WO2023032731A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2023032731A1
WO2023032731A1 PCT/JP2022/031537 JP2022031537W WO2023032731A1 WO 2023032731 A1 WO2023032731 A1 WO 2023032731A1 JP 2022031537 W JP2022031537 W JP 2022031537W WO 2023032731 A1 WO2023032731 A1 WO 2023032731A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
air
air conditioning
heat exchanger
unit
Prior art date
Application number
PCT/JP2022/031537
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 松本
康史 鵜飼
剛史 山川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280057019.2A priority Critical patent/CN117836570A/en
Publication of WO2023032731A1 publication Critical patent/WO2023032731A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate

Definitions

  • the present disclosure relates to air conditioning systems.
  • Patent Literature 1 discloses an operation in which condensed water adhering to the surface of a heat exchanger is heated to kill mold. Further, in paragraph 0065 of Patent Document 1, it is disclosed that an operation for drying the heat exchanger is performed after the end of this operation.
  • the purpose of the present disclosure is to suppress the deterioration of the comfort of the indoor space due to the operation of purifying the heat exchanger by using condensed water in the heat exchanger.
  • an outdoor unit (10), an indoor unit (30) having an indoor heat exchanger (34) for heat-exchanging indoor air with a refrigerant, and the indoor unit (30) are installed.
  • An air conditioning system (1) comprising a ventilator (20, 60) for ventilating an indoor space, wherein the ventilator (20, 60) is the air inside the indoor unit (30) or
  • the indoor unit (30) is capable of performing an exhaust operation in which air discharged from the unit (30) is sucked in and discharged to the outside, and the indoor unit (30) uses water condensed in the indoor heat exchanger (34) to generate the indoor heat.
  • a control section (C) is provided which is capable of performing a purification operation for purifying the exchanger (34) and causes the ventilator (20, 60) to perform the exhaust operation during or after the purification operation.
  • the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation during or after the purification operation.
  • the ventilator (20, 60) sucks in the air around the indoor heat exchanger (34), which has become highly humid due to the purification operation, from inside the indoor unit (30), or after it flows out from the indoor unit (30) Inhale.
  • the ventilator (20, 60) discharges the sucked high-humidity air to the outside. As a result, the comfort of the indoor space is maintained.
  • a second aspect of the present disclosure is the air conditioning system (1) of the first aspect, wherein the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation after the purification operation is completed. to run.
  • the ventilator (20, 60) performs an exhaust operation after the purification operation ends, and exhausts the air that has become highly humid during the purification operation to the outside.
  • a third aspect of the present disclosure is the air conditioning system (1) of the first aspect, wherein the purification operation of the indoor unit (30) condenses water vapor in the air in the indoor heat exchanger (34).
  • the controller (C) causes the ventilator (20, 60) to perform the exhaust operation after the condensing operation is completed.
  • the ventilator (20, 60) performs exhaust operation after the condensing operation is completed.
  • the ventilator (20, 60) does not perform exhaust operation during execution of the condensation operation. Therefore, during the condensation operation, air containing a certain amount of moisture remains around the indoor heat exchanger (34) without being discharged to the outside. As a result, condensed water can be efficiently generated in the indoor heat exchanger (34) during the condensation operation.
  • a fourth aspect of the present disclosure is the air conditioning system (1) of the first aspect, wherein the indoor unit (30) performs a drying operation for drying the indoor heat exchanger (34) after the purification operation is finished. and the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation during or after the drying operation.
  • the ventilator (20, 60) performs the exhaust operation during or after the drying operation.
  • water adhering to the indoor heat exchanger (34) evaporates, and the air around the indoor heat exchanger (34) becomes highly humid.
  • the air around the indoor heat exchanger (34), which has become highly humid due to the dry operation, is discharged to the outside by the ventilator (20, 60).
  • a fifth aspect of the present disclosure is the air conditioning system (1) according to any one of the first to fourth aspects, wherein the indoor unit (30) is provided inside the indoor unit (30).
  • the ventilation device (20, 60) has an indoor-side opening (29) connected to the ventilation device (20, 60), and the ventilation device (20, 60) moves the air inside the indoor unit (30) to the indoor side in the exhaust operation. The air is sucked through the opening (29) and discharged to the outside of the room.
  • the ventilator (20, 60) in the exhaust operation sucks the air inside the indoor unit (30) through the indoor opening (29) and discharges it to the outside.
  • a sixth aspect of the present disclosure is the air conditioning system (1) according to any one of the first to fourth aspects, wherein the ventilator (20, 60) is provided outside the indoor unit (30). The air discharged from the indoor unit (30) during the exhaust operation is sucked through the indoor opening (63) and discharged to the outside.
  • the ventilator (20, 60) in exhaust operation draws in the air flowing out from the indoor unit (30) through the indoor opening (63) and discharges it to the outside.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing a refrigerant circuit and air circulation paths of the air conditioning system of Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view of an air conditioning indoor unit included in the air conditioning system of Embodiment 1.
  • FIG. 4 is a block diagram showing a communication system of the air conditioning system of Embodiment 1.
  • FIG. FIG. 5 is a block diagram showing purification modes performed by the air conditioning system of Embodiment 1.
  • FIG. FIG. 6 is a block diagram showing purification modes performed by the air conditioning system of the second embodiment.
  • FIG. 7 is a block diagram showing purification modes performed by the air conditioning system of the third embodiment.
  • FIG. 8 is a diagram showing the configuration of an air conditioning system according to another embodiment.
  • Embodiment 1 >> The air conditioning system (1) of Embodiment 1 will be described.
  • the air conditioning system (1) regulates the temperature and humidity of the air in the target space.
  • the target space in this example is the indoor space (I).
  • the air conditioning system (1) has an air conditioning outdoor unit (10) and an air conditioning indoor unit (30).
  • the air conditioning outdoor unit (10) is installed outdoors, and the air conditioning indoor unit (30) is installed indoors.
  • the air conditioning system (1) is a pair type having one air conditioning indoor unit (30) and one air conditioning outdoor unit (10).
  • An air conditioning system (1) has a humidification unit (20).
  • the air conditioning system (1) has a function of humidifying air.
  • the air conditioning system (1) further has the function of ventilating the indoor space (I).
  • the air conditioning system (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4).
  • the air conditioning indoor unit (30) and the humidifying unit (20) are connected to each other via the hose (2).
  • the air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are connected to each other via a liquid communication pipe (3) and a gas communication pipe (4).
  • a refrigerant circuit (R) is configured.
  • the refrigerant circuit (R) is filled with refrigerant.
  • the refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane.
  • the refrigerant circuit (R) performs a vapor compression refrigeration cycle.
  • the refrigerant circuit (R) mainly has a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34). .
  • the refrigerant circuit (R) performs the first refrigerating cycle and the second refrigerating cycle according to switching of the four-way switching valve (16).
  • the first refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator.
  • the second refrigerating cycle is a refrigerating cycle in which the outdoor heat exchanger (14) functions as a radiator and the indoor heat exchanger (34) functions as an evaporator.
  • the air conditioner outdoor unit (10) includes an outdoor casing (11), a compressor (12), and an outdoor fan (13). , an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
  • the outdoor casing (11) houses a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15) and a four-way switching valve (16).
  • the outdoor casing (11) is formed with an outdoor inlet (11a) and an outdoor outlet (11b).
  • the outdoor suction port (11a) is formed on the rear side of the outdoor casing (11).
  • the outdoor air inlet (11a) is an opening for sucking outdoor air.
  • the outdoor outlet (11b) is formed on the front side of the outdoor casing (11).
  • the outdoor air outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14).
  • An outdoor air passage (11c) is formed inside the outdoor casing (11) from the outdoor suction port (11a) to the outdoor outlet (11b).
  • the compressor (12) sucks and compresses low-pressure gas refrigerant.
  • the compressor (12) is driven by a first motor (M1).
  • the compressor (12) is a variable displacement compressor in which power is supplied from an inverter circuit to the first motor (M1).
  • the compressor (12) is configured such that its operating capacity can be changed by adjusting the operating frequency (rotational speed) of the first motor (M1).
  • the outdoor fan (13) is arranged in the outdoor air passage (11c).
  • the outdoor fan (13) is rotated by driving the second motor (M2). Air carried by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passageway (11c) and is blown out of the outdoor casing (11) through the outdoor outlet (11b).
  • the outdoor fan (13) conveys outdoor air so as to pass through the outdoor heat exchanger (14).
  • the outdoor heat exchanger (14) is arranged upstream of the outdoor fan (13) in the outdoor air passage (11c).
  • the outdoor heat exchanger (14) of this example is a fin-and-tube heat exchanger.
  • the outdoor heat exchanger (14) is an example of a heat source heat exchanger.
  • the outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air conveyed by the outdoor fan (13).
  • the expansion valve (15) is an example of a decompression mechanism.
  • the expansion valve (15) reduces the pressure of the refrigerant.
  • the expansion valve (15) is an electrically operated expansion valve whose degree of opening is adjustable.
  • the decompression mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like.
  • the expansion valve (15) may be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
  • the four-way switching valve (16) is an example of a channel switching mechanism.
  • the four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3) and a fourth port (P4).
  • the first port (P1) is connected to the discharge of the compressor (12).
  • the second port (P2) is connected to the intake of the compressor (12).
  • the third port (P3) is connected to the gas end of the outdoor heat exchanger (14).
  • the fourth port (P4) is connected to the gas communication pipe (4).
  • the four-way switching valve (16) is switched between a first state (shown by the solid line in Fig. 2) and a second state (state shown by the broken line in Fig. 2).
  • the four-way switching valve (16) in the first state allows communication between the first port (P1) and the third port (P3) and communication between the second port (P2) and the fourth port (P4).
  • the four-way switching valve (16) in the second state allows communication between the first port (P1) and the fourth port (P4) and communication between the second port (P2) and the third port (P3).
  • the humidification unit (20) has a function of humidifying air.
  • the humidification unit (20) also has a function of ventilating the indoor space (I).
  • the humidification unit (20) is a ventilation device that ventilates the indoor space (I) in which the air conditioning indoor unit (30) is installed.
  • the humidification unit (20) is installed outdoors.
  • the humidification unit (20) of this example is integrated with the air conditioner outdoor unit (10).
  • the humidification unit (20) sends moisture in the outdoor air to the air conditioning indoor unit (30).
  • the humidification unit (20) includes a humidification casing (21), a humidification rotor (22), a first fan (23), a switching damper (24), a heater (25), and a second fan (26). have.
  • the humidifying casing (21) is integrally attached to the outdoor casing (11).
  • the humidification casing (21) houses a humidification rotor (22), a first fan (23), a switching damper (24), a heater (25), and a second fan (26).
  • the humidification casing (21) is formed with a humidification intake port (21a), a humidification exhaust port (21b), and an intake/exhaust port (21c).
  • the humidification suction port (21a) and the suction/exhaust port (21c) are formed on the rear side of the humidification casing (21).
  • the humidification exhaust port (21b) is formed in the front side of the humidification casing (21).
  • the humidification suction port (21a) is an opening for sucking outdoor air.
  • the humidification exhaust port (21b) is an opening for discharging the air after applying moisture to the humidification rotor (22).
  • the intake/exhaust port (21c) is an opening for taking in outdoor air or discharging air sent from the room.
  • a first passageway (27) extending from the humidification suction port (21a) to the humidification exhaust port (21b) is formed inside the humidification casing (21).
  • a second passageway (28) extending from the air intake/exhaust port (21c) to the connection port (21d) is formed inside the humidification casing (21).
  • One end of the hose (2) is connected to the connection port (21d).
  • the other end of the hose (2) is connected to the indoor opening (29).
  • the indoor-side opening (29) is arranged inside the air conditioning indoor unit (30).
  • the room-side opening (29) is connected to the humidification unit (20).
  • the humidification rotor (22) is arranged across the first passageway (27) and the second passageway (28).
  • the humidification rotor (22) is an adsorption member that adsorbs moisture in the air.
  • the humidification rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
  • a humidifying rotor (22) holds an adsorbent such as silica gel, zeolite, or alumina.
  • the adsorbent has the property of adsorbing moisture in the air.
  • Moisture absorbents have the property of desorbing adsorbed moisture when heated.
  • the humidification rotor (22) is rotated by driving the third motor (M3).
  • the humidification rotor (22) has a moisture absorption area (22A) that adsorbs moisture in the air and a moisture release area (22B) that desorbs moisture in the air.
  • the moisture absorption region (22A) is constituted by a portion of the humidification rotor (22) located in the first passageway (27).
  • the moisture release area (22B) is configured by a portion of the humidification rotor (22) located in the second passageway (28).
  • the first fan (23) is arranged in the first passageway (27).
  • the first fan (23) is rotated by driving the fourth motor (M4).
  • the first fan (23) is configured to be able to switch the air volume in a plurality of stages by adjusting the rotational speed of the fourth motor (M4).
  • the air conveyed by the first fan (23) is sucked into the humidification casing (21) through the humidification suction port (21a). This air flows through the first passageway (27) and is discharged to the outside of the humidification casing (21) through the humidification exhaust port (21b).
  • the first fan (23) conveys outdoor air so as to pass through the moisture absorption region (22A) of the humidification rotor (22). Moisture contained in the outdoor air flowing through the first passageway (27) is adsorbed by the moisture absorption region (22A) of the humidification rotor (22).
  • the switching damper (24) is arranged in the second passageway (28).
  • the switching damper (24) has a first entrance (24a) and a second entrance (24b).
  • the first inlet/outlet (24a) communicates with the intake/exhaust port (21c).
  • the second inlet/outlet (24b) communicates with the hose (2) connection port (21d) in the humidification casing (21).
  • the switching damper (24) is switched between a first state and a second state.
  • the switching damper (24) in the first state has a first port (24a) as an inlet for sucking air and a second port (24b) as an outlet for discharging air.
  • the switching damper (24) in the second state has an inlet for sucking air as a second inlet (24b) and an outlet for discharging air as a first inlet (24a).
  • the state of the switching damper (24) is switched by driving the fifth motor (M5).
  • the heater (25) is arranged between the intake/exhaust port (21c) and the switching damper (24) in the second passageway (28).
  • the heater (25) heats air flowing through the second passageway (28).
  • the heater (25) has a variable output. The temperature of the air passing through the heater (25) changes according to the output of the heater (25).
  • the second fan (26) is arranged between the first entrance (24a) and the second entrance (24b) of the switching damper (24).
  • the second fan (26) is rotated by driving the sixth motor (M6).
  • the second fan (26) is configured to be able to switch the air volume in a plurality of steps by adjusting the rotation speed of the sixth motor (M6).
  • the flow of air carried by the second fan (26) changes according to the state of the switching damper (24). Specifically, when the switching damper (24) is in the first state, air sucked through the first inlet/outlet (24a) flows out to the second inlet/outlet (24b) as indicated by the solid line arrow in FIG. When the switching damper (24) is in the second state, air sucked through the second inlet/outlet (24b) flows out to the first inlet/outlet (24a) as indicated by the dashed arrow in FIG.
  • the air conditioner indoor unit (30) is installed indoors.
  • the air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of the room that forms the indoor space (I).
  • the air conditioning indoor unit (30) includes an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and a wind direction adjusting section (36). and
  • the indoor casing (31) houses an indoor fan (32), an air filter (33), an indoor heat exchanger (34) and a drain pan (35).
  • the indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet (31b).
  • the indoor suction port (31a) is arranged above the indoor casing (31).
  • the indoor air intake (31a) is an opening for sucking indoor air.
  • the indoor outlet (31b) is arranged below the indoor casing (31).
  • the indoor air outlet (31b) is an opening for blowing out air after heat exchange or air for humidification.
  • the interior of the indoor casing (31) is provided with an indoor air passageway (31c) extending from the indoor air inlet (31a) to the indoor air outlet (31b).
  • the indoor fan (32) is arranged substantially in the center of the indoor air passage (31c).
  • the indoor fan (32) is an example of a blower.
  • the indoor fan (32) is, for example, a cross-flow fan.
  • the indoor fan (32) is rotated by driving the seventh motor (M7).
  • the indoor fan (32) takes indoor air into the indoor air passageway (31c) and conveys it.
  • the air carried by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passageway (31c) and is blown out of the indoor casing (31) from the indoor outlet (31b).
  • the indoor fan (32) conveys indoor air so as to pass through the indoor heat exchanger (34).
  • the air blown out from the indoor air outlet (31b) is supplied to the indoor space.
  • the indoor fan (32) is configured such that the air volume can be switched in multiple stages by adjusting the rotation speed of the seventh motor (M7).
  • the air filter (33) is arranged upstream of the indoor heat exchanger (34) in the indoor air passage (31c).
  • the air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through.
  • the air filter (33) collects dust in the air sucked through the indoor air inlet (31a).
  • the indoor heat exchanger (34) is arranged upstream of the indoor fan (32) in the indoor air passage (31c).
  • the indoor heat exchanger (34) of this example is a fin-and-tube heat exchanger.
  • the indoor heat exchanger (34) is an example of a utilization heat exchanger.
  • the indoor heat exchanger (34) exchanges heat between the refrigerant therein and indoor air conveyed by the indoor fan (32).
  • the drain pan (35) is arranged on the lower front side and the lower rear side of the indoor heat exchanger (34).
  • the drain pan (35) receives condensed water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensed water generated on the surface of the fins of the indoor heat exchanger (34) flows down due to its own weight along the surface and is received by the drain pan (35).
  • the wind direction adjusting section (36) adjusts the direction of the air blown out from the indoor outlet (31b).
  • the wind direction adjusting part (36) has a flap (37).
  • the flap (37) is shaped like a long plate extending along the longitudinal direction of the indoor outlet (31b).
  • the flap (37) is rotated by being driven by a motor.
  • the flap (37) opens and closes the indoor outlet (31b) as it rotates.
  • the flap (37) is configured so that the tilt angle can be changed stepwise.
  • the positions to which the flap (37) in this example is adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the generally horizontal blow position shown in FIG.
  • the flap (37) in the closed position substantially closes the indoor outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor outlet (31b).
  • the air conditioning indoor unit (30) is provided with an indoor opening (29).
  • the indoor opening (29) is located between the air filter (33) and the indoor heat exchanger (34) in the interior space of the indoor casing (31).
  • the remote controller (40) is placed indoors at a position where the user can operate it.
  • the remote controller (40) has a display section (41) and an input section (42).
  • the display (41) displays predetermined information.
  • the display section (41) is composed of, for example, a liquid crystal monitor.
  • the predetermined information is information indicating the operating state, set temperature, and the like of the air conditioning system (1).
  • An input unit (42) receives an input operation for performing various settings from a user.
  • the input section (42) is composed of, for example, a plurality of physical switches. The user can set the operation mode, target temperature, target humidity, etc. of the air conditioning system (1) by operating the input section (42) of the remote controller (40).
  • the air conditioning system (1) has a plurality of sensors.
  • the plurality of sensors includes a sensor for refrigerant and a sensor for air.
  • the refrigerant sensor includes a sensor that detects the temperature and pressure of the high-pressure refrigerant and a sensor that detects the temperature and pressure of the low-pressure refrigerant (not shown).
  • the air sensors include an outside air temperature sensor (51), an outside air humidity sensor (52), an inside air temperature sensor (53), and an inside air humidity sensor (54).
  • the outside air temperature sensor (51) is provided in the air conditioning outdoor unit (10).
  • the outdoor air temperature sensor (51) detects the temperature of outdoor air.
  • the outside air humidity sensor (52) is provided in the humidification unit (20).
  • the outside air humidity sensor (52) detects the humidity of the outside air.
  • the outdoor air humidity sensor (52) of this example detects the relative humidity of the outdoor air, but may also detect the absolute humidity.
  • the inside air temperature sensor (53) and the inside air humidity sensor (54) are provided in the air conditioning indoor unit (30).
  • the inside air temperature sensor (53) detects the temperature of the inside air.
  • a room air humidity sensor (54) detects the humidity of the room air.
  • the room air humidity sensor (54) detects the relative humidity of the room air, but may also detect the absolute humidity.
  • the air conditioning system (1) has a controller (C).
  • the controller (C) is a controller that controls the operation of the refrigerant circuit (R).
  • the controller (C) controls the operation of the air conditioning outdoor unit (10), the humidifying unit (20), and the air conditioning indoor unit (30).
  • the controller (C) includes an outdoor controller (OC) and an indoor controller (IC).
  • the outdoor controller (OC) is provided in the air conditioner outdoor unit (10).
  • An indoor controller (IC) is provided in the air conditioner indoor unit (30).
  • Each of the indoor controller (IC) and the outdoor controller (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
  • the MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
  • the outdoor temperature sensor (51) detection value and the outdoor air humidity sensor (52) detection value are input to the outdoor control unit (OC).
  • the outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15) and four-way switching valve (16).
  • the outdoor control unit (OC) sends control signals for executing and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), the outdoor fan (13), the expansion valve (15), and the four-way switching valve. Output to (16).
  • the outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the expansion Controls the opening of the valve (15).
  • the outdoor controller (OC) is further connected to the humidification rotor (22), first fan (23), switching damper (24), heater (25), and second fan (26).
  • the outdoor control section (OC) sends control signals for executing and stopping the operation of the humidification unit (20) to the humidification rotor (22), the first fan (23), the switching damper (24), the second fan ( 26), and output to the heater (25).
  • the outdoor controller (OC) controls the number of rotations of the fourth motor (M4) of the first fan (23) and the sixth motor (M6) of the second fan (26), the humidification rotor (22) and the switching damper (24 ) and the output of the heater (25).
  • the detection value of the inside air temperature sensor (53) and the detection value of the inside air humidity sensor (54) are input to the indoor control unit (IC).
  • the indoor control unit (IC) is communicably connected to the remote controller (40).
  • the indoor controller (IC) is connected to the indoor fan (32).
  • the indoor controller (IC) outputs a control signal to the indoor fan (32) to start and stop the operation of the air conditioning indoor unit (30).
  • the indoor controller (IC) controls the rotation speed of the seventh motor (M7) of the indoor fan (32).
  • the indoor controller (IC) is communicably connected to the outdoor controller (OC).
  • the remote controller (40) is communicably connected to the indoor control unit (IC).
  • the remote controller (40) transmits an instruction signal instructing the operation of the air conditioning system (1) to the indoor controller (IC) according to the user's operation on the input section (42).
  • the indoor controller (IC) Upon receiving an instruction signal from the remote controller (40), the indoor controller (IC) transmits the instruction signal to the outdoor controller (OC).
  • the indoor controller (IC) controls the operation of each device of the air conditioning indoor unit (30) according to the instruction signal.
  • the outdoor controller (OC) receives an instruction signal from the indoor controller (IC), it controls the operation of each of the air conditioning outdoor unit (10) and the humidifying unit (20).
  • Operation Operation The operation modes executed by the air conditioning system (1) include cooling operation, heating operation, humidification operation, air supply operation, and exhaust operation.
  • the controller (C) executes these operations based on instruction signals from the remote controller (40).
  • Cooling operation is an operation in which indoor air is cooled by the indoor heat exchanger (34) as an evaporator.
  • the set temperature for the cooling operation is instructed from the remote controller (40) at the start of the cooling operation or during the cooling operation.
  • the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the controller (C) sets the four-way switching valve (16) to the first state.
  • the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
  • a first refrigeration cycle is performed in which refrigerant compressed by the compressor (12) radiates heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
  • the controller (C) adjusts the target evaporating temperature of the indoor heat exchanger (34) so that the room temperature detected by the inside air temperature sensor (53) converges to the set temperature.
  • the control section (C) controls the rotation speed of the compressor (12) such that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature.
  • the air conveyed by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34).
  • the air cooled by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
  • the heating operation is an operation in which the indoor air is heated by the indoor heat exchanger (34) as a radiator.
  • the set temperature for the heating operation is instructed from the remote controller (40) at the start of the heating operation or during the heating operation.
  • the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the controller (C) sets the four-way switching valve (16) to the second state.
  • the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
  • a second refrigeration cycle is performed in which refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
  • the controller (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature.
  • the control section (C) controls the rotation speed of the compressor (12) such that the condensation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensation temperature.
  • the air conveyed by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34).
  • the air heated by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
  • Humidification operation is an operation of humidifying indoor air by the humidification unit (20).
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
  • the control section (C) operates the heater (25), the humidification rotor (22) and the first fan (23).
  • a control part (C) operates a 2nd fan (26).
  • the control section (C) sets the switching damper (24) to the first state.
  • the outdoor air conveyed by the first fan (23) passes through the moisture absorption area (22A) of the humidification rotor (22), and moisture contained in the outdoor air passes through the moisture absorption area (22A) of the humidification rotor (22). 22A).
  • the portion of the humidification rotor (22) that has adsorbed moisture as the moisture absorption area (22A) moves to the second passageway (28) as the humidification rotor (22) rotates to form a moisture release area (22B).
  • Outdoor air heated by the heater (25) passes through the moisture release area (22B) of the humidification rotor (22), and moisture is desorbed from the humidification rotor (22) to the heated air.
  • the air supply operation is an operation for supplying outdoor air to a room.
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
  • the controller (C) stops the heater (25), the humidification rotor (22), and the first fan (23) and operates the second fan (26).
  • the control section (C) sets the switching damper (24) to the first state.
  • outdoor air conveyed by the second fan (26) flows through the hose (2), flows into the internal space of the air conditioning indoor unit (30) through the indoor opening (29), and enters the air conditioning indoor unit.
  • the air is supplied to the indoor space (I) from the indoor outlet (31b) of (30).
  • the air supply operation may be performed simultaneously with the cooling operation or the heating operation.
  • the exhaust operation is an operation in which indoor air is discharged to the outside.
  • room air is sent to the humidification unit (20) through the hose (2), as indicated by the dashed arrow in FIG.
  • the controller (C) stops the heater (25), the humidification rotor (22), and the first fan (23) and operates the second fan (26).
  • the control section (C) sets the switching damper (24) to the second state.
  • the indoor air in the indoor space (I) flows through the indoor suction port (31a) into the internal space of the air conditioning indoor unit (30), and flows into the hose (2) through the indoor opening (29). It is then sent to the humidification unit (20), sucked by the second fan (26), and discharged to the outside through the intake/exhaust port (21c).
  • the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
  • the air conditioning system (1) executes the purification mode.
  • the cleaning mode is an operation mode for cleaning the indoor heat exchanger (34).
  • control unit (C) controls components of the air conditioning system (1) so that these operations are performed.
  • the air conditioning system (1) performs humidification operation.
  • the air (outdoor air) humidified in the humidification unit (20) is supplied to the indoor space (I) through the hose (2).
  • the indoor fan (32) operates in the humidification step.
  • the condensation step is a condensation operation that condenses water vapor in the air in the indoor heat exchanger (34).
  • the air conditioning system (1) performs the same operation as cooling operation, and the indoor heat exchanger (34) functions as an evaporator.
  • the indoor heat exchanger (34) indoor air is cooled by refrigerant. At that time, water vapor contained in the indoor air condenses and adheres to the indoor heat exchanger (34).
  • the air conditioning system (1) performs the humidification step in advance to increase the humidity of the indoor space (I), and then performs the dew condensation step. Therefore, in the dew condensation step, a relatively large amount of condensed water is produced on the surface of the indoor heat exchanger (34) in a relatively short period of time. Water condensed on the surface of the indoor heat exchanger (34) flows downward due to gravity. At this time, the condensed water flows downward together with dust adhering to the indoor heat exchanger (34). As a result, dust and the like are removed from the indoor heat exchanger (34), and the indoor heat exchanger (34) becomes clean.
  • Drying operation is an operation for evaporating water remaining in the indoor heat exchanger (34) after the purification operation is completed.
  • the indoor fan (32) operates and the compressor (12) stops.
  • indoor air passes through the indoor heat exchanger (34). The water remaining in the indoor heat exchanger (34) evaporates and is discharged into the indoor space (I) together with the indoor air.
  • the air conditioning system (1) performs the exhaust operation described above after finishing the drying operation.
  • the exhaust operation executed in the purification mode is performed to exhaust the moisture that has flowed into the indoor space due to the drying operation to the outside.
  • relatively high-humidity air blown out from the air conditioning indoor unit (30) during the drying operation near the air conditioning indoor unit (30).
  • relatively high-humidity air existing near the air conditioning indoor unit (30) passes through the indoor suction port (31a) of the air conditioning indoor unit (30), the indoor side opening (29), and the hose (2). and into the humidification unit (20), and is discharged out of the room through the air intake/exhaust port (21c) of the humidification unit (20).
  • Embodiment 1 5-1)
  • the control section (C) causes the humidification unit (20), which is a ventilator, to perform the exhaust operation after the purification operation is finished.
  • the humidification unit (20) draws in the air around the indoor heat exchanger (34), which has become highly humid due to the purification operation, from inside the indoor unit (30) and discharges it to the outside. As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • the humidification unit (20) which is a ventilator, performs an exhaust operation after the dew condensation step (condensation operation) of the purification operation is completed.
  • the humidification unit (20) does not perform exhaust operation. Therefore, during the dew condensation step, air containing a certain amount of moisture remains around the indoor heat exchanger (34) without being discharged to the outside. As a result, the amount of condensed water produced in the condensation step can be ensured, and the condensed water can be used to purify the indoor heat exchanger (34).
  • the humidifying unit (20) which is a ventilator, performs an exhaust operation after completing the drying operation.
  • water adhering to the indoor heat exchanger (34) evaporates, and the air around the indoor heat exchanger (34) becomes highly humid.
  • the air around the indoor heat exchanger (34), which has become highly humid due to the dry operation, is discharged to the outside by the ventilator (20, 60).
  • the ventilator (20, 60) As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • the air conditioning system (1) may perform the exhaust operation and the drying operation concurrently. Further, in the purification mode, the air conditioning system (1) may skip the drying operation and perform the exhaust operation.
  • the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60).
  • the ventilator (20, 60) As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • Embodiment 2 >> The air conditioning system (1) of Embodiment 2 will be described.
  • the air conditioning system (1) of this embodiment is the air conditioning system (1) of Embodiment 1 with a different purification mode.
  • the purification mode performed by the air conditioning system (1) of the present embodiment will be described.
  • (1) Purification Mode As shown in FIG. 6, in the purification mode of the present embodiment, purification operation, drying operation, and exhaust operation are performed in order. This point is the same as the purification mode of the first embodiment. In the purification mode of this embodiment, the purification operation differs from that of the first embodiment.
  • the drying operation and exhaust operation performed in the purification mode of this embodiment are the same as the drying operation and exhaust operation performed in the purification mode of the first embodiment, respectively.
  • the freezing step is performed to frost the indoor heat exchanger (34).
  • the air conditioning system (1) performs the same operation as cooling operation, and the indoor heat exchanger (34) functions as an evaporator.
  • the evaporation temperature of the refrigerant in the indoor heat exchanger (34) is set below 0°C (eg -10°C).
  • moisture in the indoor air turns into frost and adheres to the indoor heat exchanger (34).
  • the pressure of the indoor space (I) in which the air conditioning indoor unit (30) is installed is the atmospheric pressure. Therefore, the water vapor in the indoor air passing through the indoor heat exchanger (34) condenses into a liquid and then solidifies into a solid (frost). Therefore, the freezing step is a condensation operation that condenses water vapor in the air in the indoor heat exchanger (34).
  • the melting step is performed to melt frost adhering to the indoor heat exchanger (34).
  • the air conditioning system (1) performs the same operation as heating operation, and the indoor heat exchanger (34) functions as a condenser.
  • Frost adhering to the indoor heat exchanger (34) is heated by the refrigerant, melts, becomes water (liquid), and flows downward.
  • the air conditioning system (1) performs a freezing step to deposit a relatively large amount of frost on the indoor heat exchanger (34), and then performs a melting step. Therefore, in the melting step, a relatively large amount of water (liquid) is produced in a relatively short period of time by melting the frost adhered to the indoor heat exchanger (34). Water (liquid) produced by the melting of frost flows downward due to gravity. At this time, the water (liquid) flows downward together with dust and the like adhering to the indoor heat exchanger (34). As a result, dust and the like are removed from the indoor heat exchanger (34), and the indoor heat exchanger (34) becomes clean.
  • the control section (C) causes the humidification unit (20), which is a ventilator, to perform the exhaust operation after the purification operation ends. Therefore, according to the air conditioning system (1) of the present embodiment, similarly to the air conditioning system (1) of the first embodiment, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is It can be discharged outdoors. As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) can be maintained.
  • the air conditioning system (1) may perform the exhaust operation concurrently with the drying operation. Further, in the purification mode, the air conditioning system (1) may skip the drying operation and perform the exhaust operation.
  • the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60).
  • the ventilator (20, 60) As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • the air conditioning system (1) may start the exhaust operation after the freezing step and before the thawing step (that is, during the purification operation).
  • the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60).
  • the ventilator (20, 60) As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • the air conditioning system (1) of this embodiment is the air conditioning system (1) of Embodiment 1 with a different purification mode.
  • the purification mode performed by the air conditioning system (1) of the present embodiment will be described.
  • Purification Mode As shown in FIG. 7, in the purification mode of the present embodiment, purification operation, drying operation, and exhaust operation are performed in order. This point is the same as the purification mode of the first embodiment. In the purification mode of this embodiment, the purification operation differs from that of the first embodiment.
  • the drying operation and exhaust operation performed in the purification mode of this embodiment are the same as the drying operation and exhaust operation performed in the purification mode of the first embodiment, respectively.
  • the condensation step is a condensation operation that condenses water vapor in the air in the indoor heat exchanger (34).
  • the air conditioning system (1) performs the same operation as cooling operation, and the indoor heat exchanger (34) functions as an evaporator.
  • the indoor heat exchanger (34) indoor air is cooled by refrigerant. At that time, water vapor contained in the indoor air condenses and adheres to the indoor heat exchanger (34).
  • the heating step is performed to heat the condensed water adhering to the indoor heat exchanger.
  • the air conditioning system (1) performs the same operation as the heating operation, and the indoor heat exchanger (34) functions as a condenser.
  • the condensed water adhering to the indoor heat exchanger (34) is heated by the refrigerant.
  • the air conditioning system (1) performs a dew condensation step to cause condensed water to adhere to the indoor heat exchanger (34), and then performs a heating step.
  • the condensed water adhering to the indoor heat exchanger (34) is heated to a relatively high temperature (for example, about 60° C.) to kill bacteria, mold spores, etc. present in the condensed water.
  • a relatively high temperature for example, about 60° C.
  • the control section (C) causes the humidification unit (20), which is a ventilator, to perform the exhaust operation after the purification operation ends. Therefore, according to the air conditioning system of the present embodiment, similarly to the air conditioning system of Embodiment 1, the air around the indoor heat exchanger (34), which has become highly humid due to the purification operation, can be discharged outdoors. can. As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) can be maintained.
  • the air conditioning system (1) may perform the exhaust operation concurrently with the drying operation. Further, in the purification mode, the air conditioning system (1) may skip the drying operation and perform the exhaust operation.
  • the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60).
  • the ventilator (20, 60) As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • the air conditioning system (1) may start the exhaust operation after the dew condensation step and before the heating step (that is, during the purification operation).
  • the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60).
  • the ventilator (20, 60) As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
  • the air conditioning system (1) may further comprise an exhaust unit (60).
  • the exhaust unit (60) is formed separately from the air conditioning indoor unit (30), the air conditioning outdoor unit (10), and the humidification unit (20).
  • the exhaust unit (60) is installed in the wall (WL) of the room forming the interior space (I).
  • the exhaust unit (60) is installed relatively close to the air conditioning indoor unit (30).
  • a distance D between the exhaust unit (60) and the air conditioning indoor unit (30) is preferably 1.8 m or less.
  • the installation location of the exhaust unit (60) is merely an example.
  • the exhaust unit (60) may be installed, for example, on the ceiling. Further, in the air conditioning system (1) of the present embodiment, the humidifying unit (20) and the hose (2) may be omitted.
  • the exhaust unit (60) includes an exhaust fan (61) and an exhaust casing (62).
  • the exhaust fan (61) is housed in the exhaust casing (62).
  • a ventilation inlet (63) is formed in the exhaust casing (62).
  • the ventilation intake (63) opens into the interior space (I).
  • the ventilation intake (63) is an indoor opening provided outside the air conditioner outdoor unit (10).
  • an exhaust duct is connected to the exhaust casing (62).
  • the exhaust casing (62) communicates with the outdoor space via an exhaust duct.
  • the exhaust operation is performed by the exhaust unit (60) instead of the exhaust operation by the humidification unit (20).
  • the exhaust unit (60) discharges to the outdoor space relatively high-humidity air that has flowed out of the air conditioning indoor unit (30) in the dry operation.
  • the present disclosure is useful for air conditioning systems.
  • Air conditioning system 10 Air conditioning outdoor unit (outdoor unit) 20 Humidification unit (ventilator) 29 Indoor opening 30 Air conditioning indoor unit (indoor unit) 34 Indoor heat exchanger 60 Exhaust unit (ventilator) 63 Ventilation intake (indoor side opening) C control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

An air conditioning system according to the present invention is provided with an outdoor unit, an indoor unit, a ventilation device, and a control unit. The ventilation device is capable of carrying out an air discharge operation for suctioning indoor air in and discharging the same to the outside. The indoor unit is capable of carrying out a purification operation for purifying an indoor unit heat exchanger by using water condensed in an indoor heat exchanger. The control unit is capable of causing the ventilation device to carry out the air discharge operation after the purification operation is finished.

Description

空気調和システムair conditioning system
 本開示は、空気調和システムに関するものである。 The present disclosure relates to air conditioning systems.
 空気調和機では、熱交換器において凝縮した水を利用して、熱交換器を清潔に保つための運転を行うことが提案されている。特許文献1には、熱交換器の表面に付着した凝縮水を加熱してカビを死滅させる運転が開示されている。また、特許文献1の段落0065には、この運転の終了後に、熱交換器を乾燥させるための運転を行うことが開示されている。 For air conditioners, it has been proposed to use condensed water in the heat exchanger to keep the heat exchanger clean. Patent Literature 1 discloses an operation in which condensed water adhering to the surface of a heat exchanger is heated to kill mold. Further, in paragraph 0065 of Patent Document 1, it is disclosed that an operation for drying the heat exchanger is performed after the end of this operation.
特開2018-141597号公報JP 2018-141597 A
 熱交換器において凝縮した水を利用して熱交換器を浄化する運転を行うと、熱交換器付近の空気が高湿度になる。この高湿度の空気が室内空間に流出して拡散すると、室内の快適性を損なうおそれがある。 When the water condensed in the heat exchanger is used to purify the heat exchanger, the air near the heat exchanger becomes highly humid. When this high-humidity air flows out and diffuses into the indoor space, there is a risk of impairing the comfort of the room.
 本開示の目的は、熱交換器において凝縮した水を利用して熱交換器を浄化する運転に起因する室内空間の快適性の低下を抑制することにある。 The purpose of the present disclosure is to suppress the deterioration of the comfort of the indoor space due to the operation of purifying the heat exchanger by using condensed water in the heat exchanger.
 本開示の第1の態様は、室外機(10)と、室内空気を冷媒と熱交換させる室内熱交換器(34)を有する室内機(30)と、上記室内機(30)が設置された室内空間を換気する換気装置(20,60)とを備えた空気調和システム(1)であって、上記換気装置(20,60)は、上記室内機(30)の内部の空気、または上記室内機(30)から流出した空気を吸い込んで室外へ排出する排気運転を実行可能であり、上記室内機(30)は、上記室内熱交換器(34)において凝縮した水を利用して上記室内熱交換器(34)を浄化する浄化運転を実行可能であり、上記浄化運転の実行中または終了後に、上記換気装置(20,60)に上記排気運転を実行させる制御部(C)を備える。 In a first aspect of the present disclosure, an outdoor unit (10), an indoor unit (30) having an indoor heat exchanger (34) for heat-exchanging indoor air with a refrigerant, and the indoor unit (30) are installed. An air conditioning system (1) comprising a ventilator (20, 60) for ventilating an indoor space, wherein the ventilator (20, 60) is the air inside the indoor unit (30) or The indoor unit (30) is capable of performing an exhaust operation in which air discharged from the unit (30) is sucked in and discharged to the outside, and the indoor unit (30) uses water condensed in the indoor heat exchanger (34) to generate the indoor heat. A control section (C) is provided which is capable of performing a purification operation for purifying the exchanger (34) and causes the ventilator (20, 60) to perform the exhaust operation during or after the purification operation.
 第1の態様において、制御部(C)は、浄化運転の実行中または終了後に、換気装置(20,60)に排気運転を実行させる。換気装置(20,60)は、浄化運転によって高湿度になった室内熱交換器(34)の周囲の空気を、室内機(30)の内部から吸い込み、または室内機(30)から流出した後に吸い込む。換気装置(20,60)は、吸い込んだ高湿度の空気を室外へ排出する。その結果、室内空間の快適性が保たれる。 In the first aspect, the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation during or after the purification operation. The ventilator (20, 60) sucks in the air around the indoor heat exchanger (34), which has become highly humid due to the purification operation, from inside the indoor unit (30), or after it flows out from the indoor unit (30) Inhale. The ventilator (20, 60) discharges the sucked high-humidity air to the outside. As a result, the comfort of the indoor space is maintained.
 本開示の第2の態様は、上記第1の態様の空気調和システム(1)において、上記制御部(C)は、上記浄化運転の終了後に、上記換気装置(20,60)に上記排気運転を実行させる。 A second aspect of the present disclosure is the air conditioning system (1) of the first aspect, wherein the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation after the purification operation is completed. to run.
 第2の態様において、換気装置(20,60)は、浄化運転が終了した後に排気運転を行い、浄化運転において高湿度になった空気を室外へ排出する。 In the second aspect, the ventilator (20, 60) performs an exhaust operation after the purification operation ends, and exhausts the air that has become highly humid during the purification operation to the outside.
 本開示の第3の態様は、上記第1の態様の空気調和システム(1)において、上記室内機(30)の上記浄化運転は、上記室内熱交換器(34)において空気中の水蒸気を凝縮させる凝縮動作を含み、上記制御部(C)は、上記凝縮動作の終了後に、上記換気装置(20,60)に上記排気運転を実行させる。 A third aspect of the present disclosure is the air conditioning system (1) of the first aspect, wherein the purification operation of the indoor unit (30) condenses water vapor in the air in the indoor heat exchanger (34). The controller (C) causes the ventilator (20, 60) to perform the exhaust operation after the condensing operation is completed.
 第3の態様において、換気装置(20,60)は、凝縮動作が終了した後に排気運転を行う。凝縮動作の実行中において、換気装置(20,60)は、排気運転を行わない。そのため、凝縮動作中は、ある程度の水分を含んだ空気が、室外へ排出されずに室内熱交換器(34)の周囲に留まる。その結果、凝縮動作中に室内熱交換器(34)において凝縮水を効率的に生成させることができる。 In the third aspect, the ventilator (20, 60) performs exhaust operation after the condensing operation is completed. The ventilator (20, 60) does not perform exhaust operation during execution of the condensation operation. Therefore, during the condensation operation, air containing a certain amount of moisture remains around the indoor heat exchanger (34) without being discharged to the outside. As a result, condensed water can be efficiently generated in the indoor heat exchanger (34) during the condensation operation.
 本開示の第4の態様は、上記第1の態様の空気調和システム(1)において、上記室内機(30)は、上記浄化運転の終了後に上記室内熱交換器(34)を乾燥させる乾燥運転を実行可能であり、上記制御部(C)は、上記乾燥運転の実行中または終了後に、上記換気装置(20,60)に上記排気運転を実行させる。 A fourth aspect of the present disclosure is the air conditioning system (1) of the first aspect, wherein the indoor unit (30) performs a drying operation for drying the indoor heat exchanger (34) after the purification operation is finished. and the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation during or after the drying operation.
 第4の態様において、換気装置(20,60)は、乾燥運転の実行中または終了後に排気運転を行う。乾燥運転中は、室内熱交換器(34)に付着した水が蒸発し、室内熱交換器(34)の周辺の空気が高湿度になる。乾燥運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。 In the fourth aspect, the ventilator (20, 60) performs the exhaust operation during or after the drying operation. During the drying operation, water adhering to the indoor heat exchanger (34) evaporates, and the air around the indoor heat exchanger (34) becomes highly humid. The air around the indoor heat exchanger (34), which has become highly humid due to the dry operation, is discharged to the outside by the ventilator (20, 60).
 本開示の第5の態様は、上記第1~第4のいずれか一つの態様の空気調和システム(1)において、上記室内機(30)は、該室内機(30)の内部に設けられて上記換気装置(20,60)に接続される室内側開口(29)を有し、上記換気装置(20,60)は、上記排気運転において上記室内機(30)の内部の空気を上記室内側開口(29)から吸い込んで室外へ排出する。 A fifth aspect of the present disclosure is the air conditioning system (1) according to any one of the first to fourth aspects, wherein the indoor unit (30) is provided inside the indoor unit (30). The ventilation device (20, 60) has an indoor-side opening (29) connected to the ventilation device (20, 60), and the ventilation device (20, 60) moves the air inside the indoor unit (30) to the indoor side in the exhaust operation. The air is sucked through the opening (29) and discharged to the outside of the room.
 第5の態様において、排気運転中の換気装置(20,60)は、室内機(30)の内部の空気を、室内側開口(29)から吸い込んで室外へ排出する。 In the fifth aspect, the ventilator (20, 60) in the exhaust operation sucks the air inside the indoor unit (30) through the indoor opening (29) and discharges it to the outside.
 本開示の第6の態様は、上記第1~第4のいずれか一つの態様の空気調和システム(1)において、上記換気装置(20,60)は、上記室内機(30)の外部に設けられた室内側開口(63)を有し、上記排気運転において上記室内機(30)から流出した空気を上記室内側開口(63)から吸い込んで室外へ排出する。 A sixth aspect of the present disclosure is the air conditioning system (1) according to any one of the first to fourth aspects, wherein the ventilator (20, 60) is provided outside the indoor unit (30). The air discharged from the indoor unit (30) during the exhaust operation is sucked through the indoor opening (63) and discharged to the outside.
 第6の態様において、排気運転中の換気装置(20,60)は、室内機(30)から流出した空気を、室内側開口(63)から吸い込んで室外へ排出する。 In the sixth mode, the ventilator (20, 60) in exhaust operation draws in the air flowing out from the indoor unit (30) through the indoor opening (63) and discharges it to the outside.
図1は、実施形態1の空気調和システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1. FIG. 図2は、実施形態1の空気調和システムの冷媒回路と空気の流通経路を示す図である。FIG. 2 is a diagram showing a refrigerant circuit and air circulation paths of the air conditioning system of Embodiment 1. FIG. 図3は、実施形態1の空気調和システムが備える空調室内機の概略の断面図である。3 is a schematic cross-sectional view of an air conditioning indoor unit included in the air conditioning system of Embodiment 1. FIG. 図4は、実施形態1の空気調和システムの通信系統を示すブロック図である。4 is a block diagram showing a communication system of the air conditioning system of Embodiment 1. FIG. 図5は、実施形態1の空気調和システムが行う浄化モードを示すブロック図である。FIG. 5 is a block diagram showing purification modes performed by the air conditioning system of Embodiment 1. FIG. 図6は、実施形態2の空気調和システムが行う浄化モードを示すブロック図である。FIG. 6 is a block diagram showing purification modes performed by the air conditioning system of the second embodiment. 図7は、実施形態3の空気調和システムが行う浄化モードを示すブロック図である。FIG. 7 is a block diagram showing purification modes performed by the air conditioning system of the third embodiment. 図8は、その他の実施形態の空気調和システムの構成を示す図である。FIG. 8 is a diagram showing the configuration of an air conditioning system according to another embodiment.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical idea of the present disclosure. Each drawing is for the purpose of conceptually explaining the present disclosure, and therefore dimensions, ratios or numbers may be exaggerated or simplified as necessary for ease of understanding.
 《実施形態1》
 実施形態1の空気調和システム(1)について説明する。
<<Embodiment 1>>
The air conditioning system (1) of Embodiment 1 will be described.
 (1)空気調和システムの構成の概要
 空気調和システム(1)は、対象空間の空気の温度および湿度を調節する。本例の対象空間は、室内空間(I)である。図1に示すように、空気調和システム(1)は、空調室外機(10)と空調室内機(30)とを有する。空調室外機(10)は室外に設置され、空調室内機(30)は室内に設置される。空気調和システム(1)は、1つの空調室内機(30)と1つの空調室外機(10)とを有するペア式である。空気調和システム(1)は、加湿ユニット(20)を有する。空気調和システム(1)は、空気を加湿する機能を有する。空気調和システム(1)は、室内空間(I)を換気する機能をさらに有する。
(1) Overview of Configuration of Air Conditioning System The air conditioning system (1) regulates the temperature and humidity of the air in the target space. The target space in this example is the indoor space (I). As shown in FIG. 1, the air conditioning system (1) has an air conditioning outdoor unit (10) and an air conditioning indoor unit (30). The air conditioning outdoor unit (10) is installed outdoors, and the air conditioning indoor unit (30) is installed indoors. The air conditioning system (1) is a pair type having one air conditioning indoor unit (30) and one air conditioning outdoor unit (10). An air conditioning system (1) has a humidification unit (20). The air conditioning system (1) has a function of humidifying air. The air conditioning system (1) further has the function of ventilating the indoor space (I).
 図1および図2に示すように、空気調和システム(1)は、ホース(2)と、液連絡管(3)と、ガス連絡管(4)とを有する。空調室内機(30)と加湿ユニット(20)とは、ホース(2)を介して互いに接続される。空調室内機(30)と空調室外機(10)とは、液連絡管(3)およびガス連絡管(4)を介して互いに接続される。これにより、冷媒回路(R)が構成される。冷媒回路(R)には、冷媒が充填される。冷媒は、ジフルオロメタンである。ただし、冷媒はジフルオロメタンに限定されない。冷媒回路(R)は、蒸気圧縮式の冷凍サイクルを行う。  As shown in Figures 1 and 2, the air conditioning system (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4). The air conditioning indoor unit (30) and the humidifying unit (20) are connected to each other via the hose (2). The air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are connected to each other via a liquid communication pipe (3) and a gas communication pipe (4). Thereby, a refrigerant circuit (R) is configured. The refrigerant circuit (R) is filled with refrigerant. The refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane. The refrigerant circuit (R) performs a vapor compression refrigeration cycle.
 冷媒回路(R)は、主として、圧縮機(12)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)と、室内熱交換器(34)とを有する。 The refrigerant circuit (R) mainly has a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34). .
 冷媒回路(R)は、四方切換弁(16)の切り換えに応じて第1冷凍サイクルと第2冷凍サイクルとを行う。第1冷凍サイクルは、室内熱交換器(34)を蒸発器として機能させ、室外熱交換器(14)を放熱器として機能させる冷凍サイクルである。第2冷凍サイクルは、室外熱交換器(14)を放熱器として機能させ、室内熱交換器(34)を蒸発器として機能させる冷凍サイクルである。 The refrigerant circuit (R) performs the first refrigerating cycle and the second refrigerating cycle according to switching of the four-way switching valve (16). The first refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator. The second refrigerating cycle is a refrigerating cycle in which the outdoor heat exchanger (14) functions as a radiator and the indoor heat exchanger (34) functions as an evaporator.
 (2)詳細構成
 (2-1)空調室外機
 図2および図4に示すように、空調室外機(10)は、室外ケーシング(11)と、圧縮機(12)と、室外ファン(13)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)とを有する。
(2) Detailed configuration (2-1) Air conditioner outdoor unit As shown in FIGS. 2 and 4, the air conditioner outdoor unit (10) includes an outdoor casing (11), a compressor (12), and an outdoor fan (13). , an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
 室外ケーシング(11)は、圧縮機(12)、室外ファン(13)、室外熱交換器(14)、膨張弁(15)および四方切換弁(16)を収容する。室外ケーシング(11)には、室外吸込口(11a)と、室外吹出口(11b)とが形成される。室外吸込口(11a)は、室外ケーシング(11)の後側に形成される。室外吸込口(11a)は、室外の空気を吸い込むための開口である。室外吹出口(11b)は、室外ケーシング(11)の前側に形成される。室外吹出口(11b)は、室外熱交換器(14)を通過した空気を吹き出すための開口である。室外ケーシング(11)の内部には、室外吸込口(11a)から室外吹出口(11b)に亘って室外空気通路(11c)が形成される。 The outdoor casing (11) houses a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15) and a four-way switching valve (16). The outdoor casing (11) is formed with an outdoor inlet (11a) and an outdoor outlet (11b). The outdoor suction port (11a) is formed on the rear side of the outdoor casing (11). The outdoor air inlet (11a) is an opening for sucking outdoor air. The outdoor outlet (11b) is formed on the front side of the outdoor casing (11). The outdoor air outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14). An outdoor air passage (11c) is formed inside the outdoor casing (11) from the outdoor suction port (11a) to the outdoor outlet (11b).
 圧縮機(12)は、低圧のガス冷媒を吸入して圧縮する。圧縮機(12)は、第1モータ(M1)によって駆動される。圧縮機(12)は、インバータ回路から第1モータ(M1)へ電力が供給される可変容量式の圧縮機である。圧縮機(12)は、第1モータ(M1)の運転周波数(回転数)を調整することで、運転容量が変更可能に構成される。 The compressor (12) sucks and compresses low-pressure gas refrigerant. The compressor (12) is driven by a first motor (M1). The compressor (12) is a variable displacement compressor in which power is supplied from an inverter circuit to the first motor (M1). The compressor (12) is configured such that its operating capacity can be changed by adjusting the operating frequency (rotational speed) of the first motor (M1).
 室外ファン(13)は、室外空気通路(11c)に配置される。室外ファン(13)は、第2モータ(M2)の駆動により回転する。室外ファン(13)により搬送される空気は、室外吸込口(11a)から室外ケーシング(11)内に吸い込まれる。この空気は、室外空気通路(11c)を流れて、室外吹出口(11b)から室外ケーシング(11)の外部に吹き出される。室外ファン(13)は、室外熱交換器(14)を通過させるように室外の空気を搬送する。 The outdoor fan (13) is arranged in the outdoor air passage (11c). The outdoor fan (13) is rotated by driving the second motor (M2). Air carried by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passageway (11c) and is blown out of the outdoor casing (11) through the outdoor outlet (11b). The outdoor fan (13) conveys outdoor air so as to pass through the outdoor heat exchanger (14).
 室外熱交換器(14)は、室外空気通路(11c)において室外ファン(13)の上流側に配置される。本例の室外熱交換器(14)は、フィンアンドチューブ式の熱交換器である。室外熱交換器(14)は、熱源熱交換器の一例である。室外熱交換器(14)は、その内部を流れる冷媒と、室外ファン(13)によって搬送される室外空気とを熱交換させる。 The outdoor heat exchanger (14) is arranged upstream of the outdoor fan (13) in the outdoor air passage (11c). The outdoor heat exchanger (14) of this example is a fin-and-tube heat exchanger. The outdoor heat exchanger (14) is an example of a heat source heat exchanger. The outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air conveyed by the outdoor fan (13).
 膨張弁(15)は、減圧機構の一例である。膨張弁(15)は、冷媒を減圧する。膨張弁(15)は、開度が調節可能な電動式の膨張弁である。減圧機構は、感温式の膨張弁、膨張機、キャピラリーチューブなどであってもよい。膨張弁(15)は、冷媒回路(R)の液ラインに接続されていればよく、空調室内機(30)に設けられてもよい。 The expansion valve (15) is an example of a decompression mechanism. The expansion valve (15) reduces the pressure of the refrigerant. The expansion valve (15) is an electrically operated expansion valve whose degree of opening is adjustable. The decompression mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like. The expansion valve (15) may be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
 四方切換弁(16)は、流路切換機構の一例である。四方切換弁(16)は、第1ポート(P1)と、第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)を有する。第1ポート(P1)は、圧縮機(12)の吐出部に繋がる。第2ポート(P2)は、圧縮機(12)の吸入部に繋がる。第3ポート(P3)は、室外熱交換器(14)のガス端部に繋がる。第4ポート(P4)は、ガス連絡管(4)に繋がる。 The four-way switching valve (16) is an example of a channel switching mechanism. The four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3) and a fourth port (P4). The first port (P1) is connected to the discharge of the compressor (12). The second port (P2) is connected to the intake of the compressor (12). The third port (P3) is connected to the gas end of the outdoor heat exchanger (14). The fourth port (P4) is connected to the gas communication pipe (4).
 四方切換弁(16)は、第1状態(図2の実線で示す状態)と、第2状態(図2の破線で示す状態)とに切り換えられる。第1状態の四方切換弁(16)は、第1ポート(P1)と第3ポート(P3)とを連通させ、且つ第2ポート(P2)と第4ポート(P4)とを連通させる。第2状態の四方切換弁(16)は、第1ポート(P1)と第4ポート(P4)とを連通させ、且つ第2ポート(P2)と第3ポート(P3)とを連通させる。 The four-way switching valve (16) is switched between a first state (shown by the solid line in Fig. 2) and a second state (state shown by the broken line in Fig. 2). The four-way switching valve (16) in the first state allows communication between the first port (P1) and the third port (P3) and communication between the second port (P2) and the fourth port (P4). The four-way switching valve (16) in the second state allows communication between the first port (P1) and the fourth port (P4) and communication between the second port (P2) and the third port (P3).
 (2-2)加湿ユニット
 加湿ユニット(20)は、空気を加湿する機能を有する。また、加湿ユニット(20)は、室内空間(I)を換気する機能を有する。加湿ユニット(20)は、空調室内機(30)が設置された室内空間(I)を換気する換気装置である。
(2-2) Humidification Unit The humidification unit (20) has a function of humidifying air. The humidification unit (20) also has a function of ventilating the indoor space (I). The humidification unit (20) is a ventilation device that ventilates the indoor space (I) in which the air conditioning indoor unit (30) is installed.
 加湿ユニット(20)は、室外に設置される。本例の加湿ユニット(20)は、空調室外機(10)と一体化される。加湿ユニット(20)は、室外空気中の水分を空調室内機(30)に送る。加湿ユニット(20)は、加湿ケーシング(21)と、加湿ロータ(22)と、第1ファン(23)と、切換ダンパ(24)と、ヒータ(25)と、第2ファン(26)とを有する。 The humidification unit (20) is installed outdoors. The humidification unit (20) of this example is integrated with the air conditioner outdoor unit (10). The humidification unit (20) sends moisture in the outdoor air to the air conditioning indoor unit (30). The humidification unit (20) includes a humidification casing (21), a humidification rotor (22), a first fan (23), a switching damper (24), a heater (25), and a second fan (26). have.
 加湿ケーシング(21)は、室外ケーシング(11)に一体に取り付けられている。加湿ケーシング(21)は、加湿ロータ(22)、第1ファン(23)、切換ダンパ(24)、ヒータ(25)、および第2ファン(26)を収容する。加湿ケーシング(21)には、加湿吸込口(21a)と、加湿排気口(21b)と、吸排気口(21c)とが形成される。加湿吸込口(21a)および吸排気口(21c)は、加湿ケーシング(21)の後側に形成される。加湿排気口(21b)は、加湿ケーシング(21)の前側に形成される。 The humidifying casing (21) is integrally attached to the outdoor casing (11). The humidification casing (21) houses a humidification rotor (22), a first fan (23), a switching damper (24), a heater (25), and a second fan (26). The humidification casing (21) is formed with a humidification intake port (21a), a humidification exhaust port (21b), and an intake/exhaust port (21c). The humidification suction port (21a) and the suction/exhaust port (21c) are formed on the rear side of the humidification casing (21). The humidification exhaust port (21b) is formed in the front side of the humidification casing (21).
 加湿吸込口(21a)は、室外の空気を吸い込むための開口である。加湿排気口(21b)は、加湿ロータ(22)に水分を付与した後の空気を排出するための開口である。吸排気口(21c)は、室外の空気を吸い込む、または室内から送られる空気を排出するための開口である。加湿ケーシング(21)の内部には、加湿吸込口(21a)から加湿排気口(21b)まで続く第1通路(27)が形成される。加湿ケーシング(21)の内部には、吸排気口(21c)から接続口(21d)まで続く第2通路(28)が形成される。接続口(21d)には、ホース(2)の一端が接続される。 The humidification suction port (21a) is an opening for sucking outdoor air. The humidification exhaust port (21b) is an opening for discharging the air after applying moisture to the humidification rotor (22). The intake/exhaust port (21c) is an opening for taking in outdoor air or discharging air sent from the room. A first passageway (27) extending from the humidification suction port (21a) to the humidification exhaust port (21b) is formed inside the humidification casing (21). A second passageway (28) extending from the air intake/exhaust port (21c) to the connection port (21d) is formed inside the humidification casing (21). One end of the hose (2) is connected to the connection port (21d).
 ホース(2)の他端は、室内側開口(29)に接続される。後述するように、室内側開口(29)は、空調室内機(30)の内部に配置される。室内側開口(29)は、加湿ユニット(20)に接続される。 The other end of the hose (2) is connected to the indoor opening (29). As will be described later, the indoor-side opening (29) is arranged inside the air conditioning indoor unit (30). The room-side opening (29) is connected to the humidification unit (20).
 加湿ロータ(22)は、第1通路(27)と第2通路(28)とに亘って配置される。加湿ロータ(22)は空気中の水分を吸着する吸着部材である。加湿ロータ(22)は、例えば、ハニカム構造を有する円盤状の調湿用ロータである。加湿ロータ(22)は、シリカゲル、ゼオライト、アルミナなどの吸着剤を保持する。吸着剤は、空気中の水分を吸着する性質を有する。吸湿剤は、加熱されることにより、吸着した水分を脱離する性質を有する。 The humidification rotor (22) is arranged across the first passageway (27) and the second passageway (28). The humidification rotor (22) is an adsorption member that adsorbs moisture in the air. The humidification rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure. A humidifying rotor (22) holds an adsorbent such as silica gel, zeolite, or alumina. The adsorbent has the property of adsorbing moisture in the air. Moisture absorbents have the property of desorbing adsorbed moisture when heated.
 加湿ロータ(22)は、第3モータ(M3)の駆動によって回転する。加湿ロータ(22)は、空気中の水分を吸着する吸湿領域(22A)と、空気中に水分を脱離する放湿領域(22B)とを有する。吸湿領域(22A)は、加湿ロータ(22)のうち第1通路(27)に位置する部分によって構成される。放湿領域(22B)は、加湿ロータ(22)のうち第2通路(28)に位置する部分によって構成される。 The humidification rotor (22) is rotated by driving the third motor (M3). The humidification rotor (22) has a moisture absorption area (22A) that adsorbs moisture in the air and a moisture release area (22B) that desorbs moisture in the air. The moisture absorption region (22A) is constituted by a portion of the humidification rotor (22) located in the first passageway (27). The moisture release area (22B) is configured by a portion of the humidification rotor (22) located in the second passageway (28).
 第1ファン(23)は、第1通路(27)に配置される。第1ファン(23)は、第4モータ(M4)の駆動によって回転する。第1ファン(23)は、第4モータ(M4)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。第1ファン(23)により搬送される空気は、加湿吸込口(21a)から加湿ケーシング(21)内に吸い込まれる。この空気は、第1通路(27)を流れて、加湿排気口(21b)から加湿ケーシング(21)の外部に排出される。第1ファン(23)は、加湿ロータ(22)の吸湿領域(22A)を通過させるように室外の空気を搬送する。第1通路(27)を流れる室外の空気に含まれる水分は、加湿ロータ(22)の吸湿領域(22A)に吸着される。 The first fan (23) is arranged in the first passageway (27). The first fan (23) is rotated by driving the fourth motor (M4). The first fan (23) is configured to be able to switch the air volume in a plurality of stages by adjusting the rotational speed of the fourth motor (M4). The air conveyed by the first fan (23) is sucked into the humidification casing (21) through the humidification suction port (21a). This air flows through the first passageway (27) and is discharged to the outside of the humidification casing (21) through the humidification exhaust port (21b). The first fan (23) conveys outdoor air so as to pass through the moisture absorption region (22A) of the humidification rotor (22). Moisture contained in the outdoor air flowing through the first passageway (27) is adsorbed by the moisture absorption region (22A) of the humidification rotor (22).
 切換ダンパ(24)は、第2通路(28)に配置される。切換ダンパ(24)は、第1出入口(24a)と、第2出入口(24b)とを有する。第1出入口(24a)は、吸排気口(21c)と連通する。第2出入口(24b)は、加湿ケーシング(21)におけるホース(2)との接続口(21d)と連通する。切換ダンパ(24)は、第1状態と第2状態とに切り換えられる。第1状態の切換ダンパ(24)は、空気を吸い込む入口を第1出入口(24a)とし、空気を排出する出口を第2出入口(24b)とする。第2状態の切換ダンパ(24)は、空気を吸い込む入口を第2出入口(24b)とし、空気を排出する出口を第1出入口(24a)とする。切換ダンパ(24)の状態は、第5モータ(M5)の駆動によって切り換えられる。 The switching damper (24) is arranged in the second passageway (28). The switching damper (24) has a first entrance (24a) and a second entrance (24b). The first inlet/outlet (24a) communicates with the intake/exhaust port (21c). The second inlet/outlet (24b) communicates with the hose (2) connection port (21d) in the humidification casing (21). The switching damper (24) is switched between a first state and a second state. The switching damper (24) in the first state has a first port (24a) as an inlet for sucking air and a second port (24b) as an outlet for discharging air. The switching damper (24) in the second state has an inlet for sucking air as a second inlet (24b) and an outlet for discharging air as a first inlet (24a). The state of the switching damper (24) is switched by driving the fifth motor (M5).
 ヒータ(25)は、第2通路(28)において吸排気口(21c)と切換ダンパ(24)との間に配置される。ヒータ(25)は、第2通路(28)を流れる空気を加熱する。ヒータ(25)は、出力を可変に構成される。ヒータ(25)を通過する空気の温度は、ヒータ(25)の出力に応じて変化する。 The heater (25) is arranged between the intake/exhaust port (21c) and the switching damper (24) in the second passageway (28). The heater (25) heats air flowing through the second passageway (28). The heater (25) has a variable output. The temperature of the air passing through the heater (25) changes according to the output of the heater (25).
 第2ファン(26)は、切換ダンパ(24)の第1出入口(24a)と第2出入口(24b)との間に配置される。第2ファン(26)は、第6モータ(M6)の駆動によって回転する。第2ファン(26)は、第6モータ(M6)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。第2ファン(26)により搬送される空気の流れは、切換ダンパ(24)の状態に応じて変化する。具体的には、切換ダンパ(24)が第1状態であるときには、図2の実線矢印で示すように、第1出入口(24a)から吸い込まれた空気が第2出入口(24b)に流出する。切換ダンパ(24)が第2状態であるときには、図2の破線矢印で示すように、第2出入口(24b)から吸い込まれた空気が第1出入口(24a)に流出する。 The second fan (26) is arranged between the first entrance (24a) and the second entrance (24b) of the switching damper (24). The second fan (26) is rotated by driving the sixth motor (M6). The second fan (26) is configured to be able to switch the air volume in a plurality of steps by adjusting the rotation speed of the sixth motor (M6). The flow of air carried by the second fan (26) changes according to the state of the switching damper (24). Specifically, when the switching damper (24) is in the first state, air sucked through the first inlet/outlet (24a) flows out to the second inlet/outlet (24b) as indicated by the solid line arrow in FIG. When the switching damper (24) is in the second state, air sucked through the second inlet/outlet (24b) flows out to the first inlet/outlet (24a) as indicated by the dashed arrow in FIG.
 (2-3)空調室内機
 図1~図3に示すように、空調室内機(30)は、室内に設置される。空調室内機(30)は、室内空間(I)を形成する部屋の壁(WL)に設置される、壁掛け式である。空調室内機(30)は、室内ケーシング(31)と、室内ファン(32)と、エアフィルタ(33)と、室内熱交換器(34)と、ドレンパン(35)と、風向調節部(36)とを有する。
(2-3) Air Conditioner Indoor Unit As shown in FIGS. 1 to 3, the air conditioner indoor unit (30) is installed indoors. The air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of the room that forms the indoor space (I). The air conditioning indoor unit (30) includes an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and a wind direction adjusting section (36). and
 室内ケーシング(31)は、室内ファン(32)、エアフィルタ(33)、室内熱交換器(34)およびドレンパン(35)を収容する。室内ケーシング(31)には、室内吸込口(31a)と、室内吹出口(31b)とが形成される。室内吸込口(31a)は、室内ケーシング(31)の上側に配置される。室内吸込口(31a)は、室内の空気を吸い込むための開口である。室内吹出口(31b)は、室内ケーシング(31)の下側に配置される。室内吹出口(31b)は、熱交換後の空気または加湿用の空気を吹き出すための開口である。室内ケーシング(31)の内部には、室内吸込口(31a)から室内吹出口(31b)に続く室内空気通路(31c)が設けられている。 The indoor casing (31) houses an indoor fan (32), an air filter (33), an indoor heat exchanger (34) and a drain pan (35). The indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet (31b). The indoor suction port (31a) is arranged above the indoor casing (31). The indoor air intake (31a) is an opening for sucking indoor air. The indoor outlet (31b) is arranged below the indoor casing (31). The indoor air outlet (31b) is an opening for blowing out air after heat exchange or air for humidification. The interior of the indoor casing (31) is provided with an indoor air passageway (31c) extending from the indoor air inlet (31a) to the indoor air outlet (31b).
 室内ファン(32)は、室内空気通路(31c)の略中央部分に配置される。室内ファン(32)は、送風機の一例である。室内ファン(32)は、例えばクロスフローファンである。室内ファン(32)は、第7モータ(M7)の駆動により回転する。室内ファン(32)は、室内の空気を室内空気通路(31c)に取り込んで搬送する。室内ファン(32)により搬送される空気は、室内吸込口(31a)から室内ケーシング(31)内に吸い込まれる。この空気は、室内空気通路(31c)を流れて、室内吹出口(31b)から室内ケーシング(31)の外部に吹き出される。 The indoor fan (32) is arranged substantially in the center of the indoor air passage (31c). The indoor fan (32) is an example of a blower. The indoor fan (32) is, for example, a cross-flow fan. The indoor fan (32) is rotated by driving the seventh motor (M7). The indoor fan (32) takes indoor air into the indoor air passageway (31c) and conveys it. The air carried by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passageway (31c) and is blown out of the indoor casing (31) from the indoor outlet (31b).
 室内ファン(32)は、室内熱交換器(34)を通過させるように室内の空気を搬送する。室内吹出口(31b)から吹き出された空気は、室内空間に供給される。室内ファン(32)は、第7モータ(M7)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。 The indoor fan (32) conveys indoor air so as to pass through the indoor heat exchanger (34). The air blown out from the indoor air outlet (31b) is supplied to the indoor space. The indoor fan (32) is configured such that the air volume can be switched in multiple stages by adjusting the rotation speed of the seventh motor (M7).
 エアフィルタ(33)は、室内空気通路(31c)において室内熱交換器(34)の上流側に配置される。エアフィルタ(33)は、室内熱交換器(34)に供給される空気が実質的に全て通過するように室内ケーシング(31)に取り付けられる。エアフィルタ(33)は、室内吸込口(31a)から吸い込まれる空気中の塵埃を捕集する。 The air filter (33) is arranged upstream of the indoor heat exchanger (34) in the indoor air passage (31c). The air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through. The air filter (33) collects dust in the air sucked through the indoor air inlet (31a).
 室内熱交換器(34)は、室内空気通路(31c)において室内ファン(32)の上流側に配置される。本例の室内熱交換器(34)は、フィンアンドチューブ式の熱交換器である。室内熱交換器(34)は、利用熱交換器の一例である。室内熱交換器(34)は、その内部の冷媒と、室内ファン(32)によって搬送される室内の空気とを熱交させる。 The indoor heat exchanger (34) is arranged upstream of the indoor fan (32) in the indoor air passage (31c). The indoor heat exchanger (34) of this example is a fin-and-tube heat exchanger. The indoor heat exchanger (34) is an example of a utilization heat exchanger. The indoor heat exchanger (34) exchanges heat between the refrigerant therein and indoor air conveyed by the indoor fan (32).
 ドレンパン(35)は、室内熱交換器(34)の前方下側および後方下側に配置される。ドレンパン(35)は、空調室内機(30)の室内ケーシング(31)の内部で発生した結露水を受ける。室内熱交換器(34)のフィンの表面に発生した結露水は、その表面を伝って自重により流下し、ドレンパン(35)で受けられる。 The drain pan (35) is arranged on the lower front side and the lower rear side of the indoor heat exchanger (34). The drain pan (35) receives condensed water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensed water generated on the surface of the fins of the indoor heat exchanger (34) flows down due to its own weight along the surface and is received by the drain pan (35).
 風向調節部(36)は、室内吹出口(31b)から吹き出される空気の風向きを調節する。風向調節部(36)は、フラップ(37)を有する。フラップ(37)は、室内吹出口(31b)の長手方向に沿って延びる長板状に形成される。フラップ(37)は、モータの駆動により回動する。フラップ(37)は、その回動に伴い室内吹出口(31b)を開閉する。 The wind direction adjusting section (36) adjusts the direction of the air blown out from the indoor outlet (31b). The wind direction adjusting part (36) has a flap (37). The flap (37) is shaped like a long plate extending along the longitudinal direction of the indoor outlet (31b). The flap (37) is rotated by being driven by a motor. The flap (37) opens and closes the indoor outlet (31b) as it rotates.
 フラップ(37)は、傾斜角度を段階的に変えられるように構成される。本例のフラップ(37)が調節される位置は、6つの位置を含む。これら6つの位置は、閉位置と、5つの開位置とを含む。5つの開位置には、図3に示す略水平吹出位置を含む。閉位置のフラップ(37)は、室内吹出口(31b)を実質的に閉じる。閉位置のフラップ(37)と室内吹出口(31b)との間には、隙間が形成されてもよい。 The flap (37) is configured so that the tilt angle can be changed stepwise. The positions to which the flap (37) in this example is adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the generally horizontal blow position shown in FIG. The flap (37) in the closed position substantially closes the indoor outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor outlet (31b).
 空調室内機(30)には、室内側開口(29)が設けられる。室内側開口(29)は、室内ケーシング(31)の内部空間におけるエアフィルタ(33)と室内熱交換器(34)の間に設置される。 The air conditioning indoor unit (30) is provided with an indoor opening (29). The indoor opening (29) is located between the air filter (33) and the indoor heat exchanger (34) in the interior space of the indoor casing (31).
 (2-4)リモートコントローラ
 リモートコントローラ(40)は、室内においてユーザが操作可能な位置に配置される。リモートコントローラ(40)は、表示部(41)と入力部(42)とを有する。表示部(41)は、所定の情報を表示する。表示部(41)は、例えば液晶モニタによって構成される。所定の情報は、空気調和システム(1)の運転状態や設定温度などを示す情報である。入力部(42)は、ユーザからの各種設定を行う入力操作を受け付ける。入力部(42)は、例えば物理的な複数のスイッチで構成される。ユーザは、リモートコントローラ(40)の入力部(42)を操作することで、空気調和システム(1)の運転モード、目標温度、目標湿度などを設定できる。
(2-4) Remote Controller The remote controller (40) is placed indoors at a position where the user can operate it. The remote controller (40) has a display section (41) and an input section (42). The display (41) displays predetermined information. The display section (41) is composed of, for example, a liquid crystal monitor. The predetermined information is information indicating the operating state, set temperature, and the like of the air conditioning system (1). An input unit (42) receives an input operation for performing various settings from a user. The input section (42) is composed of, for example, a plurality of physical switches. The user can set the operation mode, target temperature, target humidity, etc. of the air conditioning system (1) by operating the input section (42) of the remote controller (40).
 (2-5)センサ
 図2に示すように、空気調和システム(1)は、複数のセンサを有する。複数のセンサは、冷媒用のセンサと、空気用のセンサとを含む。冷媒用のセンサは、高圧冷媒の温度や圧力を検出するセンサ、低圧冷媒の温度や圧力を検出するセンサを含む(図示省略)。
(2-5) Sensors As shown in FIG. 2, the air conditioning system (1) has a plurality of sensors. The plurality of sensors includes a sensor for refrigerant and a sensor for air. The refrigerant sensor includes a sensor that detects the temperature and pressure of the high-pressure refrigerant and a sensor that detects the temperature and pressure of the low-pressure refrigerant (not shown).
 空気用のセンサは、外気温度センサ(51)、外気湿度センサ(52)、内気温度センサ(53)、および内気湿度センサ(54)を含む。外気温度センサ(51)は、空調室外機(10)に設けられる。外気温度センサ(51)は、室外空気の温度を検出する。外気湿度センサ(52)は、加湿ユニット(20)に設けられる。外気湿度センサ(52)は、室外空気の湿度を検出する。本例の外気湿度センサ(52)は、室外空気の相対湿度を検出するが、絶対湿度を検出してもよい。内気温度センサ(53)および内気湿度センサ(54)は、空調室内機(30)に設けられる。内気温度センサ(53)は、室内空気の温度を検出する。内気湿度センサ(54)は、室内空気の湿度を検出する。内気湿度センサ(54)は、室内空気の相対湿度を検出するが、絶対湿度を検出してもよい。 The air sensors include an outside air temperature sensor (51), an outside air humidity sensor (52), an inside air temperature sensor (53), and an inside air humidity sensor (54). The outside air temperature sensor (51) is provided in the air conditioning outdoor unit (10). The outdoor air temperature sensor (51) detects the temperature of outdoor air. The outside air humidity sensor (52) is provided in the humidification unit (20). The outside air humidity sensor (52) detects the humidity of the outside air. The outdoor air humidity sensor (52) of this example detects the relative humidity of the outdoor air, but may also detect the absolute humidity. The inside air temperature sensor (53) and the inside air humidity sensor (54) are provided in the air conditioning indoor unit (30). The inside air temperature sensor (53) detects the temperature of the inside air. A room air humidity sensor (54) detects the humidity of the room air. The room air humidity sensor (54) detects the relative humidity of the room air, but may also detect the absolute humidity.
 (2-6)制御部
 空気調和システム(1)は、制御部(C)を有する。制御部(C)は、冷媒回路(R)の動作を制御する制御器である。制御部(C)は、空調室外機(10)、加湿ユニット(20)、および空調室内機(30)の動作を制御する。
 図4に示すように、制御部(C)は、室外制御部(OC)と、室内制御部(IC)とを含む。室外制御部(OC)は空調室外機(10)に設けられる。室内制御部(IC)は空調室内機(30)に設けられる。室内制御部(IC)および室外制御部(OC)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
(2-6) Controller The air conditioning system (1) has a controller (C). The controller (C) is a controller that controls the operation of the refrigerant circuit (R). The controller (C) controls the operation of the air conditioning outdoor unit (10), the humidifying unit (20), and the air conditioning indoor unit (30).
As shown in FIG. 4, the controller (C) includes an outdoor controller (OC) and an indoor controller (IC). The outdoor controller (OC) is provided in the air conditioner outdoor unit (10). An indoor controller (IC) is provided in the air conditioner indoor unit (30). Each of the indoor controller (IC) and the outdoor controller (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit. The MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
 室外制御部(OC)には、外気温度センサ(51)の検出値、および外気湿度センサ(52)の検出値が入力される。 The outdoor temperature sensor (51) detection value and the outdoor air humidity sensor (52) detection value are input to the outdoor control unit (OC).
 室外制御部(OC)は、圧縮機(12)、室外ファン(13)、膨張弁(15)および四方切換弁(16)に接続される。室外制御部(OC)は、空調室外機(10)の運転の実行および停止を行うための制御信号を、圧縮機(12)、室外ファン(13)、膨張弁(15)、および四方切換弁(16)に出力する。室外制御部(OC)は、圧縮機(12)の第1モータ(M1)の運転周波数、室外ファン(13)の第2モータ(M2)の回転数、四方切換弁(16)の状態および膨張弁(15)の開度を制御する。 The outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15) and four-way switching valve (16). The outdoor control unit (OC) sends control signals for executing and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), the outdoor fan (13), the expansion valve (15), and the four-way switching valve. Output to (16). The outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the expansion Controls the opening of the valve (15).
 室外制御部(OC)はさらに、加湿ロータ(22)、第1ファン(23)、切換ダンパ(24)、ヒータ(25)、および第2ファン(26)に接続される。室外制御部(OC)は、加湿ユニット(20)の運転の実行および停止を行うための制御信号を、加湿ロータ(22)、第1ファン(23)、切換ダンパ(24)、第2ファン(26)、およびヒータ(25)に出力する。室外制御部(OC)は、第1ファン(23)の第4モータ(M4)および第2ファン(26)の第6モータ(M6)の回転数と、加湿ロータ(22)および切換ダンパ(24)の動作と、ヒータ(25)の出力とを制御する。 The outdoor controller (OC) is further connected to the humidification rotor (22), first fan (23), switching damper (24), heater (25), and second fan (26). The outdoor control section (OC) sends control signals for executing and stopping the operation of the humidification unit (20) to the humidification rotor (22), the first fan (23), the switching damper (24), the second fan ( 26), and output to the heater (25). The outdoor controller (OC) controls the number of rotations of the fourth motor (M4) of the first fan (23) and the sixth motor (M6) of the second fan (26), the humidification rotor (22) and the switching damper (24 ) and the output of the heater (25).
 室内制御部(IC)には、内気温度センサ(53)の検出値、および内気湿度センサ(54)の検出値が入力される。 The detection value of the inside air temperature sensor (53) and the detection value of the inside air humidity sensor (54) are input to the indoor control unit (IC).
 室内制御部(IC)は、リモートコントローラ(40)と通信可能に接続される。室内制御部(IC)は、室内ファン(32)に接続される。室内制御部(IC)は、空調室内機(30)の運転の実行および停止を行うための制御信号を、室内ファン(32)に出力する。室内制御部(IC)は、室内ファン(32)の第7モータ(M7)の回転数を制御する。室内制御部(IC)は、室外制御部(OC)と通信可能に接続される。 The indoor control unit (IC) is communicably connected to the remote controller (40). The indoor controller (IC) is connected to the indoor fan (32). The indoor controller (IC) outputs a control signal to the indoor fan (32) to start and stop the operation of the air conditioning indoor unit (30). The indoor controller (IC) controls the rotation speed of the seventh motor (M7) of the indoor fan (32). The indoor controller (IC) is communicably connected to the outdoor controller (OC).
 リモートコントローラ(40)は、室内制御部(IC)と通信可能に接続される。リモートコントローラ(40)は、入力部(42)でのユーザの操作に応じて、空気調和システム(1)の運転を指示する指示信号を室内制御部(IC)に送信する。室内制御部(IC)は、リモートコントローラ(40)からの指示信号を受信すると、その指示信号を室外制御部(OC)に送信する。室内制御部(IC)は、その指示信号に従い、空調室内機(30)の上述した各機器の動作を制御する。室外制御部(OC)が、室内制御部(IC)からの指示信号を受信すると、空調室外機(10)および加湿ユニット(20)の上述した各機器の動作を制御する。 The remote controller (40) is communicably connected to the indoor control unit (IC). The remote controller (40) transmits an instruction signal instructing the operation of the air conditioning system (1) to the indoor controller (IC) according to the user's operation on the input section (42). Upon receiving an instruction signal from the remote controller (40), the indoor controller (IC) transmits the instruction signal to the outdoor controller (OC). The indoor controller (IC) controls the operation of each device of the air conditioning indoor unit (30) according to the instruction signal. When the outdoor controller (OC) receives an instruction signal from the indoor controller (IC), it controls the operation of each of the air conditioning outdoor unit (10) and the humidifying unit (20).
 (3)運転動作
 空気調和システム(1)が実行する運転モードは、冷房運転、暖房運転、加湿運転、給気運転、および排気運転を含む。制御部(C)は、リモートコントローラ(40)からの指示信号に基づいて、これらの運転を実行させる。
(3) Operation Operation The operation modes executed by the air conditioning system (1) include cooling operation, heating operation, humidification operation, air supply operation, and exhaust operation. The controller (C) executes these operations based on instruction signals from the remote controller (40).
 (3-1)冷房運転
 冷房運転は、蒸発器とした室内熱交換器(34)により室内の空気を冷却する運転である。冷房運転での設定温度は、冷房運転の開始時または冷房運転中にリモートコントローラ(40)から指示される。冷房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第1状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。冷房運転では、圧縮機(12)で圧縮された冷媒が室外熱交換器(14)で放熱し、室内熱交換器(34)で蒸発する第1冷凍サイクルが行われる。
(3-1) Cooling operation Cooling operation is an operation in which indoor air is cooled by the indoor heat exchanger (34) as an evaporator. The set temperature for the cooling operation is instructed from the remote controller (40) at the start of the cooling operation or during the cooling operation. In cooling operation, the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32). The controller (C) sets the four-way switching valve (16) to the first state. The control section (C) appropriately adjusts the degree of opening of the expansion valve (15). In cooling operation, a first refrigeration cycle is performed in which refrigerant compressed by the compressor (12) radiates heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
 冷房運転では、内気温度センサ(53)で検出する室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標蒸発温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の蒸発温度が目標蒸発温度に収束するように、圧縮機(12)の回転数を制御する。冷房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に冷却される。室内熱交換器(34)によって冷却された空気は、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。 In cooling operation, the controller (C) adjusts the target evaporating temperature of the indoor heat exchanger (34) so that the room temperature detected by the inside air temperature sensor (53) converges to the set temperature. The control section (C) controls the rotation speed of the compressor (12) such that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature. In the cooling operation, the air conveyed by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34). The air cooled by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
 (3-2)暖房運転
 暖房運転は、放熱器とした室内熱交換器(34)により室内の空気を加熱する運転である。暖房運転での設定温度は、暖房運転の開始時または暖房運転中にリモートコントローラ(40)から指示される。暖房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第2状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。暖房運転では、圧縮機(12)で圧縮された冷媒が室内熱交換器(34)で放熱し、室外熱交換器(14)で蒸発する第2冷凍サイクルが行われる。
(3-2) Heating operation The heating operation is an operation in which the indoor air is heated by the indoor heat exchanger (34) as a radiator. The set temperature for the heating operation is instructed from the remote controller (40) at the start of the heating operation or during the heating operation. In heating operation, the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32). The controller (C) sets the four-way switching valve (16) to the second state. The control section (C) appropriately adjusts the degree of opening of the expansion valve (15). In the heating operation, a second refrigeration cycle is performed in which refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
 暖房運転では、内気温度センサ(53)によって検出される室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標凝縮温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の凝縮温度が目標凝縮温度に収束するように、圧縮機(12)の回転数を制御する。暖房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に加熱される。室内熱交換器(34)で加熱された空気は、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。 In heating operation, the controller (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature. The control section (C) controls the rotation speed of the compressor (12) such that the condensation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensation temperature. In the heating operation, the air conveyed by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34). The air heated by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
 (3-3)加湿運転
 加湿運転は、加湿ユニット(20)により室内の空気を加湿する運転である。加湿運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。加湿運転では、制御部(C)が、ヒータ(25)、加湿ロータ(22)および第1ファン(23)を運転させる。制御部(C)は、第2ファン(26)を運転させる。制御部(C)は、切換ダンパ(24)を第1状態に設定する。
(3-3) Humidification operation Humidification operation is an operation of humidifying indoor air by the humidification unit (20). In the humidification operation, outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG. In the humidification operation, the control section (C) operates the heater (25), the humidification rotor (22) and the first fan (23). A control part (C) operates a 2nd fan (26). The control section (C) sets the switching damper (24) to the first state.
 加湿運転において、第1ファン(23)によって搬送される室外の空気が加湿ロータ(22)の吸湿領域(22A)を通過し、室外の空気に含まれる水分が加湿ロータ(22)の吸湿領域(22A)に吸着される。加湿ロータ(22)の吸湿領域(22A)として水分を吸着した部分は、加湿ロータ(22)の回転により第2通路(28)に移動して、放湿領域(22B)を構成する。加湿ロータ(22)の放湿領域(22B)には、ヒータ(25)で加熱された室外の空気が通過し、加湿ロータ(22)から加熱された空気へと水分の脱離が生じる。加湿運転では、加湿ロータ(22)で水分を付与された高湿度の空気が、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。なお、暖房運転と同時に加湿運転を行ってもよい。 In the humidification operation, the outdoor air conveyed by the first fan (23) passes through the moisture absorption area (22A) of the humidification rotor (22), and moisture contained in the outdoor air passes through the moisture absorption area (22A) of the humidification rotor (22). 22A). The portion of the humidification rotor (22) that has adsorbed moisture as the moisture absorption area (22A) moves to the second passageway (28) as the humidification rotor (22) rotates to form a moisture release area (22B). Outdoor air heated by the heater (25) passes through the moisture release area (22B) of the humidification rotor (22), and moisture is desorbed from the humidification rotor (22) to the heated air. In the humidification operation, high-humidity air added with moisture by the humidification rotor (22) is sent to the air conditioner indoor unit (30) through the hose (2), and is then discharged from the air outlet (31b) of the air conditioner indoor unit (30). It is supplied to the indoor space (I). Note that the humidification operation may be performed simultaneously with the heating operation.
 (3-4)給気運転
 給気運転は、室外の空気を室内に供給する運転である。給気運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。給気運転では、制御部(C)がヒータ(25)、加湿ロータ(22)、および第1ファン(23)を停止させ、第2ファン(26)を運転させる。制御部(C)は、切換ダンパ(24)を第1状態に設定する。給気運転において、第2ファン(26)によって搬送される室外の空気は、ホース(2)を流れ、室内側開口(29)から空調室内機(30)の内部空間に流入し、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。なお、冷房運転または暖房運転と同時に給気運転を行ってもよい。
(3-4) Air supply operation The air supply operation is an operation for supplying outdoor air to a room. In the air supply operation, outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG. In the air supply operation, the controller (C) stops the heater (25), the humidification rotor (22), and the first fan (23) and operates the second fan (26). The control section (C) sets the switching damper (24) to the first state. In the air supply operation, outdoor air conveyed by the second fan (26) flows through the hose (2), flows into the internal space of the air conditioning indoor unit (30) through the indoor opening (29), and enters the air conditioning indoor unit. The air is supplied to the indoor space (I) from the indoor outlet (31b) of (30). The air supply operation may be performed simultaneously with the cooling operation or the heating operation.
 (3-5)排気運転
 排気運転は、室内の空気を室外に排出する運転である。排気運転では、図2の破線の矢印で示すように、室内空気がホース(2)を介して加湿ユニット(20)へ送られる。排気運転では、制御部(C)がヒータ(25)、加湿ロータ(22)、および第1ファン(23)を停止させ、第2ファン(26)を運転させる。制御部(C)は、切換ダンパ(24)を第2状態に設定する。排気運転において、室内空間(I)の室内空気は、室内吸込口(31a)を通って空調室内機(30)の内部空間へ流入し、室内側開口(29)からホース(2)へ流入して加湿ユニット(20)に送られ、第2ファン(26)に吸い込まれて吸排気口(21c)から室外へ排出される。なお、冷房運転または暖房運転と同時に排気運転を行ってもよい。
(3-5) Exhaust operation The exhaust operation is an operation in which indoor air is discharged to the outside. In the exhaust operation, room air is sent to the humidification unit (20) through the hose (2), as indicated by the dashed arrow in FIG. In the exhaust operation, the controller (C) stops the heater (25), the humidification rotor (22), and the first fan (23) and operates the second fan (26). The control section (C) sets the switching damper (24) to the second state. In the exhaust operation, the indoor air in the indoor space (I) flows through the indoor suction port (31a) into the internal space of the air conditioning indoor unit (30), and flows into the hose (2) through the indoor opening (29). It is then sent to the humidification unit (20), sucked by the second fan (26), and discharged to the outside through the intake/exhaust port (21c). Note that the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
 (4)浄化モード
 空気調和システム(1)は、浄化モードを実行する。浄化モードは、室内熱交換器(34)を清潔にするための運転モードである。
(4) Purification Mode The air conditioning system (1) executes the purification mode. The cleaning mode is an operation mode for cleaning the indoor heat exchanger (34).
 図5に示すように、浄化モードでは、浄化運転と、乾燥運転と、排気運転とが順に行われる。制御部(C)は、これらの運転が実行されるように、空気調和システム(1)の構成機器を制御する。 As shown in FIG. 5, in the purification mode, purification operation, drying operation, and exhaust operation are performed in order. The control unit (C) controls components of the air conditioning system (1) so that these operations are performed.
 (4-1)浄化運転
 浄化運転では、加湿ステップと、結露ステップとが順に行われる。
(4-1) Purification Operation In the purification operation, a humidification step and a condensation step are performed in order.
 加湿ステップにおいて、空気調和システム(1)は、加湿運転を行う。上述したように、加湿運転では、加湿ユニット(20)において加湿された空気(室外空気)が、ホース(2)を通じて室内空間(I)へ供給される。その結果、室内空間(I)の湿度が上昇する。なお、加湿ステップでは、室内ファン(32)が作動する。 In the humidification step, the air conditioning system (1) performs humidification operation. As described above, in the humidification operation, the air (outdoor air) humidified in the humidification unit (20) is supplied to the indoor space (I) through the hose (2). As a result, the humidity in the indoor space (I) increases. Note that the indoor fan (32) operates in the humidification step.
 結露ステップは、室内熱交換器(34)において空気中の水蒸気を凝縮させる凝縮動作である。結露ステップでは、空気調和システム(1)が冷房運転と同じ運転を行い、室内熱交換器(34)が蒸発器として機能する。室内熱交換器(34)では、室内空気が冷媒によって冷却される。その際には、室内空気に含まれる水蒸気が凝縮して室内熱交換器(34)に付着する。 The condensation step is a condensation operation that condenses water vapor in the air in the indoor heat exchanger (34). In the condensation step, the air conditioning system (1) performs the same operation as cooling operation, and the indoor heat exchanger (34) functions as an evaporator. In the indoor heat exchanger (34), indoor air is cooled by refrigerant. At that time, water vapor contained in the indoor air condenses and adheres to the indoor heat exchanger (34).
 浄化運転において、空気調和システム(1)は、予め加湿ステップを行って室内空間(I)の湿度を高めておき、その後に結露ステップを行う。そのため、結露ステップでは、室内熱交換器(34)の表面において、比較的多量の凝縮水が、比較的短時間のうちに生じる。室内熱交換器(34)の表面において凝縮した水は、重力によって下方へ流れ落ちる。その際、凝縮水は、室内熱交換器(34)に付着した塵埃などと共に下方へ流れ落ちる。その結果、室内熱交換器(34)から塵埃などが除去され、室内熱交換器(34)が清潔な状態になる。 In the purification operation, the air conditioning system (1) performs the humidification step in advance to increase the humidity of the indoor space (I), and then performs the dew condensation step. Therefore, in the dew condensation step, a relatively large amount of condensed water is produced on the surface of the indoor heat exchanger (34) in a relatively short period of time. Water condensed on the surface of the indoor heat exchanger (34) flows downward due to gravity. At this time, the condensed water flows downward together with dust adhering to the indoor heat exchanger (34). As a result, dust and the like are removed from the indoor heat exchanger (34), and the indoor heat exchanger (34) becomes clean.
 (4-2)乾燥運転
 乾燥運転は、浄化運転の終了後に室内熱交換器(34)に残存している水を蒸発させるための運転である。乾燥運転では、室内ファン(32)が作動し、圧縮機(12)が停止する。乾燥運転では、室内空気が室内熱交換器(34)を通過する。室内熱交換器(34)に残存している水は、蒸発して室内空気と共に室内空間(I)へ排出される。
(4-2) Drying operation Drying operation is an operation for evaporating water remaining in the indoor heat exchanger (34) after the purification operation is completed. In the dry operation, the indoor fan (32) operates and the compressor (12) stops. In dry operation, indoor air passes through the indoor heat exchanger (34). The water remaining in the indoor heat exchanger (34) evaporates and is discharged into the indoor space (I) together with the indoor air.
 (4-3)排気運転
 空気調和システム(1)は、乾燥運転の終了後に、上述した排気運転を行う。浄化モードにおいて実行される排気運転は、乾燥運転によって室内空間へ流出した水分を室外へ排出するために行われる。
(4-3) Exhaust operation The air conditioning system (1) performs the exhaust operation described above after finishing the drying operation. The exhaust operation executed in the purification mode is performed to exhaust the moisture that has flowed into the indoor space due to the drying operation to the outside.
 排気運転を開始する時点において、空調室内機(30)の付近には、乾燥運転中に空調室内機(30)から吹き出された比較的高湿度の空気が存在する。排気運転において、空調室内機(30)の付近に存在する比較的高湿度の空気は、空調室内機(30)の室内吸込口(31a)と、室内側開口(29)と、ホース(2)とを順に通って加湿ユニット(20)へ流入し、加湿ユニット(20)の吸排気口(21c)から室外へ排出される。 At the time of starting the exhaust operation, there is relatively high-humidity air blown out from the air conditioning indoor unit (30) during the drying operation near the air conditioning indoor unit (30). In the exhaust operation, relatively high-humidity air existing near the air conditioning indoor unit (30) passes through the indoor suction port (31a) of the air conditioning indoor unit (30), the indoor side opening (29), and the hose (2). and into the humidification unit (20), and is discharged out of the room through the air intake/exhaust port (21c) of the humidification unit (20).
 (5)実施形態1の特徴
 (5-1)
 本実施形態の空気調和システム(1)において、制御部(C)は、浄化運転の終了後に、換気装置である加湿ユニット(20)に排気運転を実行させる。加湿ユニット(20)は、浄化運転によって高湿度になった室内熱交換器(34)の周囲の空気を、室内機(30)の内部から吸い込み、室外へ排出する。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。
(5) Features of Embodiment 1 (5-1)
In the air conditioning system (1) of the present embodiment, the control section (C) causes the humidification unit (20), which is a ventilator, to perform the exhaust operation after the purification operation is finished. The humidification unit (20) draws in the air around the indoor heat exchanger (34), which has become highly humid due to the purification operation, from inside the indoor unit (30) and discharges it to the outside. As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 (5-2)
 本実施形態の空気調和システム(1)において、換気装置である加湿ユニット(20)は、浄化運転の結露ステップ(凝縮動作)が終了した後に排気運転を行う。結露ステップの実行中において、加湿ユニット(20)は、排気運転を行わない。そのため、結露ステップの実行中は、ある程度の水分を含んだ空気が、室外へ排出されずに室内熱交換器(34)の周囲に留まる。その結果、結露ステップにおける凝縮水の生成量を確保することができ、凝縮水を利用して室内熱交換器(34)を浄化できる。
(5-2)
In the air conditioning system (1) of the present embodiment, the humidification unit (20), which is a ventilator, performs an exhaust operation after the dew condensation step (condensation operation) of the purification operation is completed. During execution of the dew condensation step, the humidification unit (20) does not perform exhaust operation. Therefore, during the dew condensation step, air containing a certain amount of moisture remains around the indoor heat exchanger (34) without being discharged to the outside. As a result, the amount of condensed water produced in the condensation step can be ensured, and the condensed water can be used to purify the indoor heat exchanger (34).
 (5-3)
 本実施形態の空気調和システム(1)の浄化モードにおいて、換気装置である加湿ユニット(20)は、乾燥運転の終了後に排気運転を行う。乾燥運転中は、室内熱交換器(34)に付着した水が蒸発し、室内熱交換器(34)の周辺の空気が高湿度になる。乾燥運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。
(5-3)
In the purification mode of the air conditioning system (1) of the present embodiment, the humidifying unit (20), which is a ventilator, performs an exhaust operation after completing the drying operation. During the drying operation, water adhering to the indoor heat exchanger (34) evaporates, and the air around the indoor heat exchanger (34) becomes highly humid. The air around the indoor heat exchanger (34), which has become highly humid due to the dry operation, is discharged to the outside by the ventilator (20, 60). As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 (6)実施形態1の変形例
 浄化モードにおいて、空気調和システム(1)は、排気運転を、乾燥運転と同時に並行して行ってもよい。また、浄化モードにおいて、空気調和システム(1)は、乾燥運転を省略して排気運転を行ってもよい。
(6) Modification of Embodiment 1 In the purification mode, the air conditioning system (1) may perform the exhaust operation and the drying operation concurrently. Further, in the purification mode, the air conditioning system (1) may skip the drying operation and perform the exhaust operation.
 この変形例においても、浄化運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。 Also in this modification, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60). As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 《実施形態2》
 実施形態2の空気調和システム(1)について説明する。
<<Embodiment 2>>
The air conditioning system (1) of Embodiment 2 will be described.
 本実施形態の空気調和システム(1)は、実施形態1の空気調和システム(1)において、浄化モードを変更したものである。ここでは、本実施形態の空気調和システム(1)が行う浄化モードについて説明する。 The air conditioning system (1) of this embodiment is the air conditioning system (1) of Embodiment 1 with a different purification mode. Here, the purification mode performed by the air conditioning system (1) of the present embodiment will be described.
 (1)浄化モード
 図6に示すように、本実施形態の浄化モードでは、浄化運転と、乾燥運転と、排気運転とが順に行われる。その点は、実施形態1の浄化モードと同じである。本実施形態の浄化モードでは、浄化運転が実施形態1の浄化モードと異なる。本実施形態の浄化モードで行われる乾燥運転および排気運転は、それぞれ実施形態1の浄化モードで行われる乾燥運転および排気運転と同じである。
(1) Purification Mode As shown in FIG. 6, in the purification mode of the present embodiment, purification operation, drying operation, and exhaust operation are performed in order. This point is the same as the purification mode of the first embodiment. In the purification mode of this embodiment, the purification operation differs from that of the first embodiment. The drying operation and exhaust operation performed in the purification mode of this embodiment are the same as the drying operation and exhaust operation performed in the purification mode of the first embodiment, respectively.
 (1-1)浄化運転
 浄化運転では、凍結ステップと、融解ステップとが順に行われる。
(1-1) Purification Operation In the purification operation, a freezing step and a thawing step are performed in order.
 凍結ステップは、室内熱交換器(34)に霜を付着させるために行われる。凍結ステップでは、空気調和システム(1)が冷房運転と同じ動作を行い、室内熱交換器(34)が蒸発器として機能する。ただし、凍結ステップでは、室内熱交換器(34)における冷媒の蒸発温度が0℃未満(例えば、-10℃)に設定される。凍結ステップでは、室内空気中の水分が霜になって室内熱交換器(34)に付着する。 The freezing step is performed to frost the indoor heat exchanger (34). In the freezing step, the air conditioning system (1) performs the same operation as cooling operation, and the indoor heat exchanger (34) functions as an evaporator. However, in the freezing step, the evaporation temperature of the refrigerant in the indoor heat exchanger (34) is set below 0°C (eg -10°C). In the freezing step, moisture in the indoor air turns into frost and adheres to the indoor heat exchanger (34).
 ここで、水の三重点の圧力(=0.6kPa)は、大気圧(101.3kPa)よりも低い。空調室内機(30)が設置される室内空間(I)の圧力は、大気圧である。そのため、室内熱交換器(34)を通過する室内空気中の水蒸気は、凝縮して液体になり、その後に凝固して固体(霜)になる。従って、凍結ステップは、室内熱交換器(34)において空気中の水蒸気を凝縮させる凝縮動作である。 Here, the triple point pressure of water (=0.6 kPa) is lower than the atmospheric pressure (101.3 kPa). The pressure of the indoor space (I) in which the air conditioning indoor unit (30) is installed is the atmospheric pressure. Therefore, the water vapor in the indoor air passing through the indoor heat exchanger (34) condenses into a liquid and then solidifies into a solid (frost). Therefore, the freezing step is a condensation operation that condenses water vapor in the air in the indoor heat exchanger (34).
 融解ステップは、室内熱交換器(34)に付着した霜を融かすために行われる。融解ステップでは、空気調和システム(1)が暖房運転と同じ動作を行い、室内熱交換器(34)が凝縮器として機能する。室内熱交換器(34)に付着した霜は、冷媒によって加熱されて融解し、水(液体)になって下方へ流れ落ちる。 The melting step is performed to melt frost adhering to the indoor heat exchanger (34). In the thawing step, the air conditioning system (1) performs the same operation as heating operation, and the indoor heat exchanger (34) functions as a condenser. Frost adhering to the indoor heat exchanger (34) is heated by the refrigerant, melts, becomes water (liquid), and flows downward.
 浄化運転において、空気調和システム(1)は、凍結ステップを行って室内熱交換器(34)に比較的多量の霜を付着させ、その後に融解ステップを行う。そのため、融解ステップでは、室内熱交換器(34)に付着した霜が融解することによって、比較的多量の水(液体)が、比較的短時間のうちに生じる。霜の融解によって生じた水(液体)は、重力によって下方へ流れ落ちる。その際、水(液体)は、室内熱交換器(34)に付着した塵埃などと共に下方へ流れ落ちる。その結果、室内熱交換器(34)から塵埃などが除去され、室内熱交換器(34)が清潔な状態になる。 In the purification operation, the air conditioning system (1) performs a freezing step to deposit a relatively large amount of frost on the indoor heat exchanger (34), and then performs a melting step. Therefore, in the melting step, a relatively large amount of water (liquid) is produced in a relatively short period of time by melting the frost adhered to the indoor heat exchanger (34). Water (liquid) produced by the melting of frost flows downward due to gravity. At this time, the water (liquid) flows downward together with dust and the like adhering to the indoor heat exchanger (34). As a result, dust and the like are removed from the indoor heat exchanger (34), and the indoor heat exchanger (34) becomes clean.
 (2)実施形態2の特徴
 本実施形態の空気調和システム(1)において、制御部(C)は、浄化運転の終了後に、換気装置である加湿ユニット(20)に排気運転を実行させる。従って、本実施形態の空気調和システム(1)によれば、実施形態1の空気調和システム(1)と同様に、浄化運転によって高湿度になった室内熱交換器(34)の周囲の空気を室外に排出することができる。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性を保つことができる。
(2) Features of Embodiment 2 In the air conditioning system (1) of the present embodiment, the control section (C) causes the humidification unit (20), which is a ventilator, to perform the exhaust operation after the purification operation ends. Therefore, according to the air conditioning system (1) of the present embodiment, similarly to the air conditioning system (1) of the first embodiment, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is It can be discharged outdoors. As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) can be maintained.
 (3)実施形態2の変形例
 (3-1)
 浄化モードにおいて、空気調和システム(1)は、排気運転を、乾燥運転と同時に並行して行ってもよい。また、浄化モードにおいて、空気調和システム(1)は、乾燥運転を省略して排気運転を行ってもよい。
(3) Modification of Embodiment 2 (3-1)
In the purification mode, the air conditioning system (1) may perform the exhaust operation concurrently with the drying operation. Further, in the purification mode, the air conditioning system (1) may skip the drying operation and perform the exhaust operation.
 この変形例においても、浄化運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。 Also in this modification, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60). As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 (3-2)
 浄化モードにおいて、空気調和システム(1)は、凍結ステップの終了後で且つ融解ステップの終了前(つまり、浄化運転の実行中)に、排気運転を開始してもよい。
(3-2)
In the purification mode, the air conditioning system (1) may start the exhaust operation after the freezing step and before the thawing step (that is, during the purification operation).
 この変形例においても、浄化運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。 Also in this modification, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60). As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 《実施形態3》
 実施形態3の空気調和システム(1)について説明する。
<<Embodiment 3>>
An air conditioning system (1) of Embodiment 3 will be described.
 本実施形態の空気調和システム(1)は、実施形態1の空気調和システム(1)において、浄化モードを変更したものである。ここでは、本実施形態の空気調和システム(1)が行う浄化モードについて説明する。 The air conditioning system (1) of this embodiment is the air conditioning system (1) of Embodiment 1 with a different purification mode. Here, the purification mode performed by the air conditioning system (1) of the present embodiment will be described.
 (1)浄化モード
 図7に示すように、本実施形態の浄化モードでは、浄化運転と、乾燥運転と、排気運転とが順に行われる。その点は、実施形態1の浄化モードと同じである。本実施形態の浄化モードでは、浄化運転が実施形態1の浄化モードと異なる。本実施形態の浄化モードで行われる乾燥運転および排気運転は、それぞれ実施形態1の浄化モードで行われる乾燥運転および排気運転と同じである。
(1) Purification Mode As shown in FIG. 7, in the purification mode of the present embodiment, purification operation, drying operation, and exhaust operation are performed in order. This point is the same as the purification mode of the first embodiment. In the purification mode of this embodiment, the purification operation differs from that of the first embodiment. The drying operation and exhaust operation performed in the purification mode of this embodiment are the same as the drying operation and exhaust operation performed in the purification mode of the first embodiment, respectively.
 (1-1)浄化運転
 浄化運転では、結露ステップと、加熱ステップとが順に行われる。
(1-1) Purification Operation In the purification operation, a condensation step and a heating step are performed in order.
 結露ステップは、室内熱交換器(34)において空気中の水蒸気を凝縮させる凝縮動作である。結露ステップでは、空気調和システム(1)が冷房運転と同じ運転を行い、室内熱交換器(34)が蒸発器として機能する。室内熱交換器(34)では、室内空気が冷媒によって冷却される。その際には、室内空気に含まれる水蒸気が凝縮して室内熱交換器(34)に付着する。 The condensation step is a condensation operation that condenses water vapor in the air in the indoor heat exchanger (34). In the condensation step, the air conditioning system (1) performs the same operation as cooling operation, and the indoor heat exchanger (34) functions as an evaporator. In the indoor heat exchanger (34), indoor air is cooled by refrigerant. At that time, water vapor contained in the indoor air condenses and adheres to the indoor heat exchanger (34).
 加熱ステップは、室内熱交換器に付着した凝縮水を加熱するために行われる。加熱ステップでは、空気調和システム(1)が暖房運転と同じ動作を行い、室内熱交換器(34)が凝縮器として機能する。室内熱交換器(34)に付着した凝縮水は、冷媒によって加熱される。 The heating step is performed to heat the condensed water adhering to the indoor heat exchanger. In the heating step, the air conditioning system (1) performs the same operation as the heating operation, and the indoor heat exchanger (34) functions as a condenser. The condensed water adhering to the indoor heat exchanger (34) is heated by the refrigerant.
 浄化運転において、空気調和システム(1)は、結露ステップを行って室内熱交換器(34)に凝縮水を付着させ、その後に加熱ステップを行う。加熱ステップでは、室内熱交換器(34)に付着した凝縮水が、比較的高温(例えば、60℃程度)にまで加熱され、凝縮水中に存在する細菌やカビの胞子などが死滅する。その結果、室内熱交換器(34)が清潔な状態になる。 In the purification operation, the air conditioning system (1) performs a dew condensation step to cause condensed water to adhere to the indoor heat exchanger (34), and then performs a heating step. In the heating step, the condensed water adhering to the indoor heat exchanger (34) is heated to a relatively high temperature (for example, about 60° C.) to kill bacteria, mold spores, etc. present in the condensed water. As a result, the indoor heat exchanger (34) becomes clean.
 (2)実施形態3の特徴
 本実施形態の空気調和システム(1)において、制御部(C)は、浄化運転の終了後に、換気装置である加湿ユニット(20)に排気運転を実行させる。従って、本実施形態の空気調和システムによれば、実施形態1の空気調和システムと同様に、浄化運転によって高湿度になった室内熱交換器(34)の周囲の空気を室外に排出することができる。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性を保つことができる。
(2) Features of Embodiment 3 In the air conditioning system (1) of the present embodiment, the control section (C) causes the humidification unit (20), which is a ventilator, to perform the exhaust operation after the purification operation ends. Therefore, according to the air conditioning system of the present embodiment, similarly to the air conditioning system of Embodiment 1, the air around the indoor heat exchanger (34), which has become highly humid due to the purification operation, can be discharged outdoors. can. As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) can be maintained.
 (3)実施形態3の変形例
 (3-1)
 浄化モードにおいて、空気調和システム(1)は、排気運転を、乾燥運転と同時に並行して行ってもよい。また、浄化モードにおいて、空気調和システム(1)は、乾燥運転を省略して排気運転を行ってもよい。
(3) Modification of Embodiment 3 (3-1)
In the purification mode, the air conditioning system (1) may perform the exhaust operation concurrently with the drying operation. Further, in the purification mode, the air conditioning system (1) may skip the drying operation and perform the exhaust operation.
 この変形例においても、浄化運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。 Also in this modification, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60). As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 (3-2)
 浄化モードにおいて、空気調和システム(1)は、結露ステップの終了後で且つ加熱ステップの終了前(つまり、浄化運転の実行中)に、排気運転を開始してもよい。
(3-2)
In the purification mode, the air conditioning system (1) may start the exhaust operation after the dew condensation step and before the heating step (that is, during the purification operation).
 この変形例においても、浄化運転によって高湿度になった室内熱交換器(34)の周辺の空気は、換気装置(20,60)によって室外へ排出される。その結果、室内空間(I)の湿度の上昇が抑えられ、室内空間(I)の快適性が保たれる。 Also in this modification, the air around the indoor heat exchanger (34) that has become highly humid due to the purification operation is discharged to the outside by the ventilator (20, 60). As a result, an increase in humidity in the indoor space (I) is suppressed, and comfort in the indoor space (I) is maintained.
 《その他の実施形態》
 実施形態1~3およびぞれぞれの変形例において、空気調和システム(1)は、排気ユニット(60)を更に備えていてもよい。
<<Other embodiments>>
In Embodiments 1 to 3 and their respective modifications, the air conditioning system (1) may further comprise an exhaust unit (60).
 図8に示すように、排気ユニット(60)は、空調室内機(30)、空調室外機(10)、及び加湿ユニット(20)とは別体に形成される。排気ユニット(60)は、室内空間(I)を形成する部屋の壁(WL)に設置される。排気ユニット(60)は、空調室内機(30)の比較的近くに設置される。排気ユニット(60)と空調室内機(30)の間隔Dは、1.8m以下であるのが望ましい。 As shown in FIG. 8, the exhaust unit (60) is formed separately from the air conditioning indoor unit (30), the air conditioning outdoor unit (10), and the humidification unit (20). The exhaust unit (60) is installed in the wall (WL) of the room forming the interior space (I). The exhaust unit (60) is installed relatively close to the air conditioning indoor unit (30). A distance D between the exhaust unit (60) and the air conditioning indoor unit (30) is preferably 1.8 m or less.
 なお、排気ユニット(60)の設置場所は、単なる一例である。排気ユニット(60)は、例えば天井に設置されていてもよい。また、本実施形態の空気調和システム(1)では、加湿ユニット(20)とホース(2)とが省略されていてもよい。 The installation location of the exhaust unit (60) is merely an example. The exhaust unit (60) may be installed, for example, on the ceiling. Further, in the air conditioning system (1) of the present embodiment, the humidifying unit (20) and the hose (2) may be omitted.
 排気ユニット(60)は、排気ファン(61)と排気ケーシング(62)とを備える。排気ファン(61)は、排気ケーシング(62)に収容される。排気ケーシング(62)には、換気吸込口(63)が形成される。換気吸込口(63)は、室内空間(I)に開口する。換気吸込口(63)は、空調室外機(10)の外部に設けられた室内側開口である。図示しないが、排気ケーシング(62)には、排気ダクトが接続される。排気ケーシング(62)は、排気ダクトを介して室外空間と連通する。排気ファン(61)が作動すると、室内空気は、換気吸込口(63)へ吸い込まれ、排気ダクトを通って室外空間へ排出される。 The exhaust unit (60) includes an exhaust fan (61) and an exhaust casing (62). The exhaust fan (61) is housed in the exhaust casing (62). A ventilation inlet (63) is formed in the exhaust casing (62). The ventilation intake (63) opens into the interior space (I). The ventilation intake (63) is an indoor opening provided outside the air conditioner outdoor unit (10). Although not shown, an exhaust duct is connected to the exhaust casing (62). The exhaust casing (62) communicates with the outdoor space via an exhaust duct. When the exhaust fan (61) operates, indoor air is sucked into the ventilation inlet (63) and discharged to the outdoor space through the exhaust duct.
 本実施形態の空気調和システム(1)の浄化モードでは、加湿ユニット(20)による排気運転に代えて、排気ユニット(60)による排気運転が行われる。この浄化モードの排気運転において、排気ユニット(60)は、乾燥運転において空調室内機(30)から流出した比較的高湿度の空気を、室外空間へ排出する。 In the purification mode of the air conditioning system (1) of the present embodiment, the exhaust operation is performed by the exhaust unit (60) instead of the exhaust operation by the humidification unit (20). In the exhaust operation in the purification mode, the exhaust unit (60) discharges to the outdoor space relatively high-humidity air that has flowed out of the air conditioning indoor unit (30) in the dry operation.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。また、明細書および特許請求の範囲の「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the embodiments and modifications described above may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired. In addition, the descriptions of "first", "second", "third", etc. in the specification and claims are used to distinguish words and phrases to which these descriptions are given, and the words and phrases Neither the number nor the order is limited.
 以上説明したように、本開示は、空気調和システムについて有用である。 As described above, the present disclosure is useful for air conditioning systems.
  1  空気調和システム
 10  空調室外機(室外機)
 20  加湿ユニット(換気装置)
 29  室内側開口
 30  空調室内機(室内機)
 34  室内熱交換器
 60  排気ユニット(換気装置)
 63  換気吸込口(室内側開口)
  C  制御部
1 Air conditioning system 10 Air conditioning outdoor unit (outdoor unit)
20 Humidification unit (ventilator)
29 Indoor opening 30 Air conditioning indoor unit (indoor unit)
34 Indoor heat exchanger 60 Exhaust unit (ventilator)
63 Ventilation intake (indoor side opening)
C control section

Claims (6)

  1.  室外機(10)と、
     室内空気を冷媒と熱交換させる室内熱交換器(34)を有する室内機(30)と、
     上記室内機(30)が設置された室内空間を換気する換気装置(20,60)とを備えた空気調和システム(1)であって、
     上記換気装置(20,60)は、上記室内機(30)の内部の空気、または上記室内機(30)から流出した空気を吸い込んで室外へ排出する排気運転を実行可能であり、
     上記室内機(30)は、上記室内熱交換器(34)において凝縮した水を利用して上記室内熱交換器(34)を浄化する浄化運転を実行可能であり、
     上記浄化運転の実行中または終了後に、上記換気装置(20,60)に上記排気運転を実行させる制御部(C)を備える
    空気調和システム。
    an outdoor unit (10);
    an indoor unit (30) having an indoor heat exchanger (34) for heat-exchanging indoor air with a refrigerant;
    An air conditioning system (1) comprising a ventilator (20, 60) for ventilating an indoor space in which the indoor unit (30) is installed,
    The ventilator (20, 60) is capable of performing an exhaust operation in which the air inside the indoor unit (30) or the air flowing out from the indoor unit (30) is sucked in and discharged to the outside,
    The indoor unit (30) is capable of executing a purification operation for purifying the indoor heat exchanger (34) using water condensed in the indoor heat exchanger (34),
    An air conditioning system comprising a control section (C) for causing the ventilator (20, 60) to perform the exhaust operation during or after the purification operation.
  2.  請求項1に記載の空気調和システム(1)において、
     上記制御部(C)は、上記浄化運転の終了後に、上記換気装置(20,60)に上記排気運転を実行させる
    空気調和システム。
    In the air conditioning system (1) according to claim 1,
    The air conditioning system, wherein the control unit (C) causes the ventilator (20, 60) to perform the exhaust operation after the purification operation is finished.
  3.  請求項1に記載の空気調和システム(1)において、
     上記室内機(30)の上記浄化運転は、上記室内熱交換器(34)において空気中の水蒸気を凝縮させる凝縮動作を含み、
     上記制御部(C)は、上記凝縮動作の終了後に、上記換気装置(20,60)に上記排気運転を実行させる
    空気調和システム。
    In the air conditioning system (1) according to claim 1,
    The purification operation of the indoor unit (30) includes a condensation operation of condensing water vapor in the air in the indoor heat exchanger (34),
    The air conditioning system, wherein the controller (C) causes the ventilator (20, 60) to perform the exhaust operation after the condensing operation is completed.
  4.  請求項1に記載の空気調和システム(1)において、
     上記室内機(30)は、上記浄化運転の終了後に上記室内熱交換器(34)を乾燥させる乾燥運転を実行可能であり、
     上記制御部(C)は、上記乾燥運転の実行中または終了後に、上記換気装置(20,60)に上記排気運転を実行させる
    空気調和システム。
    In the air conditioning system (1) according to claim 1,
    The indoor unit (30) is capable of executing a drying operation for drying the indoor heat exchanger (34) after the purification operation is finished,
    The control unit (C) controls the ventilator (20, 60) to perform the exhaust operation during or after the drying operation.
  5.  請求項1~4のいずれか一つに記載の空気調和システム(1)において、
     上記室内機(30)は、該室内機(30)の内部に設けられて上記換気装置(20,60)に接続される室内側開口(29)を有し、
     上記換気装置(20,60)は、上記排気運転において上記室内機(30)の内部の空気を上記室内側開口(29)から吸い込んで室外へ排出する
    空気調和システム。
    In the air conditioning system (1) according to any one of claims 1 to 4,
    The indoor unit (30) has an indoor opening (29) provided inside the indoor unit (30) and connected to the ventilator (20, 60),
    The ventilator (20, 60) is an air conditioning system that sucks air inside the indoor unit (30) through the indoor opening (29) and discharges it to the outside in the exhaust operation.
  6.  請求項1~4のいずれか一つに記載の空気調和システム(1)において、
     上記換気装置(20,60)は、上記室内機(30)の外部に設けられた室内側開口(63)を有し、上記排気運転において上記室内機(30)から流出した空気を上記室内側開口(63)から吸い込んで室外へ排出する
    空気調和システム。
    In the air conditioning system (1) according to any one of claims 1 to 4,
    The ventilator (20, 60) has an indoor-side opening (63) provided outside the indoor unit (30), and ventilates the air flowing out of the indoor unit (30) in the exhaust operation to the indoor-side opening (63). An air conditioning system that draws in air through an opening (63) and discharges it to the outside.
PCT/JP2022/031537 2021-08-31 2022-08-22 Air conditioning system WO2023032731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280057019.2A CN117836570A (en) 2021-08-31 2022-08-22 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141580A JP2023035012A (en) 2021-08-31 2021-08-31 Air-conditioning system
JP2021-141580 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032731A1 true WO2023032731A1 (en) 2023-03-09

Family

ID=85412538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031537 WO2023032731A1 (en) 2021-08-31 2022-08-22 Air conditioning system

Country Status (3)

Country Link
JP (2) JP2023035012A (en)
CN (1) CN117836570A (en)
WO (1) WO2023032731A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888757A (en) * 1972-02-26 1973-11-20
JP2007315712A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioning system and building
JP2021038869A (en) * 2019-09-02 2021-03-11 ダイキン工業株式会社 Air conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289463A (en) * 2000-04-05 2001-10-19 Hitachi Ltd Air conditioner provided with gas exhausting function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888757A (en) * 1972-02-26 1973-11-20
JP2007315712A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioning system and building
JP2021038869A (en) * 2019-09-02 2021-03-11 ダイキン工業株式会社 Air conditioning system

Also Published As

Publication number Publication date
CN117836570A (en) 2024-04-05
JP2023126731A (en) 2023-09-08
JP2023035012A (en) 2023-03-13

Similar Documents

Publication Publication Date Title
WO2023032738A1 (en) Air-conditioning device
WO2023032731A1 (en) Air conditioning system
JP5082775B2 (en) Ventilation equipment
WO2023032397A1 (en) Air conditioner
JP7332927B2 (en) ventilator
JP2022041712A (en) Air conditioner
JP7208562B1 (en) air conditioner
WO2023085166A1 (en) Air-conditioning device
JP7182026B1 (en) humidifier
WO2023032341A1 (en) Humidifier
JP2023035192A (en) Air-conditioner
WO2024101430A1 (en) Air treatment device
WO2022030145A1 (en) Air conditioning indoor unit
JP2023065165A (en) Ventilation device
JP2022028550A (en) Information notification system
JP2024068878A (en) Air Conditioning Equipment
JP2022028549A (en) Information notification system
JP2023070421A (en) air conditioner
JP2024068764A (en) Air Conditioning Equipment
JP2023150491A (en) air conditioner
JP2024068992A (en) Air Conditioning System
JP2010121792A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057019.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE