WO2018186336A1 - Humidity control unit - Google Patents

Humidity control unit Download PDF

Info

Publication number
WO2018186336A1
WO2018186336A1 PCT/JP2018/014077 JP2018014077W WO2018186336A1 WO 2018186336 A1 WO2018186336 A1 WO 2018186336A1 JP 2018014077 W JP2018014077 W JP 2018014077W WO 2018186336 A1 WO2018186336 A1 WO 2018186336A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
fan
regeneration
adsorption
air
Prior art date
Application number
PCT/JP2018/014077
Other languages
French (fr)
Japanese (ja)
Inventor
木澤 敏浩
晶子 白井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880022689.4A priority Critical patent/CN110462297B/en
Publication of WO2018186336A1 publication Critical patent/WO2018186336A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air

Definitions

  • the present disclosure relates to a humidity control unit, and in particular, to a humidity control unit that is installed with a back surface of a casing facing a wall surface along a vertical direction.
  • a humidification unit that is configured separately from an air conditioner that performs indoor air conditioning and supplies humidification air to the indoor unit of the air conditioner.
  • Some of such humidification units are attached to a wall to which an indoor unit is attached, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-129950), for example.
  • the humidifying unit described in Patent Document 1 when the humidifying unit described in Patent Document 1 is attached to the wall, the humidifying unit becomes thick when the heater, the suction rotor, and the fan are arranged from the outside air inlet toward the through hole opened in the wall. As a result, the humidification unit protrudes greatly from the wall. When the humidifying unit protrudes greatly from the wall in this way, it becomes difficult for the user to accept the design, or the cost for employing the humidifying unit to secure the installation strength of the humidifying unit increases. .
  • the problem of the present disclosure is to reduce the thickness of the humidity control unit that is installed with the back face facing the wall.
  • a humidity control unit is installed with a back surface facing a wall surface along the vertical direction, a casing having a front surface facing the back surface, and a first rotating shaft that is housed in the casing and extends in the vertical direction with respect to the back surface.
  • a suction rotor that is configured to rotate around, and a suction fan rotor that is housed in a casing and rotates around a second rotation axis along the vertical direction.
  • An adsorption fan that is guided to the adsorption rotor and passes through the adsorption rotor in the direction along the first rotation axis and blows out the air after adsorption that has been deprived of moisture by the adsorption rotor;
  • a reproduction fan rotor that rotates around the third rotation axis along the direction, the pre-reproduction air is guided to the adsorption rotor by the reproduction fan rotor, and the direction along the first rotation axis
  • a regeneration fan configured to blow out air after regeneration given moisture from the adsorption rotor by passing through the adsorption rotor, and the adsorption rotor, the adsorption fan rotor, and the regeneration fan rotor are in one direction along the back surface.
  • the suction rotor, the suction fan rotor, and the regeneration fan rotor are arranged so that at least a part of the suction rotor, the suction fan rotor, and the regeneration fan rotor overlap when viewed in the array direction.
  • the suction rotor, the suction fan rotor, and the regeneration rotor are viewed in the arrangement direction of the suction rotor, the suction fan rotor, and the regeneration fan rotor that are arranged in one direction along the rear surface.
  • the suction fan rotor, and the suction fan does not overlap in the arrangement direction because at least a part of the fan rotor is arranged so as to overlap and is arranged relatively flat. Can be thinned.
  • the humidity control unit according to the second aspect is the humidity control unit according to the first aspect, wherein the casing has a vertical dimension smaller than a dimension in a direction parallel to the back surface.
  • the casing in which the dimension in the direction perpendicular to the back surface is smaller than the dimension in the direction parallel to the back surface, the casing can be given an appearance with less protrusion from the wall. .
  • the humidity control unit according to the third aspect is the humidity control unit according to the first aspect or the second aspect, wherein the casing has a pre-adsorption air intake port for taking in the pre-adsorption air.
  • the pre-adsorption air intake is in front and the pre-adsorption air intake can be enlarged to the extent of the projected area on the front of the adsorption area of the adsorption rotor, the pre-adsorption air is adsorbed.
  • the flow resistance until reaching the rotor can be reduced, and the suction fan can be easily downsized.
  • the humidity control unit according to the fourth aspect is the humidity control unit according to the third aspect, wherein the casing has a pre-regeneration air intake port for taking in the pre-regeneration air.
  • the thickness of the casing can be easily reduced.
  • a humidity control unit is the humidity control unit according to the third aspect, wherein the casing has a pre-regeneration air intake port for taking in pre-regeneration air on a side surface between the back surface and the front surface,
  • the regeneration fan is arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other.
  • the humidity control capability can be improved by the airflow of the pre-arrival air and the airflow of the pre-regeneration air being opposed.
  • the humidity control unit is the humidity control unit according to the fifth aspect, wherein the adsorption rotor is disposed obliquely with respect to the back surface, and the pre-regeneration air intake port of the casing is along the inclination of the adsorption rotor on the side surface. Including a diagonally cut portion cut diagonally.
  • the pre-regeneration air intake can be increased by an amount corresponding to the opening being widened by the oblique cut portion, and the flow path resistance of the pre-regeneration air can be reduced.
  • the humidity control unit according to the seventh aspect is the humidity control unit according to any one of the first to sixth aspects, wherein the regeneration fan is located above and the suction fan is located below the suction rotor. It is configured to be able to.
  • the regeneration fan since the regeneration fan is located above, it becomes easy to bring the through hole formed above the wall surface closer to the regeneration fan, and passes through the through hole.
  • the humidification hose which is a flow path of the regenerated air that blows out into the room can be shortened.
  • a humidity control unit is configured to be attachable to an air conditioner including an outdoor unit and an indoor unit in any one of the humidity control units according to the first to seventh aspects, and a casing is installed outdoors.
  • the indoor air is humidified by the regenerated air blown out to the indoor unit by the regeneration fan, and the air after the adsorption is blown out by the adsorption fan.
  • the humidity control unit by installing the casing outside the room, it becomes easy to take in the air before adsorption from the outside by the adsorption fan during indoor humidification by the humidity control unit.
  • the humidity control unit according to the ninth aspect is the humidity control unit according to the eighth aspect, wherein the casing is disposed closer to the indoor unit than to the outdoor unit.
  • the regeneration fan is positioned closer to the indoor unit.
  • a humidifying hose that is a flow path for guiding the air after regeneration to the indoor unit can be shortened.
  • the humidity control unit according to the tenth aspect is the humidity control unit according to any one of the first to seventh aspects, wherein the casing is installed in the room and the interior is dehumidified with the air after adsorption blown out by the adsorption fan. In this configuration, the air after regeneration is blown out by the regeneration fan.
  • the humidity control unit by installing the casing in the room, it becomes easy to take in the air before adsorption from the room by the adsorption fan in the indoor dehumidification by the humidity control unit, and the adsorption fan can be easily downsized. Become.
  • the thickness can be reduced.
  • the humidity control unit according to the second aspect can have an appearance that is easy to install with the rear surface facing the wall surface.
  • the humidity control unit In the humidity control unit according to the third aspect, the eighth aspect or the tenth aspect, it is easy to reduce the size of the humidity control unit by reducing the size of the suction fan.
  • the humidity control unit according to the fifth aspect can provide a humidity control unit that has a high humidity control capability and is thinned.
  • the humidity control unit it becomes easy to reduce the thickness of the humidity control unit by facilitating the downsizing of the regeneration fan.
  • the flow path of the post-regeneration air blown out from the regeneration fan can be shortened to suppress problems due to condensation caused by the post-regeneration air.
  • the circuit diagram of the air harmony device containing the humidification unit concerning a 1st embodiment The conceptual diagram of the humidification unit of FIG.
  • Sectional drawing of the humidification unit which concerns on the modification 1A The front view of the humidification unit which concerns on the modification 1A. The front view of the humidification unit which concerns on 2nd Embodiment. The right view of the humidification unit of FIG. The left view of the humidification unit of FIG. The bottom view of the humidification unit of FIG. Sectional drawing of the humidification unit cut
  • Sectional drawing of the humidification unit which concerns on the modification 2A The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 3rd Embodiment.
  • the conceptual diagram of the dehumidification unit of FIG. The schematic diagram of the air conditioning apparatus containing the dehumidification unit of FIG. 20 attached to the wall.
  • the conceptual diagram of the humidification unit of FIG. The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 24 attached to the wall.
  • the circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 5th Embodiment The conceptual diagram of the dehumidification unit of FIG.
  • FIG. 2 shows the concept of the configuration of the humidifying unit 30 shown in FIG.
  • An air conditioner 1 shown in FIG. 1 includes an outdoor unit 2, an indoor unit 4, and refrigerant communication pipes 5 and 6, and a humidifying unit 30 is attached to the air conditioner 1.
  • the outdoor unit 2 is installed in the outdoor OD
  • the indoor unit 4 is attached to the indoor ID (see FIG. 5)
  • the outdoor unit 2 and the indoor unit 4 are connected to the refrigerant communication pipe 5. 6 and so on.
  • the outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an electric valve 24, a closing valve 25, a closing valve 26, an outdoor fan 27, and an accumulator 28.
  • the indoor unit 4 includes an indoor heat exchanger 42 and an indoor fan 41.
  • a refrigerant circuit 10 for performing a vapor compression refrigeration cycle is formed in the air conditioner 1.
  • a compressor 21 is incorporated in the refrigerant circuit 10.
  • the compressor 21 sucks in the low-pressure gas refrigerant, compresses the sucked-in gas refrigerant, and discharges the high-temperature and high-pressure gas refrigerant.
  • the compressor 21 is, for example, a variable capacity inverter compressor that can perform rotation speed control by an inverter. As the operating frequency of the compressor 21 increases, the amount of refrigerant circulating in the refrigerant circuit 10 increases. Conversely, when the operating frequency decreases, the amount of refrigerant circulating in the refrigerant circuit 10 decreases.
  • the four-way valve 22 is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the four-way valve 22 has a first port connected to the discharge side (discharge pipe 21a) of the compressor 21, an outdoor heat exchanger 23 connected to the second port, an accumulator 28 connected to the third port, and a fourth port.
  • the refrigerant communication pipe 6 is connected to the valve via a closing valve 26.
  • This four-way valve 22 is in a state indicated by a broken line in which the refrigerant flows between the first port and the second port and the refrigerant flows between the third port and the fourth port, and between the first port and the fourth port. And the state indicated by the solid line through which the refrigerant flows between the second port and the third port.
  • the humidification unit 30 includes a regeneration heat exchanger 31, and the regeneration heat exchanger 31 is inserted into the refrigerant communication tube 6. Therefore, in the heating operation state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 while maintaining the high temperature and pressure.
  • This humidifying unit 30 can generate post-regeneration air with high humidity by heating the pre-regeneration air that is sent to the adsorption rotor 32 by the regeneration heat exchanger 31. The ID will be humidified.
  • the outdoor heat exchanger 23 In the outdoor heat exchanger 23 disposed between the second port of the four-way valve 22 and the motor-operated valve 24, heat is exchanged between the refrigerant flowing through the heat transfer pipe (not shown) and the outdoor air.
  • the outdoor heat exchanger 23 functions as a radiator that releases heat from the refrigerant during the cooling operation, and functions as an evaporator that applies heat to the refrigerant during the heating operation.
  • the electric valve 24 is disposed between the outdoor heat exchanger 23 and the indoor heat exchanger 42.
  • the motor-operated valve 24 is an expansion valve having a function of expanding and depressurizing the refrigerant flowing between the outdoor heat exchanger 23 and the indoor heat exchanger 42.
  • the motor-operated valve 24 is configured so that the opening degree of the expansion valve can be changed, and the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be increased by reducing the opening degree of the expansion valve. By increasing the valve opening, the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be reduced.
  • Such an electric valve 24 expands and depressurizes the refrigerant flowing from the indoor heat exchanger 42 toward the outdoor heat exchanger 23 in the heating operation, and reduces the pressure in the cooling operation from the outdoor heat exchanger 23 to the indoor heat exchanger 42.
  • the refrigerant flowing toward is expanded and decompressed.
  • the outdoor unit 2 is provided with an outdoor fan 27.
  • the outdoor fan 27 sucks outdoor air into the outdoor unit 2 and supplies the outdoor air to the outdoor heat exchanger 23.
  • the air after heat exchange is discharged to the outside of 2.
  • the outdoor fan 27 promotes the function of the outdoor heat exchanger 23 that cools or evaporates the refrigerant using outdoor air as a cooling source or a heating source.
  • the outdoor fan 27 is driven by an outdoor fan motor 27a that can change the rotation speed. By changing the rotational speed of the outdoor fan 27, the air volume of the outdoor air passing through the outdoor heat exchanger 23 is changed.
  • the indoor unit 4 is provided with an indoor fan 41.
  • the indoor fan 41 sucks indoor air into the indoor unit 4 and supplies the indoor air to the indoor heat exchanger 42.
  • the air after heat exchange is discharged to the outside of the machine 4.
  • the indoor fan 41 promotes the function of the indoor heat exchanger 42 that cools or evaporates the refrigerant using indoor air as a cooling source or a heating source.
  • the indoor fan 41 is driven by an indoor fan motor 41a that can change the rotation speed.
  • the indoor ID is humidified by the humidifying unit 30 mainly when the indoor ID is dried, and there is no particular limitation on the timing when the indoor ID is humidified by the humidifying unit 30.
  • the room is often dried in winter, and is often humidified by the humidifying unit 30 during heating operation.
  • the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the solid line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
  • the compressor 21 When the compressor 21 is driven in the refrigerant circuit 10 during such heating operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 through the first port, the fourth port, the closing valve 26 and the refrigerant communication pipe 6 of the four-way valve 22.
  • the refrigerant heat-exchanged in the regeneration heat exchanger 31 enters the indoor heat exchanger 42 through the refrigerant communication pipe 6 and the connection pipe 71.
  • the high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with indoor air blown out from the indoor fan 41 in the indoor heat exchanger 42.
  • the high-pressure refrigerant after heat radiation is sent to the motor-operated valve 24 through the connection pipe 72, the refrigerant communication pipe 5, and the closing valve 25.
  • the refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant exiting the motor-operated valve 24 enters the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with outdoor air.
  • the low-pressure gas refrigerant discharged from the outdoor heat exchanger 23 passes through the second port and third port of the four-way valve 22 and the accumulator 28 and is sent again to the suction side (suction pipe 21b) of the compressor 21.
  • the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the broken line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
  • the low-pressure gas refrigerant When the compressor 21 is driven in the refrigerant circuit 10 during such cooling operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the first port and the second port of the four-way valve 22.
  • the high-temperature and high-pressure gas refrigerant radiates heat in the outdoor heat exchanger 23 by heat exchange with outdoor air.
  • the high-pressure refrigerant after heat radiation is sent to the motor operated valve 24.
  • the refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 42 through the closing valve 25, the refrigerant communication pipe 5 and the connection pipe 72.
  • the indoor heat exchanger 42 the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air blown out from the indoor fan 41 to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant discharged from the indoor heat exchanger 42 includes a connection pipe 71, a refrigerant communication pipe 6 into which the regeneration heat exchanger 31 is inserted, a closing valve 26, a four-way valve 22 (from the fourth port to the third port), And is again sent to the suction side (suction pipe 21b) of the compressor 21 through the accumulator 28.
  • FIG. 3 shows the appearance of the humidifying unit 30 as viewed from the front.
  • the Z-axis direction shown in FIG. 3 is the vertical direction, and the X-axis direction is the left-right direction.
  • the humidifying unit 30 shown in FIG. 3 is attached to the wall surface WS.
  • the wall surface WS extends parallel to the XZ plane.
  • the humidification unit 30 includes a regeneration heat exchanger 31, an adsorption rotor 32, a rotor motor 33, an adsorption fan 34, a regeneration fan 35, and a humidification hose 36.
  • the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, and the regeneration fan 35 are accommodated in the casing 50 shown in FIG.
  • pre-adsorption air is taken in from the pre-adsorption air intake 52 and sent to the adsorption region of the adsorption rotor 32.
  • the post-adsorption air that has been deprived of moisture in the adsorption region of the adsorption rotor 32 is blown out from the adsorption fan outlet 56.
  • the pre-adsorption air and post-adsorption air streams are generated by the adsorption fan 34.
  • the pre-regeneration air is taken in from the pre-regeneration air intake 54, heated when passing through the regeneration heat exchanger 31, and sent to the regeneration region of the adsorption rotor 32.
  • the regenerated air given moisture in the regeneration region of the adsorption rotor 32 is blown out into the indoor unit 4 through the regenerated air duct 35e and the humidifying hose 36.
  • the airflow of the air before regeneration and the air after regeneration is generated by the regeneration fan 35.
  • FIG. 4 shows a cross section of the humidifying unit 30 along the line II in FIG.
  • the Y-axis direction is the front-rear direction. Note that in cross-sectional views such as FIG. 4, hatching such as oblique lines is partially omitted for easy understanding of the drawing.
  • the shape of the casing 50 of the humidifying unit 30 is designed based on a rectangular parallelepiped. Therefore, in the casing 50, the front 50a, the back 50b, the upper side 50c, the lower side 50d, the right side 50e, and the left side 50f occupy most of the appearance.
  • the front surface 50a is a surface facing the back surface 50b.
  • the upper side surface 50c, the lower side surface 50d, the right side surface 50e, and the left side surface 50f are side surfaces located between the front surface 50a and the back surface 50b.
  • the humidifying unit 30 shown in FIG. 5 is attached so that the back surface 50b contacts the wall surface WS along the vertical direction.
  • the casing 50 may not be attached so as to be in contact with the wall surface WS, and may be attached so that the back surface 50b of the casing 50 faces the wall surface WS.
  • the casing 50 may be attached to a frame disposed in parallel with the wall surface WS.
  • a through hole 101 is formed in the wall 100 shown in FIG. The refrigerant communication pipes 5 and 6 and the humidifying hose 36 pass through the through hole 101.
  • a dimension M1 (distance between the front surface 50a and the back surface 50b) perpendicular to the back surface 50b (a distance between the front surface 50a and the back surface 50b) shown in FIG. 4 is parallel to the back surface 50b (parallel to the XZ plane).
  • the smallest dimension of the front surface 50a in the direction parallel to the back surface 50b is the distance between the right side surface 50e and the left side surface 50f (dimension M2 in the X-axis direction (see FIG. 3)).
  • the distance (dimension M1) between the front surface 50a and the rear surface 50b is smaller than the distance (dimension M2) between the right side surface 50e and the left side surface 50f. That is, the casing 50 is thinned.
  • the longest side of the casing 50 is arranged along the Z-axis direction, and in order from the top (from the side closer to the upper side surface 50 c), the regeneration fan 35.
  • the suction rotor 32 and the suction fan 34 are arranged side by side.
  • a grid 51 is attached to the front surface 50a of the casing 50 as shown in FIG.
  • FIG. 6 shows an appearance in which the grid 51 is removed from the front surface 50 a of the humidifying unit 30.
  • the casing 50 shown in FIG. 6 is viewed from the diagonally lower left.
  • a semicircular pre-adsorption air intake 52 is formed on the front surface 50a of the casing 50 at a position slightly below the central portion of the front surface 50a.
  • the longitudinal direction of the pre-adsorption air intake 52 is parallel to the X-axis direction (see FIG. 8).
  • the exposed adsorption rotor 32 is visible from the pre-adsorption air intake 52.
  • a pipe connection portion cover 53 is attached to the left side surface 50 f of the casing 50.
  • FIG. 7 shows an enlarged part of the external appearance of the humidifying unit 30 in a state in which the pipe connection portion cover 53 is removed.
  • the pipe connection part cover 53 covers the pipe connection parts 31a and 31b.
  • the pipe connection part 31 a is connected to the refrigerant communication pipe 6 connected to the closing valve 26.
  • the pipe connection part 31 b is connected to the refrigerant communication pipe 6 connected to the indoor heat exchanger 42 of the indoor unit 4.
  • a pre-regeneration air intake 54 is formed on the left side surface 50 f of the casing 50, and an opening 55 for taking out the humidifying hose 36 from the inside of the casing 50 to the outside is formed. Although not shown, the pre-regeneration air intake 54 is also formed on the right side surface 50e.
  • An adsorption fan blowout port 56 is formed on the lower side surface 50 d of the casing 50.
  • the adsorption rotor unit 39 includes a regeneration heat exchanger 31, an adsorption rotor 32, and a rotor motor 33.
  • the suction rotor 32 is a disk-shaped member.
  • a large number of through holes are formed in the rotor body 32c from the circular surface 32a to the circular back surface 32b of the adsorption rotor 32 so that air can pass through the adsorption rotor 32 from the surface 32a to the back surface 32b. It is configured.
  • the adsorption rotor 32 contains a polymeric adsorbent.
  • the adsorbent has a function of adsorbing moisture from the air passing through the adsorption rotor 32, and when air heated to a temperature higher than normal temperature passes through the adsorption rotor 32, moisture is absorbed into the heated air. It has a function to detach.
  • the suction region passes through the air taken in from the pre-adsorption air intake 52 until it is blown out from the suction fan blow-out port 56.
  • the air taken in from the front air inlet 54 passes through the humidifying hose 36 and is sent to the indoor unit 4.
  • the adsorption area occupies the lower half of the generally disk-shaped area
  • the regeneration area occupies the upper half of the generally disk-shaped area.
  • the occupation ratio of the adsorption area and the reproduction area can be designed as appropriate.
  • the reproduction area may be a sector and the rest may be an adsorption area.
  • the suction rotor unit 39 supports the suction rotor 32 so that the suction rotor 32 rotates around the first rotation shaft 32d.
  • the first rotation shaft 32d extends in a direction perpendicular to the back surface 50b (Y-axis direction). For example, the suction rotor 32 rotates 30 times per hour.
  • the adsorption rotor 32 makes one rotation around the first rotation shaft 32d, the adsorption rotor 32 passes through the adsorption region and the regeneration region, and adsorbs moisture and desorbs moisture.
  • the adsorption rotor unit 39 holds the regeneration heat exchanger 31 and reproduces the heat for regeneration so that all the pre-regeneration air heated through the regeneration heat exchanger 31 can pass through the adsorption rotor 32.
  • An air path that passes through the regeneration region after passing through the vessel 31 is formed.
  • suction fan 34 As an example in which a sirocco fan is used for the suction fan 34 is shown, but a fan that can be used for the suction fan 34 is not limited to a sirocco fan.
  • the suction fan 34 is preferably a centrifugal fan that easily satisfies the conditions of the occupied volume and the air volume.
  • the suction fan 34 includes a suction fan rotor 34a that rotates around the second rotation shaft 34b, a suction motor 34c, a suction fan case 34d, and a post-adsorption air duct 34e.
  • the second rotating shaft 34b extends in a direction perpendicular to the back surface 50b.
  • the suction motor 34c rotates the suction fan rotor 34a.
  • the adsorption fan 34 guides pre-adsorption air from the pre-adsorption air intake 52 to the adsorption rotor 32 by the adsorption fan rotor 34a. Then, the pre-adsorption air is sent by the adsorption fan rotor 34 a and passes through the adsorption region of the adsorption rotor 32. Air that has been deprived of moisture by the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after adsorption. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32.
  • a post-adsorption air duct 34e is disposed on the back surface 32b side of the adsorption rotor 32.
  • the post-adsorption air duct 34e is larger than the portion where the adsorption rotor 32 and the adsorption area overlap in front view, and larger than the suction circular hole 34f of the bell mouth 34g of the adsorption fan 34.
  • the post-adsorption air duct 34e is arranged so as to cover the portion where the adsorption rotor 32 and the adsorption region overlap and the suction circular hole 34f of the bell mouth 34g in a front view.
  • the adsorbed air sucked into the adsorbing fan 34 from the adsorbed air duct 34e through the suction circular hole 34f of the bell mouth 34g of the adsorbing fan 34 is blown out from the adsorbing fan outlet 56.
  • the regeneration fan 35 includes a regeneration fan rotor 35a that rotates around the third rotation shaft 35b, a regeneration motor 35c, a regeneration fan case 35d, and a post-regeneration air duct 35e.
  • the third rotation shaft 35b extends in a direction perpendicular to the back surface 50b.
  • the reproduction motor 35c rotates the reproduction fan rotor 35a.
  • the regeneration fan 35 guides the pre-regeneration air from the pre-regeneration air intake 54 to the adsorption rotor 32 by the regeneration fan rotor 35a. Then, the pre-regeneration air is sent by the regeneration fan rotor 35 a and passes through the regeneration region of the adsorption rotor 32. The air given moisture to the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after regeneration. The pre-regeneration air is heated by the regeneration heat exchanger 31 before reaching the back surface 32 b of the adsorption rotor 32. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32.
  • a post-regeneration air duct 35e is disposed on the surface 32a side of the adsorption rotor 32.
  • the post-regeneration air duct 35e is larger than the portion where the suction rotor 32 and the regeneration region overlap in front view, and larger than the suction port 35f of the regeneration fan 35.
  • the post-regeneration air duct 35e is disposed so as to cover the portion where the suction rotor 32 and the regeneration region overlap and the suction port 35f when viewed from the front.
  • the post-regeneration air sucked into the regeneration fan 35 from the post-regeneration air duct 35e through the suction port 35f of the regeneration fan 35 is blown out through the humidification hose 36.
  • the suction fan rotor 34a of the suction rotor 32, the suction fan 34, and the regeneration fan rotor 35a of the regeneration fan 35 are: They are arranged in one direction (Z-axis direction) along the back surface 50b. More specifically, as shown in FIG. 8, the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan rotor 34a, and the third rotation shaft 35b of the regeneration fan rotor 35a are provided. Are arranged so as to be orthogonal to one straight line L1 extending in the Z-axis direction. In FIG.
  • the arrangement of the suction rotor 32, the suction fan 34, and the regeneration fan 35 in the front view is indicated by broken lines.
  • the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction, that is, when viewed from the lower side surface 50d to the upper side surface 50c along the straight line L1, as shown in FIG.
  • a portion of the rotor 32 and a portion of the suction fan rotor 34a overlap, and the overlapping portion and the regeneration fan rotor 35a overlap. Therefore, the suction rotor 32, the suction fan 34, and the regeneration fan 35 can be arranged flatly along the back surface 50b, and the humidification unit 30 can be thinned.
  • first rotation shaft 32d, the second rotation shaft 34b, and the third rotation shaft 35b are arranged so as to be orthogonal to one straight line L1 extending in the Z-axis direction, the suction fan rotor 34a and the regeneration fan rotor 34a Since the fan rotor 35a does not protrude from the suction rotor 32 in the X-axis direction, the dimension M2 of the casing 50 in the X-axis direction can be reduced.
  • the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the air before adsorption and the airflow of the air before regeneration are opposed to each other.
  • the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other.
  • 35 may be arranged such that the airflow of the air before adsorption and the airflow of the air before regeneration flow in the same direction.
  • a pre-regeneration air intake 57 is formed on the front surface 50a.
  • the pre-regeneration air intake 57 is formed in a rectangular shape having substantially the same size as that of the regeneration heat exchanger 31 in a front view.
  • a grid 58 is attached to the pre-regeneration air intake 57. Even when the pre-regeneration air inlet 57 is formed on the front surface 50a, the pre-regeneration air intake port may be provided on the right side surface 50e and the left side surface 50f close to the front surface 50a, as in the first embodiment. Good.
  • the humidifying units 30 and 30A are attached so that the longitudinal direction of the casings 50 and 50A (the direction in which the side of the dimension M4 extends) coincides with the Z-axis direction.
  • the humidifying units 30 and 30A may be attached so that the longitudinal direction of the casings 50 and 50A extends in the X-axis direction.
  • the humidification unit 30 of 1st Embodiment and the humidification unit 30A of the modification 1A are examples of a humidity control unit.
  • the suction rotor 32 in the arrangement direction of the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a arranged side by side in one direction (Z-axis direction) along the back surface 50b.
  • the suction fan rotor 34a and the regeneration fan rotor 35a are disposed so as to overlap each other.
  • the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged flat along the back surface 50b, the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction.
  • the thickness of the humidifying units 30 and 30A can be reduced compared to the thickness in the case where at least one does not overlap, and the humidifying units 30 and 30A can be thinned.
  • first rotating shaft 32d, the second rotating shaft 34b, and the third rotating shaft 35b extend in the vertical direction with respect to the back surface
  • these may be along the vertical direction.
  • the first rotation shaft 32d, the second rotation shaft 34b, and the third rotation shaft 35b are included in the vertical direction up to a tilt of 20 degrees.
  • the regeneration fan rotor 35a completely overlaps the suction rotor 32 and the regeneration fan rotor 35a completely overlaps the suction fan rotor 34a.
  • a part of the regeneration fan rotor 35a May be arranged so as to overlap the suction rotor 32 and a part of the regeneration fan rotor 35a to overlap the suction fan rotor 34a.
  • the reproduction fan rotor 35a is shifted so as to be close to the back surface 50b, a part of the reproduction fan rotor 35a overlaps with the suction rotor 32 and a part of the reproduction fan rotor 35a overlaps with the suction fan rotor 34a. Can be placed.
  • the regeneration fan rotor 35a is shifted so as to be close to the front surface 50a, so that a part of the regeneration fan rotor 35a overlaps with the suction rotor 32, and the entire regeneration fan rotor 35a overlaps with the suction fan rotor 34a.
  • the rotor 32, the suction fan 34, and the regeneration fan 35 may be disposed.
  • the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged such that all of the regeneration fan rotor 35a overlaps the suction rotor 32 and a part of the regeneration fan rotor 35a overlaps the suction fan rotor 34a. It can also be arranged.
  • the suction rotor 32 may have a diameter smaller than that of the suction fan rotor 34a, and the suction rotor 32 may be disposed so as to overlap the suction fan rotor 34a.
  • the casings 50 and 50A have the pre-adsorption air intake 52 for taking in the pre-adsorption air on the front surface 50a.
  • the pre-adsorption air intake 52 is on the front surface 50a and the pre-adsorption air intake 52 having the same size as the projected area on the front surface of the adsorption area of the adsorption rotor 32 can be formed, the pre-adsorption air intake 52 can be formed.
  • the flow resistance until the air reaches the adsorption rotor 32 can be reduced, and a small fan can be used for the adsorption fan 34.
  • the thinning of the humidifying units 30 and 30A can be improved by reducing the size of the suction fan 34.
  • the pre-adsorption air intake 52 is formed on the front surface 50a
  • the pre-regeneration air enters from the front surface 32a of the adsorption rotor 32 and exits from the back surface 32b.
  • the humidifying capacity of the humidifying unit 30 can be improved, and the humidifying unit 30 is a highly humidified and thinned humidity control unit. Can be provided.
  • the humidification units 30 and 30A described above are configured so that the regeneration fan 35 is located above the suction rotor 32 and the suction fan 34 is located below. As described above, the reproduction fan 35 is located on the upper side, so that the through hole 101 formed above the wall surface WS and the reproduction fan 35 can be easily brought close to each other.
  • the humidification hose 36 that is a flow path of the regenerated air that blows out into the room can be shortened. As a result, the flow path of the post-regeneration air blown from the regeneration fan 35 can be shortened to suppress problems caused by condensation caused by the post-regeneration air.
  • the humidification units 30 and 30A described above are configured to be attachable to the air conditioner 1 including the outdoor unit 2 and the indoor unit 4.
  • the casings 50 and 50A are installed in the outdoor OD
  • the indoor ID is humidified by the regenerated air blown out to the indoor unit 4 by the regeneration fan 35
  • the air after adsorption by the adsorption fan 34 To the outdoor OD. Since the casings 50 and 50A are installed in the outdoor OD, it becomes easy to take the pre-adsorption air from the outdoor OD by the adsorption fan 34 when humidifying the indoor ID by the humidification units 30 and 30A that are humidity control units. It is easy to make the humidification units 30 and 30A thinner.
  • the casings 50 and 50A are arranged at positions closer to the indoor unit 4 than to the outdoor unit 2.
  • the regeneration fan 35 is closer to the indoor unit 4 than the conventional example in which the humidifying unit is integrated with the outdoor unit 2. Therefore, for example, the humidification hose 36 which is a flow path for guiding the regenerated air blown from the regeneration fan 35 to the indoor unit 4 can be shortened.
  • the flow path of the post-regeneration air blown from the regeneration fan 35 can be shortened to suppress problems caused by condensation caused by the post-regeneration air.
  • FIG. 12 shows the humidification unit 30B according to the second embodiment as viewed from the front
  • FIG. 13 shows the right side surface 50e of the humidification unit 30B
  • FIG. 14 shows the left side surface 50f of the humidification unit 30B
  • FIG. 15 shows a lower side surface 50d of the humidifying unit 30B
  • FIG. 16 shows a state in which the humidification unit 30B is cut along the line II-II in FIG. 12 and viewed from the right side
  • FIG. 17 shows the humidification unit along the line II-II in FIG. The state which cut
  • the suction rotor 32 is disposed obliquely with respect to the back surface of the casing 50B. Since the suction rotor 32 is disposed obliquely, the dimension M5 in the Z-axis direction in the casing 50B of the second embodiment can be made smaller than the dimension M4 in the Z-axis direction in the casing 50 of the first embodiment. ing.
  • the air conditioning apparatus incorporating the humidifying unit 30B of the second embodiment can replace the humidifying unit 30 and the humidifying unit 30B in the air conditioning apparatus 1 incorporating the humidifying unit 30 of the first embodiment, for example.
  • the configuration of the air conditioning apparatus when replaced is the same as in FIG. Therefore, description is abbreviate
  • the operation of the air conditioner incorporating the humidifying unit 30B of the second embodiment is the same, the description of the operation of the air conditioner incorporating the humidifying unit 30B of the second embodiment is omitted.
  • the humidification unit 30 ⁇ / b> B includes a regeneration heat exchanger 31, an adsorption rotor 32, a rotor motor 33, an adsorption fan 34, a regeneration fan 35, and a humidification hose 36, similarly to the humidification unit 30.
  • the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the humidification hose 36 since the arrangement and structure are different, these different points will be described below.
  • the suction rotor 32 rotates around a first rotation shaft 32d inclined with respect to the back surface 50b.
  • the suction rotor 32 is arranged so that the angle ⁇ formed by the first rotation shaft 32d and the X axis is 10 degrees to 30 degrees.
  • the angle ⁇ formed by the first rotation shaft 32d and the X axis is arranged to be about 15 degrees.
  • the regeneration heat exchanger 31 is arranged in parallel to the back surface 32b of the adsorption rotor 32 arranged in this way.
  • the envelope surface 31 ⁇ / b> P at the front side end of the fin of the regeneration heat exchanger 31 is substantially parallel to the back surface 32 b of the adsorption rotor 32.
  • the regeneration heat exchanger 31 is preferably disposed obliquely along the adsorption rotor 32 in order to reduce the heat energy loss by bringing the regeneration heat exchanger 31 close to the adsorption rotor 32.
  • those inclined by ⁇ 10 degrees with respect to the back surface 32 b of the adsorption rotor 32 are also included in the arrangement along the adsorption rotor 32.
  • the regeneration heat exchanger 31 is arranged so that the center of gravity is located closer to the back surface 50b than the front surface 50a of the casing 50B.
  • the pre-regeneration air sent to the regeneration heat exchanger 31 is taken in from the pre-regeneration air intake 54 formed on the right side surface 50e and the left side surface 50f.
  • the pre-regeneration air intake 54 includes an oblique cut portion 54 a that is obliquely cut along the inclination of the adsorption rotor 32.
  • the pre-regeneration air intake 54 is increased by the amount of the opening being expanded by such an oblique cut portion 54a, and the flow path resistance of the pre-regeneration air is reduced.
  • the second rotation shaft 34b of the suction fan rotor 34a and the third rotation shaft 35b of the regeneration fan rotor 35a both extend in a direction perpendicular to the back surface 50b (Y-axis direction).
  • the suction fan 34 and the regeneration fan 35 are arranged so that both the suction fan rotor 34a and the regeneration fan rotor 35a rotate in a plane parallel to the back surface 50b.
  • the suction fan 34 and the regeneration fan 35 are arranged such that the center of gravity of each of them is located closer to the back surface 50b than the front surface 50a of the casing 50B.
  • the humidifying unit 30B is separated from the wall 100 as compared with the case where the gravity center is close to the front surface 50a. Since the moment of the force acting in the separating direction becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
  • the suction fan 34 is arranged such that the region RE1 of the suction circular hole 34f of the bell mouth 34g and the partial region RE2 of the suction rotor 32 overlap in front view.
  • a partial region RE2 of the suction rotor 32 is disposed between the suction fan 34 and the front surface 50a of the casing 50B. Since the partial region RE2 of the suction rotor 32 is disposed between the suction fan 34 and the front surface 50a of the casing 50B, the flow path resistance when the pre-adsorption air is guided to the suction rotor can be suppressed to a low level.
  • the fan 34 can be downsized.
  • the farthest away point P1 from the suction circular hole 34f of the bell mouth 34g is 60% away from the radius r1 of the suction circular hole 34f.
  • a radius r1 of 10 is used in order to make air easily flow between the suction rotor 32 and the suction fan 34 in the suction circular hole 34f of the bell mouth 34g of the suction fan 34 that does not overlap with the suction rotor 32. It is preferable that they are arranged so that they are separated by at least%. Further, if the suction rotor 32 is too far from the suction fan 34, it is difficult to reduce the thickness of the humidifying unit 30B.
  • the distance at which the nearest closest point P2 is separated from the suction circular hole 34f is set to be less than 40% of the radius r1 of the suction circular hole 34f.
  • the distance from the suction circular hole 34f to the closest point P2 is about 35% of the radius r1 of the suction circular hole 34f.
  • the regeneration fan 35 is a post-regeneration air duct 35e that is disposed along the front surface 50a of the casing 50B, after the regeneration air that has passed from the heat exchanger 31 for regeneration to the back surface 32b and the front surface 32a of the adsorption rotor 32 in this order.
  • the regeneration fan rotor 35a of the regeneration fan 35 draws post-regeneration air in the direction from the front surface 50a to the rear surface 50b.
  • the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the air before adsorption and the airflow of the air before regeneration are opposed to each other.
  • the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are arranged in one direction (Z-axis direction) along the back surface 50b.
  • the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan rotor 34a, and the third rotation shaft 35b of the regeneration fan rotor 35a pass through one straight line L2 extending in the Z-axis direction. Are lined up.
  • the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction, that is, when viewed from the lower side surface 50d to the upper side surface 50c along the straight line L2, as shown in FIG.
  • the suction fan rotor 34a and the reproduction fan rotor 35a does not protrude from the suction rotor 32 in the X-axis direction, the dimension M7 of the casing 50 in the X-axis direction can be reduced.
  • the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other.
  • the air flow 35 may be arranged so that the airflow before the adsorption and the airflow before the regeneration flow in the same direction.
  • a pre-regeneration air intake 57 is formed on the front surface 50a of the casing 50C.
  • the pre-regeneration air intake 57 is formed in a rectangular shape having substantially the same size as that of the regeneration heat exchanger 31 in a front view.
  • a grid 58 is attached to the pre-regeneration air intake 57. Even when the pre-regeneration air inlet 57 is formed on the front surface 50a, the pre-regeneration air intake port may be provided on the right side surface 50e and the left side surface 50f close to the front surface 50a as in the second embodiment. .
  • the humidifying units 30B and 30C are attached so that the longitudinal direction of the casings 50B and 50C (the direction in which the side of the dimension M5 extends) coincides with the Z-axis direction.
  • the humidifying units 30B and 30C may be attached such that the longitudinal directions of the casings 50B and 50C extend in the X-axis direction.
  • the humidifying unit 30B of the second embodiment is the humidifying unit 30 of the first embodiment described in the above (5-1) to (5-3) and (5-5) to (5-8). Since it is clear that they have the same characteristics as those described above, description of these characteristics will be omitted.
  • the humidifying unit 30C of the modified example 2A has the same characteristics as the humidifying unit 30A of the modified example 1A described in the above (5-1) to (5-4) and (5-6) to (5-8). Since it is clear that these are included, these descriptions are omitted.
  • the humidification unit 30B of 2nd Embodiment and the humidification unit 30C of the modification 2A are examples of a humidity control unit.
  • the adsorption rotor 32 of the humidifying units 30B and 30C is disposed obliquely with respect to the back surface 50b, and the pre-regeneration air intake 54 of the casings 50B and 50C is along the inclination of the adsorption rotor 32 on the right side surface 50e and the left side surface 50f.
  • An oblique cut portion 54a cut obliquely is included.
  • the pre-regeneration air intake 54 can be enlarged by the amount of the opening that is widened by these oblique cut portions 54a, and the flow resistance of the pre-regeneration air can be reduced to facilitate the miniaturization of the regeneration fan 35.
  • the humidification units 30B and 30C can be easily reduced in thickness.
  • FIG. 20 shows the air conditioner 1 to which the dehumidifying unit 30D is attached.
  • FIG. 21 shows the concept of the configuration of the dehumidifying unit 30D shown in FIG.
  • the dehumidifying unit 30D is an example of a humidity control unit in the third embodiment.
  • the dehumidifying unit 30D of the third embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50
  • the exhaust hose 37 is provided instead of the humidification hose 36 provided in the humidification unit 30 of the first embodiment. Since the configuration other than the exhaust hose 37 is the same as the dehumidifying unit 30D of the third embodiment and the humidifying unit 30 of the first embodiment, the description thereof is omitted.
  • FIG. 22 shows a state where the casing 50 of the dehumidification unit 30D is attached to the room ID.
  • the exhaust hose 37 extends to the outdoor OD through the through hole 101.
  • the refrigerant communication pipe 6 piped from the outdoor unit 2 to the room ID through the through hole 101 is connected to the pipe connection part 31a of the dehumidifying unit 30D, and is piped from the outdoor unit 2 to the room ID through the through hole 101.
  • the refrigerant communication pipe 5 is connected to the indoor unit 4 (connection pipe 72).
  • the indoor unit 4 (connection pipe 71) and the pipe connection part 31b of the dehumidifying unit 30D are connected by the refrigerant communication pipe 6 piped in the room ID.
  • the dehumidifying unit 30D is attached to a room different from the indoor unit 4, for example, and is arranged in a drying room, for example.
  • the pre-adsorption air is taken in from the indoor ID through the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. Then, the air after adsorption that has been dehydrated by the adsorption rotor 32 and dried is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID. Further, the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is blown out by the regeneration fan 35 through the exhaust hose 37 to the outdoor OD.
  • FIG. 24 shows the concept of the configuration of the humidifying unit 30E shown in FIG.
  • This humidification unit 30E is an example of a humidity control unit in the fourth embodiment.
  • the humidifying unit 30E of the fourth embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And a humidifying hose 36.
  • the humidifying unit 30E according to the fourth embodiment further exhausts the adsorbed air to the outdoor OD through the through hole 101 and the air supply hose 38 for taking in the pre-adsorption air from the outdoor OD through the through hole 101.
  • the exhaust hose 37 is provided.
  • the humidifying hose 36 of the humidifying unit 30E is a hose that connects the humidifying unit 30E and the indoor unit 4 in the room ID. Since the configuration other than the exhaust hose 37 and the air supply hose 38 is the same as the humidification unit 30E of the fourth embodiment and the humidification unit 30 of the first embodiment, the description thereof is omitted.
  • FIG. 26 shows a state where the casing 50 of the humidification unit 30E is attached to the room ID.
  • the humidifying unit 30E performs humidification
  • the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 and the pre-adsorption air intake 52 (see FIG. 25) and sent to the adsorption rotor 32 by the adsorption fan 34.
  • the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 (see FIG. 25) through the exhaust hose 37 to the outdoor OD.
  • the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32.
  • the regenerated air given moisture by the adsorption rotor 32 is sent to the indoor unit 4 through the humidifying hose 36 by the regeneration fan 35.
  • Modification 4A 4th Embodiment demonstrated the humidification unit 30E installed in indoor ID. Moreover, 3rd Embodiment demonstrated dehumidification unit 30D installed in indoor ID.
  • a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
  • FIG. 27 shows a humidity control unit 30F having both a humidifying function and a dehumidifying function.
  • the humidity control unit 30F further includes four dampers 61 to 64 as compared with the configuration of the humidification unit 30E.
  • the dampers 61 and 62 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD.
  • the dampers 63 and 64 are switched so that one of the air after adsorption blown by the suction fan 34 and the air after regeneration blown by the regeneration fan 35 is blown out to the room ID and the other is blown out to the outdoor OD.
  • the dampers 61 and 62 are in the state shown by the solid line in FIG.
  • the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 by the adsorption fan 34 and sent to the adsorption rotor 32.
  • the pre-reproduction air is taken from the room ID by the reproduction fan 35 and sent to the adsorption rotor 32.
  • the dampers 63 and 64 are in the state indicated by the solid line in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 through the exhaust hose 37 to the outdoor OD, and the air after reproduction by the regeneration fan 35. Is blown out to the room ID through the humidity control hose 36A, and the room ID is humidified.
  • the dampers 61 and 62 are in the state indicated by the broken line in FIG. 27, the air before suction is taken in from the room ID by the suction fan 34 and sent to the suction rotor 32, and the regeneration fan.
  • the pre-regeneration air is taken in from the outdoor OD through the air supply hose 38 and sent to the adsorption rotor 32.
  • the dampers 63 and 64 are in the state shown by the broken lines in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36A, and the reproduction fan 35 After regeneration, the air is blown out to the outdoor OD through the exhaust hose 37, and the indoor ID is dehumidified.
  • the dampers 61 to 64 may be constituted by shutters or may be provided outside the casing.
  • FIG. 28 shows the concept of the configuration of the dehumidifying unit 30G shown in FIG.
  • This dehumidifying unit 30G is an example of a humidity control unit in the fifth embodiment.
  • the dehumidifying unit 30G of the fifth embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And.
  • the dehumidifying unit 30G according to the fourth embodiment is further adsorbed to the room ID through the through hole 101 (see FIG. 30) and the air supply hose 38 for taking in pre-adsorption air from the room ID and the through hole 101.
  • a humidity control hose 36A for sending rear air is provided. Since the configuration other than the humidity control hose 36A and the air supply hose 38 is the same as that of the dehumidifying unit 30G of the fifth embodiment and the humidifying unit 30 of the first embodiment, description thereof will be omitted.
  • FIG. 30 shows a state where the casing 50 of the dehumidification unit 30G is attached to the outdoor OD.
  • the dehumidifying unit 30G performs dehumidification
  • the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 and the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32.
  • the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID through the humidity control hose 36A.
  • the pre-regeneration air is taken in from the outdoor OD through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32.
  • the regenerated air given moisture by the adsorption rotor 32 is blown out to the outdoor OD by the regeneration fan 35.
  • Modification 5A 5th Embodiment demonstrated the dehumidification unit 30G installed in outdoor OD. Moreover, 1st Embodiment demonstrated the humidification unit 30 installed in outdoor OD.
  • a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
  • FIG. 31 shows a humidity control unit 30H having both a humidifying function and a dehumidifying function.
  • the humidity control unit 30H further includes four dampers 66 to 69 with respect to the configuration of the humidification unit 30.
  • the dampers 66 and 67 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD.
  • the dampers 68 and 69 switch so that one of the post-adsorption air blown by the suction fan 34 and the post-regeneration air blown by the regeneration fan 35 is blown to the room ID and the other is blown to the outdoor OD. .
  • the dampers 66 and 67 are in the state shown by the solid line in FIG. 31, the pre-adsorption air is taken in from the outdoor OD by the adsorption fan 34 and sent to the adsorption rotor 32, and before the reproduction by the reproduction fan 35. Air is taken from the room ID through the air supply hose 38 and sent to the adsorption rotor 32.
  • the dampers 68 and 69 are in the state shown by the solid line in FIG. 31, the air after adsorption is blown out to the outdoor OD by the adsorption fan 34, and the air after regeneration is supplied to the humidity control hose 36A by the regeneration fan 35. The room ID is blown out and the room ID is humidified.
  • the dampers 66 and 67 are in the state shown by the broken line in FIG. 31, the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 by the adsorption fan 34 and the adsorption rotor 32.
  • the air before regeneration is taken in from the outdoor OD by the regeneration fan 35 and is sent to the adsorption rotor 32.
  • the dampers 68 and 69 are in the state shown by the broken line in FIG. 31, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36 ⁇ / b> A and is regenerated by the regeneration fan 35. Air is blown to the outdoor OD, and the room ID is dehumidified.
  • the dampers 66 to 69 may be constituted by shutters or may be provided outside the casing.

Abstract

The present invention achieves a thinner form for a humidity control unit which is installed with the rear surface thereof facing a wall. A casing (50) is installed with the rear surface (50b) thereof facing a wall surface along the vertical direction and is provided with a front surface (50a) opposite the rear surface (50b). An adsorption rotor (32) rotates about a first rotational axis (32d) following a direction perpendicular to the rear surface (50b). An adsorption fan (34) is provided with an adsorption fan rotor (34a) which rotates about a second rotational axis (34b) following the perpendicular direction. A regeneration fan (35) is provided with a regeneration fan rotor (35a) which rotates about a third rotational axis (35b) following the perpendicular direction. The adsorption rotor (32), the adsorption fan rotor (34a), and the regeneration fan rotor (35a) are arranged in parallel in one direction along the rear surface (50b) and are disposed in a manner such that at least a portion of the adsorption rotor (32), the adsorption fan rotor (34a), and the regeneration fan rotor (35a) overlap when viewed in the arrangement direction thereof.

Description

調湿ユニットHumidity control unit
 本開示は、調湿ユニット、特に、鉛直方向に沿う壁面にケーシングの背面を対向させて設置される調湿ユニットに関する。 The present disclosure relates to a humidity control unit, and in particular, to a humidity control unit that is installed with a back surface of a casing facing a wall surface along a vertical direction.
 従来より、室内の空気調和を行う空気調和機とは別体に構成され、空気調和機の室内機に加湿用空気を供給する加湿ユニットがある。このような加湿ユニットの中には、例えば特許文献1(特開2014-129950号公報)に記載されているように、室内機が取り付けられている壁に取り付けられるものもある。 Conventionally, there is a humidification unit that is configured separately from an air conditioner that performs indoor air conditioning and supplies humidification air to the indoor unit of the air conditioner. Some of such humidification units are attached to a wall to which an indoor unit is attached, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-129950), for example.
 しかしながら、特許文献1に記載されている加湿ユニットは、壁に取り付けられる場合に壁に開けられた貫通穴に向けて外気吸込口から、ヒータ、吸着ロータ及びファンが配置されると加湿ユニットが厚くなって、加湿ユニットが壁から大きく突出してしまう。このように加湿ユニットが壁から大きく突出する場合には、ユーザがデザイン的に受け入れ難いものとなったり、加湿ユニットの据え付け強度を確保するために加湿ユニットを採用するためのコストが増加したりする。 However, when the humidifying unit described in Patent Document 1 is attached to the wall, the humidifying unit becomes thick when the heater, the suction rotor, and the fan are arranged from the outside air inlet toward the through hole opened in the wall. As a result, the humidification unit protrudes greatly from the wall. When the humidifying unit protrudes greatly from the wall in this way, it becomes difficult for the user to accept the design, or the cost for employing the humidifying unit to secure the installation strength of the humidifying unit increases. .
 本開示の課題は、壁に背面を対向させて設置される調湿ユニットの薄型化を図ることである。 The problem of the present disclosure is to reduce the thickness of the humidity control unit that is installed with the back face facing the wall.
 第1観点に係る調湿ユニットは、鉛直方向に沿う壁面に背面を対向させて設置され、背面に対向する正面を有するケーシングと、ケーシングに収納され、背面に対する垂直方向に沿う第1回転軸の周りで回転する構成である吸着ロータと、ケーシングに収納され、垂直方向に沿う第2回転軸の周りで回転する構成である吸着用ファンロータを有し、吸着用ファンロータによって、吸着前空気を吸着ロータに導き、且つ第1回転軸に沿う方向に吸着ロータを通過することで吸着ロータに水分を奪われた吸着後空気を吹き出す構成である吸着用ファンと、ケーシングに収納され、垂直方向に沿う第3回転軸の周りで回転する再生用ファンロータを有し、再生用ファンロータによって、再生前空気を吸着ロータに導き、且つ第1回転軸に沿う方向に吸着ロータを通過することで吸着ロータから水分を与えられた再生後空気を吹き出す構成である再生用ファンとを備え、吸着ロータと吸着用ファンロータと再生用ファンロータは、背面に沿った一方向に並べて配列され、吸着ロータと吸着用ファンロータと再生用ファンロータの配列方向視において吸着ロータと吸着用ファンロータと再生用ファンロータの少なくとも一部が重なるように配置されている。 A humidity control unit according to a first aspect is installed with a back surface facing a wall surface along the vertical direction, a casing having a front surface facing the back surface, and a first rotating shaft that is housed in the casing and extends in the vertical direction with respect to the back surface. A suction rotor that is configured to rotate around, and a suction fan rotor that is housed in a casing and rotates around a second rotation axis along the vertical direction. An adsorption fan that is guided to the adsorption rotor and passes through the adsorption rotor in the direction along the first rotation axis and blows out the air after adsorption that has been deprived of moisture by the adsorption rotor; A reproduction fan rotor that rotates around the third rotation axis along the direction, the pre-reproduction air is guided to the adsorption rotor by the reproduction fan rotor, and the direction along the first rotation axis A regeneration fan configured to blow out air after regeneration given moisture from the adsorption rotor by passing through the adsorption rotor, and the adsorption rotor, the adsorption fan rotor, and the regeneration fan rotor are in one direction along the back surface. The suction rotor, the suction fan rotor, and the regeneration fan rotor are arranged so that at least a part of the suction rotor, the suction fan rotor, and the regeneration fan rotor overlap when viewed in the array direction.
 第1観点に係る調湿ユニットにおいては、背面に沿った一方向に並べて配列されている吸着ロータと吸着用ファンロータと再生用ファンロータの配列方向視において吸着ロータと吸着用ファンロータと再生用ファンロータの少なくとも一部が重なるように配置されて比較的平らに並べられることから、配列方向視において吸着ロータと吸着用ファンロータと吸着用ファンのうちの少なくとも一つが重ならない場合の厚みに比べて薄くすることができる。 In the humidity control unit according to the first aspect, the suction rotor, the suction fan rotor, and the regeneration rotor are viewed in the arrangement direction of the suction rotor, the suction fan rotor, and the regeneration fan rotor that are arranged in one direction along the rear surface. Compared to the thickness when at least one of the suction rotor, the suction fan rotor, and the suction fan does not overlap in the arrangement direction because at least a part of the fan rotor is arranged so as to overlap and is arranged relatively flat. Can be thinned.
 第2観点に係る調湿ユニットは、第1観点の調湿ユニットにおいて、ケーシングは、垂直方向の寸法が背面に対して平行な方向の寸法よりも小さい、ものである。 The humidity control unit according to the second aspect is the humidity control unit according to the first aspect, wherein the casing has a vertical dimension smaller than a dimension in a direction parallel to the back surface.
 第2観点に係る調湿ユニットにおいては、背面に対する垂直方向の寸法が背面に対して平行な方向の寸法よりも小さいケーシングを用いることで、壁からの突出が少ない外観をケーシングに与えることができる。 In the humidity control unit according to the second aspect, by using a casing in which the dimension in the direction perpendicular to the back surface is smaller than the dimension in the direction parallel to the back surface, the casing can be given an appearance with less protrusion from the wall. .
 第3観点に係る調湿ユニットは、第1観点又は第2観点の調湿ユニットにおいて、ケーシングは、吸着前空気を取り入れる吸着前空気取入口を正面に有する、ものである。 The humidity control unit according to the third aspect is the humidity control unit according to the first aspect or the second aspect, wherein the casing has a pre-adsorption air intake port for taking in the pre-adsorption air.
 第3観点に係る調湿ユニットにおいては、吸着前空気取入口が正面にあって吸着ロータの吸着領域の正面への投影面積程度には吸着前空気取入口を大きくできることから、吸着前空気が吸着ロータに達するまでの流路抵抗を小さくすることができ、吸着用ファンを小型化し易くなる。 In the humidity control unit according to the third aspect, since the pre-adsorption air intake is in front and the pre-adsorption air intake can be enlarged to the extent of the projected area on the front of the adsorption area of the adsorption rotor, the pre-adsorption air is adsorbed. The flow resistance until reaching the rotor can be reduced, and the suction fan can be easily downsized.
 第4観点に係る調湿ユニットは、第3観点の調湿ユニットにおいて、ケーシングは、再生前空気を取り入れる再生前空気取入口を正面に有する、ものである。 The humidity control unit according to the fourth aspect is the humidity control unit according to the third aspect, wherein the casing has a pre-regeneration air intake port for taking in the pre-regeneration air.
 第4観点に係る調湿ユニットにおいては、吸着ロータから吸着用ファンに向かう流路と吸着ロータから再生用ファンに向かう流路を同じ側に設けられることから、ケーシングの厚みを薄くし易くなる。 In the humidity control unit according to the fourth aspect, since the flow path from the suction rotor to the suction fan and the flow path from the suction rotor to the regeneration fan are provided on the same side, the thickness of the casing can be easily reduced.
 第5観点に係る調湿ユニットは、第3観点の調湿ユニットにおいて、ケーシングは、再生前空気を取り入れる再生前空気取入口を、背面と正面との間の側面に有し、吸着用ファンと再生用ファンは、吸着前空気の気流と再生前空気の気流が対向流となるように配置されている、ものである。 A humidity control unit according to a fifth aspect is the humidity control unit according to the third aspect, wherein the casing has a pre-regeneration air intake port for taking in pre-regeneration air on a side surface between the back surface and the front surface, The regeneration fan is arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other.
 第5観点に係る調湿ユニットにおいては、着前空気の気流と再生前空気の気流が対向流となることにより、調湿能力を向上させることができる。 In the humidity control unit according to the fifth aspect, the humidity control capability can be improved by the airflow of the pre-arrival air and the airflow of the pre-regeneration air being opposed.
 第6観点に係る調湿ユニットは、第5観点の調湿ユニットにおいて、吸着ロータは、背面に対して斜めに配置され、ケーシングの再生前空気取入口は、側面に吸着ロータの傾斜に沿って斜めにカットされた斜めカット部を含む、ものである。 The humidity control unit according to a sixth aspect is the humidity control unit according to the fifth aspect, wherein the adsorption rotor is disposed obliquely with respect to the back surface, and the pre-regeneration air intake port of the casing is along the inclination of the adsorption rotor on the side surface. Including a diagonally cut portion cut diagonally.
 第6観点に係る調湿ユニットにおいては、斜めカット部によって開口部が広がる分だけ再生前空気取入口を大きくすることができ、再生前空気の流路抵抗を小さくすることができる。 In the humidity control unit according to the sixth aspect, the pre-regeneration air intake can be increased by an amount corresponding to the opening being widened by the oblique cut portion, and the flow path resistance of the pre-regeneration air can be reduced.
 第7観点に係る調湿ユニットは、第1観点から第6観点のいずれかの調湿ユニットにおいて、吸着ロータを挟んで再生用ファンが上に位置するとともに吸着用ファンが下に位置する取り付けができるように構成されている、ものである。 The humidity control unit according to the seventh aspect is the humidity control unit according to any one of the first to sixth aspects, wherein the regeneration fan is located above and the suction fan is located below the suction rotor. It is configured to be able to.
 第7観点に係る調湿ユニットにおいては、再生用ファンが上に位置することで、壁面の上方に形成された貫通穴と再生用ファンとを近づけ易くなり、貫通穴を通過する、再生用ファンから例えば室内まで吹き出す再生後空気の流路である例えば加湿ホースを短くすることができる。 In the humidity control unit according to the seventh aspect, since the regeneration fan is located above, it becomes easy to bring the through hole formed above the wall surface closer to the regeneration fan, and passes through the through hole. For example, the humidification hose which is a flow path of the regenerated air that blows out into the room can be shortened.
 第8観点に係る調湿ユニットは、第1観点から第7観点のいずれかの調湿ユニットにおいて、室外機と室内機を備える空気調和装置に取り付け可能に構成され、ケーシングが室外に設置されて、再生用ファンによって室内機に吹き出される再生後空気により室内を加湿するとともに、吸着用ファンによって吸着後空気を室外に吹き出す構成である、ものである。 A humidity control unit according to an eighth aspect is configured to be attachable to an air conditioner including an outdoor unit and an indoor unit in any one of the humidity control units according to the first to seventh aspects, and a casing is installed outdoors. The indoor air is humidified by the regenerated air blown out to the indoor unit by the regeneration fan, and the air after the adsorption is blown out by the adsorption fan.
 第8観点に係る調湿ユニットにおいては、ケーシングが室外に設置されることにより、調湿ユニットによる室内の加湿において吸着用ファンにより吸着前空気を室外から取り入れ易くなる。 In the humidity control unit according to the eighth aspect, by installing the casing outside the room, it becomes easy to take in the air before adsorption from the outside by the adsorption fan during indoor humidification by the humidity control unit.
 第9観点に係る調湿ユニットは、第8観点の調湿ユニットにおいて、ケーシングは、室外機よりも室内機に近い位置に配置される、ものである。 The humidity control unit according to the ninth aspect is the humidity control unit according to the eighth aspect, wherein the casing is disposed closer to the indoor unit than to the outdoor unit.
 第9観点に係る調湿ユニットにおいては、室外機よりも室内機に近い位置にケーシングが配置されることにより、再生用ファンが室内機の近くに位置することになるから、再生用ファンから吹き出す再生後空気を室内機に導く流路である例えば加湿ホースを短くすることができる。 In the humidity control unit according to the ninth aspect, since the casing is disposed closer to the indoor unit than the outdoor unit, the regeneration fan is positioned closer to the indoor unit. For example, a humidifying hose that is a flow path for guiding the air after regeneration to the indoor unit can be shortened.
 第10観点に係る調湿ユニットは、第1観点から第7観点のいずれかの調湿ユニットにおいて、ケーシングが室内に設置されて、吸着用ファンによって吹き出される吸着後空気により室内を除湿するとともに、再生用ファンによって再生後空気を室外に吹き出す構成である、ものである。 The humidity control unit according to the tenth aspect is the humidity control unit according to any one of the first to seventh aspects, wherein the casing is installed in the room and the interior is dehumidified with the air after adsorption blown out by the adsorption fan. In this configuration, the air after regeneration is blown out by the regeneration fan.
 第10観点に係る調湿ユニットにおいては、ケーシングが室内に設置されることにより、調湿ユニットによる室内の除湿において吸着用ファンにより吸着前空気を室内から取り入れ易くなり、吸着用ファンを小型化し易くなる。 In the humidity control unit according to the tenth aspect, by installing the casing in the room, it becomes easy to take in the air before adsorption from the room by the adsorption fan in the indoor dehumidification by the humidity control unit, and the adsorption fan can be easily downsized. Become.
 第1観点に係る調湿ユニットでは、薄型化を図ることができる。 In the humidity control unit according to the first aspect, the thickness can be reduced.
 第2観点に係る調湿ユニットでは、壁面に背面を対向させて設置し易い外観を持つことができる。 The humidity control unit according to the second aspect can have an appearance that is easy to install with the rear surface facing the wall surface.
 第3観点、第8観点または第10観点に係る調湿ユニットでは、吸着用ファンを小型化して調湿ユニットの薄型化を向上させ易くなる。 In the humidity control unit according to the third aspect, the eighth aspect or the tenth aspect, it is easy to reduce the size of the humidity control unit by reducing the size of the suction fan.
 第4観点に係る調湿ユニットでは、調湿ユニットの薄型化の向上が容易になる。 In the humidity control unit according to the fourth aspect, it is easy to improve the thickness reduction of the humidity control unit.
 第5観点に係る調湿ユニットでは、調湿能力が高く且つ薄型化された調湿ユニットを提供することができる。 The humidity control unit according to the fifth aspect can provide a humidity control unit that has a high humidity control capability and is thinned.
 第6観点に係る調湿ユニットでは、再生用ファンの小型化が容易になることで、調湿ユニットの薄型化が容易になる。 In the humidity control unit according to the sixth aspect, it becomes easy to reduce the thickness of the humidity control unit by facilitating the downsizing of the regeneration fan.
 第7観点または第9観点に係る調湿ユニットでは、再生用ファンから吹出される再生後空気の流路を短くして再生後空気に起因して起こる結露による不具合を抑制することができる。 In the humidity control unit according to the seventh aspect or the ninth aspect, the flow path of the post-regeneration air blown out from the regeneration fan can be shortened to suppress problems due to condensation caused by the post-regeneration air.
第1実施形態に係る加湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air harmony device containing the humidification unit concerning a 1st embodiment. 図1に記載の加湿ユニットの概念図。The conceptual diagram of the humidification unit of FIG. 第1実施形態に係る加湿ユニットの正面図。The front view of the humidification unit which concerns on 1st Embodiment. 図3のI-I線に沿った加湿ユニットの断面図。Sectional drawing of the humidification unit along the II line | wire of FIG. 壁に取り付けられている図1に記載の加湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 1 attached to the wall. 第1実施形態に係る加湿ユニットの斜視図。The perspective view of the humidification unit which concerns on 1st Embodiment. 図6の加湿ユニットの部分拡大斜視図。The partial expansion perspective view of the humidification unit of FIG. グリッドを取り除いた第1実施形態に係る加湿ユニットの正面図。The front view of the humidification unit which concerns on 1st Embodiment which removed the grid. 位置関係を説明するための吸着ロータと吸着用ファンロータと再生用ファンロータの概念図。The conceptual diagram of the adsorption | suction rotor, the adsorption | suction fan rotor, and the reproduction | regeneration fan rotor for demonstrating positional relationship. 変形例1Aに係る加湿ユニットの断面図。Sectional drawing of the humidification unit which concerns on the modification 1A. 変形例1Aに係る加湿ユニットの正面図。The front view of the humidification unit which concerns on the modification 1A. 第2実施形態に係る加湿ユニットの正面図。The front view of the humidification unit which concerns on 2nd Embodiment. 図12の加湿ユニットの右側面図。The right view of the humidification unit of FIG. 図12の加湿ユニットの左側面図。The left view of the humidification unit of FIG. 図12の加湿ユニットの下面図。The bottom view of the humidification unit of FIG. 図12のII-II線に沿って切断して右から見た加湿ユニットの断面図。Sectional drawing of the humidification unit cut | disconnected along the II-II line | wire of FIG. 12, and it was seen from the right. 図12のII-II線に沿って切断して左から見た加湿ユニットの断面図。Sectional drawing of the humidification unit cut | disconnected along the II-II line | wire of FIG. 12, and it was seen from the left. 位置関係を説明するための吸着ロータと吸着用ファンロータと再生用ファンロータの概念図。The conceptual diagram of the adsorption | suction rotor, the adsorption | suction fan rotor, and the reproduction | regeneration fan rotor for demonstrating positional relationship. 変形例2Aに係る加湿ユニットの断面図。Sectional drawing of the humidification unit which concerns on the modification 2A. 第3実施形態に係る除湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 3rd Embodiment. 図20に記載の除湿ユニットの概念図。The conceptual diagram of the dehumidification unit of FIG. 壁に取り付けられている図20に記載の除湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the dehumidification unit of FIG. 20 attached to the wall. 変形例3Aに係る除湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on modification 3A. 第4実施形態に係る加湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the humidification unit which concerns on 4th Embodiment. 図24に記載の加湿ユニットの概念図。The conceptual diagram of the humidification unit of FIG. 壁に取り付けられている図24に記載の加湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the humidification unit of FIG. 24 attached to the wall. 変形例4Aに係る調湿ユニットの構成を説明するための図。The figure for demonstrating the structure of the humidity control unit which concerns on the modification 4A. 第5実施形態に係る除湿ユニットを含む空気調和装置の回路図。The circuit diagram of the air conditioning apparatus containing the dehumidification unit which concerns on 5th Embodiment. 図28に記載の除湿ユニットの概念図。The conceptual diagram of the dehumidification unit of FIG. 壁に取り付けられている図28に記載の除湿ユニットを含む空気調和装置の模式図。The schematic diagram of the air conditioning apparatus containing the dehumidification unit of FIG. 28 attached to the wall. 変形例5Aに係る調湿ユニットの構成を説明するための図。The figure for demonstrating the structure of the humidity control unit which concerns on the modification 5A.
 <第1実施形態>
 以下、本開示の第1実施形態に係る調湿ユニットを図に基づいて説明する。第1実施形態では、空気調和装置に組み込まれた加湿ユニットを調湿ユニットの例に挙げて説明している。
<First Embodiment>
Hereinafter, the humidity control unit according to the first embodiment of the present disclosure will be described with reference to the drawings. In the first embodiment, the humidification unit incorporated in the air conditioner is described as an example of the humidity control unit.
 (1)全体構成
 図1には、実施形態に係る空気調和装置の全体構成が示されている。また、図2には、図1に示されている加湿ユニット30の構成の概念が示されている。図1に示されている空気調和装置1は、室外機2と室内機4と冷媒連絡管5,6とを備え、空気調和装置1には加湿ユニット30が取り付けられている。第1実施形態に係る空気調和装置1では、室外機2が室外ODに設置され、室内機4が室内IDに取り付けられ(図5参照)、室外機2と室内機4が冷媒連絡管5,6などで連絡されている。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、電動弁24と、閉鎖弁25と、閉鎖弁26と室外ファン27と、アキュムレータ28とを備えている。また、室内機4は、室内熱交換器42と室内ファン41とを備えている。
(1) Whole structure The whole structure of the air conditioning apparatus which concerns on embodiment is shown by FIG. FIG. 2 shows the concept of the configuration of the humidifying unit 30 shown in FIG. An air conditioner 1 shown in FIG. 1 includes an outdoor unit 2, an indoor unit 4, and refrigerant communication pipes 5 and 6, and a humidifying unit 30 is attached to the air conditioner 1. In the air conditioner 1 according to the first embodiment, the outdoor unit 2 is installed in the outdoor OD, the indoor unit 4 is attached to the indoor ID (see FIG. 5), and the outdoor unit 2 and the indoor unit 4 are connected to the refrigerant communication pipe 5. 6 and so on. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an electric valve 24, a closing valve 25, a closing valve 26, an outdoor fan 27, and an accumulator 28. The indoor unit 4 includes an indoor heat exchanger 42 and an indoor fan 41.
 室外機2と室内機4が冷媒連絡管5,6で接続されることにより、空気調和装置1の中には、蒸気圧縮式冷凍サイクルを行う冷媒回路10が形成されている。冷媒回路10には、圧縮機21が組み込まれている。圧縮機21は、低圧のガス冷媒を吸入し、吸入したガス冷媒を圧縮して、高温高圧のガス冷媒を吐出する。圧縮機21は、例えば、インバータによる回転数制御を行うことのできる容量可変のインバータ圧縮機である。圧縮機21の運転周波数が高くなるほど冷媒回路10の冷媒循環量が多くなり、逆に運転周波数が低くなると冷媒回路10の冷媒循環量が減少する。 By connecting the outdoor unit 2 and the indoor unit 4 with the refrigerant communication pipes 5 and 6, a refrigerant circuit 10 for performing a vapor compression refrigeration cycle is formed in the air conditioner 1. A compressor 21 is incorporated in the refrigerant circuit 10. The compressor 21 sucks in the low-pressure gas refrigerant, compresses the sucked-in gas refrigerant, and discharges the high-temperature and high-pressure gas refrigerant. The compressor 21 is, for example, a variable capacity inverter compressor that can perform rotation speed control by an inverter. As the operating frequency of the compressor 21 increases, the amount of refrigerant circulating in the refrigerant circuit 10 increases. Conversely, when the operating frequency decreases, the amount of refrigerant circulating in the refrigerant circuit 10 decreases.
 四方弁22は、冷房運転と暖房運転の切換時に、冷媒の流れの方向を切り換えるための弁である。四方弁22は、第1ポートが圧縮機21の吐出側(吐出管21a)に接続され、第2ポートに室外熱交換器23が接続され、第3ポートにアキュムレータ28が接続され、第4ポートに閉鎖弁26を介して冷媒連絡管6が接続されている。この四方弁22は、第1ポートと第2ポートの間を冷媒が流れるとともに第3ポートと第4ポートの間を冷媒が流れる破線で示された状態と、第1ポートと第4ポートの間を冷媒が流れるとともに第2ポートと第3ポートの間を冷媒が流れる実線で示された状態とを切り換えることができる。 The four-way valve 22 is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation. The four-way valve 22 has a first port connected to the discharge side (discharge pipe 21a) of the compressor 21, an outdoor heat exchanger 23 connected to the second port, an accumulator 28 connected to the third port, and a fourth port. The refrigerant communication pipe 6 is connected to the valve via a closing valve 26. This four-way valve 22 is in a state indicated by a broken line in which the refrigerant flows between the first port and the second port and the refrigerant flows between the third port and the fourth port, and between the first port and the fourth port. And the state indicated by the solid line through which the refrigerant flows between the second port and the third port.
 加湿ユニット30の詳細な構成については後述するが、加湿ユニット30は、再生用熱交換器31を備えており、この再生用熱交換器31が冷媒連絡管6に挿入されている。従って、暖房運転状態のときには、圧縮機21から吐出される高温高圧のガス冷媒は、高温高圧のまま再生用熱交換器31に送られる。この加湿ユニット30は、再生用熱交換器31により吸着ロータ32に送り込む再生前空気を加熱することによって湿度の高い再生後空気を生成することができるので、主に、暖房運転状態のときに室内IDを加湿することになる。 Although the detailed configuration of the humidification unit 30 will be described later, the humidification unit 30 includes a regeneration heat exchanger 31, and the regeneration heat exchanger 31 is inserted into the refrigerant communication tube 6. Therefore, in the heating operation state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 while maintaining the high temperature and pressure. This humidifying unit 30 can generate post-regeneration air with high humidity by heating the pre-regeneration air that is sent to the adsorption rotor 32 by the regeneration heat exchanger 31. The ID will be humidified.
 四方弁22の第2ポートと電動弁24との間に配置されている室外熱交換器23では、伝熱管(図示せず)を流れる冷媒と室外空気との間で熱交換が行われる。室外熱交換器23は、冷房運転時には冷媒から熱を放出させる放熱器として機能し、暖房運転時には冷媒に熱を与える蒸発器として機能する。 In the outdoor heat exchanger 23 disposed between the second port of the four-way valve 22 and the motor-operated valve 24, heat is exchanged between the refrigerant flowing through the heat transfer pipe (not shown) and the outdoor air. The outdoor heat exchanger 23 functions as a radiator that releases heat from the refrigerant during the cooling operation, and functions as an evaporator that applies heat to the refrigerant during the heating operation.
 電動弁24は、室外熱交換器23と室内熱交換器42との間に配置されている。電動弁24は、室外熱交換器23と室内熱交換器42の間を流れる冷媒を膨張させて減圧する機能を有している膨張弁である。電動弁24は、膨張弁開度を変更することができるように構成されており、膨張弁開度を小さくすることにより電動弁24を通過する冷媒の流路抵抗を増加させることができ、膨張弁開度を大きくすることにより電動弁24を通過する冷媒の流路抵抗を減少させることができる。このような電動弁24は、暖房運転では、室内熱交換器42から室外熱交換器23に向かって流れる冷媒を膨張させて減圧し、冷房運転では、室外熱交換器23から室内熱交換器42に向かって流れる冷媒を膨張させて減圧する。 The electric valve 24 is disposed between the outdoor heat exchanger 23 and the indoor heat exchanger 42. The motor-operated valve 24 is an expansion valve having a function of expanding and depressurizing the refrigerant flowing between the outdoor heat exchanger 23 and the indoor heat exchanger 42. The motor-operated valve 24 is configured so that the opening degree of the expansion valve can be changed, and the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be increased by reducing the opening degree of the expansion valve. By increasing the valve opening, the flow path resistance of the refrigerant passing through the motor-operated valve 24 can be reduced. Such an electric valve 24 expands and depressurizes the refrigerant flowing from the indoor heat exchanger 42 toward the outdoor heat exchanger 23 in the heating operation, and reduces the pressure in the cooling operation from the outdoor heat exchanger 23 to the indoor heat exchanger 42. The refrigerant flowing toward is expanded and decompressed.
 また、室外機2には、室外ファン27が設けられており、室外ファン27は、室外機2の内部に室外空気を吸入して、室外熱交換器23に室外空気を供給した後に、室外機2の外部に熱交換後の空気を排出する。この室外ファン27により、室外空気を冷却源又は加熱源として冷媒を冷却したり蒸発させたりする室外熱交換器23の機能が促進される。室外ファン27は、回転数を変更できる室外ファンモータ27aにより、駆動される。この室外ファン27の回転数が変更されることにより、室外熱交換器23を通過する室外空気の風量が変更される。 The outdoor unit 2 is provided with an outdoor fan 27. The outdoor fan 27 sucks outdoor air into the outdoor unit 2 and supplies the outdoor air to the outdoor heat exchanger 23. The air after heat exchange is discharged to the outside of 2. The outdoor fan 27 promotes the function of the outdoor heat exchanger 23 that cools or evaporates the refrigerant using outdoor air as a cooling source or a heating source. The outdoor fan 27 is driven by an outdoor fan motor 27a that can change the rotation speed. By changing the rotational speed of the outdoor fan 27, the air volume of the outdoor air passing through the outdoor heat exchanger 23 is changed.
 また、室内機4には、室内ファン41が設けられており、この室内ファン41は、室内機4の内部に室内空気を吸入して、室内熱交換器42に室内空気を供給した後に、室内機4の外部に熱交換後の空気を排出する。この室内ファン41により、室内空気を冷却源又は加熱源として冷媒を冷却したり蒸発させたりする室内熱交換器42の機能が促進される。室内ファン41は、回転数を変更できる室内ファンモータ41aにより、駆動される。 The indoor unit 4 is provided with an indoor fan 41. The indoor fan 41 sucks indoor air into the indoor unit 4 and supplies the indoor air to the indoor heat exchanger 42. The air after heat exchange is discharged to the outside of the machine 4. The indoor fan 41 promotes the function of the indoor heat exchanger 42 that cools or evaporates the refrigerant using indoor air as a cooling source or a heating source. The indoor fan 41 is driven by an indoor fan motor 41a that can change the rotation speed.
 なお、加湿ユニット30の設置時には、閉鎖弁25,26が閉じられた状態で行われる。そして、加湿ユニット30の設置が終わったときに、閉鎖弁25,26が開状態にされる。 In addition, when installing the humidification unit 30, it is performed in the state in which the closing valves 25 and 26 are closed. Then, when the installation of the humidifying unit 30 is finished, the closing valves 25 and 26 are opened.
 (2)基本動作
 加湿ユニット30により室内IDが加湿されるのは、主に、室内IDが乾燥するときであり、加湿ユニット30により室内IDが加湿される時期に特に制限はない。例えば、日本では、冬場に室内が乾燥することが多いので、暖房運転時に加湿ユニット30により加湿されることが多い。
(2) Basic operation The indoor ID is humidified by the humidifying unit 30 mainly when the indoor ID is dried, and there is no particular limitation on the timing when the indoor ID is humidified by the humidifying unit 30. For example, in Japan, the room is often dried in winter, and is often humidified by the humidifying unit 30 during heating operation.
 (2-1)暖房運転
 暖房運転時においては、冷媒回路10は、四方弁22が図1の実線で示される状態となっている。また、閉鎖弁25,26は開状態にされ、電動弁24は冷媒を減圧するように開度調節される。
(2-1) Heating Operation During the heating operation, the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the solid line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
 このような暖房運転時の冷媒回路10において圧縮機21が駆動されると、低圧のガス冷媒は、吸入管21bを通って圧縮機21に吸入され、圧縮機21において圧縮されて圧縮機21の吐出側(吐出管21a)から吐出される。圧縮機21から吐出された高温高圧のガス冷媒は、四方弁22の第1ポートと第4ポートと閉鎖弁26と冷媒連絡管6を通って再生用熱交換器31に送られる。再生用熱交換器31で熱交換された冷媒は、冷媒連絡管6及び接続管71を通って室内熱交換器42に入る。高温高圧のガス冷媒は、室内熱交換器42において室内ファン41から吹き出される室内空気との熱交換により放熱する。放熱後の高圧の冷媒は、接続管72、冷媒連絡管5及び閉鎖弁25を通って電動弁24に送られる。電動弁24を通過した冷媒は、電動弁24において減圧されて低圧の気液二相状態の冷媒となる。電動弁24を出た低圧の気液二相状態の冷媒は室外熱交換器23に入る。室外熱交換器23において、低圧の気液二相状態の冷媒は、室外空気との熱交換により蒸発する。室外熱交換器23から出た低圧のガス冷媒は、四方弁22の第2ポートと第3ポートとアキュムレータ28を通って圧縮機21の吸入側(吸入管21b)に再び送られる。 When the compressor 21 is driven in the refrigerant circuit 10 during such heating operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a). The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the regeneration heat exchanger 31 through the first port, the fourth port, the closing valve 26 and the refrigerant communication pipe 6 of the four-way valve 22. The refrigerant heat-exchanged in the regeneration heat exchanger 31 enters the indoor heat exchanger 42 through the refrigerant communication pipe 6 and the connection pipe 71. The high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with indoor air blown out from the indoor fan 41 in the indoor heat exchanger 42. The high-pressure refrigerant after heat radiation is sent to the motor-operated valve 24 through the connection pipe 72, the refrigerant communication pipe 5, and the closing valve 25. The refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant exiting the motor-operated valve 24 enters the outdoor heat exchanger 23. In the outdoor heat exchanger 23, the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with outdoor air. The low-pressure gas refrigerant discharged from the outdoor heat exchanger 23 passes through the second port and third port of the four-way valve 22 and the accumulator 28 and is sent again to the suction side (suction pipe 21b) of the compressor 21.
 (2-2)冷房運転
 冷房運転時においては、冷媒回路10は、四方弁22が図1の破線で示される状態となっている。また、閉鎖弁25,26は開状態にされ、電動弁24は冷媒を減圧するように開度調節される。
(2-2) Cooling Operation During the cooling operation, the refrigerant circuit 10 has the four-way valve 22 in the state indicated by the broken line in FIG. Moreover, the closing valves 25 and 26 are opened, and the opening degree of the electric valve 24 is adjusted so as to depressurize the refrigerant.
 このような冷房運転時の冷媒回路10において圧縮機21が駆動されると、低圧のガス冷媒は、吸入管21bを通って圧縮機21に吸入され、圧縮機21において圧縮されて圧縮機21の吐出側(吐出管21a)から吐出される。圧縮機21から吐出された高温高圧のガス冷媒は、四方弁22の第1ポートと第2ポートを通って室外熱交換器23に送られる。高温高圧のガス冷媒は、室外熱交換器23において室外空気との熱交換により放熱する。放熱後の高圧の冷媒は、電動弁24に送られる。電動弁24を通過した冷媒は、電動弁24において減圧されて低圧の気液二相状態の冷媒となる。この低圧の気液二相状態の冷媒は、閉鎖弁25、冷媒連絡管5及び接続管72を通って室内熱交換器42に送られる。室内熱交換器42において、低圧の気液二相状態の冷媒は、室内ファン41から吹き出される室内空気との熱交換により蒸発して低圧のガス冷媒となる。室内熱交換器42から出た低圧のガス冷媒は、接続管71、再生用熱交換器31が挿入された冷媒連絡管6、閉鎖弁26、四方弁22(第4ポートから第3ポート)、及びアキュムレータ28を通って圧縮機21の吸入側(吸入管21b)に再び送られる。 When the compressor 21 is driven in the refrigerant circuit 10 during such cooling operation, the low-pressure gas refrigerant is sucked into the compressor 21 through the suction pipe 21b, and is compressed by the compressor 21 so that the compressor 21 It discharges from the discharge side (discharge pipe 21a). The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the first port and the second port of the four-way valve 22. The high-temperature and high-pressure gas refrigerant radiates heat in the outdoor heat exchanger 23 by heat exchange with outdoor air. The high-pressure refrigerant after heat radiation is sent to the motor operated valve 24. The refrigerant that has passed through the motor-operated valve 24 is decompressed by the motor-operated valve 24 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 42 through the closing valve 25, the refrigerant communication pipe 5 and the connection pipe 72. In the indoor heat exchanger 42, the low-pressure gas-liquid two-phase refrigerant evaporates by heat exchange with the indoor air blown out from the indoor fan 41 to become a low-pressure gas refrigerant. The low-pressure gas refrigerant discharged from the indoor heat exchanger 42 includes a connection pipe 71, a refrigerant communication pipe 6 into which the regeneration heat exchanger 31 is inserted, a closing valve 26, a four-way valve 22 (from the fourth port to the third port), And is again sent to the suction side (suction pipe 21b) of the compressor 21 through the accumulator 28.
 (3)詳細構成
 (3-1)加湿ユニット30
 図3には、加湿ユニット30の正面から見た外観が示されている。図3に示されているZ軸方向が鉛直方向であり、X軸方向が左右方向である。図3に示されている加湿ユニット30は、壁面WSに取り付けられている。壁面WSは、XZ平面に対して平行に広がっている。
(3) Detailed configuration (3-1) Humidification unit 30
FIG. 3 shows the appearance of the humidifying unit 30 as viewed from the front. The Z-axis direction shown in FIG. 3 is the vertical direction, and the X-axis direction is the left-right direction. The humidifying unit 30 shown in FIG. 3 is attached to the wall surface WS. The wall surface WS extends parallel to the XZ plane.
 図1に示されているように、加湿ユニット30は、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35と加湿ホース36とを備えている。再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35は、図3に示されているケーシング50の内部に収納されている。 As shown in FIG. 1, the humidification unit 30 includes a regeneration heat exchanger 31, an adsorption rotor 32, a rotor motor 33, an adsorption fan 34, a regeneration fan 35, and a humidification hose 36. The regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, and the regeneration fan 35 are accommodated in the casing 50 shown in FIG.
 加湿ユニット30においては、図2に示されているように、吸着前空気が吸着前空気取入口52から取り入れられて吸着ロータ32のうちの吸着領域に送られる。吸着ロータ32のうちの吸着領域で水分を奪われた吸着後空気は、吸着用ファン吹出口56から吹出される。これら吸着前空気及び吸着後空気の気流は吸着用ファン34により発生される。また、再生前空気は、再生前空気取入口54から取り入れられ、再生用熱交換器31を通過するときに加熱されて吸着ロータ32のうちの再生領域に送られる。吸着ロータ32のうちの再生領域で水分を与えられた再生後空気は、再生後空気用ダクト35e及び加湿ホース36を通って室内機4の内部に吹出される。これら再生前空気及び再生後空気の気流は再生用ファン35により発生される。 In the humidification unit 30, as shown in FIG. 2, pre-adsorption air is taken in from the pre-adsorption air intake 52 and sent to the adsorption region of the adsorption rotor 32. The post-adsorption air that has been deprived of moisture in the adsorption region of the adsorption rotor 32 is blown out from the adsorption fan outlet 56. The pre-adsorption air and post-adsorption air streams are generated by the adsorption fan 34. The pre-regeneration air is taken in from the pre-regeneration air intake 54, heated when passing through the regeneration heat exchanger 31, and sent to the regeneration region of the adsorption rotor 32. The regenerated air given moisture in the regeneration region of the adsorption rotor 32 is blown out into the indoor unit 4 through the regenerated air duct 35e and the humidifying hose 36. The airflow of the air before regeneration and the air after regeneration is generated by the regeneration fan 35.
 (3-1-1)ケーシング50
 図4には、図3のI-I線に沿った加湿ユニット30の断面が示されている。図4において、Y軸方向が前後方向である。なお、図4などの断面図において、図を見やすくするために一部斜線などのハッチングを省略している。図3及び図4に示されているように、加湿ユニット30のケーシング50の形状は、直方体を基礎として設計されている。そのため、ケーシング50においては、正面50a、背面50b、上側面50c、下側面50d、右側面50e、左側面50fが外観の大部分を占める。正面50aは、背面50bに対向する面である。上側面50c、下側面50d、右側面50e及び左側面50fは、正面50aと背面50bとの間にある側面である。なお、右側面50eと背面50bの間には、斜めに傾斜した右傾斜面50gがあり、左側面50fと背面50bの間には、斜めに傾斜した左傾斜面50hがある(図6参照)。
(3-1-1) Casing 50
FIG. 4 shows a cross section of the humidifying unit 30 along the line II in FIG. In FIG. 4, the Y-axis direction is the front-rear direction. Note that in cross-sectional views such as FIG. 4, hatching such as oblique lines is partially omitted for easy understanding of the drawing. As shown in FIGS. 3 and 4, the shape of the casing 50 of the humidifying unit 30 is designed based on a rectangular parallelepiped. Therefore, in the casing 50, the front 50a, the back 50b, the upper side 50c, the lower side 50d, the right side 50e, and the left side 50f occupy most of the appearance. The front surface 50a is a surface facing the back surface 50b. The upper side surface 50c, the lower side surface 50d, the right side surface 50e, and the left side surface 50f are side surfaces located between the front surface 50a and the back surface 50b. In addition, there is a right inclined surface 50g inclined obliquely between the right side surface 50e and the back surface 50b, and there is a left inclined surface 50h inclined obliquely between the left side surface 50f and the back surface 50b (see FIG. 6).
 図5に示されている加湿ユニット30は、鉛直方向に沿う壁面WSに背面50bが接触するように取り付けられている。しかし、ケーシング50は、壁面WSに接触するように取り付けられなくてもよく、ケーシング50の背面50bが壁面WSに対向するように取り付けられていればよい。例えば、壁面WSに平行に配置された枠体にケーシング50が取り付けられてもよい。図5に示されている壁100には、貫通孔101が形成されている。この貫通孔101の中を、冷媒連絡管5,6及び加湿ホース36が通っている。 The humidifying unit 30 shown in FIG. 5 is attached so that the back surface 50b contacts the wall surface WS along the vertical direction. However, the casing 50 may not be attached so as to be in contact with the wall surface WS, and may be attached so that the back surface 50b of the casing 50 faces the wall surface WS. For example, the casing 50 may be attached to a frame disposed in parallel with the wall surface WS. A through hole 101 is formed in the wall 100 shown in FIG. The refrigerant communication pipes 5 and 6 and the humidifying hose 36 pass through the through hole 101.
 ケーシング50は、図4に示されている、背面50bに対する垂直方向(Y軸方向)の寸法M1(正面50aと背面50bの間の距離)が、背面50bに平行な方向(XZ平面に平行な方向)の寸法よりも小さい。背面50bに平行な方向で正面50aの寸法が最も小さいのは、右側面50eと左側面50fの間の距離(X軸方向の寸法M2(図3参照))である。図3と図4とを比較して分かるように、正面50aと背面50bの間の距離(寸法M1)は、右側面50eと左側面50fの間の距離(寸法M2)より小さい。つまり、ケーシング50は、薄型化されている。 In the casing 50, a dimension M1 (distance between the front surface 50a and the back surface 50b) perpendicular to the back surface 50b (a distance between the front surface 50a and the back surface 50b) shown in FIG. 4 is parallel to the back surface 50b (parallel to the XZ plane). Direction) dimension. The smallest dimension of the front surface 50a in the direction parallel to the back surface 50b is the distance between the right side surface 50e and the left side surface 50f (dimension M2 in the X-axis direction (see FIG. 3)). As can be seen by comparing FIG. 3 and FIG. 4, the distance (dimension M1) between the front surface 50a and the rear surface 50b is smaller than the distance (dimension M2) between the right side surface 50e and the left side surface 50f. That is, the casing 50 is thinned.
 図3及び図4に示されているケーシング50では、ケーシング50の最も長い辺がZ軸方向に沿うように配置されて、上から順に(上側面50cに近い方から順に)、再生用ファン35、吸着ロータ32、吸着用ファン34が並んでいる。 In the casing 50 shown in FIGS. 3 and 4, the longest side of the casing 50 is arranged along the Z-axis direction, and in order from the top (from the side closer to the upper side surface 50 c), the regeneration fan 35. The suction rotor 32 and the suction fan 34 are arranged side by side.
 ケーシング50の正面50aには、図3に示されているように、グリッド51が取り付けられている。図6には、加湿ユニット30の正面50aからグリッド51が取り外された外観が示されている。図6に示されているケーシング50は、左斜め下方から見たものである。ケーシング50の正面50aには、正面50aの中央部より少し下の箇所に半円形状の吸着前空気取入口52が形成されている。吸着前空気取入口52の長手方向は、X軸方向に平行である(図8参照)。吸着前空気取入口52からは、露出した吸着ロータ32が見えている。 A grid 51 is attached to the front surface 50a of the casing 50 as shown in FIG. FIG. 6 shows an appearance in which the grid 51 is removed from the front surface 50 a of the humidifying unit 30. The casing 50 shown in FIG. 6 is viewed from the diagonally lower left. A semicircular pre-adsorption air intake 52 is formed on the front surface 50a of the casing 50 at a position slightly below the central portion of the front surface 50a. The longitudinal direction of the pre-adsorption air intake 52 is parallel to the X-axis direction (see FIG. 8). The exposed adsorption rotor 32 is visible from the pre-adsorption air intake 52.
 ケーシング50の左側面50fには、配管接続部カバー53が取り付けられている。図7には、配管接続部カバー53が取り外された状態の加湿ユニット30の外観の一部が拡大されて示されている。配管接続部カバー53は、配管接続部31a,31bを覆っている。配管接続部31aは、閉鎖弁26に繋がっている冷媒連絡管6に接続される。配管接続部31bは、室内機4の室内熱交換器42に繋がっている冷媒連絡管6に接続される。ケーシング50の左側面50fには、再生前空気取入口54が形成されており、また加湿ホース36をケーシング50の内部から外部に取り出すための開口部55が形成されている。再生前空気取入口54は、図示を省略しているが、右側面50eにも形成されている。ケーシング50の下側面50dには、吸着用ファン吹出口56が形成されている。 A pipe connection portion cover 53 is attached to the left side surface 50 f of the casing 50. FIG. 7 shows an enlarged part of the external appearance of the humidifying unit 30 in a state in which the pipe connection portion cover 53 is removed. The pipe connection part cover 53 covers the pipe connection parts 31a and 31b. The pipe connection part 31 a is connected to the refrigerant communication pipe 6 connected to the closing valve 26. The pipe connection part 31 b is connected to the refrigerant communication pipe 6 connected to the indoor heat exchanger 42 of the indoor unit 4. A pre-regeneration air intake 54 is formed on the left side surface 50 f of the casing 50, and an opening 55 for taking out the humidifying hose 36 from the inside of the casing 50 to the outside is formed. Although not shown, the pre-regeneration air intake 54 is also formed on the right side surface 50e. An adsorption fan blowout port 56 is formed on the lower side surface 50 d of the casing 50.
 (3-1-2)吸着ロータユニット39
 吸着ロータユニット39は、再生用熱交換器31と吸着ロータ32とロータ用モータ33とを含んで構成されている。吸着ロータ32は、円盤状の部材である。吸着ロータ32の円形の表面32aから円形の裏面32bまでのロータ本体32cには貫通した穴(図示せず)が多数形成さており、表面32aから裏面32bまで吸着ロータ32の中を空気が通り抜けるように構成されている。この吸着ロータ32には、高分子の吸着材が含まれている。吸着材は、吸着ロータ32を通り抜ける空気から水分を吸着する機能を有しており、常温よりも高い温度に加熱された空気が吸着ロータ32の中を通過すると水分をその加熱された空気中に脱離する機能を有している。吸着ロータ32が配置されている円盤状の領域の中で、吸着前空気取入口52から取り入れられた空気が吸着用ファン吹出口56から吹出されるまでに通過するのが吸着領域であり、再生前空気取入口54から取り入れられた空気が加湿ホース36を通って室内機4に送られるまでに通過するのが再生領域である。これら吸着領域と再生領域は重ならないように配置されている。第1実施形態の加湿ユニット30では、吸着領域は概ね円盤状の領域の下半分を占め、再生領域は概ね円盤状の領域の上半分を占める。なお、吸着領域と再生領域の占有割合は適宜設計することができ、例えば、再生領域を扇形にして残りを吸着領域とするように構成してもよい。
(3-1-2) Adsorption rotor unit 39
The adsorption rotor unit 39 includes a regeneration heat exchanger 31, an adsorption rotor 32, and a rotor motor 33. The suction rotor 32 is a disk-shaped member. A large number of through holes (not shown) are formed in the rotor body 32c from the circular surface 32a to the circular back surface 32b of the adsorption rotor 32 so that air can pass through the adsorption rotor 32 from the surface 32a to the back surface 32b. It is configured. The adsorption rotor 32 contains a polymeric adsorbent. The adsorbent has a function of adsorbing moisture from the air passing through the adsorption rotor 32, and when air heated to a temperature higher than normal temperature passes through the adsorption rotor 32, moisture is absorbed into the heated air. It has a function to detach. In the disk-shaped region where the suction rotor 32 is arranged, the suction region passes through the air taken in from the pre-adsorption air intake 52 until it is blown out from the suction fan blow-out port 56. In the regeneration region, the air taken in from the front air inlet 54 passes through the humidifying hose 36 and is sent to the indoor unit 4. These adsorption area and regeneration area are arranged so as not to overlap. In the humidifying unit 30 of the first embodiment, the adsorption area occupies the lower half of the generally disk-shaped area, and the regeneration area occupies the upper half of the generally disk-shaped area. Note that the occupation ratio of the adsorption area and the reproduction area can be designed as appropriate. For example, the reproduction area may be a sector and the rest may be an adsorption area.
 吸着ロータユニット39は、吸着ロータ32が第1回転軸32dの周りで回転するように吸着ロータ32を支持している。第1回転軸32dは、背面50bに対する垂直方向(Y軸方向)に延びている。吸着ロータ32は、例えば1時間に30回転する。吸着ロータ32は、第1回転軸32dの周りを1回転すると、吸着領域と再生領域を通過して、水分の吸着と水分の脱離を行う。そのために、再生用熱交換器31を通過して加熱された再生前空気が全て吸着ロータ32を通過できるように、吸着ロータユニット39は、再生用熱交換器31を保持するとともに再生用熱交換器31を通過した後さらに再生領域を通過する空気の経路を形成している。 The suction rotor unit 39 supports the suction rotor 32 so that the suction rotor 32 rotates around the first rotation shaft 32d. The first rotation shaft 32d extends in a direction perpendicular to the back surface 50b (Y-axis direction). For example, the suction rotor 32 rotates 30 times per hour. When the adsorption rotor 32 makes one rotation around the first rotation shaft 32d, the adsorption rotor 32 passes through the adsorption region and the regeneration region, and adsorbs moisture and desorbs moisture. For this purpose, the adsorption rotor unit 39 holds the regeneration heat exchanger 31 and reproduces the heat for regeneration so that all the pre-regeneration air heated through the regeneration heat exchanger 31 can pass through the adsorption rotor 32. An air path that passes through the regeneration region after passing through the vessel 31 is formed.
 (3-1-3)吸着用ファン34
 ここでは、吸着用ファン34にシロッコファンが用いられている例を示しているが、吸着用ファン34に用いることができるファンはシロッコファンに限られるものではない。ただし、吸着用ファン34には、占有体積と送風量の条件を満たし易い遠心ファンが用いられることが好ましい。吸着用ファン34は、第2回転軸34bの周りで回転する吸着用ファンロータ34aと、吸着用モータ34cと、吸着用ファンケース34dと、吸着後空気用ダクト34eとを備えている。第2回転軸34bは、背面50bに対する垂直方向に延びている。吸着用モータ34cは、吸着用ファンロータ34aを回転させる。吸着用ファン34は、吸着用ファンロータ34aによって、吸着前空気を吸着前空気取入口52から吸着ロータ32に導く。そして、吸着前空気が、吸着用ファンロータ34aにより送られて吸着ロータ32の吸着領域を通過する。吸着ロータ32を通過することで吸着ロータ32に水分を奪われた空気が吸着後空気になる。このとき吸着ロータ32を通過する空気は、吸着ロータ32の第1回転軸32dと平行に吸着ロータ32を通過する。このように第1回転軸32dと平行に吸着ロータ32を空気が通過すると、第1回転軸32dに対して傾いて例えば30度よりも傾いて空気が通過する場合に比べて吸着ロータ32を通過する空気の受ける抵抗が小さくなる。
(3-1-3) Suction fan 34
Here, an example in which a sirocco fan is used for the suction fan 34 is shown, but a fan that can be used for the suction fan 34 is not limited to a sirocco fan. However, the suction fan 34 is preferably a centrifugal fan that easily satisfies the conditions of the occupied volume and the air volume. The suction fan 34 includes a suction fan rotor 34a that rotates around the second rotation shaft 34b, a suction motor 34c, a suction fan case 34d, and a post-adsorption air duct 34e. The second rotating shaft 34b extends in a direction perpendicular to the back surface 50b. The suction motor 34c rotates the suction fan rotor 34a. The adsorption fan 34 guides pre-adsorption air from the pre-adsorption air intake 52 to the adsorption rotor 32 by the adsorption fan rotor 34a. Then, the pre-adsorption air is sent by the adsorption fan rotor 34 a and passes through the adsorption region of the adsorption rotor 32. Air that has been deprived of moisture by the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after adsorption. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32. When air passes through the suction rotor 32 in parallel with the first rotation shaft 32d in this way, the air passes through the suction rotor 32 as compared with the case where the air passes through the first rotation shaft 32d with an inclination of, for example, more than 30 degrees. The resistance to air is reduced.
 吸着ロータ32の裏面32bの側には、吸着後空気用ダクト34eが配置されている。吸着後空気用ダクト34eは、正面視において、吸着ロータ32と吸着領域とが重なる部分よりも大きく、また吸着用ファン34のベルマウス34gの吸込円孔34fよりも大きい。そして、吸着後空気用ダクト34eは、正面視において、吸着ロータ32と吸着領域とが重なる部分及びベルマウス34gの吸込円孔34fを覆うように配置されている。吸着後空気用ダクト34eから吸着用ファン34のベルマウス34gの吸込円孔34fを通って吸着用ファン34に吸い込まれた吸着後空気は、吸着用ファン吹出口56から吹出される。 A post-adsorption air duct 34e is disposed on the back surface 32b side of the adsorption rotor 32. The post-adsorption air duct 34e is larger than the portion where the adsorption rotor 32 and the adsorption area overlap in front view, and larger than the suction circular hole 34f of the bell mouth 34g of the adsorption fan 34. Further, the post-adsorption air duct 34e is arranged so as to cover the portion where the adsorption rotor 32 and the adsorption region overlap and the suction circular hole 34f of the bell mouth 34g in a front view. The adsorbed air sucked into the adsorbing fan 34 from the adsorbed air duct 34e through the suction circular hole 34f of the bell mouth 34g of the adsorbing fan 34 is blown out from the adsorbing fan outlet 56.
 (3-1-4)再生用ファン35
 ここでは、再生用ファン35にターボファンが用いられている例を示しているが、再生用ファン35に用いることができるファンはターボファンに限られるものではない。ただし、再生用ファン35には、占有体積と送風量の条件を満たし易い遠心ファンが用いられることが好ましい。再生用ファン35は、第3回転軸35bの周りで回転する再生用ファンロータ35aと、再生用モータ35cと、再生用ファンケース35dと、再生後空気用ダクト35eとを備えている。第3回転軸35bは、背面50bに対する垂直方向に延びている。再生用モータ35cは、再生用ファンロータ35aを回転させる。再生用ファン35は、再生用ファンロータ35aによって、再生前空気を再生前空気取入口54から吸着ロータ32に導く。そして、再生前空気が、再生用ファンロータ35aにより送られて吸着ロータ32の再生領域を通過する。吸着ロータ32を通過することで吸着ロータ32に水分を与えられた空気が再生後空気になる。再生前空気は、吸着ロータ32の裏面32bに達する前に、再生用熱交換器31によって加熱されている。このとき吸着ロータ32を通過する空気は、吸着ロータ32の第1回転軸32dと平行に吸着ロータ32を通過する。このように第1回転軸32dと平行に吸着ロータ32を空気が通過すると、第1回転軸32dに対して傾いて例えば30度よりも傾いて空気が通過する場合に比べて吸着ロータ32を通過する空気の受ける抵抗が小さくなる。
(3-1-4) Regeneration fan 35
Here, an example in which a turbo fan is used as the reproduction fan 35 is shown, but a fan that can be used as the reproduction fan 35 is not limited to a turbo fan. However, it is preferable to use a centrifugal fan that can easily satisfy the conditions of the occupied volume and the blowing amount as the regeneration fan 35. The regeneration fan 35 includes a regeneration fan rotor 35a that rotates around the third rotation shaft 35b, a regeneration motor 35c, a regeneration fan case 35d, and a post-regeneration air duct 35e. The third rotation shaft 35b extends in a direction perpendicular to the back surface 50b. The reproduction motor 35c rotates the reproduction fan rotor 35a. The regeneration fan 35 guides the pre-regeneration air from the pre-regeneration air intake 54 to the adsorption rotor 32 by the regeneration fan rotor 35a. Then, the pre-regeneration air is sent by the regeneration fan rotor 35 a and passes through the regeneration region of the adsorption rotor 32. The air given moisture to the adsorption rotor 32 by passing through the adsorption rotor 32 becomes air after regeneration. The pre-regeneration air is heated by the regeneration heat exchanger 31 before reaching the back surface 32 b of the adsorption rotor 32. At this time, the air passing through the suction rotor 32 passes through the suction rotor 32 in parallel with the first rotation shaft 32 d of the suction rotor 32. When air passes through the suction rotor 32 in parallel with the first rotation shaft 32d in this way, the air passes through the suction rotor 32 as compared with the case where the air passes through the first rotation shaft 32d with an inclination of, for example, more than 30 degrees. The resistance to air is reduced.
 吸着ロータ32の表面32aの側には、再生後空気用ダクト35eが配置されている。再生後空気用ダクト35eは、正面視において、吸着ロータ32と再生領域とが重なる部分よりも大きく、また再生用ファン35の吸込口35fよりも大きい。そして、再生後空気用ダクト35eは、正面視において、吸着ロータ32と再生領域とが重なる部分及び吸込口35fを覆うように配置されている。再生後空気用ダクト35eから再生用ファン35の吸込口35fを通って再生用ファン35に吸い込まれた再生後空気は、加湿ホース36を通って吹出される。 A post-regeneration air duct 35e is disposed on the surface 32a side of the adsorption rotor 32. The post-regeneration air duct 35e is larger than the portion where the suction rotor 32 and the regeneration region overlap in front view, and larger than the suction port 35f of the regeneration fan 35. The post-regeneration air duct 35e is disposed so as to cover the portion where the suction rotor 32 and the regeneration region overlap and the suction port 35f when viewed from the front. The post-regeneration air sucked into the regeneration fan 35 from the post-regeneration air duct 35e through the suction port 35f of the regeneration fan 35 is blown out through the humidification hose 36.
 (3-1-5)吸着ロータ32と吸着用ファン34と再生用ファン35の位置関係
 吸着ロータ32と吸着用ファン34の吸着用ファンロータ34aと再生用ファン35の再生用ファンロータ35aは、背面50bに沿って一方向(Z軸方向)に並べて配列されている。さらに詳細には、図8に示されているように、吸着ロータ32の第1回転軸32dと吸着用ファンロータ34aの第2回転軸34bと再生用ファンロータ35aの第3回転軸35bとが、Z軸方向に延びる一つの直線L1と直交するように並んでいる。図8には、正面視における吸着ロータ32と吸着用ファン34と再生用ファン35の配置が破線で示されている。吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aの配列方向視、つまり直線L1に沿って下側面50dから上側面50cの方を見ると、図9に示されているように、吸着ロータ32の一部と吸着用ファンロータ34aの一部が重なり、それらの重なった部分と再生用ファンロータ35aが重なっている。そのため、吸着ロータ32と吸着用ファン34と再生用ファン35を背面50bに沿って平らに並べて配置することができ、加湿ユニット30が薄型化できている。
(3-1-5) Positional relationship between the suction rotor 32, the suction fan 34, and the regeneration fan 35 The suction fan rotor 34a of the suction rotor 32, the suction fan 34, and the regeneration fan rotor 35a of the regeneration fan 35 are: They are arranged in one direction (Z-axis direction) along the back surface 50b. More specifically, as shown in FIG. 8, the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan rotor 34a, and the third rotation shaft 35b of the regeneration fan rotor 35a are provided. Are arranged so as to be orthogonal to one straight line L1 extending in the Z-axis direction. In FIG. 8, the arrangement of the suction rotor 32, the suction fan 34, and the regeneration fan 35 in the front view is indicated by broken lines. When the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction, that is, when viewed from the lower side surface 50d to the upper side surface 50c along the straight line L1, as shown in FIG. A portion of the rotor 32 and a portion of the suction fan rotor 34a overlap, and the overlapping portion and the regeneration fan rotor 35a overlap. Therefore, the suction rotor 32, the suction fan 34, and the regeneration fan 35 can be arranged flatly along the back surface 50b, and the humidification unit 30 can be thinned.
 また、第1回転軸32dと第2回転軸34bと第3回転軸35bとが、Z軸方向に延びる一つの直線L1と直交するように並んでいることから、吸着用ファンロータ34aと再生用ファンロータ35aとが吸着ロータ32からX軸方向にはみ出さないので、X軸方向のケーシング50の寸法M2を小さくすることができる。 Further, since the first rotation shaft 32d, the second rotation shaft 34b, and the third rotation shaft 35b are arranged so as to be orthogonal to one straight line L1 extending in the Z-axis direction, the suction fan rotor 34a and the regeneration fan rotor 34a Since the fan rotor 35a does not protrude from the suction rotor 32 in the X-axis direction, the dimension M2 of the casing 50 in the X-axis direction can be reduced.
 吸着ロータ32において、吸着領域では、空気が吸着ロータ32の表面32aから裏面32bに向かって流れ、再生領域では、空気が吸着ロータ32の裏面32bから表面32aに向かって流れる。つまり、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置されている。吸着前空気の気流と再生前空気の気流が対向流となることにより、同じ方向にこれらの気流が流れる場合に比べて加湿能力を向上させることができる。 In the adsorption rotor 32, in the adsorption region, air flows from the front surface 32a of the adsorption rotor 32 toward the back surface 32b, and in the regeneration region, air flows from the back surface 32b of the adsorption rotor 32 toward the front surface 32a. That is, the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the air before adsorption and the airflow of the air before regeneration are opposed to each other. By making the airflow of the air before adsorption and the airflow of the air before regeneration opposite to each other, the humidifying ability can be improved as compared with the case where these airflows flow in the same direction.
 (4)変形例
 (4-1)変形例1A
 上記第1実施形態では、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置されていたが、吸着用ファン34と再生用ファン35は、図10及び図11に示されているように、吸着前空気の気流と再生前空気の気流が同じ向きに流れるように配置されてもよい。図11に示されている加湿ユニット30Aでは、正面50aに再生前空気取入口57が形成されている。再生前空気取入口57は、正面視において、再生用熱交換器31と実質的に同じ大きさを有している長方形状に形成されている。再生前空気取入口57にはグリッド58が取り付けられている。なお、正面50aに再生前空気取入口57を形成して場合でも、上記第1実施形態と同様に、再生前空気取入口を、正面50aに近づけて右側面50e及び左側面50fに設けてもよい。
(4) Modification (4-1) Modification 1A
In the first embodiment, the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other. As shown in FIGS. 10 and 11, 35 may be arranged such that the airflow of the air before adsorption and the airflow of the air before regeneration flow in the same direction. In the humidifying unit 30A shown in FIG. 11, a pre-regeneration air intake 57 is formed on the front surface 50a. The pre-regeneration air intake 57 is formed in a rectangular shape having substantially the same size as that of the regeneration heat exchanger 31 in a front view. A grid 58 is attached to the pre-regeneration air intake 57. Even when the pre-regeneration air inlet 57 is formed on the front surface 50a, the pre-regeneration air intake port may be provided on the right side surface 50e and the left side surface 50f close to the front surface 50a, as in the first embodiment. Good.
 (4-2)変形例1B
 上記第1実施形態及び変形例1Aでは、ケーシング50,50Aの長手方向(寸法M4の辺が延びる方向)がZ軸方向に一致するように加湿ユニット30,30Aが取り付けられているが、背面50bに平行な面内で回転させて、例えばケーシング50,50Aの長手方向がX軸方向に延びるように加湿ユニット30,30Aが取り付けられてもよい。
(4-2) Modification 1B
In the first embodiment and Modification 1A, the humidifying units 30 and 30A are attached so that the longitudinal direction of the casings 50 and 50A (the direction in which the side of the dimension M4 extends) coincides with the Z-axis direction. For example, the humidifying units 30 and 30A may be attached so that the longitudinal direction of the casings 50 and 50A extends in the X-axis direction.
 (5)特徴
 (5-1)
 第1実施形態の加湿ユニット30及び変形例1Aの加湿ユニット30Aは、調湿ユニットの一例である。これら加湿ユニット30,30Aにおいては、背面50bに沿った一方向(Z軸方向)に並べて配列されている吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aの配列方向視において吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aの少なくとも一部が重なるように配置されている。そのため、吸着ロータ32と吸着用ファン34と再生用ファン35が背面50bに沿って平らに並べられることから、配列方向視において吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aのうちの少なくとも一つが重ならない場合の厚みに比べて加湿ユニット30,30Aの厚みを薄くすることができ、加湿ユニット30,30Aを薄型化することができている。
(5) Features (5-1)
The humidification unit 30 of 1st Embodiment and the humidification unit 30A of the modification 1A are examples of a humidity control unit. In these humidifying units 30 and 30A, the suction rotor 32 in the arrangement direction of the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a arranged side by side in one direction (Z-axis direction) along the back surface 50b. In addition, the suction fan rotor 34a and the regeneration fan rotor 35a are disposed so as to overlap each other. Therefore, since the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged flat along the back surface 50b, the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction. The thickness of the humidifying units 30 and 30A can be reduced compared to the thickness in the case where at least one does not overlap, and the humidifying units 30 and 30A can be thinned.
 なお、第1回転軸32dと第2回転軸34bと第3回転軸35bが背面に対する垂直方向に延びている場合について説明したが、これらは垂直方向に沿っていればよく、本開示では、第1回転軸32d、第2回転軸34b及び第3回転軸35bでは20度傾くものまで垂直方向に沿うものに含まれる。 In addition, although the case where the first rotating shaft 32d, the second rotating shaft 34b, and the third rotating shaft 35b extend in the vertical direction with respect to the back surface has been described, these may be along the vertical direction. The first rotation shaft 32d, the second rotation shaft 34b, and the third rotation shaft 35b are included in the vertical direction up to a tilt of 20 degrees.
 また、配列方向視において、再生用ファンロータ35aが吸着ロータ32と完全に重なり、再生用ファンロータ35aが吸着用ファンロータ34aと完全に重なっているが、例えば、再生用ファンロータ35aの一部が吸着ロータ32と重なり、再生用ファンロータ35aの一部が吸着用ファンロータ34aと重なるように配置されてもよい。例えば、再生用ファンロータ35aを背面50bに近づけるようにずらせば、再生用ファンロータ35aの一部が吸着ロータ32と重なり、再生用ファンロータ35aの一部が吸着用ファンロータ34aと重なるように配置できる。例えば、再生用ファンロータ35aを正面50aに近づけるようにずらして、再生用ファンロータ35aの一部が吸着ロータ32と重なり、再生用ファンロータ35aの全体が吸着用ファンロータ34aと重なるように吸着ロータ32と吸着用ファン34と再生用ファン35を配置してもよい。また、例えば、再生用ファンロータ35aの全てが吸着ロータ32と重なり、再生用ファンロータ35aの一部が吸着用ファンロータ34aと重なるように吸着ロータ32と吸着用ファン34と再生用ファン35を配置することもできる。さらに、吸着ロータ32の直径を吸着用ファンロータ34aの直径よりも小さくして、吸着ロータ32の全てが吸着用ファンロータ34aと重なるように配置してもよい。 Further, when viewed in the arrangement direction, the regeneration fan rotor 35a completely overlaps the suction rotor 32 and the regeneration fan rotor 35a completely overlaps the suction fan rotor 34a. For example, a part of the regeneration fan rotor 35a May be arranged so as to overlap the suction rotor 32 and a part of the regeneration fan rotor 35a to overlap the suction fan rotor 34a. For example, if the reproduction fan rotor 35a is shifted so as to be close to the back surface 50b, a part of the reproduction fan rotor 35a overlaps with the suction rotor 32 and a part of the reproduction fan rotor 35a overlaps with the suction fan rotor 34a. Can be placed. For example, the regeneration fan rotor 35a is shifted so as to be close to the front surface 50a, so that a part of the regeneration fan rotor 35a overlaps with the suction rotor 32, and the entire regeneration fan rotor 35a overlaps with the suction fan rotor 34a. The rotor 32, the suction fan 34, and the regeneration fan 35 may be disposed. Further, for example, the suction rotor 32, the suction fan 34, and the regeneration fan 35 are arranged such that all of the regeneration fan rotor 35a overlaps the suction rotor 32 and a part of the regeneration fan rotor 35a overlaps the suction fan rotor 34a. It can also be arranged. Furthermore, the suction rotor 32 may have a diameter smaller than that of the suction fan rotor 34a, and the suction rotor 32 may be disposed so as to overlap the suction fan rotor 34a.
 (5-2)
 上述の加湿ユニット30,30Aでは、背面50bに対する垂直方向の寸法M1(図4参照)が背面に対して平行な方向の寸法M2(図3参照)よりも小さいケーシング50,50Aを用いることで、壁100からの突出が少ない外観をケーシング50,50Aに与えることができている。その結果、加湿ユニット30,30Aでは、ケーシング50,50Aが、壁面WSに背面50bを対向させて設置し易い外観を持つものとなっている。
(5-2)
In the humidification units 30 and 30A described above, by using the casings 50 and 50A in which the dimension M1 (see FIG. 4) in the direction perpendicular to the back surface 50b is smaller than the dimension M2 in the direction parallel to the back surface (see FIG. 3). The external appearance with few protrusions from the wall 100 can be given to the casings 50 and 50A. As a result, in the humidifying units 30 and 30A, the casings 50 and 50A have an appearance that is easy to install with the rear surface 50b facing the wall surface WS.
 (5-3)
 上述の加湿ユニット30,30Aでは、ケーシング50,50Aが、吸着前空気を取り入れる吸着前空気取入口52を正面50aに有している。このように、吸着前空気取入口52が正面50aに在って吸着ロータ32の吸着領域の正面への投影面積と同じ大きさの吸着前空気取入口52が形成できていることから、吸着前空気が吸着ロータ32に達するまでの流路抵抗を小さくすることができ、吸着用ファン34に小型のものを用いることができている。その結果、吸着用ファン34の小型化により加湿ユニット30,30Aの薄型化を向上させることができている。
(5-3)
In the humidification units 30 and 30A described above, the casings 50 and 50A have the pre-adsorption air intake 52 for taking in the pre-adsorption air on the front surface 50a. Thus, since the pre-adsorption air intake 52 is on the front surface 50a and the pre-adsorption air intake 52 having the same size as the projected area on the front surface of the adsorption area of the adsorption rotor 32 can be formed, the pre-adsorption air intake 52 can be formed. The flow resistance until the air reaches the adsorption rotor 32 can be reduced, and a small fan can be used for the adsorption fan 34. As a result, the thinning of the humidifying units 30 and 30A can be improved by reducing the size of the suction fan 34.
 (5-4)
 変形例1Aの加湿ユニット30A(調湿ユニットの一例)のケーシング50Aのように、再生前空気を取り入れる再生前空気取入口57がケーシング50Aの正面50aに形成されている場合には、吸着ロータから吸着用ファンに向かう流路と吸着ロータから再生用ファンに向かう流路が同じ側に設けられることから、ケーシング50Aの厚みを薄くし易くなる(背面50bに対する垂直方向の寸法M3を小さくし易くなる)。
(5-4)
When the pre-regeneration air intake 57 for taking in the pre-regeneration air is formed on the front surface 50a of the casing 50A like the casing 50A of the humidification unit 30A (an example of the humidity control unit) of the modified example 1A, Since the flow path toward the suction fan and the flow path from the suction rotor to the regeneration fan are provided on the same side, the thickness of the casing 50A can be easily reduced (the dimension M3 in the direction perpendicular to the back surface 50b can be easily reduced). ).
 (5-5)
 上述の加湿ユニット30では、吸着前空気取入口52が正面50aに形成されていることから、再生前空気が吸着ロータ32の表面32aから入って裏面32bから出るので、ケーシング50は、再生前空気を取り入れる再生前空気取入口54を、背面50bと正面50aとの間の側面である右側面50eと左側面50fに有し、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置することができている。着前空気の気流と再生前空気の気流が対向流となることにより、加湿ユニット30の加湿能力を向上させることができ、調湿能力が高く且つ薄型化された調湿ユニットである加湿ユニット30が提供できる。
(5-5)
In the humidification unit 30 described above, since the pre-adsorption air intake 52 is formed on the front surface 50a, the pre-regeneration air enters from the front surface 32a of the adsorption rotor 32 and exits from the back surface 32b. Are provided on the right side surface 50e and the left side surface 50f, which are the side surfaces between the back surface 50b and the front surface 50a, and the suction fan 34 and the regeneration fan 35 It can arrange | position so that the airflow of the air before reproduction | regeneration may become a counterflow. When the airflow before wearing and the airflow before regeneration are opposed to each other, the humidifying capacity of the humidifying unit 30 can be improved, and the humidifying unit 30 is a highly humidified and thinned humidity control unit. Can be provided.
 (5-6)
 上述の加湿ユニット30,30Aでは、吸着ロータ32を挟んで再生用ファン35が上に位置するとともに吸着用ファン34が下に位置する取り付けができるように構成されている。このように、再生用ファン35が上に位置することで、壁面WSの上方に形成された貫通孔101と再生用ファン35とを近づけ易くなり、貫通孔101を通過する、再生用ファン35から例えば室内まで吹き出す再生後空気の流路である例えば加湿ホース36を短くすることができる。その結果、再生用ファン35から吹出される再生後空気の流路を短くして再生後空気に起因して起こる結露による不具合を抑制することができる。
(5-6)
The humidification units 30 and 30A described above are configured so that the regeneration fan 35 is located above the suction rotor 32 and the suction fan 34 is located below. As described above, the reproduction fan 35 is located on the upper side, so that the through hole 101 formed above the wall surface WS and the reproduction fan 35 can be easily brought close to each other. For example, the humidification hose 36 that is a flow path of the regenerated air that blows out into the room can be shortened. As a result, the flow path of the post-regeneration air blown from the regeneration fan 35 can be shortened to suppress problems caused by condensation caused by the post-regeneration air.
 (5-7)
 上述の加湿ユニット30,30Aは、室外機2と室内機4を備える空気調和装置1に取り付け可能に構成されている。加湿ユニット30,30Aは、ケーシング50,50Aが室外ODに設置されて、再生用ファン35によって室内機4に吹き出される再生後空気により室内IDを加湿するとともに、吸着用ファン34によって吸着後空気を室外ODに吹き出す。ケーシング50,50Aが室外ODに設置されることにより、調湿ユニットである加湿ユニット30,30Aによる室内IDの加湿において吸着用ファン34により吸着前空気を室外ODから取り入れ易くなり、吸着用ファン34を小型化して加湿ユニット30,30Aを薄型化し易くなっている。
(5-7)
The humidification units 30 and 30A described above are configured to be attachable to the air conditioner 1 including the outdoor unit 2 and the indoor unit 4. In the humidifying units 30 and 30A, the casings 50 and 50A are installed in the outdoor OD, the indoor ID is humidified by the regenerated air blown out to the indoor unit 4 by the regeneration fan 35, and the air after adsorption by the adsorption fan 34 To the outdoor OD. Since the casings 50 and 50A are installed in the outdoor OD, it becomes easy to take the pre-adsorption air from the outdoor OD by the adsorption fan 34 when humidifying the indoor ID by the humidification units 30 and 30A that are humidity control units. It is easy to make the humidification units 30 and 30A thinner.
 (5-8)
 上述の加湿ユニット30,30Aは、ケーシング50,50Aが、室外機2よりも室内機4に近い位置に配置されている。室外機2よりも室内機4に近い位置にケーシング50,50が配置されることにより、室外機2に加湿ユニットが一体化されている従来例に比べて再生用ファン35が室内機4の近くに位置することになるから、再生用ファン35から吹き出す再生後空気を室内機4に導く流路である例えば加湿ホース36を短くすることができる。その結果、再生用ファン35から吹出される再生後空気の流路を短くして再生後空気に起因して起こる結露による不具合を抑制することができる。
(5-8)
In the humidification units 30 and 30A described above, the casings 50 and 50A are arranged at positions closer to the indoor unit 4 than to the outdoor unit 2. By arranging the casings 50, 50 closer to the indoor unit 4 than the outdoor unit 2, the regeneration fan 35 is closer to the indoor unit 4 than the conventional example in which the humidifying unit is integrated with the outdoor unit 2. Therefore, for example, the humidification hose 36 which is a flow path for guiding the regenerated air blown from the regeneration fan 35 to the indoor unit 4 can be shortened. As a result, the flow path of the post-regeneration air blown from the regeneration fan 35 can be shortened to suppress problems caused by condensation caused by the post-regeneration air.
 <第2実施形態>
 (6)全体構成
 第2実施形態では、空気調和装置1に組み込まれた加湿ユニットの他の形態を説明している。図12には第2実施形態に係る加湿ユニット30Bを正面から見た状態が示され、図13には加湿ユニット30Bの右側面50eが示され、図14には加湿ユニット30Bの左側面50fが示され、図15には加湿ユニット30Bの下側面50dが示されている。また、図16には、図12のII-II線に沿って加湿ユニット30Bを切断して右側から見た状態が示され、図17には、図12のII-II線に沿って加湿ユニット30Bを切断して左側から見た状態が示されている。
Second Embodiment
(6) Overall Configuration In the second embodiment, another form of the humidifying unit incorporated in the air conditioner 1 is described. FIG. 12 shows the humidification unit 30B according to the second embodiment as viewed from the front, FIG. 13 shows the right side surface 50e of the humidification unit 30B, and FIG. 14 shows the left side surface 50f of the humidification unit 30B. FIG. 15 shows a lower side surface 50d of the humidifying unit 30B. FIG. 16 shows a state in which the humidification unit 30B is cut along the line II-II in FIG. 12 and viewed from the right side, and FIG. 17 shows the humidification unit along the line II-II in FIG. The state which cut | disconnected 30B and was seen from the left side is shown.
 図16及び図17を見れば分かるように、第2実施形態では、ケーシング50Bの背面に対して、吸着ロータ32が斜めに配置されている。吸着ロータ32が斜めに配置されているので、第1実施形態のケーシング50におけるZ軸方向の寸法M4に比べて、第2実施形態のケーシング50BにおけるZ軸方向の寸法M5を小さくすることができている。 As can be seen from FIGS. 16 and 17, in the second embodiment, the suction rotor 32 is disposed obliquely with respect to the back surface of the casing 50B. Since the suction rotor 32 is disposed obliquely, the dimension M5 in the Z-axis direction in the casing 50B of the second embodiment can be made smaller than the dimension M4 in the Z-axis direction in the casing 50 of the first embodiment. ing.
 第2実施形態の加湿ユニット30Bが組み込まれた空気調和装置は、例えば、第1実施形態の加湿ユニット30が組み込まれた空気調和装置1において加湿ユニット30と加湿ユニット30Bを入れ替えることができ、そのように入れ替えた場合の空気調和装置の構成は図1と同じになる。であるから、第2実施形態の加湿ユニット30Bが空気調和装置に組み込まれたときの構成については説明を省略する。同様に、第2実施形態の加湿ユニット30Bが組み込まれた空気調和装置の動作についても同様であるので、第2実施形態の加湿ユニット30Bが組み込まれた空気調和装置の動作の説明を省略する。 The air conditioning apparatus incorporating the humidifying unit 30B of the second embodiment can replace the humidifying unit 30 and the humidifying unit 30B in the air conditioning apparatus 1 incorporating the humidifying unit 30 of the first embodiment, for example. Thus, the configuration of the air conditioning apparatus when replaced is the same as in FIG. Therefore, description is abbreviate | omitted about the structure when the humidification unit 30B of 2nd Embodiment is integrated in an air conditioning apparatus. Similarly, since the operation of the air conditioner incorporating the humidifying unit 30B of the second embodiment is the same, the description of the operation of the air conditioner incorporating the humidifying unit 30B of the second embodiment is omitted.
 加湿ユニット30Bは、加湿ユニット30と同様に、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35と加湿ホース36とを備えている。加湿ユニット30Bと加湿ユニット30では、吸着ロータ32が傾斜しているために、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35と加湿ホース36の配置や構造が異なるので、これらの異なる点について以下に説明する。 The humidification unit 30 </ b> B includes a regeneration heat exchanger 31, an adsorption rotor 32, a rotor motor 33, an adsorption fan 34, a regeneration fan 35, and a humidification hose 36, similarly to the humidification unit 30. In the humidification unit 30 </ b> B and the humidification unit 30, since the adsorption rotor 32 is inclined, the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the humidification hose 36. Since the arrangement and structure are different, these different points will be described below.
 (7)詳細構成
 (7-1)各部の配置と構造
 図17に示されているように、吸着ロータ32は、背面50bに対して傾斜した第1回転軸32dの周りで回転する。例えば、第1回転軸32dとX軸とのなす角αが10度~30度になるように吸着ロータ32が配置される。ここでは、第1回転軸32dとX軸とのなす角αが約15度になるように配置されている。このように配置された吸着ロータ32の裏面32bに平行に再生用熱交換器31が配置されている。例えば、再生用熱交換器31のフィンの正面側端部の包絡面31Pが実質的に吸着ロータ32の裏面32bに平行になっている。再生用熱交換器31については、吸着ロータ32に再生用熱交換器31を近づけて熱エネルギーのロスを小さくするのに、吸着ロータ32に沿うように斜めに配置されていることが好ましい。この場合、吸着ロータ32の裏面32bに対して±10度傾くものも吸着ロータ32に沿うものに含まれる。この再生用熱交換器31は、重心がケーシング50Bの正面50aよりも背面50bに近い点に位置するように配置されている。再生用熱交換器31の重心がケーシング50Bの背面50bに近い点に位置すると、重心が正面50aに近いところにある場合に比べて加湿ユニット30Bを壁100から離す方向に働く力のモーメントが小さくなるので、壁面WSに背面50bを対向させて設置し易くなる。
(7) Detailed Configuration (7-1) Arrangement and Structure of Each Part As shown in FIG. 17, the suction rotor 32 rotates around a first rotation shaft 32d inclined with respect to the back surface 50b. For example, the suction rotor 32 is arranged so that the angle α formed by the first rotation shaft 32d and the X axis is 10 degrees to 30 degrees. Here, the angle α formed by the first rotation shaft 32d and the X axis is arranged to be about 15 degrees. The regeneration heat exchanger 31 is arranged in parallel to the back surface 32b of the adsorption rotor 32 arranged in this way. For example, the envelope surface 31 </ b> P at the front side end of the fin of the regeneration heat exchanger 31 is substantially parallel to the back surface 32 b of the adsorption rotor 32. The regeneration heat exchanger 31 is preferably disposed obliquely along the adsorption rotor 32 in order to reduce the heat energy loss by bringing the regeneration heat exchanger 31 close to the adsorption rotor 32. In this case, those inclined by ± 10 degrees with respect to the back surface 32 b of the adsorption rotor 32 are also included in the arrangement along the adsorption rotor 32. The regeneration heat exchanger 31 is arranged so that the center of gravity is located closer to the back surface 50b than the front surface 50a of the casing 50B. When the center of gravity of the regeneration heat exchanger 31 is located at a point close to the back surface 50b of the casing 50B, the moment of force acting in the direction of moving the humidifying unit 30B away from the wall 100 is smaller than when the center of gravity is near the front surface 50a. Therefore, it becomes easy to install the back surface 50b facing the wall surface WS.
 再生用熱交換器31に送られる再生前空気は、右側面50e及び左側面50fに形成されている再生前空気取入口54から取り入れられる。再生前空気取入口54は、吸着ロータ32の傾斜に沿って斜めにカットされた斜めカット部54aを含んでいる。このような斜めカット部54aによって開口部が広がる分だけ再生前空気取入口54が大きくなっており、再生前空気の流路抵抗が小さくなっている。 The pre-regeneration air sent to the regeneration heat exchanger 31 is taken in from the pre-regeneration air intake 54 formed on the right side surface 50e and the left side surface 50f. The pre-regeneration air intake 54 includes an oblique cut portion 54 a that is obliquely cut along the inclination of the adsorption rotor 32. The pre-regeneration air intake 54 is increased by the amount of the opening being expanded by such an oblique cut portion 54a, and the flow path resistance of the pre-regeneration air is reduced.
 吸着用ファンロータ34aの第2回転軸34b及び再生用ファンロータ35aの第3回転軸35bは、いずれも背面50bに対する垂直方向(Y軸方向)に延びている。言い換えると、吸着用ファンロータ34aも再生用ファンロータ35aも背面50bに平行な面内で回転するように、吸着用ファン34及び再生用ファン35が配置されている。また、吸着用ファン34及び再生用ファン35は、それぞれの重心がケーシング50Bの正面50aよりも背面50bに近い点に位置するように配置されている。重量物である吸着用ファン34の重心と再生用ファン35の重心がケーシング50Bの背面50bに近い点に位置すると、重心が正面50aに近いところにある場合に比べて加湿ユニット30Bを壁100から離す方向に働く力のモーメントが小さくなるので、壁面WSに背面50bを対向させて設置し易くなる。 The second rotation shaft 34b of the suction fan rotor 34a and the third rotation shaft 35b of the regeneration fan rotor 35a both extend in a direction perpendicular to the back surface 50b (Y-axis direction). In other words, the suction fan 34 and the regeneration fan 35 are arranged so that both the suction fan rotor 34a and the regeneration fan rotor 35a rotate in a plane parallel to the back surface 50b. Further, the suction fan 34 and the regeneration fan 35 are arranged such that the center of gravity of each of them is located closer to the back surface 50b than the front surface 50a of the casing 50B. When the gravity center of the suction fan 34 and the gravity fan of the regeneration fan 35, which are heavy objects, are located at a point close to the back surface 50b of the casing 50B, the humidifying unit 30B is separated from the wall 100 as compared with the case where the gravity center is close to the front surface 50a. Since the moment of the force acting in the separating direction becomes small, it becomes easy to install the back surface 50b facing the wall surface WS.
 図16に示されているように、吸着用ファン34は、ベルマウス34gの吸込円孔34fの領域RE1と吸着ロータ32の一部領域RE2が正面視において重なるように配置されている。吸着ロータ32の一部領域RE2は、吸着用ファン34とケーシング50Bの正面50aの間に配置されている。吸着用ファン34とケーシング50Bの正面50aとの間に吸着ロータ32の一部領域RE2が配置されることで、吸着ロータに吸着前空気を導くときの流路抵抗を低く抑えることができ、吸着用ファン34の小型化ができている。 As shown in FIG. 16, the suction fan 34 is arranged such that the region RE1 of the suction circular hole 34f of the bell mouth 34g and the partial region RE2 of the suction rotor 32 overlap in front view. A partial region RE2 of the suction rotor 32 is disposed between the suction fan 34 and the front surface 50a of the casing 50B. Since the partial region RE2 of the suction rotor 32 is disposed between the suction fan 34 and the front surface 50a of the casing 50B, the flow path resistance when the pre-adsorption air is guided to the suction rotor can be suppressed to a low level. The fan 34 can be downsized.
 そして、図16に示されている吸着ロータ32の裏面32bのうち、ベルマウス34gの吸込円孔34fから最も遠い最離反箇所P1が吸込円孔34fの半径r1の60%離れている。吸着用ファン34のベルマウス34gの吸込円孔34fのうちの吸着ロータ32と重なっていない領域について吸着ロータ32と吸着用ファン34との間で空気を流れ易くするためには、半径r1の10%以上離れるように配置されることが好ましい。また、吸着ロータ32が吸着用ファン34から離れすぎると、加湿ユニット30Bの薄型化が難しくなるので、吸着ロータ32は、例えば、最離反箇所P1が吸込円孔34fの半径r1の40%以上離れる場合においては、吸込円孔34fから最も近い最近接箇所P2が離れる距離は、吸込円孔34fの半径r1の40%未満になるように設定される。ここでは、吸込円孔34fから最近接箇所P2までの距離が吸込円孔34fの半径r1の約35%になっている。 In the back surface 32b of the suction rotor 32 shown in FIG. 16, the farthest away point P1 from the suction circular hole 34f of the bell mouth 34g is 60% away from the radius r1 of the suction circular hole 34f. In order to make air easily flow between the suction rotor 32 and the suction fan 34 in the suction circular hole 34f of the bell mouth 34g of the suction fan 34 that does not overlap with the suction rotor 32, a radius r1 of 10 is used. It is preferable that they are arranged so that they are separated by at least%. Further, if the suction rotor 32 is too far from the suction fan 34, it is difficult to reduce the thickness of the humidifying unit 30B. In some cases, the distance at which the nearest closest point P2 is separated from the suction circular hole 34f is set to be less than 40% of the radius r1 of the suction circular hole 34f. Here, the distance from the suction circular hole 34f to the closest point P2 is about 35% of the radius r1 of the suction circular hole 34f.
 再生用ファン35は、再生用熱交換器31から吸着ロータ32の裏面32b、表面32aの順に通過してきた再生後空気を、ケーシング50Bの正面50aに沿って配置されている再生後空気用ダクト35eで吸着ロータ32の吸込口35fに送る。再生用ファン35の再生用ファンロータ35aには、正面50aから背面50bに向かう方向に再生後空気が吸入される。この場合も、吸着ロータ32において、吸着領域では、空気が吸着ロータ32の表面32aから裏面32bに向かって流れ、再生領域では、空気が吸着ロータ32の裏面32bから表面32aに向かって流れる。つまり、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置されている。 The regeneration fan 35 is a post-regeneration air duct 35e that is disposed along the front surface 50a of the casing 50B, after the regeneration air that has passed from the heat exchanger 31 for regeneration to the back surface 32b and the front surface 32a of the adsorption rotor 32 in this order. To the suction port 35 f of the suction rotor 32. The regeneration fan rotor 35a of the regeneration fan 35 draws post-regeneration air in the direction from the front surface 50a to the rear surface 50b. Also in this case, in the adsorption rotor 32, in the adsorption region, air flows from the front surface 32a of the adsorption rotor 32 toward the back surface 32b, and in the regeneration region, air flows from the back surface 32b of the adsorption rotor 32 toward the front surface 32a. That is, the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the air before adsorption and the airflow of the air before regeneration are opposed to each other.
 (7-2)吸着ロータ32と吸着用ファン34と再生用ファン35の位置関係
 第2実施形態においても第1実施形態と同様に、吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aは、背面50bに沿って一方向(Z軸方向)に並べて配列されている。吸着ロータ32の第1回転軸32dと吸着用ファンロータ34aの第2回転軸34bと再生用ファンロータ35aの第3回転軸35bとが、Z軸方向に延びる一つの直線L2を通るYZ平面内に並んでいる。吸着ロータ32と吸着用ファンロータ34aと再生用ファンロータ35aの配列方向視、つまり直線L2に沿って下側面50dから上側面50cの方を見ると、図18に示されているように、吸着ロータ32の一部と吸着用ファンロータ34aの一部とが再生用ファンロータ35aの一部と重なり、正面50aと背面50bの距離を縮めてY軸方向の寸法M6を小さくでき、加湿ユニット30Bが薄型化できている。
(7-2) Positional relationship among the suction rotor 32, the suction fan 34, and the regeneration fan 35 Also in the second embodiment, as in the first embodiment, the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a. Are arranged in one direction (Z-axis direction) along the back surface 50b. In the YZ plane, the first rotation shaft 32d of the suction rotor 32, the second rotation shaft 34b of the suction fan rotor 34a, and the third rotation shaft 35b of the regeneration fan rotor 35a pass through one straight line L2 extending in the Z-axis direction. Are lined up. When the suction rotor 32, the suction fan rotor 34a, and the regeneration fan rotor 35a are viewed in the arrangement direction, that is, when viewed from the lower side surface 50d to the upper side surface 50c along the straight line L2, as shown in FIG. A part of the rotor 32 and a part of the suction fan rotor 34a overlap with a part of the regeneration fan rotor 35a, and the distance M between the front surface 50a and the back surface 50b can be shortened to reduce the dimension M6 in the Y-axis direction. Can be made thinner.
 また、第1回転軸32dと第2回転軸34bとの第3回転軸35bとが、Z軸方向に延びる一つの直線L2を通るYZ平面内に並んでいることから、吸着用ファンロータ34aと再生用ファンロータ35aとが吸着ロータ32からX軸方向にはみ出さないので、X軸方向のケーシング50の寸法M7を小さくすることができる。 Further, since the third rotation shaft 35b of the first rotation shaft 32d and the second rotation shaft 34b is arranged in the YZ plane passing through one straight line L2 extending in the Z-axis direction, the suction fan rotor 34a and Since the reproduction fan rotor 35a does not protrude from the suction rotor 32 in the X-axis direction, the dimension M7 of the casing 50 in the X-axis direction can be reduced.
 (8)変形例
 (8-1)変形例2A
 上記第2実施形態では、吸着用ファン34と再生用ファン35は、吸着前空気の気流と再生前空気の気流が対向流となるように配置されていたが、吸着用ファン34と再生用ファン35は、図19に示されているように、吸着前空気の気流と再生前空気の気流が同じ向きに流れるように配置されてもよい。図19に示されている加湿ユニット30Cでは、ケーシング50Cの正面50aに再生前空気取入口57が形成されている。再生前空気取入口57は、正面視において、再生用熱交換器31と実質的に同じ大きさを有している長方形状に形成されている。再生前空気取入口57にはグリッド58が取り付けられている。なお、正面50aに再生前空気取入口57を形成して場合でも、上記第2実施形態と同様に、再生前空気取入口を正面50aに近づけて右側面50e及び左側面50fに設けてもよい。
(8) Modification (8-1) Modification 2A
In the second embodiment, the suction fan 34 and the regeneration fan 35 are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other. As shown in FIG. 19, the air flow 35 may be arranged so that the airflow before the adsorption and the airflow before the regeneration flow in the same direction. In the humidifying unit 30C shown in FIG. 19, a pre-regeneration air intake 57 is formed on the front surface 50a of the casing 50C. The pre-regeneration air intake 57 is formed in a rectangular shape having substantially the same size as that of the regeneration heat exchanger 31 in a front view. A grid 58 is attached to the pre-regeneration air intake 57. Even when the pre-regeneration air inlet 57 is formed on the front surface 50a, the pre-regeneration air intake port may be provided on the right side surface 50e and the left side surface 50f close to the front surface 50a as in the second embodiment. .
 (8-2)変形例2B
 上記第2実施形態及び変形例2Aでは、ケーシング50B,50Cの長手方向(寸法M5の辺が延びる方向)がZ軸方向に一致するように加湿ユニット30B,30Cが取り付けられているが、背面50bに平行な面内で回転させて、例えばケーシング50B,50Cの長手方向がX軸方向に延びるように加湿ユニット30B,30Cが取り付けられてもよい。
(8-2) Modification 2B
In the second embodiment and Modification 2A, the humidifying units 30B and 30C are attached so that the longitudinal direction of the casings 50B and 50C (the direction in which the side of the dimension M5 extends) coincides with the Z-axis direction. For example, the humidifying units 30B and 30C may be attached such that the longitudinal directions of the casings 50B and 50C extend in the X-axis direction.
 (9)特徴
 第2実施形態の加湿ユニット30Bは、上述の(5-1)~(5-3)及び(5-5)~(5-8)で説明した第1実施形態の加湿ユニット30と同様の特徴を有していることが明らかであるので、これらの特徴の説明を省略する。また、変形例2Aの加湿ユニット30Cは、上述の(5-1)~(5-4)及び(5-6)~(5-8)で説明した変形例1Aの加湿ユニット30Aと同様の特徴を有していることが明らかであるので、これらの説明を省略する。
(9) Features The humidifying unit 30B of the second embodiment is the humidifying unit 30 of the first embodiment described in the above (5-1) to (5-3) and (5-5) to (5-8). Since it is clear that they have the same characteristics as those described above, description of these characteristics will be omitted. Further, the humidifying unit 30C of the modified example 2A has the same characteristics as the humidifying unit 30A of the modified example 1A described in the above (5-1) to (5-4) and (5-6) to (5-8). Since it is clear that these are included, these descriptions are omitted.
 (9-1)
 第2実施形態の加湿ユニット30B及び変形例2Aの加湿ユニット30Cは、調湿ユニットの一例である。加湿ユニット30B,30Cの吸着ロータ32は、背面50bに対して斜めに配置され、ケーシング50B,50Cの再生前空気取入口54は、右側面50e及び左側面50fに吸着ロータ32の傾斜に沿って斜めにカットされた斜めカット部54aを含む。これら斜めカット部54aによって開口部が広がる分だけ再生前空気取入口54を大きくすることができ、再生前空気の流路抵抗を小さくして再生用ファン35の小型化が容易になることで、加湿ユニット30B,30Cの薄型化が容易になっている。
(9-1)
The humidification unit 30B of 2nd Embodiment and the humidification unit 30C of the modification 2A are examples of a humidity control unit. The adsorption rotor 32 of the humidifying units 30B and 30C is disposed obliquely with respect to the back surface 50b, and the pre-regeneration air intake 54 of the casings 50B and 50C is along the inclination of the adsorption rotor 32 on the right side surface 50e and the left side surface 50f. An oblique cut portion 54a cut obliquely is included. The pre-regeneration air intake 54 can be enlarged by the amount of the opening that is widened by these oblique cut portions 54a, and the flow resistance of the pre-regeneration air can be reduced to facilitate the miniaturization of the regeneration fan 35. The humidification units 30B and 30C can be easily reduced in thickness.
 <第3実施形態>
 (10)全体構成
 上述の加湿ユニット30,30A~30Cは、空気調和装置1に組み込まれて室内IDの加湿を行う調湿ユニットの一例として説明されているが、これらの加湿ユニット30,30A~30Cと同じユニットを室内IDに設置して再生後空気を室外に排出することで、除湿ユニットとして用いることもできる。
<Third Embodiment>
(10) Overall configuration The above-described humidifying units 30, 30A to 30C are described as an example of a humidity control unit that is incorporated in the air conditioner 1 and humidifies the room ID, but these humidifying units 30, 30A to 30C By installing the same unit as 30C in the room ID and discharging the air after regeneration outside the room, it can also be used as a dehumidifying unit.
 図20には、除湿ユニット30Dが取り付けられた空気調和装置1が示されている。また、図21には、図20に示されている除湿ユニット30Dの構成の概念が示されている。この除湿ユニット30Dが第3実施形態における調湿ユニットの一例である。第3実施形態の除湿ユニット30Dは、第1実施形態の加湿ユニット30と同様に再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35とケーシング50とを備え、第1実施形態の加湿ユニット30が備える加湿ホース36の代わりに排気ホース37を備えている。排気ホース37以外の構成は、第3実施形態の除湿ユニット30Dと第1実施形態の加湿ユニット30とは同じであるので説明を省略する。 FIG. 20 shows the air conditioner 1 to which the dehumidifying unit 30D is attached. FIG. 21 shows the concept of the configuration of the dehumidifying unit 30D shown in FIG. The dehumidifying unit 30D is an example of a humidity control unit in the third embodiment. The dehumidifying unit 30D of the third embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 The exhaust hose 37 is provided instead of the humidification hose 36 provided in the humidification unit 30 of the first embodiment. Since the configuration other than the exhaust hose 37 is the same as the dehumidifying unit 30D of the third embodiment and the humidifying unit 30 of the first embodiment, the description thereof is omitted.
 (11)除湿ユニット30Dの動作
 図22には、室内IDに除湿ユニット30Dのケーシング50が取り付けられている状態が示されている。除湿ユニット30Dからは、貫通孔101を通って排気ホース37が室外ODまで延びている。貫通孔101を通って室外機2から室内IDまで配管されている冷媒連絡管6は、除湿ユニット30Dの配管接続部31aに接続され、貫通孔101を通って室外機2から室内IDまで配管されている冷媒連絡管5は、室内機4(接続管72)に接続されている。室内機4(接続管71)と除湿ユニット30Dの配管接続部31bとが室内IDにおいて配管されている冷媒連絡管6によって接続されている。除湿ユニット30Dは、例えば室内機4とは異なる部屋に取り付けられ、例えば乾燥室に配置される。
(11) Operation of Dehumidification Unit 30D FIG. 22 shows a state where the casing 50 of the dehumidification unit 30D is attached to the room ID. From the dehumidifying unit 30D, the exhaust hose 37 extends to the outdoor OD through the through hole 101. The refrigerant communication pipe 6 piped from the outdoor unit 2 to the room ID through the through hole 101 is connected to the pipe connection part 31a of the dehumidifying unit 30D, and is piped from the outdoor unit 2 to the room ID through the through hole 101. The refrigerant communication pipe 5 is connected to the indoor unit 4 (connection pipe 72). The indoor unit 4 (connection pipe 71) and the pipe connection part 31b of the dehumidifying unit 30D are connected by the refrigerant communication pipe 6 piped in the room ID. The dehumidifying unit 30D is attached to a room different from the indoor unit 4, for example, and is arranged in a drying room, for example.
 除湿ユニット30Dが除湿を行うときには、吸着用ファン34により吸着前空気が室内IDから吸着前空気取入口52を通って取り入れられて吸着ロータ32に送られる。そして、吸着ロータ32で水分を奪われて乾燥した吸着後空気が、吸着用ファン34によって吸着用ファン吹出口56から室内IDに吹出される。また、再生用ファン35により再生前空気が室内IDから再生前空気取入口54を通って取り入れられて吸着ロータ32に送られる。吸着ロータ32で水分を与えられた再生後空気が、再生用ファン35によって排気ホース37を通って室外ODに吹き出される。 When the dehumidifying unit 30D performs dehumidification, the pre-adsorption air is taken in from the indoor ID through the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. Then, the air after adsorption that has been dehydrated by the adsorption rotor 32 and dried is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID. Further, the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is blown out by the regeneration fan 35 through the exhaust hose 37 to the outdoor OD.
 (12)変形例
 (12-1)変形例3A
 上記第3実施形態では、図20において、室内機4と除湿ユニット30Dを併用する場合について説明したが、図23に示されているように、室内機4を除いて除湿ユニット30Dと室外機2とを直接接続して用いることもできる。
(12) Modification (12-1) Modification 3A
In the third embodiment, the case where the indoor unit 4 and the dehumidifying unit 30D are used in combination in FIG. 20 has been described. However, as shown in FIG. 23, the dehumidifying unit 30D and the outdoor unit 2 except for the indoor unit 4 are used. Can be directly connected to each other.
 <第4実施形態>
 (13)全体構成
 上記第3実施形態では、室内IDに除湿ユニット30Dを設置して室内IDを除湿する場合について説明したが、図24に示されている加湿ユニット30Eを室内IDに設置して室内IDを加湿するように構成することもできる。なお、図25には、図24に示されている加湿ユニット30Eの構成の概念が示されている。
<Fourth embodiment>
(13) Overall Configuration In the third embodiment, the case where the dehumidifying unit 30D is installed in the room ID to dehumidify the room ID has been described. However, the humidifying unit 30E shown in FIG. 24 is installed in the room ID. It can also comprise so that indoor ID may be humidified. FIG. 25 shows the concept of the configuration of the humidifying unit 30E shown in FIG.
 この加湿ユニット30Eが第4実施形態における調湿ユニットの一例である。第4実施形態の加湿ユニット30Eは、第1実施形態の加湿ユニット30と同様に、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35とケーシング50と加湿ホース36とを備えている。第4実施形態に係る加湿ユニット30Eは、さらに、貫通孔101を通って室外ODから吸着前空気を取り入れるための給気ホース38と、貫通孔101を通って室外ODに吸着後空気を排気するための排気ホース37とを備えている。なお、加湿ユニット30Eの加湿ホース36は、室内IDにおいて加湿ユニット30Eと室内機4とを接続するホースである。排気ホース37及び給気ホース38以外の構成は、第4実施形態の加湿ユニット30Eと第1実施形態の加湿ユニット30とが同じであるので説明を省略する。 This humidification unit 30E is an example of a humidity control unit in the fourth embodiment. The humidifying unit 30E of the fourth embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And a humidifying hose 36. The humidifying unit 30E according to the fourth embodiment further exhausts the adsorbed air to the outdoor OD through the through hole 101 and the air supply hose 38 for taking in the pre-adsorption air from the outdoor OD through the through hole 101. The exhaust hose 37 is provided. The humidifying hose 36 of the humidifying unit 30E is a hose that connects the humidifying unit 30E and the indoor unit 4 in the room ID. Since the configuration other than the exhaust hose 37 and the air supply hose 38 is the same as the humidification unit 30E of the fourth embodiment and the humidification unit 30 of the first embodiment, the description thereof is omitted.
 (14)加湿ユニット30Eの動作
 図26には、室内IDに加湿ユニット30Eのケーシング50が取り付けられている状態が示されている。加湿ユニット30Eが加湿を行うときには、吸着用ファン34により吸着前空気が室外ODから給気ホース38及び吸着前空気取入口52(図25参照)を通って取り入れられて吸着ロータ32に送られる。そして、吸着ロータ32で水分を奪われて乾燥した吸着後空気が、吸着用ファン34によって吸着用ファン吹出口56(図25参照)から排気ホース37を通って室外ODに吹出される。また、再生用ファン35により再生前空気が室内IDから再生前空気取入口54を通って取り入れられて吸着ロータ32に送られる。吸着ロータ32で水分を与えられた再生後空気が、再生用ファン35によって加湿ホース36を通って室内機4に送られる。
(14) Operation of Humidification Unit 30E FIG. 26 shows a state where the casing 50 of the humidification unit 30E is attached to the room ID. When the humidifying unit 30E performs humidification, the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 and the pre-adsorption air intake 52 (see FIG. 25) and sent to the adsorption rotor 32 by the adsorption fan 34. Then, the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 (see FIG. 25) through the exhaust hose 37 to the outdoor OD. Further, the pre-regeneration air is taken in from the room ID through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is sent to the indoor unit 4 through the humidifying hose 36 by the regeneration fan 35.
 (15)変形例4A
 第4実施形態では室内IDに設置された加湿ユニット30Eについて説明した。また、第3実施形態では室内IDに設置された除湿ユニット30Dについて説明した。吸着用ファン34及び再生用ファン35の吸排気を切り換えるダンパを設けることで、これらの加湿機能と除湿機能を併せ持つ除加湿ユニットを構成することもできる。
(15) Modification 4A
4th Embodiment demonstrated the humidification unit 30E installed in indoor ID. Moreover, 3rd Embodiment demonstrated dehumidification unit 30D installed in indoor ID. By providing a damper that switches between intake and exhaust of the suction fan 34 and the regeneration fan 35, a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
 図27には、加湿機能と除湿機能を併せ持つ調湿ユニット30Fが示されている。調湿ユニット30Fは、加湿ユニット30Eの構成に対して、4つのダンパ61~64をさらに備えている。ダンパ61,62は、吸着前空気と再生前空気のうちの一方を室内IDから取り入れ、他方を室外ODから取り入れるように切り換える。ダンパ63,64は、吸着用ファン34により吹出される吸着後空気と再生用ファン35により吹出される再生後空気のうちの一方を室内IDに吹出させ、他方を室外ODに吹出させるように切り換える。ダンパ61,62が図27の実線で示されている状態になっているときには、吸着用ファン34により給気ホース38を通って室外ODから吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が室内IDから取り入れられて吸着ロータ32に送られる。ダンパ63,64が図27に実線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が排気ホース37を通って室外ODに吹出され、再生用ファン35によって再生後空気が調湿ホース36Aを通って室内IDに吹出されて、室内IDの加湿が行われる。 FIG. 27 shows a humidity control unit 30F having both a humidifying function and a dehumidifying function. The humidity control unit 30F further includes four dampers 61 to 64 as compared with the configuration of the humidification unit 30E. The dampers 61 and 62 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD. The dampers 63 and 64 are switched so that one of the air after adsorption blown by the suction fan 34 and the air after regeneration blown by the regeneration fan 35 is blown out to the room ID and the other is blown out to the outdoor OD. . When the dampers 61 and 62 are in the state shown by the solid line in FIG. 27, the pre-adsorption air is taken in from the outdoor OD through the air supply hose 38 by the adsorption fan 34 and sent to the adsorption rotor 32. The pre-reproduction air is taken from the room ID by the reproduction fan 35 and sent to the adsorption rotor 32. When the dampers 63 and 64 are in the state indicated by the solid line in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 through the exhaust hose 37 to the outdoor OD, and the air after reproduction by the regeneration fan 35. Is blown out to the room ID through the humidity control hose 36A, and the room ID is humidified.
 それに対して、ダンパ61,62が図27の破線で示されている状態になっているときには、吸着用ファン34によって吸着前空気が室内IDから取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が室外ODから給気ホース38を通って取り入れられて吸着ロータ32に送られる。そして、ダンパ63,64が図27の破線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が調湿ホース36Aを通って室内IDに吹出され、再生用ファン35によって再生後空気が排気ホース37を通って室外ODに吹出されて、室内IDの除湿が行われる。なお、ダンパ61~64は、シャッタで構成してもよく、またケーシングの外に設けられてもよい。 On the other hand, when the dampers 61 and 62 are in the state indicated by the broken line in FIG. 27, the air before suction is taken in from the room ID by the suction fan 34 and sent to the suction rotor 32, and the regeneration fan. The pre-regeneration air is taken in from the outdoor OD through the air supply hose 38 and sent to the adsorption rotor 32. When the dampers 63 and 64 are in the state shown by the broken lines in FIG. 27, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36A, and the reproduction fan 35 After regeneration, the air is blown out to the outdoor OD through the exhaust hose 37, and the indoor ID is dehumidified. The dampers 61 to 64 may be constituted by shutters or may be provided outside the casing.
 <第5実施形態>
 (16)全体構成
 上記第1実施形態では、室外ODに加湿ユニット30を設置して室内IDを加湿する場合について説明したが、図28に示されている除湿ユニット30Gを室外ODに設置して室内IDを除湿するように構成することもできる。なお、図29には、図28に示されている除湿ユニット30Gの構成の概念が示されている。
<Fifth Embodiment>
(16) Overall Configuration In the first embodiment, the case where the humidifying unit 30 is installed in the outdoor OD and the indoor ID is humidified has been described. However, the dehumidifying unit 30G shown in FIG. 28 is installed in the outdoor OD. It can also comprise so that indoor ID may be dehumidified. FIG. 29 shows the concept of the configuration of the dehumidifying unit 30G shown in FIG.
 この除湿ユニット30Gが第5実施形態における調湿ユニットの一例である。第5実施形態の除湿ユニット30Gは、第1実施形態の加湿ユニット30と同様に、再生用熱交換器31と吸着ロータ32とロータ用モータ33と吸着用ファン34と再生用ファン35とケーシング50とを備えている。第4実施形態に係る除湿ユニット30Gは、さらに、貫通孔101(図30参照)を通って室内IDから吸着前空気を取り入れるための給気ホース38と、貫通孔101を通って室内IDに吸着後空気を送るための調湿ホース36Aとを備えている。調湿ホース36A及び給気ホース38以外の構成は、第5実施形態の除湿ユニット30Gと第1実施形態の加湿ユニット30とは同じであるので説明を省略する。 This dehumidifying unit 30G is an example of a humidity control unit in the fifth embodiment. The dehumidifying unit 30G of the fifth embodiment is similar to the humidifying unit 30 of the first embodiment in that the regeneration heat exchanger 31, the adsorption rotor 32, the rotor motor 33, the adsorption fan 34, the regeneration fan 35, and the casing 50 are used. And. The dehumidifying unit 30G according to the fourth embodiment is further adsorbed to the room ID through the through hole 101 (see FIG. 30) and the air supply hose 38 for taking in pre-adsorption air from the room ID and the through hole 101. A humidity control hose 36A for sending rear air is provided. Since the configuration other than the humidity control hose 36A and the air supply hose 38 is the same as that of the dehumidifying unit 30G of the fifth embodiment and the humidifying unit 30 of the first embodiment, description thereof will be omitted.
 (17)除湿ユニット30Gの動作
 図30には、室外ODに除湿ユニット30Gのケーシング50が取り付けられている状態が示されている。除湿ユニット30Gが除湿を行うときには、吸着用ファン34により吸着前空気が室内IDから給気ホース38及び吸着前空気取入口52を通って取り入れられて吸着ロータ32に送られる。そして、吸着ロータ32で水分を奪われて乾燥した吸着後空気が、吸着用ファン34によって吸着用ファン吹出口56から調湿ホース36Aを通って室内IDに吹出される。また、再生用ファン35により再生前空気が室外ODから再生前空気取入口54を通って取り入れられて吸着ロータ32に送られる。吸着ロータ32で水分を与えられた再生後空気が、再生用ファン35によって室外ODに吹出される。
(17) Operation of Dehumidification Unit 30G FIG. 30 shows a state where the casing 50 of the dehumidification unit 30G is attached to the outdoor OD. When the dehumidifying unit 30G performs dehumidification, the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 and the pre-adsorption air intake 52 by the adsorption fan 34 and sent to the adsorption rotor 32. Then, the adsorbed air that has been dehydrated and dried by the adsorption rotor 32 is blown out by the adsorption fan 34 from the adsorption fan outlet 56 to the room ID through the humidity control hose 36A. In addition, the pre-regeneration air is taken in from the outdoor OD through the pre-regeneration air intake 54 by the regeneration fan 35 and sent to the adsorption rotor 32. The regenerated air given moisture by the adsorption rotor 32 is blown out to the outdoor OD by the regeneration fan 35.
 (18)変形例5A
 第5実施形態では室外ODに設置された除湿ユニット30Gについて説明した。また、第1実施形態では室外ODに設置された加湿ユニット30について説明した。吸着用ファン34及び再生用ファン35の吸排気を切り換えるダンパを設けることで、これらの加湿機能と除湿機能を併せ持つ除加湿ユニットを構成することもできる。
(18) Modification 5A
5th Embodiment demonstrated the dehumidification unit 30G installed in outdoor OD. Moreover, 1st Embodiment demonstrated the humidification unit 30 installed in outdoor OD. By providing a damper that switches between intake and exhaust of the suction fan 34 and the regeneration fan 35, a dehumidifying / humidifying unit having both the humidifying function and the dehumidifying function can be configured.
 図31には、加湿機能と除湿機能を併せ持つ調湿ユニット30Hが示されている。調湿ユニット30Hは、加湿ユニット30の構成に対して、4つのダンパ66~69をさらに備えている。ダンパ66,67は、吸着前空気と再生前空気のうちの一方を室内IDから取り入れ、他方を室外ODから取り入れるように切り換える。ダンパ68,69は、吸着用ファン34により吹出される吸着後空気と再生用ファン35により吹出される再生後空気のうちの一方を室内IDに吹出させ、他方を室外ODに吹出させるように切り換える。 FIG. 31 shows a humidity control unit 30H having both a humidifying function and a dehumidifying function. The humidity control unit 30H further includes four dampers 66 to 69 with respect to the configuration of the humidification unit 30. The dampers 66 and 67 switch so that one of the pre-adsorption air and the pre-regeneration air is taken from the room ID and the other is taken from the outdoor OD. The dampers 68 and 69 switch so that one of the post-adsorption air blown by the suction fan 34 and the post-regeneration air blown by the regeneration fan 35 is blown to the room ID and the other is blown to the outdoor OD. .
 ダンパ66,67が図31の実線で示されている状態になっているときには、吸着用ファン34により室外ODから吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が室内IDから給気ホース38を通って取り入れられて吸着ロータ32に送られる。ダンパ68,69が図31に実線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が室外ODに吹出され、再生用ファン35によって再生後空気が調湿ホース36Aを通って室内IDに吹出されて、室内IDの加湿が行われる。 When the dampers 66 and 67 are in the state shown by the solid line in FIG. 31, the pre-adsorption air is taken in from the outdoor OD by the adsorption fan 34 and sent to the adsorption rotor 32, and before the reproduction by the reproduction fan 35. Air is taken from the room ID through the air supply hose 38 and sent to the adsorption rotor 32. When the dampers 68 and 69 are in the state shown by the solid line in FIG. 31, the air after adsorption is blown out to the outdoor OD by the adsorption fan 34, and the air after regeneration is supplied to the humidity control hose 36A by the regeneration fan 35. The room ID is blown out and the room ID is humidified.
 それに対して、ダンパ66,67が図31の破線で示されている状態になっているときには、吸着用ファン34により室内IDから給気ホース38を通って吸着前空気が取り入れられて吸着ロータ32に送られ、再生用ファン35によって再生前空気が室外ODから取り入れられて吸着ロータ32に送られる。ダンパ68,69が図31の破線で示されている状態になっているときには、吸着用ファン34によって吸着後空気が調湿ホース36Aを通って室内IDに吹出され、再生用ファン35によって再生後空気が室外ODに吹出されて、室内IDの除湿が行われる。なお、ダンパ66~69は、シャッタで構成してもよく、ケーシングの外に設けられてもよい。 On the other hand, when the dampers 66 and 67 are in the state shown by the broken line in FIG. 31, the pre-adsorption air is taken in from the indoor ID through the air supply hose 38 by the adsorption fan 34 and the adsorption rotor 32. The air before regeneration is taken in from the outdoor OD by the regeneration fan 35 and is sent to the adsorption rotor 32. When the dampers 68 and 69 are in the state shown by the broken line in FIG. 31, the air after adsorption is blown out by the adsorption fan 34 to the room ID through the humidity control hose 36 </ b> A and is regenerated by the regeneration fan 35. Air is blown to the outdoor OD, and the room ID is dehumidified. The dampers 66 to 69 may be constituted by shutters or may be provided outside the casing.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 While the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as set forth in the claims. .
 1 空気調和装置
 2 室外機
 4 室内機
 30,30A~30C,30E 加湿ユニット(調湿ユニットの例)
 30D,30G 除湿ユニット(調湿ユニットの例)
 30F,30H 調湿ユニット
 31 再生用熱交換器
 32 吸着ロータ
 34 吸着用ファン
 34a 吸着用ファンロータ
 35 再生用ファン
 35a 再生用ファンロータ
 36 加湿ホース
 37 排気ホース
 38 給気ホース
 50,50A~50C ケーシング
 52 吸着前空気取入口
 54,57 再生前空気取入口
 54a 斜めカット部
 56 吸着用ファン吹出口
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 4 Indoor unit 30,30A-30C, 30E Humidification unit (example of humidity control unit)
30D, 30G Dehumidification unit (example of humidity control unit)
30F, 30H Humidity adjustment unit 31 Heat exchanger for regeneration 32 Adsorption rotor 34 Adsorption fan 34a Adsorption fan rotor 35 Regeneration fan 35a Regeneration fan rotor 36 Humidification hose 37 Exhaust hose 38 Supply hose 50, 50A to 50C Casing 52 Pre-adsorption air intake 54, 57 Pre-regeneration air intake 54a Diagonal cut part 56 Adsorption fan outlet
特開2014-129950号公報JP 2014-129950 A

Claims (10)

  1.  鉛直方向に沿う壁面に背面を対向させて設置され、前記背面に対向する正面を有するケーシング(50,50A,50B,50C)と、
     前記ケーシングに収納され、前記背面に対する垂直方向に沿う第1回転軸の周りで回転する構成である吸着ロータ(32)と、
     前記ケーシングに収納され、前記垂直方向に沿う第2回転軸の周りで回転するする構成である吸着用ファンロータ(34a)を有し、前記吸着用ファンロータによって、吸着前空気を前記吸着ロータに導き、且つ前記第1回転軸に沿う方向に前記吸着ロータを通過することで前記吸着ロータに水分を奪われた吸着後空気を吹き出す構成である吸着用ファン(34)と、
     前記ケーシングに収納され、前記垂直方向に沿う第3回転軸の周りで回転する再生用ファンロータ(35a)を有し、前記再生用ファンロータによって、再生前空気を前記吸着ロータに導き、且つ前記第1回転軸に沿う方向に前記吸着ロータを通過することで前記吸着ロータから水分を与えられた再生後空気を吹き出す構成である再生用ファン(35)と
    を備え、
     前記吸着ロータと前記吸着用ファンロータと前記再生用ファンロータは、前記背面に沿った一方向に並べて配列され、前記吸着ロータと前記吸着用ファンロータと前記再生用ファンロータの配列方向視において前記吸着ロータと前記吸着用ファンロータと前記再生用ファンロータの少なくとも一部が重なるように配置されている、調湿ユニット。
    A casing (50, 50A, 50B, 50C) which is installed with a back surface facing a wall surface along the vertical direction and has a front surface facing the back surface;
    A suction rotor (32) that is housed in the casing and rotates around a first rotation axis along a direction perpendicular to the back surface;
    It has a suction fan rotor (34a) that is housed in the casing and rotates around the second rotation axis along the vertical direction, and the suction fan rotor causes the pre-adsorption air to flow into the suction rotor. A suction fan (34) that is configured to blow out the air after suction that has been deprived of moisture by the suction rotor by passing through the suction rotor in a direction along the first rotation axis;
    A regenerative fan rotor (35a) housed in the casing and rotated around a third rotation axis along the vertical direction, the preregeneration air being guided to the adsorption rotor by the regenerative fan rotor; and A regeneration fan (35) configured to blow out the regenerated air given moisture from the adsorption rotor by passing through the adsorption rotor in a direction along the first rotation axis,
    The suction rotor, the suction fan rotor, and the regeneration fan rotor are arranged side by side along the back surface, and in the array direction view of the suction rotor, the suction fan rotor, and the regeneration fan rotor, A humidity control unit arranged so that at least a part of the suction rotor, the suction fan rotor, and the regeneration fan rotor overlap.
  2.  前記ケーシングは、前記垂直方向の寸法が前記背面に対して平行な方向の寸法よりも小さい、
    請求項1に記載の調湿ユニット。
    The casing has a smaller vertical dimension than a dimension in a direction parallel to the back surface;
    The humidity control unit according to claim 1.
  3.  前記ケーシングは、前記吸着前空気を取り入れる吸着前空気取入口(52)を前記正面に有する、
    請求項1または請求項2に記載の調湿ユニット。
    The casing has a pre-adsorption air intake (52) for taking in the pre-adsorption air on the front surface.
    The humidity control unit according to claim 1 or 2.
  4.  前記ケーシングは、前記再生前空気を取り入れる再生前空気取入口(57)を前記正面に有する、
    請求項3に記載の調湿ユニット。
    The casing has a pre-regeneration air intake (57) on the front side for taking in the pre-regeneration air,
    The humidity control unit according to claim 3.
  5.  前記ケーシングは、前記再生前空気を取り入れる再生前空気取入口(54)を、前記背面と前記正面との間の側面に有し、
     前記吸着用ファンと前記再生用ファンは、前記吸着前空気の気流と前記再生前空気の気流が対向流となるように配置されている、
    請求項3に記載の調湿ユニット。
    The casing has a pre-regeneration air intake (54) for taking in the pre-regeneration air on a side surface between the back surface and the front surface,
    The suction fan and the regeneration fan are arranged so that the airflow of the pre-adsorption air and the airflow of the pre-regeneration air are opposed to each other.
    The humidity control unit according to claim 3.
  6.  前記吸着ロータは、前記背面に対して斜めに配置され、
     前記ケーシングの前記再生前空気取入口は、前記側面に前記吸着ロータの傾斜に沿って斜めにカットされた斜めカット部(54a)を含む、
    請求項5に記載の調湿ユニット。
    The adsorption rotor is disposed obliquely with respect to the back surface;
    The pre-regeneration air intake port of the casing includes an oblique cut portion (54a) cut obliquely along the inclination of the adsorption rotor on the side surface.
    The humidity control unit according to claim 5.
  7.  前記吸着ロータを挟んで前記再生用ファンが上に位置するとともに前記吸着用ファンが下に位置する取り付けができるように構成されている、
    請求項1から6のいずれか一項に記載の調湿ユニット。
    The regeneration fan is located above the suction rotor, and the suction fan is located below.
    The humidity control unit according to any one of claims 1 to 6.
  8.  室外機(2)と室内機(4)を備える空気調和装置(1)に取り付け可能に構成され、
     前記ケーシングが室外に設置されて、前記再生用ファンによって前記室内機に吹き出される前記再生後空気により室内を加湿するとともに、前記吸着用ファンによって前記吸着後空気を室外に吹き出す構成である、
    請求項1から7のいずれか一項に記載の調湿ユニット。
    It is configured to be attachable to an air conditioner (1) including an outdoor unit (2) and an indoor unit (4).
    The casing is installed outdoors, and the indoors are humidified by the regenerated air blown out to the indoor unit by the regeneration fan, and the adsorbed air is blown out by the adsorption fan.
    The humidity control unit according to any one of claims 1 to 7.
  9.  前記ケーシングは、前記室外機よりも前記室内機に近い位置に配置される、
    請求項8に記載の調湿ユニット。
    The casing is disposed at a position closer to the indoor unit than the outdoor unit,
    The humidity control unit according to claim 8.
  10.  前記ケーシングが室内に設置されて、前記吸着用ファンによって吹き出される前記吸着後空気により室内を除湿するとともに、前記再生用ファンによって前記再生後空気を室外に吹き出す構成である、
    請求項1から7のいずれか一項に記載の調湿ユニット。
    The casing is installed indoors, and is configured to dehumidify the room with the post-adsorption air blown out by the adsorption fan and to blow out the post-regeneration air out of the room using the regeneration fan.
    The humidity control unit according to any one of claims 1 to 7.
PCT/JP2018/014077 2017-04-07 2018-04-02 Humidity control unit WO2018186336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880022689.4A CN110462297B (en) 2017-04-07 2018-04-02 Humidity control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076980 2017-04-07
JP2017076980A JP2018179362A (en) 2017-04-07 2017-04-07 Humidity control unit

Publications (1)

Publication Number Publication Date
WO2018186336A1 true WO2018186336A1 (en) 2018-10-11

Family

ID=63713200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014077 WO2018186336A1 (en) 2017-04-07 2018-04-02 Humidity control unit

Country Status (3)

Country Link
JP (1) JP2018179362A (en)
CN (1) CN110462297B (en)
WO (1) WO2018186336A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772031U (en) * 1980-10-20 1982-05-01
JPH06185793A (en) * 1992-08-13 1994-07-08 Giichi Terasawa Humidity conditioner
JP2002098365A (en) * 2000-09-22 2002-04-05 Daikin Ind Ltd Humidifying unit
JP2005138021A (en) * 2003-11-06 2005-06-02 Daikin Ind Ltd Dehumidifier
JP2008073651A (en) * 2006-09-22 2008-04-03 Daikin Ind Ltd Humidity control apparatus and air conditioner
JP2011145030A (en) * 2010-01-18 2011-07-28 Panasonic Corp Dehumidifier
JP2014129950A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Humidification unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137626A (en) * 1995-05-30 1996-12-11 三菱重工业株式会社 Ceiling-mounted type air conditioner
JP3579967B2 (en) * 1995-07-18 2004-10-20 松下電器産業株式会社 Ventilation and humidity controller
JP2003164721A (en) * 2001-11-29 2003-06-10 Daikin Ind Ltd Humidifier unit of air conditioner
JP3695417B2 (en) * 2002-02-04 2005-09-14 ダイキン工業株式会社 Humidity control device
KR20060095058A (en) * 2005-02-25 2006-08-30 엘지전자 주식회사 Air conditioner
JP5019261B2 (en) * 2007-11-12 2012-09-05 日本エクスラン工業株式会社 Desiccant air conditioner
CN201416960Y (en) * 2009-05-06 2010-03-03 艾默生网络能源有限公司 Integrated fresh air conditioner
CN201636994U (en) * 2010-03-12 2010-11-17 南京韩威南冷制冷集团有限公司 Combined dehumidifier
CN101900379B (en) * 2010-06-29 2015-12-02 杭州松井电器有限公司 There is the energy-saving dehumidifier of room temperature regulation function
CN102967008B (en) * 2011-08-31 2015-10-21 大金工业株式会社 Humidity control device
JP5800074B2 (en) * 2013-09-30 2015-10-28 ダイキン工業株式会社 Unit outside air conditioning room

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772031U (en) * 1980-10-20 1982-05-01
JPH06185793A (en) * 1992-08-13 1994-07-08 Giichi Terasawa Humidity conditioner
JP2002098365A (en) * 2000-09-22 2002-04-05 Daikin Ind Ltd Humidifying unit
JP2005138021A (en) * 2003-11-06 2005-06-02 Daikin Ind Ltd Dehumidifier
JP2008073651A (en) * 2006-09-22 2008-04-03 Daikin Ind Ltd Humidity control apparatus and air conditioner
JP2011145030A (en) * 2010-01-18 2011-07-28 Panasonic Corp Dehumidifier
JP2014129950A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Humidification unit

Also Published As

Publication number Publication date
CN110462297A (en) 2019-11-15
JP2018179362A (en) 2018-11-15
CN110462297B (en) 2021-05-28

Similar Documents

Publication Publication Date Title
JP6732037B2 (en) Indoor unit and air conditioner
CN104603546A (en) Humidity control device
JP6307701B2 (en) Dehumidifier
WO2016098727A1 (en) Outdoor unit for air conditioner
CN105745499A (en) Air-conditioner outdoor unit
JP2012251692A (en) Outdoor unit of air conditioner
WO2018186336A1 (en) Humidity control unit
WO2018186337A1 (en) Humidity control unit
JP5533970B2 (en) Air conditioner outdoor unit
JP5672284B2 (en) Air conditioner outdoor unit
JP5532099B2 (en) Air conditioner outdoor unit
JP2018179364A (en) Humidity control unit
JP7227502B2 (en) air conditioning ventilation system
JP4961987B2 (en) Air conditioner indoor unit and air conditioner equipped with the same
JP6881578B2 (en) Humidity control unit
JP2014119180A (en) Humidity controller
JP5621535B2 (en) Air conditioner
WO2023085166A1 (en) Air-conditioning device
JP3731570B2 (en) Humidification unit for air conditioner and air conditioner
JP6888283B2 (en) Humidifier
JP3218458B2 (en) Air conditioner
JP2018091579A (en) air conditioner
JP2014119182A (en) Humidity controller
JP6032344B2 (en) Air conditioner outdoor unit
JP2023003368A (en) Air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781841

Country of ref document: EP

Kind code of ref document: A1