WO2024101430A1 - Air treatment device - Google Patents

Air treatment device Download PDF

Info

Publication number
WO2024101430A1
WO2024101430A1 PCT/JP2023/040441 JP2023040441W WO2024101430A1 WO 2024101430 A1 WO2024101430 A1 WO 2024101430A1 JP 2023040441 W JP2023040441 W JP 2023040441W WO 2024101430 A1 WO2024101430 A1 WO 2024101430A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
treatment device
room
control unit
indoor
Prior art date
Application number
PCT/JP2023/040441
Other languages
French (fr)
Japanese (ja)
Inventor
敏行 前田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024101430A1 publication Critical patent/WO2024101430A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/62Tobacco smoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone

Definitions

  • This disclosure relates to air treatment devices.
  • Patent Document 1 discloses a ventilation device.
  • the ventilation device includes a receiving means for receiving air pollution prediction-related information, a determining means for determining whether or not to introduce outside air based on the air pollution prediction-related information, and a control means for controlling the introduction of outside air (air supply operation) according to the determination result of the determining means.
  • the ventilation device ventilates the air in a room by performing air supply operation.
  • Patent Document 1 if the outdoor environment deteriorates and the determination means determines that the outdoor air is polluted, the air supply operation is not performed and the room cannot be ventilated. As a result, even if the indoor air environment deteriorates, the room is not ventilated, which may make it difficult to achieve a comfortable indoor air environment.
  • the objective of this disclosure is to provide an air treatment device that can create a comfortable indoor air environment.
  • the air treatment device of the first embodiment ventilates the room (I).
  • the air treatment device includes a control unit (C) that controls the operation of the air treatment device, and the control unit (C) causes the air treatment device to perform either an exhaust operation in which air from the room (I) is sent to the outside, or an air supply operation in which outdoor air is sent to the room (I) based on the indoor or outdoor environment.
  • ventilation can be performed by taking advantage of the characteristics of supply ventilation and exhaust ventilation, and a comfortable environment can be achieved in the room (I).
  • control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on the component values in the air inside the room (I) or the component values in the air outside the room, and the component values indicate the amount of a specified gas component in the air, the concentration of a specified gas component in the air, or the amount of particles in the air.
  • control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on the humidity in the room (I) or the humidity outside the room.
  • the humidity in the room (I) it is possible to prevent the humidity in the room (I) from becoming too high or too low, which is uncomfortable for the user.
  • control unit (C) causes the air treatment device to perform either the exhaust operation or the supply operation based on information indicating the component values in the room (I) acquired over time.
  • control unit (C) causes the air treatment device to perform the exhaust operation when the rate of change in the component value in the room (I) relative to the change in time is greater than a predetermined rate.
  • the room (I) can be properly ventilated.
  • control unit (C) acquires a first sensor signal indicating the component value in the room (I), and when a high-frequency component having a predetermined frequency or higher among frequency components contained in a waveform representing the first sensor signal is equal to or higher than a predetermined ratio, causes the air treatment device to perform the exhaust operation.
  • the seventh aspect is the second or fourth aspect, further comprising a storage unit that stores a first prediction model for outputting a predicted value of a first distance between a source of the specified gas component and the indoor unit (30) of the air treatment device, and the control unit (C) outputs a predicted value of the first distance using the first prediction model, and causes the air treatment device to perform the exhaust operation when the predicted value of the first distance becomes smaller than a first specified distance.
  • the eighth aspect is the second or fourth aspect, in which the control unit (C) causes the air treatment device to perform the exhaust operation when the level of the component value in the room (I) is equal to or higher than a predetermined level, and causes the air treatment device to perform the supply operation when the level of the component value in the room (I) is lower than the predetermined level.
  • outside air can be introduced into the room (I) while preventing the room (I) from becoming filled with a specified gas component or particles.
  • the air treatment device includes an indoor heat exchanger (34) provided in an indoor unit (30) of the air treatment device, and when the air treatment device receives a stop instruction while moisture is adhering to the indoor heat exchanger (34), the control unit (C) causes the air treatment device to perform the exhaust operation.
  • the moisture adhering to the indoor heat exchanger (34) is discharged to the outside through the exhaust operation, thereby preventing an increase in humidity in the room (I).
  • the tenth aspect is the ninth aspect, in which the air treatment device receives a stop command when moisture is attached to the indoor heat exchanger (34), including the case where the air treatment device is performing cooling operation and receives a stop command.
  • the cooling operation when the cooling operation is resumed, the cooling operation can be started in a state in which adhesion of moisture to the indoor heat exchanger (34) is suppressed, so that an increase in humidity in the room (I) can be suppressed.
  • the eleventh aspect is the ninth aspect, and includes a case where the air treatment device receives a stop command when moisture is attached to the indoor heat exchanger (34), the air treatment device performing cooling operation receives a stop command, and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I).
  • the increase in humidity can be suppressed.
  • control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on information indicating the humidity in the room (I) acquired over time.
  • the control unit (C) causes the air treatment device to perform the exhaust operation, and the specified conditions include a condition in which the rate of change in humidity in the room (I) over time is greater than a specified rate.
  • the humidity in the room (I) can be appropriately adjusted.
  • the control unit (C) causes the air treatment device to perform the exhaust operation, and the control unit (C) acquires a second sensor signal indicating the humidity in the room (I), and the specified conditions include a condition in which high-frequency components of a specified frequency or higher among frequency components contained in a waveform representing the second sensor signal are equal to or higher than a specified rate.
  • the fifteenth aspect is the third or twelfth aspect, further comprising a storage unit that stores a second prediction model for outputting a predicted value of a second distance between a source that generates the change in humidity and the indoor unit (30) of the air treatment device, and the control unit (C) outputs a predicted value of the second distance between the source and the indoor unit (30) using the second prediction model, and causes the air treatment device to perform the exhaust operation when the predicted value of the second distance becomes smaller than a second predetermined distance.
  • the sixteenth aspect is the third or twelfth aspect, in which the control unit (C) causes the air treatment device to perform the exhaust operation when the average deviation of the humidity in the room (I) within a specified time from a comfort zone of a specified humidity is equal to or greater than a specified amount, and causes the air treatment device to perform the supply operation when the deviation is smaller than the specified amount.
  • the air treatment device includes an indoor heat exchanger (34) provided in an indoor unit (30) of the air treatment device, and the indoor unit (30) is provided with a passage that guides air sent from the outside to the indoor unit (30) during the air supply operation to the suction side of the indoor heat exchanger (34), and the control unit (C) causes the air treatment device to perform the air supply operation when the humidity outside the room is higher than the humidity inside the room (I).
  • the outdoor air sent to the indoor unit (30) is immediately dehumidified by the indoor heat exchanger (34), so that the outdoor air can be dehumidified more effectively than if the outdoor air was mixed with the air in the room (I) and diluted before being dehumidified by the indoor heat exchanger (34).
  • the eighteenth aspect is any one of the first to seventeenth aspects, in which the control unit (C) causes the air treatment device to perform the exhaust operation when the air treatment device is started.
  • the generation of unpleasant odors in the room (I) when the air treatment device is started can be suppressed.
  • the 19th aspect is any one of the 1st to 18th aspects, in which the air treatment device includes a fan (13) that sends outdoor air into the room (I), and the control unit (C) stops the rotation of the fan (13) when the air treatment device is started.
  • the twentieth aspect is any one of the first to nineteenth aspects, in which the air treatment device includes an air deflector (37) that determines the direction in which air is sent inside the room (I), and the control unit (C) closes the air deflector (37) when the air treatment device is started.
  • the air treatment device includes an air deflector (37) that determines the direction in which air is sent inside the room (I), and the control unit (C) closes the air deflector (37) when the air treatment device is started.
  • the 21st aspect is the second or fourth aspect, in which, during the air supply operation, if the component value in the room (I) increases over time and the degree of the increase exceeds a predetermined degree, the control unit (C) causes the air treatment device to perform the exhaust operation.
  • FIG. 1 is a schematic overall configuration diagram of an air conditioning apparatus according to an embodiment.
  • FIG. 2 is a configuration diagram showing refrigerant piping and air flow in the air conditioner.
  • FIG. 3 is a vertical cross-sectional view of the air conditioning indoor unit.
  • FIG. 4 is a block diagram including the main elements of the air conditioning device.
  • FIG. 5 is a diagram showing the state of the second switching damper and the air flow inside the damper casing during air supply operation.
  • FIG. 6 is a diagram showing the state of the second switching damper and the air flow inside the damper casing during exhaust operation.
  • FIG. 7 is a flow diagram showing a first example of the operation of the air conditioning apparatus.
  • FIG. 8 is a flow diagram showing a second example of the operation of the air conditioning apparatus.
  • FIG. 1 is a schematic overall configuration diagram of an air conditioning apparatus according to an embodiment.
  • FIG. 2 is a configuration diagram showing refrigerant piping and air flow in the air conditioner.
  • FIG. 3 is a
  • FIG. 9 is a flow diagram showing a third example of the operation of the air conditioning apparatus.
  • FIG. 10 is a flow diagram showing a fourth example of the operation of the air conditioning apparatus.
  • FIG. 11 is a flow diagram showing a fifth example of the operation of the air conditioning apparatus.
  • FIG. 12 is a flow diagram showing a sixth example of the operation of the air conditioning apparatus.
  • FIG. 13 is a flow diagram showing a seventh example of the operation of the air conditioning apparatus.
  • FIG. 14 is a flow diagram showing an eighth example of the operation of the air conditioning apparatus.
  • FIG. 15 is a flow diagram showing a ninth example of the operation of the air conditioning apparatus.
  • FIG. 16 is a configuration diagram showing refrigerant piping and air flows in a modified example of the air conditioner.
  • the air conditioner (1) is an example of an air treatment device.
  • the air treatment device may have a function and configuration capable of performing at least exhaust operation and ventilation operation among cooling operation, heating operation, supply operation, exhaust operation, dehumidification operation, humidification operation, dehumidification cooling operation, and humidification heating operation.
  • the air conditioner (1) adjusts the temperature and humidity of air in a room (I).
  • the air conditioner (1) has an air conditioner outdoor unit (10) and an air conditioner indoor unit (30).
  • the air conditioner outdoor unit (10) is installed outdoors, and the air conditioner indoor unit (30) is installed indoors (I).
  • the air conditioner (1) is a pair type having one air conditioner indoor unit (30) and one air conditioner outdoor unit (10).
  • the air conditioner (1) has a humidity control unit (20) that is a humidity control element.
  • the air conditioner (1) has a function of humidifying and dehumidifying air.
  • the air conditioner (1) further has a function of ventilating the room (I).
  • the air conditioner (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4).
  • the air conditioner indoor unit (30) and the humidity control unit (20) are connected to each other via the hose (2).
  • the air conditioner indoor unit (30) and the air conditioner outdoor unit (10) are connected to each other via the liquid connection pipe (3) and the gas connection pipe (4).
  • the refrigerant circuit (R) is filled with a refrigerant.
  • the refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane.
  • the refrigerant circuit (R) performs a vapor compression refrigeration cycle.
  • the refrigerant circuit (R) mainly includes a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34).
  • the refrigerant circuit (R) performs a first refrigeration cycle or a second refrigeration cycle depending on the switching of the four-way switching valve (16).
  • the first refrigeration cycle is a refrigeration cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator.
  • the second refrigeration cycle is a refrigeration cycle in which the indoor heat exchanger (34) functions as a radiator and the outdoor heat exchanger (14) functions as an evaporator.
  • the air conditioning outdoor unit (10) has an outdoor casing (11), a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
  • a partition plate (18) is provided inside the outdoor casing (11).
  • the partition plate (18) divides the interior of the outdoor casing (11) into a first space (S1) and a second space (S2).
  • the first space (S1) is provided with a compressor (12) and an outdoor heat exchanger (14). Strictly speaking, the first space (S1) is provided with the compressor (12), the outdoor fan (13), the outdoor heat exchanger (14), the expansion valve (15), and the four-way switching valve (16).
  • the outdoor casing (11) is formed with an outdoor suction port (11a), an outdoor outlet port (11b), a moisture absorption side suction port (61a), and a moisture absorption side exhaust port (61b).
  • the outdoor suction port (11a) is formed on the rear side of the outdoor casing (11).
  • the outdoor suction port (11a) is an opening for drawing in outdoor air (air from outside the room).
  • the outdoor outlet (11b) is formed on the front side of the outdoor casing (11).
  • the outdoor outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14).
  • Inside the outdoor casing (11), an outdoor air passage (11c) is formed from the outdoor suction port (11a) to the outdoor outlet (11b).
  • the compressor (12) sucks in and compresses low-pressure gas refrigerant.
  • the compressor (12) is driven by a first motor (M1).
  • the compressor (12) is a variable displacement compressor in which power is supplied to the first motor (M1) from an inverter circuit.
  • the compressor (12) is configured so that its operating capacity can be changed by adjusting the operating frequency (rotation speed) of the first motor (M1).
  • the compressor (12) is a so-called high-pressure dome type compressor in which the inside is filled with high-pressure refrigerant. When the compressor (12) is operating, heat generated by the compressor (12) is released to the surroundings.
  • the outdoor fan (13) is disposed in the outdoor air passage (11c).
  • the outdoor fan (13) is rotated by being driven by the second motor (M2). Air transported by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passage (11c) and is blown out of the outdoor casing (11) through the outdoor outlet port (11b).
  • the outdoor fan (13) transports the outdoor air so that it passes through the outdoor heat exchanger (14).
  • the outdoor heat exchanger (14) is disposed upstream of the outdoor fan (13) in the outdoor air passage (11c).
  • the outdoor heat exchanger (14) is a fin-and-tube type heat exchanger.
  • the outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air transported by the outdoor fan (13).
  • the expansion valve (15) reduces the pressure of the refrigerant.
  • the expansion valve (15) is an electrically operated expansion valve whose opening is adjustable.
  • the pressure reducing mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like.
  • the expansion valve (15) only needs to be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
  • the four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3), and a fourth port (P4).
  • the first port (P1) is connected to the discharge portion of the compressor (12).
  • the second port (P2) is connected to the suction portion of the compressor (12).
  • the third port (P3) is connected to the gas end of the outdoor heat exchanger (14).
  • the fourth port (P4) is connected to the gas connection pipe (4).
  • the four-way switching valve (16) can be switched between a first state (indicated by a solid line in FIG. 2) and a second state (indicated by a dashed line in FIG. 2).
  • first state the four-way switching valve (16) connects the first port (P1) to the third port (P3) and also connects the second port (P2) to the fourth port (P4).
  • second state the four-way switching valve (16) connects the first port (P1) to the fourth port (P4) and also connects the second port (P2) to the third port (P3).
  • the humidity control unit (20) is installed outdoors.
  • the humidity control unit (20) is integrated with the air conditioner outdoor unit (10).
  • the humidity control unit (20) sends humidity-controlled air to the air conditioner indoor unit (30).
  • the humidity control unit (20) has an outdoor casing (11), a humidity control rotor (22), a first fan (26), a second fan (23), a heater (25), a first switching damper (24), and a second switching damper (29) (see FIG. 5).
  • the outdoor casing (11) is shared by the air conditioner outdoor unit (10) and the humidity control unit (20).
  • the second space (S2) described above is defined inside the outdoor casing (11).
  • the second space (S2) is provided with a humidity control rotor (22) and a heater (25).
  • the second space (S2) is provided with the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), the first switching damper (24), and the second switching damper (29).
  • the outdoor casing (11) is formed with an intake and exhaust port (21a), a connection port (21b), and an outdoor exhaust port (21c).
  • the intake and exhaust port (21a) is an opening through which outdoor air and room air flow.
  • a first passage (27) is formed, which continues from the intake and exhaust port (21a) to the connection port (21b).
  • a third passage (62) is formed inside the outdoor casing (11) and extends from the moisture absorption side inlet (61a) to the moisture absorption side exhaust port (61b).
  • a hose (2) is connected to the connection port (21b).
  • the second passage (28) is connected to the first passage (27).
  • the second passage (28) continues from the middle of the first passage (27) to the outdoor exhaust port (21c).
  • the inlet end of the second passage (28) is connected to the downstream side of the humidity control rotor (22) in the first passage (27) (more precisely, the downstream side of the first fan (26)).
  • the downstream is downstream of the direction in which air flows during air supply operation (the direction indicated by the solid arrow in FIG. 2)
  • the upstream is upstream of the direction in which air flows during air supply operation.
  • the humidity control rotor (22) is passed through by the air flowing through the first passage (27).
  • the humidity control rotor (22) is an adsorbent member that adsorbs moisture in the air.
  • the humidity control rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
  • the humidity control rotor (22) holds an adsorbent made of a polymeric material having hygroscopic properties. This polymeric material having hygroscopic properties is a type of so-called sorption agent.
  • adsorbent made of a polymeric material having hygroscopic properties
  • both a phenomenon occurs in which water vapor in the air is adsorbed on the surface of the adsorbent, and a phenomenon in which water vapor is absorbed inside the adsorbent.
  • the adsorbent held by the humidity control rotor (22) may be an inorganic material such as silica gel, zeolite, or alumina.
  • the adsorbent has the property of adsorbing moisture in the air.
  • the moisture absorbent has the property of desorbing the adsorbed moisture when heated.
  • the humidity control rotor (22) is rotated by being driven by the third motor (M3).
  • the humidity control rotor (22) has a humidity control area (22A) located in the first passage (27). In the humidity control area (22A), a regeneration operation is performed in which moisture adsorbed in the adsorbent is released into the air, and an adsorption operation is performed in which moisture in the air is adsorbed into the adsorbent.
  • the first fan (26) is disposed downstream of the humidity control area (22A) in the first passage (27).
  • the first fan (26) transports outdoor air so that it passes through the humidity control area (22A) of the humidity control rotor (22).
  • the first fan (26) is rotated by being driven by the fourth motor (M4).
  • the first fan (26) is configured so that the air volume can be switched between multiple levels by adjusting the rotation speed of the fourth motor (M4).
  • the heater (25) is disposed upstream of the humidity control region (22A) in the first passage (27).
  • the heater (25) heats the air flowing through the first passage (27).
  • the heater (25) is configured to have variable output. The temperature of the air passing through the heater (25) changes depending on the output of the heater (25).
  • the second fan (23) is disposed in the third passage (62).
  • the second fan (23) is rotated by being driven by the sixth motor (M6).
  • the second fan (23) transports outdoor air by passing through the third passage (62).
  • the outdoor air transported by the second fan (23) is sent into the third passage (62) through the moisture absorption side inlet (61a) and is discharged to the outside through the moisture absorption side exhaust port (61b).
  • the adsorption region (22C) of the humidity control rotor (22) and the second fan (23) are disposed in this order from the upstream side to the downstream side of the air flow.
  • the first switching damper (24) is provided at the connection portion of the first passage (27) with the second passage (28).
  • the passage switching mechanism may be constituted by a passage switching valve, a shutter, or the like.
  • the first switching damper (24) switches between a third state (a state shown by a solid line in FIG. 2) and a fourth state (a state shown by a dashed line in FIG. 2).
  • the first switching damper (24) connects the first passage (27) with the inside of the hose (2) and blocks the first passage (27) from the second passage (28).
  • the first switching damper (24) connects the first passage (27) with the inside of the hose (2) and connects the first passage (27) with the second passage (28).
  • the state of the first switching damper (24) is switched by driving a power source such as a motor.
  • the second switching damper (29) is disposed in the first passage (27). As shown in FIG. 5 and FIG. 6, the second switching damper (29) is disposed in a damper casing (29A). In the damper casing (29A), there are provided a space (S31) inside the second switching damper (29), a space (S32) in which the second switching damper (29) is disposed, and a space (S33). The second switching damper (29) is disposed so as to be slidable in the space (S32).
  • the damper casing (29A) is provided with a first inlet (29a) and a second inlet (29b) that communicate the space (S32) with the outside of the damper casing (29A).
  • the first inlet (29a) communicates with the intake/exhaust port (21a) through the first passage (27).
  • the second port (29b) communicates with the connection port (21b) for the hose (2) in the outdoor casing (11) through the first passage (27).
  • the second port (29b) communicates with the outdoor exhaust port (21c) through the first passage (27) and the second passage (28).
  • the damper casing (29A) is provided with a first communication port (29c) and a second communication port (29d) that communicate the space (S32) with the space (S33).
  • the second switching damper (29) is switched between the fifth state and the sixth state by sliding in the space (S32). As shown in FIG.
  • the second switching damper (29) in the fifth state has an inlet for sucking air as the first port (29a) and an outlet for discharging air as the second port (29b).
  • the second switching damper (29) in the sixth state has the second inlet (29b) as the inlet for sucking in air and the first inlet (29a) as the outlet for discharging air.
  • the state of the second switching damper (29) is switched by driving a power source such as a motor.
  • the air conditioning indoor unit (30) is installed in the room (I).
  • the air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of a room that forms the room (I).
  • the air conditioning indoor unit (30) has an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and an air direction adjustment unit (36).
  • the indoor casing (31) houses the indoor fan (32), the air filter (33), the indoor heat exchanger (34), and the drain pan (35).
  • the indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet port (31b).
  • the indoor suction port (31a) is disposed on the upper side of the indoor casing (31).
  • the indoor suction port (31a) is an opening for drawing in indoor air.
  • the indoor outlet port (31b) is disposed on the lower side of the indoor casing (31).
  • the indoor outlet port (31b) is an opening for blowing out air after heat exchange or air for humidity control.
  • An indoor air passage (31c) continuing from the indoor suction port (31a) to the indoor outlet port (31b) is provided inside the indoor casing (31).
  • the indoor fan (32) is disposed approximately in the center of the indoor air passage (31c).
  • the indoor fan (32) is, for example, a cross-flow fan.
  • the indoor fan (32) is rotated by driving the fifth motor (M5).
  • the indoor fan (32) takes in air from the room (I) into the indoor air passage (31c) and transports it.
  • the air transported by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passage (31c) and is blown out of the indoor casing (31) through the indoor outlet port (31b).
  • the indoor fan (32) transports air in the room (I) so that the air passes through the indoor heat exchanger (34).
  • the air blown out from the indoor air outlet (31b) is supplied to the room (I).
  • the indoor fan (32) is configured so that the air volume can be switched between multiple levels by adjusting the rotation speed of the fifth motor (M5).
  • the air filter (33) is disposed in the indoor air passage (31c) upstream of the indoor heat exchanger (34).
  • the air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through the air filter (33).
  • the air filter (33) collects dust in the air sucked in from the indoor suction port (31a).
  • the indoor heat exchanger (34) is disposed upstream of the indoor fan (32) in the indoor air passage (31c).
  • the indoor heat exchanger (34) is a fin-and-tube type heat exchanger.
  • the indoor heat exchanger (34) exchanges heat between the refrigerant therein and the air in the room (I) transported by the indoor fan (32).
  • the drain pan (35) is disposed on the front and rear lower sides of the indoor heat exchanger (34).
  • the drain pan (35) receives condensation water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensation water generated on the surfaces of the fins of the indoor heat exchanger (34) flows down the surfaces due to its own weight and is received in the drain pan (35).
  • the airflow direction adjustment section (36) adjusts the direction of the air blown out from the indoor air outlet (31b).
  • the airflow direction adjustment section (36) has a flap (37).
  • the flap (37) is formed in a long plate shape extending along the longitudinal direction of the indoor air outlet (31b).
  • the flap (37) rotates when driven by a motor.
  • the flap (37) opens and closes the indoor air outlet (31b) as it rotates.
  • the flap (37) is configured so that the inclination angle can be changed in stages.
  • the positions to which the flap (37) in this example can be adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the substantially horizontal blowing position shown in FIG. 3.
  • the flap (37) in the closed position substantially closes the indoor air outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor air outlet (31b).
  • the air conditioning indoor unit (30) is connected to the humidity control unit (20) via the hose (2).
  • the end of the hose (2) connected to the air conditioning indoor unit (30) communicates with the indoor heat exchanger (34) upstream in the indoor air passage (31c).
  • Air sent from the humidity control unit (20) to the air conditioning indoor unit (30) is supplied to the indoor air passage (31c) upstream of the indoor heat exchanger (34) through the hose (2). Air sent from the air conditioning indoor unit (30) to the humidity control unit (20) flows into the hose (2) from the upstream of the indoor heat exchanger (34) in the indoor air passage (31c).
  • the air conditioner (1) includes a remote controller (40).
  • the remote controller (40) is disposed in a position in the room (I) where the user can operate it.
  • the remote controller (40) has a display unit (41) and an input unit (42).
  • the display unit (41) displays predetermined information.
  • the display unit (41) is configured, for example, by a liquid crystal monitor.
  • the predetermined information is information indicating the operating state and set temperature of the air conditioner (1).
  • the input unit (42) accepts input operations for making various settings from the user.
  • the input unit (42) is configured, for example, by a plurality of physical switches. The user can set the operating mode, target temperature, target humidity, and the like of the air conditioner (1) by operating the input unit (42) of the remote controller (40).
  • the air conditioner (1) has a plurality of sensors.
  • the plurality of sensors includes a sensor for the refrigerant and a sensor for the air.
  • the refrigerant sensors include a sensor for detecting the temperature and pressure of a high-pressure refrigerant and a sensor for detecting the temperature and pressure of a low-pressure refrigerant (not shown).
  • the air sensors include an outdoor air temperature sensor (51), an outdoor air humidity sensor (52), an indoor air temperature sensor (53), an indoor air humidity sensor (54), and a humidity sensor (55).
  • the outdoor air temperature sensor (51) is provided in the air conditioner outdoor unit (10).
  • the outdoor air temperature sensor (51) detects the temperature of outdoor air.
  • the outdoor air humidity sensor (52) in this example is provided in the third passage (62) and is located upstream of the humidity control rotor (22) (e.g., around the moisture absorption side inlet (61a)).
  • the outdoor air humidity sensor (52) like the outdoor air temperature sensor (51), may be provided around the outdoor inlet (11a) of the outdoor casing (11).
  • the outdoor air humidity sensor (52) detects the humidity of outdoor air.
  • the outdoor air humidity sensor (52) in this example detects the relative humidity of outdoor air, but may also detect absolute humidity.
  • the indoor air temperature sensor (53) and the indoor air humidity sensor (54) are provided in the air conditioner indoor unit (30).
  • the indoor air temperature sensor (53) detects the temperature of the indoor air.
  • the indoor air humidity sensor (54) detects the humidity of the indoor air.
  • the indoor air humidity sensor (54) detects the relative humidity of the indoor air, but may detect the absolute humidity.
  • the humidity sensor (55) in this example is provided in the first passage (27). This humidity sensor (55) is located between the second inlet/outlet (29b) of the second switching damper (29) and the connection port (21b) of the outdoor casing (11).
  • the humidity sensor (55) detects the humidity of the air flowing through the first passage (27).
  • the humidity sensor (55) in this example detects the relative humidity of the air, but may detect the absolute humidity.
  • the air conditioner (1) has a control unit (C).
  • the control unit (C) controls the operation of the refrigerant circuit (R).
  • the control unit (C) controls the operation of the air conditioning outdoor unit (10), the humidity control unit (20), and the air conditioning indoor unit (30).
  • the control unit (C) includes an outdoor control unit (OC), an indoor control unit (IC), and a remote controller (40).
  • the outdoor control unit (OC) is provided in the air conditioning outdoor unit (10).
  • the indoor control unit (IC) is provided in the air conditioning indoor unit (30).
  • Each of the indoor control unit (IC) and the outdoor control unit (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
  • the MCU includes a CPU (Central Processing Unit), a memory, and a communication interface.
  • the memory stores various programs to be executed by the CPU.
  • the outdoor control unit (OC) receives the detection values of the outdoor air temperature sensor (51), the outdoor air humidity sensor (52), and the humidity sensor (55).
  • the outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15), and four-way switching valve (16).
  • the outdoor control unit (OC) outputs control signals for starting and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), outdoor fan (13), expansion valve (15), and four-way switching valve (16).
  • the outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the opening of the expansion valve (15).
  • the outdoor control unit (OC) is further connected to the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), and the first switching damper (24).
  • the outdoor control unit (OC) outputs control signals for starting and stopping the operation of the humidity control unit (20) to the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), and the first switching damper (24).
  • the outdoor control unit (OC) controls the rotation speeds of the third motor (M3) of the humidity control rotor (22), the fourth motor (M4) of the first fan (26), and the sixth motor (M6) of the second fan (23), the operation of the humidity control rotor (22) and the first switching damper (24), and the output of the heater (25).
  • the indoor control unit (IC) receives the detection values of the indoor air temperature sensor (53) and the indoor air humidity sensor (54).
  • the indoor control unit (IC) is connected to the remote controller (40) so as to be able to communicate with it.
  • the indoor control unit (IC) is connected to the indoor fan (32).
  • the indoor control unit (IC) outputs a control signal to the indoor fan (32) for starting and stopping the operation of the air conditioning indoor unit (30).
  • the indoor control unit (IC) controls the rotation speed of the fifth motor (M5) of the indoor fan (32).
  • the indoor control unit (IC) is connected to the outdoor control unit (OC) so as to be able to communicate with it.
  • the remote controller (40) is connected to the indoor control unit (IC) so as to be able to communicate with it.
  • the remote controller (40) transmits an instruction signal to the indoor control unit (IC) instructing the operation of the air conditioner (1) in response to a user's operation on the input unit (42).
  • the indoor control unit (IC) receives an instruction signal from the remote controller (40)
  • the indoor control unit (IC) controls the operation of the above-mentioned devices of the air conditioning indoor unit (30) in accordance with the instruction signal.
  • the outdoor control unit (OC) receives an instruction signal from the indoor control unit (IC), it controls the operation of the above-mentioned devices of the air conditioning outdoor unit (10) and the humidity control unit (20).
  • the operational modes performed by the air conditioner (1) include cooling operation, heating operation, supply air operation, exhaust operation, dehumidification operation, humidification operation, dehumidification-cooling operation, and humidification-heating operation.
  • the control unit (C) causes these operations to be performed based on instruction signals from the remote controller (40).
  • Cooling operation is an operation in which the air in the room (I) is cooled by the indoor heat exchanger (34) functioning as an evaporator.
  • the humidity control unit (20) is stopped.
  • the control unit (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the control unit (C) sets the four-way switching valve (16) to the first state.
  • the control unit (C) appropriately adjusts the opening of the expansion valve (15).
  • a first refrigeration cycle is performed in which compressed refrigerant releases heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
  • the control unit (C) adjusts the target evaporation temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature.
  • the control unit (C) controls the rotation speed of the compressor (12) so that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature.
  • air transported by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34).
  • the air cooled by the indoor heat exchanger (34) is supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
  • Heating Operation is an operation in which the air in the room (I) is heated by the indoor heat exchanger (34) functioning as a radiator.
  • the humidity control unit (20) is stopped.
  • the control unit (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the control unit (C) sets the four-way switching valve (16) to the second state.
  • the control unit (C) appropriately adjusts the opening of the expansion valve (15).
  • a second refrigeration cycle is performed in which the refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
  • the control unit (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature.
  • the control unit (C) controls the rotation speed of the compressor (12) so that the condensing temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensing temperature.
  • air transported by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34).
  • the air heated by the indoor heat exchanger (34) is supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
  • Air supply operation is an operation for supplying outdoor air to the room (I).
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2).
  • the control unit (C) stops the heater (25), the humidity control rotor (22), and the second fan (23), and operates the first fan (26).
  • the control unit (C) sets the first switching damper (24) to the third state (the state shown by the solid line in FIG. 2) and sets the second switching damper (29) to the fifth state (see FIG. 5).
  • the outdoor air transported by the first fan (26) is sent to the air conditioner indoor unit (30) through the hose (2) and is supplied to the room (I) through the indoor air outlet (31b) of the air conditioner indoor unit (30).
  • the air supply operation may be performed simultaneously with the cooling operation or the heating operation.
  • the exhaust operation is an operation for discharging indoor air to the outside of the room.
  • indoor air is sent to the humidity control unit (20) through the hose (2).
  • the control unit (C) stops the heater (25), the humidity control rotor (22), and the second fan (23), and operates the first fan (26).
  • the control unit (C) sets the first switching damper (24) to the third state (the state shown by the solid line in FIG. 2) and sets the second switching damper (29) to the sixth state (see FIG. 6).
  • the indoor air transported by the first fan (26) is sent to the humidity control unit (20) through the hose (2) and is discharged to the outside of the room from the intake and exhaust port (21a) of the humidity control unit (20).
  • the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
  • (3-5) Dehumidification Operation In the dehumidification operation, air dehumidified by the humidity control unit (20) is supplied to the room (I). In the dehumidification operation, air dehumidified by the humidity control unit (20) is intermittently supplied to the room (I). The humidity control unit (20) alternately performs a first operation and a second operation.
  • the first operation is an operation in which moisture in the air is adsorbed by the humidity control rotor (22) and the air dehumidified by the humidity control rotor (22) is supplied to the room (I).
  • the second operation is an operation in which the humidity control rotor (22) is regenerated and the air used for the regeneration is exhausted to the outside of the room.
  • the control unit (C) operates the first fan (26), stops the second fan (23), stops the heater (25), sets the first switching damper (24) to the third state (the state shown by the solid line in FIG. 2), and sets the second switching damper (29) to the fifth state (see FIG. 5).
  • the air conveyed by the first fan (26) flows through the first passage (27) and passes through the humidity control area (22A) of the humidity control rotor (22).
  • the humidity control area (22A) moisture in the air is adsorbed by the adsorbent.
  • the air dehumidified in the humidity control area (22A) is sent to the air conditioning indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
  • the control unit (C) operates the first fan (26) and the heater (25), stops the second fan (23), sets the first switching damper (24) to the fourth state (the state shown by the dashed line in FIG. 2), and sets the second switching damper (29) to the fifth state (see FIG. 5).
  • the air conveyed by the first fan (26) flows through the first passage (27) and is heated by the heater (25), and then flows through the humidity control area (22A) of the humidity control rotor (22).
  • the adsorbent is regenerated. Specifically, moisture adsorbed by the adsorbent is desorbed and released into the air.
  • the air used to regenerate the humidity control rotor (22) flows from the first passage (27) to the second passage (28), as shown by the black arrow in FIG. 2, and is discharged to the outside of the room.
  • the outdoor air flowing through the third passage (62) flows through the adsorption area (22C) of the humidity control rotor (22).
  • the adsorption area (22C) moisture in the air is adsorbed by the adsorbent.
  • the air that has absorbed moisture from the humidity control rotor (22) is discharged to the outside through the third passage (62).
  • the outdoor air flowing through the first passage (27) is heated by the heater (25) and then flows through the humidity control area (22A) of the humidity control rotor (22).
  • the humidity control area (22A) moisture desorbed from the adsorbent is released into the air.
  • the air humidified by the humidity control rotor (22) is sent to the air conditioning indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
  • the above-mentioned cooling operation and the dehumidifying operation are performed simultaneously.
  • the air is dehumidified by the humidity control unit (20) and cooled by the indoor heat exchanger (34) functioning as an evaporator.
  • the above-mentioned heating operation and humidification operation are performed simultaneously. Specifically, the air is humidified by the humidity control unit (20), and the air is heated by the indoor heat exchanger (34) functioning as a radiator.
  • the air conditioner (1) includes an odor sensor (56).
  • the odor sensor (56) detects the concentration (odor strength) of odor components in the air to detect odors in the room (I).
  • the odor sensor (56) is, for example, a semiconductor odor sensor.
  • the odor sensor (56) detects the odor strength of odor components (odor gas) containing organic substances such as acetic acid and alcohol.
  • the odor sensor (56) includes a sensor element and detects odors based on a change in resistance of the sensor element that occurs when an odor gas hits the sensor element. The change in resistance is expressed as odor strength.
  • a signal indicating the change in resistance is transmitted from the odor sensor (56) to the control unit (C) as a first sensor signal indicating the odor strength in the room (I).
  • the odor sensor (56) is provided in the air conditioner indoor unit (30).
  • the odor sensor (56) is disposed, for example, near the indoor suction port (31a) of the indoor casing (31) (see FIG. 3).
  • the detection value (odor intensity) of the odor sensor (56) is a first example of a component value.
  • the odor components are a first example of predetermined gas components.
  • step S10 the control unit (C) acquires a first sensor signal indicating the intensity of the odor in the room (I) from the odor sensor (56).
  • the control unit (C) acquires the first sensor signal over time. Acquiring the first sensor signal over time means acquiring the signal continuously for a predetermined period of time.
  • step S20 the control unit (C) determines whether the rate of change in odor intensity in the room (I) over time is greater than a predetermined rate based on the first sensor signal from the odor sensor (56). If it is determined that the rate of change in odor intensity in the room (I) over time is greater than a predetermined rate (Yes in step S20), processing proceeds to step S30. If it is determined that the rate of change in odor intensity in the room (I) over time is not greater than the predetermined rate (No in step S20), processing proceeds to step S31.
  • step S30 the control unit (C) decides to perform exhaust operation and causes the air conditioning device (1) to perform exhaust operation.
  • step S31 the control unit (C) decides to perform air supply operation and causes the air conditioning device (1) to perform air supply operation.
  • control unit (C) selects whether the air treatment device (1) should perform the exhaust operation or the supply operation based on the indoor environment or the outdoor environment, and causes the air treatment device (1) to perform the selected operation between the exhaust operation and the supply operation.
  • the substance that is the source of the odor components (the source of the specified gas components) is located near the air conditioning indoor unit (30)
  • the odor components reach the air conditioning indoor unit (30) before being mixed with the air, so the rate of change in odor intensity at the location of the air conditioning indoor unit (30) in the room (I) relative to time becomes greater than a specified rate (Yes in step S20), and the odor components at the location of the air conditioning indoor unit (30) change rapidly.
  • the air conditioning indoor unit (30) were to perform air supply operation even though the odorous components were located near the air conditioning indoor unit (30), the strong odorous components sucked in by the air conditioning indoor unit (30) would be returned from the air conditioning indoor unit (30) to the room (I) and would be dispersed throughout the room (I), causing the odor to move, particularly to other rooms, etc.
  • the air conditioning indoor unit (30) selects exhaust operation, so that the strong odorous components sucked into the air conditioning indoor unit (30) can be effectively discharged to the outside while being prevented from being returned to the room (I). As a result, the odorous components from the source can be appropriately discharged to the outside.
  • This type of control allows ventilation that takes advantage of the characteristics of both supply and exhaust ventilation, preventing the spread of and the induction of adverse environments, and creating a comfortable environment indoors (I).
  • step S21 the control unit (C) determines whether or not the high-frequency components of a predetermined frequency or higher among the frequency components contained in the waveform representing the first sensor signal are equal to or higher than a predetermined ratio. If it is determined that the high-frequency components are equal to or higher than the predetermined ratio (Yes in step S21), the process proceeds to step S30. If it is determined that the high-frequency components are not equal to or higher than the predetermined ratio (No in step S21), the process proceeds to step S31.
  • the odor components (odor) from the odor source reach the location where the odor sensor (56) is installed (the air conditioning indoor unit (30)) without being mixed with the air.
  • the odor components at the location where the air conditioning indoor unit (30) is installed change abruptly, as in the case where the rate of change in odor intensity in the room (I) relative to time in the first example above becomes greater than a predetermined rate (Yes in step S20).
  • the odor from the source can be effectively exhausted to the outside of the room by performing exhaust operation as described above. As a result, it is possible to prevent the room (I) from being filled with an unpleasant odor.
  • the air conditioner (1) includes a memory (storage unit).
  • the memory stores a program executed by the control unit (C).
  • the memory stores a first prediction model.
  • the first prediction model is a model for outputting a predicted value of a first distance between a source of an odor component (source of odor) and the air conditioning indoor unit (30).
  • the first prediction model is generated based on a correlation between the odor intensity (detection value of the odor sensor (56)) at the location where the air conditioning indoor unit (30) is located and the first distance.
  • the odor component is an example of a predetermined gas component.
  • the method for generating the first prediction model is not particularly limited.
  • the first prediction model is generated, for example, using AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • One example of a method for the AI to generate the first prediction model is a machine learning method (deep learning) using a multi-layer artificial neural network.
  • the first prediction model is a trained model that uses the odor intensity (detection value of the odor sensor (56)) and the first distance as input data and learns the correspondence between the odor intensity and the first distance.
  • the first prediction model outputs output data.
  • the output data includes information indicating the predicted value of the first distance.
  • the first prediction model may be table information (information that associates multiple odor intensities with multiple predicted values of the first distances) generated by statistical analysis by conducting tests or the like to investigate the correlation between odor intensity and the first distance.
  • step S10 when the control unit (C) acquires a first sensor signal from the odor sensor (56) in step S10, the process proceeds to step S11.
  • step S11 the control unit (C) outputs a predicted value of the first distance based on the detection value of the odor sensor (56) and the above-mentioned first prediction model.
  • step S22 the control unit (C) determines whether the first distance is smaller than the first predetermined distance. If it is determined that the predicted value of the first distance is smaller than the first predetermined distance (Yes in step S22), the process proceeds to step S30. If it is determined that the predicted value of the first distance is not smaller than the first predetermined distance (No in step S22), the process proceeds to step S31.
  • step S23 the control unit (C) determines whether the odor level in the room (I) is above a predetermined level.
  • the odor level is the detection value of the odor sensor (56) or a representative value (mode, median, or average) of detection values of multiple odor sensors (56) detected within a predetermined period. The higher the odor level, the stronger the odor. If it is determined that the odor level in the room (I) is above the predetermined level (Yes in step S23), processing proceeds to step S30. If it is determined that the odor level in the room (I) is not above the predetermined level (No in step S23), processing proceeds to step S31.
  • an odor sensor may be provided outside the room, and if the control unit (C) determines that the outdoor odor level detected by the outdoor odor sensor is equal to or above a predetermined level, the control unit (C) may cause the air conditioner (1) to perform exhaust operation, and if the control unit (C) determines that the outdoor odor level is not equal to or above the predetermined level, the control unit (C) may cause the air conditioner (1) to perform supply air operation.
  • step S40 the air conditioning apparatus (1) receives a stop instruction from the remote controller (40). At this time, it is determined whether or not the air conditioning apparatus (1) has received the stop instruction in a state where moisture is adhering to the indoor heat exchanger (34). If the air conditioning apparatus (1) has received the stop instruction in a state where moisture is adhering to the indoor heat exchanger (34) (Yes in step S40), the process proceeds to step S41. If the air conditioning apparatus (1) has not received the stop instruction in a state where moisture is adhering to the indoor heat exchanger (34) (Yes in step S40), the process proceeds to step S42.
  • step S41 the control unit (C) decides to perform exhaust operation and causes the air conditioner (1) to perform exhaust operation.
  • the control unit (C) decides to perform exhaust operation and causes the air conditioner (1) to perform exhaust operation.
  • step S42 the control unit (C) stops the air conditioning device (1). This turns off the power supply to the air conditioning device (1).
  • Step S40 will be explained below.
  • step S40 when the air conditioner (1) receives a stop command while moisture is adhering to the indoor heat exchanger (34), this may include the case where the air conditioner (1) performing cooling operation receives the stop command.
  • the control unit (C) determines whether the air conditioner (1) performing cooling operation has received the stop command. If it is determined that the air conditioner (1) performing cooling operation has received the stop command, the process proceeds to step S41, and if not, the process proceeds to step S42.
  • step S40 when the air conditioner (1) receives a stop command while moisture is attached to the indoor heat exchanger (34), this may include a case where the air conditioner (1) performing cooling operation receives a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I).
  • the control unit (C) The dew point temperature of the air in the room (I) is output by the control unit (C) based on the detection result of the indoor air temperature sensor (53) and the detection result of the indoor air humidity sensor (54).
  • the dew point temperature may be output, for example, by using a first conversion table that is created in advance and shows the correspondence between temperature and relative humidity and the dew point temperature.
  • the temperature of the indoor heat exchanger (34) is detected by a first temperature sensor (not shown) installed in the indoor heat exchanger (34).
  • the temperature of the indoor heat exchanger (34) may not be detected by the first temperature sensor.
  • a second conversion table showing the correspondence between the temperature of the refrigerant liquid pipe such as the liquid connecting pipe (3) and the temperature of the indoor heat exchanger (34) may be prepared in advance, a second temperature sensor for detecting the temperature of the refrigerant liquid pipe may be provided, and the detection result of the second temperature sensor and the second conversion table may be used to output the temperature.
  • step S40 the control unit (C) determines whether the air conditioner (1) performing the cooling operation has received a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I). If it is determined that the air conditioner (1) performing the cooling operation has received a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I), the process proceeds to step S41, and if not, the process proceeds to step S42.
  • step S50 the control unit (C) acquires a second sensor signal indicating the humidity in the room (I) from the indoor air humidity sensor (54).
  • the control unit (C) acquires the second sensor signal over time.
  • step S60 the control unit (C) determines whether the average humidity value in the room (I) during a specified period acquired over time is outside the specified humidity comfort zone.
  • the specified humidity comfort zone has upper and lower limits, and is a humidity value within a range below the upper limit and above the lower limit, and is stored in advance in the memory of the air conditioning device (1). If it is determined that the average humidity value is outside the specified humidity comfort zone (Yes in step S60), the process proceeds to step S61. If it is determined that the average humidity value is not outside the specified humidity comfort zone (No in step S60), the process proceeds to step S71.
  • step S61 the control unit (C) determines whether the humidity in the room (I) satisfies a predetermined condition.
  • the predetermined condition will be described later. If it is determined that the predetermined condition is satisfied (Yes in step S61), the process proceeds to step S70. If it is determined that the predetermined condition is not satisfied (No in step S61), the process proceeds to step S71.
  • step S70 the control unit (C) decides to perform exhaust operation and causes the air conditioning device (1) to perform exhaust operation.
  • step S71 the control unit (C) decides to perform supply operation and causes the air conditioning device (1) to perform supply operation.
  • Step S61 will be explained below.
  • the predetermined condition may include a condition that the rate of change in humidity in the room (I) relative to the change in time is greater than a predetermined rate.
  • the control unit (C) determines whether the rate of change in humidity in the room (I) relative to the change in time is greater than a predetermined rate. If it is determined that it is greater than the predetermined rate, the process proceeds to step S70, and if it is not determined that it is greater than the predetermined rate, the process proceeds to step S71.
  • the predetermined condition may include a condition that the high frequency components having a predetermined frequency or more among the frequency components included in the waveform representing the second sensor signal indicating the humidity in the room (I) are equal to or greater than a predetermined ratio.
  • the control unit (C) determines whether the high frequency components having a predetermined frequency or more among the frequency components included in the waveform representing the second sensor signal are equal to or greater than a predetermined ratio. If it is determined that the high frequency components are equal to or greater than the predetermined ratio, the process proceeds to step S70, and if not, the process proceeds to step S71.
  • the second sensor signal indicating the humidity in the room (I) If there are many high-frequency components in the second sensor signal indicating the humidity in the room (I), it can be inferred that high-humidity air from a source of high-humidity air (e.g., boiling water) reaches the location where the room air humidity sensor (54) is installed (the air conditioning indoor unit (30)). In this case, by performing exhaust operation, the high-humidity air from the source can be effectively exhausted to the outside of the room. As a result, it is possible to prevent the humidity in the room (I) from becoming uncomfortable.
  • a source of high-humidity air e.g., boiling water
  • a second prediction model is stored in a memory (not shown) of the air conditioning apparatus (1).
  • the second prediction model is a model for outputting a predicted value of a second distance between a source that generates a change in humidity (e.g., water boiling in a kettle) and the air conditioning indoor unit (30).
  • the second prediction model is generated based on a correlation between the amount of change in humidity (amount of change in the detected value of the indoor air humidity sensor (54) within a predetermined time) at a location where the air conditioning indoor unit (30) is located and the second distance.
  • the method for generating the second prediction model is not particularly limited.
  • the second prediction model is generated, for example, using AI.
  • One example of a method for the AI to generate the second prediction model is a machine learning method (deep learning) using a multi-layer artificial neural network.
  • the second prediction model is a trained model that uses the amount of change in humidity (the amount of change in the detected value of the indoor air humidity sensor (54) within a specified time) and the second distance as input data and learns the correspondence between the amount of change in humidity and the second distance.
  • the second prediction model outputs output data.
  • the output data includes information indicating the predicted value of the second distance.
  • the second prediction model may be table information (information that associates multiple amounts of humidity change with multiple predicted values of the second distance) generated by statistical analysis by conducting tests or the like to investigate the correlation between the amount of change in humidity and the second distance.
  • step S50 when the control unit (C) acquires a second sensor signal from the inside air humidity sensor (54) in step S50, the process proceeds to step S51.
  • step S51 the control unit (C) outputs a predicted value of the second distance based on the detection value of the inside air humidity sensor (54) and the above-mentioned second prediction model.
  • step S62 the control unit (C) determines whether the second distance is smaller than the second predetermined distance. If it is determined that the second distance is smaller than the second predetermined distance (Yes in step S62), the process proceeds to step S70. If it is determined that the second distance is not smaller than the second predetermined distance (No in step S62), the process proceeds to step S71.
  • step S50 Eighth Example of Operation of Air Conditioning Apparatus As shown in Figs. 4 and 14, when the control section (C) acquires a second sensor signal from the inside air humidity sensor (54) in step S50, the process proceeds to step S63.
  • step S63 the control unit (C) determines whether the deviation of the average humidity in the room (I) during the specified period from the specified humidity comfort zone is equal to or greater than a specified amount. If the average humidity in the room (I) is greater than the upper limit of the specified humidity comfort zone, the deviation indicates the difference between the average humidity in the room (I) and the upper limit. If the average humidity in the room (I) is less than the upper limit of the specified humidity comfort zone, the deviation indicates the difference between the average humidity in the room (I) and the lower limit. If it is determined that the deviation of the average humidity in the room (I) is equal to or greater than the specified amount (Yes in step S63), the process proceeds to step S70. If it is determined that the deviation of the average humidity in the room (I) is not equal to or greater than the specified amount (No in step S63), the process proceeds to step S71.
  • control unit (C) determines that the detection value of the outdoor air humidity sensor (52) is outside the comfort zone of the predetermined humidity, it may cause the air conditioner (1) to perform exhaust operation, and if the control unit (C) determines that the detection value of the outdoor air humidity sensor (52) is not outside the comfort zone of the predetermined humidity, it may cause the air conditioner (1) to perform supply operation.
  • the air conditioner (1) is equipped with an outdoor air quality sensor (not shown).
  • the outdoor air quality sensor detects the amount of air pollutants in the outdoor air (e.g., the amount of particles in the outdoor air). In other words, the amount of air pollutants in the outdoor air indicates the pollution level of the outdoor air. The greater the amount of air pollutants in the air, the higher the pollution level of the air.
  • the outdoor air quality sensor is provided, for example, in the outdoor casing (11) and arranged near the outdoor air inlet (11a) (see FIG. 2).
  • the detection value of the outdoor air quality sensor is a second example of a component value.
  • step S80 the control unit (C) acquires information indicating the pollution level of the outdoor air from the outdoor air quality sensor. Based on the information acquired from the outdoor air quality sensor, the control unit (C) determines whether the pollution level of the outdoor air is equal to or above a predetermined level. If it is determined that the pollution level of the outdoor air is equal to or above the predetermined level (Yes in step S80), the process proceeds to step S81. If it is determined that the pollution level of the outdoor air is not equal to or above the predetermined level (No in step S80), the process proceeds to step S82.
  • step S81 the control unit (C) decides to perform exhaust operation and causes the air conditioning device (1) to perform exhaust operation.
  • step S82 the control unit (C) decides to perform supply operation and causes the air conditioning device (1) to perform supply operation.
  • the air conditioner (1) includes an indoor air quality sensor (not shown).
  • the indoor air quality sensor detects the amount of air pollutants in the air in the room (I) (e.g., the amount of particles in the air in the room).
  • the indoor air quality sensor is provided, for example, in the indoor casing (31) and disposed at the indoor air inlet (31a) (see FIG. 2).
  • the control unit (C) decides to perform exhaust operation, thereby switching from air supply operation to exhaust operation.
  • the control unit (C) decides to continue air supply operation, thereby continuing the air supply operation.
  • the air conditioner (1) is equipped with an odor sensor (56). If the detection value of the odor sensor (56) (concentration of odor components in the air in the room) increases over time, and if the degree of increase in the detection value of the odor sensor (56) over time exceeds a predetermined degree, the control unit (C) decides to perform exhaust operation, thereby switching from supply air operation to exhaust operation. During supply air operation, if the detection value of the odor sensor (56) does not increase over time, or if the degree of increase in the detection value of the odor sensor (56) over time does not exceed a predetermined degree, the control unit (C) decides to continue the supply air operation, and the supply air operation is continued.
  • the detection value of the odor sensor (56) concentration of odor components in the air in the room
  • the control unit (C) decides to perform exhaust operation, thereby switching from supply air operation to exhaust operation.
  • the control unit (C) decides to continue the supply air operation, and the supply air operation is continued.
  • odor intensity or particle amount is used as the component value.
  • the component value may be anything that affects the user's comfort with respect to the air environment in the room (I), and may be, for example, the concentration of harmful gases, carbon dioxide concentration, etc. The same effect can be achieved even if the component values (odor intensity or particle amount) shown in each of the first to fourth, ninth, tenth, and eleventh examples of the operation of the air conditioner (1) are replaced with other types of component values (harmful gas concentration, carbon dioxide concentration, etc.).
  • a passage may be provided inside the indoor casing (31) of the air conditioner indoor unit (30) to guide air sent from the outside to the inside of the indoor casing (31) during air supply operation to the suction side of the indoor heat exchanger (34).
  • the control unit (C) may compare the detection value of the outdoor air humidity sensor (52) with the detection value of the indoor air temperature sensor (53), and cause the air conditioner (1) to perform air supply operation when the outdoor humidity is higher than the indoor humidity.
  • the outdoor air sent to the air conditioner indoor unit (30) is immediately dehumidified by the indoor heat exchanger (34), and therefore the outdoor air can be dehumidified more effectively than if the outdoor air did not immediately reach the indoor heat exchanger (34) but instead reached the indoor heat exchanger (34) in a diluted state after mixing with the indoor air, and was dehumidified by the indoor heat exchanger (34).
  • the control unit (C) may cause the air conditioner (1) to perform exhaust operation when the air conditioner (1) is started. This makes it possible to prevent unpleasant odors from being generated in the room (I) when the air treatment device (1) is started. Also, if moisture is present on the indoor heat exchanger (34), it is possible to prevent high humidity air from being supplied to the room (I) when the air treatment device (1) is started.
  • the control unit (C) may stop the rotation of the outdoor fan (13) when the air conditioning device (1) is started.
  • the control unit (C) may close the indoor air outlet (31b) by closing the flap (37) when the air conditioning device (1) is started.
  • the flap (37) is an example of an air direction plate.
  • the air direction plate may be a louver. This makes it possible to prevent outdoor air from being sent into the room when the air treatment device (1) is started.
  • FIG. 16 A modified example of the air conditioning device (1) will be described with reference to FIG. 16. The following describes the differences from the above-described embodiment. Note that, for convenience, the air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are not shown in FIG. 14.
  • the modified air conditioner (1) differs from the air conditioner (1) shown in FIG. 2 in that the second fan (23) and the third passage (62) are not provided.
  • the operation of the humidification operation among the above-mentioned operation steps (3-1) to (3-8) differs from that of the air conditioner (1) shown in FIG. 2.
  • the humidity control unit (20) during humidification operation, air humidified by the humidity control unit (20) is intermittently supplied to the room (I).
  • the humidity control unit (20) alternately performs a third operation and a fourth operation.
  • the third operation is an operation in which moisture in the air is adsorbed by the humidity control rotor (22) and the air that has passed through the humidity control rotor (22) is discharged to the outside of the room.
  • the fourth operation is an operation in which the humidity control rotor (22) is regenerated and the air to which moisture has been added is supplied from the humidity control rotor (22) to the room (I).
  • the control unit (C) operates the first fan (26), stops the heater (25), sets the first switching damper (24) to the fourth state, and sets the second switching damper (29) to the fifth state.
  • the air transported by the first fan (26) flows through the first passage (27) and passes through the humidity control area (22A) of the humidity control rotor (22).
  • the humidity control area (22A) moisture in the air is adsorbed by the adsorbent.
  • the air that has absorbed moisture into the adsorbent in the humidity control area (22A) flows from the first passage (27) to the second passage (28) as shown by the black arrows in FIG. 7, and is discharged to the outside of the room.
  • the control unit (C) operates the first fan (26) and the heater (25), sets the first switching damper (24) to the third state, and sets the second switching damper (29) to the fifth state.
  • the air conveyed by the first fan (26) flows through the first passage (27) and is heated by the heater (25), and then flows through the humidity control area (22A) of the humidity control rotor (22).
  • the adsorbent is regenerated. Specifically, the moisture adsorbed by the adsorbent is desorbed and released into the air.
  • the air containing the moisture desorbed from the humidity control rotor (22) is sent to the air conditioning indoor unit (30) through the hose (2) and is supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
  • the present disclosure is useful for air treatment devices.
  • Air conditioning equipment air treatment equipment
  • Refrigeration device Outdoor fan (fan)
  • Air conditioning indoor unit indoor unit
  • Indoor heat exchanger 35
  • Flap wind deflector
  • Inside air temperature sensor temperature sensor
  • inside air humidity sensor humidity sensor

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

This air treatment device carries out ventilation of a room (I). The air treatment device comprises a control unit (C) which controls the operation of the air treatment device. On the basis of an environment in the room or an environment outside the room, the control unit (C) makes the air treatment device carry out either an exhaust operation that transfers air from the room (I) to outside, or an intake operation that transfers air from outside to the room (I).

Description

空気処理装置Air Treatment Equipment
 本開示は、空気処理装置に関する。 This disclosure relates to air treatment devices.
 特許文献1には、換気装置が開示されている。換気装置は、大気汚染予測関連情報を受信する受信手段と、大気汚染予測関連情報に基づいて外気を導入するか否かを判定する判定手段と、判定手段の判定結果に従って外気導入(給気運転)を制御する制御手段と、を備える。換気装置は、給気運転を行うことで室内の空気を換気する。 Patent Document 1 discloses a ventilation device. The ventilation device includes a receiving means for receiving air pollution prediction-related information, a determining means for determining whether or not to introduce outside air based on the air pollution prediction-related information, and a control means for controlling the introduction of outside air (air supply operation) according to the determination result of the determining means. The ventilation device ventilates the air in a room by performing air supply operation.
特開2006-133121号公報JP 2006-133121 A
 しかし、特許文献1の構成では、室外の環境が悪化し、室外の空気が汚染されていると判定手段が判定した場合は、給気運転が行われず、室内の換気を行うことができない状態になる。これにより、室内の空気環境が悪化しいた場合でも室内の換気が行われないので、室内の快適な空気環境を実現することが困難となる可能性がある。 However, in the configuration of Patent Document 1, if the outdoor environment deteriorates and the determination means determines that the outdoor air is polluted, the air supply operation is not performed and the room cannot be ventilated. As a result, even if the indoor air environment deteriorates, the room is not ventilated, which may make it difficult to achieve a comfortable indoor air environment.
 本開示の目的は、室内の快適な空気環境を実現することができる空気処理装置を提供することである。 The objective of this disclosure is to provide an air treatment device that can create a comfortable indoor air environment.
 第1の態様の空気処理装置は、室内(I)の換気を行う。空気処理装置は、前記空気処理装置の動作を制御する制御部(C)を備え、前記制御部(C)は、室内環境または室外環境に基づいて、室内(I)の空気を室外へ送る排気運転と、室外の空気を室内(I)へ送る給気運転とのうちのいずれかの運転を前記空気処理装置に行わせる。 The air treatment device of the first embodiment ventilates the room (I). The air treatment device includes a control unit (C) that controls the operation of the air treatment device, and the control unit (C) causes the air treatment device to perform either an exhaust operation in which air from the room (I) is sent to the outside, or an air supply operation in which outdoor air is sent to the room (I) based on the indoor or outdoor environment.
 第1の態様では、給気換気、および排気換気の特徴を生かした換気を行うことができ、室内(I)の快適な環境を実現できる。 In the first embodiment, ventilation can be performed by taking advantage of the characteristics of supply ventilation and exhaust ventilation, and a comfortable environment can be achieved in the room (I).
 第2の態様では、第1の態様において、前記制御部(C)は、室内(I)の空気中の成分値、または室外の空気中の成分値に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせ、前記成分値は、空気中の所定のガス成分の量、空気中の所定のガス成分の濃度、または、空気中のパーティクル量を示す。 In the second aspect, in the first aspect, the control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on the component values in the air inside the room (I) or the component values in the air outside the room, and the component values indicate the amount of a specified gas component in the air, the concentration of a specified gas component in the air, or the amount of particles in the air.
 第2の態様では、室内(I)に不快な臭いが充満した状態となることを抑制できる。 In the second embodiment, it is possible to prevent the room (I) from being filled with unpleasant odors.
 第3の態様は、第1の態様において、前記制御部(C)は、室内(I)の湿度、または室外の湿度に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせる。 In the third aspect, in the first aspect, the control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on the humidity in the room (I) or the humidity outside the room.
 第3の態様では、室内(I)の湿度がユーザにとって不快な高すぎる状態または低すぎる状態となることを抑制できる。 In the third aspect, it is possible to prevent the humidity in the room (I) from becoming too high or too low, which is uncomfortable for the user.
 第4の態様は、第2の態様において、前記制御部(C)は、経時的に取得した室内(I)の前記成分値を示す情報に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせる。 In the fourth aspect, which is the second aspect, the control unit (C) causes the air treatment device to perform either the exhaust operation or the supply operation based on information indicating the component values in the room (I) acquired over time.
 第4の態様では、室内(I)の前記成分値の時間的な変化を考慮して、排気運転および給気運転のうちのいずれの運転を行うかを決定することができる。 In the fourth aspect, it is possible to determine whether to perform exhaust operation or supply operation, taking into account the change over time in the component values in the room (I).
 第5の態様は、第2の態様または第4の態様において、前記制御部(C)は、時間の変化に対する室内(I)の前記成分値の変化の割合が所定の割合よりも大きい場合、前記空気処理装置に前記排気運転を行わせる。 In the fifth aspect, in the second or fourth aspect, the control unit (C) causes the air treatment device to perform the exhaust operation when the rate of change in the component value in the room (I) relative to the change in time is greater than a predetermined rate.
 第5の態様では、室内(I)を適切に換気することができる。 In the fifth aspect, the room (I) can be properly ventilated.
 第6の態様は、第2の態様または第4の態様において、前記制御部(C)は、室内(I)の前記成分値を示す第1センサ信号を取得し、前記第1センサ信号を表す波形に含まれる周波数成分のうちの所定の周波数以上の高周波成分が所定割合以上の場合、前記空気処理装置に前記排気運転を行わせる。 In the sixth aspect, in the second or fourth aspect, the control unit (C) acquires a first sensor signal indicating the component value in the room (I), and when a high-frequency component having a predetermined frequency or higher among frequency components contained in a waveform representing the first sensor signal is equal to or higher than a predetermined ratio, causes the air treatment device to perform the exhaust operation.
 第6の態様では、室内(I)が所定のガス成分またはパーティクルで充満した状態となることを抑制できる。 In the sixth aspect, it is possible to prevent the interior (I) from becoming filled with a specified gas component or particles.
 第7の態様は、第2の態様または第4の態様において、前記所定のガス成分の発生源と前記空気処理装置の室内機(30)との第1距離の予測値を出力するための第1予測モデルを記憶する記憶部を備え、前記制御部(C)は、前記第1予測モデルを用いて前記第1距離の予測値を出力し、前記第1距離の予測値が第1所定距離よりも小さくなると前記空気処理装置に前記排気運転を行わせる。 The seventh aspect is the second or fourth aspect, further comprising a storage unit that stores a first prediction model for outputting a predicted value of a first distance between a source of the specified gas component and the indoor unit (30) of the air treatment device, and the control unit (C) outputs a predicted value of the first distance using the first prediction model, and causes the air treatment device to perform the exhaust operation when the predicted value of the first distance becomes smaller than a first specified distance.
 第7の態様では、室内(I)が所定のガス成分で充満した状態となることを抑制できる。 In the seventh aspect, it is possible to prevent the interior (I) from becoming filled with a specified gas component.
 第8の態様は、第2の態様または第4の態様において、前記制御部(C)は、室内(I)の前記成分値のレベルが所定のレベル以上の場合は前記空気処理装置に前記排気運転を行わせ、室内(I)の前記成分値のレベルが所定のレベルよりも低い場合は前記空気処理装置に前記給気運転を行わせる。 The eighth aspect is the second or fourth aspect, in which the control unit (C) causes the air treatment device to perform the exhaust operation when the level of the component value in the room (I) is equal to or higher than a predetermined level, and causes the air treatment device to perform the supply operation when the level of the component value in the room (I) is lower than the predetermined level.
 第8の態様では、室内(I)が所定のガス成分またはパーティクルで充満した状態となることを抑制しつつ、室内(I)へ外気を取り入れることができる。 In the eighth aspect, outside air can be introduced into the room (I) while preventing the room (I) from becoming filled with a specified gas component or particles.
 第9の態様は、第1~第8の態様のいずれか1つの態様において、空気処理装置は、前記空気処理装置の室内機(30)に設けられる室内熱交換器(34)を備え、前記室内熱交換器(34)に水分が付着した状態で前記空気処理装置が停止指示を受け付けた場合、前記制御部(C)は前記空気処理装置に前記排気運転を行わせる。 In a ninth aspect, in any one of the first to eighth aspects, the air treatment device includes an indoor heat exchanger (34) provided in an indoor unit (30) of the air treatment device, and when the air treatment device receives a stop instruction while moisture is adhering to the indoor heat exchanger (34), the control unit (C) causes the air treatment device to perform the exhaust operation.
 第9の態様では、排気運転により室内熱交換器(34)に付着した水分を室外へ排出することで、室内(I)の湿度が上昇することを抑制できる。 In the ninth aspect, the moisture adhering to the indoor heat exchanger (34) is discharged to the outside through the exhaust operation, thereby preventing an increase in humidity in the room (I).
 第10の態様は、第9の態様において、前記室内熱交換器(34)に水分が付着した状態で前記空気処理装置が停止指示を受け付けた場合には、冷房運転を行っている前記空気処理装置が停止指示を受け付けた場合が含まれる。 The tenth aspect is the ninth aspect, in which the air treatment device receives a stop command when moisture is attached to the indoor heat exchanger (34), including the case where the air treatment device is performing cooling operation and receives a stop command.
 第10の態様では、冷房運転を再開する場合、室内熱交換器(34)に対して水分の付着が抑制された状態で冷房運転を開始できるので、室内(I)の湿度が上昇することを抑制できる。 In the tenth aspect, when the cooling operation is resumed, the cooling operation can be started in a state in which adhesion of moisture to the indoor heat exchanger (34) is suppressed, so that an increase in humidity in the room (I) can be suppressed.
 第11の態様は、第9の態様において、前記室内熱交換器(34)に水分が付着した状態で前記空気処理装置が停止指示を受け付けた場合には、冷房運転を行っている前記空気処理装置が停止指示を受け付け、かつ、前記室内(I)の空気の露点温度よりも前記室内熱交換器(34)の温度が低い場合が含まれる。 The eleventh aspect is the ninth aspect, and includes a case where the air treatment device receives a stop command when moisture is attached to the indoor heat exchanger (34), the air treatment device performing cooling operation receives a stop command, and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I).
 第11の態様では、湿度の上昇を抑制することができる。 In the eleventh aspect, the increase in humidity can be suppressed.
 第12の態様は、第3の態様において、前記制御部(C)は、経時的に取得した室内(I)の湿度を示す情報に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせる。 In a twelfth aspect, in the third aspect, the control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on information indicating the humidity in the room (I) acquired over time.
 第12の態様では、室内(I)の湿度の時間的な変化を考慮して、排気運転および給気運転のうちのいずれの運転を行うかを決定することができる。 In the twelfth aspect, it is possible to determine whether to perform exhaust operation or supply operation, taking into account the change in humidity in the room (I) over time.
 第13の態様は、第3の態様または第12の態様において、所定時間内の室内(I)の湿度の平均が所定の湿度の快適ゾーン外の値であり、かつ、所定の条件を満たす場合は、前記制御部(C)は前記空気処理装置に前記排気運転を行わせ、前記所定の条件には、時間の変化に対する室内(I)の湿度の変化の割合が所定の割合よりも大きくなる条件が含まれる。 In the thirteenth aspect, in the third or twelfth aspect, if the average humidity in the room (I) within a specified time period is outside a specified humidity comfort zone and specified conditions are satisfied, the control unit (C) causes the air treatment device to perform the exhaust operation, and the specified conditions include a condition in which the rate of change in humidity in the room (I) over time is greater than a specified rate.
 第13の態様では、室内(I)の湿度を適切に調整することができる。 In the thirteenth aspect, the humidity in the room (I) can be appropriately adjusted.
 第14の態様は、第3の態様または第12の態様において、所定時間内の室内(I)の湿度の平均が所定の湿度の快適ゾーン外の値であり、かつ、所定の条件を満たす場合は、前記制御部(C)は前記空気処理装置に前記排気運転を行わせ、前記制御部(C)は、室内(I)の湿度を示す第2センサ信号を取得し、前記所定の条件には、前記第2センサ信号を表す波形に含まれる周波数成分のうちの所定の周波数以上の高周波成分が所定割合以上になる条件が含まれる。 In the fourteenth aspect, in the third or twelfth aspect, if the average humidity in the room (I) within a specified time period is a value outside a specified humidity comfort zone and specified conditions are satisfied, the control unit (C) causes the air treatment device to perform the exhaust operation, and the control unit (C) acquires a second sensor signal indicating the humidity in the room (I), and the specified conditions include a condition in which high-frequency components of a specified frequency or higher among frequency components contained in a waveform representing the second sensor signal are equal to or higher than a specified rate.
 第14の態様では、室内(I)の湿度について不快な状態となることを抑制できる。 In the fourteenth aspect, it is possible to prevent the humidity in the room (I) from becoming uncomfortable.
 第15の態様は、第3の態様または第12の態様において、前記湿度の変化を発生させる発生源と前記空気処理装置の室内機(30)との第2距離の予測値を出力するための第2予測モデルを記憶する記憶部を備え、前記制御部(C)は、前記第2予測モデルを用いて前記発生源と前記室内機(30)との第2距離の予測値を出力し、前記第2距離の予測値が第2所定距離よりも小さくなると前記空気処理装置に前記排気運転を行わせる。 The fifteenth aspect is the third or twelfth aspect, further comprising a storage unit that stores a second prediction model for outputting a predicted value of a second distance between a source that generates the change in humidity and the indoor unit (30) of the air treatment device, and the control unit (C) outputs a predicted value of the second distance between the source and the indoor unit (30) using the second prediction model, and causes the air treatment device to perform the exhaust operation when the predicted value of the second distance becomes smaller than a second predetermined distance.
 第15の態様では、室内(I)の湿度について不快な状態となることを抑制できる。 In the fifteenth aspect, it is possible to prevent the humidity in the room (I) from becoming uncomfortable.
 第16の態様は、第3の態様または第12の態様において、前記制御部(C)は、所定の湿度の快適ゾーンに対する所定時間内の室内(I)の湿度の平均の外れ量が所定量以上の場合は前記空気処理装置に前記排気運転を行わせ、前記外れ量が前記所定量よりも小さい場合は前記空気処理装置に前記給気運転を行わせる。 The sixteenth aspect is the third or twelfth aspect, in which the control unit (C) causes the air treatment device to perform the exhaust operation when the average deviation of the humidity in the room (I) within a specified time from a comfort zone of a specified humidity is equal to or greater than a specified amount, and causes the air treatment device to perform the supply operation when the deviation is smaller than the specified amount.
 第16の態様では、室内(I)の湿度について不快な状態となることを抑制しつつ、室内(I)へ外気を取り入れることができる。 In the sixteenth aspect, it is possible to introduce outside air into the room (I) while preventing the humidity in the room (I) from becoming uncomfortable.
 第17の態様は、第3の態様または第12の態様において、空気処理装置は、前記空気処理装置の室内機(30)に設けられる室内熱交換器(34)を備え、前記室内機(30)には、前記給気運転時に室外から前記室内機(30)に送られた空気を、前記室内熱交換器(34)の吸い込み側へ案内する通路が設けられ、前記制御部(C)は、室外の湿度が室内(I)の湿度よりも高いときに前記空気処理装置に前記給気運転を行わせる。 In the seventeenth aspect, in the third or twelfth aspect, the air treatment device includes an indoor heat exchanger (34) provided in an indoor unit (30) of the air treatment device, and the indoor unit (30) is provided with a passage that guides air sent from the outside to the indoor unit (30) during the air supply operation to the suction side of the indoor heat exchanger (34), and the control unit (C) causes the air treatment device to perform the air supply operation when the humidity outside the room is higher than the humidity inside the room (I).
 第17の態様では、室内機(30)へ送られた外気が室内熱交換器(34)によりすぐに除湿されるので、外気が室内(I)の空気と混合して薄まった状態で室内熱交換器(34)により除湿されるよりも外気の除湿を効果的に行うことができる。 In the seventeenth aspect, the outdoor air sent to the indoor unit (30) is immediately dehumidified by the indoor heat exchanger (34), so that the outdoor air can be dehumidified more effectively than if the outdoor air was mixed with the air in the room (I) and diluted before being dehumidified by the indoor heat exchanger (34).
 第18の態様は、第1~第17の態様のいずれか1つの態様において、前記制御部(C)は、前記空気処理装置の起動時に前記空気処理装置に前記排気運転を行わせる。 The eighteenth aspect is any one of the first to seventeenth aspects, in which the control unit (C) causes the air treatment device to perform the exhaust operation when the air treatment device is started.
 第18の態様では、空気処理装置の起動時に室内(I)に不快な臭いが発生することを抑制できる。 In the eighteenth aspect, the generation of unpleasant odors in the room (I) when the air treatment device is started can be suppressed.
 第19の態様は、第1~第18の態様のいずれか1つの態様において、空気処理装置は、室外の空気を室内(I)へ送るファン(13)を備え、前記制御部(C)は、前記空気処理装置の起動時に、前記ファン(13)の回転を停止させる。 The 19th aspect is any one of the 1st to 18th aspects, in which the air treatment device includes a fan (13) that sends outdoor air into the room (I), and the control unit (C) stops the rotation of the fan (13) when the air treatment device is started.
 第19の態様では、空気処理装置の起動時に室外の空気が室内(I)へ送られることを抑制できる。 In the 19th aspect, it is possible to prevent outdoor air from being sent into the room (I) when the air treatment device is started.
 第20の態様は、第1~第19の態様のいずれか1つの態様において、空気処理装置は、室内(I)で空気を送る方向を規定する風向板(37)を備え、前記制御部(C)は、前記空気処理装置の起動時に、前記風向板(37)を閉状態にする。 The twentieth aspect is any one of the first to nineteenth aspects, in which the air treatment device includes an air deflector (37) that determines the direction in which air is sent inside the room (I), and the control unit (C) closes the air deflector (37) when the air treatment device is started.
 第20の態様では、空気処理装置の起動時に室外の空気が室内(I)へ送られることを抑制できる。 In the twentieth aspect, it is possible to prevent outdoor air from being sent into the room (I) when the air treatment device is started.
 第21の態様は、第2の態様または第4の態様において、前記給気運転時において、室内(I)の前記成分値が経時的に増加しており、かつ、前記増加の程度が所定の程度を越える場合、前記制御部(C)は前記空気処理装置に前記排気運転を行わせる。 The 21st aspect is the second or fourth aspect, in which, during the air supply operation, if the component value in the room (I) increases over time and the degree of the increase exceeds a predetermined degree, the control unit (C) causes the air treatment device to perform the exhaust operation.
 第21の態様では、室内(I)の空気が所定のガス成分またはパーティクルで充満した状態となることを抑制できる。 In the 21st aspect, it is possible to prevent the air in the room (I) from becoming filled with a specified gas component or particles.
図1は、実施形態に係る空気調和装置の概略の全体構成図である。FIG. 1 is a schematic overall configuration diagram of an air conditioning apparatus according to an embodiment. 図2は、空気調和装置の冷媒配管および空気流れを示す構成図である。FIG. 2 is a configuration diagram showing refrigerant piping and air flow in the air conditioner. 図3は、空調室内機の縦断面図である。FIG. 3 is a vertical cross-sectional view of the air conditioning indoor unit. 図4は、空気調和装置の主な要素を含むブロック図である。FIG. 4 is a block diagram including the main elements of the air conditioning device. 図5は、給気運転時のダンパケーシングの内部における第2切換ダンパの状態および空気の流れを示す図である。FIG. 5 is a diagram showing the state of the second switching damper and the air flow inside the damper casing during air supply operation. 図6は、排気運転時のダンパケーシングの内部における第2切換ダンパの状態および空気の流れを示す図である。FIG. 6 is a diagram showing the state of the second switching damper and the air flow inside the damper casing during exhaust operation. 図7は、空気調和装置の動作の第1例を示すフロー図である。FIG. 7 is a flow diagram showing a first example of the operation of the air conditioning apparatus. 図8は、空気調和装置の動作の第2例を示すフロー図である。FIG. 8 is a flow diagram showing a second example of the operation of the air conditioning apparatus. 図9は、空気調和装置の動作の第3例を示すフロー図である。FIG. 9 is a flow diagram showing a third example of the operation of the air conditioning apparatus. 図10は、空気調和装置の動作の第4例を示すフロー図である。FIG. 10 is a flow diagram showing a fourth example of the operation of the air conditioning apparatus. 図11は、空気調和装置の動作の第5例を示すフロー図である。FIG. 11 is a flow diagram showing a fifth example of the operation of the air conditioning apparatus. 図12は、空気調和装置の動作の第6例を示すフロー図である。FIG. 12 is a flow diagram showing a sixth example of the operation of the air conditioning apparatus. 図13は、空気調和装置の動作の第7例を示すフロー図である。FIG. 13 is a flow diagram showing a seventh example of the operation of the air conditioning apparatus. 図14は、空気調和装置の動作の第8例を示すフロー図である。FIG. 14 is a flow diagram showing an eighth example of the operation of the air conditioning apparatus. 図15は、空気調和装置の動作の第9例を示すフロー図である。FIG. 15 is a flow diagram showing a ninth example of the operation of the air conditioning apparatus. 図16は、空気調和装置の変形例の冷媒配管および空気流れを示す構成図である。FIG. 16 is a configuration diagram showing refrigerant piping and air flows in a modified example of the air conditioner.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical concept of the present disclosure. Each drawing is intended to conceptually explain the present disclosure, and therefore dimensions, ratios, or numbers may be exaggerated or simplified as necessary for ease of understanding.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Below, an exemplary embodiment is described in detail with reference to the drawings.
 (1)空気調和装置の構成の概要
 空気調和装置(1)は、空気処理装置の一例である。空気処理装置は、冷房運転、暖房運転、給気運転、排気運転、除湿運転、加湿運転、除湿冷房運転、および加湿暖房運転のうち、少なくとも、排気運転と換気運転とを行うことができる機能および構成を有していればよい。空気調和装置(1)は、室内(I)の空気の温度および湿度を調節する。図1に示すように、空気調和装置(1)は、空調室外機(10)と空調室内機(30)とを有する。空調室外機(10)は室外に設置され、空調室内機(30)は室内(I)に設置される。空気調和装置(1)は、1つの空調室内機(30)と1つの空調室外機(10)とを有するペア式である。空気調和装置(1)は、調湿要素である調湿ユニット(20)を有する。空気調和装置(1)は、空気を加湿および除湿する機能を有する。空気調和装置(1)は、室内(I)を換気する機能をさらに有する。
(1) Overview of the configuration of the air conditioner The air conditioner (1) is an example of an air treatment device. The air treatment device may have a function and configuration capable of performing at least exhaust operation and ventilation operation among cooling operation, heating operation, supply operation, exhaust operation, dehumidification operation, humidification operation, dehumidification cooling operation, and humidification heating operation. The air conditioner (1) adjusts the temperature and humidity of air in a room (I). As shown in FIG. 1, the air conditioner (1) has an air conditioner outdoor unit (10) and an air conditioner indoor unit (30). The air conditioner outdoor unit (10) is installed outdoors, and the air conditioner indoor unit (30) is installed indoors (I). The air conditioner (1) is a pair type having one air conditioner indoor unit (30) and one air conditioner outdoor unit (10). The air conditioner (1) has a humidity control unit (20) that is a humidity control element. The air conditioner (1) has a function of humidifying and dehumidifying air. The air conditioner (1) further has a function of ventilating the room (I).
 図1および図2に示すように、空気調和装置(1)は、ホース(2)と、液連絡管(3)と、ガス連絡管(4)とを有する。空調室内機(30)と調湿ユニット(20)とは、ホース(2)を介して互いに接続される。空調室内機(30)と空調室外機(10)とは、液連絡管(3)およびガス連絡管(4)を介して互いに接続される。これにより、冷媒回路(R)を含む空調要素(5)が構成される。冷媒回路(R)には、冷媒が充填される。冷媒は、ジフルオロメタンである。ただし、冷媒はジフルオロメタンに限定されない。冷媒回路(R)は、蒸気圧縮式の冷凍サイクルを行う。 As shown in Figures 1 and 2, the air conditioner (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4). The air conditioner indoor unit (30) and the humidity control unit (20) are connected to each other via the hose (2). The air conditioner indoor unit (30) and the air conditioner outdoor unit (10) are connected to each other via the liquid connection pipe (3) and the gas connection pipe (4). This forms an air conditioning element (5) including a refrigerant circuit (R). The refrigerant circuit (R) is filled with a refrigerant. The refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane. The refrigerant circuit (R) performs a vapor compression refrigeration cycle.
 冷媒回路(R)は、主として、圧縮機(12)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)と、室内熱交換器(34)とを有する。 The refrigerant circuit (R) mainly includes a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34).
 冷媒回路(R)は、四方切換弁(16)の切り換えに応じて第1冷凍サイクルと第2冷凍サイクルとを行う。第1冷凍サイクルは、室内熱交換器(34)を蒸発器として機能させ、室外熱交換器(14)を放熱器として機能させる冷凍サイクルである。第2冷凍サイクルは、室内熱交換器(34)を放熱器として機能させ、室外熱交換器(14)を蒸発器として機能させる冷凍サイクルである。 The refrigerant circuit (R) performs a first refrigeration cycle or a second refrigeration cycle depending on the switching of the four-way switching valve (16). The first refrigeration cycle is a refrigeration cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator. The second refrigeration cycle is a refrigeration cycle in which the indoor heat exchanger (34) functions as a radiator and the outdoor heat exchanger (14) functions as an evaporator.
 (2)詳細構成
 (2-1)空調室外機
 図2および図4に示すように、空調室外機(10)は、室外ケーシング(11)と、圧縮機(12)と、室外ファン(13)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)とを有する。
(2) Detailed Configuration (2-1) Air Conditioning Outdoor Unit As shown in Figures 2 and 4, the air conditioning outdoor unit (10) has an outdoor casing (11), a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
 室外ケーシング(11)の内部には、仕切板(18)が設けられる。仕切板(18)は、室外ケーシング(11)の内部を、第1空間(S1)と第2空間(S2)とに区画する。第1空間(S1)には、圧縮機(12)および室外熱交換器(14)が設けられる。厳密には、第1空間(S1)には、圧縮機(12)、室外ファン(13)、室外熱交換器(14)、膨張弁(15)、および四方切換弁(16)が設けられる。室外ケーシング(11)には、室外吸込口(11a)と、室外吹出口(11b)と、吸湿側吸込口(61a)と、吸湿側排気口(61b)とが形成される。室外吸込口(11a)は、室外ケーシング(11)の後側に形成される。室外吸込口(11a)は、室外空気(室外の空気)を吸い込むための開口である。室外吹出口(11b)は、室外ケーシング(11)の前側に形成される。室外吹出口(11b)は、室外熱交換器(14)を通過した空気を吹き出すための開口である。室外ケーシング(11)の内部には、室外吸込口(11a)から室外吹出口(11b)に亘って室外空気通路(11c)が形成される。 A partition plate (18) is provided inside the outdoor casing (11). The partition plate (18) divides the interior of the outdoor casing (11) into a first space (S1) and a second space (S2). The first space (S1) is provided with a compressor (12) and an outdoor heat exchanger (14). Strictly speaking, the first space (S1) is provided with the compressor (12), the outdoor fan (13), the outdoor heat exchanger (14), the expansion valve (15), and the four-way switching valve (16). The outdoor casing (11) is formed with an outdoor suction port (11a), an outdoor outlet port (11b), a moisture absorption side suction port (61a), and a moisture absorption side exhaust port (61b). The outdoor suction port (11a) is formed on the rear side of the outdoor casing (11). The outdoor suction port (11a) is an opening for drawing in outdoor air (air from outside the room). The outdoor outlet (11b) is formed on the front side of the outdoor casing (11). The outdoor outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14). Inside the outdoor casing (11), an outdoor air passage (11c) is formed from the outdoor suction port (11a) to the outdoor outlet (11b).
 圧縮機(12)は、低圧のガス冷媒を吸入して圧縮する。圧縮機(12)は、第1モータ(M1)によって駆動される。圧縮機(12)は、インバータ回路から第1モータ(M1)へ電力が供給される可変容量式の圧縮機である。圧縮機(12)は、第1モータ(M1)の運転周波数(回転数)を調整することで、運転容量が変更可能に構成される。圧縮機(12)は、その内部が高圧冷媒で満たされる、いわゆる高圧ドーム式である。圧縮機(12)の運転時には、圧縮機(12)から発する熱がその周囲へ放出される。 The compressor (12) sucks in and compresses low-pressure gas refrigerant. The compressor (12) is driven by a first motor (M1). The compressor (12) is a variable displacement compressor in which power is supplied to the first motor (M1) from an inverter circuit. The compressor (12) is configured so that its operating capacity can be changed by adjusting the operating frequency (rotation speed) of the first motor (M1). The compressor (12) is a so-called high-pressure dome type compressor in which the inside is filled with high-pressure refrigerant. When the compressor (12) is operating, heat generated by the compressor (12) is released to the surroundings.
 室外ファン(13)は、室外空気通路(11c)に配置される。室外ファン(13)は、第2モータ(M2)の駆動により回転する。室外ファン(13)により搬送される空気は、室外吸込口(11a)から室外ケーシング(11)内に吸い込まれる。この空気は、室外空気通路(11c)を流れて、室外吹出口(11b)から室外ケーシング(11)の外部に吹き出される。室外ファン(13)は、室外熱交換器(14)を通過させるように室外空気を搬送する。 The outdoor fan (13) is disposed in the outdoor air passage (11c). The outdoor fan (13) is rotated by being driven by the second motor (M2). Air transported by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passage (11c) and is blown out of the outdoor casing (11) through the outdoor outlet port (11b). The outdoor fan (13) transports the outdoor air so that it passes through the outdoor heat exchanger (14).
 室外熱交換器(14)は、室外空気通路(11c)において室外ファン(13)の上流側に配置される。本例の室外熱交換器(14)は、フィンアンドチューブ式の熱交換器である。室外熱交換器(14)は、その内部を流れる冷媒と、室外ファン(13)によって搬送される室外空気とを熱交換させる。 The outdoor heat exchanger (14) is disposed upstream of the outdoor fan (13) in the outdoor air passage (11c). In this example, the outdoor heat exchanger (14) is a fin-and-tube type heat exchanger. The outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air transported by the outdoor fan (13).
 膨張弁(15)は、冷媒を減圧する。膨張弁(15)は、開度が調節可能な電動式の膨張弁である。減圧機構は、感温式の膨張弁、膨張機、キャピラリーチューブなどであってもよい。膨張弁(15)は、冷媒回路(R)の液ラインに接続されていればよく、空調室内機(30)に設けられてもよい。 The expansion valve (15) reduces the pressure of the refrigerant. The expansion valve (15) is an electrically operated expansion valve whose opening is adjustable. The pressure reducing mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like. The expansion valve (15) only needs to be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
 四方切換弁(16)は、第1ポート(P1)と、第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)を有する。第1ポート(P1)は、圧縮機(12)の吐出部に繋がる。第2ポート(P2)は、圧縮機(12)の吸入部に繋がる。第3ポート(P3)は、室外熱交換器(14)のガス端部に繋がる。第4ポート(P4)は、ガス連絡管(4)に繋がる。 The four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3), and a fourth port (P4). The first port (P1) is connected to the discharge portion of the compressor (12). The second port (P2) is connected to the suction portion of the compressor (12). The third port (P3) is connected to the gas end of the outdoor heat exchanger (14). The fourth port (P4) is connected to the gas connection pipe (4).
 四方切換弁(16)は、第1状態(図2の実線で示す状態)と、第2状態(図2の破線で示す状態)とに切り換えられる。第1状態の四方切換弁(16)は、第1ポート(P1)と第3ポート(P3)とを連通させ、且つ第2ポート(P2)と第4ポート(P4)とを連通させる。第2状態の四方切換弁(16)は、第1ポート(P1)と第4ポート(P4)とを連通させ、且つ第2ポート(P2)と第3ポート(P3)とを連通させる。 The four-way switching valve (16) can be switched between a first state (indicated by a solid line in FIG. 2) and a second state (indicated by a dashed line in FIG. 2). In the first state, the four-way switching valve (16) connects the first port (P1) to the third port (P3) and also connects the second port (P2) to the fourth port (P4). In the second state, the four-way switching valve (16) connects the first port (P1) to the fourth port (P4) and also connects the second port (P2) to the third port (P3).
 (2-2)調湿ユニット
 調湿ユニット(20)は、室外に設置される。本例の調湿ユニット(20)は、空調室外機(10)と一体化される。調湿ユニット(20)は、湿度を調節した空気を空調室内機(30)に送る。調湿ユニット(20)は、室外ケーシング(11)と、調湿ロータ(22)と、第1ファン(26)と、第2ファン(23)と、ヒータ(25)と、第1切換ダンパ(24)と、第2切換ダンパ(29)(図5参照)とを有する。室外ケーシング(11)は、空調室外機(10)と調湿ユニット(20)とに共用される。
(2-2) Humidity Control Unit The humidity control unit (20) is installed outdoors. In this example, the humidity control unit (20) is integrated with the air conditioner outdoor unit (10). The humidity control unit (20) sends humidity-controlled air to the air conditioner indoor unit (30). The humidity control unit (20) has an outdoor casing (11), a humidity control rotor (22), a first fan (26), a second fan (23), a heater (25), a first switching damper (24), and a second switching damper (29) (see FIG. 5). The outdoor casing (11) is shared by the air conditioner outdoor unit (10) and the humidity control unit (20).
 室外ケーシング(11)の内部には、上述した第2空間(S2)が区画される。第2空間(S2)には、調湿ロータ(22)およびヒータ(25)が設けられる。厳密には、第2空間(S2)には、調湿ロータ(22)、第1ファン(26)、第2ファン(23)、ヒータ(25)、第1切換ダンパ(24)、および第2切換ダンパ(29)が設けられる。室外ケーシング(11)には、吸排気口(21a)と、接続口(21b)と、室外排気口(21c)とが形成される。吸排気口(21a)は、室外空気および室内空気が流通する開口である。室外ケーシング(11)の内部には、吸排気口(21a)から接続口(21b)まで続く第1通路(27)が形成される。室外ケーシング(11)の内部には、吸湿側吸込口(61a)から吸湿側排気口(61b)まで続く第3通路(62)が形成される。接続口(21b)には、ホース(2)が接続される。 The second space (S2) described above is defined inside the outdoor casing (11). The second space (S2) is provided with a humidity control rotor (22) and a heater (25). Strictly speaking, the second space (S2) is provided with the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), the first switching damper (24), and the second switching damper (29). The outdoor casing (11) is formed with an intake and exhaust port (21a), a connection port (21b), and an outdoor exhaust port (21c). The intake and exhaust port (21a) is an opening through which outdoor air and room air flow. Inside the outdoor casing (11), a first passage (27) is formed, which continues from the intake and exhaust port (21a) to the connection port (21b). A third passage (62) is formed inside the outdoor casing (11) and extends from the moisture absorption side inlet (61a) to the moisture absorption side exhaust port (61b). A hose (2) is connected to the connection port (21b).
 第1通路(27)には、第2通路(28)が接続される。第2通路(28)は、第1通路(27)の中途部から室外排気口(21c)まで続く。第2通路(28)の流入端は、第1通路(27)における調湿ロータ(22)の下流側(厳密には、第1ファン(26)の下流側)に接続する。第1通路(27)、および第2通路(28)において、下流は給気運転時に空気が流れる方向(図2の実線の矢印の指す方向)の下流であり、上流は給気運転時に空気が流れる方向の上流である。 The second passage (28) is connected to the first passage (27). The second passage (28) continues from the middle of the first passage (27) to the outdoor exhaust port (21c). The inlet end of the second passage (28) is connected to the downstream side of the humidity control rotor (22) in the first passage (27) (more precisely, the downstream side of the first fan (26)). In the first passage (27) and the second passage (28), the downstream is downstream of the direction in which air flows during air supply operation (the direction indicated by the solid arrow in FIG. 2), and the upstream is upstream of the direction in which air flows during air supply operation.
 調湿ロータ(22)は、第1通路(27)を流れる空気が通過する。調湿ロータ(22)は空気中の水分を吸着する吸着部材である。調湿ロータ(22)は、例えば、ハニカム構造を有する円盤状の調湿用ロータである。調湿ロータ(22)は、吸湿性を有する高分子材料からなる吸着剤を保持する。この吸湿性を有する高分子材料は、いわゆる収着剤の一種である。吸湿性を有する高分子材料からなる吸着剤では、空気中の水蒸気が吸着剤の表面に吸着される現象と、水蒸気が吸着剤の内部に吸収される現象との両方が生じる。なお、調湿ロータ(22)が保持する吸着剤は、シリカゲル、ゼオライト、アルミナ等の無機材料であってもよい。吸着剤は、空気中の水分を吸着する性質を有する。吸湿剤は、加熱されることにより、吸着した水分を脱離する性質を有する。 The humidity control rotor (22) is passed through by the air flowing through the first passage (27). The humidity control rotor (22) is an adsorbent member that adsorbs moisture in the air. The humidity control rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure. The humidity control rotor (22) holds an adsorbent made of a polymeric material having hygroscopic properties. This polymeric material having hygroscopic properties is a type of so-called sorption agent. In an adsorbent made of a polymeric material having hygroscopic properties, both a phenomenon occurs in which water vapor in the air is adsorbed on the surface of the adsorbent, and a phenomenon in which water vapor is absorbed inside the adsorbent. The adsorbent held by the humidity control rotor (22) may be an inorganic material such as silica gel, zeolite, or alumina. The adsorbent has the property of adsorbing moisture in the air. The moisture absorbent has the property of desorbing the adsorbed moisture when heated.
 調湿ロータ(22)は、第3モータ(M3)の駆動によって回転する。調湿ロータ(22)は、第1通路(27)に位置する調湿領域(22A)を有する。調湿領域(22A)では、吸着剤に吸着した水分を空気中に脱離させる再生動作、および空気中の水分を吸着剤に吸着させる吸着動作が行われる。 The humidity control rotor (22) is rotated by being driven by the third motor (M3). The humidity control rotor (22) has a humidity control area (22A) located in the first passage (27). In the humidity control area (22A), a regeneration operation is performed in which moisture adsorbed in the adsorbent is released into the air, and an adsorption operation is performed in which moisture in the air is adsorbed into the adsorbent.
 第1ファン(26)は、第1通路(27)における調湿領域(22A)の下流側に配置される。第1ファン(26)は、調湿ロータ(22)の調湿領域(22A)を通過させるように室外空気を搬送する。第1ファン(26)は、第4モータ(M4)の駆動によって回転する。第1ファン(26)は、第4モータ(M4)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。 The first fan (26) is disposed downstream of the humidity control area (22A) in the first passage (27). The first fan (26) transports outdoor air so that it passes through the humidity control area (22A) of the humidity control rotor (22). The first fan (26) is rotated by being driven by the fourth motor (M4). The first fan (26) is configured so that the air volume can be switched between multiple levels by adjusting the rotation speed of the fourth motor (M4).
 ヒータ(25)は、第1通路(27)における調湿領域(22A)の上流側に配置される。ヒータ(25)は、第1通路(27)を流れる空気を加熱する。ヒータ(25)は、出力を可変に構成される。ヒータ(25)を通過する空気の温度は、ヒータ(25)の出力に応じて変化する。 The heater (25) is disposed upstream of the humidity control region (22A) in the first passage (27). The heater (25) heats the air flowing through the first passage (27). The heater (25) is configured to have variable output. The temperature of the air passing through the heater (25) changes depending on the output of the heater (25).
 第2ファン(23)は、第3通路(62)に配置される。第2ファン(23)は、第6モータ(M6)の駆動によって回転する。第2ファン(23)は、第3通路(62)を通過させるようにして室外空気を搬送する。第2ファン(23)により搬送される室外空気は、吸湿側吸込口(61a)を通じて第3通路(62)内へ送られ、吸湿側排気口(61b)を通じて室外へ排出される。第3通路(62)には、空気流れの上流側から下流側に向かって順に、調湿ロータ(22)の吸着領域(22C)および第2ファン(23)が配置される。 The second fan (23) is disposed in the third passage (62). The second fan (23) is rotated by being driven by the sixth motor (M6). The second fan (23) transports outdoor air by passing through the third passage (62). The outdoor air transported by the second fan (23) is sent into the third passage (62) through the moisture absorption side inlet (61a) and is discharged to the outside through the moisture absorption side exhaust port (61b). In the third passage (62), the adsorption region (22C) of the humidity control rotor (22) and the second fan (23) are disposed in this order from the upstream side to the downstream side of the air flow.
 第1切換ダンパ(24)は、第1通路(27)における第2通路(28)の接続部分に設けられる。流路切換機構は、流路切換弁やシャッターなどで構成されてもよい。第1切換ダンパ(24)は、第3状態(図2の実線で示す状態)と、第4状態(図2の破線で示す状態)とに切り換わる。第3状態の第1切換ダンパ(24)は、第1通路(27)とホース(2)の内部とを連通させ、第1通路(27)と第2通路(28)とを遮断する。第4状態の第1切換ダンパ(24)は、第1通路(27)とホース(2)の内部とを遮断し、第1通路(27)と第2通路(28)とを連通させる。第1切換ダンパ(24)の状態は、モータのような動力源の駆動により切り換えられる。 The first switching damper (24) is provided at the connection portion of the first passage (27) with the second passage (28). The passage switching mechanism may be constituted by a passage switching valve, a shutter, or the like. The first switching damper (24) switches between a third state (a state shown by a solid line in FIG. 2) and a fourth state (a state shown by a dashed line in FIG. 2). In the third state, the first switching damper (24) connects the first passage (27) with the inside of the hose (2) and blocks the first passage (27) from the second passage (28). In the fourth state, the first switching damper (24) connects the first passage (27) with the inside of the hose (2) and connects the first passage (27) with the second passage (28). The state of the first switching damper (24) is switched by driving a power source such as a motor.
 第2切換ダンパ(29)は、第1通路(27)に配置される。図5および図6に示すように、第2切換ダンパ(29)は、ダンパケーシング(29A)内に設けられる。ダンパケーシング(29A)内には、第2切換ダンパ(29)の内部の空間(S31)と、第2切換ダンパ(29)が配置される空間(S32)と、空間(S33)とが設けられる。第2切換ダンパ(29)は、空間(S32)内にスライド自在に設けられる。ダンパケーシング(29A)には、空間(S32)とダンパケーシング(29A)の外部とを連通する第1出入口(29a)と第2出入口(29b)とが設けられる。第1出入口(29a)は、第1通路(27)を通じて吸排気口(21a)と連通する。第2出入口(29b)は、第1通路(27)を通じて室外ケーシング(11)におけるホース(2)との接続口(21b)と連通する。第2出入口(29b)は、第1通路(27)および第2通路(28)を通じて室外排気口(21c)と連通する。ダンパケーシング(29A)には、空間(S32)と空間(S33)とを連通する第1連通口(29c)と第2連通口(29d)とが設けられる。第2切換ダンパ(29)は、空間(S32)内でスライドすることで、第5状態と第6状態とに切り換えられる。図5に示すように、第5状態の第2切換ダンパ(29)は、空気を吸い込む入口を第1出入口(29a)とし、空気を排出する出口を第2出入口(29b)とする。図6に示すように、第6状態の第2切換ダンパ(29)は、空気を吸い込む入口を第2出入口(29b)とし、空気を排出する出口を第1出入口(29a)とする。第2切換ダンパ(29)の状態は、モータのような動力源の駆動により切り換えられる。 The second switching damper (29) is disposed in the first passage (27). As shown in FIG. 5 and FIG. 6, the second switching damper (29) is disposed in a damper casing (29A). In the damper casing (29A), there are provided a space (S31) inside the second switching damper (29), a space (S32) in which the second switching damper (29) is disposed, and a space (S33). The second switching damper (29) is disposed so as to be slidable in the space (S32). The damper casing (29A) is provided with a first inlet (29a) and a second inlet (29b) that communicate the space (S32) with the outside of the damper casing (29A). The first inlet (29a) communicates with the intake/exhaust port (21a) through the first passage (27). The second port (29b) communicates with the connection port (21b) for the hose (2) in the outdoor casing (11) through the first passage (27). The second port (29b) communicates with the outdoor exhaust port (21c) through the first passage (27) and the second passage (28). The damper casing (29A) is provided with a first communication port (29c) and a second communication port (29d) that communicate the space (S32) with the space (S33). The second switching damper (29) is switched between the fifth state and the sixth state by sliding in the space (S32). As shown in FIG. 5, the second switching damper (29) in the fifth state has an inlet for sucking air as the first port (29a) and an outlet for discharging air as the second port (29b). As shown in FIG. 6, the second switching damper (29) in the sixth state has the second inlet (29b) as the inlet for sucking in air and the first inlet (29a) as the outlet for discharging air. The state of the second switching damper (29) is switched by driving a power source such as a motor.
 (2-3)空調室内機
 図1~図3に示すように、空調室内機(30)は、室内(I)に設置される。空調室内機(30)は、室内(I)を形成する部屋の壁(WL)に設置される、壁掛け式である。空調室内機(30)は、室内ケーシング(31)と、室内ファン(32)と、エアフィルタ(33)と、室内熱交換器(34)と、ドレンパン(35)と、風向調節部(36)とを有する。
(2-3) Air Conditioning Indoor Unit As shown in Figures 1 to 3, the air conditioning indoor unit (30) is installed in the room (I). The air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of a room that forms the room (I). The air conditioning indoor unit (30) has an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and an air direction adjustment unit (36).
 室内ケーシング(31)は、室内ファン(32)、エアフィルタ(33)、室内熱交換器(34)およびドレンパン(35)を収容する。室内ケーシング(31)には、室内吸込口(31a)と、室内吹出口(31b)とが形成される。室内吸込口(31a)は、室内ケーシング(31)の上側に配置される。室内吸込口(31a)は、室内の空気を吸い込むための開口である。室内吹出口(31b)は、室内ケーシング(31)の下側に配置される。室内吹出口(31b)は、熱交換後の空気または調湿用の空気を吹き出すための開口である。室内ケーシング(31)の内部には、室内吸込口(31a)から室内吹出口(31b)に続く室内空気通路(31c)が設けられている。 The indoor casing (31) houses the indoor fan (32), the air filter (33), the indoor heat exchanger (34), and the drain pan (35). The indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet port (31b). The indoor suction port (31a) is disposed on the upper side of the indoor casing (31). The indoor suction port (31a) is an opening for drawing in indoor air. The indoor outlet port (31b) is disposed on the lower side of the indoor casing (31). The indoor outlet port (31b) is an opening for blowing out air after heat exchange or air for humidity control. An indoor air passage (31c) continuing from the indoor suction port (31a) to the indoor outlet port (31b) is provided inside the indoor casing (31).
 室内ファン(32)は、室内空気通路(31c)の略中央部分に配置される。室内ファン(32)は、例えばクロスフローファンである。室内ファン(32)は、第5モータ(M5)の駆動により回転する。室内ファン(32)は、室内(I)の空気を室内空気通路(31c)に取り込んで搬送する。室内ファン(32)により搬送される空気は、室内吸込口(31a)から室内ケーシング(31)内に吸い込まれる。この空気は、室内空気通路(31c)を流れて、室内吹出口(31b)から室内ケーシング(31)の外部に吹き出される。 The indoor fan (32) is disposed approximately in the center of the indoor air passage (31c). The indoor fan (32) is, for example, a cross-flow fan. The indoor fan (32) is rotated by driving the fifth motor (M5). The indoor fan (32) takes in air from the room (I) into the indoor air passage (31c) and transports it. The air transported by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passage (31c) and is blown out of the indoor casing (31) through the indoor outlet port (31b).
 室内ファン(32)は、室内熱交換器(34)を通過させるように室内(I)の空気を搬送する。室内吹出口(31b)から吹き出された空気は、室内(I)に供給される。室内ファン(32)は、第5モータ(M5)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。 The indoor fan (32) transports air in the room (I) so that the air passes through the indoor heat exchanger (34). The air blown out from the indoor air outlet (31b) is supplied to the room (I). The indoor fan (32) is configured so that the air volume can be switched between multiple levels by adjusting the rotation speed of the fifth motor (M5).
 エアフィルタ(33)は、室内空気通路(31c)において室内熱交換器(34)の上流側に配置される。エアフィルタ(33)は、室内熱交換器(34)に供給される空気が実質的に全て通過するように室内ケーシング(31)に取り付けられる。エアフィルタ(33)は、室内吸込口(31a)から吸い込まれる空気中の塵埃を捕集する。 The air filter (33) is disposed in the indoor air passage (31c) upstream of the indoor heat exchanger (34). The air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through the air filter (33). The air filter (33) collects dust in the air sucked in from the indoor suction port (31a).
 室内熱交換器(34)は、室内空気通路(31c)において室内ファン(32)の上流側に配置される。本例の室内熱交換器(34)は、フィンアンドチューブ式の熱交換器である。室内熱交換器(34)は、その内部の冷媒と、室内ファン(32)によって搬送される室内(I)の空気とを熱交させる。 The indoor heat exchanger (34) is disposed upstream of the indoor fan (32) in the indoor air passage (31c). In this example, the indoor heat exchanger (34) is a fin-and-tube type heat exchanger. The indoor heat exchanger (34) exchanges heat between the refrigerant therein and the air in the room (I) transported by the indoor fan (32).
 ドレンパン(35)は、室内熱交換器(34)の前方下側および後方下側に配置される。ドレンパン(35)は、空調室内機(30)の室内ケーシング(31)の内部で発生した結露水を受ける。室内熱交換器(34)のフィンの表面に発生した結露水は、その表面を伝って自重により流下し、ドレンパン(35)で受けられる。 The drain pan (35) is disposed on the front and rear lower sides of the indoor heat exchanger (34). The drain pan (35) receives condensation water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensation water generated on the surfaces of the fins of the indoor heat exchanger (34) flows down the surfaces due to its own weight and is received in the drain pan (35).
 風向調節部(36)は、室内吹出口(31b)から吹き出される空気の風向きを調節する。風向調節部(36)は、フラップ(37)を有する。フラップ(37)は、室内吹出口(31b)の長手方向に沿って延びる長板状に形成される。フラップ(37)は、モータの駆動により回動する。フラップ(37)は、その回動に伴い室内吹出口(31b)を開閉する。 The airflow direction adjustment section (36) adjusts the direction of the air blown out from the indoor air outlet (31b). The airflow direction adjustment section (36) has a flap (37). The flap (37) is formed in a long plate shape extending along the longitudinal direction of the indoor air outlet (31b). The flap (37) rotates when driven by a motor. The flap (37) opens and closes the indoor air outlet (31b) as it rotates.
 フラップ(37)は、傾斜角度を段階的に変えられるように構成される。本例のフラップ(37)が調節される位置は、6つの位置を含む。これら6つの位置は、閉位置と、5つの開位置とを含む。5つの開位置には、図3に示す略水平吹出位置を含む。閉位置のフラップ(37)は、室内吹出口(31b)を実質的に閉じる。閉位置のフラップ(37)と室内吹出口(31b)との間には、隙間が形成されてもよい。上述したように、空調室内機(30)は、ホース(2)を介して調湿ユニット(20)と接続される。空調室内機(30)に接続するホース(2)の端部は、室内空気通路(31c)における室内熱交換器(34)の上流に連通する。調湿ユニット(20)から空調室内機(30)へ送られる空気は、ホース(2)を通って室内空気通路(31c)における室内熱交換器(34)の上流に供給される。空調室内機(30)から調湿ユニット(20)へ送られる空気は、室内空気通路(31c)における室内熱交換器(34)の上流からホース(2)へ流入する。 The flap (37) is configured so that the inclination angle can be changed in stages. The positions to which the flap (37) in this example can be adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the substantially horizontal blowing position shown in FIG. 3. The flap (37) in the closed position substantially closes the indoor air outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor air outlet (31b). As described above, the air conditioning indoor unit (30) is connected to the humidity control unit (20) via the hose (2). The end of the hose (2) connected to the air conditioning indoor unit (30) communicates with the indoor heat exchanger (34) upstream in the indoor air passage (31c). Air sent from the humidity control unit (20) to the air conditioning indoor unit (30) is supplied to the indoor air passage (31c) upstream of the indoor heat exchanger (34) through the hose (2). Air sent from the air conditioning indoor unit (30) to the humidity control unit (20) flows into the hose (2) from the upstream of the indoor heat exchanger (34) in the indoor air passage (31c).
 (2-4)リモートコントローラ
 図2および図4に示すように、空気調和装置(1)は、リモートコントローラ(40)を備える。リモートコントローラ(40)は、室内(I)においてユーザが操作可能な位置に配置される。リモートコントローラ(40)は、表示部(41)と入力部(42)とを有する。表示部(41)は、所定の情報を表示する。表示部(41)は、例えば液晶モニタによって構成される。所定の情報は、空気調和装置(1)の運転状態や設定温度などを示す情報である。入力部(42)は、ユーザからの各種設定を行う入力操作を受け付ける。入力部(42)は、例えば物理的な複数のスイッチで構成される。ユーザは、リモートコントローラ(40)の入力部(42)を操作することで、空気調和装置(1)の運転モード、目標温度、目標湿度などを設定できる。
(2-4) Remote Controller As shown in FIG. 2 and FIG. 4, the air conditioner (1) includes a remote controller (40). The remote controller (40) is disposed in a position in the room (I) where the user can operate it. The remote controller (40) has a display unit (41) and an input unit (42). The display unit (41) displays predetermined information. The display unit (41) is configured, for example, by a liquid crystal monitor. The predetermined information is information indicating the operating state and set temperature of the air conditioner (1). The input unit (42) accepts input operations for making various settings from the user. The input unit (42) is configured, for example, by a plurality of physical switches. The user can set the operating mode, target temperature, target humidity, and the like of the air conditioner (1) by operating the input unit (42) of the remote controller (40).
 (2-5)センサ
 図2および図4に示すように、空気調和装置(1)は、複数のセンサを有する。複数のセンサは、冷媒用のセンサと、空気用のセンサとを含む。冷媒用のセンサは、高圧冷媒の温度や圧力を検出するセンサ、低圧冷媒の温度や圧力を検出するセンサを含む(図示省略)。
(2-5) Sensors As shown in Figures 2 and 4, the air conditioner (1) has a plurality of sensors. The plurality of sensors includes a sensor for the refrigerant and a sensor for the air. The refrigerant sensors include a sensor for detecting the temperature and pressure of a high-pressure refrigerant and a sensor for detecting the temperature and pressure of a low-pressure refrigerant (not shown).
 空気用のセンサは、外気温度センサ(51)、外気湿度センサ(52)、内気温度センサ(53)、内気湿度センサ(54)、および湿度センサ(55)を含む。外気温度センサ(51)は、空調室外機(10)に設けられる。外気温度センサ(51)は、室外空気の温度を検出する。本例の外気湿度センサ(52)は、第3通路(62)に設けられ、調湿ロータ(22)の上流(例えば、吸湿側吸込口(61a)の周辺)に位置する。外気湿度センサ(52)は、外気温度センサ(51)と同様に、室外ケーシング(11)の室外吸込口(11a)の周辺に設けられてもよい。外気湿度センサ(52)は、室外空気の湿度を検出する。本例の外気湿度センサ(52)は、室外空気の相対湿度を検出するが、絶対湿度を検出してもよい。内気温度センサ(53)および内気湿度センサ(54)は、空調室内機(30)に設けられる。内気温度センサ(53)は、室内空気の温度を検出する。内気湿度センサ(54)は、室内空気の湿度を検出する。内気湿度センサ(54)は、室内空気の相対湿度を検出するが、絶対湿度を検出してもよい。本例の湿度センサ(55)は、第1通路(27)に設けられる。この湿度センサ(55)は、第2切換ダンパ(29)の第2出入口(29b)と、室外ケーシング(11)の接続口(21b)との間に位置する。湿度センサ(55)は、第1通路(27)を流れる空気の湿度を検出する。本例の湿度センサ(55)は、空気の相対湿度を検出するが、絶対湿度を検出してもよい。 The air sensors include an outdoor air temperature sensor (51), an outdoor air humidity sensor (52), an indoor air temperature sensor (53), an indoor air humidity sensor (54), and a humidity sensor (55). The outdoor air temperature sensor (51) is provided in the air conditioner outdoor unit (10). The outdoor air temperature sensor (51) detects the temperature of outdoor air. The outdoor air humidity sensor (52) in this example is provided in the third passage (62) and is located upstream of the humidity control rotor (22) (e.g., around the moisture absorption side inlet (61a)). The outdoor air humidity sensor (52), like the outdoor air temperature sensor (51), may be provided around the outdoor inlet (11a) of the outdoor casing (11). The outdoor air humidity sensor (52) detects the humidity of outdoor air. The outdoor air humidity sensor (52) in this example detects the relative humidity of outdoor air, but may also detect absolute humidity. The indoor air temperature sensor (53) and the indoor air humidity sensor (54) are provided in the air conditioner indoor unit (30). The indoor air temperature sensor (53) detects the temperature of the indoor air. The indoor air humidity sensor (54) detects the humidity of the indoor air. The indoor air humidity sensor (54) detects the relative humidity of the indoor air, but may detect the absolute humidity. The humidity sensor (55) in this example is provided in the first passage (27). This humidity sensor (55) is located between the second inlet/outlet (29b) of the second switching damper (29) and the connection port (21b) of the outdoor casing (11). The humidity sensor (55) detects the humidity of the air flowing through the first passage (27). The humidity sensor (55) in this example detects the relative humidity of the air, but may detect the absolute humidity.
 (2-6)制御部
 図2および図4に示すように、空気調和装置(1)は、制御部(C)を有する。制御部(C)は、冷媒回路(R)の動作を制御する。制御部(C)は、空調室外機(10)、調湿ユニット(20)、および空調室内機(30)の動作を制御する。制御部(C)は、室外制御部(OC)と、室内制御部(IC)と、リモートコントローラ(40)とを含む。室外制御部(OC)は空調室外機(10)に設けられる。室内制御部(IC)は空調室内機(30)に設けられる。室内制御部(IC)および室外制御部(OC)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
(2-6) Control Unit As shown in FIG. 2 and FIG. 4, the air conditioner (1) has a control unit (C). The control unit (C) controls the operation of the refrigerant circuit (R). The control unit (C) controls the operation of the air conditioning outdoor unit (10), the humidity control unit (20), and the air conditioning indoor unit (30). The control unit (C) includes an outdoor control unit (OC), an indoor control unit (IC), and a remote controller (40). The outdoor control unit (OC) is provided in the air conditioning outdoor unit (10). The indoor control unit (IC) is provided in the air conditioning indoor unit (30). Each of the indoor control unit (IC) and the outdoor control unit (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit. The MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. The memory stores various programs to be executed by the CPU.
 室外制御部(OC)には、外気温度センサ(51)の検出値、外気湿度センサ(52)の検出値、および湿度センサ(55)の検出値が入力される。 The outdoor control unit (OC) receives the detection values of the outdoor air temperature sensor (51), the outdoor air humidity sensor (52), and the humidity sensor (55).
 室外制御部(OC)は、圧縮機(12)、室外ファン(13)、膨張弁(15)および四方切換弁(16)に接続される。室外制御部(OC)は、空調室外機(10)の運転の実行および停止を行うための制御信号を、圧縮機(12)、室外ファン(13)、膨張弁(15)、および四方切換弁(16)に出力する。室外制御部(OC)は、圧縮機(12)の第1モータ(M1)の運転周波数、室外ファン(13)の第2モータ(M2)の回転数、四方切換弁(16)の状態および膨張弁(15)の開度を制御する。 The outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15), and four-way switching valve (16). The outdoor control unit (OC) outputs control signals for starting and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), outdoor fan (13), expansion valve (15), and four-way switching valve (16). The outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the opening of the expansion valve (15).
 室外制御部(OC)はさらに、調湿ロータ(22)、第1ファン(26)、第2ファン(23)、ヒータ(25)、および第1切換ダンパ(24)に接続される。室外制御部(OC)は、調湿ユニット(20)の運転の実行および停止を行うための制御信号を、調湿ロータ(22)、第1ファン(26)、第2ファン(23)、ヒータ(25)、および第1切換ダンパ(24)に出力する。室外制御部(OC)は、調湿ロータ(22)の第3モータ(M3)、第1ファン(26)の第4モータ(M4)、第2ファン(23)の第6モータ(M6)の回転数と、調湿ロータ(22)および第1切換ダンパ(24)の動作と、ヒータ(25)の出力とを制御する。 The outdoor control unit (OC) is further connected to the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), and the first switching damper (24). The outdoor control unit (OC) outputs control signals for starting and stopping the operation of the humidity control unit (20) to the humidity control rotor (22), the first fan (26), the second fan (23), the heater (25), and the first switching damper (24). The outdoor control unit (OC) controls the rotation speeds of the third motor (M3) of the humidity control rotor (22), the fourth motor (M4) of the first fan (26), and the sixth motor (M6) of the second fan (23), the operation of the humidity control rotor (22) and the first switching damper (24), and the output of the heater (25).
 室内制御部(IC)には、内気温度センサ(53)の検出値、および内気湿度センサ(54)の検出値が入力される。 The indoor control unit (IC) receives the detection values of the indoor air temperature sensor (53) and the indoor air humidity sensor (54).
 室内制御部(IC)は、リモートコントローラ(40)と通信可能に接続される。室内制御部(IC)は、室内ファン(32)に接続される。室内制御部(IC)は、空調室内機(30)の運転の実行および停止を行うための制御信号を、室内ファン(32)に出力する。室内制御部(IC)は、室内ファン(32)の第5モータ(M5)の回転数を制御する。室内制御部(IC)は、室外制御部(OC)と通信可能に接続される。 The indoor control unit (IC) is connected to the remote controller (40) so as to be able to communicate with it. The indoor control unit (IC) is connected to the indoor fan (32). The indoor control unit (IC) outputs a control signal to the indoor fan (32) for starting and stopping the operation of the air conditioning indoor unit (30). The indoor control unit (IC) controls the rotation speed of the fifth motor (M5) of the indoor fan (32). The indoor control unit (IC) is connected to the outdoor control unit (OC) so as to be able to communicate with it.
 リモートコントローラ(40)は、室内制御部(IC)と通信可能に接続される。リモートコントローラ(40)は、入力部(42)でのユーザの操作に応じて、空気調和装置(1)の運転を指示する指示信号を室内制御部(IC)に送信する。室内制御部(IC)は、リモートコントローラ(40)からの指示信号を受信すると、その指示信号を室外制御部(OC)に送信する。室内制御部(IC)は、その指示信号に従い、空調室内機(30)の上述した各機器の動作を制御する。室外制御部(OC)が、室内制御部(IC)からの指示信号を受信すると、空調室外機(10)および調湿ユニット(20)の上述した各機器の動作を制御する。 The remote controller (40) is connected to the indoor control unit (IC) so as to be able to communicate with it. The remote controller (40) transmits an instruction signal to the indoor control unit (IC) instructing the operation of the air conditioner (1) in response to a user's operation on the input unit (42). When the indoor control unit (IC) receives an instruction signal from the remote controller (40), it transmits the instruction signal to the outdoor control unit (OC). The indoor control unit (IC) controls the operation of the above-mentioned devices of the air conditioning indoor unit (30) in accordance with the instruction signal. When the outdoor control unit (OC) receives an instruction signal from the indoor control unit (IC), it controls the operation of the above-mentioned devices of the air conditioning outdoor unit (10) and the humidity control unit (20).
 (3)運転動作
 空気調和装置(1)が実行する運転モードは、冷房運転、暖房運転、給気運転、排気運転、除湿運転、加湿運転、除湿冷房運転、および加湿暖房運転を含む。制御部(C)は、リモートコントローラ(40)からの指示信号に基づいて、これらの運転を実行させる。
(3) Operational Modes The operational modes performed by the air conditioner (1) include cooling operation, heating operation, supply air operation, exhaust operation, dehumidification operation, humidification operation, dehumidification-cooling operation, and humidification-heating operation. The control unit (C) causes these operations to be performed based on instruction signals from the remote controller (40).
 (3-1)冷房運転
 冷房運転は、蒸発器として機能する室内熱交換器(34)により室内(I)の空気を冷却する運転である。調湿ユニット(20)は停止する。冷房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第1状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。冷房運転では、圧縮した冷媒が室外熱交換器(14)で放熱し、室内熱交換器(34)で蒸発する第1冷凍サイクルが行われる。
(3-1) Cooling Operation Cooling operation is an operation in which the air in the room (I) is cooled by the indoor heat exchanger (34) functioning as an evaporator. The humidity control unit (20) is stopped. In cooling operation, the control unit (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32). The control unit (C) sets the four-way switching valve (16) to the first state. The control unit (C) appropriately adjusts the opening of the expansion valve (15). In cooling operation, a first refrigeration cycle is performed in which compressed refrigerant releases heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
 冷房運転では、内気温度センサ(53)で検出する室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標蒸発温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の蒸発温度が目標蒸発温度に収束するように、圧縮機(12)の回転数を制御する。冷房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に冷却される。室内熱交換器(34)によって冷却された空気は、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。 In cooling operation, the control unit (C) adjusts the target evaporation temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature. The control unit (C) controls the rotation speed of the compressor (12) so that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature. In cooling operation, air transported by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34). The air cooled by the indoor heat exchanger (34) is supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
 (3-2)暖房運転
 暖房運転は、放熱器として機能する室内熱交換器(34)により室内(I)の空気を加熱する運転である。調湿ユニット(20)は停止する。暖房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第2状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。暖房運転では、圧縮機(12)で圧縮した冷媒が室内熱交換器(34)で放熱し、室外熱交換器(14)で蒸発する第2冷凍サイクルが行われる。
(3-2) Heating Operation Heating operation is an operation in which the air in the room (I) is heated by the indoor heat exchanger (34) functioning as a radiator. The humidity control unit (20) is stopped. In heating operation, the control unit (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32). The control unit (C) sets the four-way switching valve (16) to the second state. The control unit (C) appropriately adjusts the opening of the expansion valve (15). In heating operation, a second refrigeration cycle is performed in which the refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
 暖房運転では、内気温度センサ(53)によって検出される室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標凝縮温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の凝縮温度が目標凝縮温度に収束するように、圧縮機(12)の回転数を制御する。暖房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に加熱される。室内熱交換器(34)で加熱された空気は、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。 In heating operation, the control unit (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature. The control unit (C) controls the rotation speed of the compressor (12) so that the condensing temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensing temperature. In heating operation, air transported by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34). The air heated by the indoor heat exchanger (34) is supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
 (3-3)給気運転
 給気運転は、室外空気を室内(I)に供給する運転である。給気運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。給気運転では、制御部(C)がヒータ(25)、調湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)に設定し、第2切換ダンパ(29)を第5状態に設定する(図5参照)。給気運転において、第1ファン(26)によって搬送される室外空気は、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。なお、冷房運転または暖房運転と同時に給気運転を行ってもよい。
(3-3) Air Supply Operation Air supply operation is an operation for supplying outdoor air to the room (I). In the air supply operation, as shown by the solid arrow in FIG. 2, outdoor air is sent to the air conditioner indoor unit (30) through the hose (2). In the air supply operation, the control unit (C) stops the heater (25), the humidity control rotor (22), and the second fan (23), and operates the first fan (26). The control unit (C) sets the first switching damper (24) to the third state (the state shown by the solid line in FIG. 2) and sets the second switching damper (29) to the fifth state (see FIG. 5). In the air supply operation, the outdoor air transported by the first fan (26) is sent to the air conditioner indoor unit (30) through the hose (2) and is supplied to the room (I) through the indoor air outlet (31b) of the air conditioner indoor unit (30). The air supply operation may be performed simultaneously with the cooling operation or the heating operation.
 (3-4)排気運転
 排気運転は、室内空気を室外に排出する運転である。排気運転では、図2の破線の矢印で示すように、室内空気がホース(2)を通じて調湿ユニット(20)へ送られる。排気運転では、制御部(C)がヒータ(25)、調湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)に設定し、第2切換ダンパ(29)を第6状態に設定する(図6参照)。排気運転において、第1ファン(26)によって搬送される室内空気は、ホース(2)を通じて調湿ユニット(20)に送られ、調湿ユニット(20)の吸排気口(21a)から室外へ排出される。なお、冷房運転または暖房運転と同時に排気運転を行ってもよい。
(3-4) Exhaust Operation The exhaust operation is an operation for discharging indoor air to the outside of the room. In the exhaust operation, as shown by the dashed arrow in FIG. 2, indoor air is sent to the humidity control unit (20) through the hose (2). In the exhaust operation, the control unit (C) stops the heater (25), the humidity control rotor (22), and the second fan (23), and operates the first fan (26). The control unit (C) sets the first switching damper (24) to the third state (the state shown by the solid line in FIG. 2) and sets the second switching damper (29) to the sixth state (see FIG. 6). In the exhaust operation, the indoor air transported by the first fan (26) is sent to the humidity control unit (20) through the hose (2) and is discharged to the outside of the room from the intake and exhaust port (21a) of the humidity control unit (20). The exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
 (3-5)除湿運転
 除湿運転では、調湿ユニット(20)により除湿した空気を室内(I)に供給する運転である。除湿運転では、調湿ユニット(20)により除湿された空気が間欠的に室内(I)に供給される。調湿ユニット(20)は、第1動作と第2動作とを交互に行う。第1動作は、空気中の水分を調湿ロータ(22)に吸着させるとともに、調湿ロータ(22)で除湿した空気を室内(I)へ供給する動作である。第2動作は、調湿ロータ(22)を再生するとともに、再生に利用された空気を室外へ排出する動作である。
(3-5) Dehumidification Operation In the dehumidification operation, air dehumidified by the humidity control unit (20) is supplied to the room (I). In the dehumidification operation, air dehumidified by the humidity control unit (20) is intermittently supplied to the room (I). The humidity control unit (20) alternately performs a first operation and a second operation. The first operation is an operation in which moisture in the air is adsorbed by the humidity control rotor (22) and the air dehumidified by the humidity control rotor (22) is supplied to the room (I). The second operation is an operation in which the humidity control rotor (22) is regenerated and the air used for the regeneration is exhausted to the outside of the room.
 具体的には、第1動作では、制御部(C)が、第1ファン(26)を運転させ、第2ファン(23)を停止させ、ヒータ(25)を停止させ、第1切換ダンパ(24)を第3状態(図2の実線で示す状態)とし、第2切換ダンパ(29)を第5状態(図5参照)とする。第1ファン(26)によって搬送される空気は、第1通路(27)を流れ、調湿ロータ(22)の調湿領域(22A)を通過する。調湿領域(22A)では、空気中の水分が吸着剤に吸着される。調湿領域(22A)で除湿された空気はホース(2)を通じて空調室内機(30)へ送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。 Specifically, in the first operation, the control unit (C) operates the first fan (26), stops the second fan (23), stops the heater (25), sets the first switching damper (24) to the third state (the state shown by the solid line in FIG. 2), and sets the second switching damper (29) to the fifth state (see FIG. 5). The air conveyed by the first fan (26) flows through the first passage (27) and passes through the humidity control area (22A) of the humidity control rotor (22). In the humidity control area (22A), moisture in the air is adsorbed by the adsorbent. The air dehumidified in the humidity control area (22A) is sent to the air conditioning indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
 第2動作(調湿ロータ(22)の再生処理)は、制御部(C)が、第1ファン(26)およびヒータ(25)を運転させ、第2ファン(23)を停止させ、第1切換ダンパ(24)を第4状態(図2の破線で示す状態)とし、第2切換ダンパ(29)を第5状態(図5参照)とする。第1ファン(26)によって搬送される空気は、第1通路(27)を流れ、ヒータ(25)によって加熱された後、調湿ロータ(22)の調湿領域(22A)を流れる。調湿領域(22A)では、吸着剤が再生される。具体的には、吸着剤に吸着された水分が脱離し、空気中に放出される。調湿ロータ(22)の再生に利用された空気は、図2の黒塗りの矢印で示すように、第1通路(27)から第2通路(28)を流れ、室外に排出される。 In the second operation (regeneration process of the humidity control rotor (22)), the control unit (C) operates the first fan (26) and the heater (25), stops the second fan (23), sets the first switching damper (24) to the fourth state (the state shown by the dashed line in FIG. 2), and sets the second switching damper (29) to the fifth state (see FIG. 5). The air conveyed by the first fan (26) flows through the first passage (27) and is heated by the heater (25), and then flows through the humidity control area (22A) of the humidity control rotor (22). In the humidity control area (22A), the adsorbent is regenerated. Specifically, moisture adsorbed by the adsorbent is desorbed and released into the air. The air used to regenerate the humidity control rotor (22) flows from the first passage (27) to the second passage (28), as shown by the black arrow in FIG. 2, and is discharged to the outside of the room.
 (3-6)加湿運転
 加湿運転では、調湿ユニット(20)により加湿した空気を室内(I)に供給する運転である。加湿運転では、調湿ユニット(20)により加湿された空気が連続的に室内(I)へ供給される。制御部(C)が第1ファン(26)および第2ファン(23)を運転させ、調湿ロータ(22)を回転駆動させ、ヒータ(25)をON状態とする。制御部(C)は、第1切換ダンパ(24)を第3状態とし、第2切換ダンパ(29)を第5状態とする。
(3-6) Humidification Operation In the humidification operation, air humidified by the humidity control unit (20) is supplied to the room (I). In the humidification operation, air humidified by the humidity control unit (20) is continuously supplied to the room (I). The control unit (C) operates the first fan (26) and the second fan (23), drives the humidity control rotor (22) to rotate, and turns on the heater (25). The control unit (C) sets the first switching damper (24) to the third state and the second switching damper (29) to the fifth state.
 第3通路(62)を流れる室外空気は、調湿ロータ(22)の吸着領域(22C)を流れる。吸着領域(22C)では、空気中の水分が吸着剤に吸着される。調湿ロータ(22)に水分を付与した空気は、第3通路(62)から室外に排出される。 The outdoor air flowing through the third passage (62) flows through the adsorption area (22C) of the humidity control rotor (22). In the adsorption area (22C), moisture in the air is adsorbed by the adsorbent. The air that has absorbed moisture from the humidity control rotor (22) is discharged to the outside through the third passage (62).
 同時に、第1通路(27)を流れる室外空気は、ヒータ(25)によって加熱された後、調湿ロータ(22)の調湿領域(22A)を流れる。調湿領域(22A)では、吸着剤から脱離した水分が空気へ放出される。調湿ロータ(22)で加湿された空気は、ホース(2)を通じて空調室内機(30)へ送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。 At the same time, the outdoor air flowing through the first passage (27) is heated by the heater (25) and then flows through the humidity control area (22A) of the humidity control rotor (22). In the humidity control area (22A), moisture desorbed from the adsorbent is released into the air. The air humidified by the humidity control rotor (22) is sent to the air conditioning indoor unit (30) through the hose (2) and supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
 (3-7)除湿冷房運転
 除湿冷房運転は、上述した冷房運転と除湿運転とが同時に行われる。具体的には、調湿ユニット(20)によって空気が除湿されるとともに、蒸発器として機能する室内熱交換器(34)によって空気が冷却される。
In the dehumidifying and cooling operation, the above-mentioned cooling operation and the dehumidifying operation are performed simultaneously. Specifically, the air is dehumidified by the humidity control unit (20) and cooled by the indoor heat exchanger (34) functioning as an evaporator.
 (3-8)加湿暖房運転
 加湿暖房運転は、上述した暖房運転と加湿運転とが同時に行われる。具体的には、調湿ユニット(20)によって空気が加湿されるとともに、放熱器として機能する室内熱交換器(34)によって空気が加熱される。
In the humidification heating operation, the above-mentioned heating operation and humidification operation are performed simultaneously. Specifically, the air is humidified by the humidity control unit (20), and the air is heated by the indoor heat exchanger (34) functioning as a radiator.
 (4)空気調和装置の動作の第1例
 図4に示すように、空気調和装置(1)は、臭いセンサ(56)を備える。臭いセンサ(56)は、空気中の臭気成分の濃度(臭いの強さ)を検出することで、室内(I)の臭いを検出する。臭いセンサ(56)は、例えば、半導体式臭気センサである。臭いセンサ(56)は、例えば、酢酸、アルコール等の有機物を含む臭気成分(臭気ガス)の臭いの強さを検出する。臭いセンサ(56)は、センサ素子を含み、センサー素子に臭気ガスが当たることにより発生するセンサー素子の抵抗値の変化に基づいて臭いを検出する。抵抗値の変化が臭いの強さとしてあらわされる。抵抗値の変化を示す信号が室内(I)の臭いの強さを示す第1センサ信号として、臭いセンサ(56)から制御部(C)へ送信される。臭いセンサ(56)は、空調室内機(30)に設けられる。臭いセンサ(56)は、例えば、室内ケーシング(31)の室内吸込口(31a)の周辺に配置される(図3参照)。臭いセンサ(56)の検出値(臭いの強さ)は、成分値の第1例である。臭気成分は、所定のガス成分の第1例である。
(4) First Example of Operation of Air Conditioner As shown in FIG. 4, the air conditioner (1) includes an odor sensor (56). The odor sensor (56) detects the concentration (odor strength) of odor components in the air to detect odors in the room (I). The odor sensor (56) is, for example, a semiconductor odor sensor. The odor sensor (56) detects the odor strength of odor components (odor gas) containing organic substances such as acetic acid and alcohol. The odor sensor (56) includes a sensor element and detects odors based on a change in resistance of the sensor element that occurs when an odor gas hits the sensor element. The change in resistance is expressed as odor strength. A signal indicating the change in resistance is transmitted from the odor sensor (56) to the control unit (C) as a first sensor signal indicating the odor strength in the room (I). The odor sensor (56) is provided in the air conditioner indoor unit (30). The odor sensor (56) is disposed, for example, near the indoor suction port (31a) of the indoor casing (31) (see FIG. 3). The detection value (odor intensity) of the odor sensor (56) is a first example of a component value. The odor components are a first example of predetermined gas components.
 図4および図7に示すように、ステップS10において、制御部(C)は、臭いセンサ(56)から室内(I)の臭いの強さを示す第1センサ信号を取得する。制御部(C)は、第1センサ信号を経時的に取得する。経時的に取得することは、所定期間の間、連続して取得することを示す。 As shown in FIG. 4 and FIG. 7, in step S10, the control unit (C) acquires a first sensor signal indicating the intensity of the odor in the room (I) from the odor sensor (56). The control unit (C) acquires the first sensor signal over time. Acquiring the first sensor signal over time means acquiring the signal continuously for a predetermined period of time.
 ステップS20において、制御部(C)は、臭いセンサ(56)からの第1センサ信号に基づいて、時間の変化に対する室内(I)の臭いの強さの変化の割合が所定の割合よりも大きいか否かを判定する。時間の変化に対する室内(I)の臭いの強さの変化の割合が所定の割合よりも大きいと判定される場合(ステップS20で、Yes)、処理がステップS30へ移行する。時間の変化に対する室内(I)の臭いの強さの変化の割合が所定の割合よりも大きくないと判定される場合(ステップS20で、No)、処理がステップS31へ移行する。 In step S20, the control unit (C) determines whether the rate of change in odor intensity in the room (I) over time is greater than a predetermined rate based on the first sensor signal from the odor sensor (56). If it is determined that the rate of change in odor intensity in the room (I) over time is greater than a predetermined rate (Yes in step S20), processing proceeds to step S30. If it is determined that the rate of change in odor intensity in the room (I) over time is not greater than the predetermined rate (No in step S20), processing proceeds to step S31.
 ステップS30において、制御部(C)は、排気運転を行うことを決定し、空気調和装置(1)に排気運転を行わせる。 In step S30, the control unit (C) decides to perform exhaust operation and causes the air conditioning device (1) to perform exhaust operation.
 ステップS31において、制御部(C)は、給気運転を行うことを決定し、空気調和装置(1)に給気運転を行わせる。 In step S31, the control unit (C) decides to perform air supply operation and causes the air conditioning device (1) to perform air supply operation.
 以上のように、制御部(C)は、室内環境または室外環境に基づいて排気運転と給気運転とのうちのいずれの運転を空気処理装置(1)に行わせるかを選択し、排気運転と給気運転とのうち選択したいずれかの運転を空気処理装置(1)に行わせる。 As described above, the control unit (C) selects whether the air treatment device (1) should perform the exhaust operation or the supply operation based on the indoor environment or the outdoor environment, and causes the air treatment device (1) to perform the selected operation between the exhaust operation and the supply operation.
 臭気成分の元になる物質(所定のガス成分の発生源)が空調室内機(30)の近くにある場合には、臭気成分が空気と混合されないうちに空調室内機(30)に到達するため、時間の変化に対する室内(I)の空調室内機(30)の設置場所での臭いの強さの変化の割合が所定の割合よりも大きくなり(ステップS20で、Yes)、空調室内機(30)の設置場所での臭気成分の変化が急激になる。 If the substance that is the source of the odor components (the source of the specified gas components) is located near the air conditioning indoor unit (30), the odor components reach the air conditioning indoor unit (30) before being mixed with the air, so the rate of change in odor intensity at the location of the air conditioning indoor unit (30) in the room (I) relative to time becomes greater than a specified rate (Yes in step S20), and the odor components at the location of the air conditioning indoor unit (30) change rapidly.
 この場合、仮に、臭気成分が空調室内機(30)の近くにあるにも関わらず空調室内機(30)が給気運転を行うと、空調室内機(30)により吸い込んまれた強い臭気成分が空調室内機(30)から室内(I)に戻されることで室内(I)にまき散らされ、特に他の部屋などへの臭気の移動が行われてしまう。 In this case, if the air conditioning indoor unit (30) were to perform air supply operation even though the odorous components were located near the air conditioning indoor unit (30), the strong odorous components sucked in by the air conditioning indoor unit (30) would be returned from the air conditioning indoor unit (30) to the room (I) and would be dispersed throughout the room (I), causing the odor to move, particularly to other rooms, etc.
 本実施例では、臭気成分の元になる物質が空調室内機(30)の近くにあるときには空調室内機(30)が排気運転を選択することで、空調室内機(30)が吸い込んだ強い臭気成分を、室内(I)へ戻すことを抑制しつつ、室外へ効果的に排出することができる。その結果、発生源からの臭気成分を適切に室外に排出できる。 In this embodiment, when a substance that is the source of odorous components is located near the air conditioning indoor unit (30), the air conditioning indoor unit (30) selects exhaust operation, so that the strong odorous components sucked into the air conditioning indoor unit (30) can be effectively discharged to the outside while being prevented from being returned to the room (I). As a result, the odorous components from the source can be appropriately discharged to the outside.
 これに対し、本実施例では、臭気成分の元になる物質が空調室内機(30)の遠くにあるとき、すなわち、時間の変化に対する室内(I)の上記定位置での臭いの強さの変化の割合が所定の割合よりも大きくないときは(ステップS20で、No)、空調室内機(30)が給気換気を行っても、強い臭気成分が室内(I)にまき散らされる可能性が低いので、空調室内機(30)が給気換気を行うことで、室内(I)の臭いが悪化することを抑制しつつ、室内(I)へ外気を効果的に取り入れることができる。 In contrast, in this embodiment, when the substance that is the source of the odor components is located far from the air conditioning indoor unit (30), that is, when the rate of change in odor intensity at the above-mentioned fixed position in the room (I) over time is not greater than a predetermined rate (No in step S20), even if the air conditioning indoor unit (30) performs supply ventilation, there is a low possibility that strong odor components will be dispersed into the room (I). Therefore, by the air conditioning indoor unit (30) performing supply ventilation, it is possible to effectively take in outside air into the room (I) while preventing the odor in the room (I) from worsening.
 このような制御により、給気換気、および排気換気の特徴を生かした換気を行うことができるため、悪環境の拡散と悪環境の誘因とを防いで、室内(I)の快適な環境を実現できる。 This type of control allows ventilation that takes advantage of the characteristics of both supply and exhaust ventilation, preventing the spread of and the induction of adverse environments, and creating a comfortable environment indoors (I).
 (5)空気調和装置の動作の第2例
 図4および図8に示すように、ステップS10において、制御部(C)が臭いセンサ(56)からの第1センサ信号を取得すると、処理がステップS21へ移行する。
(5) Second Example of Operation of Air Conditioner As shown in Figs. 4 and 8, when the control unit (C) acquires a first sensor signal from the odor sensor (56) in step S10, the process proceeds to step S21.
 ステップS21において、制御部(C)は、第1センサ信号を表す波形に含まれる周波数成分のうちの所定の周波数以上の高周波成分が所定割合以上であるか否かを判定する。高周波成分が所定割合以上であると判定された場合(ステップS21で、Yes)、処理がステップS30へ移行する。高周波成分が所定割合以上ではないと判定された場合(ステップS21で、No)、処理がステップS31へ移行する。 In step S21, the control unit (C) determines whether or not the high-frequency components of a predetermined frequency or higher among the frequency components contained in the waveform representing the first sensor signal are equal to or higher than a predetermined ratio. If it is determined that the high-frequency components are equal to or higher than the predetermined ratio (Yes in step S21), the process proceeds to step S30. If it is determined that the high-frequency components are not equal to or higher than the predetermined ratio (No in step S21), the process proceeds to step S31.
 以上のように構成することで、第1センサ信号において高周波成分が多い場合、臭いの発生源から臭いセンサ(56)の設置場所(空調室内機(30))まで当該発生源からの臭気成分(臭い)が空気と混合されないうちに到達していることが推測できる。第1センサ信号において高周波成分が多くなると、上記の第1例における時間の変化に対する室内(I)の臭いの強さの変化の割合が所定の割合よりも大きくなる場合(ステップS20で、Yes)と同様に、空調室内機(30)の設置場所での臭気成分の変化が急激になるからである。この場合、上記のように排気運転を行うことで当該発生源からの臭いを室外へ効果的に排出することができる。その結果、室内(I)に不快な臭いが充満した状態となることを抑制できる。 With the above configuration, when the first sensor signal contains a large number of high-frequency components, it can be inferred that the odor components (odor) from the odor source reach the location where the odor sensor (56) is installed (the air conditioning indoor unit (30)) without being mixed with the air. This is because when the first sensor signal contains a large number of high-frequency components, the odor components at the location where the air conditioning indoor unit (30) is installed change abruptly, as in the case where the rate of change in odor intensity in the room (I) relative to time in the first example above becomes greater than a predetermined rate (Yes in step S20). In this case, the odor from the source can be effectively exhausted to the outside of the room by performing exhaust operation as described above. As a result, it is possible to prevent the room (I) from being filled with an unpleasant odor.
 (6)空気調和装置の動作の第3例
 空気調和装置(1)は、メモリ(記憶部)を含む。メモリには、制御部(C)によって実行されるプログラムが記憶される。メモリには、第1予測モデルが記憶される。第1予測モデルは、臭気成分の発生源(臭いの発生源)と空調室内機(30)との第1距離の予測値を出力するためのモデルである。第1予測モデルは、空調室内機(30)が存在する場所における臭いの強さ(臭いセンサ(56)の検出値)と、第1距離との相関に基づいて生成される。臭気成分は、所定のガス成分の一例である。
(6) Third Example of Operation of Air Conditioner The air conditioner (1) includes a memory (storage unit). The memory stores a program executed by the control unit (C). The memory stores a first prediction model. The first prediction model is a model for outputting a predicted value of a first distance between a source of an odor component (source of odor) and the air conditioning indoor unit (30). The first prediction model is generated based on a correlation between the odor intensity (detection value of the odor sensor (56)) at the location where the air conditioning indoor unit (30) is located and the first distance. The odor component is an example of a predetermined gas component.
 第1予測モデルを生成する方法は特に限定されない。第1予測モデルは、例えば、AI(Artificial Intelligence)を用いて生成される。当該AIが第1予測モデルを生成する手法の一例として、多層の人工ニューラルネットワークによる機械学習手法(ディープラーニング)等が挙げられる。 The method for generating the first prediction model is not particularly limited. The first prediction model is generated, for example, using AI (Artificial Intelligence). One example of a method for the AI to generate the first prediction model is a machine learning method (deep learning) using a multi-layer artificial neural network.
 第1予測モデルは、臭いの強さ(臭いセンサ(56)の検出値)と、第1距離とを入力データとして、臭いの強さと第1距離との対応関係を学習した学習済みモデルである。第1予測モデルは、入力データを入力されると、出力データを出力する。出力データは、第1距離の予測値を示す情報を含む。 The first prediction model is a trained model that uses the odor intensity (detection value of the odor sensor (56)) and the first distance as input data and learns the correspondence between the odor intensity and the first distance. When input data is input, the first prediction model outputs output data. The output data includes information indicating the predicted value of the first distance.
 第1予測モデルは、臭いの強さと第1距離との相関を調査する試験等を行うことで統計的な解析によって生成されたテーブル情報(複数の臭いの強さと、複数の第1距離の予測値とをそれぞれ対応付けた情報)であってもよい。 The first prediction model may be table information (information that associates multiple odor intensities with multiple predicted values of the first distances) generated by statistical analysis by conducting tests or the like to investigate the correlation between odor intensity and the first distance.
 図4および図9に示すように、ステップS10において、制御部(C)が臭いセンサ(56)からの第1センサ信号を取得すると、処理がステップS11へ移行する。 As shown in Figures 4 and 9, when the control unit (C) acquires a first sensor signal from the odor sensor (56) in step S10, the process proceeds to step S11.
 ステップS11において、制御部(C)は、臭いセンサ(56)の検出値と上記の第1予測モデルとに基づいて、第1距離の予測値を出力する。 In step S11, the control unit (C) outputs a predicted value of the first distance based on the detection value of the odor sensor (56) and the above-mentioned first prediction model.
 ステップS22において、制御部(C)は、第1距離が第1所定距離よりも小さいか否かを判定する。第1距離の予測値が第1所定距離よりも小さいと判定される場合(ステップS22で、Yes)、処理がステップS30へ移行する。第1距離の予測値が第1所定距離よりも小さくないと判定された場合(ステップS22で、No)、処理がステップS31へ移行する。 In step S22, the control unit (C) determines whether the first distance is smaller than the first predetermined distance. If it is determined that the predicted value of the first distance is smaller than the first predetermined distance (Yes in step S22), the process proceeds to step S30. If it is determined that the predicted value of the first distance is not smaller than the first predetermined distance (No in step S22), the process proceeds to step S31.
 (7)空気調和装置の動作の第4例
 図4および図10に示すように、ステップS10において、制御部(C)が臭いセンサ(56)からの第1センサ信号を取得すると、処理がステップS23へ移行する。
(7) Fourth Example of Operation of Air Conditioning Apparatus As shown in Figs. 4 and 10, when the control section (C) acquires a first sensor signal from the odor sensor (56) in step S10, the process proceeds to step S23.
 ステップS23において、制御部(C)は、室内(I)の臭いのレベルが所定のレベル以上であるか否かを判定する。臭いのレベルは、臭いセンサ(56)の検出値、または、所定期間内に検出された複数の臭いセンサ(56)の検出値の代表値(最頻値、中央値、または平均値)である。臭いのレベルが大きくなる程、臭いが強くなる。室内(I)の臭いのレベルが所定のレベル以上であると判定された場合、(ステップS23で、Yes)、処理がステップS30へ移行する。室内(I)の臭いのレベルが所定のレベル以上でないと判定された場合(ステップS23で、No)、処理がステップS31へ移行する。 In step S23, the control unit (C) determines whether the odor level in the room (I) is above a predetermined level. The odor level is the detection value of the odor sensor (56) or a representative value (mode, median, or average) of detection values of multiple odor sensors (56) detected within a predetermined period. The higher the odor level, the stronger the odor. If it is determined that the odor level in the room (I) is above the predetermined level (Yes in step S23), processing proceeds to step S30. If it is determined that the odor level in the room (I) is not above the predetermined level (No in step S23), processing proceeds to step S31.
 なお、室外に臭いセンサを設け、室外の臭いセンサにより検出される室外の臭いのレベルが所定レベル以上であると判定した場合は制御部(C)は空気調和装置(1)に排気運転を行わせ、室外の臭いのレベルが所定レベル以上でないと判定した場合は制御部(C)は空気調和装置(1)に給気運転を行わせてもよい。 In addition, an odor sensor may be provided outside the room, and if the control unit (C) determines that the outdoor odor level detected by the outdoor odor sensor is equal to or above a predetermined level, the control unit (C) may cause the air conditioner (1) to perform exhaust operation, and if the control unit (C) determines that the outdoor odor level is not equal to or above the predetermined level, the control unit (C) may cause the air conditioner (1) to perform supply air operation.
 (8)空気調和装置の動作の第5例
 図4および図11に示すように、ステップS40において、空気調和装置(1)がリモートコントローラ(40)から停止指示を受け付ける。このとき、室内熱交換器(34)に水分が付着した状態で空気調和装置(1)が停止指示を受け付けたか否かが判定される。室内熱交換器(34)に水分が付着した状態で空気調和装置(1)が停止指示を受け付けた場合(ステップS40で、Yes)、処理がステップS41へ移行する。室内熱交換器(34)に水分が付着した状態で空気調和装置(1)が停止指示を受け付けていない場合(ステップS40で、Yes)、処理がステップS42へ移行する。
(8) Fifth Example of Operation of Air Conditioning Apparatus As shown in Fig. 4 and Fig. 11, in step S40, the air conditioning apparatus (1) receives a stop instruction from the remote controller (40). At this time, it is determined whether or not the air conditioning apparatus (1) has received the stop instruction in a state where moisture is adhering to the indoor heat exchanger (34). If the air conditioning apparatus (1) has received the stop instruction in a state where moisture is adhering to the indoor heat exchanger (34) (Yes in step S40), the process proceeds to step S41. If the air conditioning apparatus (1) has not received the stop instruction in a state where moisture is adhering to the indoor heat exchanger (34) (Yes in step S40), the process proceeds to step S42.
 ステップS41において、制御部(C)は、排気運転を行うことを決定し、空気調和装置(1)に排気運転を行わせる。排気運転により室内熱交換器(34)に付着した水分を室外へ排出することで、室内(I)の湿度が上昇することを抑制できる。空気調和装置(1)が排気運転を開始してから所定期間経過後、処理がステップS42へ移行する。 In step S41, the control unit (C) decides to perform exhaust operation and causes the air conditioner (1) to perform exhaust operation. By performing exhaust operation to discharge moisture adhering to the indoor heat exchanger (34) to the outside, it is possible to prevent an increase in humidity in the room (I). After a predetermined period of time has elapsed since the air conditioner (1) started exhaust operation, the process proceeds to step S42.
 ステップS42において、制御部(C)は、空気調和装置(1)を停止させる。これにより、空気調和装置(1)の電源がオフになる。 In step S42, the control unit (C) stops the air conditioning device (1). This turns off the power supply to the air conditioning device (1).
 以下では、ステップS40について説明する。 Step S40 will be explained below.
 上記のステップS40において、室内熱交換器(34)に水分が付着した状態で空気調和装置(1)が停止指示を受け付けた場合には、冷房運転を行っている空気調和装置(1)が停止指示を受け付けた場合が含まれてもよい。この場合、ステップS40において、制御部(C)は、冷房運転を行っている空気調和装置(1)が停止指示を受け付けたか否かを判定する。冷房運転を行っている空気調和装置(1)が停止指示を受け付けたと判定された場合は処理がステップS41へ移行し、そのように判定されない場合は処理がステップS42へ移行する。 In the above step S40, when the air conditioner (1) receives a stop command while moisture is adhering to the indoor heat exchanger (34), this may include the case where the air conditioner (1) performing cooling operation receives the stop command. In this case, in step S40, the control unit (C) determines whether the air conditioner (1) performing cooling operation has received the stop command. If it is determined that the air conditioner (1) performing cooling operation has received the stop command, the process proceeds to step S41, and if not, the process proceeds to step S42.
 上記のステップS40において、室内熱交換器(34)に水分が付着した状態で空気調和装置(1)が停止指示を受け付けた場合には、冷房運転を行っている空気調和装置(1)が停止指示を受け付け、かつ、室内(I)の空気の露点温度よりも室内熱交換器(34)の温度が低い場合が含まれてもよい。制御部(C)室内(I)の空気の露点温度は、内気温度センサ(53)の検出結果と、内気湿度センサ(54)の検出結果とに基づいて、制御部(C)により出力される。露点温度は、例えば、温度及び相対湿度と露点温度との対応関係を示す第1変換テーブルを予め作成し、当該第1変換テーブルを用いて出力されてもよい。室内熱交換器(34)の温度は、室内熱交換器(34)に設置される第1温度センサ(不図示)により検出される。室内熱交換器(34)の温度は、当該第1温度センサにより検出されたものではなくてもよく、例えば、液連絡管(3)等の冷媒液管の温度と室内熱交換器(34)の温度との対応関係を示す第2変換テーブルを予め作成し、冷媒液管の温度を検出する第2温度センサを設け、当該第2温度センサの検出結果と当該第2変換テーブルとを用いて出力されてもよい。この場合、ステップS40において、制御部(C)は、冷房運転を行っている空気調和装置(1)が停止指示を受け付け、かつ、室内(I)の空気の露点温度よりも室内熱交換器(34)の温度が低いか否かを判定する。冷房運転を行っている空気調和装置(1)が停止指示を受け付け、かつ、室内(I)の空気の露点温度よりも室内熱交換器(34)の温度が低いと判定された場合は処理がステップS41へ移行し、そのように判定されない場合は処理がステップS42へ移行する。 In the above step S40, when the air conditioner (1) receives a stop command while moisture is attached to the indoor heat exchanger (34), this may include a case where the air conditioner (1) performing cooling operation receives a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I). The control unit (C) The dew point temperature of the air in the room (I) is output by the control unit (C) based on the detection result of the indoor air temperature sensor (53) and the detection result of the indoor air humidity sensor (54). The dew point temperature may be output, for example, by using a first conversion table that is created in advance and shows the correspondence between temperature and relative humidity and the dew point temperature. The temperature of the indoor heat exchanger (34) is detected by a first temperature sensor (not shown) installed in the indoor heat exchanger (34). The temperature of the indoor heat exchanger (34) may not be detected by the first temperature sensor. For example, a second conversion table showing the correspondence between the temperature of the refrigerant liquid pipe such as the liquid connecting pipe (3) and the temperature of the indoor heat exchanger (34) may be prepared in advance, a second temperature sensor for detecting the temperature of the refrigerant liquid pipe may be provided, and the detection result of the second temperature sensor and the second conversion table may be used to output the temperature. In this case, in step S40, the control unit (C) determines whether the air conditioner (1) performing the cooling operation has received a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I). If it is determined that the air conditioner (1) performing the cooling operation has received a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I), the process proceeds to step S41, and if not, the process proceeds to step S42.
 (9)空気調和装置の動作の第6例
 図4および図12に示すように、ステップS50において、制御部(C)は、内気湿度センサ(54)から室内(I)の湿度を示す第2センサ信号を取得する。制御部(C)は、第2センサ信号を経時的に取得する。
4 and 12, in step S50, the control unit (C) acquires a second sensor signal indicating the humidity in the room (I) from the indoor air humidity sensor (54). The control unit (C) acquires the second sensor signal over time.
 ステップS60において、制御部(C)は、経時的に取得に取得した所定期間内の室内(I)の湿度の平均値が所定の湿度の快適ゾーン外の値であるか否かを判定する。所定の湿度の快適ゾーンは、上限と下限が規定され、当該上限以下、当該下限以上の範囲内の湿度の値であり、予め空気調和装置(1)のメモリに記憶されている。湿度の平均値が所定の湿度の快適ゾーン外の値であると判定された場合(ステップS60で、Yes)、処理がステップS61へ移行する。湿度の平均値が所定の湿度の快適ゾーン外の値ではないと判定された場合(ステップS60で、No)、処理がステップS71へ移行する。 In step S60, the control unit (C) determines whether the average humidity value in the room (I) during a specified period acquired over time is outside the specified humidity comfort zone. The specified humidity comfort zone has upper and lower limits, and is a humidity value within a range below the upper limit and above the lower limit, and is stored in advance in the memory of the air conditioning device (1). If it is determined that the average humidity value is outside the specified humidity comfort zone (Yes in step S60), the process proceeds to step S61. If it is determined that the average humidity value is not outside the specified humidity comfort zone (No in step S60), the process proceeds to step S71.
 ステップS61において、制御部(C)は、室内(I)の湿度が所定の条件を満たすか否かを判定する。所定の条件の説明は後述する。所定の条件を満たすと判定された場合(ステップS61で、Yes)、処理がステップS70へ移行する。所定の条件を満たさないと判定された場合(ステップS61で、No)、処理がステップS71へ移行する。 In step S61, the control unit (C) determines whether the humidity in the room (I) satisfies a predetermined condition. The predetermined condition will be described later. If it is determined that the predetermined condition is satisfied (Yes in step S61), the process proceeds to step S70. If it is determined that the predetermined condition is not satisfied (No in step S61), the process proceeds to step S71.
 ステップS70において、制御部(C)は、排気運転を行うことを決定し、空気調和装置(1)に排気運転を行わせる。ステップS71において、制御部(C)は、給気運転を行うことを決定し、空気調和装置(1)に給気運転を行わせる。 In step S70, the control unit (C) decides to perform exhaust operation and causes the air conditioning device (1) to perform exhaust operation. In step S71, the control unit (C) decides to perform supply operation and causes the air conditioning device (1) to perform supply operation.
 以下では、ステップS61について説明する。 Step S61 will be explained below.
 ステップS61において、所定の条件には、時間の変化に対する室内(I)の湿度の変化の割合が所定の割合よりも大きくなる条件が含まれてもよい。この場合、ステップS61において、制御部(C)は、制御部(C)は、時間の変化に対する室内(I)の湿度の変化の割合が所定の割合よりも大きくなるか否かを判定する。所定の割合よりも大きくなると判定された場合は処理がステップS70へ移行し、そのように判定されない場合は処理がステップS71へ移行する。 In step S61, the predetermined condition may include a condition that the rate of change in humidity in the room (I) relative to the change in time is greater than a predetermined rate. In this case, in step S61, the control unit (C) determines whether the rate of change in humidity in the room (I) relative to the change in time is greater than a predetermined rate. If it is determined that it is greater than the predetermined rate, the process proceeds to step S70, and if it is not determined that it is greater than the predetermined rate, the process proceeds to step S71.
 ステップS61において、所定の条件には、室内(I)の湿度を示す第2センサ信号を表す波形に含まれる周波数成分のうちの所定の周波数以上の高周波成分が所定割合以上になる条件が含まれてもよい。この場合、ステップS61において、制御部(C)は、第2センサ信号を表す波形に含まれる周波数成分のうちの所定の周波数以上の高周波成分が所定割合以上であるか否かを判定する。高周波成分が所定割合以上であると判定された場合は処理がステップS70へ移行し、そのように判定されない場合は処理がステップS71へ移行する。 In step S61, the predetermined condition may include a condition that the high frequency components having a predetermined frequency or more among the frequency components included in the waveform representing the second sensor signal indicating the humidity in the room (I) are equal to or greater than a predetermined ratio. In this case, in step S61, the control unit (C) determines whether the high frequency components having a predetermined frequency or more among the frequency components included in the waveform representing the second sensor signal are equal to or greater than a predetermined ratio. If it is determined that the high frequency components are equal to or greater than the predetermined ratio, the process proceeds to step S70, and if not, the process proceeds to step S71.
 室内(I)の湿度を示す第2センサ信号において高周波成分が多い場合、高湿度の空気の発生源(例えば、沸騰している水)から内気湿度センサ(54)の設置場所(空調室内機(30))まで当該発生源からの高湿度の空気が到達していることが推測できる。この場合、排気運転を行うことで当該発生源からの高湿度の空気を室外へ効果的に排出することができる。その結果、室内(I)の湿度について不快な状態となることを抑制できる。 If there are many high-frequency components in the second sensor signal indicating the humidity in the room (I), it can be inferred that high-humidity air from a source of high-humidity air (e.g., boiling water) reaches the location where the room air humidity sensor (54) is installed (the air conditioning indoor unit (30)). In this case, by performing exhaust operation, the high-humidity air from the source can be effectively exhausted to the outside of the room. As a result, it is possible to prevent the humidity in the room (I) from becoming uncomfortable.
 (10)空気調和装置の動作の第7例
 空気調和装置(1)のメモリ(不図示)には、第2予測モデルが記憶される。第2予測モデルは、湿度の変化を発生させる発生源(例えば、やかんの中で沸騰している水)と空調室内機(30)との第2距離の予測値を出力するためのモデルである。第2予測モデルは、空調室内機(30)が存在する場所における湿度の変化量(所定時間内の内気湿度センサ(54)の検出値の変化量)と、第2距離との相関に基づいて生成される。
(10) Seventh Example of Operation of Air Conditioning Apparatus A second prediction model is stored in a memory (not shown) of the air conditioning apparatus (1). The second prediction model is a model for outputting a predicted value of a second distance between a source that generates a change in humidity (e.g., water boiling in a kettle) and the air conditioning indoor unit (30). The second prediction model is generated based on a correlation between the amount of change in humidity (amount of change in the detected value of the indoor air humidity sensor (54) within a predetermined time) at a location where the air conditioning indoor unit (30) is located and the second distance.
 第2予測モデルを生成する方法は特に限定されない。第2予測モデルは、例えば、AIを用いて生成される。当該AIが第2予測モデルを生成する手法の一例として、多層の人工ニューラルネットワークによる機械学習手法(ディープラーニング)等が挙げられる。 The method for generating the second prediction model is not particularly limited. The second prediction model is generated, for example, using AI. One example of a method for the AI to generate the second prediction model is a machine learning method (deep learning) using a multi-layer artificial neural network.
 第2予測モデルは、湿度の変化量(所定時間内の内気湿度センサ(54)の検出値の変化量)と、第2距離とを入力データとして、湿度の変化量と第2距離との対応関係を学習した学習済みモデルである。第2予測モデルは、入力データを入力されると、出力データを出力する。出力データは、第2距離の予測値を示す情報を含む。 The second prediction model is a trained model that uses the amount of change in humidity (the amount of change in the detected value of the indoor air humidity sensor (54) within a specified time) and the second distance as input data and learns the correspondence between the amount of change in humidity and the second distance. When the input data is input, the second prediction model outputs output data. The output data includes information indicating the predicted value of the second distance.
 第2予測モデルは、湿度の変化量と第2距離との相関を調査する試験等を行うことで統計的な解析によって生成されたテーブル情報(複数の湿度の変化量と、複数の第2距離の予測値とをそれぞれ対応付けた情報)であってもよい。 The second prediction model may be table information (information that associates multiple amounts of humidity change with multiple predicted values of the second distance) generated by statistical analysis by conducting tests or the like to investigate the correlation between the amount of change in humidity and the second distance.
 図4および図13に示すように、ステップS50において、制御部(C)が内気湿度センサ(54)からの第2センサ信号を取得すると、処理がステップS51へ移行する。 As shown in Figures 4 and 13, when the control unit (C) acquires a second sensor signal from the inside air humidity sensor (54) in step S50, the process proceeds to step S51.
 ステップS51において、制御部(C)は、内気湿度センサ(54)の検出値と上記の第2予測モデルとに基づいて、第2距離の予測値を出力する。 In step S51, the control unit (C) outputs a predicted value of the second distance based on the detection value of the inside air humidity sensor (54) and the above-mentioned second prediction model.
 ステップS62において、制御部(C)は、第2距離が第2所定距離よりも小さいか否かを判定する。第2距離が第2所定距離よりも小さいと判定される場合(ステップS62で、Yes)、処理がステップS70へ移行する。第2距離が第2所定距離よりも小さくないと判定された場合(ステップS62で、No)、処理がステップS71へ移行する。 In step S62, the control unit (C) determines whether the second distance is smaller than the second predetermined distance. If it is determined that the second distance is smaller than the second predetermined distance (Yes in step S62), the process proceeds to step S70. If it is determined that the second distance is not smaller than the second predetermined distance (No in step S62), the process proceeds to step S71.
 (11)空気調和装置の動作の第8例
 図4および図14に示すように、ステップS50において、制御部(C)が内気湿度センサ(54)からの第2センサ信号を取得すると、処理がステップS63へ移行する。
(11) Eighth Example of Operation of Air Conditioning Apparatus As shown in Figs. 4 and 14, when the control section (C) acquires a second sensor signal from the inside air humidity sensor (54) in step S50, the process proceeds to step S63.
 ステップS63において、制御部(C)は、所定の湿度の快適ゾーンに対する、所定期間内の室内(I)の湿度の平均値の外れ量が所定量以上であるか否かを判定する。室内(I)の湿度の平均値が所定の湿度の快適ゾーンの上限よりも大きい場合、外れ量は、室内(I)の湿度の平均値と当該上限との差を示す。室内(I)の湿度の平均値が所定の湿度の快適ゾーンの上限よりも小さい場合、外れ量は、室内(I)の湿度の平均値と当該下限との差を示す。室内(I)の湿度の平均値の外れ量が所定量以上であると判定された場合(ステップS63で、Yes)、処理がステップS70へ移行する。室内(I)の湿度の平均値の外れ量が所定量以上でないと判定された場合(ステップS63で、No)、処理がステップS71へ移行する。 In step S63, the control unit (C) determines whether the deviation of the average humidity in the room (I) during the specified period from the specified humidity comfort zone is equal to or greater than a specified amount. If the average humidity in the room (I) is greater than the upper limit of the specified humidity comfort zone, the deviation indicates the difference between the average humidity in the room (I) and the upper limit. If the average humidity in the room (I) is less than the upper limit of the specified humidity comfort zone, the deviation indicates the difference between the average humidity in the room (I) and the lower limit. If it is determined that the deviation of the average humidity in the room (I) is equal to or greater than the specified amount (Yes in step S63), the process proceeds to step S70. If it is determined that the deviation of the average humidity in the room (I) is not equal to or greater than the specified amount (No in step S63), the process proceeds to step S71.
 なお、外気湿度センサ(52)の検出値が所定の湿度の快適ゾーン外の値であると判定した場合は制御部(C)は空気調和装置(1)に排気運転を行わせ、外気湿度センサ(52)の検出値が所定の湿度の快適ゾーン外の値でないと判定した場合は制御部(C)は空気調和装置(1)に給気運転を行わせてもよい。 In addition, if the control unit (C) determines that the detection value of the outdoor air humidity sensor (52) is outside the comfort zone of the predetermined humidity, it may cause the air conditioner (1) to perform exhaust operation, and if the control unit (C) determines that the detection value of the outdoor air humidity sensor (52) is not outside the comfort zone of the predetermined humidity, it may cause the air conditioner (1) to perform supply operation.
 (12)空気調和装置の動作の第9例
  空気調和装置(1)は、室外空気質センサ(不図示)を備える。室外空気質センサは、室外の空気中の大気汚染物質の量(例えば、室外の空気中のパーティクル量)を検出する。室外の空気中の大気汚染物質の量は、言い換えれば、室外の空気の汚染レベルを示す。空気中の大気汚染物質の量が多くなる程、空気の汚染レベルが高くなる。室外空気質センサは、例えば、室外ケーシング(11)に設けられ、室外吸込口(11a)(図2参照)の周辺に配置される。室外空気質センサの検出値は、成分値の第2例である。
(12) Ninth Example of Operation of Air Conditioner The air conditioner (1) is equipped with an outdoor air quality sensor (not shown). The outdoor air quality sensor detects the amount of air pollutants in the outdoor air (e.g., the amount of particles in the outdoor air). In other words, the amount of air pollutants in the outdoor air indicates the pollution level of the outdoor air. The greater the amount of air pollutants in the air, the higher the pollution level of the air. The outdoor air quality sensor is provided, for example, in the outdoor casing (11) and arranged near the outdoor air inlet (11a) (see FIG. 2). The detection value of the outdoor air quality sensor is a second example of a component value.
 図4および図15に示すように、ステップS80において、制御部(C)は、室外空気質センサから室外の空気の汚染レベルを示す情報を取得する。制御部(C)は、室外空気質センサから取得した情報に基づいて、室外の空気の汚染レベルが所定のレベル以上であるか否かを判定する。室外の空気の汚染レベルが所定のレベル以上であると判定された場合(ステップS80で、Yes)、処理がステップS81へ移行する。室外の空気の汚染レベルが所定のレベル以上でないと判定された場合(ステップS80で、No)、処理がステップS82へ移行する。 As shown in Figures 4 and 15, in step S80, the control unit (C) acquires information indicating the pollution level of the outdoor air from the outdoor air quality sensor. Based on the information acquired from the outdoor air quality sensor, the control unit (C) determines whether the pollution level of the outdoor air is equal to or above a predetermined level. If it is determined that the pollution level of the outdoor air is equal to or above the predetermined level (Yes in step S80), the process proceeds to step S81. If it is determined that the pollution level of the outdoor air is not equal to or above the predetermined level (No in step S80), the process proceeds to step S82.
 ステップS81において、制御部(C)は、排気運転を行うことを決定し、空気調和装置(1)に排気運転を行わせる。ステップS82において、制御部(C)は、給気運転を行うことを決定し、空気調和装置(1)に給気運転を行わせる。 In step S81, the control unit (C) decides to perform exhaust operation and causes the air conditioning device (1) to perform exhaust operation. In step S82, the control unit (C) decides to perform supply operation and causes the air conditioning device (1) to perform supply operation.
 (13)空気調和装置の動作の第10例
 空気調和装置(1)は、室内空気質センサ(不図示)を備える。室内空気質センサは、室内(I)の空気中の大気汚染物質の量(例えば、室内の空気中のパーティクル量)を検出する。室内空気質センサは、例えば、室内ケーシング(31)に設けられ、室内吸込口(31a)(図2参照)に配置される。
(13) Tenth Example of Operation of Air Conditioner The air conditioner (1) includes an indoor air quality sensor (not shown). The indoor air quality sensor detects the amount of air pollutants in the air in the room (I) (e.g., the amount of particles in the air in the room). The indoor air quality sensor is provided, for example, in the indoor casing (31) and disposed at the indoor air inlet (31a) (see FIG. 2).
 第10例では、給気運転時において、室内空気質センサの検出値が経時的に増加しており、かつ、時間の変化に対する室内空気質センサの検出値の増加の程度が所定の程度を越える場合、制御部(C)は排気運転を行うことを決定することで給気運転から排気運転に切り換えられる。給気運転時において、室内(I)の室内空気質センサの検出値が経時的に増加しておらず、または、時間の変化に対する室内空気質センサの検出値の増加の程度が所定の程度を越えない場合、制御部(C)は給気運転を継続することを決定することで給気運転が継続される。 In the tenth example, during air supply operation, if the detection value of the indoor air quality sensor increases over time and the degree of increase in the detection value of the indoor air quality sensor over time exceeds a predetermined degree, the control unit (C) decides to perform exhaust operation, thereby switching from air supply operation to exhaust operation. During air supply operation, if the detection value of the indoor air quality sensor in the room (I) does not increase over time or the degree of increase in the detection value of the indoor air quality sensor over time does not exceed a predetermined degree, the control unit (C) decides to continue air supply operation, thereby continuing the air supply operation.
 (14)空気調和装置の動作の第11例
 空気調和装置(1)は、臭いセンサ(56)を備える。臭いセンサ(56)の検出値(室内の空気中の臭気成分の濃度)が経時的に増加しており、かつ、時間の変化に対する臭いセンサ(56)の検出値の増加の程度が所定の程度を越える場合、制御部(C)は排気運転を行うことを決定することで給気運転から排気運転に切り換える。給気運転時において、臭いセンサ(56)の検出値が経時的に増加しておらず、または、時間の変化に対する臭いセンサ(56)の検出値の増加の程度が所定の程度を越えない場合、制御部(C)が給気運転を継続することを決定することで給気運転が継続される。
(14) Eleventh Example of Operation of Air Conditioner The air conditioner (1) is equipped with an odor sensor (56). If the detection value of the odor sensor (56) (concentration of odor components in the air in the room) increases over time, and if the degree of increase in the detection value of the odor sensor (56) over time exceeds a predetermined degree, the control unit (C) decides to perform exhaust operation, thereby switching from supply air operation to exhaust operation. During supply air operation, if the detection value of the odor sensor (56) does not increase over time, or if the degree of increase in the detection value of the odor sensor (56) over time does not exceed a predetermined degree, the control unit (C) decides to continue the supply air operation, and the supply air operation is continued.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう(例えば、下記(A)~(F))。また、以上の実施形態、変形例、その他の実施形態の要素を適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various modifications of form and details are possible without departing from the spirit and scope of the claims (for example, (A) to (F) below). Furthermore, elements of the above embodiments, modifications, and other embodiments may be combined or substituted as appropriate.
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The descriptions "first," "second," "third," etc. mentioned above are used to distinguish the words to which they are attached, and do not limit the number or order of those words.
 (A)以上に述べた空気調和装置(1)の動作の第1例(図7参照)~第4例(図10参照)、第9例(図15参照)、第10例、および第11例について、成分値として、臭いの強さ、またはパーティクル量が用いられる。しかし、成分値の種類についてはこれに限定されない。成分値は、室内(I)の空気環境に関してユーザの快適性に影響を与えるものであればよく、例えば、有害ガスの濃度、二酸化炭素濃度等であってもよい。空気調和装置(1)の動作の第1例~第4例、第9例、第10例および第11例の各々に示す成分値(臭いの強さ、またはパーティクル量)について、他の種類の成分値(有害ガスの濃度、二酸化炭素濃度等)と読み替えても同様の効果を発揮する。 (A) In the first (see FIG. 7) to fourth (see FIG. 10), ninth (see FIG. 15), tenth, and eleventh examples of the operation of the air conditioner (1) described above, odor intensity or particle amount is used as the component value. However, the type of component value is not limited to this. The component value may be anything that affects the user's comfort with respect to the air environment in the room (I), and may be, for example, the concentration of harmful gases, carbon dioxide concentration, etc. The same effect can be achieved even if the component values (odor intensity or particle amount) shown in each of the first to fourth, ninth, tenth, and eleventh examples of the operation of the air conditioner (1) are replaced with other types of component values (harmful gas concentration, carbon dioxide concentration, etc.).
 (B)空調室内機(30)の室内ケーシング(31)の内部には、給気運転時に室外から室内ケーシング(31)の内部に送られた空気を室内熱交換器(34)の吸い込み側へ案内する通路が設けられてもよい。この場合、制御部(C)は、外気湿度センサ(52)の検出値と内気温度センサ(53)の検出値とを比較し、室外の湿度が室内の湿度よりも高いときに空気調和装置(1)に給気運転を行わせてもよい。これにより、空調室内機(30)へ送られた外気が室内熱交換器(34)によりすぐに除湿されるので、外気が室内熱交換器(34)へすぐに到達することなく、室内の空気と混合して薄まった状態で室内熱交換器(34)に到達して室内熱交換器(34)により除湿されるよりも外気の除湿を効果的に行うことができる。 (B) A passage may be provided inside the indoor casing (31) of the air conditioner indoor unit (30) to guide air sent from the outside to the inside of the indoor casing (31) during air supply operation to the suction side of the indoor heat exchanger (34). In this case, the control unit (C) may compare the detection value of the outdoor air humidity sensor (52) with the detection value of the indoor air temperature sensor (53), and cause the air conditioner (1) to perform air supply operation when the outdoor humidity is higher than the indoor humidity. As a result, the outdoor air sent to the air conditioner indoor unit (30) is immediately dehumidified by the indoor heat exchanger (34), and therefore the outdoor air can be dehumidified more effectively than if the outdoor air did not immediately reach the indoor heat exchanger (34) but instead reached the indoor heat exchanger (34) in a diluted state after mixing with the indoor air, and was dehumidified by the indoor heat exchanger (34).
 (C)制御部(C)は、空気調和装置(1)の起動時に空気調和装置(1)に排気運転を行わせてもよい。これにより、空気処理装置(1)の起動時に室内(I)に不快な臭いが発生することを抑制できる。また、室内熱交換器(34)に水分が付着していた場合、空気処理装置(1)の起動時に室内(I)へ高湿度の空気が供給されることを抑制できる。 (C) The control unit (C) may cause the air conditioner (1) to perform exhaust operation when the air conditioner (1) is started. This makes it possible to prevent unpleasant odors from being generated in the room (I) when the air treatment device (1) is started. Also, if moisture is present on the indoor heat exchanger (34), it is possible to prevent high humidity air from being supplied to the room (I) when the air treatment device (1) is started.
 (D)制御部(C)は、空気調和装置(1)の起動時に、室外ファン(13)の回転を停止させてもよい。 (D) The control unit (C) may stop the rotation of the outdoor fan (13) when the air conditioning device (1) is started.
 (E)制御部(C)は、空気調和装置(1)の起動時に、フラップ(37)を閉状態にすることで室内吹出口(31b)を閉状態にしてもよい。フラップ(37)は風向板の一例である。風向板は、ルーバーであってもよい。これにより、空気処理装置(1)の起動時に室外の空気が室内へ送られることを抑制できる。 (E) The control unit (C) may close the indoor air outlet (31b) by closing the flap (37) when the air conditioning device (1) is started. The flap (37) is an example of an air direction plate. The air direction plate may be a louver. This makes it possible to prevent outdoor air from being sent into the room when the air treatment device (1) is started.
 (F)図16を参照して、空気調和装置(1)の変形例について説明する。以下では、上述した実施形態と異なる点について説明する。なお、図14では、便宜上、空調室内機(30)および空調室外機(10)の図示を省略している。 (F) A modified example of the air conditioning device (1) will be described with reference to FIG. 16. The following describes the differences from the above-described embodiment. Note that, for convenience, the air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are not shown in FIG. 14.
 図14に示すように、空気調和装置(1)の変形例では、第2ファン(23)および第3通路(62)が設けられていない点が、図2に示す空気調和装置(1)と異なる。 As shown in FIG. 14, the modified air conditioner (1) differs from the air conditioner (1) shown in FIG. 2 in that the second fan (23) and the third passage (62) are not provided.
 空気調和装置(1)の変形例では、上記(3-1)~(3-8)の運転動作のうち加湿運転の動作内容が図2に示す空気調和装置(1)と異なる。 In the modified example of the air conditioner (1), the operation of the humidification operation among the above-mentioned operation steps (3-1) to (3-8) differs from that of the air conditioner (1) shown in FIG. 2.
 空気調和装置(1)の変形例において、加湿運転では、調湿ユニット(20)により加湿された空気が間欠的に室内(I)に供給される。空気調和装置(1)の変形例では、加湿運転時において、調湿ユニット(20)が、第3動作と第4動作とを交互に行う。第3動作は、空気中の水分を調湿ロータ(22)に吸着させるとともに、調湿ロータ(22)を通過した空気を室外へ排出する動作である。第4動作は、調湿ロータ(22)を再生するとともに、調湿ロータ(22)から水分が付与された空気を室内(I)へ供給する動作である。 In a modified example of the air conditioner (1), during humidification operation, air humidified by the humidity control unit (20) is intermittently supplied to the room (I). In a modified example of the air conditioner (1), during humidification operation, the humidity control unit (20) alternately performs a third operation and a fourth operation. The third operation is an operation in which moisture in the air is adsorbed by the humidity control rotor (22) and the air that has passed through the humidity control rotor (22) is discharged to the outside of the room. The fourth operation is an operation in which the humidity control rotor (22) is regenerated and the air to which moisture has been added is supplied from the humidity control rotor (22) to the room (I).
 具体的には、第3動作では、制御部(C)が、第1ファン(26)を運転させ、ヒータ(25)を停止させ、第1切換ダンパ(24)を第4状態とし、第2切換ダンパ(29)を第5状態とする。第1ファン(26)によって搬送される空気は、第1通路(27)を流れ、調湿ロータ(22)の調湿領域(22A)を通過する。調湿領域(22A)では、空気中の水分が吸着剤に吸着される。調湿領域(22A)の吸着剤に水分を付与した空気は、図7の黒塗りの矢印で示すように、第1通路(27)から第2通路(28)を流れ、室外に排出される。 Specifically, in the third operation, the control unit (C) operates the first fan (26), stops the heater (25), sets the first switching damper (24) to the fourth state, and sets the second switching damper (29) to the fifth state. The air transported by the first fan (26) flows through the first passage (27) and passes through the humidity control area (22A) of the humidity control rotor (22). In the humidity control area (22A), moisture in the air is adsorbed by the adsorbent. The air that has absorbed moisture into the adsorbent in the humidity control area (22A) flows from the first passage (27) to the second passage (28) as shown by the black arrows in FIG. 7, and is discharged to the outside of the room.
 第4動作は、制御部(C)が、第1ファン(26)およびヒータ(25)を運転させ、第1切換ダンパ(24)を第3状態とし、第2切換ダンパ(29)を第5状態とする。第1ファン(26)によって搬送される空気は、第1通路(27)を流れ、ヒータ(25)によって加熱された後、調湿ロータ(22)の調湿領域(22A)を流れる。調湿領域(22A)では、吸着剤が再生される。具体的には、吸着剤に吸着された水分が脱離し、空気中に放出される。調湿ロータ(22)から脱離した水分を含む空気はホース(2)を通じて空調室内機(30)へ送られ、空調室内機(30)の室内吹出口(31b)から室内(I)へ供給される。 In the fourth operation, the control unit (C) operates the first fan (26) and the heater (25), sets the first switching damper (24) to the third state, and sets the second switching damper (29) to the fifth state. The air conveyed by the first fan (26) flows through the first passage (27) and is heated by the heater (25), and then flows through the humidity control area (22A) of the humidity control rotor (22). In the humidity control area (22A), the adsorbent is regenerated. Specifically, the moisture adsorbed by the adsorbent is desorbed and released into the air. The air containing the moisture desorbed from the humidity control rotor (22) is sent to the air conditioning indoor unit (30) through the hose (2) and is supplied to the room (I) from the indoor air outlet (31b) of the air conditioning indoor unit (30).
 以上に説明したように、本開示は、空気処理装置について有用である。 As explained above, the present disclosure is useful for air treatment devices.
1   空気調和装置(空気処理装置)
10  冷凍装置
13  室外ファン(ファン)
30  空調室内機(室内機)
34  室内熱交換器
37  フラップ(風向板)
53  内気温度センサ(温度センサ)
54  内気湿度センサ(湿度センサ)
C   制御部
I   室内
1. Air conditioning equipment (air treatment equipment)
10 Refrigeration device 13 Outdoor fan (fan)
30 Air conditioning indoor unit (indoor unit)
34 Indoor heat exchanger 37 Flap (wind deflector)
53 Inside air temperature sensor (temperature sensor)
54 Inside air humidity sensor (humidity sensor)
C Control section I Indoor

Claims (11)

  1.  室内(I)の換気を行う空気処理装置であって、
     前記空気処理装置の動作を制御する制御部(C)を備え、
     前記制御部(C)は、室内環境または室外環境に基づいて、室内(I)の空気を室外へ送る排気運転と、室外の空気を室内(I)へ送る給気運転とのうちのいずれかの運転を前記空気処理装置に行わせる、空気処理装置。
    An air treatment device for ventilating a room (I),
    A control unit (C) for controlling the operation of the air treatment device,
    The control unit (C) causes the air treatment device to perform either an exhaust operation in which indoor air (I) is sent to the outside of the room, or an air supply operation in which outdoor air is sent to the room (I) based on the indoor environment or the outdoor environment.
  2.  前記空気処理装置の室内機(30)に設けられる室内熱交換器(34)を備え、
     前記室内熱交換器(34)に水分が付着した状態で前記空気処理装置が停止指示を受け付けた場合、前記制御部(C)は前記空気処理装置に前記排気運転を行わせる、請求項1に記載の空気処理装置。
    an indoor heat exchanger (34) provided in an indoor unit (30) of the air treatment device;
    The air treatment device according to claim 1 , wherein, when the air treatment device receives a stop instruction in a state where moisture is attached to the indoor heat exchanger (34), the control unit (C) causes the air treatment device to perform the exhaust operation.
  3.  前記室内熱交換器(34)に水分が付着した状態で前記空気処理装置が停止指示を受け付けた場合には、冷房運転を行っている前記空気処理装置が停止指示を受け付けた場合が含まれる、請求項2に記載の空気処理装置。 The air treatment device according to claim 2, wherein the case where the air treatment device receives a stop command when moisture is attached to the indoor heat exchanger (34) includes a case where the air treatment device performing cooling operation receives a stop command.
  4.  前記室内熱交換器(34)に水分が付着した状態で前記空気処理装置が停止指示を受け付けた場合には、冷房運転を行っている前記空気処理装置が停止指示を受け付け、かつ、前記室内(I)の空気の露点温度よりも前記室内熱交換器(34)の温度が低い場合が含まれる、請求項2に記載の空気処理装置。 The air treatment device according to claim 2, wherein when the air treatment device receives a stop command while moisture is adhering to the indoor heat exchanger (34), the air treatment device performing cooling operation receives a stop command and the temperature of the indoor heat exchanger (34) is lower than the dew point temperature of the air in the room (I).
  5.  前記制御部(C)は、室内(I)の湿度、または室外の湿度に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせる、請求項1に記載の空気処理装置。 The air treatment device according to claim 1, wherein the control unit (C) causes the air treatment device to perform either the exhaust operation or the supply operation based on the humidity in the room (I) or the humidity outside the room.
  6.  前記制御部(C)は、経時的に取得した室内(I)の湿度を示す情報に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせる、請求項5に記載の空気処理装置。 The air treatment device according to claim 5, wherein the control unit (C) causes the air treatment device to perform either the exhaust operation or the supply operation based on information indicating the humidity in the room (I) acquired over time.
  7.  前記制御部(C)は、室内(I)の空気中の成分値、または室外の空気中の前記成分値に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせ、
      前記成分値は、空気中の所定のガス成分の量、空気中の所定のガス成分の濃度、または、空気中のパーティクル量を示す、請求項1に記載の空気処理装置。
    The control unit (C) causes the air treatment device to perform either the exhaust operation or the air supply operation based on the component values in the air in the room (I) or the component values in the air outside the room,
    The air treatment device of claim 1 , wherein the component value indicates an amount of a predetermined gas component in the air, a concentration of a predetermined gas component in the air, or an amount of particles in the air.
  8.  前記制御部(C)は、経時的に取得した室内(I)の前記成分値を示す情報に基づいて、前記排気運転および前記給気運転のうちのいずれかの運転を前記空気処理装置に行わせる、請求項7に記載の空気処理装置。 The air treatment device according to claim 7, wherein the control unit (C) causes the air treatment device to perform either the exhaust operation or the supply operation based on information indicating the component values in the room (I) acquired over time.
  9.  前記制御部(C)は、時間の変化に対する室内(I)の前記成分値の変化の割合が所定の割合よりも大きい場合、前記空気処理装置に前記排気運転を行わせる、請求項7または請求項8に記載の空気処理装置。 The air treatment device according to claim 7 or 8, wherein the control unit (C) causes the air treatment device to perform the exhaust operation when the rate of change in the component value in the room (I) relative to the change in time is greater than a predetermined rate.
  10.  前記制御部(C)は、室内(I)の前記成分値を示す第1センサ信号を取得し、前記第1センサ信号を表す波形に含まれる周波数成分のうちの所定の周波数以上の高周波成分が所定割合以上の場合、前記空気処理装置に前記排気運転を行わせる、請求項7または請求項8に記載の空気処理装置。 The air treatment device according to claim 7 or 8, wherein the control unit (C) acquires a first sensor signal indicating the component value in the room (I), and when a high-frequency component having a predetermined frequency or higher among frequency components contained in a waveform representing the first sensor signal is equal to or higher than a predetermined ratio, causes the air treatment device to perform the exhaust operation.
  11.  前記給気運転時において、室内(I)の前記成分値が経時的に増加しており、かつ、前記増加の程度が所定の程度を越える場合、前記制御部(C)は前記空気処理装置に前記排気運転を行わせる、請求項7または請求項8に記載の空気処理装置。 The air treatment device according to claim 7 or 8, wherein, during the air supply operation, if the component value in the room (I) increases over time and the degree of the increase exceeds a predetermined degree, the control unit (C) causes the air treatment device to perform the exhaust operation.
PCT/JP2023/040441 2022-11-09 2023-11-09 Air treatment device WO2024101430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179722A JP2024068991A (en) 2022-11-09 2022-11-09 Air treatment device
JP2022-179722 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101430A1 true WO2024101430A1 (en) 2024-05-16

Family

ID=91032524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040441 WO2024101430A1 (en) 2022-11-09 2023-11-09 Air treatment device

Country Status (2)

Country Link
JP (1) JP2024068991A (en)
WO (1) WO2024101430A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201166A (en) * 1993-01-07 1994-07-19 Matsushita Seiko Co Ltd Automatic operating device for ventilating-fan
JP2007205656A (en) * 2006-02-02 2007-08-16 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2016109408A (en) * 2014-12-08 2016-06-20 義雄 不破 Ventilation fan having control function based on difference between indoor and outdoor temperature and difference between indoor and outdoor humidity
JP2022097186A (en) * 2020-12-18 2022-06-30 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201166A (en) * 1993-01-07 1994-07-19 Matsushita Seiko Co Ltd Automatic operating device for ventilating-fan
JP2007205656A (en) * 2006-02-02 2007-08-16 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2016109408A (en) * 2014-12-08 2016-06-20 義雄 不破 Ventilation fan having control function based on difference between indoor and outdoor temperature and difference between indoor and outdoor humidity
JP2022097186A (en) * 2020-12-18 2022-06-30 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2024068991A (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP7464868B2 (en) Air quality control system
US20220268460A1 (en) Air conditioning system
JP2010151337A (en) Air conditioning system
JP2023159457A (en) air conditioning system
WO2023032738A1 (en) Air-conditioning device
WO2024101430A1 (en) Air treatment device
JP2010286197A (en) Humidity controller
WO2023085327A1 (en) Humidifier and air conditioner
JP2007100968A (en) Humidity conditioner and air conditioning system provided therewith
JP7332927B2 (en) ventilator
WO2023032731A1 (en) Air conditioning system
WO2023032379A1 (en) Humidifier
JP7208562B1 (en) air conditioner
JP7182026B1 (en) humidifier
WO2023032397A1 (en) Air conditioner
WO2022190888A1 (en) Adsorption system
JP2024068992A (en) Air Conditioning System
JP2023070421A (en) air conditioner
JP2024068878A (en) Air conditioning device
JP2024068764A (en) Air conditioner
JP2023035192A (en) Air-conditioner
JP2010085034A (en) Humidity conditioning device
JP5071566B2 (en) Humidity control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888775

Country of ref document: EP

Kind code of ref document: A1