdoor air.
  • the heat load L depends on the temperature of the indoor air and the temperature of the outdoor air. Therefore, the temperature of the indoor air and the temperature of the outdoor air are taken into consideration as conditions for the exhaust operation.
  • the controller 100 performs exhaust operation when the temperature of the indoor air is higher than the temperature of the outdoor air (step S6).
  • step S6 when the temperature of the indoor air is higher than the temperature of the outdoor air, the exhaust operation is performed (step S6) to discharge the indoor air to the outdoors.
  • the exhaust operation is performed (step S6) to discharge the indoor air to the outdoors.
  • step S6 when the temperature of the indoor air is higher than the temperature of the outdoor air at the start of the cooling operation or the dehumidifying operation, the control unit 100 performs the exhaust operation (step S6).
  • the heat load L of the indoor SI is often high. Therefore, when the temperature of the indoor air is higher than the temperature of the outdoor air at the start of the cooling operation or the dehumidifying operation, the exhaust operation is performed (step S6), thereby improving the efficiency of the cooling operation and the dehumidifying operation. can increase
  • the controller 100 performs the air supply operation when the temperature of the indoor air is lower than the temperature of the outdoor air (step S7).
  • the outdoor air is supplied to the indoor SI.
  • indoor air having a low temperature is not discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
  • control unit 100 performs the exhaust operation (step S6) when the cooling or dehumidifying operation is started, and switches from the exhaust operation to the air supply operation (step S7) when the indoor temperature Ti becomes lower than the outdoor temperature To. Then, the control unit 100 basically performs the air supply operation during the cooling or dehumidification operation (step S7), and performs the exhaust operation only when the indoor temperature Ti becomes higher than the outdoor temperature To (step S6). is preferred. As a result, the air cooled or dehumidified by the indoor unit 2 is not discharged to the outside, so the efficiency of the cooling operation and the dehumidifying operation can be further improved.
  • the air conditioner 1 of the present embodiment further includes an indoor unit 2 arranged indoors.
  • the indoor unit 2 includes an indoor heat exchanger 11 .
  • the indoor unit 2 is formed with a suction port 18 for sucking indoor air during exhaust operation.
  • the suction port 18 is provided upstream of the indoor heat exchanger 11 .
  • the indoor air sucked from the suction port 18 can be discharged to the outside from the air supply/exhaust port 14 without passing through the indoor heat exchanger 11 . Therefore, it is possible to suppress the indoor air heat-exchanged by the indoor heat exchanger 11 from being discharged outdoors. Therefore, the efficiency of cooling operation and dehumidification operation can be further improved.
  • the air conditioner 1 of the present embodiment includes a channel member that connects the indoor space and the outdoor space and forms a channel for the indoor air and the outdoor air.
  • the flow path is, for example, the internal space of the hose 6 of the ventilator 1b, the air supply/exhaust port 14 of the indoor unit 2, and the like.
  • outdoor air is supplied indoors through the flow path.
  • indoor air is discharged to the outside through the flow path.
  • the member forming the flow path through which the outdoor air passes during the air supply operation and the member forming the flow path through which the indoor air passes during the exhaust operation are common.
  • the ventilator 1b includes a ventilation unit 4 and a hose 6.
  • a ventilation unit 4 is provided in the outdoor unit 3 .
  • a hose 6 connects the ventilation unit 4 and the indoor unit 2 .
  • the flow path member is the hose 6 .
  • the hose 6 is common for the outdoor air to be supplied and the indoor air to be exhausted.
  • the diameter of the hose 6 can be increased despite the restriction on the size of the air supply/exhaust port 14, so the amount of air supplied in the air supply operation and the amount of exhaust gas discharged in the exhaust operation can be increased. . Therefore, it is possible to further reduce ventilation irregularities.
  • control unit 100 determines whether or not to perform the exhaust operation based only on the indoor temperature Ti. Therefore, the calculation performed by the control unit 100 is simple.
  • the heat load L is determined by the indoor temperature Ti and the outdoor temperature To, but in this modified example, it is determined by the indoor temperature Ti and the set temperature.
  • the set temperature is, for example, the temperature set by the user using the remote controller 102 .
  • the exhaust operation is performed when the indoor temperature Ti is higher than the set temperature
  • the air supply operation is performed when the indoor temperature Ti is lower than the set temperature.
  • control unit 100 can determine whether or not to perform the exhaust operation according to the set temperature and the indoor temperature Ti.
  • the heat load L is determined by various temperatures.
  • the heat load L may be determined using various humidity instead of or together with various temperatures.
  • the heat load L may be determined by at least one of the indoor air temperature and the indoor air humidity.
  • the heat load L may be determined by the indoor humidity Hi, which is the humidity of the indoor air, and the outdoor humidity Ho, which is the humidity of the outdoor air.
  • the indoor humidity Hi can be obtained by the indoor humidity sensor 16 .
  • the outdoor humidity Ho can be obtained by the outdoor humidity sensor 34 .
  • the exhaust operation is performed when the indoor humidity Hi is higher than the outdoor humidity Ho
  • the air supply operation is performed when the indoor humidity Hi is lower than the outdoor humidity Ho.
  • control unit 100 can determine whether to perform the exhaust operation according to the indoor humidity Hi and the outdoor humidity Ho.
  • the heat load L may be obtained as a function of only the indoor humidity Hi without using the outdoor humidity Ho.
  • the heat load L is determined by various temperatures.
  • the heat load L is determined by the body temperature, which is the temperature of the body forming the room R in which the indoor unit 2 is installed.
  • the body temperature can be obtained by a body temperature sensor (not shown).
  • the controller 100 may use not only the body temperature, but also various temperatures, various humidity, or both.
  • control unit 100 can determine whether or not to perform the exhaust operation according to the body temperature.
  • the control unit 100 performs the exhaust operation when the difference between the temperature of the indoor air and the temperature of the outdoor air exceeds a predetermined value during the cooling operation or the dehumidifying operation.
  • the air supply operation may be performed when the difference from the temperature of is equal to or less than a predetermined value. Therefore, the control unit 100 ends the exhaust operation when the difference between the temperature of the indoor air and the temperature of the outdoor air becomes equal to or less than a predetermined value during the exhaust operation.
  • the predetermined value indoor temperature Ti ⁇ outdoor temperature To
  • the predetermined value is, for example, 0° C. or higher and 7° C. or lower, preferably 1° C. or higher and 5° C. or lower.
  • control unit 100 determines whether or not to perform the exhaust operation according to the heat load L in the room, but the control unit 100 may have further conditions. In this modification, the control unit 100 determines to perform the exhaust operation when the heat load L exceeds the heat load threshold Lth and the human detection sensor 17 detects a person. Further, when the heat load L is equal to or less than the heat load threshold Lth and the human detection sensor 17 detects a person, the control unit 100 decides to perform the air supply operation.
  • control unit 100 always controls to perform the exhaust operation or the air supply operation during the cooling operation or the dehumidifying operation. Or if it is controlled to perform air supply operation, it is not limited to this. In other words, the air conditioner of the present disclosure may be controlled so as not to perform the exhaust operation and the air supply operation during part of the cooling operation or the dehumidifying operation.
  • control is performed so that the exhaust operation or the air supply operation is performed. And the air supply operation is not performed for a predetermined time.
  • the hose 6 and the air supply/exhaust port 14 are described as examples of flow path members that form flow paths for the outdoor air and the indoor air, but the present invention is not limited to this.
  • the flow path member is the hose 6, but the indoor unit 2 may have an air supply port and an air exhaust port formed separately.
  • the outdoor air is supplied from the hose 6 through the air supply port during the air supply operation, and the indoor air is introduced into the hose 6 through the exhaust port during the exhaust operation.
  • the channel member forming the channel through which the outdoor air (supply air) passes and the channel member forming the channel through which the indoor air (exhaust air) passes are used in common, but the present invention is not limited to this.
  • a hose as a channel member for air supply and a hose as a channel member for exhaust may be separate members.
  • the indoor unit of the present disclosure is not limited to this.
  • the indoor unit of the present disclosure can adopt any type such as a ceiling-embedded type or a floor-mounted type.
  • the air conditioner 1 including one indoor unit 2 was described as an example, but the air conditioner of the present disclosure is not limited to this.
  • the air conditioner of the present disclosure can also be applied to a multi-type having multiple indoor units 2 .
  • Air conditioner 1a Air conditioner 1b: Ventilator 2: Indoor unit 3: Outdoor unit 11: Indoor heat exchanger (heat exchanger) 18: Suction port 100: Control unit L: Heat load

Abstract

An air-conditioning device (1) performs a cooling operation and/or a dehumidifying operation and comprises a ventilation device (1b) and a control unit (100). The ventilation device (1b) performs: a first ventilation operation for supplying outdoor air indoors; and a second ventilation operation for discharging indoor air to the outside. The control unit (100) controls to perform an air supply operation or ventilation operation during the cooling operation or dehumidifying operation. The control unit (100) determines whether or not to perform an exhaust operation on the basis of the indoor heat load (L).

Description

空気調和装置air conditioner
 空気調和装置に関する。 "Regarding air conditioners."
 特許文献1(特開2007-032855号公報)には、室内の空気を室外に排気する換気送風機を備える空気調和機が開示されている。この空気調和機は、冷房、除湿運転及びシーズン初めの運転開始時、圧縮機が起動して第1の所定時間経過後、室内送風機を低速で運転し、かつ換気送風機を運転する。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-032855) discloses an air conditioner equipped with a ventilation fan that exhausts indoor air to the outdoors. This air conditioner operates the indoor blower at a low speed and the ventilation blower after a first predetermined time has elapsed after the compressor has been activated at the start of cooling, dehumidification, and the beginning of the season.
 上記特許文献1の空気調和機では、換気送風機のオン及びオフは、臭いのステータスによって決定される。しかしながら、この空気調和機の運転の効率は、特段考慮されていないので、改善の余地がある。 In the air conditioner of Patent Document 1 above, turning on and off of the ventilation fan is determined by the odor status. However, the efficiency of the operation of this air conditioner is not particularly considered, and there is room for improvement.
 第1観点に係る空気調和装置は、冷房運転及び除湿運転の少なくとも一方を行う空気調和装置であって、換気装置と、制御部と、を備える。換気装置は、室外空気を室内へ供給する第1換気運転と、室内空気を室外へ排出する第2換気運転と、を行う。制御部は、冷房運転中または除湿運転中に、第1換気運転または第2換気運転を行うように制御する。制御部は、室内の熱負荷に応じて第2換気運転を行うか否かを決める。 The air conditioner according to the first aspect is an air conditioner that performs at least one of cooling operation and dehumidifying operation, and includes a ventilation device and a control unit. The ventilation device performs a first ventilation operation for supplying outdoor air indoors and a second ventilation operation for discharging indoor air to the outdoors. The control unit controls to perform the first ventilation operation or the second ventilation operation during the cooling operation or the dehumidifying operation. The control unit determines whether or not to perform the second ventilation operation according to the heat load in the room.
 第1観点の空気調和装置によれば、制御部によって、室内の熱負荷が高い場合に、排気による第2換気運転を行うことができる。このため、室内空気を室外へ排出することによって、室内の熱負荷を減らすことができる。したがって、冷房運転または除湿運転の効率を向上することができる。 According to the air conditioner of the first aspect, the controller can perform the second ventilation operation by exhausting air when the heat load in the room is high. Therefore, the heat load in the room can be reduced by discharging the room air to the outside. Therefore, the efficiency of cooling operation or dehumidifying operation can be improved.
 第2観点に係る空気調和装置は、第1観点の空気調和装置であって、熱負荷は、室内空気の温度及び室内空気の湿度、の少なくとも1つによって決定される。 The air conditioner according to the second aspect is the air conditioner according to the first aspect, and the heat load is determined by at least one of the indoor air temperature and the indoor air humidity.
 第2観点の空気調和装置では、熱負荷は室内空気の温度及び湿度の少なくとも一方に依存する。したがって、排気による第2換気運転の条件として、室内空気の温度及び湿度の少なくとも一方が考慮される。 In the air conditioner of the second aspect, the heat load depends on at least one of the indoor air temperature and humidity. Therefore, at least one of the indoor air temperature and humidity is taken into consideration as a condition for the second ventilation operation by exhaust.
 第3観点に係る空気調和装置は、第1観点または第2観点の空気調和装置であって、室内に配置される室内機をさらに備える。室内機は、熱交換器を含む。熱負荷は、室内機が設置される部屋を構成する躯体の温度、によって決定される。 The air conditioner according to the third aspect is the air conditioner according to the first aspect or the second aspect, further comprising an indoor unit arranged indoors. The indoor unit includes a heat exchanger. The heat load is determined by the temperature of the frame that makes up the room in which the indoor unit is installed.
 第3観点の空気調和装置では、熱負荷は躯体温度に依存する。したがって、排気による第2換気運転の条件として、躯体温度が考慮される。 In the third aspect of the air conditioner, the heat load depends on the body temperature. Therefore, the building body temperature is considered as a condition for the second ventilation operation by exhaust.
 第4観点に係る空気調和装置は、第1観点から第3観点に係る空気調和装置であって、制御部は、室内空気の温度が室外空気の温度よりも高い場合に、第2換気運転を行う。 An air conditioner according to a fourth aspect is the air conditioner according to the first aspect to the third aspect, wherein the control unit performs the second ventilation operation when the temperature of the indoor air is higher than the temperature of the outdoor air. conduct.
 第4観点の空気調和装置では、室内空気が室外空気の温度よりも高い場合には、室内空気を室外に排出する。これにより、温度の高い室内空気を冷房または除湿することを減らすことができるので、冷房運転及び除湿運転の効率をより向上できる。 The air conditioner of the fourth aspect discharges the indoor air to the outside when the temperature of the indoor air is higher than the temperature of the outdoor air. As a result, it is possible to reduce the need to cool or dehumidify the indoor air having a high temperature, so that the efficiency of the cooling operation and the dehumidification operation can be further improved.
 第5観点に係る空気調和装置は、第4観点に係る空気調和装置であって、制御部は、冷房運転または除湿運転の開始時において、室内空気の温度が室外空気の温度よりも高い場合に、第2換気運転を行う。 An air conditioner pertaining to a fifth aspect is the air conditioner pertaining to the fourth aspect, wherein at the start of the cooling operation or the dehumidifying operation, the control unit controls the temperature of the indoor air to be higher than the temperature of the outdoor air. , perform the second ventilation operation.
 冷房運転または除湿運転の運転開始時に、熱負荷が高いことが多い。このため、第5観点の空気調和装置では、冷房運転または除湿運転の運転開始時に、室内空気の温度が室外空気の温度よりも高い場合に、排気による第2換気運転を行うことによって、冷房運転及び除湿運転の効率を向上する効果を高めることができる。  The heat load is often high at the start of cooling operation or dehumidification operation. For this reason, in the air conditioner of the fifth aspect, when the temperature of the indoor air is higher than the temperature of the outdoor air at the start of the cooling operation or the dehumidifying operation, the second ventilation operation is performed using the exhaust air to perform the cooling operation. And the effect of improving the efficiency of the dehumidifying operation can be enhanced.
 第6観点に係る空気調和装置は、第1観点から第5観点に係る空気調和装置であって、制御部は、室内空気の温度が室外空気の温度よりも低い場合に、第1換気運転を行う。 An air conditioner according to a sixth aspect is the air conditioner according to the first aspect to the fifth aspect, wherein the control unit performs the first ventilation operation when the temperature of the indoor air is lower than the temperature of the outdoor air. conduct.
 第6観点に係る空気調和装置では、室内空気が室外空気の温度よりも低い場合には、室外空気を室内に供給する。これにより、温度の低い室内空気を室外に排出しないので、冷房運転及び除湿運転の効率をより向上できる。 The air conditioner according to the sixth aspect supplies the outdoor air indoors when the temperature of the indoor air is lower than the temperature of the outdoor air. As a result, indoor air having a low temperature is not discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
 第7観点に係る空気調和装置は、第1観点から第3観点に係る空気調和装置であって、制御部は、室内空気の温度と室外空気の温度との差が所定値以下になった場合に、第2換気運転を終了する。 An air conditioner according to a seventh aspect is the air conditioner according to the first aspect to the third aspect, wherein the control unit controls the temperature difference between the indoor air temperature and the outdoor air temperature when the difference becomes equal to or less than a predetermined value. to end the second ventilation operation.
 第7観点に係る空気調和装置では、室内空気の温度と室外空気の温度との差が所定値以下になった場合に、室内の熱負荷が取り除かれたと判断して、排気による第2換気運転を終了する。このため、冷房運転または除湿運転によって温度が低下した室内空気を室外に排出することを抑制できるので、冷房運転及び除湿運転の効率をより向上できる。 In the air conditioner according to the seventh aspect, when the difference between the temperature of the indoor air and the temperature of the outdoor air is equal to or less than a predetermined value, it is determined that the heat load in the room has been removed, and the second ventilation operation by exhaust is performed. exit. Therefore, it is possible to suppress the indoor air whose temperature has been lowered by the cooling operation or the dehumidifying operation from being discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
 第8観点に係る空気調和装置は、第1観点から第7観点に係る空気調和装置であって、室内に配置される室内機をさらに備える。室内機は、熱交換器を含む。室内機には、第2換気運転時に、室内空気を吸い込む吸込口が形成されている。吸込口は、熱交換器の上流に設けられる。 The air conditioner according to the eighth aspect is the air conditioner according to the first to seventh aspects, further comprising an indoor unit arranged indoors. The indoor unit includes a heat exchanger. The indoor unit is formed with a suction port for sucking indoor air during the second ventilation operation. The suction port is provided upstream of the heat exchanger.
 第8観点に係る空気調和装置では、排気による第2換気運転時の吸込口が熱交換器の上流に設けられるので、熱交換器で熱交換した室内空気を室外に排出することを抑制できる。このため、冷房運転及び除湿運転の効率をより向上できる。 In the air conditioner according to the eighth aspect, since the intake port is provided upstream of the heat exchanger during the second ventilation operation using exhaust air, it is possible to suppress the indoor air heat-exchanged by the heat exchanger from being discharged to the outside. Therefore, the efficiency of the cooling operation and the dehumidifying operation can be further improved.
 第9観点に係る空気調和装置は、第1観点から第8観点に係る空気調和装置であって、制御部は、冷房運転中または除湿運転中に、室内空気の温度が室外空気の温度よりも低い場合に、第1換気運転及び第2換気運転を所定時間行わない。 An air conditioner according to a ninth aspect is the air conditioner according to the first aspect to the eighth aspect, wherein the controller controls the temperature of the indoor air to be higher than the temperature of the outdoor air during the cooling operation or the dehumidifying operation. When it is low, the first ventilation operation and the second ventilation operation are not performed for a predetermined time.
 第9観点に係る空気調和装置では、室内空気の温度が室外空気の温度よりも低い場合に、第1換気運転及び第2換気運転の両方を一時的に行わない。このため、温度の低い室内空気を室外に排出しないので、冷房運転及び除湿運転の効率をより向上できる。 In the air conditioner according to the ninth aspect, both the first ventilation operation and the second ventilation operation are temporarily not performed when the temperature of the indoor air is lower than the temperature of the outdoor air. Therefore, the indoor air having a low temperature is not discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
本開示の一実施形態に係る空気調和装置の外観図である。1 is an external view of an air conditioner according to an embodiment of the present disclosure; FIG. 空気調和装置で用いられる冷媒回路の系統図に空気の流れの概略を付加したものである。It is a system diagram of a refrigerant circuit used in an air conditioner with an outline of the air flow. 室外機及び換気装置の分解斜視図である。It is an exploded perspective view of an outdoor unit and a ventilator. ダンパの分解斜視図(第1状態)である。It is an exploded perspective view (first state) of the damper. ダンパの分解斜視図(第2状態)である。It is an exploded perspective view (second state) of the damper. 第1状態のダンパにおける空気の流れを示す断面斜視図である。It is a cross-sectional perspective view which shows the flow of the air in the damper of a 1st state. 第2状態のダンパにおける空気の流れを示す断面斜視図である。FIG. 7 is a cross-sectional perspective view showing air flow in the damper in the second state; (a)は、第1状態のダンパにおける空気の流れを示す模式図であり、(b)は、第2状態のダンパにおける空気の流れを示す模式図である。(a) is a schematic diagram showing air flow in a damper in a first state, and (b) is a schematic diagram showing air flow in a damper in a second state. 第3状態のダンパにおける空気の流れを示す模式図である。FIG. 10 is a schematic diagram showing the air flow in the damper in the third state; 空気調和装置の制御ブロック図である。3 is a control block diagram of the air conditioner; FIG. リモコンの平面図である。It is a top view of a remote control. 熱負荷Lを説明するための模式図である。4 is a schematic diagram for explaining a heat load L; FIG. 制御部による換気装置の制御を示すフローチャートである。4 is a flow chart showing control of a ventilator by a control unit;
 (1)全体構成
 図1及び図2に示すように、本開示の一実施形態の空気調和装置1は、建物等の室内の空調及び換気を行う。空気調和装置1は、室内の空調を行う空調装置1aと、室内の換気を行う換気装置1bと、制御部100(図10参照)と、を備えている。
(1) Overall Configuration As shown in FIGS. 1 and 2, an air conditioner 1 according to an embodiment of the present disclosure air-conditions and ventilates a room such as a building. The air conditioner 1 includes an air conditioner 1a that air-conditions the room, a ventilator 1b that ventilates the room, and a controller 100 (see FIG. 10).
 空調装置1aは、冷房運転及び除湿運転の少なくとも一方を行う。本実施形態の空調装置1aは、冷房運転、除湿運転及び暖房運転を行う。 The air conditioner 1a performs at least one of cooling operation and dehumidifying operation. The air conditioner 1a of this embodiment performs a cooling operation, a dehumidifying operation, and a heating operation.
 空調装置1aは、室内機2と、室外機3と、連絡配管31、32を有している。室内機2は、室内に配置される。室外機3は、室外に配置される。連絡配管31、32は、室内機2と室外機3とを接続する。室内機2と室外機3とが連絡配管31、32を介して接続されることによって、蒸気圧縮式の冷媒回路が構成されている。 The air conditioner 1a has an indoor unit 2, an outdoor unit 3, and connecting pipes 31 and 32. The indoor unit 2 is arranged indoors. The outdoor unit 3 is arranged outdoors. Communication pipes 31 and 32 connect the indoor unit 2 and the outdoor unit 3 . A vapor compression refrigerant circuit is configured by connecting the indoor unit 2 and the outdoor unit 3 via connecting pipes 31 and 32 .
 換気装置1bは、室外空気を室内へ供給する第1換気運転(以下、給気運転とも言う)と、室内空気を室外へ排出する第2換気運転(以下、排気運転とも言う)と、を行う。本実施形態の換気装置1bは、給気運転と、排気運転と、室外空気を加湿して室内へ供給する加湿運転と、を行う。 The ventilation device 1b performs a first ventilation operation (hereinafter also referred to as an air supply operation) for supplying outdoor air to the room and a second ventilation operation (hereinafter also referred to as an exhaust operation) for discharging the indoor air to the outside. . The ventilation device 1b of the present embodiment performs an air supply operation, an exhaust operation, and a humidification operation in which outdoor air is humidified and supplied indoors.
 制御部100は、空調装置1a及び換気装置1bの構成機器を制御する。制御部100は、冷房運転中または除湿運転中に、給気運転または排気運転を行うように制御する。制御部100は、室内の熱負荷に応じて排気運転を行うか否かを決める。 The control unit 100 controls components of the air conditioner 1a and the ventilator 1b. The control unit 100 performs control to perform the air supply operation or the exhaust operation during the cooling operation or the dehumidifying operation. The control unit 100 determines whether or not to perform the exhaust operation according to the heat load in the room.
 (2)詳細構成
 (2-1)室内機
 本実施形態の室内機2は、壁掛け型である。図2に示すように、室内機2は、室内熱交換器11と、室内ファン12と、ファンモータ13とを含む。室内熱交換器11は、長さ方向両端で複数回折り返されてなる伝熱管と、伝熱管が挿通される複数のフィンとを含み、接触する空気との間で熱交換を行う。
(2) Detailed Configuration (2-1) Indoor Unit The indoor unit 2 of this embodiment is a wall-mounted type. As shown in FIG. 2 , the indoor unit 2 includes an indoor heat exchanger 11 , an indoor fan 12 and a fan motor 13 . The indoor heat exchanger 11 includes a heat transfer tube that is folded back multiple times at both ends in the length direction, and a plurality of fins through which the heat transfer tube is inserted, and performs heat exchange with the air that comes into contact with the heat transfer tube.
 室内ファン12は、例えば、クロスフローファンである。室内ファン12は、円筒形状に構成され、周面には多数の羽根が設けられており、回転軸と交わる方向に空気流を生成する。この室内ファン12は、室内空気を室内機2内に吸い込ませるとともに、室内熱交換器11との間で熱交換を行った後の空気を室内に吹き出させる。ファンモータ13は、室内ファン12を回転駆動する。 The indoor fan 12 is, for example, a cross-flow fan. The indoor fan 12 has a cylindrical shape, has a large number of blades on its peripheral surface, and generates an air flow in a direction intersecting the rotation axis. The indoor fan 12 draws indoor air into the indoor unit 2 and blows out the air after heat exchange with the indoor heat exchanger 11 into the room. The fan motor 13 rotates the indoor fan 12 .
 図2に示すように、室内機2には、吸込口18及び吹出口19が形成されている。吸込口18は、排気運転時に、室内空気を吸い込む。本実施形態では、吸込口18は、さらに、空調運転時に、室内空気を吸い込む。吹出口19は、室内空気及び室外空気を、室内に吹き出す。吸込口18及び吹出口19は、室内機2のケーシングに形成されている。 As shown in FIG. 2, the indoor unit 2 is formed with an inlet 18 and an outlet 19 . The suction port 18 sucks indoor air during exhaust operation. In this embodiment, the suction port 18 also sucks indoor air during air-conditioning operation. The air outlet 19 blows indoor air and outdoor air indoors. The inlet 18 and the outlet 19 are formed in the casing of the indoor unit 2 .
 吸込口18は、室内熱交換器11の上流に設けられている。排気運転中に吸込口18から導入される室内空気の一部は、室内熱交換器11を通らずに、給排気口14から室外に排出される。排気運転中に吸込口18から導入される室内空気の残部は、室内熱交換器11を通る際に、室内熱交換器11と熱交換を行って、冷房、除湿または暖房された後に、吹出口19から室内に供給される。 The suction port 18 is provided upstream of the indoor heat exchanger 11 . Part of the room air introduced from the suction port 18 during exhaust operation is discharged to the outside from the air supply/exhaust port 14 without passing through the indoor heat exchanger 11 . The rest of the indoor air introduced from the suction port 18 during the exhaust operation exchanges heat with the indoor heat exchanger 11 when passing through the indoor heat exchanger 11, is cooled, dehumidified, or heated, and then flows through the outlet. 19 into the room.
 また、給気運転中に吸込口18から導入される室内空気は、室内熱交換器11を通って、冷房、除湿または暖房された後に、吹出口19から室内に供給される。 In addition, the indoor air introduced from the suction port 18 during the air supply operation passes through the indoor heat exchanger 11, is cooled, dehumidified or heated, and then supplied from the air outlet 19 into the room.
 また、室内機2には、給排気口14が形成されている。給排気口14は、給気運転の際に室外空気が導入される給気口であるとともに、排気運転の際に室内空気が排出される排気口である。換言すると、給気運転では、給排気口14を介して室外空気を室内に供給し、排気運転では、給排気口14を介して室内空気を室外へ排出する。さらに換言すると、給排気口14は、給気運転の際に室外空気が通る流路であるとともに、排気運転の際に室内空気が通る流路である。 In addition, the indoor unit 2 is formed with an air supply/exhaust port 14 . The air supply/exhaust port 14 is an air supply port through which outdoor air is introduced during an air supply operation, and an exhaust port through which indoor air is discharged during an exhaust operation. In other words, in the air supply operation, the outdoor air is supplied into the room through the air supply/exhaust port 14 , and in the exhaust operation, the indoor air is discharged to the outside through the air supply/exhaust port 14 . In other words, the air supply/exhaust port 14 is a channel through which the outdoor air passes during the air supply operation and a channel through which the indoor air passes during the exhaust operation.
 給排気口14は、室内の壁部W(図12参照)に形成された開口部である。室内機2は、給排気口14を形成する給排気口部材をさらに含む。給排気口部材は、後述するホース6と接続される。このため、給排気口14と、ホース6の内部空間とは、連通する。 The air supply/exhaust port 14 is an opening formed in the wall W (see FIG. 12) of the room. Indoor unit 2 further includes an air supply/exhaust port member that forms air supply/exhaust port 14 . The air supply/exhaust port member is connected to a hose 6, which will be described later. Therefore, the air supply/exhaust port 14 and the internal space of the hose 6 communicate with each other.
 給排気口14は、室内熱交換器11の上流に設けられている。給気運転中に給排気口14から導入される室外空気は、室内熱交換器11を通る。このため、冷房運転または除湿運転中に、室外空気は、室内熱交換器11で冷房または除湿された後に、吹出口19から室内に供給される。また、暖房運転中に給気運転を行う場合の加湿されていない室外空気、または暖房運転中に加湿運転を行う場合の加湿された室外空気は、室内熱交換器11で暖房された後に、吹出口19から室内に供給される。 The air supply/exhaust port 14 is provided upstream of the indoor heat exchanger 11 . Outdoor air introduced from the air supply/exhaust port 14 during the air supply operation passes through the indoor heat exchanger 11 . Therefore, during the cooling operation or the dehumidifying operation, the outdoor air is cooled or dehumidified by the indoor heat exchanger 11 and then supplied into the room from the outlet 19 . In addition, the outdoor air that is not humidified when the air supply operation is performed during the heating operation or the humidified outdoor air when the humidification operation is performed during the heating operation is heated by the indoor heat exchanger 11 and then blown. It is supplied into the room from the outlet 19 .
 室内機2には、各種センサが配置されている。ここでは、室内機2には、室内温度センサ15、室内湿度センサ16及び人検知センサ17が配置されている。 Various sensors are arranged in the indoor unit 2. Here, an indoor temperature sensor 15, an indoor humidity sensor 16, and a human detection sensor 17 are arranged in the indoor unit 2. As shown in FIG.
 室内温度センサ15は、室内の温度を検出する。室内湿度センサ16は、室内の湿度を検出する。室内温度センサ15及び室内湿度センサ16は、室内の温度及び室内の湿度を検出する室内温湿度センサであってもよい。 The indoor temperature sensor 15 detects the indoor temperature. The indoor humidity sensor 16 detects indoor humidity. The indoor temperature sensor 15 and the indoor humidity sensor 16 may be indoor temperature and humidity sensors that detect indoor temperature and indoor humidity.
 人検知センサ17は、室内における人の存在の有無を検知する。人検知センサ17は、例えば、1つ又は複数の赤外線受光素子を有する赤外線センサである。 The human detection sensor 17 detects the presence or absence of people in the room. The human detection sensor 17 is, for example, an infrared sensor having one or more infrared light receiving elements.
 なお、室内温度センサ15、室内湿度センサ16及び人検知センサ17は、室内機2ではなく、室内のどこかに配置されていてもよい。 The indoor temperature sensor 15, the indoor humidity sensor 16, and the human detection sensor 17 may be arranged somewhere in the room instead of the indoor unit 2.
 (2-2)室外機
 室外機3は、圧縮機21と、四路切換弁22と、アキュムレータ23と、室外熱交換器24と、膨張弁25と、フィルタ26と、液閉鎖弁27と、ガス閉鎖弁28と、室外ファン29と、ファンモータ30と、を含む。
(2-2) Outdoor unit The outdoor unit 3 includes a compressor 21, a four-way switching valve 22, an accumulator 23, an outdoor heat exchanger 24, an expansion valve 25, a filter 26, a liquid closing valve 27, It includes a gas shutoff valve 28 , an outdoor fan 29 and a fan motor 30 .
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機構である。四路切換弁22は、圧縮機21の吐出側に接続される。アキュムレータ23は、圧縮機21の吸入側に接続される。室外熱交換器24は、四路切換弁22に接続される。膨張弁25は、室外熱交換器24に接続される。膨張弁25は、フィルタ26及び液閉鎖弁27を介して連絡配管32に接続されており、この連絡配管32を介して室内熱交換器11の一端と接続される。また、四路切換弁22は、ガス閉鎖弁28を介して連絡配管31に接続されており、この連絡配管31を介して室内熱交換器11の他端と接続されている。これらの連絡配管31、32は、ホース6とともに集合連絡管7を形成する。 The compressor 21 is a mechanism that compresses the low-pressure refrigerant in the refrigeration cycle to high pressure. The four-way switching valve 22 is connected to the discharge side of the compressor 21 . The accumulator 23 is connected to the suction side of the compressor 21 . The outdoor heat exchanger 24 is connected to the four-way switching valve 22 . The expansion valve 25 is connected to the outdoor heat exchanger 24 . The expansion valve 25 is connected to a connecting pipe 32 via a filter 26 and a liquid closing valve 27, and is connected to one end of the indoor heat exchanger 11 via this connecting pipe 32. The four-way switching valve 22 is also connected to a connecting pipe 31 via a gas shutoff valve 28 , and is connected to the other end of the indoor heat exchanger 11 via this connecting pipe 31 . These connecting pipes 31 , 32 together with the hose 6 form the collective connecting pipe 7 .
 室外ファン29は、室外熱交換器24での熱交換後の室外空気を外部に排出する。室外ファン29は、例えばプロペラファンである。ファンモータ30は、室外ファン29を回転駆動する。 The outdoor fan 29 exhausts the outdoor air after heat exchange in the outdoor heat exchanger 24 to the outside. The outdoor fan 29 is, for example, a propeller fan. The fan motor 30 rotationally drives the outdoor fan 29 .
 ここで、図3を参照して、室外機3の構成について説明する。図3に示すように、室外機3は、前面パネル51、側板52、53、保護金網(図示せず)、金属製の底板54等のケーシング部材や内部に収容される冷媒回路構成部品等により構成されている。 Here, the configuration of the outdoor unit 3 will be described with reference to FIG. As shown in FIG. 3, the outdoor unit 3 is configured by casing members such as a front panel 51, side plates 52 and 53, a protective wire mesh (not shown), and a metal bottom plate 54, refrigerant circuit components housed inside, and the like. It is configured.
 前面パネル51は、室外機3の前面を覆う樹脂製の部材であり、室外熱交換器24に対して室外熱交換器24を通った空気の下流側に配置されている。前面パネル51には、複数のスリット状の開口からなる吹出口51aが設けられており、室外熱交換器24を通った空気は、室外機3の内部からこの吹出口51aを通って室外機3の外部へと吹き出す。また、前面パネル51の後方には、ファン吹出口部材56と仕切板57とが取り付けられる。 The front panel 51 is a member made of resin that covers the front surface of the outdoor unit 3 and is arranged downstream of the outdoor heat exchanger 24 for the air passing through the outdoor heat exchanger 24 . The front panel 51 is provided with an air outlet 51a consisting of a plurality of slit-shaped openings, and the air that has passed through the outdoor heat exchanger 24 passes through the air outlet 51a from the inside of the outdoor unit 3 to the outdoor unit 3. blow out to the outside of A fan outlet member 56 and a partition plate 57 are attached to the rear of the front panel 51 .
 側板52、53は室外機3の側方を覆う金属製の部材である。ここでは、室外機3の正面視において右側に右側板52、左側に左側板53が設けられている。なお、各側板52、53は、室外熱交換器24を通って、吹出口51aから吹き出す空気の吹き出し方向に対して概ね平行に設けられている。また、右側板52には、液閉鎖弁27およびガス閉鎖弁28(図2参照)を保護するための閉鎖弁カバー55が取り付けられる。 The side plates 52 and 53 are metal members that cover the sides of the outdoor unit 3 . Here, in the front view of the outdoor unit 3, a right side plate 52 is provided on the right side, and a left side plate 53 is provided on the left side. The side plates 52 and 53 are provided substantially parallel to the blowing direction of the air that passes through the outdoor heat exchanger 24 and blows out from the blowout port 51a. A shut-off valve cover 55 is attached to the right side plate 52 to protect the liquid shut-off valve 27 and the gas shut-off valve 28 (see FIG. 2).
 室外熱交換器24は、平面視において略L字形状を有し、室外機3の背面を覆う保護金網の前方に配置される。室外熱交換器24の前方であって、仕切板57と左側板53との間の通気スペースには、室外ファン29とファンモータ30(図2参照)とが設けられている。室外ファン29は、室外機3内に取り入れた空気を室外熱交換器24と接触させ、吹出口51aから前面パネル51の前方に排気させる。 The outdoor heat exchanger 24 has a substantially L shape in plan view, and is arranged in front of the protective wire mesh that covers the back surface of the outdoor unit 3 . An outdoor fan 29 and a fan motor 30 (see FIG. 2) are provided in a ventilation space in front of the outdoor heat exchanger 24 and between the partition plate 57 and the left side plate 53 . The outdoor fan 29 brings the air taken into the outdoor unit 3 into contact with the outdoor heat exchanger 24, and exhausts the air forward of the front panel 51 from the outlet 51a.
 圧縮機21、アキュムレータ23、四路切換弁22、膨張弁25などの冷媒回路を構成する部品は、仕切板57と右側板52との間の機械室に配置されている。また、室外機3の上部には、電装品ユニット58が取り付けられる。この電装品ユニット58は、電装品箱と各部を制御するための回路部品を搭載したプリント基板とにより構成されている。電装品ユニット58の上方には防炎板59が取り付けられる。 The parts that make up the refrigerant circuit, such as the compressor 21, the accumulator 23, the four-way switching valve 22, and the expansion valve 25, are arranged in the machine room between the partition plate 57 and the right side plate 52. An electric component unit 58 is attached to the upper portion of the outdoor unit 3 . The electrical component unit 58 is composed of an electrical component box and a printed circuit board on which circuit components for controlling each part are mounted. A flameproof plate 59 is attached above the electrical component unit 58 .
 また、室外機3には、各種センサが配置されている。ここでは、図2に示すように、室外機3には、室外温度センサ33及び室外湿度センサ34が配置されている。 In addition, various sensors are arranged in the outdoor unit 3. Here, as shown in FIG. 2, the outdoor unit 3 is provided with an outdoor temperature sensor 33 and an outdoor humidity sensor 34 .
 室外温度センサ33は、室外の温度を検出する。室外湿度センサ34は、室外の湿度を検出する。室外温度センサ33及び室外湿度センサ34は、室外の温度及び室外の湿度を検出する室外温湿度センサであってもよい。 The outdoor temperature sensor 33 detects the outdoor temperature. The outdoor humidity sensor 34 detects outdoor humidity. The outdoor temperature sensor 33 and the outdoor humidity sensor 34 may be outdoor temperature and humidity sensors that detect outdoor temperature and outdoor humidity.
 なお、室外温度センサ33及び室外湿度センサ34は、室外機3ではなく、室外のどこかに配置されていてもよい。 Note that the outdoor temperature sensor 33 and the outdoor humidity sensor 34 may be arranged somewhere outside the outdoor unit 3 instead of the outdoor unit 3 .
 (2-3)換気装置
 換気装置1bは、換気ユニット4と、ホース6と、を有している。換気ユニット4は、室内または室外に配置され、ここでは室外機3に配置される。ホース6は、換気ユニット4と室内機2とを接続する。
(2-3) Ventilation Device The ventilation device 1 b has a ventilation unit 4 and a hose 6 . The ventilation unit 4 is arranged indoors or outdoors, and is arranged in the outdoor unit 3 here. A hose 6 connects the ventilation unit 4 and the indoor unit 2 .
 (2-3-1)換気ユニット
 換気ユニット4は、室外空気を室内へ供給する給気運転(第1換気運転)と、室内空気を室外へ排出する排気運転(第2換気運転)と、を行うことができるユニットである。ここでは、換気ユニット4は、給気運転と、排気運転と、加湿運転と、を行うことができる。なお、給気運転及び加湿運転は、室外空気を室内に供給する点で同じであるが、給気運転は、室外空気の加湿を行わずに室内へと供給する点において、室外空気の加湿を行う加湿運転と異なる。
(2-3-1) Ventilation unit The ventilation unit 4 performs an air supply operation (first ventilation operation) for supplying outdoor air to the room and an exhaust operation (second ventilation operation) for discharging indoor air to the outside. It is a unit that can Here, the ventilation unit 4 can perform an air supply operation, an exhaust operation, and a humidification operation. The air supply operation and the humidification operation are the same in that outdoor air is supplied indoors. It is different from the humidification operation performed.
 本実施形態の換気ユニット4は、室外機3の上部に配置され、一体となっている。以下、換気ユニット4の構成について、主に図3を参照して説明する。 The ventilation unit 4 of this embodiment is arranged above the outdoor unit 3 and integrated with it. The configuration of the ventilation unit 4 will be described below mainly with reference to FIG.
 換気ユニット4は、ケーシング40と、吸加湿ロータ41と、ヒータ組立体42と、ラジアルファン組立体43と、ダンパ44と、吸着側ダクト45と、吸着用ファン46と、を含む。 The ventilation unit 4 includes a casing 40 , an absorbent/humidifying rotor 41 , a heater assembly 42 , a radial fan assembly 43 , a damper 44 , an adsorption side duct 45 and an adsorption fan 46 .
 (2-3-1-1)ケーシング
 ケーシング40は、換気ユニット4の前方、後方および両側方を覆っており、室外機3上部に接するように配置される。ケーシング40の前面には、複数のスリット状の開口からなる吸着用空気吹出口40aが設けられており、室外空気がこの吸着用空気吹出口40aを通って室外機3の外部へと吹き出す。
(2-3-1-1) Casing The casing 40 covers the front, rear and both sides of the ventilation unit 4 and is arranged so as to contact the top of the outdoor unit 3 . Adsorption air outlets 40a consisting of a plurality of slit-shaped openings are provided on the front surface of the casing 40, and outdoor air is blown out of the outdoor unit 3 through the adsorption air outlets 40a.
 また、ケーシング40の背面には、吸着用空気吸込口40bおよび給排気口40cが左右方向に並んで設けられている。吸着用空気吸込口40bは、吸加湿ロータ41に水分を吸着させるために室外から取り込まれる空気が通る開口である。給排気口40cは、室内機2へと送られるために取り込まれる空気が通る、または、室内機2から取り込まれて室外へと排気される空気が通る開口である。 Also, on the rear surface of the casing 40, an adsorption air suction port 40b and an air supply/exhaust port 40c are provided side by side in the left-right direction. The adsorption air suction port 40b is an opening through which air taken in from the outside in order to cause the adsorption/humidification rotor 41 to adsorb moisture. The air supply/exhaust port 40c is an opening through which the air taken in to be sent to the indoor unit 2 passes, or the air taken in from the indoor unit 2 and exhausted to the outside passes through.
 なお、ケーシング40の上部は、天板66により覆われている。ケーシング40内は、右側が吸加湿ロータ41等を収容する空間、左側が吸着用ファン46等を収容する吸着用ファン収納空間SP1となっている。このケーシング40内には、吸加湿ロータ41、ヒータ組立体42、ラジアルファン組立体43、ダンパ44、吸着側ダクト45、吸着用ファン46などが配置されている。 The upper part of the casing 40 is covered with a top plate 66. Inside the casing 40, the right side is a space for housing the suction/humidification rotor 41 and the like, and the left side is a suction fan housing space SP1 for housing the suction fan 46 and the like. In this casing 40, an absorbent/humidifying rotor 41, a heater assembly 42, a radial fan assembly 43, a damper 44, an adsorption side duct 45, an adsorption fan 46, and the like are arranged.
 (2-3-1-2)吸加湿ロータ
 吸加湿ロータ41は、概ね円板形状を有するハニカム構造のセラミックロータであり、空気が容易に通過できる構造となっている。吸加湿ロータ41は、平面視において円形の形状を有している。吸加湿ロータ41は、水平面で切った断面において細かいハニカム状である。これらの断面が多角形である吸加湿ロータ41の多数の筒部分を、空気が通過する。
(2-3-1-2) Absorption/Humidification Rotor The absorption/humidification rotor 41 is a ceramic rotor having a honeycomb structure having a generally disc shape, and has a structure through which air can easily pass. The absorbent/humidifying rotor 41 has a circular shape in plan view. The humidifying/absorbing rotor 41 has a fine honeycomb shape in a horizontal cross section. The air passes through a large number of cylindrical portions of the humidifying/absorbing rotor 41 having polygonal cross sections.
 吸加湿ロータ41の主たる部分は、ゼオライト、シリカゲル、またはアルミナといった吸着剤から焼成されている。この吸着剤は、接触する空気中の水分を吸着し、加熱されることによって吸着して含有する水分を離脱する性質を有している。この吸加湿ロータ41は、ケーシング40側に設けられた支持軸40dに、図示しないロータガイドを介して回動可能に支持される。吸加湿ロータ41の周面には、ギヤが形成されており、ロータ駆動モータ47の駆動軸に取り付けられるロータ駆動ギヤ48と歯合している。 The main part of the humidifying rotor 41 is sintered from an adsorbent such as zeolite, silica gel, or alumina. This adsorbent has the property of adsorbing moisture in the air it comes in contact with, and releasing the adsorbed moisture when heated. The adsorption/humidification rotor 41 is rotatably supported by a support shaft 40d provided on the casing 40 side via a rotor guide (not shown). A gear is formed on the peripheral surface of the humidifying/absorbing rotor 41 and meshes with a rotor drive gear 48 attached to the drive shaft of a rotor drive motor 47 .
 (2-3-1-3)ヒータ組立体
 ヒータ組立体42は、ヒータカバー42aと、その内部に収容されたヒータ本体42b(図10参照)とにより構成されており、室外から取り込まれて吸加湿ロータ41へ送られる空気を加熱する。ヒータ組立体42は、ヒータ支持板49を介して吸加湿ロータ41の上方に取り付けられる。
(2-3-1-3) Heater Assembly The heater assembly 42 is composed of a heater cover 42a and a heater main body 42b (see FIG. 10) housed therein. It heats the air sent to the humidification rotor 41 . The heater assembly 42 is attached above the absorbent/humidifying rotor 41 via a heater support plate 49 .
 (2-3-1-4)ラジアルファン組立体
 ラジアルファン組立体43は、吸加湿ロータ41の側方に配置されており、ラジアルファン430(図8(a)参照)と、ラジアルファン430を回転させるラジアルファンモータ431(図10参照)とを有する。また、ラジアルファン組立体43は、図4に示すように、上蓋73をダンパ44と共有しており、上蓋73は、ラジアルファン組立体43の底面を閉じている。上蓋73には、吹出口73aと取入口73bとが設けられている。吹出口73aは、ラジアルファン組立体43からダンパ44内へと送られる空気が通る開口である。取入口73bは、ダンパ44内からラジアルファン組立体43へと送られる空気が通る開口である。ラジアルファン組立体43は、給排気口40cから吸加湿ロータ41及びダンパ44を経て室内へと到る空気の流れを生成して、室外から取り入れた空気を室内機2へと送る。また、ラジアルファン組立体43は、室内機2から取り入れた空気を室外へと排出することもできる。ラジアルファン組立体43は、ダンパ44が切り換わることにより、これらの動作を切り換える。
(2-3-1-4) Radial Fan Assembly The radial fan assembly 43 is arranged on the side of the humidifying/absorbing rotor 41, and includes a radial fan 430 (see FIG. 8(a)) and a radial fan 430. and a radial fan motor 431 (see FIG. 10) for rotation. 4, the radial fan assembly 43 shares an upper lid 73 with the damper 44, and the upper lid 73 closes the bottom surface of the radial fan assembly 43. As shown in FIG. The upper lid 73 is provided with a blowout port 73a and an intake port 73b. The air outlet 73a is an opening through which air sent from the radial fan assembly 43 into the damper 44 passes. The intake port 73b is an opening through which air sent from within the damper 44 to the radial fan assembly 43 passes. The radial fan assembly 43 generates an air flow from the air supply/exhaust port 40c to the interior of the room through the humidification/humidification rotor 41 and the damper 44, and sends the air taken in from the outside to the indoor unit 2. The radial fan assembly 43 can also discharge the air taken in from the indoor unit 2 to the outside. The radial fan assembly 43 switches these operations by switching the damper 44 .
 ラジアルファン組立体43は、室外から取り入れた室外空気を室内機2へと送る場合には、吸加湿ロータ41の右側の略半分の部分を通過した室外空気を、ダンパ44を経て給排気ダクト61へと送り出す。給排気ダクト61は、ホース6(図1参照)に接続されており、ラジアルファン組立体43は、給排気ダクト61とホース6とを介して室外空気を室内機2へと供給する。 When the outdoor air taken in from the outside is sent to the indoor unit 2 , the radial fan assembly 43 sends the outdoor air that has passed through the right half of the humidification/humidification rotor 41 through the damper 44 to the air supply/exhaust duct 61 . send to The air supply/exhaust duct 61 is connected to the hose 6 (see FIG. 1), and the radial fan assembly 43 supplies outdoor air to the indoor unit 2 via the air supply/exhaust duct 61 and the hose 6 .
 ラジアルファン組立体43は、室内機2から取り入れた室内空気を室外へと排出する場合には、給排気ダクト61から送られてきた空気をケーシング40の背面に設けられた給排気口40cから室外へと排出する。 When the indoor air taken in from the indoor unit 2 is discharged to the outside, the radial fan assembly 43 passes the air sent from the air supply/exhaust duct 61 to the outside through the air supply/exhaust port 40c provided on the back surface of the casing 40. to the
 (2-3-1-5)ダンパ
 ダンパ44は、ラジアルファン組立体43の下方に配置される回転式の空気流路切換手段であり、第1状態、第2状態及び第3状態に切り替わる。
(2-3-1-5) Damper The damper 44 is rotary air flow path switching means arranged below the radial fan assembly 43, and switches between a first state, a second state and a third state.
 第1状態においては、ラジアルファン組立体43から吹き出された空気は、給排気ダクト61を経てホース6を通って室内機2へと供給されるようになる。これにより、第1状態では、図2の実線矢印A1で示す矢印の向きに空気が流れ、室外空気がホース6を通って室内機2の給排気口14へと供給されるようになる。 In the first state, the air blown out from the radial fan assembly 43 is supplied to the indoor unit 2 through the air supply/exhaust duct 61 and the hose 6 . As a result, in the first state, the air flows in the direction indicated by the solid-line arrow A1 in FIG.
 第2状態では、図2の破線矢印A2で示す矢印の向きに室内空気が流れ、室内機2の給排気口14から、ホース6及び給排気ダクト61を通ってきた室内空気が、ラジアルファン組立体43から給排気口40cを経て室外へと排気される。 In the second state, the indoor air flows in the direction of the arrow indicated by the dashed arrow A2 in FIG. The air is exhausted from the three-dimensional structure 43 to the outside through the air supply/exhaust port 40c.
 第3状態では、ダンパ44と給排気ダクト61とを繋ぐ経路が閉じられ、室外機3と室内機2との間の空気の流れが遮断される。 In the third state, the path connecting the damper 44 and the air supply/exhaust duct 61 is closed, and the flow of air between the outdoor unit 3 and the indoor unit 2 is cut off.
 ダンパ44の具体的な構成および動きについては後に詳述する。 The specific configuration and movement of the damper 44 will be detailed later.
 (2-3-1-6)吸着側ダクト及び吸着用ファン
 吸着側ダクト45は、吸加湿ロータ41の上面のうちヒータ組立体42が位置しない部分(左側の略半分の部分)を覆っている。この吸着側ダクト45は、後述する吸着側ベルマウス63とともに、吸加湿ロータ41の左半分の部分から、以下に説明する吸着用ファン収納空間SP1へと通じる空気流路を形成する。
(2-3-1-6) Adsorption-side duct and adsorption fan The adsorption-side duct 45 covers a portion of the upper surface of the adsorption/humidification rotor 41 where the heater assembly 42 is not located (approximately half portion on the left). . The suction-side duct 45 forms an air flow path leading from the left half of the suction/humidification rotor 41 to the suction fan storage space SP1, which will be described below, together with the suction-side bell mouth 63, which will be described later.
 吸着用ファン収納空間SP1に収容される吸着用ファン46は、吸着用ファンモータ65によって回転する遠心ファンであり、上部に配置される吸着側ベルマウス63の開口部63aから空気を吸込むことで、吸着用空気吸込口40bから吸加湿ロータ41を介して、開口部63aへ流れる気流を生成する。そして、吸着用ファン46は、吸加湿ロータ41を通る際に水分を吸着された乾燥空気を吸着用空気吹出口40aからケーシング40の前方へ向けて排気する。吸着側ベルマウス63は、吸着用ファン収納空間SP1の上部に設けられており、吸着側ダクト45によって形成される空気流路を通ってくる空気を吸着用ファン46へと導く役割を果たす。 The suction fan 46 housed in the suction fan housing space SP1 is a centrifugal fan rotated by a suction fan motor 65. An air current is generated that flows from the adsorption air suction port 40b to the opening 63a via the adsorption/humidification rotor 41. As shown in FIG. Then, the adsorption fan 46 exhausts the dry air having moisture adsorbed while passing through the adsorption/humidification rotor 41 toward the front of the casing 40 from the adsorption air outlet 40a. The adsorption-side bell mouth 63 is provided above the adsorption fan storage space SP1, and plays a role of guiding the air coming through the air flow path formed by the adsorption-side duct 45 to the adsorption fan 46 .
 (2-3-1-7)ダンパの詳細構成
 ダンパ44は、図4に示すように、ケーシング71と、流路切換部材72と、上蓋73と、流路切換部材72を回転駆動するダンパ駆動モータ74(図10参照)と、流路切換部材72が正常に移動したかを検出するリミットスイッチ75(図10参照)とから構成されている。ダンパ44は、ラジアルファン組立体43の下方に配置され、流路切換部材72が回転移動することにより空気の流れを切り換える。
(2-3-1-7) Detailed Configuration of Damper The damper 44, as shown in FIG. It is composed of a motor 74 (see FIG. 10) and a limit switch 75 (see FIG. 10) for detecting whether the passage switching member 72 has moved normally. The damper 44 is arranged below the radial fan assembly 43 and switches the flow of air by rotationally moving the flow path switching member 72 .
 ケーシング71は、ケーシング側壁71aとケーシング底板71bとから構成されており、上方が開放されている。ケーシング側壁71aは、ケーシング底板71bから上方へ延びており、円弧状に側方へ湾曲している。また、ケーシング71の一部には、ケーシング側壁71aが存在しないケーシング側部開口71cがあり、ケーシング71の内部の空間は、ケーシング側部開口71cによって側方に開いた空間となっている。ケーシング底板71bの中央付近には、ケーシング底板71bから上方へ突出するレール71dが設けられており、ケーシング側壁71aと概ね平行となるように湾曲している。このレール71dとケーシング側壁71aとに挟まれた空間は、流路切換部材72が回転移動する移動空間となっている。ケーシング底板71bのうち流路切換部材72が通過する部分には、ケーシング底部開口71eが設けられており、ケーシング底板71bの外面に設けられた接続管71fの孔と繋がっている。この接続管71fには、給排気ダクト61が接続される。 The casing 71 is composed of a casing side wall 71a and a casing bottom plate 71b, and is open at the top. The casing side wall 71a extends upward from the casing bottom plate 71b and curves sideways in an arc shape. A part of the casing 71 has a casing side opening 71c where the casing side wall 71a does not exist, and the space inside the casing 71 is a space opened to the side by the casing side opening 71c. A rail 71d protruding upward from the casing bottom plate 71b is provided near the center of the casing bottom plate 71b, and is curved so as to be substantially parallel to the casing side wall 71a. A space sandwiched between the rail 71d and the casing side wall 71a serves as a moving space in which the channel switching member 72 rotates. A portion of the casing bottom plate 71b through which the passage switching member 72 passes is provided with a casing bottom opening 71e, which is connected to a hole of a connection pipe 71f provided on the outer surface of the casing bottom plate 71b. The air supply/exhaust duct 61 is connected to the connecting pipe 71f.
 上蓋73は、ケーシング71の上面を塞ぐ板状の部材であり、その上にはラジアルファン組立体43が取り付けられる。前述したように、上蓋73には、吹出口73aと取入口73bとが設けられている。吹出口73aは、ラジアルファン組立体43からダンパ44内へと送られてくる空気が通る開口であり、ケーシング71のケーシング底部開口71eの上方に設けられている。取入口73bは、ダンパ44内からラジアルファン組立体43へと送られる空気が通る開口であり、移動空間のうちケーシング底部開口71eとケーシング側部開口71cとの間の空間に面するように設けられている。 The upper lid 73 is a plate-like member that covers the upper surface of the casing 71, and the radial fan assembly 43 is attached thereon. As described above, the upper lid 73 is provided with the blowout port 73a and the intake port 73b. The air outlet 73 a is an opening through which air sent from the radial fan assembly 43 into the damper 44 passes, and is provided above the casing bottom opening 71 e of the casing 71 . The intake port 73b is an opening through which air sent from the damper 44 to the radial fan assembly 43 passes, and is provided to face the space between the casing bottom opening 71e and the casing side opening 71c in the moving space. It is
 流路切換部材72は、移動空間を移動することにより、ダンパ44内を通る空気の流れを切り換える部材である。流路切換部材72は、ケーシング71と上蓋73とにより形成されるケーシング71内の空間を、流路切換部材72の内部の空間SP2と流路切換部材72の外部の空間SP3とに分割する(図8(a)、図8(b)及び図9参照)。流路切換部材72は、主として、内側壁72a、外側壁72b、平側壁72c、72d及び底板72eにより構成されている。流路切換部材72は、上方が開放されており、上蓋73により上面を閉じられる。内側壁72aと外側壁72bとは、互いに並行であり、約90度の中心角を有する円弧状に側方へ湾曲している。外側壁72bは、ケーシング側壁71a側に設けられ、内側壁72aは、レール71d側に設けられる。また、内側壁72aの外面にはギヤ72fが設けられており、ダンパ駆動モータ74のギヤ740と噛み合って、ダンパ駆動モータ74の回転を流路切換部材72へと伝える。平側壁72c、72dは、内側壁72aと外側壁72bとの側端を繋ぐ板状の部材であり、平側壁72cには側部開口72gが設けられている。側部開口72gは、平側壁72cの外面に設けられた配管72hの孔と繋がっている。配管72hは、平側壁72cの外面から下方へ向けて約90度湾曲しており、配管72hの下方の孔から入ってくる空気を側部開口72gから流路切換部材72の内部の空間SP2へと送る。また、底板72eには底部開口72iが設けられている。流路切換部材72の大きさや底部開口72iの位置等は、図8(a)に示すように、底部開口72iがケーシング71のケーシング底部開口71eの真上に位置するときに、流路切換部材72の内部の空間SP2が上蓋73の取入口73bと連通しないように、また、図8(b)に示すように、流路切換部材72の配管72hの下方を向いている開口720hがケーシング底板71bのケーシング底部開口71eの真上に位置するときに、流路切換部材72の内部の空間SP2が上蓋73の取入口73bと連通し、且つ、吹出口73aと連通しないように決定されている。 The flow path switching member 72 is a member that switches the flow of air passing through the damper 44 by moving in the movement space. The flow path switching member 72 divides the space inside the casing 71 formed by the casing 71 and the upper lid 73 into a space SP2 inside the flow path switching member 72 and a space SP3 outside the flow path switching member 72 ( 8(a), 8(b) and 9). The channel switching member 72 is mainly composed of an inner wall 72a, an outer wall 72b, flat walls 72c and 72d, and a bottom plate 72e. The channel switching member 72 is open at the top and closed at the top by the top cover 73 . The inner wall 72a and the outer wall 72b are parallel to each other and curved laterally in an arc having a central angle of about 90 degrees. The outer wall 72b is provided on the casing side wall 71a side, and the inner wall 72a is provided on the rail 71d side. A gear 72 f is provided on the outer surface of the inner wall 72 a and meshes with a gear 740 of the damper drive motor 74 to transmit the rotation of the damper drive motor 74 to the flow path switching member 72 . The flat side walls 72c and 72d are plate-like members connecting side ends of the inner wall 72a and the outer wall 72b, and the flat side wall 72c is provided with a side opening 72g. 72 g of side openings are connected with the hole of 72 h of piping provided in the outer surface of the flat side wall 72c. The pipe 72h is curved downward by about 90 degrees from the outer surface of the flat side wall 72c, and the air entering from the lower hole of the pipe 72h is directed from the side opening 72g to the space SP2 inside the flow path switching member 72. and send. A bottom opening 72i is provided in the bottom plate 72e. The size of the flow path switching member 72, the position of the bottom opening 72i, and the like are determined when the bottom opening 72i is positioned right above the casing bottom opening 71e of the casing 71, as shown in FIG. In order to prevent the space SP2 inside 72 from communicating with the intake port 73b of the upper lid 73, and as shown in FIG. The space SP2 inside the flow path switching member 72 is determined to communicate with the intake port 73b of the upper lid 73 and not communicate with the blowout port 73a when positioned directly above the casing bottom opening 71e of the 71b. .
 ダンパ駆動モータ74は、流路切換部材72を、図4及び図5に示すように回動させるために設けられている。このダンパ駆動モータ74は、流路切換部材72を回転させ、流路切換部材72が図4、図6及び図8(a)に示す回転位置にくる第1状態と、図5、図7及び図8(b)に示す回転位置にくる第2状態と、図9に示す回転位置にくる第3状態とを切り換える。 The damper drive motor 74 is provided to rotate the flow path switching member 72 as shown in FIGS. The damper drive motor 74 rotates the flow path switching member 72, and the first state in which the flow path switching member 72 is in the rotational position shown in FIGS. The second state in which the rotational position shown in FIG. 8B is reached and the third state in which the rotational position shown in FIG. 9 is reached are switched.
 また、リミットスイッチ75は、流路切換部材72が正常に移動した場合に作動するように設けられており、ダンパ駆動モータ74を駆動した場合にリミットスイッチ75が作動するか否かで、第1状態、第2状態及び第3状態を切り換えることができたか否かを検出することができる。リミットスイッチ75は、制御部100と接続されており、検出結果を制御部100へと送る。 Further, the limit switch 75 is provided so as to operate when the flow path switching member 72 moves normally. It can be detected whether the state, the second state and the third state could be switched. The limit switch 75 is connected to the control section 100 and sends detection results to the control section 100 .
 次に、ダンパ44の第1状態、第2状態及び第3状態について説明する。まず、図6及び図8(a)を参照して、第1状態について説明する。 Next, the first state, second state and third state of the damper 44 will be described. First, the first state will be described with reference to FIGS. 6 and 8(a).
 第1状態では、図8(a)に示すように、流路切換部材72の内部の空間SP2が、開放されている上部を介して吹出口73aと連通し、底部開口72iを介してケーシング71のケーシング底部開口71eと連通する。また、流路切換部材72の外部の空間SP3が取入口73bと連通する。ヒータ組立体42および吸加湿ロータ41を通ってきた室外空気をダンパ44へと導く通路と、流路切換部材72の外部の空間SP3とは、ケーシング側部開口71cを介して連通しているため、ヒータ組立体42及び吸加湿ロータ41を通ってきた室外空気は、ラジアルファン組立体43に収容されたラジアルファン430が回転することにより取入口73bを通ってラジアルファン組立体43の内部へと入る。そして、吹出口73aから吹き出した室外空気は、流路切換部材72の内部の空間SP2、流路切換部材72の底部開口72i、ケーシング底部開口71eを通って接続管71fからダンパ44の外部へと送られる。接続管71fは、給排気ダクト61(図3及び図6参照)を介してホース6につながっているため、第1状態においては、ラジアルファン組立体43の吹出口73aから吹き出された空気は、ホース6を通って室内機2へと供給されるようになる。これにより、第1状態では、図6および図8(a)に示す矢印の向きに空気が流れ、室外空気がホース6を通って室内機2へと給気されるようになる。 In the first state, as shown in FIG. 8A, the space SP2 inside the flow path switching member 72 communicates with the blowout port 73a through the open upper portion, and the casing 71 through the bottom opening 72i. of the casing bottom opening 71e. In addition, the space SP3 outside the channel switching member 72 communicates with the intake port 73b. The passage for guiding the outdoor air that has passed through the heater assembly 42 and the humidifying/humidifying rotor 41 to the damper 44 and the space SP3 outside the flow path switching member 72 communicate through the casing side opening 71c. , the outdoor air passing through the heater assembly 42 and the humidifying/humidifying rotor 41 passes through the intake port 73b into the radial fan assembly 43 as the radial fan 430 accommodated in the radial fan assembly 43 rotates. come in. The outdoor air blown out from the outlet 73a passes through the space SP2 inside the flow path switching member 72, the bottom opening 72i of the flow path switching member 72, the casing bottom opening 71e, and the connection pipe 71f to the outside of the damper 44. Sent. Since the connecting pipe 71f is connected to the hose 6 via the air supply/exhaust duct 61 (see FIGS. 3 and 6), in the first state, the air blown out from the outlet 73a of the radial fan assembly 43 is It comes to be supplied to the indoor unit 2 through the hose 6. As a result, in the first state, the air flows in the direction of the arrows shown in FIGS.
 次に、図7及び図8(b)を参照して、第2状態について説明する。第2状態では、図8(b)に示すように、接続管71fが、配管72hを介して、流路切換部材72の内部の空間SP2と連通する。また、流路切換部材72の内部の空間SP2は、開放されている上部を介して、ラジアルファン組立体43の取入口73bと連通する。さらに、ラジアルファン組立体43の吹出口73aが、流路切換部材72の外部の空間SP3と連通し、ケーシング側部開口71cを介して室外機3の外部に通じる通路につながる。したがって、第2状態では、図7及び図8(b)で示す矢印の向きに室内空気が流れ、室内機2から排出されホース6を通ってきた室内空気が、給排気ダクト61を通ってケーシング側部開口71cから吹出し、ケーシング40の給排気口40cを通って室外機3の外部へと排気されるようになる。 Next, the second state will be described with reference to FIGS. 7 and 8(b). In the second state, as shown in FIG. 8B, the connection pipe 71f communicates with the space SP2 inside the flow path switching member 72 via the pipe 72h. In addition, the space SP2 inside the flow path switching member 72 communicates with the intake port 73b of the radial fan assembly 43 through the open top. Further, the blowout port 73a of the radial fan assembly 43 communicates with the space SP3 outside the flow path switching member 72 and connects to a passage leading to the outside of the outdoor unit 3 via the casing side opening 71c. Therefore, in the second state, the indoor air flows in the direction of the arrows shown in FIGS. The air is blown out from the side opening 71 c and is exhausted to the outside of the outdoor unit 3 through the air supply/exhaust port 40 c of the casing 40 .
 次に、図9を参照して、第3状態について説明する。第3状態は、流路切換部材72が第1状態と第2状態との間に位置する。第3状態では、ラジアルファン組立体43の取入口73bが流路切換部材72の外部の空間SP3と連通する。また、ラジアルファン組立体43の吹出口73aが、流路切換部材72の内部の空間SP2と連通する。しかし、流路切換部材72の底部開口72i及び配管72hの下方の開口720hは、ケーシング71のケーシング底板71bによって閉じられている。また、ケーシング71のケーシング底部開口71eも流路切換部材72の底板72eによって閉じられている。このように、第3状態では室外機3と室内機2とを繋ぐ空気の経路がダンパ44により閉じられた状態となっている。 Next, the third state will be described with reference to FIG. In the third state, the channel switching member 72 is positioned between the first state and the second state. In the third state, the intake port 73b of the radial fan assembly 43 communicates with the space SP3 outside the flow path switching member 72. As shown in FIG. Also, the outlet 73 a of the radial fan assembly 43 communicates with the space SP<b>2 inside the flow path switching member 72 . However, the bottom opening 72i of the channel switching member 72 and the lower opening 720h of the pipe 72h are closed by the casing bottom plate 71b of the casing 71 . A casing bottom opening 71 e of the casing 71 is also closed by a bottom plate 72 e of the channel switching member 72 . Thus, in the third state, the air path connecting the outdoor unit 3 and the indoor unit 2 is closed by the damper 44 .
 (2-3-2)ホース
 図1及び図2に示すように、室外に配置された換気ユニット4と室内機2との間には、換気ユニット4からの室外空気を室内機2側に供給するとき、及び、室内空気を室外に排出するときに用いられるホース6が設けられている。ここでは、ホース6は、換気ユニット4と室内機2とを接続している。詳細には、ホース6の一端部は、室内機2の給排気口14を形成する給排気口部材(ここでは壁部W)に接続され、ホース6の他端部は換気ユニット4に接続される。このため、給気運転では、ホース6を介して室外空気を室内へ供給し、排気運転ではホース6を介して室内空気を室外へ排出する。換言すると、ホース6は、給気運転の際に室外空気が通る流路を構成する部材であるとともに、排気運転の際に室内空気が通る流路を構成する部材である。また、ホース6は、加湿運転の際に加湿された室外空気が通る流路をさらに構成する部材である。
(2-3-2) Hose As shown in Figures 1 and 2, between the ventilation unit 4 and the indoor unit 2 placed outdoors, the outdoor air from the ventilation unit 4 is supplied to the indoor unit 2 side. A hose 6 is provided for use when the indoor air is discharged to the outside of the room. Here, the hose 6 connects the ventilation unit 4 and the indoor unit 2 . Specifically, one end of the hose 6 is connected to an air supply/exhaust port member (here, the wall W) forming the air supply/exhaust port 14 of the indoor unit 2, and the other end of the hose 6 is connected to the ventilation unit 4. be. Therefore, in the air supply operation, the outdoor air is supplied into the room through the hose 6, and in the exhaust operation, the indoor air is discharged to the outside through the hose 6. In other words, the hose 6 is a member that forms a flow path for the outdoor air during the air supply operation, and a member that forms a flow path for the indoor air during the exhaust operation. Also, the hose 6 is a member that further configures a flow path through which humidified outdoor air passes during the humidification operation.
 (2-4)リモコン
 図10及び図11に示すリモコン102は、室内に設けられている。リモコン102は、制御部100と、伝送線、通信線等を介して有線接続されていてもよく、無線接続されていてもよい。
(2-4) Remote Controller A remote controller 102 shown in FIGS. 10 and 11 is provided indoors. The remote controller 102 may be wired or wirelessly connected to the control unit 100 via a transmission line, a communication line, or the like.
 リモコン102は、空調運転及び換気運転の各種運転をユーザに選択させる。本実施形態のリモコン102は、図11に示すように、空調運転としての暖房運転、冷房運転及び除湿運転、換気運転としての給気運転、排気運転及び加湿運転、空調運転の設定などを選択するボタンを含む。 The remote control 102 allows the user to select various operations such as air conditioning operation and ventilation operation. As shown in FIG. 11, the remote controller 102 of the present embodiment selects heating operation, cooling operation and dehumidification operation as air conditioning operation, air supply operation, exhaust operation and humidification operation as ventilation operation, setting of air conditioning operation, and the like. Including buttons.
 ここでは、リモコン102は、給気運転と排気運転とを切り替える。ボタン102aが押されると、給気運転が開始される。ボタン102bが押されると、排気運転が開始される。このように、リモコン102のボタン102a、102bによって、給気運転及び排気運転をユーザが選択することができる。例えば、食事の時、室内の人が増える時などに、ユーザがボタン102bを押すことによって、排気運転を行うことができる。 Here, the remote controller 102 switches between air supply operation and exhaust operation. When the button 102a is pushed, the air supply operation is started. When the button 102b is pushed, the exhaust operation is started. In this manner, the user can select the air supply operation or the exhaust operation using the buttons 102a and 102b of the remote control 102. FIG. For example, the exhaust operation can be performed by the user pressing the button 102b when eating or when the number of people in the room increases.
 また、リモコン102は、表示部102cをさらに含む。表示部102cは、選択されている運転、設定した温度、湿度、メッセージなどを表示する。 In addition, the remote control 102 further includes a display section 102c. The display unit 102c displays the selected operation, set temperature, humidity, message, and the like.
 また、リモコン102は、ボタン102dが押されると、制御部100によって、冷房運転中または除湿運転中に、給気運転または排気運転が自動で行われる。 Further, when the button 102d of the remote controller 102 is pressed, the controller 100 automatically performs the air supply operation or the exhaust operation during the cooling operation or the dehumidifying operation.
 (2-5)制御部
 (2-5-1)概要
 図10に示す制御部100は、例えば、コンピュータにより実現されるものである。コンピュータは、例えば、制御演算装置と記憶装置とを備える。制御演算装置には、プロセッサを使用できる。制御部100は、プロセッサとしてのCPUを備えている。制御演算装置は、例えば、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理、演算処理またはシーケンス処理を行う。さらに、制御演算装置は、例えば、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。記憶装置は、データベースとして用いることができる。制御部100は、記憶装置としてのメモリを備えている。
(2-5) Control Unit (2-5-1) Overview The control unit 100 shown in FIG. 10 is realized by, for example, a computer. The computer, for example, includes a control computing device and a storage device. A processor can be used for the control computing unit. The control unit 100 has a CPU as a processor. The control arithmetic unit reads out a program stored in a storage device, for example, and performs predetermined image processing, arithmetic processing, or sequence processing according to the program. Further, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program, for example. A storage device can be used as a database. The control unit 100 has a memory as a storage device.
 本実施形態の制御部100は、空気調和装置1の室内機2、室外機3、換気ユニット4などに分かれて存在している。この制御部100は、図10に示すように、室外温度センサ33、室外湿度センサ34、室内温度センサ15、室内湿度センサ16、リミットスイッチ75、室内機2、室外機3及び換気ユニット4のその他の各機器と接続されている。制御部100は、リモコン102等からの運転指令に基づいて、または、自動で、暖房運転、冷房運転、除湿運転、給気運転、排気運転、加湿運転などの各種運転に応じて各機器の運転制御を行う。 The control unit 100 of this embodiment is divided into the indoor unit 2, the outdoor unit 3, the ventilation unit 4, and the like of the air conditioner 1. As shown in FIG. 10, the controller 100 includes an outdoor temperature sensor 33, an outdoor humidity sensor 34, an indoor temperature sensor 15, an indoor humidity sensor 16, a limit switch 75, an indoor unit 2, an outdoor unit 3, and a ventilation unit 4. connected to each device in the The control unit 100 operates each device according to various operations such as heating operation, cooling operation, dehumidification operation, air supply operation, exhaust operation, and humidification operation based on operation commands from the remote controller 102 or the like, or automatically. control.
 制御部100は、冷房運転中または除湿運転中に、給気運転または排気運転を行うように制御する。本実施形態の制御部100は、さらに、暖房運転中に、給気運転、排気運転または加湿運転を行うように制御する。 The control unit 100 controls to perform air supply operation or exhaust operation during cooling operation or dehumidifying operation. The control unit 100 of the present embodiment further controls to perform the air supply operation, the exhaust operation, or the humidification operation during the heating operation.
 ただし、制御部100は、加湿運転中に、排気運転をする指令を受けても、加湿運転を続行するように制御する。詳細には、加湿運転中に、リモコン102から排気運転のボタン102bが押されると、制御部100は、加湿運転を続行するとともに、リモコン102の表示部102cに「加湿運転中なので、使えません」などの排気運転が使えないことを表示する。 However, the control unit 100 controls to continue the humidifying operation even if an instruction to perform the exhaust operation is received during the humidifying operation. Specifically, when the exhaust operation button 102b is pressed from the remote controller 102 during the humidification operation, the control unit 100 continues the humidification operation, and displays the message "The humidification operation is in progress, so it cannot be used." ” to indicate that the exhaust operation cannot be used.
 なお、制御部100は、加湿運転中に、給気運転をする指令を受けた場合には、加湿運転を中止して給気運転に切り替えてもよく、加湿運転を続行してもよい。 It should be noted that the control unit 100 may stop the humidification operation and switch to the air supply operation when receiving an instruction to perform the air supply operation during the humidification operation, or may continue the humidification operation.
 制御部100は、室内の熱負荷に応じて排気運転を行うか否かを決める。換言すると、冷房または除湿運転中に給気運転または排気運転を行わせる制御部100が、室内の熱負荷に応じて排気運転を行うか否かを決める。 The control unit 100 determines whether to perform the exhaust operation according to the heat load in the room. In other words, the control unit 100 that causes the air supply operation or the exhaust operation to be performed during the cooling or dehumidifying operation determines whether or not to perform the exhaust operation according to the heat load in the room.
 (2-5-2)室内の熱負荷
 ここで、図12を参照して、室内SIの熱負荷Lについて説明する。なお、図12には、部屋Rによって規定される空調対象の室内(室内空間)SIが示されている。
(2-5-2) Indoor Heat Load Here, the heat load L of the indoor SI will be described with reference to FIG. Note that FIG. 12 shows the indoor (indoor space) SI to be air-conditioned defined by the room R. As shown in FIG.
 室内SIは、熱負荷Lを有する。空気調和装置1が冷房運転をする場合、熱負荷Lは、室内温度Tiを目標温度Ttに到達させるために、空気調和装置1が室内空気から取り除く必要のある熱量である。 The indoor SI has a heat load L. When the air conditioner 1 performs cooling operation, the heat load L is the amount of heat that the air conditioner 1 needs to remove from the indoor air in order to bring the indoor temperature Ti to the target temperature Tt.
 熱負荷Lには、外部負荷Loと内部負荷Liとが含まれる。外部負荷Loは、室外温度Toに起因する。内部負荷Liは、室内SIに存在し、家電製品、電子機器、人間などの熱源80に起因する。室内SIの熱負荷Lを低減させるため、空気調和装置1は空調能力Qを生み出す。 The heat load L includes an external load Lo and an internal load Li. The external load Lo is caused by the outdoor temperature To. An internal load Li exists in the indoor SI and is caused by heat sources 80 such as home appliances, electronic devices, and humans. The air conditioner 1 produces an air conditioning capacity Q in order to reduce the heat load L of the room SI.
 制御部100は、適切な空調能力Qの発生にあたり、室内SIの熱負荷Lを算出する。ここで算出される熱負荷Lは、厳密な意味での熱負荷ではなく、熱負荷に関連する量であってもよい。  The control unit 100 calculates the heat load L of the indoor SI in order to generate an appropriate air conditioning capacity Q. The heat load L calculated here may not be the heat load in the strict sense, but may be an amount related to the heat load.
 算出すべき熱負荷Lは、一例を挙げれば、目標温度Tt、室内温度Ti、及び、室外温度Toの関数によって求められる。 For example, the heat load L to be calculated is determined by a function of the target temperature Tt, the indoor temperature Ti, and the outdoor temperature To.
 (2-5-3)換気装置の制御
 制御部100は、冷房運転中または除湿運転中に、熱負荷Lに応じて、給気運転と排気運転とを自動で切り替える。自動運転は、ユーザがリモコン102で選択することができる。ただし、制御部100は、リモコン102等によってユーザが選択した換気運転を優先する。
(2-5-3) Ventilation Device Control The control unit 100 automatically switches between the air supply operation and the exhaust operation according to the heat load L during the cooling operation or the dehumidifying operation. Automatic driving can be selected by the user with the remote controller 102 . However, the control unit 100 gives priority to the ventilation operation selected by the user using the remote control 102 or the like.
 以下、リモコン102のボタン102d(図11参照)が押された際の制御部100による換気装置1bの制御について、主に図13を参照して説明する。ここでは、算出すべき熱負荷Lは、室内温度Ti、及び、室外温度Toの関数によって求められるものとして説明する。 The control of the ventilator 1b by the control unit 100 when the button 102d (see FIG. 11) of the remote controller 102 is pressed will be described below mainly with reference to FIG. Here, it is assumed that the heat load L to be calculated is obtained from a function of the indoor temperature Ti and the outdoor temperature To.
 まず、図13のステップSSの処理開始の起点から処理が開始される。 First, the process starts from the starting point of the process start of step SS in FIG.
 次に、制御部100は、空調運転(ここでは、冷房運転または除湿運転)が開始されたか否かを調べる。本実施形態の制御部100は、空調運転が停止された後に、最初に圧縮機21の運転が開始された時を、冷房運転または除湿運転の開始時としている。換言すると、制御部100は、サーモオフ状態からサーモオン状態になるときに圧縮機の運転が開始された時を、冷房運転または除湿運転の開始時としていない。 Next, the control unit 100 checks whether air conditioning operation (here, cooling operation or dehumidifying operation) has started. The controller 100 of the present embodiment defines the time when the operation of the compressor 21 is first started after the air conditioning operation is stopped as the start time of the cooling operation or the dehumidifying operation. In other words, the control unit 100 does not consider the time when the compressor starts to operate when the thermostat is switched from the thermo-off state to the thermo-on state as the start time of the cooling operation or the dehumidifying operation.
 制御部100は、空調運転が開始されている場合には処理をS1へ移し、空調運転が開始されていない場合には処理をS0へ戻す。 The control unit 100 shifts the process to S1 if the air conditioning operation has started, and returns the process to S0 if the air conditioning operation has not started.
 ステップS1において、制御部100は、自身が管理している変数である熱負荷閾値Lthに、第1値V1をセットする。 In step S1, the control unit 100 sets the heat load threshold value Lth, which is a variable managed by itself, to the first value V1.
 ステップS2において、制御部100は、室内温度センサ15によって室内空気の温度として、室内温度Tiを取得する。 In step S2, the control unit 100 acquires the room temperature Ti as the temperature of the room air by the room temperature sensor 15.
 また、ステップS3において、制御部100は、室外空気の温度として、室外温度センサ33によって室外温度Toを取得する。 Also, in step S3, the controller 100 acquires the outdoor temperature To by the outdoor temperature sensor 33 as the temperature of the outdoor air.
 ステップS4において、制御部100は、室内温度Ti及び室外温度Toに基づいて、室内SIの熱負荷Lを算出する。例えば、制御部100は、室外温度Toと室内温度Tiを比較し、両者の差分ΔTに応じて熱負荷Lを算出する。 In step S4, the control unit 100 calculates the heat load L of the indoor SI based on the indoor temperature Ti and the outdoor temperature To. For example, the control unit 100 compares the outdoor temperature To and the indoor temperature Ti, and calculates the heat load L according to the difference ΔT between the two.
 ステップS5において、制御部100は、熱負荷Lを、自身が格納している熱負荷閾値Lthと比較する。本実施形態では、制御部100は、差分ΔTとして、室内温度Tiと、室外温度Toとの高低により判定する。 In step S5, the control unit 100 compares the heat load L with the heat load threshold Lth stored by itself. In the present embodiment, the control unit 100 determines the difference ΔT based on the difference between the indoor temperature Ti and the outdoor temperature To.
 熱負荷Lが熱負荷閾値Lthを上回るときはステップS6に進む。ステップS6において、制御部100は、換気装置1bによる排気運転を行う。具体的には、制御部100は、室内温度Tiが室外温度Toよりも高い場合に、排気運転を行うことを決める。 When the thermal load L exceeds the thermal load threshold Lth, proceed to step S6. In step S6, the control unit 100 performs exhaust operation by the ventilator 1b. Specifically, the control unit 100 determines to perform the exhaust operation when the indoor temperature Ti is higher than the outdoor temperature To.
 一方、ステップS5において、熱負荷Lが熱負荷閾値Lthと等しいか下回るときはステップS7に進む。ステップS7において、制御部100は、換気装置1bによる給気運転を行う。具体的には、制御部100は、室内温度Tiが室外温度Toよりも低いまたは同じ場合に、給気運転を行うことを決める。換言すると、制御部100は、室内温度Tiが室外温度Toよりも低いまたは同じ場合に、排気運転を行わないことを決める。 On the other hand, in step S5, when the thermal load L is equal to or lower than the thermal load threshold Lth, the process proceeds to step S7. In step S7, the control unit 100 performs the air supply operation by the ventilator 1b. Specifically, the control unit 100 determines to perform the air supply operation when the indoor temperature Ti is lower than or equal to the outdoor temperature To. In other words, the controller 100 determines not to perform the exhaust operation when the indoor temperature Ti is lower than or equal to the outdoor temperature To.
 このように、冷房運転中または除湿運転中に、制御部100の排気運転または給気運転を行うか否かの決定により、排気運転(ステップS6)または給気運転(ステップS7)を行うと、制御部100は、処理をステップS2に戻す。これにより、空調運転の開始後においても、制御部100は、室内SIの熱負荷に応じて排気運転を行うか否かを決めている。このため、本実施形態の制御部100は、室内温度Tiが室外温度Toよりも高い場合には、排気運転を行い(ステップS6)。室内温度Tiが室外温度Toよりも低い場合には、給気運転を行う(ステップS7)。 As described above, when the controller 100 determines whether to perform the exhaust operation or the air supply operation during the cooling operation or the dehumidifying operation, the exhaust operation (step S6) or the air supply operation (step S7) is performed. Control unit 100 returns the process to step S2. Thus, even after the air conditioning operation is started, the control unit 100 determines whether or not to perform the exhaust operation according to the heat load of the indoor SI. Therefore, when the indoor temperature Ti is higher than the outdoor temperature To, the control unit 100 of this embodiment performs the exhaust operation (step S6). When the indoor temperature Ti is lower than the outdoor temperature To, the air supply operation is performed (step S7).
 (3)運転動作
 次に、空気調和装置1の運転動作について説明する。本実施形態の空気調和装置1は、空調運転として、暖房運転、冷房運転、及び除湿運転を行うとともに、換気運転として、給気運転、排気運転及び加湿運転を行う。各種運転は、制御部100が各構成機器を制御することによって行われる。
(3) Operating Behavior Next, the operating behavior of the air conditioner 1 will be described. The air conditioner 1 of the present embodiment performs heating operation, cooling operation, and dehumidification operation as air conditioning operation, and performs air supply operation, exhaust operation, and humidification operation as ventilation operation. Various operations are performed by the control unit 100 controlling each component.
 (3-1)冷房運転
 冷房運転を行うときには、制御部100は、室外熱交換器24が冷媒の放熱器として機能し、かつ、室内熱交換器11が冷媒の蒸発器として機能する状態に、四路切換弁22を切り換える。
(3-1) Cooling operation When performing the cooling operation, the control unit 100 causes the outdoor heat exchanger 24 to function as a refrigerant radiator and the indoor heat exchanger 11 to function as a refrigerant evaporator. The four-way selector valve 22 is switched.
 このような状態の冷媒回路において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機21から吐出された高圧の冷媒は、四路切換弁22を通じて、室外熱交換器24に送られる。室外熱交換器24に送られた高圧の冷媒は、室外熱交換器24において、室外ファン29によって供給される室外空気と熱交換を行って放熱する。室外熱交換器24において放熱した高圧の冷媒は、膨張弁25に送られて、冷凍サイクルにおける低圧まで減圧される。膨張弁25において減圧された低圧の冷媒は、フィルタ26、液閉鎖弁27及び連絡配管32を通じて、室内熱交換器11に送られる。室内熱交換器11に送られた低圧の冷媒は、室内熱交換器11において、室内ファン12によって供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却されて室内に吹き出される。室内熱交換器11において蒸発した低圧の冷媒は、連絡配管31、ガス閉鎖弁28、四路切換弁22及びアキュムレータ23を通じて、再び、圧縮機21に吸入される。 In the refrigerant circuit in such a state, low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed to high pressure in the refrigeration cycle, and then discharged. A high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 24 through the four-way switching valve 22 . The high-pressure refrigerant sent to the outdoor heat exchanger 24 exchanges heat with the outdoor air supplied by the outdoor fan 29 in the outdoor heat exchanger 24 to radiate heat. The high-pressure refrigerant that has released heat in the outdoor heat exchanger 24 is sent to the expansion valve 25 and decompressed to a low pressure in the refrigeration cycle. The low-pressure refrigerant decompressed by the expansion valve 25 is sent to the indoor heat exchanger 11 through the filter 26 , liquid closing valve 27 and connecting pipe 32 . The low-pressure refrigerant sent to the indoor heat exchanger 11 exchanges heat with the indoor air supplied by the indoor fan 12 in the indoor heat exchanger 11 and evaporates. As a result, the indoor air is cooled and blown into the room. The low-pressure refrigerant evaporated in the indoor heat exchanger 11 is sucked into the compressor 21 again through the connecting pipe 31 , the gas shutoff valve 28 , the four-way switching valve 22 and the accumulator 23 .
 このように、冷房運転においては、制御部100によって、冷媒回路に封入された冷媒が圧縮機21、室外熱交換器24、膨張弁25、室内熱交換器11の順に循環する動作がなされる。 Thus, in the cooling operation, the controller 100 causes the refrigerant sealed in the refrigerant circuit to circulate through the compressor 21, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 11 in that order.
 (3-2)除湿運転
 除湿運転を行うときには、制御部100は、冷房運転と同様に、室外熱交換器24が冷媒の放熱器として機能し、かつ、室内熱交換器11が冷媒の蒸発器として機能する状態になるように、四路切換弁22を切り換える。そして、除湿運転では、冷房運転と同様に、制御部100によって、冷媒回路に封入された冷媒が圧縮機21、室外熱交換器24、膨張弁25、室内熱交換器11の順に循環する動作がなされる。
(3-2) Dehumidifying operation When performing the dehumidifying operation, the control unit 100 controls the outdoor heat exchanger 24 to function as a refrigerant radiator and the indoor heat exchanger 11 to function as a refrigerant evaporator, as in the cooling operation. The four-way switching valve 22 is switched so as to function as a In the dehumidification operation, as in the cooling operation, the controller 100 causes the refrigerant sealed in the refrigerant circuit to circulate in the order of the compressor 21, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 11. done.
 (3-3)暖房運転
 暖房運転を行うときには、制御部100は、室外熱交換器24が冷媒の蒸発器として機能し、かつ、室内熱交換器11が冷媒の放熱器として機能する状態に、四路切換弁22を切り換える。
(3-3) Heating operation When performing the heating operation, the control unit 100 sets the outdoor heat exchanger 24 to function as a refrigerant evaporator and the indoor heat exchanger 11 to function as a refrigerant radiator. The four-way selector valve 22 is switched.
 このような状態の冷媒回路において、冷凍サイクルにおける低圧の冷媒は、圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機21から吐出された高圧の冷媒は、四路切換弁22、ガス閉鎖弁28及び連絡配管31を通じて、室内熱交換器11に送られる。室内熱交換器11に送られた高圧の冷媒は、室内熱交換器11において、室内ファン12によって供給される室内空気と熱交換を行って放熱する。これにより、室内空気は加熱されて室内に吹き出される。室内熱交換器11において放熱した高圧の冷媒は、連絡配管32、液閉鎖弁27及びフィルタ26を通じて、膨張弁25に送られて、冷凍サイクルにおける低圧まで減圧される。膨張弁25において減圧された低圧の冷媒は、室外熱交換器24に送られる。室外熱交換器24に送られた低圧の冷媒は、室外熱交換器24において、室外ファン29によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器24において蒸発した低圧の冷媒は、四路切換弁22及びアキュムレータ23を通じて、再び、圧縮機21に吸入される。 In the refrigerant circuit in such a state, low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed to high pressure in the refrigeration cycle, and then discharged. A high-pressure refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 11 through the four-way switching valve 22 , the gas shutoff valve 28 and the connecting pipe 31 . The high-pressure refrigerant sent to the indoor heat exchanger 11 exchanges heat with the indoor air supplied by the indoor fan 12 in the indoor heat exchanger 11 to radiate heat. As a result, the indoor air is heated and blown out into the room. The high-pressure refrigerant that has radiated heat in the indoor heat exchanger 11 is sent to the expansion valve 25 through the connecting pipe 32, the liquid closing valve 27 and the filter 26, and is decompressed to the low pressure in the refrigeration cycle. The low-pressure refrigerant decompressed by the expansion valve 25 is sent to the outdoor heat exchanger 24 . The low-pressure refrigerant sent to the outdoor heat exchanger 24 exchanges heat with the outdoor air supplied by the outdoor fan 29 in the outdoor heat exchanger 24 and evaporates. The low-pressure refrigerant evaporated in the outdoor heat exchanger 24 is sucked into the compressor 21 again through the four-way switching valve 22 and the accumulator 23 .
 このように、暖房運転においては、制御部100によって、冷媒回路に封入された冷媒が圧縮機21、室内熱交換器11、膨張弁25、室外熱交換器24の順に循環する動作がなされる。 Thus, in the heating operation, the controller 100 causes the refrigerant sealed in the refrigerant circuit to circulate through the compressor 21, the indoor heat exchanger 11, the expansion valve 25, and the outdoor heat exchanger 24 in this order.
 (3-4)給気運転
 給気運転を行うときには、制御部100は、ダンパ44を図4、図6および図8(a)に示す第1状態に切り換える。
(3-4) Air Supply Operation When performing air supply operation, the control section 100 switches the damper 44 to the first state shown in FIGS. 4, 6 and 8(a).
 具体的には、ラジアルファン組立体43を駆動すると、図2に示すように、給排気口40cからケーシング40内に室外空気が取り込まれ、その室外空気が吸加湿ロータ41の右側の略半分の部分を通過し、ヒータ組立体42内に導入される。そして、ヒータ組立体42内に入った室外空気は、吸加湿ロータ41の右側の略半分の部分を通過し、ダンパ44のケーシング側部開口71cからダンパ44の内部を通ってラジアルファン組立体43へと至る。このような空気流は、ラジアルファン組立体43が生成するものである。ラジアルファン組立体43は、上記のように吸加湿ロータ41及びダンパ44を通り抜けてきた室外空気を、ダンパ44、給排気ダクト61及びホース6介して、給排気口14から室内機2へと送る。室内機2に供給された室外空気は、室内熱交換器11を経て、吹出口19から室内に吹き出される。 Specifically, when the radial fan assembly 43 is driven, as shown in FIG. portion and into the heater assembly 42 . The outdoor air that has entered the heater assembly 42 passes through the right half of the humidifying rotor 41, passes through the casing side opening 71c of the damper 44, and enters the radial fan assembly 43 through the interior of the damper 44. to reach. Such airflow is produced by the radial fan assembly 43 . The radial fan assembly 43 sends the outdoor air that has passed through the suction/humidification rotor 41 and the damper 44 as described above to the indoor unit 2 from the air supply/exhaust port 14 via the damper 44, the air supply/exhaust duct 61, and the hose 6. . The outdoor air supplied to the indoor unit 2 passes through the indoor heat exchanger 11 and is blown indoors from the outlet 19 .
 このように、室外から取り込まれた室外空気は、給排気口40c、吸加湿ロータ41、ヒータ組立体42、ラジアルファン組立体43及びダンパ44を繋ぐ流路によって室内へと導かれる。 In this way, the outdoor air taken in from the outside is guided into the room by the flow path connecting the air supply/exhaust port 40c, the suction/humidification rotor 41, the heater assembly 42, the radial fan assembly 43, and the damper 44.
 (3-5)排気運転
 排気運転を行うときには、制御部100は、ダンパ44を図5、図7および図8(b)に示す第2状態に切り換える。
(3-5) Exhaust Operation When performing the exhaust operation, the control section 100 switches the damper 44 to the second state shown in FIGS. 5, 7 and 8B.
 ラジアルファン組立体43が駆動されると、室内機2の吸込口18からから取り込まれた室内空気が、給排気口14からホース6を経て、給排気ダクト61からダンパ44の内部を通ってラジアルファン組立体43へと到る。 When the radial fan assembly 43 is driven, the room air taken in from the suction port 18 of the indoor unit 2 passes through the air supply/exhaust port 14, the hose 6, and the air supply/exhaust duct 61 through the interior of the damper 44. The fan assembly 43 is reached.
 ラジアルファン組立体43へと到った室内空気は、再びダンパ44の内部を通って、ダンパ44のケーシング側部開口71cからダンパ44の外部へ吹き出す。ダンパ44の外部へ吹き出した室内空気は、吸加湿ロータ41の右側の略半分の部分を通過し、ヒータ組立体42内に導入される。そして、ヒータ組立体42内に入った室内空気は、吸加湿ロータ41の右側の略半分の部分を通過し、給排気口40cから室外へと排出される。 The room air that has reached the radial fan assembly 43 passes through the interior of the damper 44 again and is blown out of the damper 44 through the casing side opening 71c of the damper 44 . The room air blown out of the damper 44 passes through substantially the right half of the humidifying/absorbing rotor 41 and is introduced into the heater assembly 42 . The room air that has entered the heater assembly 42 passes through the right half portion of the suction/humidification rotor 41 and is discharged to the outside through the air supply/exhaust port 40c.
 このように、室内機2から取り込まれた室内空気は、給気運転時の流路とは逆向きに通過し、換気ユニット4から室外へと排出される。 In this way, the indoor air taken in from the indoor unit 2 passes in the opposite direction to the flow path during the air supply operation, and is discharged from the ventilation unit 4 to the outside.
 (3-6)加湿運転
 加湿運転は、給気運転時に室外空気が室内空気に供給される流路と基本的には同様であるが、室外空気を加湿する点において異なる。
(3-6) Humidification Operation The humidification operation is basically the same as the flow path through which the outdoor air is supplied to the indoor air during the air supply operation, but differs in that the outdoor air is humidified.
 具体的には、換気ユニット4は、吸着用ファン46を回転駆動することによって、図2に示すように、室外からの空気を吸着用空気吸込口40bからケーシング40内に取り入れる。ケーシング40内に入ってきた空気は、吸加湿ロータ41の左側の略半分の部分を通過して、図3に示す吸着側ダクト45および吸着側ベルマウス63により形成される空気流路および吸着用ファン46を介して、吸着用ファン収納空間SP1から吸着用空気吹出口40aを通って室外機3の前方へと排出される(図2の矢印A3及び図3参照)。ケーシング40内に室外から取り入れられた空気が吸加湿ロータ41の左側の略半分の部分を通過する際に、吸加湿ロータ41は、空気中に含まれている水分を吸着する。 Specifically, the ventilation unit 4 rotates the adsorption fan 46 to take air from the outside into the casing 40 through the adsorption air inlet 40b, as shown in FIG. The air that has entered the casing 40 passes through the substantially left half of the humidifying/adsorbing rotor 41, and flows through the air flow path formed by the adsorption-side duct 45 and the adsorption-side bell mouth 63 shown in FIG. Via the fan 46, the air is discharged from the adsorption fan storage space SP1 to the front of the outdoor unit 3 through the adsorption air outlet 40a (see arrow A3 in FIG. 2 and FIG. 3). When the air taken from the outside into the casing 40 passes through the substantially left half of the humidifying/absorbing rotor 41, the humidifying/absorbing rotor 41 adsorbs moisture contained in the air.
 この吸着工程で水分を吸着した吸加湿ロータ41の左側の略半分の部分は、吸加湿ロータ41が回転することによって、吸加湿ロータ41の右側の略半分の部分となる。そして、ここに移動してきた水分は、ヒータ組立体42からの熱により、ラジアルファン組立体43によって生成される空気流中に離脱する。これにより、室内機2に送られる室外空気は、吸加湿ロータ41に吸着されていた水分を含む。 The left approximately half portion of the adsorption/humidification rotor 41 that has adsorbed moisture in this adsorption step becomes the right approximately half portion of the adsorption/humidification rotor 41 as it rotates. The moisture that has moved here is then released by the heat from the heater assembly 42 into the airflow generated by the radial fan assembly 43 . As a result, the outdoor air sent to the indoor unit 2 contains moisture that has been adsorbed by the adsorption/humidification rotor 41 .
 (3-7)冷房運転中または除湿運転中の給気運転
 制御部100は、空調装置1aによって上記の冷房運転または除湿運転を行うとともに、室内の熱負荷Lに応じて、換気装置1bによって上記の給気運転を行うように制御する。
(3-7) Air supply operation during cooling operation or dehumidifying operation air supply operation.
 具体的には、上記の給気運転にしたがって、換気ユニット4は、室外空気を、ホース6を介して室内機2の給排気口14に供給する。この室外空気は、室内熱交換器11を通って、冷房または除湿されて、室内に供給される。このため、給気による室外空気は、空調装置1aによって、冷房または除湿された室内空気と併せて、室内に供給される。 Specifically, the ventilation unit 4 supplies outdoor air to the air supply/exhaust port 14 of the indoor unit 2 via the hose 6 in accordance with the air supply operation described above. This outdoor air passes through the indoor heat exchanger 11, is cooled or dehumidified, and is supplied indoors. Therefore, the supplied outdoor air is supplied indoors together with the indoor air that has been cooled or dehumidified by the air conditioner 1a.
 (3-8)冷房運転中または除湿運転中の排気運転
 制御部100は、空調装置1aによって上記の冷房運転または除湿運転を行うとともに、室内の熱負荷Lに応じて、換気装置1bによって上記の排気運転を行うように制御する。
(3-8) Exhaust operation during cooling operation or dehumidifying operation Control to perform exhaust operation.
 具体的には、上記の排気運転にしたがって、換気ユニット4は、室内空気を、室内機2の給排気口14からホース6を介して、換気ユニット4に供給する。この室内空気は、換気ユニット4から室外に排出される。このため、室内空気の一部は、換気装置1bによって室外に排出されるとともに、室内空気の他の一部は、空調装置1aによって室内熱交換器11を通って冷房または除湿されて、室内に供給される。 Specifically, according to the exhaust operation described above, the ventilation unit 4 supplies indoor air from the air supply/exhaust port 14 of the indoor unit 2 to the ventilation unit 4 via the hose 6 . This indoor air is discharged from the ventilation unit 4 to the outside. Therefore, part of the indoor air is discharged to the outside by the ventilation device 1b, and the other part of the indoor air is cooled or dehumidified through the indoor heat exchanger 11 by the air conditioner 1a, and is discharged indoors. supplied.
 (3-9)暖房運転中の給気運転または加湿運転
 制御部100は、空調装置1aによって上記の暖房運転を行うとともに、換気装置1bによって上記の給気運転または加湿運転を行うように制御する。
(3-9) Air supply operation or humidification operation during heating operation The control unit 100 performs control so that the air supply operation or the humidification operation is performed by the ventilator 1b while performing the above-described heating operation with the air conditioner 1a. .
 具体的には、換気ユニット4は、上記の給気運転にしたがって加湿されていない室外空気、または上記の加湿運転にしたがって加湿された室外空気を、ホース6を介して室内機2の給排気口14に供給する。この室外空気は、室内熱交換器11を通って、暖房され、供給される。このため、換気装置1bによって導入された室外空気は、空調装置1aによって、暖房された室内空気と併せて、室内に供給される。 Specifically, the ventilation unit 4 supplies the outdoor air that has not been humidified according to the air supply operation or the outdoor air that has been humidified according to the humidification operation through the air supply/exhaust port of the indoor unit 2 via the hose 6. 14. This outdoor air is heated and supplied through the indoor heat exchanger 11 . Therefore, the outdoor air introduced by the ventilator 1b is supplied indoors together with the indoor air heated by the air conditioner 1a.
 (3-10)暖房運転中の排気運転
 制御部100は、空調装置1aによって上記の暖房運転を行うとともに、換気装置1bによって上記の排気運転を行うように制御する。
(3-10) Exhaust operation during heating operation The control unit 100 performs control so that the air conditioner 1a performs the above-described heating operation and the ventilator 1b performs the above-described exhaust operation.
 具体的には、上記の排気運転にしたがって、換気ユニット4は、室内空気を、室内機2の給排気口14からホース6を介して、換気ユニット4に供給する。この室内空気は、換気ユニット4から室外に排出される。このため、室内空気の一部は、換気装置1bによって室外に排出されるとともに、室内空気の他の一部は、空調装置1aによって室内熱交換器11を通って暖房されて、室内に供給される。 Specifically, according to the exhaust operation described above, the ventilation unit 4 supplies indoor air from the air supply/exhaust port 14 of the indoor unit 2 to the ventilation unit 4 via the hose 6 . This indoor air is discharged from the ventilation unit 4 to the outside. Therefore, part of the room air is discharged to the outside by the ventilation device 1b, and the other part of the room air is heated through the indoor heat exchanger 11 by the air conditioner 1a and supplied to the room. be.
 (4)特徴
 (4-1)
 本実施形態の空気調和装置1は、冷房運転及び除湿運転の少なくとも一方を行う空気調和装置であって、換気装置1bと、制御部100と、を備える。換気装置1bは、室外空気を室内へ供給する第1換気運転(給気運転)と、室内空気を室外へ排出する第2換気運転(排気運転)と、を行う。制御部100は、冷房運転中または除湿運転中に、給気運転または換気運転を行うように制御する。制御部100は、室内SIの熱負荷Lに応じて排気運転を行うか否かを決める。
(4) Features (4-1)
The air conditioner 1 of this embodiment is an air conditioner that performs at least one of a cooling operation and a dehumidifying operation, and includes a ventilation device 1b and a control unit 100 . The ventilator 1b performs a first ventilation operation (supply operation) for supplying outdoor air indoors and a second ventilation operation (exhaust operation) for discharging indoor air to the outdoors. The control unit 100 controls to perform the air supply operation or the ventilation operation during the cooling operation or the dehumidifying operation. The control unit 100 determines whether or not to perform the exhaust operation according to the heat load L of the indoor SI.
 本実施形態の空気調和装置1によれば、制御部100によって、室内SIの熱負荷Lが高い場合に、排気運転を行うことができる。このため、室内空気を室外へ排出することによって、室内SIの熱負荷Lを減らすことができる。したがって、冷房運転または除湿運転の効率を向上することができる。 According to the air conditioner 1 of the present embodiment, the exhaust operation can be performed by the control unit 100 when the heat load L of the indoor SI is high. Therefore, the heat load L of the indoor SI can be reduced by discharging the indoor air to the outdoor. Therefore, the efficiency of cooling operation or dehumidifying operation can be improved.
 (4-2)
 本実施形態の空気調和装置1において、熱負荷Lは、室内空気の温度及び室外空気の温度によって決定される。
(4-2)
In the air conditioner 1 of this embodiment, the heat load L is determined by the temperature of the indoor air and the temperature of the outdoor air.
 この構成によれば、熱負荷Lは、室内空気の温度及び室外空気の温度に依存する。したがって、排気運転の条件として、室内空気の温度及び室外空気の温度が考慮される。 According to this configuration, the heat load L depends on the temperature of the indoor air and the temperature of the outdoor air. Therefore, the temperature of the indoor air and the temperature of the outdoor air are taken into consideration as conditions for the exhaust operation.
 (4-3)
 本実施形態の空気調和装置1において、制御部100は、室内空気の温度が室外空気の温度よりも高い場合に、排気運転を行う(ステップS6)。
(4-3)
In the air conditioner 1 of the present embodiment, the controller 100 performs exhaust operation when the temperature of the indoor air is higher than the temperature of the outdoor air (step S6).
 ここでは、室内空気が室外空気の温度よりも高い場合には、排気運転を行って(ステップS6)、室内空気を室外に排出する。これにより、温度の高い室内空気を冷房または除湿することを減らすことができるので、冷房運転及び除湿運転の効率をより向上できる。 Here, when the temperature of the indoor air is higher than the temperature of the outdoor air, the exhaust operation is performed (step S6) to discharge the indoor air to the outdoors. As a result, it is possible to reduce the need to cool or dehumidify the indoor air having a high temperature, so that the efficiency of the cooling operation and the dehumidification operation can be further improved.
 (4-4)
 本実施形態の空気調和装置1において、制御部100は、冷房運転または除湿運転の開始時において、室内空気の温度が室外空気の温度よりも高い場合に、排気運転を行う(ステップS6)。
(4-4)
In the air conditioner 1 of the present embodiment, when the temperature of the indoor air is higher than the temperature of the outdoor air at the start of the cooling operation or the dehumidifying operation, the control unit 100 performs the exhaust operation (step S6).
 冷房運転または除湿運転の運転開始時に、室内SIの熱負荷Lが高いことが多い。このため、冷房運転または除湿運転の運転開始時に、室内空気の温度が室外空気の温度よりも高い場合に、排気運転を行うこと(ステップS6)によって、冷房運転及び除湿運転の効率を向上する効果を高めることができる。 At the start of cooling operation or dehumidifying operation, the heat load L of the indoor SI is often high. Therefore, when the temperature of the indoor air is higher than the temperature of the outdoor air at the start of the cooling operation or the dehumidifying operation, the exhaust operation is performed (step S6), thereby improving the efficiency of the cooling operation and the dehumidifying operation. can increase
 (4-5)
 本実施形態の空気調和装置1において、制御部100は、室内空気の温度が室外空気の温度よりも低い場合に、給気運転を行う(ステップS7)。
(4-5)
In the air conditioner 1 of the present embodiment, the controller 100 performs the air supply operation when the temperature of the indoor air is lower than the temperature of the outdoor air (step S7).
 ここでは、室内空気が室外空気の温度よりも低い場合には、室外空気を室内SIに供給する。これにより、温度の低い室内空気を室外に排出しないので、冷房運転及び除湿運転の効率をより向上できる。 Here, when the temperature of the indoor air is lower than the temperature of the outdoor air, the outdoor air is supplied to the indoor SI. As a result, indoor air having a low temperature is not discharged to the outside, so that the efficiency of the cooling operation and the dehumidifying operation can be further improved.
 なお、制御部100は、冷房または除湿運転開始時に、排気運転を行い(ステップS6)、室内温度Tiが室外温度Toより低くなった時に、排気運転から給気運転(ステップS7)に切り替える。そして、制御部100は、冷房または除湿運転中、基本的には給気運転を行い(ステップS7)、室内温度Tiが室外温度Toよりも高くなった時のみ、排気運転を行う(ステップS6)ことが好ましい。これにより、室内機2で冷房または除湿された空気を室外に排出しないので、冷房運転及び除湿運転の効率をより向上できる。 Note that the control unit 100 performs the exhaust operation (step S6) when the cooling or dehumidifying operation is started, and switches from the exhaust operation to the air supply operation (step S7) when the indoor temperature Ti becomes lower than the outdoor temperature To. Then, the control unit 100 basically performs the air supply operation during the cooling or dehumidification operation (step S7), and performs the exhaust operation only when the indoor temperature Ti becomes higher than the outdoor temperature To (step S6). is preferred. As a result, the air cooled or dehumidified by the indoor unit 2 is not discharged to the outside, so the efficiency of the cooling operation and the dehumidifying operation can be further improved.
 (4-6)
 本実施形態の空気調和装置1において、室内に配置される室内機2をさらに備える。室内機2は、室内熱交換器11を含む。室内機2には、排気運転時に、室内空気を吸い込む吸込口18が形成されている。吸込口18は、室内熱交換器11の上流に設けられる。
(4-6)
The air conditioner 1 of the present embodiment further includes an indoor unit 2 arranged indoors. The indoor unit 2 includes an indoor heat exchanger 11 . The indoor unit 2 is formed with a suction port 18 for sucking indoor air during exhaust operation. The suction port 18 is provided upstream of the indoor heat exchanger 11 .
 この構成によれば、吸込口18から吸い込んだ室内空気を、室内熱交換器11を通さずに、給排気口14から室外に排出することができる。このため、室内熱交換器11で熱交換した室内空気を室外に排出することを抑制できる。したがって、冷房運転及び除湿運転の効率をより向上できる。 According to this configuration, the indoor air sucked from the suction port 18 can be discharged to the outside from the air supply/exhaust port 14 without passing through the indoor heat exchanger 11 . Therefore, it is possible to suppress the indoor air heat-exchanged by the indoor heat exchanger 11 from being discharged outdoors. Therefore, the efficiency of cooling operation and dehumidification operation can be further improved.
 (4-7)
 本実施形態の空気調和装置1は、室内と室外とを接続し、室内空気及び室外空気の流路を形成する流路部材を備える。流路は、例えば、換気装置1bのホース6の内部空間、室内機2の給排気口14などである。給気運転では、流路を介して室外空気を室内へ供給する。排気運転では、流路を介して室内空気を室外へ排出する。このように、給気運転の際に室外空気が通る流路を構成する部材と、排気運転の際に室内空気が通る流路を構成する部材とは、共通である。
(4-7)
The air conditioner 1 of the present embodiment includes a channel member that connects the indoor space and the outdoor space and forms a channel for the indoor air and the outdoor air. The flow path is, for example, the internal space of the hose 6 of the ventilator 1b, the air supply/exhaust port 14 of the indoor unit 2, and the like. In the air supply operation, outdoor air is supplied indoors through the flow path. In the exhaust operation, indoor air is discharged to the outside through the flow path. In this way, the member forming the flow path through which the outdoor air passes during the air supply operation and the member forming the flow path through which the indoor air passes during the exhaust operation are common.
 この構成によれば、室内空気及び室外空気が通る流路を大きくすることができるので、給気量及び排気量を向上できる。このため、冷房運転中または除湿運転中に、給気運転または排気運転を行うと、冷房または除湿された空気と、給気または排気とで、換気むらを減らすことができる。 According to this configuration, it is possible to increase the flow paths through which indoor air and outdoor air pass, so that the amount of air supply and the amount of exhaust air can be improved. Therefore, if the air supply operation or the exhaust operation is performed during the cooling operation or the dehumidification operation, the ventilation unevenness can be reduced by the cooled or dehumidified air and the supply air or the exhaust air.
 (4-8)
 本実施形態の空気調和装置1において、換気装置1bは、換気ユニット4と、ホース6とを含む。換気ユニット4は、室外機3に設けられている。ホース6は、換気ユニット4と室内機2とを接続する。上記流路部材は、ホース6である。このように、給気する室外空気及び排気する室内空気が通るホース6が共通である。これにより、給排気口14の大きさの制約において、ホース6の径を大きくすることができるので、給気運転で供給する給気量、及び、排気運転で排出する排気量を増やすことができる。このため、換気むらをより減らすことができる。
(4-8)
In the air conditioner 1 of this embodiment, the ventilator 1b includes a ventilation unit 4 and a hose 6. As shown in FIG. A ventilation unit 4 is provided in the outdoor unit 3 . A hose 6 connects the ventilation unit 4 and the indoor unit 2 . The flow path member is the hose 6 . In this way, the hose 6 is common for the outdoor air to be supplied and the indoor air to be exhausted. As a result, the diameter of the hose 6 can be increased despite the restriction on the size of the air supply/exhaust port 14, so the amount of air supplied in the air supply operation and the amount of exhaust gas discharged in the exhaust operation can be increased. . Therefore, it is possible to further reduce ventilation irregularities.
 (5)変形例
 (5-1)変形例1
 上記実施形態では、算出すべき熱負荷Lは、室内温度Ti、及び、室外温度Toの両方の関数として求められるが、これに限定されない。本変形例では、熱負荷Lは、室外温度Toを用いず、室内温度Tiのみの関数として求める。
(5) Modification (5-1) Modification 1
In the above embodiment, the heat load L to be calculated is obtained as a function of both the indoor temperature Ti and the outdoor temperature To, but is not limited to this. In this modification, the heat load L is obtained as a function of only the indoor temperature Ti without using the outdoor temperature To.
 この構成によれば、制御部100は、室内温度Tiのみに応じて、排気運転を行うか否かを決める。したがって、制御部100が行う演算が簡単である。 According to this configuration, the control unit 100 determines whether or not to perform the exhaust operation based only on the indoor temperature Ti. Therefore, the calculation performed by the control unit 100 is simple.
 (5-2)変形例2
 上記実施形態では、熱負荷Lは、室内温度Ti及び室外温度Toによって決定されるが、本変形例では、室内温度Ti及び設定温度によって決定される。設定温度は、例えば、リモコン102によってユーザが設定した温度である。例えば、室内温度Tiが設定温度よりも高い場合に排気運転を行い、室内温度Tiが設定温度よりも低い場合に給気運転を行う。
(5-2) Modification 2
In the above embodiment, the heat load L is determined by the indoor temperature Ti and the outdoor temperature To, but in this modified example, it is determined by the indoor temperature Ti and the set temperature. The set temperature is, for example, the temperature set by the user using the remote controller 102 . For example, the exhaust operation is performed when the indoor temperature Ti is higher than the set temperature, and the air supply operation is performed when the indoor temperature Ti is lower than the set temperature.
 この構成によれば、制御部100は、設定温度及び室内温度Tiに応じて、排気運転を行うか否かを決めることができる。 According to this configuration, the control unit 100 can determine whether or not to perform the exhaust operation according to the set temperature and the indoor temperature Ti.
 (5-3)変形例3
 上記実施形態では、熱負荷Lは、各種温度によって決定される。本変形例では、熱負荷Lは、各種温度に代えて、または各種温度と共に、各種湿度を用いて決定してもよい。具体的には、熱負荷Lは、室内空気の温度及び室内空気の湿度、の少なくとも1つによって決定されてもよい。例えば、熱負荷Lを、室内空気の湿度である室内湿度Hi、及び、室外空気の湿度である室外湿度Hoによって決定してもよい。室内湿度Hiは、室内湿度センサ16によって取得できる。室外湿度Hoは、室外湿度センサ34によって取得できる。例えば、室内湿度Hiが室外湿度Hoよりも高い場合に排気運転を行い、室内湿度Hiが室外湿度Hoよりも低い場合に給気運転を行う。
(5-3) Modification 3
In the above embodiment, the heat load L is determined by various temperatures. In this modification, the heat load L may be determined using various humidity instead of or together with various temperatures. Specifically, the heat load L may be determined by at least one of the indoor air temperature and the indoor air humidity. For example, the heat load L may be determined by the indoor humidity Hi, which is the humidity of the indoor air, and the outdoor humidity Ho, which is the humidity of the outdoor air. The indoor humidity Hi can be obtained by the indoor humidity sensor 16 . The outdoor humidity Ho can be obtained by the outdoor humidity sensor 34 . For example, the exhaust operation is performed when the indoor humidity Hi is higher than the outdoor humidity Ho, and the air supply operation is performed when the indoor humidity Hi is lower than the outdoor humidity Ho.
 この構成によれば、制御部100は、室内湿度Hi及び室外湿度Hoに応じて、排気運転を行うか否かを決めることができる。 According to this configuration, the control unit 100 can determine whether to perform the exhaust operation according to the indoor humidity Hi and the outdoor humidity Ho.
 なお、熱負荷Lは、室外湿度Hoを用いず、室内湿度Hiのみの関数として求めてもよい。 Note that the heat load L may be obtained as a function of only the indoor humidity Hi without using the outdoor humidity Ho.
 (5-4)変形例4
 上記実施形態では、熱負荷Lは、各種温度によって決定される。本変形例では、熱負荷Lは、室内機2が設置される部屋Rを構成する躯体の温度である躯体温度によって決定される。躯体温度は、躯体温度センサ(図示せず)によって取得できる。熱負荷Lの算出においては、制御部100は、躯体温度のみならず、各種温度、各種湿度、またはその両方を併せて用いてもよい。
(5-4) Modification 4
In the above embodiment, the heat load L is determined by various temperatures. In this modified example, the heat load L is determined by the body temperature, which is the temperature of the body forming the room R in which the indoor unit 2 is installed. The body temperature can be obtained by a body temperature sensor (not shown). In calculating the heat load L, the controller 100 may use not only the body temperature, but also various temperatures, various humidity, or both.
 この構成によれば、制御部100は、躯体温度に応じて、排気運転を行うか否かを決めることができる。 According to this configuration, the control unit 100 can determine whether or not to perform the exhaust operation according to the body temperature.
 (5-5)変形例5
 上記実施形態では、冷房運転中または除湿運転中に、室内空気の温度が室外空気の温度よりも高い場合に排気運転を行い、室内空気の温度が室外空気の温度よりも低い場合に給気運転を行うが、これに限定されない。
(5-5) Modification 5
In the above embodiment, during the cooling operation or the dehumidifying operation, the exhaust operation is performed when the temperature of the indoor air is higher than the temperature of the outdoor air, and the air supply operation is performed when the temperature of the indoor air is lower than the temperature of the outdoor air. to, but is not limited to,
 本変形例では、制御部100は、冷房運転中または除湿運転中に、室内空気の温度と室外空気の温度との差が所定値を超える場合に排気運転を行い、室内空気の温度と室外空気の温度との差が所定値以下の場合に給気運転を行ってもよい。このため、制御部100は、排気運転中に、室内空気の温度と室外空気の温度との差が所定値以下になった場合に、排気運転を終了する。所定値(室内温度Ti-室外温度To)は、例えば、0℃以上7℃以下、好ましくは1℃以上5℃以下である。 In this modification, the control unit 100 performs the exhaust operation when the difference between the temperature of the indoor air and the temperature of the outdoor air exceeds a predetermined value during the cooling operation or the dehumidifying operation. The air supply operation may be performed when the difference from the temperature of is equal to or less than a predetermined value. Therefore, the control unit 100 ends the exhaust operation when the difference between the temperature of the indoor air and the temperature of the outdoor air becomes equal to or less than a predetermined value during the exhaust operation. The predetermined value (indoor temperature Ti−outdoor temperature To) is, for example, 0° C. or higher and 7° C. or lower, preferably 1° C. or higher and 5° C. or lower.
 この構成によれば、冷房運転または除湿運転によって温度が低下した室内空気を室外に排出することを抑制できるので、冷房運転及び除湿運転の効率をより向上できる。 According to this configuration, it is possible to suppress the indoor air whose temperature has been lowered by the cooling operation or the dehumidification operation from being discharged to the outside, so that the efficiency of the cooling operation and the dehumidification operation can be further improved.
 (5-6)変形例6
 上記実施形態では、制御部100は、室内の熱負荷Lに応じて排気運転を行うか否かを決めるが、制御部100は、さらに条件を有してもよい。本変形例では、制御部100は、熱負荷Lが熱負荷閾値Lthを上回り、かつ、人検知センサ17が人を検知すると、排気運転を行うことを決める。また、制御部100は、熱負荷Lが熱負荷閾値Lth以下であり、かつ、人検知センサ17が人を検知すると、給気運転を行うことを決める。
(5-6) Modification 6
In the above embodiment, the control unit 100 determines whether or not to perform the exhaust operation according to the heat load L in the room, but the control unit 100 may have further conditions. In this modification, the control unit 100 determines to perform the exhaust operation when the heat load L exceeds the heat load threshold Lth and the human detection sensor 17 detects a person. Further, when the heat load L is equal to or less than the heat load threshold Lth and the human detection sensor 17 detects a person, the control unit 100 decides to perform the air supply operation.
 この構成によれば、部屋Rに人が存在する場合に、排気運転または給気運転が行われる。換言すると、人が存在しない場合には、換気装置1bが動作しないので、空気調和装置1の消費エネルギーが抑制される。 According to this configuration, when there is a person in room R, exhaust operation or air supply operation is performed. In other words, the energy consumption of the air conditioner 1 is suppressed because the ventilator 1b does not operate when no one is present.
 (5-7)変形例7
 上記実施形態では、制御部100は、冷房運転中または除湿運転中に、常に、排気運転または給気運転を行うように制御するが、冷房運転中または除湿運転中の少なくとも一部に、排気運転または給気運転を行うように制御すれば、これに限定されない。換言すると、本開示の空気調和装置は、冷房運転中または除湿運転中の一部において、排気運転及び給気運転を行わないように制御してもよい。
(5-7) Modification 7
In the above embodiment, the control unit 100 always controls to perform the exhaust operation or the air supply operation during the cooling operation or the dehumidifying operation. Or if it is controlled to perform air supply operation, it is not limited to this. In other words, the air conditioner of the present disclosure may be controlled so as not to perform the exhaust operation and the air supply operation during part of the cooling operation or the dehumidifying operation.
 本変形例では、冷房運転中または除湿運転中に、基本的には、排気運転または給気運転を行うように制御するが、室内空気の温度が室外空気の温度よりも低い場合に、排気運転及び給気運転を所定時間行わない。 In this modification, basically, during the cooling operation or the dehumidifying operation, control is performed so that the exhaust operation or the air supply operation is performed. And the air supply operation is not performed for a predetermined time.
 この構成によれば、室内空気の温度が室外空気の温度よりも低い場合に、排気運転及び給気運転の両方を一時的に行わない。このため、換気運転よりも冷房または除湿運転の効率を優先する時間を設けることも可能である。 According to this configuration, when the temperature of the indoor air is lower than the temperature of the outdoor air, both the exhaust operation and the air supply operation are temporarily stopped. For this reason, it is possible to set a time during which the efficiency of the cooling or dehumidifying operation is prioritized over the ventilation operation.
 (5-8)変形例8
 上記実施形態では、換気ユニット4は、室外機に設けられているが、これに限定されない。本変形例の換気ユニットは、室内機に設けられる。
(5-8) Modification 8
Although the ventilation unit 4 is provided in the outdoor unit in the above embodiment, it is not limited to this. The ventilation unit of this modification is provided in the indoor unit.
 (5-9)変形例9
 上記実施形態では、室外空気及び室内空気の流路を形成する流路部材として、ホース6及び給排気口14を例に挙げて説明したが、これに限定されない。例えば、流路部材はホース6であるが、室内機2には給気口と排気口とは、別に形成されてもよい。この場合、給気運転の際には、ホース6から給気口を介して室外空気が室内に供給され、排気運転の際には、排気口を介して室内空気がホース6に導入される。
(5-9) Modification 9
In the above-described embodiment, the hose 6 and the air supply/exhaust port 14 are described as examples of flow path members that form flow paths for the outdoor air and the indoor air, but the present invention is not limited to this. For example, the flow path member is the hose 6, but the indoor unit 2 may have an air supply port and an air exhaust port formed separately. In this case, the outdoor air is supplied from the hose 6 through the air supply port during the air supply operation, and the indoor air is introduced into the hose 6 through the exhaust port during the exhaust operation.
 (5-10)変形例10
 上記実施形態では、室外空気(給気)が通る流路を構成する流路部材と、室内空気(排気)が通る流路を構成する流路部材とが兼用されるが、これに限定されない。例えば、給気用の流路部材としてのホースと、排気用の流路部材としてのホースとが、別部材であってもよい。
(5-10) Modification 10
In the above embodiment, the channel member forming the channel through which the outdoor air (supply air) passes and the channel member forming the channel through which the indoor air (exhaust air) passes are used in common, but the present invention is not limited to this. For example, a hose as a channel member for air supply and a hose as a channel member for exhaust may be separate members.
 (5-11)変形例11
 上記実施形態では、冷房運転、除湿運転及び暖房運転を行う空気調和装置1を例に挙げて説明したが、本開示の空気調和装置は、冷房運転及び除湿運転の少なくとも一方を行うことができれば、これに限定されない。本変形例の空気調和装置は、冷房専用である。
(5-11) Modification 11
In the above embodiment, the air conditioner 1 that performs cooling operation, dehumidifying operation, and heating operation was described as an example, but the air conditioner of the present disclosure can perform at least one of cooling operation and dehumidifying operation It is not limited to this. The air conditioner of this modification is only for cooling.
 (5-12)変形例12
 上述した実施形態では、壁掛け型の室内機2を例に挙げて説明したが、本開示の室内機は、これに限定されない。本開示の室内機は、天井埋込型、床置き型などの任意の型式を採用することができる。
(5-12) Modification 12
Although the wall-mounted indoor unit 2 has been described as an example in the above-described embodiment, the indoor unit of the present disclosure is not limited to this. The indoor unit of the present disclosure can adopt any type such as a ceiling-embedded type or a floor-mounted type.
 (5-13)変形例13
 上述した実施形態では、1つの室内機2を備える空気調和装置1を例に挙げて説明したが、本開示の空気調和装置は、これに限定されない。本開示の空気調和装置は、複数の室内機2を備えるマルチタイプにも適用できる。
(5-13) Modification 13
In the above-described embodiment, the air conditioner 1 including one indoor unit 2 was described as an example, but the air conditioner of the present disclosure is not limited to this. The air conditioner of the present disclosure can also be applied to a multi-type having multiple indoor units 2 .
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
1    :空気調和装置
1a   :空調装置
1b   :換気装置
2    :室内機
3    :室外機
11   :室内熱交換器(熱交換器)
18   :吸込口
100  :制御部
L    :熱負荷
Reference Signs List 1: Air conditioner 1a: Air conditioner 1b: Ventilator 2: Indoor unit 3: Outdoor unit 11: Indoor heat exchanger (heat exchanger)
18: Suction port 100: Control unit L: Heat load
特開2007-032855号公報JP 2007-032855 A

Claims (9)

  1.  冷房運転及び除湿運転の少なくとも一方を行う空気調和装置であって、
     室外空気を室内へ供給する第1換気運転と、室内空気を室外へ排出する第2換気運転と、を行う、換気装置(1b)と、
     冷房運転中または除湿運転中に、前記第1換気運転または前記第2換気運転を行うように制御する、制御部(100)と、
    を備え、
     前記制御部は、室内の熱負荷(L)に応じて前記第2換気運転を行うか否かを決める、空気調和装置(1)。
    An air conditioner that performs at least one of cooling operation and dehumidifying operation,
    a ventilator (1b) for performing a first ventilation operation for supplying outdoor air indoors and a second ventilation operation for discharging indoor air to the outdoors;
    a control unit (100) for controlling to perform the first ventilation operation or the second ventilation operation during the cooling operation or the dehumidifying operation;
    with
    An air conditioner (1), wherein the control unit determines whether or not to perform the second ventilation operation according to an indoor heat load (L).
  2.  前記熱負荷は、室内空気の温度及び室内空気の湿度、の少なくとも1つによって決定される、
    請求項1に記載の空気調和装置。
    the heat load is determined by at least one of indoor air temperature and indoor air humidity;
    The air conditioner according to claim 1.
  3.  室内に配置され、熱交換器(11)を含む室内機(2)をさらに備え、
     前記熱負荷は、前記室内機が設置される部屋を構成する躯体の温度、によって決定される、
    請求項1または2に記載の空気調和装置。
    further comprising an indoor unit (2) disposed indoors and including a heat exchanger (11);
    The heat load is determined by the temperature of the frame that constitutes the room in which the indoor unit is installed,
    The air conditioner according to claim 1 or 2.
  4.  前記制御部は、室内空気の温度が室外空気の温度よりも高い場合に、前記第2換気運転を行う、
    請求項1~3のいずれか1項に記載の空気調和装置。
    The control unit performs the second ventilation operation when the temperature of the indoor air is higher than the temperature of the outdoor air.
    The air conditioner according to any one of claims 1 to 3.
  5.  前記制御部は、冷房運転または除湿運転の開始時において、室内空気の温度が室外空気の温度よりも高い場合に、前記第2換気運転を行う、
    請求項4に記載の空気調和装置。
    The control unit performs the second ventilation operation when the temperature of the indoor air is higher than the temperature of the outdoor air at the start of the cooling operation or the dehumidifying operation.
    The air conditioner according to claim 4.
  6.  前記制御部は、室内空気の温度が室外空気の温度よりも低い場合に、前記第1換気運転を行う、
    請求項1~5のいずれか1項に記載の空気調和装置。
    The control unit performs the first ventilation operation when the temperature of the indoor air is lower than the temperature of the outdoor air.
    The air conditioner according to any one of claims 1 to 5.
  7.  前記制御部は、室内空気の温度と、室外空気の温度との差が所定値以下になった場合に、前記第2換気運転を終了する、
    請求項1~3のいずれか1項に記載の空気調和装置。
    The control unit terminates the second ventilation operation when the difference between the temperature of the indoor air and the temperature of the outdoor air is equal to or less than a predetermined value.
    The air conditioner according to any one of claims 1 to 3.
  8.  室内に配置され、熱交換器(11)を含む室内機(2)をさらに備え、
     前記室内機には、前記第2換気運転時に、室内空気を吸い込む吸込口(18)が形成され、
     前記吸込口は、前記熱交換器の上流に設けられる、
    請求項1~7のいずれか1項に記載の空気調和装置。
    further comprising an indoor unit (2) disposed indoors and including a heat exchanger (11);
    The indoor unit is formed with a suction port (18) for sucking indoor air during the second ventilation operation,
    The suction port is provided upstream of the heat exchanger,
    The air conditioner according to any one of claims 1 to 7.
  9.  前記制御部は、冷房運転中または除湿運転中に、室内空気の温度が室外空気の温度よりも低い場合に、前記第1換気運転及び前記第2換気運転を所定時間行わない、
    請求項1~8のいずれか1項に記載の空気調和装置。
    The control unit does not perform the first ventilation operation and the second ventilation operation for a predetermined time when the temperature of the indoor air is lower than the temperature of the outdoor air during the cooling operation or the dehumidifying operation.
    The air conditioner according to any one of claims 1 to 8.
PCT/JP2022/024773 2021-06-23 2022-06-21 Air-conditioning device WO2022270513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280043034.1A CN117501052A (en) 2021-06-23 2022-06-21 Air conditioning device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021104107A JP2023003126A (en) 2021-06-23 2021-06-23 Air conditioning device including exhaust system
JP2021-104107 2021-06-23
JP2021104106 2021-06-23
JP2021-104106 2021-06-23
JP2021-129794 2021-08-06
JP2021129794A JP7335521B2 (en) 2021-06-23 2021-08-06 air conditioner

Publications (1)

Publication Number Publication Date
WO2022270513A1 true WO2022270513A1 (en) 2022-12-29

Family

ID=84545739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024773 WO2022270513A1 (en) 2021-06-23 2022-06-21 Air-conditioning device

Country Status (1)

Country Link
WO (1) WO2022270513A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304661A (en) * 2000-04-21 2001-10-31 Daikin Ind Ltd Indoor unit for ceiling-embedded type air conditioner
JP2002188843A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2005016862A (en) * 2003-06-27 2005-01-20 Daikin Ind Ltd Indoor panel for air conditioner, and air conditioner
JP2005351505A (en) * 2004-06-09 2005-12-22 Hitachi Home & Life Solutions Inc Air conditioner
JP2015169399A (en) * 2014-03-10 2015-09-28 三菱電機株式会社 Ventilator
WO2018189790A1 (en) * 2017-04-10 2018-10-18 三菱電機株式会社 Air conditioning ventilation device, air conditioning system, and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304661A (en) * 2000-04-21 2001-10-31 Daikin Ind Ltd Indoor unit for ceiling-embedded type air conditioner
JP2002188843A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2005016862A (en) * 2003-06-27 2005-01-20 Daikin Ind Ltd Indoor panel for air conditioner, and air conditioner
JP2005351505A (en) * 2004-06-09 2005-12-22 Hitachi Home & Life Solutions Inc Air conditioner
JP2015169399A (en) * 2014-03-10 2015-09-28 三菱電機株式会社 Ventilator
WO2018189790A1 (en) * 2017-04-10 2018-10-18 三菱電機株式会社 Air conditioning ventilation device, air conditioning system, and control method

Similar Documents

Publication Publication Date Title
EP1705433A1 (en) Air conditioner
JP3786090B2 (en) Air conditioner and control method of air conditioner
JP6119823B2 (en) Air conditioner outdoor unit
WO2003048650A1 (en) Ventilator and air conditioner
JP2004077082A (en) Ventilator
JP3731113B2 (en) Air conditioner
JP7335521B2 (en) air conditioner
WO2022270513A1 (en) Air-conditioning device
JP2010117112A (en) Air conditioner
WO2022270514A1 (en) Air-conditioning device
JP7406080B2 (en) air conditioning system
CN117501052A (en) Air conditioning device
WO2019194097A1 (en) Air conditioner
JP5067349B2 (en) Air conditioner
JP7436897B1 (en) ventilation system
CN117501053A (en) Air conditioning device
WO2023013587A1 (en) Air-conditioning indoor device
WO2023085166A1 (en) Air-conditioning device
WO2021112127A1 (en) Air conditioning system
WO2023032397A1 (en) Air conditioner
JP7332927B2 (en) ventilator
WO2023032731A1 (en) Air conditioning system
JP7227502B2 (en) air conditioning ventilation system
WO2023013586A1 (en) Air-conditioning indoor unit
JP4683056B2 (en) Air conditioner indoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE