WO2023032379A1 - Humidifier - Google Patents

Humidifier Download PDF

Info

Publication number
WO2023032379A1
WO2023032379A1 PCT/JP2022/022506 JP2022022506W WO2023032379A1 WO 2023032379 A1 WO2023032379 A1 WO 2023032379A1 JP 2022022506 W JP2022022506 W JP 2022022506W WO 2023032379 A1 WO2023032379 A1 WO 2023032379A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity
humidification
indoor
outdoor
Prior art date
Application number
PCT/JP2022/022506
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 松本
康史 鵜飼
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280051954.8A priority Critical patent/CN117716179A/en
Publication of WO2023032379A1 publication Critical patent/WO2023032379A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • F24F6/10Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to humidifiers.
  • Patent Document 1 discloses a non-water supply type humidifier (air conditioner).
  • An air conditioner adsorbs moisture in outdoor air with a humidification rotor. When the air heated by the heater flows through the humidification rotor, moisture is desorbed from the adsorbent of the humidification rotor. The desorbed air containing moisture is sent to the air conditioning indoor unit through the hose. The air conditioning indoor unit supplies moisture-containing air to the target space. This humidifies the air in the target space.
  • the purpose of the present disclosure is to suppress wasteful consumption of energy required for regeneration of the adsorption member.
  • a first aspect is directed to a humidifying device.
  • the humidifier includes an adsorption member (22) that adsorbs moisture in the outdoor air, a regeneration unit (25, 26) that desorbs the moisture supplied to the target space (I) from the adsorption member (22), an outdoor air
  • the output of the regeneration unit (25, 26) is set to a first value when the absolute humidity of the outdoor air is a first humidity, and the regeneration unit (25, 26) when the absolute humidity of the outdoor air is a second humidity lower than the first humidity and a control section (C) for setting the outputs of (25, 26) to a second value smaller than the first value.
  • the control section (C) sets the output of the regeneration section (25, 26) to the second humidity lower than the first humidity. value.
  • the output of the regeneration section (25, 26) can be reduced under conditions where the amount of water adsorbed by the adsorption member (22) is relatively small. As a result, wasteful consumption of energy required for regeneration of the adsorption member (22) can be suppressed.
  • the regeneration section includes a heater (25) in the first aspect.
  • the output of the heater (25) can be reduced under conditions where the amount of water adsorbed by the adsorption member (22) is relatively small.
  • the regeneration section includes a first fan (26) that conveys air containing moisture desorbed from the adsorption member (22) to the target space (I). including.
  • the output of the fan ( ) can be reduced under conditions where the amount of water adsorbed by the adsorption member (22) is relatively small.
  • a fourth aspect is any one of the first to third aspects, further comprising a second fan (23) for conveying outdoor air containing moisture to be adsorbed by the adsorption member (22), wherein the controller (C) increases the air volume of the second fan (23) when the absolute humidity of the outdoor air is the second humidity.
  • the air volume of the second fan (23) is increased when the absolute humidity of the outdoor air is the second humidity lower than the first humidity.
  • the amount of moisture adsorbed by the adsorption member (22) can be increased under conditions where the outdoor air has relatively low humidity.
  • the controller (C) increases the air volume of the second fan (23) when the absolute humidity of the outdoor air is the second humidity, and then Then, the output of the reproducing section (25, 26) is set as the second value.
  • the air volume of the second fan (23) is first increased.
  • the amount of moisture adsorbed by the adsorption member (22) can be increased under conditions where the humidity of the outdoor air is relatively low.
  • the control section (C) lowers the output of the reproducing section (25, 26), so that it is possible to prevent the output of the reproducing section (25, 26) from becoming excessive.
  • the control unit (C) controls the target space (I) under the condition that the absolute humidity of the outdoor air is the first humidity.
  • the output of the regeneration unit (25, 26) is set to a first value that is larger than the output when there is no request.
  • the humidity of the outdoor air is relatively Under high conditions, the controller (C) sets the output of the regenerator (25, 26) to a first value greater than the second value.
  • the first value when there is a request for the amount of humidification is greater than the first value when there is no request for the amount of humidification.
  • the amount of moisture adsorbed by the adsorption member (22) also increases. Therefore, by increasing the output of the regeneration section (25, 26) in this manner, the amount of water supplied to the target space (I) increases, and the demand for increasing the amount of humidification can be met.
  • a seventh aspect is the sixth aspect, wherein the control unit (C) obtains the required humidification amount based on the humidity of the air in the target space (I), and determines the absolute humidity of the outdoor air and the required humidification and controlling the output of the regeneration unit (25, 26) based on the quantity.
  • the control section (C) of the seventh aspect controls the output of the regeneration section (25, 26) based on the humidity of the outdoor air and the required amount of humidification. This makes it possible to realize humidification control that considers the amount of moisture adsorbed by the adsorption member (22) and the required amount of humidification of the target space (I).
  • a notification unit (41) is provided for reporting information about a decrease in humidification capacity.
  • the control section (C) sets the output of the regeneration section (25, 26) to the relatively small second value. Therefore, wasteful consumption of energy required for regeneration of the adsorption member (22) can be suppressed.
  • the reporting section (41) reports information about the deterioration of the humidification capability.
  • control section (C) limits the output of the regeneration section (25, 26) so that the absolute humidity of the air in the target space (I) is equal to or less than a predetermined value.
  • the control unit (C) limits the output of the regeneration unit (25, 26), so that the air is supplied to the target space (I). Condensation of moisture in the air can be suppressed.
  • FIG. 1 is a schematic overall configuration diagram of an air conditioner according to an embodiment.
  • FIG. 2 is a configuration diagram showing refrigerant piping and air flow of an air conditioner.
  • FIG. 3 is a longitudinal sectional view of the air conditioning indoor unit.
  • FIG. 4 is a block diagram including the main elements of the air conditioner.
  • FIG. 5 is a flow chart of humidification operation.
  • FIG. 6 is a flowchart of the humidification operation of Modification 1.
  • FIG. FIG. 7 is a flowchart of the humidification operation of Modification 2.
  • FIG. 1 is a schematic overall configuration diagram of an air conditioner according to an embodiment.
  • FIG. 2 is a configuration diagram showing refrigerant piping and air flow of an air conditioner.
  • FIG. 3 is a longitudinal sectional view of the air conditioning indoor unit.
  • FIG. 4 is a block diagram including the main elements of the air conditioner.
  • FIG. 5 is a flow chart of humidification operation.
  • FIG. 6 is a flowchart of the humidification operation
  • the air conditioner (1) is an example of a humidifier.
  • An air conditioner (1) regulates the temperature and humidity of the air in the target space.
  • the target space in this example is the indoor space (I).
  • the air conditioner (1) has an air conditioner outdoor unit (10) and an air conditioner indoor unit (30).
  • the air conditioning outdoor unit (10) is installed outdoors, and the air conditioning indoor unit (30) is installed indoors.
  • the air conditioner (1) is a pair type having one air conditioner indoor unit (30) and one air conditioner outdoor unit (10).
  • An air conditioner (1) has a humidification unit (20).
  • An air conditioner (1) has a function of humidifying air.
  • the air conditioner (1) further has a function of ventilating the indoor space (I).
  • the air conditioner (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4).
  • the air conditioning indoor unit (30) and the humidifying unit (20) are connected to each other via the hose (2).
  • the air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are connected to each other via a liquid communication pipe (3) and a gas communication pipe (4).
  • a refrigerant circuit (R) is configured.
  • the refrigerant circuit (R) is filled with refrigerant.
  • the refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane.
  • the refrigerant circuit (R) performs a vapor compression refrigeration cycle.
  • the refrigerant circuit (R) mainly has a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34). .
  • the refrigerant circuit (R) performs the first refrigerating cycle and the second refrigerating cycle according to switching of the four-way switching valve (16).
  • the first refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator.
  • the second refrigerating cycle is a refrigerating cycle in which the outdoor heat exchanger (14) functions as a radiator and the indoor heat exchanger (34) functions as an evaporator.
  • the air conditioner outdoor unit (10) includes an outdoor casing (11), a compressor (12), and an outdoor fan (13). , an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
  • the outdoor casing (11) houses a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15) and a four-way switching valve (16).
  • the outdoor casing (11) is formed with an outdoor inlet (11a) and an outdoor outlet (11b).
  • the outdoor suction port (11a) is formed on the rear side of the outdoor casing (11).
  • the outdoor air inlet (11a) is an opening for sucking outdoor air.
  • the outdoor outlet (11b) is formed on the front side of the outdoor casing (11).
  • the outdoor air outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14).
  • An outdoor air passage (11c) is formed inside the outdoor casing (11) from the outdoor suction port (11a) to the outdoor outlet (11b).
  • the compressor (12) sucks and compresses low-pressure gas refrigerant.
  • the compressor (12) is driven by a first motor (M1).
  • the compressor (12) is a variable displacement compressor in which power is supplied from an inverter circuit to the first motor (M1).
  • the compressor (12) is configured such that its operating capacity can be changed by adjusting the operating frequency (rotational speed) of the first motor (M1).
  • the outdoor fan (13) is arranged in the outdoor air passage (11c).
  • the outdoor fan (13) is rotated by driving the second motor (M2). Air carried by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passageway (11c) and is blown out of the outdoor casing (11) through the outdoor outlet (11b).
  • the outdoor fan (13) conveys outdoor air so as to pass through the outdoor heat exchanger (14).
  • the outdoor heat exchanger (14) is arranged upstream of the outdoor fan (13) in the outdoor air passage (11c).
  • the outdoor heat exchanger (14) of this example is a fin-and-tube heat exchanger.
  • the outdoor heat exchanger (14) is an example of a heat source heat exchanger.
  • the outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air conveyed by the outdoor fan (13).
  • the expansion valve (15) is an example of a decompression mechanism.
  • the expansion valve (15) reduces the pressure of the refrigerant.
  • the expansion valve (15) is an electrically operated expansion valve whose degree of opening is adjustable.
  • the decompression mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like.
  • the expansion valve (15) may be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
  • the four-way switching valve (16) is an example of a channel switching mechanism.
  • the four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3) and a fourth port (P4).
  • the first port (P1) is connected to the discharge of the compressor (12).
  • the second port (P2) is connected to the intake of the compressor (12).
  • the third port (P3) is connected to the gas end of the outdoor heat exchanger (14).
  • the fourth port (P4) is connected to the gas communication pipe (4).
  • the four-way switching valve (16) is switched between a first state (shown by the solid line in Fig. 2) and a second state (state shown by the broken line in Fig. 2).
  • the four-way switching valve (16) in the first state allows communication between the first port (P1) and the third port (P3) and communication between the second port (P2) and the fourth port (P4).
  • the four-way switching valve (16) in the second state allows communication between the first port (P1) and the fourth port (P4) and communication between the second port (P2) and the third port (P3).
  • the humidification unit (20) is installed outdoors.
  • the humidification unit (20) of this example is integrated with the air conditioner outdoor unit (10).
  • the humidification unit (20) sends moisture in the outdoor air to the air conditioning indoor unit (30).
  • the humidification unit (20) includes a humidification casing (21), a humidification rotor (22), a second fan (23), a switching damper (24), a heater (25), and a first fan (26). have.
  • the humidifying casing (21) is integrally attached to the outdoor casing (11).
  • the humidification casing (21) houses a humidification rotor (22), a second fan (23), a switching damper (24), a heater (25), and a first fan (26).
  • the humidification casing (21) is formed with a humidification intake port (21a), a humidification exhaust port (21b), and an intake/exhaust port (21c).
  • the humidification suction port (21a) and the suction/exhaust port (21c) are formed on the rear side of the humidification casing (21).
  • the humidification exhaust port (21b) is formed in the front side of the humidification casing (21).
  • the humidification suction port (21a) is an opening for sucking outdoor air.
  • the humidification exhaust port (21b) is an opening for discharging the air after applying moisture to the humidification rotor (22).
  • the intake/exhaust port (21c) is an opening for taking in outdoor air or discharging air sent from the room.
  • a first passageway (27) extending from the humidification suction port (21a) to the humidification exhaust port (21b) is formed inside the humidification casing (21).
  • a second passageway (28) extending from the air intake/exhaust port (21c) to the connection port (21d) is formed inside the humidification casing (21).
  • a hose (2) is connected to the connection port (21d).
  • the humidification rotor (22) is arranged across the first passageway (27) and the second passageway (28).
  • the humidification rotor (22) is an adsorption member that adsorbs moisture in the air.
  • the humidification rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
  • a humidifying rotor (22) holds an adsorbent such as silica gel, zeolite, or alumina.
  • the adsorbent has the property of adsorbing moisture in the air.
  • Moisture absorbents have the property of desorbing adsorbed moisture when heated.
  • the humidification rotor (22) is rotated by driving the third motor (M3).
  • the humidification rotor (22) has a moisture absorption area (22A) that adsorbs moisture in the air and a moisture release area (22B) that desorbs moisture in the air.
  • the moisture absorption region (22A) is constituted by a portion of the humidification rotor (22) located in the first passageway (27).
  • the moisture release area (22B) is configured by a portion of the humidification rotor (22) located in the second passageway (28).
  • the second fan (23) is arranged in the first passageway (27).
  • the second fan (23) is rotated by driving the fourth motor (M4).
  • the second fan (23) is configured to be able to switch the air volume in a plurality of steps by adjusting the rotational speed of the fourth motor (M4).
  • the air conveyed by the second fan (23) is sucked into the humidification casing (21) through the humidification suction port (21a). This air flows through the first passageway (27) and is discharged to the outside of the humidification casing (21) through the humidification exhaust port (21b).
  • the second fan (23) conveys outdoor air so as to pass through the moisture absorption region (22A) of the humidification rotor (22). Moisture contained in the outdoor air flowing through the first passageway (27) is adsorbed by the moisture absorption region (22A) of the humidification rotor (22).
  • the switching damper (24) is arranged in the second passageway (28).
  • the switching damper (24) has a first entrance (24a) and a second entrance (24b).
  • the first inlet/outlet (24a) communicates with the intake/exhaust port (21c).
  • the second inlet/outlet (24b) communicates with the hose (2) connection port (21d) in the humidification casing (21).
  • the switching damper (24) is switched between a first state and a second state.
  • the switching damper (24) in the first state has a first port (24a) as an inlet for sucking air and a second port (24b) as an outlet for discharging air.
  • the switching damper (24) in the second state has an inlet for sucking air as a second inlet (24b) and an outlet for discharging air as a first inlet (24a).
  • the state of the switching damper (24) is switched by driving the fifth motor (M5).
  • the heater (25) is an example of the regeneration section.
  • the heater (25) is arranged between the intake/exhaust port (21c) and the switching damper (24) in the second passageway (28).
  • the heater (25) heats air flowing through the second passageway (28).
  • the heater (25) has a variable output. The temperature of the air passing through the heater (25) changes according to the output of the heater (25).
  • the first fan (26) is arranged between the first entrance (24a) and the second entrance (24b) of the switching damper (24).
  • the first fan (26) is rotated by driving the sixth motor (M6).
  • the first fan (26) is configured to be able to switch the air volume in a plurality of stages by adjusting the rotation speed of the sixth motor (M6).
  • the flow of air carried by the first fan (26) changes according to the state of the switching damper (24). Specifically, when the switching damper (24) is in the first state, air sucked through the first inlet/outlet (24a) flows out to the second inlet/outlet (24b) as indicated by the solid line arrow in FIG. When the switching damper (24) is in the second state, air sucked through the second inlet/outlet (24b) flows out to the first inlet/outlet (24a) as indicated by the dashed arrow in FIG.
  • the air conditioner indoor unit (30) is installed indoors.
  • the air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of the room that forms the indoor space (I).
  • the air conditioning indoor unit (30) includes an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and a wind direction adjusting section (36). and
  • the indoor casing (31) houses an indoor fan (32), an air filter (33), an indoor heat exchanger (34) and a drain pan (35).
  • the indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet (31b).
  • the indoor suction port (31a) is arranged above the indoor casing (31).
  • the indoor air intake (31a) is an opening for sucking indoor air.
  • the indoor outlet (31b) is arranged below the indoor casing (31).
  • the indoor air outlet (31b) is an opening for blowing out air after heat exchange or air for humidification.
  • the interior of the indoor casing (31) is provided with an indoor air passageway (31c) extending from the indoor air inlet (31a) to the indoor air outlet (31b).
  • the indoor fan (32) is arranged substantially in the center of the indoor air passage (31c).
  • the indoor fan (32) is an example of a blower.
  • the indoor fan (32) is, for example, a cross-flow fan.
  • the indoor fan (32) is rotated by driving the seventh motor (M7).
  • the indoor fan (32) takes indoor air into the indoor air passageway (31c) and conveys it.
  • the air carried by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passageway (31c) and is blown out of the indoor casing (31) from the indoor outlet (31b).
  • the indoor fan (32) conveys indoor air so as to pass through the indoor heat exchanger (34).
  • the air blown out from the indoor air outlet (31b) is supplied to the indoor space.
  • the indoor fan (32) is configured such that the air volume can be switched in multiple stages by adjusting the rotation speed of the seventh motor (M7).
  • the air filter (33) is arranged upstream of the indoor heat exchanger (34) in the indoor air passage (31c).
  • the air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through.
  • the air filter (33) collects dust in the air sucked through the indoor air inlet (31a).
  • the indoor heat exchanger (34) is arranged upstream of the indoor fan (32) in the indoor air passage (31c).
  • the indoor heat exchanger (34) of this example is a fin-and-tube heat exchanger.
  • the indoor heat exchanger (34) is an example of a utilization heat exchanger.
  • the indoor heat exchanger (34) exchanges heat between the refrigerant therein and indoor air conveyed by the indoor fan (32).
  • the drain pan (35) is arranged on the lower front side and the lower rear side of the indoor heat exchanger (34).
  • the drain pan (35) receives condensed water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensed water generated on the surface of the fins of the indoor heat exchanger (34) flows down due to its own weight along the surface and is received by the drain pan (35).
  • the wind direction adjusting section (36) adjusts the direction of the air blown out from the indoor outlet (31b).
  • the wind direction adjusting part (36) has a flap (37).
  • the flap (37) is shaped like a long plate extending along the longitudinal direction of the indoor outlet (31b).
  • the flap (37) is rotated by being driven by a motor.
  • the flap (37) opens and closes the indoor outlet (31b) as it rotates.
  • the flap (37) is configured so that the tilt angle can be changed stepwise.
  • the positions to which the flap (37) in this example is adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the generally horizontal blow position shown in FIG.
  • the flap (37) in the closed position substantially closes the indoor outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor outlet (31b).
  • the remote controller (40) is placed indoors at a position where the user can operate it.
  • the remote controller (40) has a display section (41) and an input section (42).
  • the display (41) displays predetermined information.
  • the display section (41) is composed of, for example, a liquid crystal monitor.
  • the predetermined information is information indicating the operating state, set temperature, and the like of the air conditioner (1).
  • An input unit (42) receives an input operation for performing various settings from a user.
  • the input section (42) is composed of, for example, a plurality of physical switches. The user can set the operation mode, target temperature, target humidity, etc. of the air conditioner (1) by operating the input section (42) of the remote controller (40).
  • the display section (41) is an example of a notification section.
  • the display section (41) notifies information that the humidifying capacity is declining in the humidifying operation, which will be described later in detail.
  • the air conditioner (1) has a plurality of sensors.
  • the plurality of sensors includes a sensor for refrigerant and a sensor for air.
  • the refrigerant sensor includes a sensor that detects the temperature and pressure of the high-pressure refrigerant and a sensor that detects the temperature and pressure of the low-pressure refrigerant (not shown).
  • the air sensors include an outside air temperature sensor (51), an outside air humidity sensor (52), an inside air temperature sensor (53), and an inside air humidity sensor (54).
  • the outside air temperature sensor (51) is provided in the air conditioning outdoor unit (10).
  • the outdoor air temperature sensor (51) detects the temperature of outdoor air.
  • the outside air humidity sensor (52) is provided in the humidification unit (20).
  • the outside air humidity sensor (52) detects the humidity of the outside air.
  • the outdoor air humidity sensor (52) of this example detects the relative humidity of the outdoor air, but may also detect the absolute humidity.
  • the inside air temperature sensor (53) and the inside air humidity sensor (54) are provided in the air conditioning indoor unit (30).
  • the inside air temperature sensor (53) detects the temperature of the inside air.
  • a room air humidity sensor (54) detects the humidity of the room air.
  • the room air humidity sensor (54) detects the relative humidity of the room air, but may also detect the absolute humidity.
  • the air conditioner (1) has a controller (C).
  • the controller (C) controls the operation of the refrigerant circuit (R).
  • the controller (C) controls the operation of the air conditioning outdoor unit (10), the humidifying unit (20), and the air conditioning indoor unit (30).
  • the controller (C) includes an outdoor controller (OC), an indoor controller (IC), and a remote controller (40).
  • the outdoor controller (OC) is provided in the air conditioner outdoor unit (10).
  • An indoor controller (IC) is provided in the air conditioner indoor unit (30).
  • Each of the indoor controller (IC) and the outdoor controller (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
  • the MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
  • the outdoor temperature sensor (51) detection value and the outdoor air humidity sensor (52) detection value are input to the outdoor control unit (OC).
  • the outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15) and four-way switching valve (16).
  • the outdoor control unit (OC) sends control signals for executing and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), the outdoor fan (13), the expansion valve (15), and the four-way switching valve. Output to (16).
  • the outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the expansion Controls the opening of the valve (15).
  • the outdoor controller (OC) is further connected to the humidification rotor (22), second fan (23), switching damper (24), heater (25), and first fan (26).
  • the outdoor control section (OC) sends control signals for executing and stopping the operation of the humidification unit (20) to the humidification rotor (22), the second fan (23), the switching damper (24), the first fan ( 26), and output to the heater (25).
  • the outdoor controller (OC) controls the number of rotations of the fourth motor (M4) of the second fan (23) and the sixth motor (M6) of the first fan (26), the humidification rotor (22) and the switching damper (24 ) and the output of the heater (25).
  • the detection value of the inside air temperature sensor (53) and the detection value of the inside air humidity sensor (54) are input to the indoor control unit (IC).
  • the indoor control unit (IC) is communicably connected to the remote controller (40).
  • the indoor controller (IC) is connected to the indoor fan (32).
  • the indoor controller (IC) outputs a control signal to the indoor fan (32) to start and stop the operation of the air conditioning indoor unit (30).
  • the indoor controller (IC) controls the rotation speed of the seventh motor (M7) of the indoor fan (32).
  • the indoor controller (IC) is communicably connected to the outdoor controller (OC).
  • the remote controller (40) is communicably connected to the indoor control unit (IC).
  • the remote controller (40) transmits an instruction signal instructing the operation of the air conditioner (1) to the indoor controller (IC) according to the user's operation on the input section (42).
  • the indoor controller (IC) Upon receiving an instruction signal from the remote controller (40), the indoor controller (IC) transmits the instruction signal to the outdoor controller (OC).
  • the indoor controller (IC) controls the operation of each device of the air conditioning indoor unit (30) according to the instruction signal.
  • the outdoor controller (OC) receives an instruction signal from the indoor controller (IC), it controls the operation of each of the air conditioning outdoor unit (10) and the humidifying unit (20).
  • Operation Operation The operation modes executed by the air conditioner (1) include cooling operation, heating operation, humidification operation, air supply operation, and exhaust operation.
  • the controller (C) executes these operations based on instruction signals from the remote controller (40).
  • Cooling operation is an operation in which indoor air is cooled by the indoor heat exchanger (34) as an evaporator.
  • the set temperature for the cooling operation is instructed from the remote controller (40) at the start of the cooling operation or during the cooling operation.
  • the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the controller (C) sets the four-way switching valve (16) to the first state.
  • the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
  • a first refrigeration cycle is performed in which the compressed refrigerant releases heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
  • the controller (C) adjusts the target evaporating temperature of the indoor heat exchanger (34) so that the room temperature detected by the inside air temperature sensor (53) converges to the set temperature.
  • the control section (C) controls the rotation speed of the compressor (12) such that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature.
  • the air conveyed by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34).
  • the air cooled by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
  • the heating operation is an operation in which the indoor air is heated by the indoor heat exchanger (34) as a radiator.
  • the set temperature for the heating operation is instructed from the remote controller (40) at the start of the heating operation or during the heating operation.
  • the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32).
  • the controller (C) sets the four-way switching valve (16) to the second state.
  • the control section (C) appropriately adjusts the degree of opening of the expansion valve (15).
  • a second refrigeration cycle is performed in which refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
  • the controller (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature.
  • the control section (C) controls the rotation speed of the compressor (12) such that the condensation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensation temperature.
  • the air conveyed by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34).
  • the air heated by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
  • Humidification operation is an operation of humidifying indoor air by the humidification unit (20).
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
  • the control section (C) operates the heater (25), the humidification rotor (22) and the second fan (23).
  • the control section (C) operates the first fan (26).
  • the control section (C) sets the switching damper (24) to the first state.
  • the outdoor air conveyed by the second fan (23) passes through the moisture absorption area (22A) of the humidification rotor (22), and the moisture contained in the outdoor air passes through the moisture absorption area (22A) of the humidification rotor (22). 22A).
  • the portion of the humidification rotor (22) that has adsorbed moisture as the moisture absorption area (22A) moves to the second passageway (28) as the humidification rotor (22) rotates to form a moisture release area (22B).
  • Outdoor air heated by the heater (25) passes through the moisture release area (22B) of the humidification rotor (22), and moisture is desorbed from the humidification rotor (22) to the heated air.
  • the air supply operation is an operation for supplying outdoor air to a room.
  • outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG.
  • the controller (C) stops the heater (25), the humidification rotor (22), and the second fan (23) and operates the first fan (26).
  • the control section (C) sets the switching damper (24) to the first state.
  • the outdoor air conveyed by the first fan (26) is sent to the air conditioning indoor unit (30) through the hose (2), and is discharged from the indoor outlet (31b) of the air conditioning indoor unit (30). It is supplied to the space (I).
  • the air supply operation may be performed simultaneously with the cooling operation or the heating operation.
  • (3-5) Exhaust operation The exhaust operation is an operation in which indoor air is discharged to the outside. In the exhaust operation, room air is sent to the humidification unit (20) through the hose (2), as indicated by the dashed arrow in FIG. In the exhaust operation, the controller (C) stops the heater (25), the humidification rotor (22), and the second fan (23) and operates the first fan (26). In the exhaust operation, the indoor air conveyed by the first fan (26) is sent to the humidification unit (20) through the hose (2), and is discharged to the outside through the intake/exhaust port (21c) of the humidification unit (20). be. Note that the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
  • the air conditioner (1) of this example considers the absolute humidity of the outdoor air in the humidification operation (including simultaneous operation of the humidification operation and the heating operation) described above. control.
  • the air conditioner (1) of the present embodiment performs the following control based on the outside air humidity (Ho).
  • the controller (C) acquires the absolute humidity of the outdoor air in step S31.
  • the controller (C) of this example calculates the absolute humidity of the outdoor air (outside air Humidity (Ho) is obtained.
  • the controller (C) compares the outside air humidity (Ho) with the first threshold.
  • the first threshold value is a value that determines whether the outdoor air is high humidity or low humidity. Humidity above the first threshold corresponds to the first humidity, and humidity below the first threshold corresponds to the second humidity.
  • the first threshold is, for example, 0.0054 (kg/kg (DA). If the outside air humidity (Ho) is less than or equal to the first threshold (NO in step S32), in other words, the outside air humidity (Ho) is higher than the first humidity. If the second humidity is smaller than the second humidity, the control section (C) performs the process of step S33.
  • the controller (C) sets the output of the heater (25) to the second value (30%).
  • the second value is an output that is less than the first value, which will be described in detail below.
  • the outside air humidity (Ho) is the second humidity
  • the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) decreases as described above.
  • the "output of the heater (25)” corresponds to the amount of heat generated by the heater (25).
  • step S34 the controller (C) determines whether or not there is a request to increase the amount of humidification.
  • the request to increase the amount of humidification is, in other words, a request to increase the humidification capacity of the air conditioner (1).
  • the condition that there is a request to increase the amount of humidification is met, for example, when the humidity detected by the inside air humidity sensor (54) is lower than the set humidity (target humidity) input to the remote controller (40).
  • step S34 when the control section (C) determines that there is a request to increase the amount of humidification, in step S35, the display section (41) of the remote controller (40) notifies the user of information indicating that the humidification capacity has decreased. do. Specifically, the display section (41) displays information indicating that the humidification capacity is declining using characters, graphics, icons, and the like. Information indicating that the humidification capability is declining includes, for example, that it takes time to humidify the target space and that the humidity of the outdoor air is low.
  • step S33 If the output of the heater (25) is made relatively small in step S33, the request for increasing the amount of humidification cannot be sufficiently met. Since the user can be informed of this by the reporting unit (41), the user can be prevented from misunderstanding that something is wrong with the air conditioner (1) and from being dissatisfied with the current humidification capacity. can.
  • step S32 if the outside air humidity (Ho) is higher than the first threshold (YES in step S32), in other words, if the outside air humidity (Ho) is the first humidity higher than the second humidity, the control unit (C) performs the processing of step S36.
  • step S36 when the controller (C) determines that there is no request to increase the amount of humidification, in step S37, the controller (C) sets the output of the heater (25) to a predetermined value that is a first value larger than the second value. Let it be the output (for example, 70%).
  • the output of the heater (25) is greater than the second value, it is possible to prevent the output of the heater (25) from becoming excessive. In other words, the output of the heater (25) can be efficiently used to humidify the target space (I).
  • step S36 when the controller (C) determines that there is a request to increase the amount of humidification, in step S38, the controller (C) sets the output of the heater (25) to a predetermined value that is a first value larger than the second value. Output (for example, 100%).
  • the control section (C) changes the output of the heater (25) to the heater ( 25) to a first value (eg, 100%) that is greater than the output (eg, 70%).
  • An air conditioner (1) includes a humidification rotor (22) that adsorbs moisture in outdoor air, a heater (25) that desorbs moisture supplied to an indoor space (I) from the humidification rotor (22), and outdoor air.
  • a humidification rotor (22) that adsorbs moisture in outdoor air
  • a heater (25) that desorbs moisture supplied to an indoor space (I) from the humidification rotor (22), and outdoor air.
  • the output of the heater (25) is set to the first value
  • the absolute humidity of the outdoor air is the second humidity lower than the first humidity
  • the output of the heater (25) is set to the first value.
  • a control unit (C) for setting a second value smaller than the first value.
  • step S33 the control section (C) reduces the output of the heater (25).
  • a first value for example, 30%
  • the second value is set. Therefore, it is possible to prevent the output of the heater (25) from becoming excessive with respect to the amount of moisture that can be desorbed from the humidification rotor (22). Therefore, wasteful consumption of energy required for regeneration of the humidification rotor (22) can be suppressed.
  • step S34 the control section (C) increases the output of the heater (25) to a value greater than the first value.
  • a second value for example, 70% at step S37 or 100% at step S38. Therefore, it is possible to prevent the output of the heater (25) from becoming insufficient with respect to the moisture adsorbed on the humidification rotor (22). Therefore, the moisture adsorbed on the humidification rotor (22) can be fully utilized for humidification of the indoor space (I). It is possible to suppress wasteful consumption of electric power (for example, the power of the second fan (23)) that is consumed to cause the humidification rotor (22) to adsorb moisture.
  • control unit (C) changes the output of the heater (25) when there is no request. A first value greater than the output of .
  • the control unit (C) does not request to increase the amount of humidification.
  • the output of the heater (25) is increased (step S38) compared to the case (NO in step S36).
  • An air conditioner (1) notifies information about a decrease in humidification capacity when there is a request to increase the amount of humidification in the target space (I) and the absolute humidity of the outdoor air is the second humidity.
  • a reporting unit (41) is provided.
  • step S33 If the output of the heater (25) is lowered in step S33, it may not be possible to sufficiently meet the demand for increasing the amount of humidification.
  • the display section (41) which is a notification section, notifies the user or the like that the humidification capacity is declining. As a result, it is possible to prevent the user from misunderstanding that something is wrong with the air conditioner (1) or from being dissatisfied with the current humidification capability.
  • step S41 the controller (C) increases the air volume of the second fan (23) by a predetermined amount.
  • the controller (C) increases the rotation speed of the fourth motor (M4) of the second fan (23).
  • the air volume of the second fan (23) increases, the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) increases.
  • step S42 the controller (C) determines whether or not the output of the heater (25) is excessive. It is based on the air volume of the first fan (26), the output of the heater (25), the required amount of humidification of the indoor space (I), and the like. The required amount of humidification of the indoor space (I) is calculated based on the set humidity (target humidity) input to the remote controller (40) and the inside air humidity detected by the inside air humidity sensor (54).
  • step S42 When it is determined in step S42 that the output of the heater (25) is not excessive, the controller (C) sets the output of the heater (25) to a first value larger than the second value. In this example, the process proceeds to step S37, for example, and the control unit (C) sets the output of the reproducing unit (25, 26) to 70%, which is the first value. Instead of step S37, the control section (C) may adjust the output of the heater (25) so that the required amount of humidification can be processed.
  • step S42 When it is determined in step S42 that the output of the heater (25) is excessive, the control section (C) performs the processing of step S43.
  • step S43 the control section (C) determines whether the air volume of the second fan (23) is maximum. If the air volume of the second fan (23) is not the maximum, the controller (C) increases the air volume of the second fan (23) in step 41.
  • step S43 when the air volume of the second fan (23) is maximum, it can be determined that the output of the heater (25) is still excessive even if the air volume of the second fan (23) is maximized. Therefore, in step S44, the controller (C) sets the output of the heater (25) to a second value (for example, 40%) smaller than the first value.
  • a second value for example, 40%
  • step S44 the controller (C) preferably increases the second value as the air volume of the second fan (23) increases. This is because the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) increases as the air volume of the second fan (23) increases.
  • control unit (C) sets the output of the heater (25) to the second value when the output of the heater (25) becomes excessive despite the maximum air volume of the second fan (23). do. Therefore, it is possible to prevent insufficient humidification of the indoor space (I) due to a decrease in output of the heater (25).
  • the control unit (C) determines whether the inside air humidity (Hi) is greater than the second threshold.
  • the second threshold is a predetermined value set to suppress condensation of moisture in the air flowing through the hose (2) and the interior of the air conditioning indoor unit (30).
  • Inside air humidity (Hi) is detected by an inside air humidity sensor (54).
  • step S51 if the inside air humidity (Hi) is greater than the second threshold, in step S52, the controller (C) limits the output of the heater (25) to a predetermined value or less. This reduces the humidity of the air supplied from the humidification rotor (22) to the target space (I). Therefore, condensation of moisture in the air flowing through the hose (2) and the interior of the air conditioning indoor unit (30) can be suppressed.
  • the control section (C) controls the output of the heater (25) based on the outside air humidity (Ho) and the required humidification amount. For example, when the outside air humidity (Ho) is as low as the second humidity and the amount of moisture adsorbed by the humidification rotor (22) alone cannot satisfy the required amount of humidification, the control section (C) reduces the output of the heater (25). A second value (eg, 30%) is used. On the other hand, if the outside air humidity (Ho) is as low as the second humidity, but the required humidification amount can still be satisfied, the controller (C) outputs the output of the heater (25) when the required humidification amount cannot be satisfied. A second value (for example, 40%) that is greater than the output of the heater (25).
  • a second value for example, 40%
  • the control unit (C) of Modification 3 may adjust the first value larger than the second value according to the necessary humidification amount when the outside air humidity (Ho) is as high as the first humidity.
  • the regeneration unit of the embodiment is a heater (25).
  • the regeneration section may include a first fan (26), and the control section (C) may control the output of the regeneration section by adjusting the air volume of the first fan (26).
  • the adsorption member of the embodiment is a humidification rotor (22) having an adsorbent.
  • the adsorption member may be an adsorption element supporting an adsorbent, or a heat exchanger (adsorption heat exchanger) supporting an adsorbent.
  • the adsorption heat exchanger desorbs moisture from the adsorbent by heating the adsorbent with a refrigerant or heat medium flowing inside.
  • the notification unit of the embodiment is the display unit (41).
  • the notification unit may be a sound generating unit that uses sound to notify that the humidifying ability is declining, or a light emitting unit that uses light to notify that the humidifying ability is declining.
  • the present disclosure is useful for humidifiers.
  • control unit 1 air conditioner (humidifier) 22 humidification rotor (adsorption member) 23 second fan 25 heater (regeneration unit) 26 1st fan (playback part)

Abstract

This humidifier comprises: an adsorption member (22) that adsorbs moisture from outdoor air; regeneration units (25, 26) that separate moisture to be supplied to a target space (I) from the adsorption member (22); and a control unit (C) that sets an output of each of the regeneration units (25, 26) to a first value when the absolute humidity of the outdoor air is first humidity and sets the output of each of the regeneration units (25, 26) to a second value smaller than the first value when the absolute humidity of the outdoor air is second humidity lower than the first humidity.

Description

加湿装置humidifier
 本開示は、加湿装置に関する。 The present disclosure relates to humidifiers.
 特許文献1には、無給水式の加湿器(空気調和装置)が開示されている。空気調和装置は、室外空気中の水分を加湿ロータによって吸着する。ヒータで加熱された空気が加湿ロータを流れると、加湿ロータの吸着剤から水分が脱離する。脱離した水分を含む空気は、ホースを通じて空調室内機へ送られる。空調室内機は、水分を含んだ空気を対象空間へ供給する。これにより、対象空間の空気が加湿される。 Patent Document 1 discloses a non-water supply type humidifier (air conditioner). An air conditioner adsorbs moisture in outdoor air with a humidification rotor. When the air heated by the heater flows through the humidification rotor, moisture is desorbed from the adsorbent of the humidification rotor. The desorbed air containing moisture is sent to the air conditioning indoor unit through the hose. The air conditioning indoor unit supplies moisture-containing air to the target space. This humidifies the air in the target space.
特開2017-044395号公報JP 2017-044395 A
 室外空気の湿度が低い条件下では、加湿ロータに吸着される水分量が少なくなる。それにも拘わらず、加湿ロータを再生するためのヒータなど再生部の出力を通常の出力とすると、無駄に電力を消費してしまうという問題があった。 Under conditions of low outdoor air humidity, the amount of moisture adsorbed by the humidification rotor decreases. In spite of this, there is a problem that power is wasted if the output of the regenerating part such as the heater for regenerating the humidifying rotor is set to the normal output.
 本開示の目的は、吸着部材の再生に要するエネルギーを無駄に消費することを抑制することである。 The purpose of the present disclosure is to suppress wasteful consumption of energy required for regeneration of the adsorption member.
 第1の態様は、加湿装置を対象とする。加湿装置は、室外空気の水分を吸着する吸着部材(22)と、対象空間(I)に供給される水分を該吸着部材(22)から脱離させる再生部(25,26)と、室外空気の絶対湿度が第1湿度であるときに前記再生部(25,26)の出力を第1値とし、該室外空気の絶対湿度が前記第1湿度より低い第2湿度であるときに前記再生部(25,26)の出力を前記第1値より小さい第2値とする制御部(C)とを備える。 A first aspect is directed to a humidifying device. The humidifier includes an adsorption member (22) that adsorbs moisture in the outdoor air, a regeneration unit (25, 26) that desorbs the moisture supplied to the target space (I) from the adsorption member (22), an outdoor air The output of the regeneration unit (25, 26) is set to a first value when the absolute humidity of the outdoor air is a first humidity, and the regeneration unit (25, 26) when the absolute humidity of the outdoor air is a second humidity lower than the first humidity and a control section (C) for setting the outputs of (25, 26) to a second value smaller than the first value.
 第1の態様では、室外空気の絶対湿度が第1湿度より小さい第2湿度であるときに、制御部(C)が、再生部(25,26)の出力を第1値よりも小さい第2値とする。これにより、吸着部材(22)に吸着される水分量が比較的少なくなる条件下において、再生部(25,26)の出力を小さくできる。この結果、吸着部材(22)の再生に要するエネルギーを無駄に消費することを抑制できる。 In the first aspect, when the absolute humidity of the outdoor air is the second humidity lower than the first humidity, the control section (C) sets the output of the regeneration section (25, 26) to the second humidity lower than the first humidity. value. As a result, the output of the regeneration section (25, 26) can be reduced under conditions where the amount of water adsorbed by the adsorption member (22) is relatively small. As a result, wasteful consumption of energy required for regeneration of the adsorption member (22) can be suppressed.
 第2の態様は、第1の態様において、再生部はヒータ(25)を含む。 In a second aspect, the regeneration section includes a heater (25) in the first aspect.
 第2の態様では、吸着部材(22)に吸着される水分量が比較的少なくなる条件下において、ヒータ(25)の出力を小さくできる。 In the second aspect, the output of the heater (25) can be reduced under conditions where the amount of water adsorbed by the adsorption member (22) is relatively small.
 第3の態様は、第1または第2の態様において、前記再生部は、前記吸着部材(22)から脱離した水分を含む空気を前記対象空間(I)へ搬送する第1ファン(26)を含む。 In a third aspect based on the first or second aspect, the regeneration section includes a first fan (26) that conveys air containing moisture desorbed from the adsorption member (22) to the target space (I). including.
 第3の態様では、吸着部材(22)に吸着される水分量が比較的少なくなる条件下において、ファン()の出力を小さくできる。 In the third aspect, the output of the fan ( ) can be reduced under conditions where the amount of water adsorbed by the adsorption member (22) is relatively small.
 第4の態様は、第1~第3のいずれか1つの態様において、吸着部材(22)に吸着させる水分を含む室外空気を搬送する第2ファン(23)を備え、前記制御部(C)は、前記室外空気の絶対湿度が前記第2湿度であるときに、前記第2ファン(23)の風量を増大させる。 A fourth aspect is any one of the first to third aspects, further comprising a second fan (23) for conveying outdoor air containing moisture to be adsorbed by the adsorption member (22), wherein the controller (C) increases the air volume of the second fan (23) when the absolute humidity of the outdoor air is the second humidity.
 第4の態様では、室外空気の絶対湿度が第1湿度より小さい第2湿度であるときに、第2ファン(23)の風量を増大させる。これにより、室外空気の湿度が比較的低い条件下において、吸着部材(22)に吸着される水分量を増大できる。 In the fourth aspect, the air volume of the second fan (23) is increased when the absolute humidity of the outdoor air is the second humidity lower than the first humidity. As a result, the amount of moisture adsorbed by the adsorption member (22) can be increased under conditions where the outdoor air has relatively low humidity.
 第5の態様は、第4の態様において、前記制御部(C)は、前記室外空気の絶対湿度が前記第2湿度であるときに、前記第2ファン(23)の風量を増大させ、その後に前記再生部(25,26)の出力を前記第2値とする。 In a fifth aspect based on the fourth aspect, the controller (C) increases the air volume of the second fan (23) when the absolute humidity of the outdoor air is the second humidity, and then Then, the output of the reproducing section (25, 26) is set as the second value.
 第5の態様では、室外空気の絶対湿度が第1湿度より小さい第2湿度であるときに、まずは第2ファン(23)の風量を増大させる。これにより、室外空気の湿度が比較的小さい条件下において、吸着部材(22)に吸着される水分量を増大できる。しかしながら、室外空気の湿度が比較的低い条件下では、吸着部材(22)に吸着される水分量が十分でないことがある。これに対し、制御部(C)は、再生部(25,26)の出力を低くするので、再生部(25,26)の出力が過剰になることを抑制できる。 In the fifth aspect, when the absolute humidity of the outdoor air is the second humidity lower than the first humidity, the air volume of the second fan (23) is first increased. As a result, the amount of moisture adsorbed by the adsorption member (22) can be increased under conditions where the humidity of the outdoor air is relatively low. However, under conditions where the humidity of the outdoor air is relatively low, the amount of moisture adsorbed by the adsorption member (22) may not be sufficient. On the other hand, the control section (C) lowers the output of the reproducing section (25, 26), so that it is possible to prevent the output of the reproducing section (25, 26) from becoming excessive.
 第6の態様は、第1~第5のいずれか1つの態様において、前記制御部(C)は、室外空気の絶対湿度が前記第1湿度である条件下において、前記対象空間(I)の加湿量を増大させる要求があると、前記再生部(25,26)の出力を、前記要求がないときの出力よりも大きい第1値とする 第6の態様では、室外空気の湿度が比較的高い条件下においては、制御部(C)は、再生部(25,26)の出力を第2値より大きい第1値とする。ここで、加湿量の要求があるときの第1値は、加湿量の要求がないときの第1値よりも大きい。さらに、室外空気の湿度が比較的高い条件下では、吸着部材(22)に吸着される水分量も多くなる。したがって、このようにして再生部(25,26)の出力を比較的大きくすることで、対象空間(I)へ供給される水分量が多くなり、加湿量を増大させる要求に応えることができる。 In a sixth aspect, in any one of the first to fifth aspects, the control unit (C) controls the target space (I) under the condition that the absolute humidity of the outdoor air is the first humidity. When there is a request to increase the amount of humidification, the output of the regeneration unit (25, 26) is set to a first value that is larger than the output when there is no request.In the sixth aspect, the humidity of the outdoor air is relatively Under high conditions, the controller (C) sets the output of the regenerator (25, 26) to a first value greater than the second value. Here, the first value when there is a request for the amount of humidification is greater than the first value when there is no request for the amount of humidification. Furthermore, under conditions where the humidity of the outdoor air is relatively high, the amount of moisture adsorbed by the adsorption member (22) also increases. Therefore, by increasing the output of the regeneration section (25, 26) in this manner, the amount of water supplied to the target space (I) increases, and the demand for increasing the amount of humidification can be met.
 第7の態様は、第6の態様において、前記制御部(C)は、前記対象空間(I)の空気の湿度に基づいて必要加湿量を求めるとともに、前記室外空気の絶対湿度と前記必要加湿量とに基づいて前記再生部(25,26)の出力を制御する。 A seventh aspect is the sixth aspect, wherein the control unit (C) obtains the required humidification amount based on the humidity of the air in the target space (I), and determines the absolute humidity of the outdoor air and the required humidification and controlling the output of the regeneration unit (25, 26) based on the quantity.
 第7の態様の制御部(C)は、室外空気の湿度と必要加湿量とに基づいて再生部(25,26)の出力を制御する。これにより、吸着部材(22)に吸着される水分量と、対象空間(I)の必要加湿量とを考慮した加湿制御を実現できる。 The control section (C) of the seventh aspect controls the output of the regeneration section (25, 26) based on the humidity of the outdoor air and the required amount of humidification. This makes it possible to realize humidification control that considers the amount of moisture adsorbed by the adsorption member (22) and the required amount of humidification of the target space (I).
 第8の態様は、第1~第7のいずれか1つの態様において、前記対象空間(I)の加湿量を増大させる要求があり且つ室外空気の絶対湿度が前記第2湿度であるときに、加湿能力が低下していることに関する情報を報知する報知部(41)を備えている。 In an eighth aspect, in any one of the first to seventh aspects, when there is a request to increase the amount of humidification of the target space (I) and the absolute humidity of the outdoor air is the second humidity, A notification unit (41) is provided for reporting information about a decrease in humidification capacity.
 第8の態様では、室外空気の絶対湿度が比較的低い第2湿度であると、制御部(C)は、再生部(25,26)の出力を比較的小さい第2値とする。このため、吸着部材(22)の再生に要するエネルギーを無駄に消費することを抑制できる。一方、このように再生部(25,26)の出力を小さくすると、加湿量を増大させる要求に応えることができない可能性がある。そこで、本態様では、報知部(41)が、加湿能力が低下していることに関する情報を報知する。 In the eighth aspect, when the absolute humidity of the outdoor air is the relatively low second humidity, the control section (C) sets the output of the regeneration section (25, 26) to the relatively small second value. Therefore, wasteful consumption of energy required for regeneration of the adsorption member (22) can be suppressed. On the other hand, if the output of the regeneration section (25, 26) is reduced in this way, it may not be possible to meet the demand for increasing the amount of humidification. Therefore, in this aspect, the reporting section (41) reports information about the deterioration of the humidification capability.
 第9の態様は、前記制御部(C)が、前記対象空間(I)の空気の絶対湿度が所定値以下になるように、前記再生部(25,26)の出力を制限する。 In the ninth aspect, the control section (C) limits the output of the regeneration section (25, 26) so that the absolute humidity of the air in the target space (I) is equal to or less than a predetermined value.
 第9の態様では、対象空間(I)の空気の絶対湿度が所定値以下なると、制御部(C)が再生部(25,26)の出力を制限するので、対象空間(I)に供給される空気中の水分が結露することを抑制できる。 In the ninth aspect, when the absolute humidity of the air in the target space (I) is equal to or less than a predetermined value, the control unit (C) limits the output of the regeneration unit (25, 26), so that the air is supplied to the target space (I). Condensation of moisture in the air can be suppressed.
図1は、実施形態に係る空気調和装置の概略の全体構成図である。FIG. 1 is a schematic overall configuration diagram of an air conditioner according to an embodiment. 図2は、空気調和装置の冷媒配管および空気流れを示す構成図である。FIG. 2 is a configuration diagram showing refrigerant piping and air flow of an air conditioner. 図3は、空調室内機の縦断面図である。FIG. 3 is a longitudinal sectional view of the air conditioning indoor unit. 図4は、空気調和装置の主な要素を含むブロック図である。FIG. 4 is a block diagram including the main elements of the air conditioner. 図5は、加湿運転のフローチャートである。FIG. 5 is a flow chart of humidification operation. 図6は、変形例1の加湿運転のフローチャートである。FIG. 6 is a flowchart of the humidification operation of Modification 1. FIG. 図7は、変形例2の加湿運転のフローチャートである。FIG. 7 is a flowchart of the humidification operation of Modification 2. FIG.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical idea of the present disclosure. Each drawing is for the purpose of conceptually explaining the present disclosure, and therefore dimensions, ratios or numbers may be exaggerated or simplified as necessary for ease of understanding.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail based on the drawings.
 (1)空気調和装置の構成の概要
 空気調和装置(1)は、加湿装置の一例である。空気調和装置(1)は、対象空間の空気の温度および湿度を調節する。本例の対象空間は、室内空間(I)である。図1に示すように、空気調和装置(1)は、空調室外機(10)と空調室内機(30)とを有する。空調室外機(10)は室外に設置され、空調室内機(30)は室内に設置される。空気調和装置(1)は、1つの空調室内機(30)と1つの空調室外機(10)とを有するペア式である。空気調和装置(1)は、加湿ユニット(20)を有する。空気調和装置(1)は、空気を加湿する機能を有する。空気調和装置(1)は、室内空間(I)を換気する機能をさらに有する。
(1) Overview of Configuration of Air Conditioner The air conditioner (1) is an example of a humidifier. An air conditioner (1) regulates the temperature and humidity of the air in the target space. The target space in this example is the indoor space (I). As shown in FIG. 1, the air conditioner (1) has an air conditioner outdoor unit (10) and an air conditioner indoor unit (30). The air conditioning outdoor unit (10) is installed outdoors, and the air conditioning indoor unit (30) is installed indoors. The air conditioner (1) is a pair type having one air conditioner indoor unit (30) and one air conditioner outdoor unit (10). An air conditioner (1) has a humidification unit (20). An air conditioner (1) has a function of humidifying air. The air conditioner (1) further has a function of ventilating the indoor space (I).
 図1および図2に示すように、空気調和装置(1)は、ホース(2)と、液連絡管(3)と、ガス連絡管(4)とを有する。空調室内機(30)と加湿ユニット(20)とは、ホース(2)を介して互いに接続される。空調室内機(30)と空調室外機(10)とは、液連絡管(3)およびガス連絡管(4)を介して互いに接続される。これにより、冷媒回路(R)が構成される。冷媒回路(R)には、冷媒が充填される。冷媒は、ジフルオロメタンである。ただし、冷媒はジフルオロメタンに限定されない。冷媒回路(R)は、蒸気圧縮式の冷凍サイクルを行う。 As shown in FIGS. 1 and 2, the air conditioner (1) has a hose (2), a liquid connection pipe (3), and a gas connection pipe (4). The air conditioning indoor unit (30) and the humidifying unit (20) are connected to each other via the hose (2). The air conditioning indoor unit (30) and the air conditioning outdoor unit (10) are connected to each other via a liquid communication pipe (3) and a gas communication pipe (4). Thereby, a refrigerant circuit (R) is configured. The refrigerant circuit (R) is filled with refrigerant. The refrigerant is difluoromethane. However, the refrigerant is not limited to difluoromethane. The refrigerant circuit (R) performs a vapor compression refrigeration cycle.
 冷媒回路(R)は、主として、圧縮機(12)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)と、室内熱交換器(34)とを有する。 The refrigerant circuit (R) mainly has a compressor (12), an outdoor heat exchanger (14), an expansion valve (15), a four-way switching valve (16), and an indoor heat exchanger (34). .
 冷媒回路(R)は、四方切換弁(16)の切り換えに応じて第1冷凍サイクルと第2冷凍サイクルとを行う。第1冷凍サイクルは、室内熱交換器(34)を蒸発器として機能させ、室外熱交換器(14)を放熱器として機能させる冷凍サイクルである。第2冷凍サイクルは、室外熱交換器(14)を放熱器として機能させ、室内熱交換器(34)を蒸発器として機能させる冷凍サイクルである。 The refrigerant circuit (R) performs the first refrigerating cycle and the second refrigerating cycle according to switching of the four-way switching valve (16). The first refrigerating cycle is a refrigerating cycle in which the indoor heat exchanger (34) functions as an evaporator and the outdoor heat exchanger (14) functions as a radiator. The second refrigerating cycle is a refrigerating cycle in which the outdoor heat exchanger (14) functions as a radiator and the indoor heat exchanger (34) functions as an evaporator.
 (2)詳細構成
 (2-1)空調室外機
 図2および図4に示すように、空調室外機(10)は、室外ケーシング(11)と、圧縮機(12)と、室外ファン(13)と、室外熱交換器(14)と、膨張弁(15)と、四方切換弁(16)とを有する。
(2) Detailed configuration (2-1) Air conditioner outdoor unit As shown in FIGS. 2 and 4, the air conditioner outdoor unit (10) includes an outdoor casing (11), a compressor (12), and an outdoor fan (13). , an outdoor heat exchanger (14), an expansion valve (15), and a four-way switching valve (16).
 室外ケーシング(11)は、圧縮機(12)、室外ファン(13)、室外熱交換器(14)、膨張弁(15)および四方切換弁(16)を収容する。室外ケーシング(11)には、室外吸込口(11a)と、室外吹出口(11b)とが形成される。室外吸込口(11a)は、室外ケーシング(11)の後側に形成される。室外吸込口(11a)は、室外の空気を吸い込むための開口である。室外吹出口(11b)は、室外ケーシング(11)の前側に形成される。室外吹出口(11b)は、室外熱交換器(14)を通過した空気を吹き出すための開口である。室外ケーシング(11)の内部には、室外吸込口(11a)から室外吹出口(11b)に亘って室外空気通路(11c)が形成される。 The outdoor casing (11) houses a compressor (12), an outdoor fan (13), an outdoor heat exchanger (14), an expansion valve (15) and a four-way switching valve (16). The outdoor casing (11) is formed with an outdoor inlet (11a) and an outdoor outlet (11b). The outdoor suction port (11a) is formed on the rear side of the outdoor casing (11). The outdoor air inlet (11a) is an opening for sucking outdoor air. The outdoor outlet (11b) is formed on the front side of the outdoor casing (11). The outdoor air outlet (11b) is an opening for blowing out air that has passed through the outdoor heat exchanger (14). An outdoor air passage (11c) is formed inside the outdoor casing (11) from the outdoor suction port (11a) to the outdoor outlet (11b).
 圧縮機(12)は、低圧のガス冷媒を吸入して圧縮する。圧縮機(12)は、第1モータ(M1)によって駆動される。圧縮機(12)は、インバータ回路から第1モータ(M1)へ電力が供給される可変容量式の圧縮機である。圧縮機(12)は、第1モータ(M1)の運転周波数(回転数)を調整することで、運転容量が変更可能に構成される。 The compressor (12) sucks and compresses low-pressure gas refrigerant. The compressor (12) is driven by a first motor (M1). The compressor (12) is a variable displacement compressor in which power is supplied from an inverter circuit to the first motor (M1). The compressor (12) is configured such that its operating capacity can be changed by adjusting the operating frequency (rotational speed) of the first motor (M1).
 室外ファン(13)は、室外空気通路(11c)に配置される。室外ファン(13)は、第2モータ(M2)の駆動により回転する。室外ファン(13)により搬送される空気は、室外吸込口(11a)から室外ケーシング(11)内に吸い込まれる。この空気は、室外空気通路(11c)を流れて、室外吹出口(11b)から室外ケーシング(11)の外部に吹き出される。室外ファン(13)は、室外熱交換器(14)を通過させるように室外の空気を搬送する。 The outdoor fan (13) is arranged in the outdoor air passage (11c). The outdoor fan (13) is rotated by driving the second motor (M2). Air carried by the outdoor fan (13) is sucked into the outdoor casing (11) through the outdoor suction port (11a). This air flows through the outdoor air passageway (11c) and is blown out of the outdoor casing (11) through the outdoor outlet (11b). The outdoor fan (13) conveys outdoor air so as to pass through the outdoor heat exchanger (14).
 室外熱交換器(14)は、室外空気通路(11c)において室外ファン(13)の上流側に配置される。本例の室外熱交換器(14)は、フィンアンドチューブ式の熱交換器である。室外熱交換器(14)は、熱源熱交換器の一例である。室外熱交換器(14)は、その内部を流れる冷媒と、室外ファン(13)によって搬送される室外空気とを熱交換させる。 The outdoor heat exchanger (14) is arranged upstream of the outdoor fan (13) in the outdoor air passage (11c). The outdoor heat exchanger (14) of this example is a fin-and-tube heat exchanger. The outdoor heat exchanger (14) is an example of a heat source heat exchanger. The outdoor heat exchanger (14) exchanges heat between the refrigerant flowing therein and the outdoor air conveyed by the outdoor fan (13).
 膨張弁(15)は、減圧機構の一例である。膨張弁(15)は、冷媒を減圧する。膨張弁(15)は、開度が調節可能な電動式の膨張弁である。減圧機構は、感温式の膨張弁、膨張機、キャピラリーチューブなどであってもよい。膨張弁(15)は、冷媒回路(R)の液ラインに接続されていればよく、空調室内機(30)に設けられてもよい。 The expansion valve (15) is an example of a decompression mechanism. The expansion valve (15) reduces the pressure of the refrigerant. The expansion valve (15) is an electrically operated expansion valve whose degree of opening is adjustable. The decompression mechanism may be a temperature-sensitive expansion valve, an expander, a capillary tube, or the like. The expansion valve (15) may be connected to the liquid line of the refrigerant circuit (R), and may be provided in the air conditioning indoor unit (30).
 四方切換弁(16)は、流路切換機構の一例である。四方切換弁(16)は、第1ポート(P1)と、第2ポート(P2)と、第3ポート(P3)と、第4ポート(P4)を有する。第1ポート(P1)は、圧縮機(12)の吐出部に繋がる。第2ポート(P2)は、圧縮機(12)の吸入部に繋がる。第3ポート(P3)は、室外熱交換器(14)のガス端部に繋がる。第4ポート(P4)は、ガス連絡管(4)に繋がる。 The four-way switching valve (16) is an example of a channel switching mechanism. The four-way switching valve (16) has a first port (P1), a second port (P2), a third port (P3) and a fourth port (P4). The first port (P1) is connected to the discharge of the compressor (12). The second port (P2) is connected to the intake of the compressor (12). The third port (P3) is connected to the gas end of the outdoor heat exchanger (14). The fourth port (P4) is connected to the gas communication pipe (4).
 四方切換弁(16)は、第1状態(図2の実線で示す状態)と、第2状態(図2の破線で示す状態)とに切り換えられる。第1状態の四方切換弁(16)は、第1ポート(P1)と第3ポート(P3)とを連通させ、且つ第2ポート(P2)と第4ポート(P4)とを連通させる。第2状態の四方切換弁(16)は、第1ポート(P1)と第4ポート(P4)とを連通させ、且つ第2ポート(P2)と第3ポート(P3)とを連通させる。 The four-way switching valve (16) is switched between a first state (shown by the solid line in Fig. 2) and a second state (state shown by the broken line in Fig. 2). The four-way switching valve (16) in the first state allows communication between the first port (P1) and the third port (P3) and communication between the second port (P2) and the fourth port (P4). The four-way switching valve (16) in the second state allows communication between the first port (P1) and the fourth port (P4) and communication between the second port (P2) and the third port (P3).
 (2-2)加湿ユニット
 加湿ユニット(20)は、室外に設置される。本例の加湿ユニット(20)は、空調室外機(10)と一体化される。加湿ユニット(20)は、室外空気中の水分を空調室内機(30)に送る。加湿ユニット(20)は、加湿ケーシング(21)と、加湿ロータ(22)と、第2ファン(23)と、切換ダンパ(24)と、ヒータ(25)と、第1ファン(26)とを有する。
(2-2) Humidification Unit The humidification unit (20) is installed outdoors. The humidification unit (20) of this example is integrated with the air conditioner outdoor unit (10). The humidification unit (20) sends moisture in the outdoor air to the air conditioning indoor unit (30). The humidification unit (20) includes a humidification casing (21), a humidification rotor (22), a second fan (23), a switching damper (24), a heater (25), and a first fan (26). have.
 加湿ケーシング(21)は、室外ケーシング(11)に一体に取り付けられている。加湿ケーシング(21)は、加湿ロータ(22)、第2ファン(23)、切換ダンパ(24)、ヒータ(25)、および第1ファン(26)を収容する。加湿ケーシング(21)には、加湿吸込口(21a)と、加湿排気口(21b)と、吸排気口(21c)とが形成される。加湿吸込口(21a)および吸排気口(21c)は、加湿ケーシング(21)の後側に形成される。加湿排気口(21b)は、加湿ケーシング(21)の前側に形成される。 The humidifying casing (21) is integrally attached to the outdoor casing (11). The humidification casing (21) houses a humidification rotor (22), a second fan (23), a switching damper (24), a heater (25), and a first fan (26). The humidification casing (21) is formed with a humidification intake port (21a), a humidification exhaust port (21b), and an intake/exhaust port (21c). The humidification suction port (21a) and the suction/exhaust port (21c) are formed on the rear side of the humidification casing (21). The humidification exhaust port (21b) is formed in the front side of the humidification casing (21).
 加湿吸込口(21a)は、室外の空気を吸い込むための開口である。加湿排気口(21b)は、加湿ロータ(22)に水分を付与した後の空気を排出するための開口である。吸排気口(21c)は、室外の空気を吸い込む、または室内から送られる空気を排出するための開口である。加湿ケーシング(21)の内部には、加湿吸込口(21a)から加湿排気口(21b)まで続く第1通路(27)が形成される。加湿ケーシング(21)の内部には、吸排気口(21c)から接続口(21d)まで続く第2通路(28)が形成される。接続口(21d)には、ホース(2)が接続される。 The humidification suction port (21a) is an opening for sucking outdoor air. The humidification exhaust port (21b) is an opening for discharging the air after applying moisture to the humidification rotor (22). The intake/exhaust port (21c) is an opening for taking in outdoor air or discharging air sent from the room. A first passageway (27) extending from the humidification suction port (21a) to the humidification exhaust port (21b) is formed inside the humidification casing (21). A second passageway (28) extending from the air intake/exhaust port (21c) to the connection port (21d) is formed inside the humidification casing (21). A hose (2) is connected to the connection port (21d).
 加湿ロータ(22)は、第1通路(27)と第2通路(28)とに亘って配置される。加湿ロータ(22)は空気中の水分を吸着する吸着部材である。加湿ロータ(22)は、例えば、ハニカム構造を有する円盤状の調湿用ロータである。加湿ロータ(22)は、シリカゲル、ゼオライト、アルミナなどの吸着剤を保持する。吸着剤は、空気中の水分を吸着する性質を有する。吸湿剤は、加熱されることにより、吸着した水分を脱離する性質を有する。 The humidification rotor (22) is arranged across the first passageway (27) and the second passageway (28). The humidification rotor (22) is an adsorption member that adsorbs moisture in the air. The humidification rotor (22) is, for example, a disk-shaped humidity control rotor having a honeycomb structure. A humidifying rotor (22) holds an adsorbent such as silica gel, zeolite, or alumina. The adsorbent has the property of adsorbing moisture in the air. Moisture absorbents have the property of desorbing adsorbed moisture when heated.
 加湿ロータ(22)は、第3モータ(M3)の駆動によって回転する。加湿ロータ(22)は、空気中の水分を吸着する吸湿領域(22A)と、空気中に水分を脱離する放湿領域(22B)とを有する。吸湿領域(22A)は、加湿ロータ(22)のうち第1通路(27)に位置する部分によって構成される。放湿領域(22B)は、加湿ロータ(22)のうち第2通路(28)に位置する部分によって構成される。 The humidification rotor (22) is rotated by driving the third motor (M3). The humidification rotor (22) has a moisture absorption area (22A) that adsorbs moisture in the air and a moisture release area (22B) that desorbs moisture in the air. The moisture absorption region (22A) is constituted by a portion of the humidification rotor (22) located in the first passageway (27). The moisture release area (22B) is configured by a portion of the humidification rotor (22) located in the second passageway (28).
 第2ファン(23)は、第1通路(27)に配置される。第2ファン(23)は、第4モータ(M4)の駆動によって回転する。第2ファン(23)は、第4モータ(M4)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。第2ファン(23)により搬送される空気は、加湿吸込口(21a)から加湿ケーシング(21)内に吸い込まれる。この空気は、第1通路(27)を流れて、加湿排気口(21b)から加湿ケーシング(21)の外部に排出される。第2ファン(23)は、加湿ロータ(22)の吸湿領域(22A)を通過させるように室外の空気を搬送する。第1通路(27)を流れる室外の空気に含まれる水分は、加湿ロータ(22)の吸湿領域(22A)に吸着される。 The second fan (23) is arranged in the first passageway (27). The second fan (23) is rotated by driving the fourth motor (M4). The second fan (23) is configured to be able to switch the air volume in a plurality of steps by adjusting the rotational speed of the fourth motor (M4). The air conveyed by the second fan (23) is sucked into the humidification casing (21) through the humidification suction port (21a). This air flows through the first passageway (27) and is discharged to the outside of the humidification casing (21) through the humidification exhaust port (21b). The second fan (23) conveys outdoor air so as to pass through the moisture absorption region (22A) of the humidification rotor (22). Moisture contained in the outdoor air flowing through the first passageway (27) is adsorbed by the moisture absorption region (22A) of the humidification rotor (22).
 切換ダンパ(24)は、第2通路(28)に配置される。切換ダンパ(24)は、第1出入口(24a)と、第2出入口(24b)とを有する。第1出入口(24a)は、吸排気口(21c)と連通する。第2出入口(24b)は、加湿ケーシング(21)におけるホース(2)との接続口(21d)と連通する。切換ダンパ(24)は、第1状態と第2状態とに切り換えられる。第1状態の切換ダンパ(24)は、空気を吸い込む入口を第1出入口(24a)とし、空気を排出する出口を第2出入口(24b)とする。第2状態の切換ダンパ(24)は、空気を吸い込む入口を第2出入口(24b)とし、空気を排出する出口を第1出入口(24a)とする。切換ダンパ(24)の状態は、第5モータ(M5)の駆動によって切り換えられる。 The switching damper (24) is arranged in the second passageway (28). The switching damper (24) has a first entrance (24a) and a second entrance (24b). The first inlet/outlet (24a) communicates with the intake/exhaust port (21c). The second inlet/outlet (24b) communicates with the hose (2) connection port (21d) in the humidification casing (21). The switching damper (24) is switched between a first state and a second state. The switching damper (24) in the first state has a first port (24a) as an inlet for sucking air and a second port (24b) as an outlet for discharging air. The switching damper (24) in the second state has an inlet for sucking air as a second inlet (24b) and an outlet for discharging air as a first inlet (24a). The state of the switching damper (24) is switched by driving the fifth motor (M5).
 ヒータ(25)は、再生部の一例である。ヒータ(25)は、第2通路(28)において吸排気口(21c)と切換ダンパ(24)との間に配置される。ヒータ(25)は、第2通路(28)を流れる空気を加熱する。ヒータ(25)は、出力を可変に構成される。ヒータ(25)を通過する空気の温度は、ヒータ(25)の出力に応じて変化する。 The heater (25) is an example of the regeneration section. The heater (25) is arranged between the intake/exhaust port (21c) and the switching damper (24) in the second passageway (28). The heater (25) heats air flowing through the second passageway (28). The heater (25) has a variable output. The temperature of the air passing through the heater (25) changes according to the output of the heater (25).
 第1ファン(26)は、切換ダンパ(24)の第1出入口(24a)と第2出入口(24b)との間に配置される。第1ファン(26)は、第6モータ(M6)の駆動によって回転する。第1ファン(26)は、第6モータ(M6)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。第1ファン(26)により搬送される空気の流れは、切換ダンパ(24)の状態に応じて変化する。具体的には、切換ダンパ(24)が第1状態であるときには、図2の実線矢印で示すように、第1出入口(24a)から吸い込まれた空気が第2出入口(24b)に流出する。切換ダンパ(24)が第2状態であるときには、図2の破線矢印で示すように、第2出入口(24b)から吸い込まれた空気が第1出入口(24a)に流出する。 The first fan (26) is arranged between the first entrance (24a) and the second entrance (24b) of the switching damper (24). The first fan (26) is rotated by driving the sixth motor (M6). The first fan (26) is configured to be able to switch the air volume in a plurality of stages by adjusting the rotation speed of the sixth motor (M6). The flow of air carried by the first fan (26) changes according to the state of the switching damper (24). Specifically, when the switching damper (24) is in the first state, air sucked through the first inlet/outlet (24a) flows out to the second inlet/outlet (24b) as indicated by the solid line arrow in FIG. When the switching damper (24) is in the second state, air sucked through the second inlet/outlet (24b) flows out to the first inlet/outlet (24a) as indicated by the dashed arrow in FIG.
 (2-3)空調室内機
 図1~図3に示すように、空調室内機(30)は、室内に設置される。空調室内機(30)は、室内空間(I)を形成する部屋の壁(WL)に設置される、壁掛け式である。空調室内機(30)は、室内ケーシング(31)と、室内ファン(32)と、エアフィルタ(33)と、室内熱交換器(34)と、ドレンパン(35)と、風向調節部(36)とを有する。
(2-3) Air Conditioner Indoor Unit As shown in FIGS. 1 to 3, the air conditioner indoor unit (30) is installed indoors. The air conditioning indoor unit (30) is a wall-mounted type that is installed on the wall (WL) of the room that forms the indoor space (I). The air conditioning indoor unit (30) includes an indoor casing (31), an indoor fan (32), an air filter (33), an indoor heat exchanger (34), a drain pan (35), and a wind direction adjusting section (36). and
 室内ケーシング(31)は、室内ファン(32)、エアフィルタ(33)、室内熱交換器(34)およびドレンパン(35)を収容する。室内ケーシング(31)には、室内吸込口(31a)と、室内吹出口(31b)とが形成される。室内吸込口(31a)は、室内ケーシング(31)の上側に配置される。室内吸込口(31a)は、室内の空気を吸い込むための開口である。室内吹出口(31b)は、室内ケーシング(31)の下側に配置される。室内吹出口(31b)は、熱交換後の空気または加湿用の空気を吹き出すための開口である。室内ケーシング(31)の内部には、室内吸込口(31a)から室内吹出口(31b)に続く室内空気通路(31c)が設けられている。 The indoor casing (31) houses an indoor fan (32), an air filter (33), an indoor heat exchanger (34) and a drain pan (35). The indoor casing (31) is formed with an indoor suction port (31a) and an indoor outlet (31b). The indoor suction port (31a) is arranged above the indoor casing (31). The indoor air intake (31a) is an opening for sucking indoor air. The indoor outlet (31b) is arranged below the indoor casing (31). The indoor air outlet (31b) is an opening for blowing out air after heat exchange or air for humidification. The interior of the indoor casing (31) is provided with an indoor air passageway (31c) extending from the indoor air inlet (31a) to the indoor air outlet (31b).
 室内ファン(32)は、室内空気通路(31c)の略中央部分に配置される。室内ファン(32)は、送風機の一例である。室内ファン(32)は、例えばクロスフローファンである。室内ファン(32)は、第7モータ(M7)の駆動により回転する。室内ファン(32)は、室内の空気を室内空気通路(31c)に取り込んで搬送する。室内ファン(32)により搬送される空気は、室内吸込口(31a)から室内ケーシング(31)内に吸い込まれる。この空気は、室内空気通路(31c)を流れて、室内吹出口(31b)から室内ケーシング(31)の外部に吹き出される。 The indoor fan (32) is arranged substantially in the center of the indoor air passage (31c). The indoor fan (32) is an example of a blower. The indoor fan (32) is, for example, a cross-flow fan. The indoor fan (32) is rotated by driving the seventh motor (M7). The indoor fan (32) takes indoor air into the indoor air passageway (31c) and conveys it. The air carried by the indoor fan (32) is sucked into the indoor casing (31) through the indoor suction port (31a). This air flows through the indoor air passageway (31c) and is blown out of the indoor casing (31) from the indoor outlet (31b).
 室内ファン(32)は、室内熱交換器(34)を通過させるように室内の空気を搬送する。室内吹出口(31b)から吹き出された空気は、室内空間に供給される。室内ファン(32)は、第7モータ(M7)の回転数を調整することで、風量を複数段階に切り換え可能に構成される。 The indoor fan (32) conveys indoor air so as to pass through the indoor heat exchanger (34). The air blown out from the indoor air outlet (31b) is supplied to the indoor space. The indoor fan (32) is configured such that the air volume can be switched in multiple stages by adjusting the rotation speed of the seventh motor (M7).
 エアフィルタ(33)は、室内空気通路(31c)において室内熱交換器(34)の上流側に配置される。エアフィルタ(33)は、室内熱交換器(34)に供給される空気が実質的に全て通過するように室内ケーシング(31)に取り付けられる。エアフィルタ(33)は、室内吸込口(31a)から吸い込まれる空気中の塵埃を捕集する。 The air filter (33) is arranged upstream of the indoor heat exchanger (34) in the indoor air passage (31c). The air filter (33) is attached to the indoor casing (31) so that substantially all of the air supplied to the indoor heat exchanger (34) passes through. The air filter (33) collects dust in the air sucked through the indoor air inlet (31a).
 室内熱交換器(34)は、室内空気通路(31c)において室内ファン(32)の上流側に配置される。本例の室内熱交換器(34)は、フィンアンドチューブ式の熱交換器である。室内熱交換器(34)は、利用熱交換器の一例である。室内熱交換器(34)は、その内部の冷媒と、室内ファン(32)によって搬送される室内の空気とを熱交させる。 The indoor heat exchanger (34) is arranged upstream of the indoor fan (32) in the indoor air passage (31c). The indoor heat exchanger (34) of this example is a fin-and-tube heat exchanger. The indoor heat exchanger (34) is an example of a utilization heat exchanger. The indoor heat exchanger (34) exchanges heat between the refrigerant therein and indoor air conveyed by the indoor fan (32).
 ドレンパン(35)は、室内熱交換器(34)の前方下側および後方下側に配置される。ドレンパン(35)は、空調室内機(30)の室内ケーシング(31)の内部で発生した結露水を受ける。室内熱交換器(34)のフィンの表面に発生した結露水は、その表面を伝って自重により流下し、ドレンパン(35)で受けられる。 The drain pan (35) is arranged on the lower front side and the lower rear side of the indoor heat exchanger (34). The drain pan (35) receives condensed water generated inside the indoor casing (31) of the air conditioning indoor unit (30). Condensed water generated on the surface of the fins of the indoor heat exchanger (34) flows down due to its own weight along the surface and is received by the drain pan (35).
 風向調節部(36)は、室内吹出口(31b)から吹き出される空気の風向きを調節する。風向調節部(36)は、フラップ(37)を有する。フラップ(37)は、室内吹出口(31b)の長手方向に沿って延びる長板状に形成される。フラップ(37)は、モータの駆動により回動する。フラップ(37)は、その回動に伴い室内吹出口(31b)を開閉する。 The wind direction adjusting section (36) adjusts the direction of the air blown out from the indoor outlet (31b). The wind direction adjusting part (36) has a flap (37). The flap (37) is shaped like a long plate extending along the longitudinal direction of the indoor outlet (31b). The flap (37) is rotated by being driven by a motor. The flap (37) opens and closes the indoor outlet (31b) as it rotates.
 フラップ(37)は、傾斜角度を段階的に変えられるように構成される。本例のフラップ(37)が調節される位置は、6つの位置を含む。これら6つの位置は、閉位置と、5つの開位置とを含む。5つの開位置には、図3に示す略水平吹出位置を含む。閉位置のフラップ(37)は、室内吹出口(31b)を実質的に閉じる。閉位置のフラップ(37)と室内吹出口(31b)との間には、隙間が形成されてもよい。 The flap (37) is configured so that the tilt angle can be changed stepwise. The positions to which the flap (37) in this example is adjusted include six positions. These six positions include a closed position and five open positions. The five open positions include the generally horizontal blow position shown in FIG. The flap (37) in the closed position substantially closes the indoor outlet (31b). A gap may be formed between the flap (37) in the closed position and the indoor outlet (31b).
 (2-4)リモートコントローラ
 リモートコントローラ(40)は、室内においてユーザが操作可能な位置に配置される。リモートコントローラ(40)は、表示部(41)と入力部(42)とを有する。表示部(41)は、所定の情報を表示する。表示部(41)は、例えば液晶モニタによって構成される。所定の情報は、空気調和装置(1)の運転状態や設定温度などを示す情報である。入力部(42)は、ユーザからの各種設定を行う入力操作を受け付ける。入力部(42)は、例えば物理的な複数のスイッチで構成される。ユーザは、リモートコントローラ(40)の入力部(42)を操作することで、空気調和装置(1)の運転モード、目標温度、目標湿度などを設定できる。
(2-4) Remote Controller The remote controller (40) is placed indoors at a position where the user can operate it. The remote controller (40) has a display section (41) and an input section (42). The display (41) displays predetermined information. The display section (41) is composed of, for example, a liquid crystal monitor. The predetermined information is information indicating the operating state, set temperature, and the like of the air conditioner (1). An input unit (42) receives an input operation for performing various settings from a user. The input section (42) is composed of, for example, a plurality of physical switches. The user can set the operation mode, target temperature, target humidity, etc. of the air conditioner (1) by operating the input section (42) of the remote controller (40).
 表示部(41)は、報知部の一例である。表示部(41)は、詳細は後述する加湿運転において、加湿能力が低下している情報を報知する。 The display section (41) is an example of a notification section. The display section (41) notifies information that the humidifying capacity is declining in the humidifying operation, which will be described later in detail.
 (2-5)センサ
 図2に示すように、空気調和装置(1)は、複数のセンサを有する。複数のセンサは、冷媒用のセンサと、空気用のセンサとを含む。冷媒用のセンサは、高圧冷媒の温度や圧力を検出するセンサ、低圧冷媒の温度や圧力を検出するセンサを含む(図示省略)。
(2-5) Sensors As shown in FIG. 2, the air conditioner (1) has a plurality of sensors. The plurality of sensors includes a sensor for refrigerant and a sensor for air. The refrigerant sensor includes a sensor that detects the temperature and pressure of the high-pressure refrigerant and a sensor that detects the temperature and pressure of the low-pressure refrigerant (not shown).
 空気用のセンサは、外気温度センサ(51)、外気湿度センサ(52)、内気温度センサ(53)、および内気湿度センサ(54)を含む。外気温度センサ(51)は、空調室外機(10)に設けられる。外気温度センサ(51)は、室外空気の温度を検出する。外気湿度センサ(52)は、加湿ユニット(20)に設けられる。外気湿度センサ(52)は、室外空気の湿度を検出する。本例の外気湿度センサ(52)は、室外空気の相対湿度を検出するが、絶対湿度を検出してもよい。内気温度センサ(53)および内気湿度センサ(54)は、空調室内機(30)に設けられる。内気温度センサ(53)は、室内空気の温度を検出する。内気湿度センサ(54)は、室内空気の湿度を検出する。内気湿度センサ(54)は、室内空気の相対湿度を検出するが、絶対湿度を検出してもよい。 The air sensors include an outside air temperature sensor (51), an outside air humidity sensor (52), an inside air temperature sensor (53), and an inside air humidity sensor (54). The outside air temperature sensor (51) is provided in the air conditioning outdoor unit (10). The outdoor air temperature sensor (51) detects the temperature of outdoor air. The outside air humidity sensor (52) is provided in the humidification unit (20). The outside air humidity sensor (52) detects the humidity of the outside air. The outdoor air humidity sensor (52) of this example detects the relative humidity of the outdoor air, but may also detect the absolute humidity. The inside air temperature sensor (53) and the inside air humidity sensor (54) are provided in the air conditioning indoor unit (30). The inside air temperature sensor (53) detects the temperature of the inside air. A room air humidity sensor (54) detects the humidity of the room air. The room air humidity sensor (54) detects the relative humidity of the room air, but may also detect the absolute humidity.
 (2-6)制御部
 空気調和装置(1)は、制御部(C)を有する。制御部(C)は、冷媒回路(R)の動作を制御する。制御部(C)は、空調室外機(10)、加湿ユニット(20)、および空調室内機(30)の動作を制御する。制御部(C)は、室外制御部(OC)と、室内制御部(IC)と、リモートコントローラ(40)とを含む。室外制御部(OC)は空調室外機(10)に設けられる。室内制御部(IC)は空調室内機(30)に設けられる。室内制御部(IC)および室外制御部(OC)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
(2-6) Controller The air conditioner (1) has a controller (C). The controller (C) controls the operation of the refrigerant circuit (R). The controller (C) controls the operation of the air conditioning outdoor unit (10), the humidifying unit (20), and the air conditioning indoor unit (30). The controller (C) includes an outdoor controller (OC), an indoor controller (IC), and a remote controller (40). The outdoor controller (OC) is provided in the air conditioner outdoor unit (10). An indoor controller (IC) is provided in the air conditioner indoor unit (30). Each of the indoor controller (IC) and the outdoor controller (OC) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit. The MCU includes a CPU (Central Processing Unit), a memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
 室外制御部(OC)には、外気温度センサ(51)の検出値、および外気湿度センサ(52)の検出値が入力される。 The outdoor temperature sensor (51) detection value and the outdoor air humidity sensor (52) detection value are input to the outdoor control unit (OC).
 室外制御部(OC)は、圧縮機(12)、室外ファン(13)、膨張弁(15)および四方切換弁(16)に接続される。室外制御部(OC)は、空調室外機(10)の運転の実行および停止を行うための制御信号を、圧縮機(12)、室外ファン(13)、膨張弁(15)、および四方切換弁(16)に出力する。室外制御部(OC)は、圧縮機(12)の第1モータ(M1)の運転周波数、室外ファン(13)の第2モータ(M2)の回転数、四方切換弁(16)の状態および膨張弁(15)の開度を制御する。 The outdoor control unit (OC) is connected to the compressor (12), outdoor fan (13), expansion valve (15) and four-way switching valve (16). The outdoor control unit (OC) sends control signals for executing and stopping the operation of the air conditioning outdoor unit (10) to the compressor (12), the outdoor fan (13), the expansion valve (15), and the four-way switching valve. Output to (16). The outdoor control unit (OC) controls the operating frequency of the first motor (M1) of the compressor (12), the rotation speed of the second motor (M2) of the outdoor fan (13), the state of the four-way switching valve (16), and the expansion Controls the opening of the valve (15).
 室外制御部(OC)はさらに、加湿ロータ(22)、第2ファン(23)、切換ダンパ(24)、ヒータ(25)、および第1ファン(26)に接続される。室外制御部(OC)は、加湿ユニット(20)の運転の実行および停止を行うための制御信号を、加湿ロータ(22)、第2ファン(23)、切換ダンパ(24)、第1ファン(26)、およびヒータ(25)に出力する。室外制御部(OC)は、第2ファン(23)の第4モータ(M4)および第1ファン(26)の第6モータ(M6)の回転数と、加湿ロータ(22)および切換ダンパ(24)の動作と、ヒータ(25)の出力とを制御する。 The outdoor controller (OC) is further connected to the humidification rotor (22), second fan (23), switching damper (24), heater (25), and first fan (26). The outdoor control section (OC) sends control signals for executing and stopping the operation of the humidification unit (20) to the humidification rotor (22), the second fan (23), the switching damper (24), the first fan ( 26), and output to the heater (25). The outdoor controller (OC) controls the number of rotations of the fourth motor (M4) of the second fan (23) and the sixth motor (M6) of the first fan (26), the humidification rotor (22) and the switching damper (24 ) and the output of the heater (25).
 室内制御部(IC)には、内気温度センサ(53)の検出値、および内気湿度センサ(54)の検出値が入力される。 The detection value of the inside air temperature sensor (53) and the detection value of the inside air humidity sensor (54) are input to the indoor control unit (IC).
 室内制御部(IC)は、リモートコントローラ(40)と通信可能に接続される。室内制御部(IC)は、室内ファン(32)に接続される。室内制御部(IC)は、空調室内機(30)の運転の実行および停止を行うための制御信号を、室内ファン(32)に出力する。室内制御部(IC)は、室内ファン(32)の第7モータ(M7)の回転数を制御する。室内制御部(IC)は、室外制御部(OC)と通信可能に接続される。 The indoor control unit (IC) is communicably connected to the remote controller (40). The indoor controller (IC) is connected to the indoor fan (32). The indoor controller (IC) outputs a control signal to the indoor fan (32) to start and stop the operation of the air conditioning indoor unit (30). The indoor controller (IC) controls the rotation speed of the seventh motor (M7) of the indoor fan (32). The indoor controller (IC) is communicably connected to the outdoor controller (OC).
 リモートコントローラ(40)は、室内制御部(IC)と通信可能に接続される。リモートコントローラ(40)は、入力部(42)でのユーザの操作に応じて、空気調和装置(1)の運転を指示する指示信号を室内制御部(IC)に送信する。室内制御部(IC)は、リモートコントローラ(40)からの指示信号を受信すると、その指示信号を室外制御部(OC)に送信する。室内制御部(IC)は、その指示信号に従い、空調室内機(30)の上述した各機器の動作を制御する。室外制御部(OC)が、室内制御部(IC)からの指示信号を受信すると、空調室外機(10)および加湿ユニット(20)の上述した各機器の動作を制御する。 The remote controller (40) is communicably connected to the indoor control unit (IC). The remote controller (40) transmits an instruction signal instructing the operation of the air conditioner (1) to the indoor controller (IC) according to the user's operation on the input section (42). Upon receiving an instruction signal from the remote controller (40), the indoor controller (IC) transmits the instruction signal to the outdoor controller (OC). The indoor controller (IC) controls the operation of each device of the air conditioning indoor unit (30) according to the instruction signal. When the outdoor controller (OC) receives an instruction signal from the indoor controller (IC), it controls the operation of each of the air conditioning outdoor unit (10) and the humidifying unit (20).
 (3)運転動作
 空気調和装置(1)が実行する運転モードは、冷房運転、暖房運転、加湿運転、給気運転、および排気運転を含む。制御部(C)は、リモートコントローラ(40)からの指示信号に基づいて、これらの運転を実行させる。
(3) Operation Operation The operation modes executed by the air conditioner (1) include cooling operation, heating operation, humidification operation, air supply operation, and exhaust operation. The controller (C) executes these operations based on instruction signals from the remote controller (40).
 (3-1)冷房運転
 冷房運転は、蒸発器とした室内熱交換器(34)により室内の空気を冷却する運転である。冷房運転での設定温度は、冷房運転の開始時または冷房運転中にリモートコントローラ(40)から指示される。冷房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第1状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。冷房運転では、圧縮した冷媒が室外熱交換器(14)で放熱し、室内熱交換器(34)で蒸発する第1冷凍サイクルが行われる。
(3-1) Cooling operation Cooling operation is an operation in which indoor air is cooled by the indoor heat exchanger (34) as an evaporator. The set temperature for the cooling operation is instructed from the remote controller (40) at the start of the cooling operation or during the cooling operation. In cooling operation, the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32). The controller (C) sets the four-way switching valve (16) to the first state. The control section (C) appropriately adjusts the degree of opening of the expansion valve (15). In the cooling operation, a first refrigeration cycle is performed in which the compressed refrigerant releases heat in the outdoor heat exchanger (14) and evaporates in the indoor heat exchanger (34).
 冷房運転では、内気温度センサ(53)で検出する室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標蒸発温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の蒸発温度が目標蒸発温度に収束するように、圧縮機(12)の回転数を制御する。冷房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に冷却される。室内熱交換器(34)によって冷却された空気は、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。 In cooling operation, the controller (C) adjusts the target evaporating temperature of the indoor heat exchanger (34) so that the room temperature detected by the inside air temperature sensor (53) converges to the set temperature. The control section (C) controls the rotation speed of the compressor (12) such that the evaporation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target evaporation temperature. In the cooling operation, the air conveyed by the indoor fan (32) is cooled as it passes through the indoor heat exchanger (34). The air cooled by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
 (3-2)暖房運転
 暖房運転は、放熱器とした室内熱交換器(34)により室内の空気を加熱する運転である。暖房運転での設定温度は、暖房運転の開始時または暖房運転中にリモートコントローラ(40)から指示される。暖房運転では、制御部(C)が、圧縮機(12)、室外ファン(13)、および室内ファン(32)を運転させる。制御部(C)は、四方切換弁(16)を第2状態に設定する。制御部(C)は、膨張弁(15)の開度を適宜調節する。暖房運転では、圧縮機(12)で圧縮した冷媒が室内熱交換器(34)で放熱し、室外熱交換器(14)で蒸発する第2冷凍サイクルが行われる。
(3-2) Heating operation The heating operation is an operation in which the indoor air is heated by the indoor heat exchanger (34) as a radiator. The set temperature for the heating operation is instructed from the remote controller (40) at the start of the heating operation or during the heating operation. In heating operation, the controller (C) operates the compressor (12), the outdoor fan (13), and the indoor fan (32). The controller (C) sets the four-way switching valve (16) to the second state. The control section (C) appropriately adjusts the degree of opening of the expansion valve (15). In the heating operation, a second refrigeration cycle is performed in which refrigerant compressed by the compressor (12) releases heat in the indoor heat exchanger (34) and evaporates in the outdoor heat exchanger (14).
 暖房運転では、内気温度センサ(53)によって検出される室内温度が設定温度に収束するように、制御部(C)が室内熱交換器(34)の目標凝縮温度を調節する。制御部(C)は、室内熱交換器(34)の冷媒の凝縮温度が目標凝縮温度に収束するように、圧縮機(12)の回転数を制御する。暖房運転では、室内ファン(32)により搬送された空気が室内熱交換器(34)を通過する際に加熱される。室内熱交換器(34)で加熱された空気は、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。 In heating operation, the controller (C) adjusts the target condensing temperature of the indoor heat exchanger (34) so that the indoor temperature detected by the indoor air temperature sensor (53) converges to the set temperature. The control section (C) controls the rotation speed of the compressor (12) such that the condensation temperature of the refrigerant in the indoor heat exchanger (34) converges to the target condensation temperature. In the heating operation, the air conveyed by the indoor fan (32) is heated as it passes through the indoor heat exchanger (34). The air heated by the indoor heat exchanger (34) is supplied to the indoor space (I) from the indoor outlet (31b) of the air conditioning indoor unit (30).
 (3-3)加湿運転
 加湿運転は、加湿ユニット(20)により室内の空気を加湿する運転である。加湿運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。加湿運転では、制御部(C)が、ヒータ(25)、加湿ロータ(22)および第2ファン(23)を運転させる。制御部(C)は、第1ファン(26)を運転させる。制御部(C)は、切換ダンパ(24)を第1状態に設定する。
(3-3) Humidification operation Humidification operation is an operation of humidifying indoor air by the humidification unit (20). In the humidification operation, outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG. In the humidification operation, the control section (C) operates the heater (25), the humidification rotor (22) and the second fan (23). The control section (C) operates the first fan (26). The control section (C) sets the switching damper (24) to the first state.
 加湿運転において、第2ファン(23)によって搬送される室外の空気が加湿ロータ(22)の吸湿領域(22A)を通過し、室外の空気に含まれる水分が加湿ロータ(22)の吸湿領域(22A)に吸着される。加湿ロータ(22)の吸湿領域(22A)として水分を吸着した部分は、加湿ロータ(22)の回転により第2通路(28)に移動して、放湿領域(22B)を構成する。加湿ロータ(22)の放湿領域(22B)には、ヒータ(25)で加熱された室外の空気が通過し、加湿ロータ(22)から加熱された空気へと水分の脱離が生じる。加湿運転では、加湿ロータ(22)で水分が付与された高湿度の空気が、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。なお、暖房運転と同時に加湿運転を行ってもよい。 In the humidification operation, the outdoor air conveyed by the second fan (23) passes through the moisture absorption area (22A) of the humidification rotor (22), and the moisture contained in the outdoor air passes through the moisture absorption area (22A) of the humidification rotor (22). 22A). The portion of the humidification rotor (22) that has adsorbed moisture as the moisture absorption area (22A) moves to the second passageway (28) as the humidification rotor (22) rotates to form a moisture release area (22B). Outdoor air heated by the heater (25) passes through the moisture release area (22B) of the humidification rotor (22), and moisture is desorbed from the humidification rotor (22) to the heated air. In the humidification operation, high-humidity air added with moisture by the humidification rotor (22) is sent through the hose (2) to the air conditioner indoor unit (30), and is discharged from the air outlet (31b) of the air conditioner indoor unit (30). It is supplied to the indoor space (I). Note that the humidification operation may be performed simultaneously with the heating operation.
 (3-4)給気運転
 給気運転は、室外の空気を室内に供給する運転である。給気運転では、図2の実線の矢印で示すように、室外空気がホース(2)を通じて空調室内機(30)へ送られる。給気運転では、制御部(C)がヒータ(25)、加湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。制御部(C)は、切換ダンパ(24)を第1状態に設定する。給気運転において、第1ファン(26)によって搬送される室外の空気は、ホース(2)を通じて空調室内機(30)に送られ、空調室内機(30)の室内吹出口(31b)から室内空間(I)へ供給される。なお、冷房運転または暖房運転と同時に給気運転を行ってもよい。
(3-5)排気運転
 排気運転は、室内の空気を室外に排出する運転である。排気運転では、図2の破線の矢印で示すように、室内空気がホース(2)を介して加湿ユニット(20)へ送られる。排気運転では、制御部(C)がヒータ(25)、加湿ロータ(22)、および第2ファン(23)を停止させ、第1ファン(26)を運転させる。排気運転において、第1ファン(26)によって搬送される室内の空気は、ホース(2)を通じて加湿ユニット(20)に送られ、加湿ユニット(20)の吸排気口(21c)から室外へ排出される。なお、冷房運転または暖房運転と同時に排気運転を行ってもよい。
(3-4) Air supply operation The air supply operation is an operation for supplying outdoor air to a room. In the air supply operation, outdoor air is sent to the air conditioner indoor unit (30) through the hose (2), as indicated by the solid arrow in FIG. In the air supply operation, the controller (C) stops the heater (25), the humidification rotor (22), and the second fan (23) and operates the first fan (26). The control section (C) sets the switching damper (24) to the first state. In the air supply operation, the outdoor air conveyed by the first fan (26) is sent to the air conditioning indoor unit (30) through the hose (2), and is discharged from the indoor outlet (31b) of the air conditioning indoor unit (30). It is supplied to the space (I). The air supply operation may be performed simultaneously with the cooling operation or the heating operation.
(3-5) Exhaust operation The exhaust operation is an operation in which indoor air is discharged to the outside. In the exhaust operation, room air is sent to the humidification unit (20) through the hose (2), as indicated by the dashed arrow in FIG. In the exhaust operation, the controller (C) stops the heater (25), the humidification rotor (22), and the second fan (23) and operates the first fan (26). In the exhaust operation, the indoor air conveyed by the first fan (26) is sent to the humidification unit (20) through the hose (2), and is discharged to the outside through the intake/exhaust port (21c) of the humidification unit (20). be. Note that the exhaust operation may be performed simultaneously with the cooling operation or the heating operation.
 (4)室外空気の絶対湿度を考慮した制御例
 本例の空気調和装置(1)は、上述した加湿運転(加湿運転と暖房運転との同時運転も含む)において、室外空気の絶対湿度を考慮した制御を行う。
(4) Control example considering the absolute humidity of the outdoor air The air conditioner (1) of this example considers the absolute humidity of the outdoor air in the humidification operation (including simultaneous operation of the humidification operation and the heating operation) described above. control.
 (4-1)課題
 室外空気の絶対湿度(以下、外気湿度(Ho)ともいう)が低い条件下で加湿運転を行うと、第2通路(28)から加湿ロータ(22)の吸湿領域(22A)を流れる空気中の水分が少なくなる。このような条件下では、吸湿領域(22A)の吸着剤に吸着される水分量が少なくなる。この場合、加湿ロータ(22)の放湿領域(22B)で脱着可能な水分量も少なくなる。したがって、放湿領域(22B)で脱着可能な水分量に対して、ヒータ(25)の出力が過剰となり、ヒータ(25)の電力を無駄に消費してしまう可能性がある。
(4-1) Problem When the humidification operation is performed under the condition that the absolute humidity of the outdoor air (hereinafter also referred to as outdoor air humidity (Ho)) is low, the moisture absorption area (22A) of the humidification rotor (22) from the second passageway (28) ) will have less moisture in the air. Under such conditions, the amount of moisture adsorbed by the adsorbent in the moisture absorption region (22A) is reduced. In this case, the amount of desorbable moisture in the moisture release area (22B) of the humidification rotor (22) also decreases. Therefore, the output of the heater (25) becomes excessive with respect to the amount of moisture that can be desorbed in the moisture release area (22B), and the power of the heater (25) may be wasted.
 一方、外気湿度が高い条件下では、加湿ロータ(22)の吸着剤に吸着される水分量が多くなる。このような条件下において、放湿領域(22B)で脱着可能な水分量に対して、ヒータ(25)の出力が不足すると、加湿ロータ(22)に吸着した水分を室内空間(I)の加湿に十分に利用できない可能性がある。加えて、放湿領域(22B)における水分の吸着に利用したエネルギー(例えば第2ファン(23)の動力)を無駄に消費してしまう可能性がある。 On the other hand, under conditions of high outside air humidity, the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) increases. Under these conditions, if the output of the heater (25) is insufficient for the amount of moisture that can be desorbed in the moisture desorption area (22B), the moisture adsorbed by the humidification rotor (22) will be used to humidify the indoor space (I). may not be fully available. In addition, the energy (for example, the power of the second fan (23)) used for adsorbing moisture in the moisture release area (22B) may be wasted.
 (4-2)制御例
 本実施形態の空気調和装置(1)は、上記の課題を考慮し、外気湿度(Ho)に基づいて次の制御を行う。
(4-2) Control Example In consideration of the above problems, the air conditioner (1) of the present embodiment performs the following control based on the outside air humidity (Ho).
 図5に示すように、加湿運転が開始すると、ステップS31において、制御部(C)は室外空気の絶対湿度を取得する。本例の制御部(C)は、外気湿度センサ(52)で検出した室外空気の相対湿度と、外気温度センサ(51)で検出した室外空気の温度とに基づき、室外空気の絶対湿度(外気湿度(Ho))を取得する。 As shown in FIG. 5, when the humidification operation starts, the controller (C) acquires the absolute humidity of the outdoor air in step S31. The controller (C) of this example calculates the absolute humidity of the outdoor air (outside air Humidity (Ho) is obtained.
 ステップS32において、制御部(C)は、外気湿度(Ho)と第1閾値とを比較する。第1閾値は、室外空気が高湿であるか、低湿であるかを判定する値である。第1閾値より高い湿度が第1湿度に対応し、第1閾値以下の湿度が第2湿度に対応する。第1閾値は、例えば0.0054(kg/kg(DA)である。外気湿度(Ho)が第1閾値以下の場合(ステップS32のNO)、言い換えると外気湿度(Ho)が第1湿度よりも小さい第2湿度である場合、制御部(C)は、ステップS33の処理を行う。 At step S32, the controller (C) compares the outside air humidity (Ho) with the first threshold. The first threshold value is a value that determines whether the outdoor air is high humidity or low humidity. Humidity above the first threshold corresponds to the first humidity, and humidity below the first threshold corresponds to the second humidity. The first threshold is, for example, 0.0054 (kg/kg (DA). If the outside air humidity (Ho) is less than or equal to the first threshold (NO in step S32), in other words, the outside air humidity (Ho) is higher than the first humidity. If the second humidity is smaller than the second humidity, the control section (C) performs the process of step S33.
 ステップS33において、制御部(C)は、ヒータ(25)の出力を第2値(30%)とする。第2値は、詳細は後述する第1値よりも小さい出力である。外気湿度(Ho)が第2湿度である場合、上述したように加湿ロータ(22)の吸着剤に吸着された水分量が少なくなる。ヒータ(25)の出力を小さくすることで、ヒータ(25)の出力が過剰に大きくなることを抑制できる。ここで、「ヒータ(25)の出力」は、ヒータ(25)の発熱量に相当する。 At step S33, the controller (C) sets the output of the heater (25) to the second value (30%). The second value is an output that is less than the first value, which will be described in detail below. When the outside air humidity (Ho) is the second humidity, the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) decreases as described above. By reducing the output of the heater (25), it is possible to prevent the output of the heater (25) from becoming excessively large. Here, the "output of the heater (25)" corresponds to the amount of heat generated by the heater (25).
 次いで、ステップS34では、制御部(C)は、加湿量を増大させる要求があるか否かを判定する。ここで、加湿量を増大させる要求は、言い換えると、空気調和装置(1)の加湿能力を増大させる要求である。加湿量を増大させる要求があることの条件は、例えばリモートコントローラ(40)に入力した設定湿度(目標湿度)に対して、内気湿度センサ(54)で検出した湿度が低い場合に成立する。 Next, in step S34, the controller (C) determines whether or not there is a request to increase the amount of humidification. Here, the request to increase the amount of humidification is, in other words, a request to increase the humidification capacity of the air conditioner (1). The condition that there is a request to increase the amount of humidification is met, for example, when the humidity detected by the inside air humidity sensor (54) is lower than the set humidity (target humidity) input to the remote controller (40).
 ステップS34において、制御部(C)が加湿量の増大要求があると判定すると、ステップS35において、リモートコントローラ(40)の表示部(41)は、加湿能力が低下している情報をユーザに報知する。具体的には、表示部(41)は、加湿能力が低下していることを示す情報を、文字、図形、アイコン、などにより表示する。加湿能力が低下していることを示す情報は、例えば対象空間の加湿に時間がかかってしまうこと、室外空気の湿度が低いことも含む。 In step S34, when the control section (C) determines that there is a request to increase the amount of humidification, in step S35, the display section (41) of the remote controller (40) notifies the user of information indicating that the humidification capacity has decreased. do. Specifically, the display section (41) displays information indicating that the humidification capacity is declining using characters, graphics, icons, and the like. Information indicating that the humidification capability is declining includes, for example, that it takes time to humidify the target space and that the humidity of the outdoor air is low.
 ステップS33において、ヒータ(25)の出力を比較的小さくすると、加湿量の増大要求に十分に応じることができない。ユーザは、このことを報知部(41)により知ることができるので、空気調和装置(1)に何らかの異常が発生していると誤解したり、現状の加湿能力に不満を感じたりすることを抑制できる。 If the output of the heater (25) is made relatively small in step S33, the request for increasing the amount of humidification cannot be sufficiently met. Since the user can be informed of this by the reporting unit (41), the user can be prevented from misunderstanding that something is wrong with the air conditioner (1) and from being dissatisfied with the current humidification capacity. can.
 ステップS32において、外気湿度(Ho)が第1閾値よりも高い場合(ステップS32のYES)、言い換えると外気湿度(Ho)が第2湿度よりも大きい第1湿度である場合、制御部(C)は、ステップS36の処理を行う。 In step S32, if the outside air humidity (Ho) is higher than the first threshold (YES in step S32), in other words, if the outside air humidity (Ho) is the first humidity higher than the second humidity, the control unit (C) performs the processing of step S36.
 ステップS36において、制御部(C)が加湿量の増大要求がないと判定すると、ステップS37において、制御部(C)はヒータ(25)の出力を第2値よりも大きい第1値である所定出力(例えば70%)とする。外気湿度(Ho)が第1閾値より大きい条件下では、加湿ロータ(22)の吸着剤に吸着された水分量が多い。このため、ヒータ(25)の出力を第2値よりも大きくしても、ヒータ(25)の出力が過剰になることを抑制できる。言い換えると、ヒータ(25)の出力を効率よく対象空間(I)の加湿に利用できる。 In step S36, when the controller (C) determines that there is no request to increase the amount of humidification, in step S37, the controller (C) sets the output of the heater (25) to a predetermined value that is a first value larger than the second value. Let it be the output (for example, 70%). When the outside air humidity (Ho) is higher than the first threshold, the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) is large. Therefore, even if the output of the heater (25) is greater than the second value, it is possible to prevent the output of the heater (25) from becoming excessive. In other words, the output of the heater (25) can be efficiently used to humidify the target space (I).
 ステップS36において、制御部(C)が加湿量の増大要求があると判定すると、ステップS38において、制御部(C)はヒータ(25)の出力を第2値よりも大きい第1値である所定出力(例えば100%)とする。外気湿度が第1湿度であり、加湿量を増大させる要求がある場合には、制御部(C)は、ヒータ(25)の出力を、加湿量の増大要求がないときのステップS37のヒータ(25)の出力(例えば70%)よりも大きい第1値(例えば100%)とする。 In step S36, when the controller (C) determines that there is a request to increase the amount of humidification, in step S38, the controller (C) sets the output of the heater (25) to a predetermined value that is a first value larger than the second value. Output (for example, 100%). When the outside air humidity is the first humidity and there is a request to increase the amount of humidification, the control section (C) changes the output of the heater (25) to the heater ( 25) to a first value (eg, 100%) that is greater than the output (eg, 70%).
 外気湿度(Ho)が第1閾値より大きい条件下では、外気が高湿度であり、加湿ロータ(22)の吸着剤に吸着される水分量が多い。このため、ヒータ(25)の出力を加湿量の増大要求がないときの出力よりも大きくすることで、吸着剤に吸着された水分を十分に脱着させることができる。この結果、水分を多く含む空気を室内空間(I)に供給でき、加湿量の増大要求に速やかに応えることができる。特に、本例では、ヒータ(25)の出力を最大出力とするため、この効果が顕著になる。 Under the condition that the outside air humidity (Ho) is higher than the first threshold, the outside air is highly humid and the amount of water adsorbed by the adsorbent of the humidification rotor (22) is large. Therefore, by setting the output of the heater (25) higher than the output when there is no request to increase the amount of humidification, the moisture adsorbed by the adsorbent can be sufficiently desorbed. As a result, air containing a large amount of moisture can be supplied to the indoor space (I), and a demand for increasing the amount of humidification can be quickly met. In particular, in this example, since the output of the heater (25) is set to the maximum output, this effect becomes remarkable.
 (5)特徴
 (5-1)
 空気調和装置(1)は、室外空気の水分を吸着する加湿ロータ(22)と、室内空間(I)に供給される水分を加湿ロータ(22)から脱離させるヒータ(25)と、室外空気の絶対湿度が第1湿度であるときに、ヒータ(25)の出力を第1値とし、室外空気の絶対湿度が第1湿度より低い第2湿度であるときに、ヒータ(25)の出力を前記第1値より小さい第2値とする制御部(C)とを備える。
(5) Features (5-1)
An air conditioner (1) includes a humidification rotor (22) that adsorbs moisture in outdoor air, a heater (25) that desorbs moisture supplied to an indoor space (I) from the humidification rotor (22), and outdoor air. When the absolute humidity of the outdoor air is the first humidity, the output of the heater (25) is set to the first value, and when the absolute humidity of the outdoor air is the second humidity lower than the first humidity, the output of the heater (25) is set to the first value. and a control unit (C) for setting a second value smaller than the first value.
 具体的には、外気湿度(Ho)が第2湿度であり、加湿ロータ(22)に吸着される水分量が少ないときには、ステップS33において、制御部(C)は、ヒータ(25)の出力を第2値よりも小さい第1値(例えば30%)とする。このため、加湿ロータ(22)から脱離可能な水分量に対し、ヒータ(25)の出力が過剰になることを抑制できる。したがって、加湿ロータ(22)の再生に要するエネルギーを無駄に消費することを抑制できる。 Specifically, when the outside air humidity (Ho) is the second humidity and the amount of water adsorbed by the humidification rotor (22) is small, in step S33, the control section (C) reduces the output of the heater (25). A first value (for example, 30%) smaller than the second value is set. Therefore, it is possible to prevent the output of the heater (25) from becoming excessive with respect to the amount of moisture that can be desorbed from the humidification rotor (22). Therefore, wasteful consumption of energy required for regeneration of the humidification rotor (22) can be suppressed.
 外気湿度(Ho)が第1湿度であり、加湿ロータ(22)に吸着される水分量が少ないときには、ステップS34において、制御部(C)は、ヒータ(25)の出力を第1値より大きい第2値(例えばステップS37の70%、あるいはステップS38の100%)とする。このため、加湿ロータ(22)に吸着した水分に対し、ヒータ(25)の出力が不足することを抑制できる。したがって、加湿ロータ(22)に吸着した水分を室内空間(I)の加湿に十分に利用できる。加湿ロータ(22)に水分を吸着させるために消費した電力(例えば第2ファン(23)の動力)を無駄に消費してしまうことを抑制できる。 When the outside air humidity (Ho) is the first humidity and the amount of water adsorbed by the humidification rotor (22) is small, in step S34, the control section (C) increases the output of the heater (25) to a value greater than the first value. A second value (for example, 70% at step S37 or 100% at step S38). Therefore, it is possible to prevent the output of the heater (25) from becoming insufficient with respect to the moisture adsorbed on the humidification rotor (22). Therefore, the moisture adsorbed on the humidification rotor (22) can be fully utilized for humidification of the indoor space (I). It is possible to suppress wasteful consumption of electric power (for example, the power of the second fan (23)) that is consumed to cause the humidification rotor (22) to adsorb moisture.
 (5-2)
 制御部(C)は、室外空気の絶対湿度が第1湿度である条件下において、室内空間(I)の加湿量を増大させる要求があると、ヒータ(25)の出力を、要求がないときの出力よりも大きい第1値とする。
(5-2)
When there is a request to increase the amount of humidification of the indoor space (I) under the condition that the absolute humidity of the outdoor air is the first humidity, the control unit (C) changes the output of the heater (25) when there is no request. A first value greater than the output of .
 具体的には、制御部(C)は、室外空気の絶対湿度が第1湿度である条件下において、加湿量を増大させる要求あると(ステップS36のYES)、加湿量を増大させる要求がない場合(ステップS36のNO)と比べてヒータ(25)の出力を大きくする(ステップS38)。これにより、加湿量を増大させる要求があるときには、加湿ロータ(22)に吸着した十分な量の水分を、室内空間(I)の加湿に十分に利用できる。この結果、加湿量を増大させる要求に速やかに応えることができる。 Specifically, if there is a request to increase the amount of humidification under the condition that the absolute humidity of the outdoor air is the first humidity (YES in step S36), the control unit (C) does not request to increase the amount of humidification. The output of the heater (25) is increased (step S38) compared to the case (NO in step S36). As a result, when there is a demand to increase the amount of humidification, a sufficient amount of moisture adsorbed by the humidification rotor (22) can be used to humidify the indoor space (I). As a result, it is possible to quickly meet the demand for increasing the amount of humidification.
 (5-3)
 空気調和装置(1)は、対象空間(I)の加湿量を増大させる要求があり且つ室外空気の絶対湿度が第2湿度であるときに、加湿能力が低下していることに関する情報を報知する報知部(41)を備えている。
(5-3)
An air conditioner (1) notifies information about a decrease in humidification capacity when there is a request to increase the amount of humidification in the target space (I) and the absolute humidity of the outdoor air is the second humidity. A reporting unit (41) is provided.
 ステップS33において、ヒータ(25)の出力を低くすると、加湿量の増大要求に十分に応えることができないことがある。この場合、報知部である表示部(41)は、加湿能力が低下していることをユーザなどに知らせる。その結果、ユーザなどが、空気調和装置(1)に何らかの異常が発生していると誤解したり、現状の加湿能力に不満を感じたりすることを抑制できる。 If the output of the heater (25) is lowered in step S33, it may not be possible to sufficiently meet the demand for increasing the amount of humidification. In this case, the display section (41), which is a notification section, notifies the user or the like that the humidification capacity is declining. As a result, it is possible to prevent the user from misunderstanding that something is wrong with the air conditioner (1) or from being dissatisfied with the current humidification capability.
 (6)変形例
 上述した実施形態においては、以下のような変形例の構成としてもよい。以下の説明では、上述した実施形態と異なる点について説明する。
(6) Modifications In the embodiment described above, the following modifications may be adopted. In the following description, points different from the above-described embodiment will be described.
 (6-1)変形例1
 変形例1では、外気湿度(Ho)が第2湿度であるときに、制御部(C)がまず第2ファン(23)の風量を増大させ、その後に再生部(25,26)の出力を第2値とする。変形例1に係る制御の一例を、図6に示す。
(6-1) Modification 1
In Modified Example 1, when the outside air humidity (Ho) is the second humidity, the control section (C) first increases the air volume of the second fan (23), and then increases the output of the regeneration section (25, 26). 2nd value. An example of control according to modification 1 is shown in FIG.
 外気湿度(Ho)が第1閾値以下であると(ステップS32のNO)、ステップS41において、制御部(C)は、第2ファン(23)の風量を所定量増大させる。言い換えると、ステップS41において、制御部(C)は、第2ファン(23)の第4モータ(M4)の回転数を増大させる。第2ファン(23)の風量が増大すると、加湿ロータ(22)の吸着剤に吸着される水分量が多くなる。 When the outside air humidity (Ho) is equal to or lower than the first threshold (NO in step S32), in step S41, the controller (C) increases the air volume of the second fan (23) by a predetermined amount. In other words, in step S41, the controller (C) increases the rotation speed of the fourth motor (M4) of the second fan (23). As the air volume of the second fan (23) increases, the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) increases.
 次いで、ステップS42では、制御部(C)がヒータ(25)の出力が過剰か否かを判定するステップS42の判定は、例えば現在の第2ファン(23)の風量、外気湿度(Ho)、第1ファン(26)の風量、ヒータ(25)の出力、室内空間(I)の必要加湿量などに基づく。室内空間(I)の必要加湿量は、リモートコントローラ(40)に入力された設定湿度(目標湿度)、および内気湿度センサ(54)で検出した内気湿度とに基づいて算出される。 Next, in step S42, the controller (C) determines whether or not the output of the heater (25) is excessive. It is based on the air volume of the first fan (26), the output of the heater (25), the required amount of humidification of the indoor space (I), and the like. The required amount of humidification of the indoor space (I) is calculated based on the set humidity (target humidity) input to the remote controller (40) and the inside air humidity detected by the inside air humidity sensor (54).
 ステップS42において、ヒータ(25)の出力が過剰でないと判定されると、制御部(C)は、ヒータ(25)の出力が第2値より大きい第1値とする。本例では、例えばステップS37に移行し、制御部(C)が再生部(25,26)の出力を第1値である70%とする。ステップS37に代えて、制御部(C)は、必要加湿量を処理できるように、ヒータ(25)の出力を調整してもよい。 When it is determined in step S42 that the output of the heater (25) is not excessive, the controller (C) sets the output of the heater (25) to a first value larger than the second value. In this example, the process proceeds to step S37, for example, and the control unit (C) sets the output of the reproducing unit (25, 26) to 70%, which is the first value. Instead of step S37, the control section (C) may adjust the output of the heater (25) so that the required amount of humidification can be processed.
 ステップS42において、ヒータ(25)の出力が過剰と判定されると、制御部(C)はステップS43の処理を行う。ステップS43では、制御部(C)は、第2ファン(23)の風量が最大であるか否かを判定する。第2ファン(23)の風量が最大でない場合、制御部(C)は、ステップ41において、第2ファン(23)の風量を増大させる。ステップS43において、第2ファン(23)の風量が最大である場合、第2ファン(23)の風量を最大としても、なおヒータ(25)の出力が過剰であると判断できる。そこで、制御部(C)は、ステップS44において、ヒータ(25)の出力を第1値よりも小さい第2値(例えば40%)とする。ステップS44において、制御部(C)は、第2ファン(23)の風量が大きくなるほど第2値を大きくするのが好ましい。第2ファン(23)の風量が大きくなると、加湿ロータ(22)の吸着剤に吸着される水分量が多くなるからである。 When it is determined in step S42 that the output of the heater (25) is excessive, the control section (C) performs the processing of step S43. In step S43, the control section (C) determines whether the air volume of the second fan (23) is maximum. If the air volume of the second fan (23) is not the maximum, the controller (C) increases the air volume of the second fan (23) in step 41. In step S43, when the air volume of the second fan (23) is maximum, it can be determined that the output of the heater (25) is still excessive even if the air volume of the second fan (23) is maximized. Therefore, in step S44, the controller (C) sets the output of the heater (25) to a second value (for example, 40%) smaller than the first value. In step S44, the controller (C) preferably increases the second value as the air volume of the second fan (23) increases. This is because the amount of moisture adsorbed by the adsorbent of the humidification rotor (22) increases as the air volume of the second fan (23) increases.
 以上のように変形例1では、外気湿度(Ho)が第2湿度である場合に、まず第2ファン(23)の風量を増大させる。これにより、加湿ロータ(22)で吸着できる水分量を多くすることができるので、ヒータ(25)の出力が過剰になってしまうことを抑制できる。特に、本例では、第2ファン(23)の風量を最大とすることで、この効果が顕著となる。 As described above, in Modification 1, when the outside air humidity (Ho) is the second humidity, first, the air volume of the second fan (23) is increased. As a result, the amount of moisture that can be adsorbed by the humidification rotor (22) can be increased, so that the output of the heater (25) can be prevented from becoming excessive. In particular, in this example, this effect becomes remarkable by maximizing the air volume of the second fan (23).
 その後、制御部(C)は、第2ファン(23)の風量が最大であるにも拘わらず、ヒータ(25)の出力が過剰となるときに、ヒータ(25)の出力を第2値とする。したがって、ヒータ(25)の出力が小さくなることに起因して、室内空間(I)の加湿量が不足してしまうことを抑制できる。 After that, the control unit (C) sets the output of the heater (25) to the second value when the output of the heater (25) becomes excessive despite the maximum air volume of the second fan (23). do. Therefore, it is possible to prevent insufficient humidification of the indoor space (I) due to a decrease in output of the heater (25).
 (6-2)変形例2
 変形例2では、対象空間である室内空間(I)の室内空気の湿度(以下、内気湿度(Hi)ともいう)が所定値以下になるように、制御部(C)が強制的にヒータ(25)の出力を制限する。変形例2に係る制御の一例を、図7に示す。
(6-2) Modification 2
In Modified Example 2, the controller (C) forcibly turns on the heater ( 25) limit the output. An example of control according to modification 2 is shown in FIG.
 図7にステップS51において、制御部(C)は内気湿度(Hi)が第2閾値より大きいか否かを判定する。ここで、第2閾値は、ホース(2)や空調室内機(30)の内部を流れる空気中の水分の結露を抑制するために設定された所定値である。内気湿度(Hi)は、内気湿度センサ(54)によって検出される。 At step S51 in FIG. 7, the control unit (C) determines whether the inside air humidity (Hi) is greater than the second threshold. Here, the second threshold is a predetermined value set to suppress condensation of moisture in the air flowing through the hose (2) and the interior of the air conditioning indoor unit (30). Inside air humidity (Hi) is detected by an inside air humidity sensor (54).
 ステップS51において、内気湿度(Hi)が第2閾値より大きい場合、ステップS52において、制御部(C)はヒータ(25)の出力を所定値以下に制限する。これにより、加湿ロータ(22)から対象空間(I)まで供給される空気の湿度が低くなる。したがって、ホース(2)や空調室内機(30)の内部を流れる空気中の水分が結露することを抑制できる。 In step S51, if the inside air humidity (Hi) is greater than the second threshold, in step S52, the controller (C) limits the output of the heater (25) to a predetermined value or less. This reduces the humidity of the air supplied from the humidification rotor (22) to the target space (I). Therefore, condensation of moisture in the air flowing through the hose (2) and the interior of the air conditioning indoor unit (30) can be suppressed.
 (6-3)変形例3
  変形例3は制御部(C)は、外気湿度(Ho)と必要加湿量とに基づいてヒータ(25)の出力を制御する。例えば外気湿度(Ho)が第2湿度と低く、加湿ロータ(22)に吸着された水分量だけでは必要加湿量を満たすことができない場合に、制御部(C)はヒータ(25)の出力を第2値(例えば30%)とする。一方、制御部(C)は、外気湿度(Ho)が第2湿度と低いが、それでも必要加湿量を満たすことができる場合、ヒータ(25)の出力を、必要加湿量を満たすことができない場合のヒータ(25)の出力よりも大きい第2値とする(例えば40%とする)。
(6-3) Modification 3
In Modified Example 3, the control section (C) controls the output of the heater (25) based on the outside air humidity (Ho) and the required humidification amount. For example, when the outside air humidity (Ho) is as low as the second humidity and the amount of moisture adsorbed by the humidification rotor (22) alone cannot satisfy the required amount of humidification, the control section (C) reduces the output of the heater (25). A second value (eg, 30%) is used. On the other hand, if the outside air humidity (Ho) is as low as the second humidity, but the required humidification amount can still be satisfied, the controller (C) outputs the output of the heater (25) when the required humidification amount cannot be satisfied. A second value (for example, 40%) that is greater than the output of the heater (25).
 変形例3の制御部(C)は、外気湿度(Ho)が第1湿度と高いときに、必要加湿量に応じて第2値よりも大きい第1値を調節してもよい。 The control unit (C) of Modification 3 may adjust the first value larger than the second value according to the necessary humidification amount when the outside air humidity (Ho) is as high as the first humidity.
 (7)その他の実施形態
 実施形態の再生部はヒータ(25)である。再生部は第1ファン(26)を含み、制御部(C)は、第1ファン(26)の風量を調節することにより再生部の出力を制御してもよい。
(7) Other Embodiments The regeneration unit of the embodiment is a heater (25). The regeneration section may include a first fan (26), and the control section (C) may control the output of the regeneration section by adjusting the air volume of the first fan (26).
 実施形態の吸着部材は、吸着剤を有する加湿ロータ(22)である。吸着部材は、吸着剤が担持された吸着素子や、吸着剤が担持された熱交換器(吸着熱交換器)であってもよい。吸着熱交換器は、その内部を流れる冷媒や熱媒体により吸着剤を加熱することにより、吸着剤の水分を脱離させる。 The adsorption member of the embodiment is a humidification rotor (22) having an adsorbent. The adsorption member may be an adsorption element supporting an adsorbent, or a heat exchanger (adsorption heat exchanger) supporting an adsorbent. The adsorption heat exchanger desorbs moisture from the adsorbent by heating the adsorbent with a refrigerant or heat medium flowing inside.
 実施形態の報知部は、表示部(41)である。報知部は、音により加湿能力が低下していることを報知する音発生部や、光により加湿能力が低下していることを報知する発光部であってもよい。 The notification unit of the embodiment is the display unit (41). The notification unit may be a sound generating unit that uses sound to notify that the humidifying ability is declining, or a light emitting unit that uses light to notify that the humidifying ability is declining.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the above embodiments, modifications, and other embodiments may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired.
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The descriptions of "first", "second", "third", etc. described above are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. not something to do.
 以上に説明したように、本開示は、加湿装置について有用である。 As described above, the present disclosure is useful for humidifiers.
     C    制御部
     1    空気調和装置(加湿装置)
     22   加湿ロータ(吸着部材)
     23   第2ファン
     25   ヒータ(再生部)
     26   第1ファン(再生部)
C control unit 1 air conditioner (humidifier)
22 humidification rotor (adsorption member)
23 second fan 25 heater (regeneration unit)
26 1st fan (playback part)

Claims (9)

  1.  室外空気の水分を吸着する吸着部材(22)と、
     対象空間(I)に供給される水分を該吸着部材(22)から脱離させる再生部(25,26)と、
     室外空気の絶対湿度が第1湿度であるときに、前記再生部(25,26)の出力を第1値とし、該室外空気の絶対湿度が前記第1湿度より低い第2湿度であるときに、前記再生部(25,26)の出力を前記第1値より小さい第2値とする制御部(C)とを備える加湿装置。
    an adsorption member (22) that adsorbs moisture in outdoor air;
    a regeneration unit (25, 26) for desorbing moisture supplied to the target space (I) from the adsorption member (22);
    When the absolute humidity of the outdoor air is the first humidity, the output of the regeneration unit (25, 26) is set to the first value, and when the absolute humidity of the outdoor air is the second humidity lower than the first humidity. and a control section (C) for setting the output of the regeneration section (25, 26) to a second value smaller than the first value.
  2.  前記再生部は、ヒータ(25)を含む
     請求項1に記載の加湿装置。
    The humidifying device according to claim 1, wherein the regeneration unit includes a heater (25).
  3.  前記再生部は、吸着部材(22)から脱離した水分を含む空気を前記対象空間(I)へ搬送する第1ファン(26)を含む
     請求項1または2に記載の加湿装置。
    The humidifier according to claim 1 or 2, wherein the regeneration unit includes a first fan (26) that conveys air containing moisture desorbed from the adsorption member (22) to the target space (I).
  4.  吸着部材(22)に吸着させる水分を含む室外空気を搬送する第2ファン(23)を備え、
     前記制御部(C)は、前記室外空気の絶対湿度が前記第2湿度であるときに、前記第2ファン(23)の風量を増大させる
     請求項1~3のいずれか1つに記載の加湿装置。
    a second fan (23) for conveying outdoor air containing moisture to be adsorbed by the adsorption member (22);
    The humidifier according to any one of claims 1 to 3, wherein the control unit (C) increases the air volume of the second fan (23) when the absolute humidity of the outdoor air is the second humidity. Device.
  5.  前記制御部(C)は、前記室外空気の絶対湿度が前記第2湿度であるときに、前記第2ファン(23)の風量を増大させ、その後に前記再生部(25,26)の出力を前記第2値とする
     請求項4に記載の加湿装置。
    The control section (C) increases the air volume of the second fan (23) when the absolute humidity of the outdoor air is the second humidity, and then increases the output of the regeneration section (25, 26). The humidifier according to claim 4, wherein said second value is used.
  6.  前記制御部(C)は、室外空気の絶対湿度が前記第1湿度である条件下において、前記対象空間(I)の加湿量を増大させる要求があると、前記再生部(25,26)の出力を、前記要求がないときの出力よりも大きい第1値とする
     請求項1~5のいずれか1つに記載の加湿装置。
    When there is a request to increase the amount of humidification of the target space (I) under the condition that the absolute humidity of the outdoor air is the first humidity, the control unit (C) controls the regeneration unit (25, 26). The humidifier according to any one of claims 1 to 5, wherein the output is set to a first value that is greater than the output when there is no request.
  7.  前記制御部(C)は、該対象空間(I)の空気の湿度に基づいて必要加湿量を求めるとともに、
     前記室外空気の絶対湿度と前記必要加湿量とに基づいて前記再生部(25,26)の出力を制御する
     請求項1~6のいずれか1つに記載の加湿装置。
    The control unit (C) obtains the required amount of humidification based on the humidity of the air in the target space (I),
    The humidifying device according to any one of claims 1 to 6, wherein the output of the regeneration section (25, 26) is controlled based on the absolute humidity of the outdoor air and the required amount of humidification.
  8.  前記対象空間(I)の加湿量を増大させる要求があり且つ室外空気の絶対湿度が前記第2湿度であるときに、加湿能力が低下していることに関する情報を報知する報知部(41)を備えている
     請求項1~7のいずれか1つに記載の加湿装置。
    a notification unit (41) for notifying information about a decrease in humidification capacity when there is a request to increase the amount of humidification of the target space (I) and the absolute humidity of the outdoor air is the second humidity; The humidifying device according to any one of claims 1 to 7, comprising:
  9.  前記制御部(C)は、前記対象空間(I)の空気の絶対湿度が所定値以下になるように、前記再生部(25,26)の出力を制限する
     請求項1~8のいずれか1つに記載の加湿装置。
    Any one of claims 1 to 8, wherein the control section (C) limits the output of the regeneration section (25, 26) so that the absolute humidity of the air in the target space (I) is equal to or less than a predetermined value. The humidifying device according to 1.
PCT/JP2022/022506 2021-08-31 2022-06-02 Humidifier WO2023032379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280051954.8A CN117716179A (en) 2021-08-31 2022-06-02 Humidifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141559A JP2023034999A (en) 2021-08-31 2021-08-31 humidifier
JP2021-141559 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032379A1 true WO2023032379A1 (en) 2023-03-09

Family

ID=85411166

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/017457 WO2023032341A1 (en) 2021-08-31 2022-04-11 Humidifier
PCT/JP2022/022506 WO2023032379A1 (en) 2021-08-31 2022-06-02 Humidifier

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017457 WO2023032341A1 (en) 2021-08-31 2022-04-11 Humidifier

Country Status (3)

Country Link
JP (1) JP2023034999A (en)
CN (2) CN117716180A (en)
WO (2) WO2023032341A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238843A (en) * 1997-02-28 1998-09-08 Sharp Corp Humidifier
JP2021038869A (en) * 2019-09-02 2021-03-11 ダイキン工業株式会社 Air conditioning system
JP2021038857A (en) * 2019-08-30 2021-03-11 ダイニチ工業株式会社 Humidifier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567857B2 (en) * 2000-06-13 2004-09-22 ダイキン工業株式会社 Humidifier and air conditioner using the same
JP3567860B2 (en) * 2000-07-04 2004-09-22 ダイキン工業株式会社 Humidifier and air conditioner using the same
JP2002071172A (en) * 2000-08-30 2002-03-08 Daikin Ind Ltd Humidifying device
JP3687583B2 (en) * 2001-09-13 2005-08-24 ダイキン工業株式会社 Humidifier and air conditioner using the same
JP5127280B2 (en) * 2007-04-06 2013-01-23 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238843A (en) * 1997-02-28 1998-09-08 Sharp Corp Humidifier
JP2021038857A (en) * 2019-08-30 2021-03-11 ダイニチ工業株式会社 Humidifier
JP2021038869A (en) * 2019-09-02 2021-03-11 ダイキン工業株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2023034999A (en) 2023-03-13
CN117716180A (en) 2024-03-15
CN117716179A (en) 2024-03-15
WO2023032341A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US20220268460A1 (en) Air conditioning system
JP2000220877A (en) Ventilating air conditioner
JP5292768B2 (en) Humidity control device
JP5369577B2 (en) Air conditioning system
JP5594030B2 (en) Controller, humidity controller and air conditioning system
WO2023032738A1 (en) Air-conditioning device
WO2023032379A1 (en) Humidifier
JP7182026B1 (en) humidifier
WO2023032380A1 (en) Ventilation device
JP2009109134A (en) Ventilation device
WO2023085327A1 (en) Humidifier and air conditioner
WO2023032731A1 (en) Air conditioning system
WO2023032397A1 (en) Air conditioner
JP2023035001A (en) humidification system
JP2023035192A (en) Air-conditioner
JP7208562B1 (en) air conditioner
JP7233538B2 (en) air conditioner
JP2023070421A (en) air conditioner
JP2022172985A (en) Indoor unit for air conditioner
JP2023065165A (en) Ventilation device
JP2020012603A (en) Air conditioning system
JP2005299967A (en) Air conditioner
JP2009109095A (en) Humidity conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863967

Country of ref document: EP

Kind code of ref document: A1