WO2018186362A1 - Etchant for resin composition and etching method - Google Patents

Etchant for resin composition and etching method Download PDF

Info

Publication number
WO2018186362A1
WO2018186362A1 PCT/JP2018/014156 JP2018014156W WO2018186362A1 WO 2018186362 A1 WO2018186362 A1 WO 2018186362A1 JP 2018014156 W JP2018014156 W JP 2018014156W WO 2018186362 A1 WO2018186362 A1 WO 2018186362A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
etching
composition layer
resin
ethanolamine
Prior art date
Application number
PCT/JP2018/014156
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 裕二
昌大 田邉
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to JP2019511238A priority Critical patent/JP6929936B2/en
Priority to CN201880021886.4A priority patent/CN110461920A/en
Priority to KR1020197026733A priority patent/KR102340959B1/en
Publication of WO2018186362A1 publication Critical patent/WO2018186362A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • G03F7/2043Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means with the production of a chemical active agent from a fluid, e.g. an etching agent; with meterial deposition from the fluid phase, e.g. contamination resists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to an etching solution and etching method for a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler.
  • Insulating resin compositions containing these inorganic fillers and alkali-insoluble resins have excellent physical properties such as heat resistance, dielectric properties, mechanical strength, and chemical resistance, and are used for the outer layer surface of circuit boards. Widely used as an interlayer insulating material used for resists and multilayer build-up wiring boards.
  • FIG. 1 is a schematic cross-sectional structure diagram of a solder resist pattern in which a portion other than connection pads 3 to be soldered on a circuit board is covered with a resin composition layer 4.
  • the structure shown in FIG. 1 is called an SMD (Solder Masked Defined) structure, and is characterized in that the opening of the resin composition layer 4 is smaller than the connection pad 3.
  • the structure shown in FIG. 2 is said to be an NSMD (Non Solder Masked Defined) structure, and is characterized in that the opening of the resin composition layer 4 is larger than the connection pad 3.
  • the opening of the resin composition layer 4 in FIG. 1 is formed by removing a part of the resin composition layer.
  • a processing method for removing the resin composition layer containing a resin composition containing an inorganic filler and an alkali-insoluble resin a known method such as drilling, laser, plasma, blasting or the like can be used. Moreover, these methods can also be combined as needed. Among them, processing by a laser such as a carbon dioxide laser, excimer laser, UV laser, YAG laser, etc. is the most common, and a part of the resin composition layer 4 is removed by laser light irradiation to form a through hole for forming a through hole. Through holes and non-through holes such as openings for forming via holes and openings for forming connection pads 3 can be formed (see, for example, Patent Documents 1 and 2).
  • thermosetting resin in the resin composition layer against this heat generation, but if the thermosetting resin is used, cracks may easily occur in the resin composition layer. .
  • a method of removing the resin composition layer by a wet blast method may be mentioned. After forming a resin composition layer on a circuit board having a connection pad on an insulating substrate, applying a curing treatment, and providing a resin layer for forming a wet blast mask on the resin composition layer, By performing exposure and development, a patterned wet blast mask is formed. Next, the resin composition layer is removed by wet blasting to form an opening, and then the wet blasting mask is removed (see, for example, Patent Document 3).
  • the thickness that can be polished by one blasting is small, and it is necessary to repeat blasting multiple times. Therefore, not only does the time required for polishing become very long, but it is also difficult to make the in-plane polishing amount uniform. Further, it is extremely difficult to perform processing with high accuracy so that the resin composition layer residue is not left on the connection pad or the insulating substrate, and is completely exposed.
  • the resin composition layer containing the resin composition is free from defects due to excessive heat generation, and only the resin composition layer is removed. It is an object of the present invention to provide an etching solution and an etching method that can be performed.
  • etching solution for a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler characterized in that the etching solution contains 15 to 45% by mass of an alkali metal hydroxide.
  • ⁇ 4> The etching solution according to any one of ⁇ 1> to ⁇ 3>, wherein the etching solution contains 5 to 40% by mass of an ethanolamine compound.
  • the ethanolamine compound is at least selected from the group consisting of ethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, N-methylethanolamine, N-ethylethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine.
  • the etching solution according to ⁇ 4> which is one kind of compound.
  • the ethanolamine compound is at least selected from the group consisting of ethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, N-methylethanolamine, N-ethylethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine.
  • Etching solution for resin composition as described in ⁇ 4> which is a compound of two types.
  • the etching solution for a resin composition according to ⁇ 6> which contains at least N- ( ⁇ -aminoethyl) ethanolamine as the ethanolamine compound.
  • the resin composition layer is formed using the etching solution according to any one of ⁇ 1> to ⁇ 7>.
  • An etching method comprising a step of removing.
  • a method for etching a resin composition layer containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler (A) a step of removing a part of the resin composition layer with the etching solution according to any one of ⁇ 4> to ⁇ 7>; (B) a step of completely removing the remaining resin composition layer with a water washing removal solution containing an alkali metal hydroxide and an ethanolamine compound; The etching method characterized by including these in this order.
  • the content of the alkali metal hydroxide in the water washing removal liquid is less than the content of the alkali metal hydroxide in the etching liquid.
  • the content of the ethanolamine compound in the water washing removal liquid is less than the content of the ethanolamine compound in the etching liquid.
  • the schematic cross-section figure of a soldering resist pattern The schematic cross-section figure of a soldering resist pattern. Sectional process drawing which shows an example of the etching method of this invention.
  • the etching solution of the present invention is an etching solution for a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, and is an alkaline aqueous solution containing 15 to 45% by mass of an alkali metal hydroxide. . Since alkali-insoluble resins have the property of not dissolving in alkaline aqueous solution, they cannot be removed by alkaline aqueous solution. However, the resin composition containing an alkali-insoluble resin can be removed by using the etching solution of the present invention.
  • the inorganic filler in the highly filled resin composition that is, the inorganic filler filled in the resin composition at a high content of 50 to 80% by mass is a high concentration alkali metal hydroxide. This is because it is dissolved and removed by the aqueous solution containing the.
  • the content of alkali metal hydroxide is more preferably 20 to 45% by mass, and further preferably 25 to 40% by mass.
  • a coupling agent, a leveling agent, a colorant, a surfactant, an antifoaming agent, an organic solvent and the like can be appropriately added to the etching solution of the present invention as necessary.
  • organic solvents include ketones such as acetone, methyl ethyl ketone, and cyclohexanone; acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; carbitols such as cellosolve and butyl carbitol; Aromatic hydrocarbons such as toluene and xylene; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. Of these, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like are preferable because of the large swellability of the alkali-insoluble resin.
  • the etching solution of the present invention is an etching solution for a resin composition containing an alkali-insoluble resin and an inorganic filler.
  • the content of the inorganic filler in the resin composition is 50 to 80% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
  • etching does not proceed because there are too few inorganic fillers as sites to be dissolved by the aqueous solution containing the alkali metal hydroxide with respect to the entire resin composition.
  • content of an inorganic filler exceeds 80 mass%, there exists a tendency for flexibility to fall by the fall of the fluidity
  • alkali metal hydroxide at least one compound selected from the group consisting of potassium hydroxide, sodium hydroxide and lithium hydroxide is preferably used.
  • the alkali metal hydroxide one of these may be used alone, or two or more may be used in combination.
  • the etching solution of the present invention preferably contains 5 to 40% by mass of an ethanolamine compound in addition to the alkali metal hydroxide.
  • an etching solution containing an ethanolamine compound When an etching solution containing an ethanolamine compound is used, the ethanolamine compound penetrates into the resin composition, thereby promoting the swelling of the resin composition, accelerating the dissolution and removal of the inorganic filler, and the resin composition. Removal speed increases.
  • the content of the ethanolamine compound is less than 5% by mass, the swellability of the alkali-insoluble resin is poor, and the removal rate of the resin composition does not change compared to the case where the content of the ethanolamine compound is 0% by mass.
  • the content of the ethanolamine compound exceeds 40% by mass, the compatibility with water becomes low and phase separation is likely to occur, so the etching solution may have poor stability over time.
  • the content of the ethanolamine compound is more preferably 20 to 40% by mass, and further preferably 25 to 35% by mass.
  • the ethanolamine compound is a primary amine ethanolamine; a mixture of a primary amine and a secondary amine (that is, having a primary amino group and a secondary amino group in one molecule).
  • At least one kind of compound is preferably used.
  • the ethanolamine compound one of these may be used alone, or two or more may be used in combination. When two or more types are used in combination, one of them is preferably N- ( ⁇ -aminoethyl) ethanolamine. This is because N- ( ⁇ -aminoethyl) ethanolamine has a higher effect of promoting the swelling of the resin composition than other ethanolamine compounds.
  • Ethanolamine which has a high effect of promoting the swelling of the resin composition, easily causes an undercut in the cross-sectional shape of the resin composition layer removed by etching. Therefore, an undercut suppression effect can be achieved by combining with an ethanolamine compound that has a low effect of promoting swelling of the resin composition.
  • Examples of ethanolamine having a high effect of promoting swelling of the resin composition include N- ( ⁇ -aminoethyl) ethanolamine and N-methylethanolamine.
  • Examples of the ethanolamine compound having a low effect of promoting the swelling of the resin composition include ethanolamine, N-ethylethanolamine, N-ethyldiethanolamine and the like.
  • the etching solution of the present invention is an alkaline aqueous solution.
  • water used for the etching solution of the present invention tap water, industrial water, pure water, or the like can be used. Of these, it is preferable to use pure water. In the present invention, pure water generally used for industrial use can be used.
  • the etching solution of the present invention is preferably used in the range of 60 to 90 ° C.
  • the optimum temperature differs depending on the type of the resin composition, the thickness of the resin composition layer containing the resin composition, the shape of the pattern obtained by processing to remove the resin composition, etc. More preferably, the temperature is 60 to 85 ° C, and further preferably 70 to 85 ° C.
  • examples of the inorganic filler include silicates such as silica, glass, clay and mica; oxides such as alumina, magnesium oxide, titanium oxide and silica; carbonates such as magnesium carbonate and calcium carbonate; water Examples thereof include hydroxides such as aluminum oxide, magnesium hydroxide and calcium hydroxide; sulfates such as barium sulfate and calcium sulfate. Further, examples of the inorganic filler include aluminum borate, aluminum nitride, boron nitride, strontium titanate, barium titanate and the like.
  • At least one compound selected from the group consisting of silica, glass, clay and aluminum hydroxide is more preferably used because it is dissolved in an aqueous solution containing an alkali metal hydroxide.
  • Silica is more preferable in terms of excellent low thermal expansion, and spherical fused silica is particularly preferable.
  • the inorganic filler one of these may be used alone, or two or more may be used in combination.
  • the alkali-insoluble resin in the present invention will be described.
  • the alkali-insoluble resin is not particularly limited except that it is not dissolved or dispersed in the aqueous alkali solution. Specifically, it is a resin having a very low content of a carboxyl group-containing resin or the like necessary for dissolving in an alkaline aqueous solution, and an acid value (JIS K2501) that serves as an index of the content of free carboxyl groups in the resin. : 2003) is less than 40 mg KOH / g. More specifically, the alkali-insoluble resin is a resin containing an epoxy resin and a thermosetting agent that cures the epoxy resin.
  • alkaline aqueous solutions include alkali metal silicates, alkali metal hydroxides, alkali metal phosphates, alkali metal carbonates, ammonium phosphates, aqueous solutions containing inorganic alkaline compounds such as ammonium carbonate, monoethanolamine, Organics such as diethanolamine, triethanolamine, methylamine, dimethylamine, ethylamine, diethylamine, triethylamine, cyclohexylamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide (choline)
  • TMAH tetramethylammonium hydroxide
  • TMAH tetraethylammonium hydroxide
  • choline trimethyl-2-hydroxyethylammonium hydroxide
  • An aqueous solution containing an alkaline compound may be mentioned.
  • the epoxy resin examples include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin; novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolak type epoxy resin Can be mentioned. Further, examples of the epoxy resin include biphenyl type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, fluorene type epoxy resin and the like. As the epoxy resin, one of these may be used alone, or two or more may be used in combination.
  • thermosetting agent is not particularly limited as long as it has a function of curing the epoxy resin, but as a preferable one, a phenolic curing agent, a naphthol curing agent, an active ester curing agent, a benzoxazine curing agent, Examples include cyanate ester resins.
  • a phenolic curing agent a naphthol curing agent
  • an active ester curing agent a benzoxazine curing agent
  • cyanate ester resins examples include cyanate ester resins.
  • one of these may be used alone, or two or more may be used in combination.
  • a curing accelerator can be further contained.
  • the curing accelerator include organic phosphine compounds, organic phosphonium salt compounds, imidazole compounds, amine adduct compounds, tertiary amine compounds, and the like.
  • the curing accelerator one of these may be used alone, or two or more may be used in combination.
  • cyanate ester resin as a thermosetting agent, you may add the organometallic compound used as a curing catalyst in order to shorten hardening time.
  • the organic metal compound include an organic copper compound, an organic zinc compound, and an organic cobalt compound.
  • an etching solution of the present invention when used to etch a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, the inorganic filler in the highly filled resin composition Is dissolved and removed by an aqueous solution containing a high concentration of alkali metal hydroxide, whereby the removal of the resin composition proceeds. Furthermore, when the etching solution of the present invention contains an ethanolamine compound, the ethanolamine compound penetrates into the resin composition, whereby the swelling of the resin composition is promoted and the dissolution and removal of the inorganic filler is accelerated. .
  • a resin composition containing an alkali-insoluble resin and an inorganic filler can form an insulating resin composition layer by thermosetting.
  • etching using the etching solution of the present invention is A-stage (of curing reaction). It progresses in the state of B stage (intermediate stage of curing reaction) or before the start. Even in the A stage or the B stage, the alkali-insoluble resin is not dissolved or dispersed in the etching solution of the present invention, but the resin composition can be removed by dissolving and removing the inorganic filler with the etching solution of the present invention. proceed.
  • thermosetting conditions from the A stage to the B stage are 10 to 60 minutes at 100 to 160 ° C., more preferably 10 to 60 minutes at 100 to 130 ° C., but are not limited thereto. .
  • thermosetting When heated at a high temperature exceeding 160 ° C., thermosetting further proceeds and resin etching becomes difficult.
  • FIG. 3 is a cross-sectional process diagram illustrating an example of the etching method of the present invention.
  • a solder resist pattern in which a part or all of the solder connection pads 3 on the circuit board is covered with the resin composition layer 4 can be formed.
  • step (I) the copper foil on the surface of the copper clad laminate is patterned by etching to form a conductor pattern, and the circuit board 1 having the solder connection pads 3 is formed.
  • step (II) the resin composition layer 4 with the copper foil 6 is formed on the surface of the circuit board 1 so as to cover the entire surface.
  • step (III) the copper foil 6 on the resin composition layer 4 is patterned by etching to form a metal mask 5 for etching the resin composition layer.
  • step (IV) the resin composition layer 4 is etched through the metal mask 5 with the etching liquid for the resin composition layer until part or all of the solder connection pads 3 are exposed.
  • the metal mask 5 is removed by etching, and a solder resist pattern in which part or all of the solder connection pads 3 are covered with the resin composition layer 4 is formed.
  • the etching method ⁇ 8> of the present invention includes a step of removing the resin composition layer with the etching liquid according to any one of the etching liquids ⁇ 1> to ⁇ 7> of the present invention.
  • the etching method ⁇ 9> of the present invention includes (A) a step of removing a part of the resin composition layer with the etching liquid according to any one of the etching liquids ⁇ 4> to ⁇ 7> of the present invention, (B) Resin composition layer remaining by washing and removing liquid containing alkali metal hydroxide and ethanolamine compound, the contents of which are less than the contents of alkali metal hydroxide and ethanolamine compound in the etching solution, respectively.
  • a step of completely removing Are included in this order.
  • the resin composition layer contains an alkali-insoluble resin and an inorganic filler
  • the content of the inorganic filler is 50 to 80% by mass with respect to the resin composition layer
  • the inorganic filler is high.
  • the resin composition layer is filled with the content.
  • This inorganic filler is dissolved and removed by an etching solution which is an aqueous solution containing a high concentration alkali metal hydroxide of 15 to 45 mass%.
  • the ethanolamine compound contained in the etching solution penetrates into the resin composition layer, the swelling of the resin composition layer is promoted to accelerate the dissolution and removal of the inorganic filler, and the resin composition Increases layer removal rate.
  • the removal of the resin composition layer proceeds when the inorganic filler filled with a high content is gradually dissolved from the surface layer of the resin composition layer and the alkali-insoluble resin is dispersed.
  • the etching solution used in the step (A) in the etching method ⁇ 9> of the present invention contains a high concentration alkali metal hydroxide of 15% by mass or more and has a large hydration power, the resin composition The alkali-insoluble resin in the deeper part of the layer is not dispersed, and the part close to the surface layer is removed. That is, “removing a part of the resin composition layer” in the step (A) means removing a part close to the surface layer of the resin composition layer.
  • the treatment with a water washing removal liquid having a low content of alkali metal hydroxide promotes the dispersion of the alkali-insoluble resin, and the remaining resin composition layer is completely removed. Removed.
  • the dissolution and removal of the inorganic filler with an aqueous solution containing an alkali metal hydroxide, and the penetration and swelling of the resin composition layer with an ethanolamine compound proceed continuously.
  • the speed of progress varies depending on the type and content of the alkali metal hydroxide or the type and content of the ethanolamine compound.
  • the water washing removal liquid concerning the step (B) contains an alkali metal hydroxide and an ethanolamine compound, and their contents are less than the contents of the alkali metal hydroxide and the ethanolamine compound in the etching liquid, respectively. It is.
  • the content of the alkali metal hydroxide and the ethanolamine compound in the water removal solution used in the step (B) is equal to or more than the content of the alkali metal hydroxide and the ethanolamine compound in the etching solution used in the step (A). In such a case, there arises a problem that it becomes difficult to control the etching amount of the resin composition layer.
  • the alkali metal hydroxide and ethanolamine compound used in step (A) and the alkali metal hydroxide and ethanolamine compound used in step (B) may be the same or different. Although it is good, usually, two steps are performed continuously, and when the process shifts, considering that mixing from the etching solution in step (A) to the water washing removal solution in step (B) occurs, the same alkali Typically, metal hydroxides and ethanolamine compounds are included.
  • the treatment temperature in step (A) is preferably 60 to 90 ° C.
  • the treatment temperature in step (B) is preferably 15 to 50 ° C.
  • the “treatment temperature” refers to the temperature of the etching solution used in the step (A) and the temperature of the water washing removal solution used in the step (B).
  • the optimum processing temperature varies depending on the type of the resin composition, the thickness of the resin composition layer, the shape of the pattern obtained by performing the processing for removing the resin composition layer, and the like.
  • the treatment temperature in the step (A) is more preferably 60 to 85 ° C, still more preferably 70 to 85 ° C.
  • the treatment temperature in the step (B) is more preferably 15 to 40 ° C., further preferably 15 to 30 ° C.
  • a method such as immersion treatment, paddle treatment, spray treatment, brushing or scraping can be used for the step of removing the resin composition layer.
  • immersion treatment is preferable.
  • bubbles are likely to be generated in the etching solution, and the bubbles may adhere to the surface of the resin composition layer and cause etching failure.
  • the method other than the immersion treatment tends to cause a large change in the temperature of the etching solution, and the removal rate of the resin composition layer may vary.
  • the etching solution remaining on the surface of the resin composition layer is washed by washing with water.
  • a spray method is preferable from the viewpoint of diffusion rate and liquid supply uniformity.
  • flush water tap water, industrial water, pure water or the like can be used. Of these, it is preferable to use pure water. Pure water that is generally used for industrial purposes can be used. Among these, it is preferable to use pure water. Pure water that is generally used for industrial purposes can be used.
  • the temperature of the washing water is not more than the temperature of the etching solution, and the temperature difference is preferably 40 to 50 ° C., more preferably the temperature difference is 50 to 60 ° C.
  • Example 1 As inorganic filler, fused silica 78% by mass, as epoxy resin, 10% by mass of biphenyl aralkyl type epoxy resin, as thermosetting agent, 10% by mass of phenol novolac type cyanate resin, as curing accelerator, 1% by mass of triphenylphosphine, In addition, a coupling agent and a leveling agent were added to a total amount of 100% by mass, and methyl ethyl ketone and cyclohexanone were mixed as a medium to obtain a liquid resin composition.
  • an A-stage resin composition layer having a film thickness of 20 ⁇ m and comprising a resin composition containing an alkali-insoluble resin and an inorganic filler was formed.
  • the polyethylene terephthalate film is peeled from the resin composition layer with the copper foil, and the temperature is 100 ° C. and the pressure is 1.0 MPa using a vacuum thermocompression laminator on the epoxy resin glass cloth substrate on which the conductor pattern is formed.
  • a B-stage resin composition layer was formed by heating at 100 ° C. for 30 minutes.
  • the copper foil on the resin composition layer is patterned by etching, an opening is formed in a predetermined region of the copper foil, and a resin composition layer with a metal mask is used as a metal mask for etching the resin composition layer.
  • a resin composition layer with a metal mask is used as a metal mask for etching the resin composition layer.
  • the resin composition layer was subjected to an etching treatment by an immersion treatment with an etching solution described in Table 1 through a metal mask. After the etching treatment, the etching solution remaining on the surface of the resin composition layer was washed by a spray treatment with pure water. Table 1 shows the temperature of the etching solution and the time required for the etching process.
  • Presence / absence of resin residue and “presence / absence of undercut” were evaluated according to the following criteria.
  • Presence or absence of resin residue on the conductor pattern surface ⁇ : No resin composition remains on the surface of the conductor pattern.
  • delta Although the trace amount resin composition remains on the conductor pattern surface, the level which can be easily removed by post-processing, such as a plasma cleaning process.
  • X Level at which many resin compositions remain on the surface of the conductor pattern and are not removed by post-treatment.
  • Presence or absence of resin residue on epoxy resin glass cloth substrate ⁇ : No resin composition remains on the substrate.
  • Example 4 Etching was performed in the same manner as in Example 1 except that the content of fused silica was 65% by mass and the content of the biphenyl aralkyl epoxy resin was 23% by mass.
  • Example 5 Etching was performed in the same manner as in Example 1 except that the content of fused silica was 50% by mass and the content of the biphenyl aralkyl type epoxy resin was 38% by mass.
  • Examples 6 to 8 Etching was performed in the same manner as in Example 5 except that glass, clay, and aluminum hydroxide were used as the inorganic filler instead of fused silica.
  • Example 9 to 21 Etching treatment was performed in the same manner as in Example 1 except that the etching solutions listed in Table 1 were used as the etching solution.
  • Comparative Example 1 Etching treatment was performed in the same manner as in Example 1 except that the content of fused silica was 48 mass% and the content of the biphenyl aralkyl type epoxy resin was 40 mass%. Although the etching time was extended to 30 minutes, a large amount of resin remained on the surface of the conductor pattern and on the epoxy resin glass cloth substrate, and the resin composition layer could not be etched. The results are shown in Table 2. (Comparative Examples 2 to 4) In Comparative Example 2, the content of potassium hydroxide in the etching solution was 10% by mass.
  • the resin composition layer does not have defects such as deformation and alteration, and scratches are not generated on the connection pads.
  • the resin composition layer could be etched without leaving the conductive pattern on the epoxy resin glass cloth substrate without leaving a conductive composition level on the epoxy resin glass cloth substrate when the layer was etched. .
  • Example 17 and 18 in which sodium hydroxide and lithium hydroxide were used instead of the potassium hydroxide of Example 1, an undercut at a level causing a practical problem did not occur.
  • Example 19 compared with Example 10, since the temperature of the etching solution was increased, the etching time was shortened, but a practically problematic level resin composition remained on the epoxy resin glass cloth substrate. The resin composition layer could be etched.
  • Example 20 and 21 since the temperature of the etching solution was lowered as compared with Example 10, the etching time became longer, but undercutting at a level causing a practical problem did not occur. (Examples 22 to 28)
  • Etching treatment was performed in the same manner as in Example 1 except that the etching solutions listed in Table 3 were used as the etching solution.
  • Example 29 Etching was performed in the same manner as in Example 22 except that the content of fused silica was 50% by mass and the content of the biphenyl aralkyl type epoxy resin was 38% by mass.
  • Examples 30 to 32 Etching was performed in the same manner as in Example 29 except that glass, clay and aluminum hydroxide were used as the inorganic filler instead of fused silica.
  • Examples 33 and 34 Etching treatment was performed in the same manner as in Example 22 except that the etching solutions listed in Table 3 were used as the etching solution.
  • the resin composition layer does not have defects such as deformation and alteration, and scratches are not generated on the connection pads.
  • the resin composition layer could be etched without leaving the conductive pattern on the epoxy resin glass cloth substrate without leaving a conductive composition level on the epoxy resin glass cloth substrate when the layer was etched. .
  • Example 22 From the comparison of Examples 22 and 25 to 28, the etching time was short in Examples 22, 25 and 26 in which the etching solution for the resin composition contained N- ( ⁇ -aminoethyl) ethanolamine as the ethanolamine compound. Undercut did not occur.
  • Example 27 in which the etching solution for the resin composition did not contain N- ( ⁇ -aminoethyl) ethanolamine as the ethanolamine compound, a small undercut occurred, and the etching solution for the resin composition was ethanol.
  • Example 28 which did not contain N- ( ⁇ -aminoethyl) ethanolamine as the amine compound, undercut did not occur, but the etching time was long.
  • Example 29 since the content of fused silica was reduced as compared with Example 22, the etching time was increased, but undercut did not occur.
  • Example 35 In Example 1, a part of the resin composition layer was etched with an etching solution (treatment temperature 80 ° C.) containing 30% by mass of potassium hydroxide and 30% by mass of N- ( ⁇ -aminoethyl) ethanolamine through a metal mask. Was removed (step (A)). Thereafter, the remaining resin composition layer is completely removed by a water washing removal solution (treatment temperature 20 ° C.) containing 0.3% by mass of potassium hydroxide and 0.3% by mass of N- ( ⁇ -aminoethyl) ethanolamine. (Step (B)).
  • Step (B) the etching solution remaining on the surface of the resin composition layer was washed by spraying with pure water.
  • Step (A) and step (B) were both performed by immersion treatment. Compared with Example 10 not including the step (B), it was confirmed that the resin composition layer was removed by etching without leaving the resin composition layer on the epoxy resin glass cloth substrate including the surface of the conductor pattern. In addition, an undercut at a level causing a practical problem was not confirmed.
  • Tables 4 and 5 show the temperature of the etching solution and the time required for the etching process.
  • Examples 36 to 46 Etching treatment was performed in the same manner as in Example 35, except that the composition of the etching solution in step (A) and / or the water washing removal solution in step (B) was changed to the formulation shown in Table 4 and Table 5. . Comparing Examples 36 to 39 and Example 35, the time taken for the resin composition layer to be removed by etching was shortened as the content of potassium hydroxide in the etching solution increased. In addition, when Examples 40 to 46 and Example 35 were compared, the time until removal by etching was changed by changing the type of ethanolamine compound and alkali metal hydroxide in the etching solution. There was no practically problematic level of the resin composition remaining on the fabric substrate, and no undercut occurred.
  • Example 37 and 39 when the content of potassium hydroxide or ethanolamine compound increased, a tendency to generate minute undercuts on the bottom surface was observed, but there was no practical problem. It was a level.
  • Example 47 and 48 Etching treatment was performed in the same manner as in Example 35 except that the content of fused silica was 65% by mass and 50% by mass, and the content of the biphenyl aralkyl type epoxy resin was 23% by mass and 38% by mass. . As the content of fused silica decreased, the time taken for all the resin composition layers to be removed by etching increased, but in both cases, the resin composition did not remain on the epoxy resin glass cloth substrate, Cut did not occur.
  • Examples 49 to 51 Etching was performed in the same manner as in Example 35 except that glass, clay, and aluminum hydroxide were used as the inorganic filler instead of fused silica. Although it took a long time to remove all the resin composition layers by etching, none of the resin compositions remained on the epoxy resin glass cloth base material, and no undercut occurred.
  • Examples 52 to 58 Etching treatment was performed in the same manner as in Example 35 except that the treatment temperature in step (A) or step (B) was changed to the temperature described in Table 4 or Table 5. Comparing Examples 52 to 54 and Example 35, the processing temperature in the step (A) was lowered. Therefore, the time taken for the resin composition layer to be removed by etching was increased.
  • Example 59 Etching treatment was performed in the same manner as in Example 35 except that the etching liquid described in Table 6 or 7 was used as the etching liquid. Compared with Example 22 which does not include the step (B), it was confirmed that the resin composition layer was etched away without remaining on the epoxy resin glass cloth substrate including the conductor pattern surface. In addition, an undercut at a level causing a practical problem was not confirmed. Tables 6 and 7 show the temperature of the etching solution and the time required for the etching process.
  • Example 60 to 65 Etching treatment was performed in the same manner as in Example 59, except that the composition of the etching solution in step (A) and / or the water washing removal solution in step (B) was changed to the formulation shown in Table 6 and Table 7. . From a comparison of Examples 59 and 62 to 65, in Examples 59, 62 and 63 in which the etching solution for the resin composition contains N- ( ⁇ -aminoethyl) ethanolamine as the ethanolamine compound, the etching time is short. Undercut did not occur.
  • Example 64 in which the etching solution for the resin composition did not contain N- ( ⁇ -aminoethyl) ethanolamine as the ethanolamine compound, a small undercut occurred, and the etching solution for the resin composition was ethanol.
  • Example 65 not containing N- ( ⁇ -aminoethyl) ethanolamine as the amine compound, undercut did not occur, but the etching time was long.
  • Example 66 Etching treatment was performed in the same manner as in Example 59 except that the content of fused silica was 50% by mass and the content of the biphenyl aralkyl type epoxy resin was 38% by mass. Compared with Example 59, since the content of fused silica was reduced, the etching time was longer, but no undercut occurred.
  • Example 67 to 69 Etching was performed in the same manner as in Example 59 except that glass, clay, and aluminum hydroxide were used as the inorganic filler instead of fused silica. Although etching was possible, the etching time was longer than that of fused silica. Undercut did not occur.
  • Examples 70 to 71 Etching treatment was performed in the same manner as in Example 59 except that the etching solutions shown in Table 6 or Table 7 were used as the etching solutions. Even when sodium hydroxide or lithium hydroxide was used instead of potassium hydroxide, undercut did not occur.
  • the etching solution of the present invention can etch an insulating resin composition layer excellent in heat resistance, dielectric properties, mechanical strength, chemical resistance, etc. filled with a high content of inorganic filler, for example, It can be applied to fine processing of insulating resin in multilayer build-up wiring boards, component built-in module substrates, flip chip package substrates, package substrate mounting motherboards, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

The present invention addresses the problem of providing an etchant or etching method which, when used in processing for removing a resin composition comprising an alkali-insoluble resin and an inorganic filler, is capable of removing only a resin composition layer comprising said resin composition, while preventing the resin composition layer from heating up excessively to cause defects. The etchant, which is for a resin composition comprising an alkali-insoluble resin and 50-80 mass% inorganic filler, contains 15-45 mass% alkali metal hydroxide. More preferably, the etchant further contains 5-40 mass% ethanolamine compound. The etching method comprises using the etchant to remove the resin composition comprising an alkali-insoluble resin and an inorganic filler.

Description

樹脂組成物用のエッチング液及びエッチング方法Etching solution and etching method for resin composition
 本発明は、アルカリ不溶性樹脂及び50~80質量%の無機充填材を含む樹脂組成物用のエッチング液及びエッチング方法に関する。 The present invention relates to an etching solution and etching method for a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler.
 近年、電子機器の小型化、高性能化に伴って、回路基板において、微細配線形成や熱膨張係数の低下が強く求められている。その中で、絶縁材料の低熱膨張係数化の手段として、絶縁材料を高充填化する、すなわち、絶縁材料における無機充填材の含有量を高くする方法が知られている。さらに、絶縁材料として、エポキシ樹脂、フェノールノボラック系硬化剤、フェノキシ樹脂、シアネート樹脂等を含み、耐湿性に優れたアルカリ不溶性樹脂の使用が提案されている。これらの無機充填材及びアルカリ不溶性樹脂を含む絶縁性の樹脂組成物は、耐熱性、誘電特性、機械強度、耐化学薬品性等に優れた物性を有し、回路基板の外層表面に用いられるソルダーレジストや多層ビルドアップ配線板に用いられる層間絶縁材料として広く使用されている。 In recent years, with the miniaturization and high performance of electronic devices, there is a strong demand for the formation of fine wiring and a reduction in the thermal expansion coefficient in circuit boards. Among them, as a means for reducing the thermal expansion coefficient of the insulating material, a method of increasing the filling of the insulating material, that is, increasing the content of the inorganic filler in the insulating material is known. Furthermore, it has been proposed to use an alkali-insoluble resin having excellent moisture resistance, including an epoxy resin, a phenol novolac curing agent, a phenoxy resin, a cyanate resin, and the like as an insulating material. Insulating resin compositions containing these inorganic fillers and alkali-insoluble resins have excellent physical properties such as heat resistance, dielectric properties, mechanical strength, and chemical resistance, and are used for the outer layer surface of circuit boards. Widely used as an interlayer insulating material used for resists and multilayer build-up wiring boards.
 図1は、回路基板上において半田付けする接続パッド3以外を、樹脂組成物層4で覆ったソルダーレジストパターンの概略断面構造図である。図1に示す構造はSMD(Solder Masked Defined)構造と言われ、樹脂組成物層4の開口部が接続パッド3よりも小さいことを特徴としている。図2に示す構造は、NSMD(Non Solder Masked Defined)構造と言われ、樹脂組成物層4の開口部が接続パッド3よりも大きいことを特徴としている。 FIG. 1 is a schematic cross-sectional structure diagram of a solder resist pattern in which a portion other than connection pads 3 to be soldered on a circuit board is covered with a resin composition layer 4. The structure shown in FIG. 1 is called an SMD (Solder Masked Defined) structure, and is characterized in that the opening of the resin composition layer 4 is smaller than the connection pad 3. The structure shown in FIG. 2 is said to be an NSMD (Non Solder Masked Defined) structure, and is characterized in that the opening of the resin composition layer 4 is larger than the connection pad 3.
 図1における樹脂組成物層4の開口部は、樹脂組成物層の一部を除去することによって形成される。無機充填材及びアルカリ不溶性樹脂を含む樹脂組成物を含有してなる樹脂組成物層を除去する加工方法としては、ドリル、レーザー、プラズマ、ブラスト等の公知の方法を用いることができる。また、必要に応じてこれらの方法を組み合わせることもできる。中でも、炭酸ガスレーザー、エキシマレーザー、UVレーザー、YAGレーザー等のレーザーによる加工が最も一般的であり、レーザー光照射によって、樹脂組成物層4の一部を除去し、スルーホール形成用の貫通孔、バイアホール形成用の開口部、接続パッド3形成用の開口部等の貫通孔や非貫通孔を形成することができる(例えば、特許文献1及び2参照)。 The opening of the resin composition layer 4 in FIG. 1 is formed by removing a part of the resin composition layer. As a processing method for removing the resin composition layer containing a resin composition containing an inorganic filler and an alkali-insoluble resin, a known method such as drilling, laser, plasma, blasting or the like can be used. Moreover, these methods can also be combined as needed. Among them, processing by a laser such as a carbon dioxide laser, excimer laser, UV laser, YAG laser, etc. is the most common, and a part of the resin composition layer 4 is removed by laser light irradiation to form a through hole for forming a through hole. Through holes and non-through holes such as openings for forming via holes and openings for forming connection pads 3 can be formed (see, for example, Patent Documents 1 and 2).
 しかしながら、レーザー光の照射による加工では、例えば、炭酸ガスレーザーを用いた場合、多くのショット数が必要となり、後処理としてクロム酸、過マンガン酸塩等の水溶液からなる酸化剤を用いてデスミア処理を行う必要がある。また、エキシマレーザーを用いた場合、加工に要する時間が非常に長くなる。さらに、UV-YAGレーザーの場合、他のレーザー光に比べ、微細加工ができるという点では優位性があるが、樹脂組成物層だけでなく、近隣に存在する金属層も同時に除去してしまうという問題があった。 However, in processing by laser light irradiation, for example, when a carbon dioxide laser is used, a large number of shots are required, and desmear treatment is performed using an oxidizing agent composed of an aqueous solution such as chromic acid or permanganate as a post-treatment. Need to do. Moreover, when an excimer laser is used, the time required for processing becomes very long. Furthermore, in the case of a UV-YAG laser, there is an advantage in that fine processing can be performed as compared with other laser beams, but not only the resin composition layer but also a nearby metal layer is removed at the same time. There was a problem.
 また、レーザー光が樹脂組成物層に照射されると、照射部位において光エネルギーが物体に吸収され、比熱に応じて物体が過度に発熱し、この発熱によって、樹脂の溶解、変形、変質、変色等の欠点が発生する場合があった。また、この発熱に対して、樹脂組成物層中に熱硬化性樹脂を用いることが提案されているが、熱硬化性樹脂を用いると樹脂組成物層にクラックが発生しやすくなる場合があった。 In addition, when the resin composition layer is irradiated with laser light, light energy is absorbed by the object at the irradiated part, and the object excessively generates heat according to the specific heat, and this heat generation causes the resin to dissolve, deform, alter, and discolor. In some cases, such defects may occur. In addition, it has been proposed to use a thermosetting resin in the resin composition layer against this heat generation, but if the thermosetting resin is used, cracks may easily occur in the resin composition layer. .
 レーザー光照射以外の方法として、ウェットブラスト法によって、樹脂組成物層を除去する方法が挙げられる。絶縁性基板上に接続パッドを有する回路基板上に樹脂組成物層を形成したのち、硬化処理を施し、樹脂組成物層上に、ウェットブラスト用マスクを形成するための樹脂層を設けたのち、露光、現像することで、パターン状のウェットブラスト用マスクを形成する。次いで、ウェットブラストを行うことで樹脂組成物層を除去し、開口部を形成し、続いて、ウェットブラスト用マスクを除去している(例えば、特許文献3参照。 As a method other than the laser beam irradiation, a method of removing the resin composition layer by a wet blast method may be mentioned. After forming a resin composition layer on a circuit board having a connection pad on an insulating substrate, applying a curing treatment, and providing a resin layer for forming a wet blast mask on the resin composition layer, By performing exposure and development, a patterned wet blast mask is formed. Next, the resin composition layer is removed by wet blasting to form an opening, and then the wet blasting mask is removed (see, for example, Patent Document 3).
 しかしながら、ウェットブラストによる加工では、1回のブラスト処理で研磨できる厚みが少なく、複数回のブラスト処理を繰り返す必要がある。そのため、研磨にかかる時間が非常に長くなるだけでなく、面内の研磨量を均一にすることが難しかった。さらに、接続パッド上や絶縁性基板上に樹脂組成物層の残渣を残さず、完全に露出させるような精度の高い加工は極めて困難であった。 However, in the processing by wet blasting, the thickness that can be polished by one blasting is small, and it is necessary to repeat blasting multiple times. Therefore, not only does the time required for polishing become very long, but it is also difficult to make the in-plane polishing amount uniform. Further, it is extremely difficult to perform processing with high accuracy so that the resin composition layer residue is not left on the connection pad or the insulating substrate, and is completely exposed.
特開2003-101244号公報JP 2003-101244 A 国際公開第2017/038713号パンフレットInternational Publication No. 2017/038713 Pamphlet 特開2008-300691号公報JP 2008-300691 A
 アルカリ不溶性樹脂及び無機充填剤を含む樹脂組成物を除去する加工において、該樹脂組成物を含有してなる樹脂組成物層に過度な発熱による欠点の発生が無く、且つ樹脂組成物層だけを除去することができるエッチング液及びエッチング方法を提供することが本発明の課題である。 In the process of removing the resin composition containing the alkali-insoluble resin and the inorganic filler, the resin composition layer containing the resin composition is free from defects due to excessive heat generation, and only the resin composition layer is removed. It is an object of the present invention to provide an etching solution and an etching method that can be performed.
 本発明者らは、下記手段によって、上記課題を解決できることを見出した。
<1>アルカリ不溶性樹脂及び50~80質量%の無機充填剤を含む樹脂組成物用のエッチング液において、該エッチング液が、15~45質量%のアルカリ金属水酸化物を含有することを特徴とするエッチング液。
<2>アルカリ金属水酸化物が、水酸化カリウムと、水酸化ナトリウムと、水酸化リチウムとの中から選ばれる少なくとも1種の化合物であることを特徴とする<1>に記載の樹脂組成物用のエッチング液。
<3>無機充填材が、シリカと、ガラスと、クレーと、水酸化アルミニウムとの中から選ばれる少なくとも1種であることを特徴とする<1>又は<2>に記載の樹脂組成物用のエッチング液。
<4>前記エッチング液が、5~40質量%のエタノールアミン化合物を含有することを特徴とする<1>~<3>のいずれかに記載のエッチング液。
<5>エタノールアミン化合物が、エタノールアミン、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-メチルジエタノールアミン及びN-エチルジエタノールアミンからなる群から選ばれる少なくとも1種の化合物であることを特徴とする<4>に記載のエッチング液。
<6>エタノールアミン化合物が、エタノールアミン、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-メチルジエタノールアミン及びN-エチルジエタノールアミンからなる群から選ばれる少なくとも2種の化合物であることを特徴とする<4>に記載の樹脂組成物用のエッチング液。
<7>エタノールアミン化合物として、少なくともN-(β-アミノエチル)エタノールアミンを含有する<6>に記載の樹脂組成物用のエッチング液。
<8>アルカリ不溶性樹脂及び50~80質量%の無機充填剤を含む樹脂組成物層のエッチング方法において、<1>~<7>のいずれかに記載のエッチング液によって、該樹脂組成物層を除去する工程を含むことを特徴とするエッチング方法。
<9>アルカリ不溶性樹脂及び50~80質量%の無機充填剤を含む樹脂組成物層のエッチング方法において、
(A)<4>~<7>のいずれかに記載のエッチング液によって、該樹脂組成物層の一部を除去する工程、
(B)アルカリ金属水酸化物及びエタノールアミン化合物を含む水洗除去液によって残りの樹脂組成物層を完全に除去する工程、
をこの順に含むことを特徴とするエッチング方法。ここで、前記水洗除去液におけるアルカリ金属水酸化物の含有量は、前記エッチング液におけるアルカリ金属水酸化物の含有量よりも少ない。また、前記水洗除去液におけるエタノールアミン化合物の含有量は、前記エッチング液におけるエタノールアミン化合物の含有量よりも少ない。
<10>樹脂組成物層を除去する工程が浸漬処理である<8>又は<9>に記載のエッチング方法。
The present inventors have found that the above problems can be solved by the following means.
<1> An etching solution for a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, characterized in that the etching solution contains 15 to 45% by mass of an alkali metal hydroxide. Etching solution.
<2> The resin composition according to <1>, wherein the alkali metal hydroxide is at least one compound selected from potassium hydroxide, sodium hydroxide, and lithium hydroxide. Etching solution.
<3> The resin composition according to <1> or <2>, wherein the inorganic filler is at least one selected from silica, glass, clay, and aluminum hydroxide. Etching solution.
<4> The etching solution according to any one of <1> to <3>, wherein the etching solution contains 5 to 40% by mass of an ethanolamine compound.
<5> The ethanolamine compound is at least selected from the group consisting of ethanolamine, N- (β-aminoethyl) ethanolamine, N-methylethanolamine, N-ethylethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine. <1> The etching solution according to <4>, which is one kind of compound.
<6> The ethanolamine compound is at least selected from the group consisting of ethanolamine, N- (β-aminoethyl) ethanolamine, N-methylethanolamine, N-ethylethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine. Etching solution for resin composition as described in <4>, which is a compound of two types.
<7> The etching solution for a resin composition according to <6>, which contains at least N- (β-aminoethyl) ethanolamine as the ethanolamine compound.
<8> In the method for etching a resin composition layer containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, the resin composition layer is formed using the etching solution according to any one of <1> to <7>. An etching method comprising a step of removing.
<9> In a method for etching a resin composition layer containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler,
(A) a step of removing a part of the resin composition layer with the etching solution according to any one of <4> to <7>;
(B) a step of completely removing the remaining resin composition layer with a water washing removal solution containing an alkali metal hydroxide and an ethanolamine compound;
The etching method characterized by including these in this order. Here, the content of the alkali metal hydroxide in the water washing removal liquid is less than the content of the alkali metal hydroxide in the etching liquid. Moreover, the content of the ethanolamine compound in the water washing removal liquid is less than the content of the ethanolamine compound in the etching liquid.
<10> The etching method according to <8> or <9>, wherein the step of removing the resin composition layer is an immersion treatment.
 本発明のエッチング液及びエッチング方法により、アルカリ不溶性樹脂及び無機充填剤を含む樹脂組成物を除去する加工において、過度な発熱による欠点の発生が無く、該樹脂組成物を含有してなる樹脂組成物層だけを除去することができる。 A resin composition containing the resin composition without causing defects due to excessive heat generation in the process of removing the resin composition containing an alkali-insoluble resin and an inorganic filler by the etching solution and etching method of the present invention. Only the layer can be removed.
ソルダーレジストパターンの概略断面構造図。The schematic cross-section figure of a soldering resist pattern. ソルダーレジストパターンの概略断面構造図。The schematic cross-section figure of a soldering resist pattern. 本発明のエッチング方法の一例を示す断面工程図。Sectional process drawing which shows an example of the etching method of this invention.
 以下に、本発明を実施するための形態について説明する。本発明のエッチング液は、アルカリ不溶性樹脂及び50~80質量%の無機充填材を含む樹脂組成物用のエッチング液であり、15~45質量%のアルカリ金属水酸化物を含有するアルカリ水溶液である。アルカリ不溶性樹脂はアルカリ水溶液に溶解しない性質を有するため、本来アルカリ水溶液によって除去することはできない。しかし、本発明のエッチング液を使用することによって、アルカリ不溶性樹脂を含む樹脂組成物を除去することができる。これは、高充填化された樹脂組成物中の無機充填材、すなわち、樹脂組成物中に50~80質量%という高い含有量で充填された無機充填材が、高濃度のアルカリ金属水酸化物を含む水溶液によって溶解除去されるためである。 Hereinafter, modes for carrying out the present invention will be described. The etching solution of the present invention is an etching solution for a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, and is an alkaline aqueous solution containing 15 to 45% by mass of an alkali metal hydroxide. . Since alkali-insoluble resins have the property of not dissolving in alkaline aqueous solution, they cannot be removed by alkaline aqueous solution. However, the resin composition containing an alkali-insoluble resin can be removed by using the etching solution of the present invention. This is because the inorganic filler in the highly filled resin composition, that is, the inorganic filler filled in the resin composition at a high content of 50 to 80% by mass is a high concentration alkali metal hydroxide. This is because it is dissolved and removed by the aqueous solution containing the.
 アルカリ金属水酸化物の含有量が15質量%未満の場合、無機充填材の溶解性が乏しく、アルカリ金属水酸化物の含有量が45質量%を超えると、アルカリ金属水酸化物の析出が起こりやすいことから液の経時安定性に劣る場合がある。アルカリ金属水酸化物の含有量は、より好ましくは20~45質量%であり、さらに好ましくは25~40質量%である。 When the content of the alkali metal hydroxide is less than 15% by mass, the solubility of the inorganic filler is poor, and when the content of the alkali metal hydroxide exceeds 45% by mass, the alkali metal hydroxide is precipitated. Since it is easy, it may be inferior to the stability of a liquid with time. The content of alkali metal hydroxide is more preferably 20 to 45% by mass, and further preferably 25 to 40% by mass.
 本発明のエッチング液に、必要に応じてカップリング剤、レベリング剤、着色剤、界面活性剤、消泡剤、有機溶媒等を適宜添加することもできる。有機溶媒としては、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類;セロソルブ、ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等が挙げられる。この中で、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等は、アルカリ不溶性樹脂の膨潤性が大きく好ましい。 A coupling agent, a leveling agent, a colorant, a surfactant, an antifoaming agent, an organic solvent and the like can be appropriately added to the etching solution of the present invention as necessary. Examples of organic solvents include ketones such as acetone, methyl ethyl ketone, and cyclohexanone; acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; carbitols such as cellosolve and butyl carbitol; Aromatic hydrocarbons such as toluene and xylene; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. Of these, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like are preferable because of the large swellability of the alkali-insoluble resin.
 本発明のエッチング液は、アルカリ不溶性樹脂及び無機充填材を含む樹脂組成物用のエッチング液である。該樹脂組成物における無機充填材の含有量は、樹脂組成物中の不揮発分100質量%に対して50~80質量%である。無機充填材の含有量が50質量%未満の場合、樹脂組成物全体に対して、アルカリ金属水酸化物を含有する水溶液によって溶解されるサイトとしての無機充填材が少なすぎるため、エッチングが進行しない。無機充填材の含有量が80質量%を超えると、樹脂組成物の流動性の低下により、可撓性が低下する傾向があり、実用性に劣る。 The etching solution of the present invention is an etching solution for a resin composition containing an alkali-insoluble resin and an inorganic filler. The content of the inorganic filler in the resin composition is 50 to 80% by mass with respect to 100% by mass of the nonvolatile content in the resin composition. When the content of the inorganic filler is less than 50% by mass, etching does not proceed because there are too few inorganic fillers as sites to be dissolved by the aqueous solution containing the alkali metal hydroxide with respect to the entire resin composition. . When content of an inorganic filler exceeds 80 mass%, there exists a tendency for flexibility to fall by the fall of the fluidity | liquidity of a resin composition, and it is inferior to practicality.
 上記アルカリ金属水酸化物としては、水酸化カリウム、水酸化ナトリウム及び水酸化リチウムの群から選ばれる少なくとも1種の化合物が好適に用いられる。アルカリ金属水酸化物として、これらの中の1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 As the alkali metal hydroxide, at least one compound selected from the group consisting of potassium hydroxide, sodium hydroxide and lithium hydroxide is preferably used. As the alkali metal hydroxide, one of these may be used alone, or two or more may be used in combination.
 さらに、本発明のエッチング液は、アルカリ金属水酸化物に加えて、5~40質量%のエタノールアミン化合物を含有することが好ましい。エタノールアミン化合物を含有するエッチング液を使用した場合、エタノールアミン化合物が樹脂組成物中に浸透することにより、樹脂組成物の膨潤が促進され、無機充填材の溶解除去が加速され、樹脂組成物の除去速度が上がる。 Furthermore, the etching solution of the present invention preferably contains 5 to 40% by mass of an ethanolamine compound in addition to the alkali metal hydroxide. When an etching solution containing an ethanolamine compound is used, the ethanolamine compound penetrates into the resin composition, thereby promoting the swelling of the resin composition, accelerating the dissolution and removal of the inorganic filler, and the resin composition. Removal speed increases.
 エタノールアミン化合物の含有量が5質量%未満の場合、アルカリ不溶性樹脂の膨潤性が乏しく、エタノールアミン化合物の含有量が0質量%の場合と比較して、樹脂組成物の除去速度が変わらない。エタノールアミン化合物の含有量が40質量%を超えた場合、水に対する相溶性が低くなり、相分離が起こりやすいことから、エッチング液の経時安定性に劣る場合がある。エタノールアミン化合物の含有量は、より好ましくは20~40質量%であり、さらに好ましくは25~35質量%である。 When the content of the ethanolamine compound is less than 5% by mass, the swellability of the alkali-insoluble resin is poor, and the removal rate of the resin composition does not change compared to the case where the content of the ethanolamine compound is 0% by mass. When the content of the ethanolamine compound exceeds 40% by mass, the compatibility with water becomes low and phase separation is likely to occur, so the etching solution may have poor stability over time. The content of the ethanolamine compound is more preferably 20 to 40% by mass, and further preferably 25 to 35% by mass.
 上記エタノールアミン化合物としては、第一級アミンであるエタノールアミン;第一級アミンと第二級アミンの混合物である(すなわち、一分子内に第一級アミノ基と第二級アミノ基とを有する)N-(β-アミノエチル)エタノールアミン;第二級アミンであるN-メチルエタノールアミン、N-エチルエタノールアミン;第三級アミンであるN-エチルジエタノールアミン及びN-メチルジエタノールアミンからなる群から選ばれる少なくとも1種の化合物が好適に用いられる。エタノールアミン化合物として、これらの中の1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。2種類以上を組み合わせて使用する場合、そのうちの1種はN-(β-アミノエチル)エタノールアミンであることが好ましい。なぜなら、N-(β-アミノエチル)エタノールアミンは、樹脂組成物の膨潤を促進する効果が他のエタノールアミン化合物よりも高いからである。 The ethanolamine compound is a primary amine ethanolamine; a mixture of a primary amine and a secondary amine (that is, having a primary amino group and a secondary amino group in one molecule). N- (β-aminoethyl) ethanolamine; secondary amine N-methylethanolamine, N-ethylethanolamine; tertiary amine N-ethyldiethanolamine and N-methyldiethanolamine At least one kind of compound is preferably used. As the ethanolamine compound, one of these may be used alone, or two or more may be used in combination. When two or more types are used in combination, one of them is preferably N- (β-aminoethyl) ethanolamine. This is because N- (β-aminoethyl) ethanolamine has a higher effect of promoting the swelling of the resin composition than other ethanolamine compounds.
 本発明のエッチング液が2種以上のエタノールアミン化合物を含有することによって達成できる効果を説明する。樹脂組成物の膨潤を促進する効果が高いエタノールアミンは、エッチング除去された樹脂組成物層の断面形状にアンダーカットを発生させやすい。そこで、樹脂組成物の膨潤を促進する効果が低いエタノールアミン化合物と組み合わせることでアンダーカットの抑制効果が達成できる。 The effect that can be achieved when the etching solution of the present invention contains two or more ethanolamine compounds will be described. Ethanolamine, which has a high effect of promoting the swelling of the resin composition, easily causes an undercut in the cross-sectional shape of the resin composition layer removed by etching. Therefore, an undercut suppression effect can be achieved by combining with an ethanolamine compound that has a low effect of promoting swelling of the resin composition.
 樹脂組成物の膨潤を促進する効果が高いエタノールアミンとしては、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン等が挙げられる。また、樹脂組成物の膨潤を促進する効果が低いエタノールアミン化合物としては、エタノールアミン、N-エチルエタノールアミン、N-エチルジエタノールアミン等が挙げられる。 Examples of ethanolamine having a high effect of promoting swelling of the resin composition include N- (β-aminoethyl) ethanolamine and N-methylethanolamine. Examples of the ethanolamine compound having a low effect of promoting the swelling of the resin composition include ethanolamine, N-ethylethanolamine, N-ethyldiethanolamine and the like.
 本発明のエッチング液はアルカリ水溶液である。本発明のエッチング液に使用される水としては、水道水、工業用水、純水等を用いることができる。このうち純水を使用することが好ましい。本発明では、一般的に工業用に用いられる純水を使用することができる。 The etching solution of the present invention is an alkaline aqueous solution. As water used for the etching solution of the present invention, tap water, industrial water, pure water, or the like can be used. Of these, it is preferable to use pure water. In the present invention, pure water generally used for industrial use can be used.
 本発明のエッチング液は、好ましくは60~90℃の範囲で使用される。樹脂組成物の種類、樹脂組成物を含有してなる樹脂組成物層の厚み、樹脂組成物を除去する加工を施すことによって得られるパターンの形状等により最適温度が異なるが、エッチング液の温度は、より好ましくは60~85℃であり、さらに好ましくは70~85℃である。 The etching solution of the present invention is preferably used in the range of 60 to 90 ° C. The optimum temperature differs depending on the type of the resin composition, the thickness of the resin composition layer containing the resin composition, the shape of the pattern obtained by processing to remove the resin composition, etc. More preferably, the temperature is 60 to 85 ° C, and further preferably 70 to 85 ° C.
 本発明において、無機充填材としては、例えば、シリカ、ガラス、クレー、雲母等のケイ酸塩;アルミナ、酸化マグネシウム、酸化チタン、シリカ等の酸化物;炭酸マグネシウム、炭酸カルシウム等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム等の硫酸塩等が挙げられる。また、無機充填材としては、さらにホウ酸アルミニウム、窒化アルミニウム、窒化ホウ素、チタン酸ストロンチウム、チタン酸バリウム等が挙げられる。これらの中で、シリカ、ガラス、クレー及び水酸化アルミニウムからなる群から選ばれる少なくとも1種の化合物は、アルカリ金属水酸化物を含有する水溶液に溶解することから、より好ましく用いられる。シリカは低熱膨張性に優れる点で更に好ましく、球状溶融シリカが特に好ましい。無機充填材として、これらの中の1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present invention, examples of the inorganic filler include silicates such as silica, glass, clay and mica; oxides such as alumina, magnesium oxide, titanium oxide and silica; carbonates such as magnesium carbonate and calcium carbonate; water Examples thereof include hydroxides such as aluminum oxide, magnesium hydroxide and calcium hydroxide; sulfates such as barium sulfate and calcium sulfate. Further, examples of the inorganic filler include aluminum borate, aluminum nitride, boron nitride, strontium titanate, barium titanate and the like. Among these, at least one compound selected from the group consisting of silica, glass, clay and aluminum hydroxide is more preferably used because it is dissolved in an aqueous solution containing an alkali metal hydroxide. Silica is more preferable in terms of excellent low thermal expansion, and spherical fused silica is particularly preferable. As the inorganic filler, one of these may be used alone, or two or more may be used in combination.
 本発明におけるアルカリ不溶性樹脂について説明する。アルカリ不溶性樹脂は、アルカリ水溶液に対して溶解又は分散されないという性質以外は、特に限定されない。具体的には、アルカリ水溶液に対して溶解するために必要なカルボキシル基含有樹脂等の含有量が非常に少ない樹脂であり、樹脂中の遊離カルボキシル基の含有量の指標となる酸価(JIS K2501:2003)としては、40mgKOH/g未満である。より具体的には、アルカリ不溶性樹脂は、エポキシ樹脂とエポキシ樹脂を硬化させる熱硬化剤とを含む樹脂である。アルカリ水溶液としては、アルカリ金属ケイ酸塩、アルカリ金属水酸化物、アルカリ金属リン酸塩、アルカリ金属炭酸塩、アンモニウムリン酸塩、アンモニウム炭酸塩等の無機アルカリ性化合物を含有する水溶液、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、シクロヘキシルアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、トリメチル-2-ヒドロキシエチルアンモニウムヒドロキサイド(コリン)等の有機アルカリ性化合物を含有する水溶液が挙げられる。 The alkali-insoluble resin in the present invention will be described. The alkali-insoluble resin is not particularly limited except that it is not dissolved or dispersed in the aqueous alkali solution. Specifically, it is a resin having a very low content of a carboxyl group-containing resin or the like necessary for dissolving in an alkaline aqueous solution, and an acid value (JIS K2501) that serves as an index of the content of free carboxyl groups in the resin. : 2003) is less than 40 mg KOH / g. More specifically, the alkali-insoluble resin is a resin containing an epoxy resin and a thermosetting agent that cures the epoxy resin. Examples of alkaline aqueous solutions include alkali metal silicates, alkali metal hydroxides, alkali metal phosphates, alkali metal carbonates, ammonium phosphates, aqueous solutions containing inorganic alkaline compounds such as ammonium carbonate, monoethanolamine, Organics such as diethanolamine, triethanolamine, methylamine, dimethylamine, ethylamine, diethylamine, triethylamine, cyclohexylamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide (choline) An aqueous solution containing an alkaline compound may be mentioned.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂等が挙げられる。また、エポキシ樹脂としては、さらにビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、フルオレン型エポキシ樹脂等が挙げられる。エポキシ樹脂として、これらの中の1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Examples of the epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin; novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolak type epoxy resin Can be mentioned. Further, examples of the epoxy resin include biphenyl type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, fluorene type epoxy resin and the like. As the epoxy resin, one of these may be used alone, or two or more may be used in combination.
 熱硬化剤としては、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、好ましいものとしては、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル樹脂等が挙げられる。熱硬化剤として、これらの中の1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The thermosetting agent is not particularly limited as long as it has a function of curing the epoxy resin, but as a preferable one, a phenolic curing agent, a naphthol curing agent, an active ester curing agent, a benzoxazine curing agent, Examples include cyanate ester resins. As the thermosetting agent, one of these may be used alone, or two or more may be used in combination.
 上記硬化剤に加え、さらに硬化促進剤を含有することができる。硬化促進剤としては、例えば、有機ホスフィン化合物、有機ホスホニウム塩化合物、イミダゾール化合物、アミンアダクト化合物、3級アミン化合物等が挙げられる。硬化促進剤として、これらの中の1種類を単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。なお、熱硬化剤としてシアネートエステル樹脂を使用する場合には、硬化時間を短縮する目的で、硬化触媒として用いられている有機金属化合物を添加してもよい。有機金属化合物としては、有機銅化合物、有機亜鉛化合物、有機コバルト化合物等が挙げられる。 In addition to the above curing agent, a curing accelerator can be further contained. Examples of the curing accelerator include organic phosphine compounds, organic phosphonium salt compounds, imidazole compounds, amine adduct compounds, tertiary amine compounds, and the like. As the curing accelerator, one of these may be used alone, or two or more may be used in combination. In addition, when using cyanate ester resin as a thermosetting agent, you may add the organometallic compound used as a curing catalyst in order to shorten hardening time. Examples of the organic metal compound include an organic copper compound, an organic zinc compound, and an organic cobalt compound.
 上述したように、本発明のエッチング液を使用して、アルカリ不溶性樹脂及び50~80質量%の無機充填材を含む樹脂組成物をエッチングすると、高充填化された樹脂組成物中の無機充填材が高濃度のアルカリ金属水酸化物を含む水溶液によって溶解除去されることによって、樹脂組成物の除去が進行する。さらに、本発明のエッチング液がエタノールアミン化合物を含む場合には、エタノールアミン化合物が樹脂組成物中に浸透することにより、樹脂組成物の膨潤が促進され、無機充填材の溶解除去が加速される。 As described above, when an etching solution of the present invention is used to etch a resin composition containing an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, the inorganic filler in the highly filled resin composition Is dissolved and removed by an aqueous solution containing a high concentration of alkali metal hydroxide, whereby the removal of the resin composition proceeds. Furthermore, when the etching solution of the present invention contains an ethanolamine compound, the ethanolamine compound penetrates into the resin composition, whereby the swelling of the resin composition is promoted and the dissolution and removal of the inorganic filler is accelerated. .
 一方、アルカリ不溶性樹脂及び無機充填材を含む樹脂組成物は、熱硬化によって、絶縁樹脂組成物層を形成することができるが、本発明のエッチング液を使用したエッチングは、Aステージ(硬化反応の開始前)又はBステージ(硬化反応の中間段階)の状態において進行する。Aステージ又はBステージにおいても、アルカリ不溶性樹脂は本発明のエッチング液に溶解又は分散することは無いが、無機充填材が本発明のエッチング液によって溶解除去されることによって、樹脂組成物の除去が進行する。Cステージとなり、樹脂が完全に硬化した状態では、本発明のエッチング液がエタノールアミン化合物を含んでいる場合でも、エタノールアミン化合物による樹脂組成物層の膨潤が極めて小さく、無機充填材の溶解除去によるエッチングは困難である。 On the other hand, a resin composition containing an alkali-insoluble resin and an inorganic filler can form an insulating resin composition layer by thermosetting. However, etching using the etching solution of the present invention is A-stage (of curing reaction). It progresses in the state of B stage (intermediate stage of curing reaction) or before the start. Even in the A stage or the B stage, the alkali-insoluble resin is not dissolved or dispersed in the etching solution of the present invention, but the resin composition can be removed by dissolving and removing the inorganic filler with the etching solution of the present invention. proceed. In the state where the resin is completely cured in the C stage, even when the etching solution of the present invention contains an ethanolamine compound, the swelling of the resin composition layer by the ethanolamine compound is extremely small, and the inorganic filler is dissolved and removed. Etching is difficult.
 AステージからBステージへの熱硬化条件としては、100~160℃で10~60分であり、より好ましくは、100~130℃で10~60分であるが、これに限定されるものではない。160℃を超える高温で加熱すると、さらに熱硬化が進行し、樹脂エッチングが困難になる。 The thermosetting conditions from the A stage to the B stage are 10 to 60 minutes at 100 to 160 ° C., more preferably 10 to 60 minutes at 100 to 130 ° C., but are not limited thereto. . When heated at a high temperature exceeding 160 ° C., thermosetting further proceeds and resin etching becomes difficult.
 以下に、本発明のエッチング方法について説明する。図3は、本発明のエッチング方法の一例を示す断面工程図である。このエッチング方法では、回路基板上にある半田接続パッド3の一部又は全部が樹脂組成物層4で覆われたソルダーレジストパターンを形成することができる。 Hereinafter, the etching method of the present invention will be described. FIG. 3 is a cross-sectional process diagram illustrating an example of the etching method of the present invention. In this etching method, a solder resist pattern in which a part or all of the solder connection pads 3 on the circuit board is covered with the resin composition layer 4 can be formed.
 工程(I)では、銅張積層板の表面にある銅箔をエッチングによりパターニングすることによって導体パターンを形成し、半田接続パッド3を有する回路基板1を形成する。
 工程(II)では、回路基板1の表面において、全面を覆うように銅箔6付きの樹脂組成物層4を形成する。
In step (I), the copper foil on the surface of the copper clad laminate is patterned by etching to form a conductor pattern, and the circuit board 1 having the solder connection pads 3 is formed.
In step (II), the resin composition layer 4 with the copper foil 6 is formed on the surface of the circuit board 1 so as to cover the entire surface.
 工程(III)では、樹脂組成物層4上の銅箔6をエッチングによりパターニングし、樹脂組成物層エッチング用の金属マスク5を形成する。
 工程(IV)では、金属マスク5を介し、樹脂組成物層用のエッチング液によって、半田接続パッド3の一部又は全部が露出するまで、樹脂組成物層4をエッチングする。
In the step (III), the copper foil 6 on the resin composition layer 4 is patterned by etching to form a metal mask 5 for etching the resin composition layer.
In step (IV), the resin composition layer 4 is etched through the metal mask 5 with the etching liquid for the resin composition layer until part or all of the solder connection pads 3 are exposed.
 工程(V)では、金属マスク5をエッチングにより除去し、半田接続パッド3の一部又は全部が樹脂組成物層4で覆われたソルダーレジストパターンを形成する。
 本発明のエッチング方法<8>は、本発明のエッチング液<1>~<7>のいずれかに記載のエッチング液によって、樹脂組成物層を除去する工程を含む。
In the step (V), the metal mask 5 is removed by etching, and a solder resist pattern in which part or all of the solder connection pads 3 are covered with the resin composition layer 4 is formed.
The etching method <8> of the present invention includes a step of removing the resin composition layer with the etching liquid according to any one of the etching liquids <1> to <7> of the present invention.
 また、本発明のエッチング方法<9>は、(A)本発明のエッチング液<4>~<7>のいずれかに記載のエッチング液によって、樹脂組成物層の一部を除去する工程、
(B)アルカリ金属水酸化物及びエタノールアミン化合物を含み、それらの含有量がそれぞれ前記エッチング液におけるアルカリ金属水酸化物及びエタノールアミン化合物の含有量よりも少ない水洗除去液によって残りの樹脂組成物層を完全に除去する工程、
をこの順に含む。
Further, the etching method <9> of the present invention includes (A) a step of removing a part of the resin composition layer with the etching liquid according to any one of the etching liquids <4> to <7> of the present invention,
(B) Resin composition layer remaining by washing and removing liquid containing alkali metal hydroxide and ethanolamine compound, the contents of which are less than the contents of alkali metal hydroxide and ethanolamine compound in the etching solution, respectively. A step of completely removing
Are included in this order.
 本発明<9>において、樹脂組成物層は、アルカリ不溶性樹脂及び無機充填剤を含み、無機充填材の含有量は、樹脂組成物層に対し50~80質量%であり、無機充填材は高い含有量で樹脂組成物層中に充填されている。この無機充填材が、15~45質量%という高濃度のアルカリ金属水酸化物を含む水溶液であるエッチング液によって溶解除去される。さらに、エッチング液に含まれているエタノールアミン化合物が樹脂組成物層中に浸透することにより、樹脂組成物層の膨潤が促進されることによって、無機充填材の溶解除去が加速され、樹脂組成物層の除去速度が上がる。 In the present invention <9>, the resin composition layer contains an alkali-insoluble resin and an inorganic filler, the content of the inorganic filler is 50 to 80% by mass with respect to the resin composition layer, and the inorganic filler is high. The resin composition layer is filled with the content. This inorganic filler is dissolved and removed by an etching solution which is an aqueous solution containing a high concentration alkali metal hydroxide of 15 to 45 mass%. Furthermore, when the ethanolamine compound contained in the etching solution penetrates into the resin composition layer, the swelling of the resin composition layer is promoted to accelerate the dissolution and removal of the inorganic filler, and the resin composition Increases layer removal rate.
 ここで、樹脂組成物層の除去とは、高い含有量で充填された無機充填剤が樹脂組成物層の表層から徐々に溶解すると共に、アルカリ不溶性樹脂が分散することによって進行する。本発明のエッチング方法<9>における工程(A)で用いられるエッチング液は、15質量%以上の高濃度のアルカリ金属水酸化物を含み、大きな水和力が作用しているため、樹脂組成物層のより深部におけるアルカリ不溶性樹脂は分散されず、表層に近い部分が除去される。すなわち、工程(A)における「樹脂組成物の層の一部を除去する」とは、樹脂組成物層の表層に近い部分を除去することを言う。 Here, the removal of the resin composition layer proceeds when the inorganic filler filled with a high content is gradually dissolved from the surface layer of the resin composition layer and the alkali-insoluble resin is dispersed. Since the etching solution used in the step (A) in the etching method <9> of the present invention contains a high concentration alkali metal hydroxide of 15% by mass or more and has a large hydration power, the resin composition The alkali-insoluble resin in the deeper part of the layer is not dispersed, and the part close to the surface layer is removed. That is, “removing a part of the resin composition layer” in the step (A) means removing a part close to the surface layer of the resin composition layer.
 工程(A)に続く、工程(B)において、アルカリ金属水酸化物の含有量が少ない水洗除去液で処理することにより、アルカリ不溶性樹脂の分散が促進され、残りの樹脂組成物層が完全に除去される。 Following the step (A), in the step (B), the treatment with a water washing removal liquid having a low content of alkali metal hydroxide promotes the dispersion of the alkali-insoluble resin, and the remaining resin composition layer is completely removed. Removed.
 本発明<9>における樹脂組成物層のエッチング方法において、アルカリ金属水酸化物を含む水溶液による無機充填剤の溶解除去とエタノールアミン化合物による樹脂組成物層への浸透と膨潤は連続的に進行するが、その進行速度は、アルカリ金属水酸化物の種類と含有量あるいはエタノールアミン化合物の種類と含有量によって変化する。 In the method for etching a resin composition layer according to the present invention <9>, the dissolution and removal of the inorganic filler with an aqueous solution containing an alkali metal hydroxide, and the penetration and swelling of the resin composition layer with an ethanolamine compound proceed continuously. However, the speed of progress varies depending on the type and content of the alkali metal hydroxide or the type and content of the ethanolamine compound.
 工程(B)に係わる水洗除去液は、アルカリ金属水酸化物及びエタノールアミン化合物を含み、それらの含有量がそれぞれエッチング液におけるアルカリ金属水酸化物及びエタノールアミン化合物の含有量よりも少ない水洗除去液である。工程(B)で使用される水洗除去液のアルカリ金属水酸化物及びエタノールアミン化合物の含有量が、工程(A)で使用されるエッチング液におけるアルカリ金属水酸化物及びエタノールアミン化合物の含有量以上である場合、樹脂組成物層のエッチング量の制御が困難になるという問題が発生する。工程(A)で使用されるアルカリ金属水酸化物及びエタノールアミン化合物と、工程(B)で使用されるアルカリ金属水酸化物及びエタノールアミン化合物とは、同じであっても違うものであってもよいが、通常、2つの工程が連続的に行われ、工程が移行する際に、工程(A)のエッチング液から工程(B)の水洗除去液への混入が起こることを考えると、同じアルカリ金属水酸化物及びエタノールアミン化合物が含まれるのが一般的である。 The water washing removal liquid concerning the step (B) contains an alkali metal hydroxide and an ethanolamine compound, and their contents are less than the contents of the alkali metal hydroxide and the ethanolamine compound in the etching liquid, respectively. It is. The content of the alkali metal hydroxide and the ethanolamine compound in the water removal solution used in the step (B) is equal to or more than the content of the alkali metal hydroxide and the ethanolamine compound in the etching solution used in the step (A). In such a case, there arises a problem that it becomes difficult to control the etching amount of the resin composition layer. The alkali metal hydroxide and ethanolamine compound used in step (A) and the alkali metal hydroxide and ethanolamine compound used in step (B) may be the same or different. Although it is good, usually, two steps are performed continuously, and when the process shifts, considering that mixing from the etching solution in step (A) to the water washing removal solution in step (B) occurs, the same alkali Typically, metal hydroxides and ethanolamine compounds are included.
 本発明<9>において、工程(A)の処理温度は好ましくは60~90℃であり、工程(B)の処理温度は好ましくは15~50℃である。ここで、「処理温度」とは、工程(A)で使用するエッチング液の温度及び工程(B)で使用する水洗除去液の温度のことである。樹脂組成物の種類、樹脂組成物層の厚み、樹脂組成物層を除去する加工を施すことによって得られるパターンの形状等によって、最適な処理温度は異なる。工程(A)の処理温度は、より好ましくは60~85℃であり、更に好ましくは70~85℃である。また、工程(B)の処理温度は、より好ましくは15~40℃であり、更に好ましくは15~30℃である。 In the present invention <9>, the treatment temperature in step (A) is preferably 60 to 90 ° C., and the treatment temperature in step (B) is preferably 15 to 50 ° C. Here, the “treatment temperature” refers to the temperature of the etching solution used in the step (A) and the temperature of the water washing removal solution used in the step (B). The optimum processing temperature varies depending on the type of the resin composition, the thickness of the resin composition layer, the shape of the pattern obtained by performing the processing for removing the resin composition layer, and the like. The treatment temperature in the step (A) is more preferably 60 to 85 ° C, still more preferably 70 to 85 ° C. Further, the treatment temperature in the step (B) is more preferably 15 to 40 ° C., further preferably 15 to 30 ° C.
 本発明<8>及び<9>において、樹脂組成物層を除去する工程には、浸漬処理、パドル処理、スプレー処理、ブラッシング、スクレーピング等の方法を用いることができる。この中でも、浸漬処理が好ましい。浸漬処理以外の方法では、エッチング液中に気泡が発生しやすく、その気泡が樹脂組成物層の表面に付着してエッチング不良が発生する場合がある。また、本発明<9>の工程(A)において、浸漬処理以外の方法では、エッチング液の温度変化が大きくなりやすく、樹脂組成物層の除去速度にばらつきが発生する場合がある。 In the present invention <8> and <9>, a method such as immersion treatment, paddle treatment, spray treatment, brushing or scraping can be used for the step of removing the resin composition layer. Among these, immersion treatment is preferable. In a method other than the immersion treatment, bubbles are likely to be generated in the etching solution, and the bubbles may adhere to the surface of the resin composition layer and cause etching failure. Further, in the step (A) of the present invention <9>, the method other than the immersion treatment tends to cause a large change in the temperature of the etching solution, and the removal rate of the resin composition layer may vary.
 本発明<8>の樹脂組成物を除去する工程及び本発明<9>の工程(B)の後、樹脂組成物層の表面に残存付着したエッチング液を水洗処理によって洗浄する。水洗処理の方法としては、拡散速度と液供給の均一性の点からスプレー方式が好ましい。水洗水としては、水道水、工業用水、純水等を用いることができる。このうち純水を使用することが好ましい。純水は、一般的に工業用に用いられるものを使用することができる。この中でも、純水を使用することが好ましい。純水は、一般的に工業用に用いられているものを使用することができる。また、水洗水の温度は、エッチング液の温度以下であり、且つ好ましくはその温度差が40~50℃であり、より好ましくはその温度差が50~60℃である。 After the step of removing the resin composition of the present invention <8> and the step (B) of the present invention <9>, the etching solution remaining on the surface of the resin composition layer is washed by washing with water. As a method of washing with water, a spray method is preferable from the viewpoint of diffusion rate and liquid supply uniformity. As flush water, tap water, industrial water, pure water or the like can be used. Of these, it is preferable to use pure water. Pure water that is generally used for industrial purposes can be used. Among these, it is preferable to use pure water. Pure water that is generally used for industrial purposes can be used. The temperature of the washing water is not more than the temperature of the etching solution, and the temperature difference is preferably 40 to 50 ° C., more preferably the temperature difference is 50 to 60 ° C.
 以下、実施例によって本発明を更に詳しく説明するが、本発明はこの実施例に限定されるものではない。
(実施例1~3)
 無機充填材として、溶融シリカ78質量%、エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂10質量%、熱硬化剤として、フェノールノボラック型シアネート樹脂10質量%、硬化促進剤として、トリフェニルホスフィン1質量%、その他、カップリング剤、レベリング剤を加え、全量を100質量%としたものに、メチルエチルケトンとシクロヘキサノンを媒体として混合し、液状樹脂組成物を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this Example.
(Examples 1 to 3)
As inorganic filler, fused silica 78% by mass, as epoxy resin, 10% by mass of biphenyl aralkyl type epoxy resin, as thermosetting agent, 10% by mass of phenol novolac type cyanate resin, as curing accelerator, 1% by mass of triphenylphosphine, In addition, a coupling agent and a leveling agent were added to a total amount of 100% by mass, and methyl ethyl ketone and cyclohexanone were mixed as a medium to obtain a liquid resin composition.
 次に、ポリエチレンテレフタレートフィルム(厚み38μm)上に液状樹脂組成物を塗布した後、100℃で5分間乾燥して媒体を除去した。これによって、膜厚20μmで、アルカリ不溶性樹脂及び無機充填剤を含む樹脂組成物からなる、Aステージの樹脂組成物層を形成した。 Next, after applying the liquid resin composition on a polyethylene terephthalate film (thickness 38 μm), the medium was removed by drying at 100 ° C. for 5 minutes. Thus, an A-stage resin composition layer having a film thickness of 20 μm and comprising a resin composition containing an alkali-insoluble resin and an inorganic filler was formed.
 続いて、厚み3μmの銅箔と剥離層とキャリア箔とがこの順に積層された剥離可能な金属箔を準備し、銅箔と上記樹脂組成物層が接触するように両者を熱圧着させた後、剥離層及びキャリア箔を剥離して、銅箔付き樹脂組成物層を得た。 Subsequently, after preparing a peelable metal foil in which a copper foil having a thickness of 3 μm, a release layer, and a carrier foil are laminated in this order, and thermocompression bonding them so that the copper foil and the resin composition layer are in contact with each other The release layer and the carrier foil were peeled off to obtain a resin composition layer with a copper foil.
 エポキシ樹脂ガラス布基材銅張積層板(面積170mm×255mm、銅箔厚み12μm、基材厚み0.1mm)の一方の表面にある銅箔をエッチングによりパターニングし、導体パターンが形成されたエポキシ樹脂ガラス布基材を得た。次に、銅箔付き樹脂組成物層からポリエチレンテレフタレートフィルムを剥離し、導体パターンが形成されたエポキシ樹脂ガラス布基材上に、真空加熱圧着式ラミネーターを使って、温度100℃、圧力1.0MPaで真空熱圧着した後、100℃で30分間加熱し、Bステージの樹脂組成物層を形成した。 Epoxy resin on which a copper foil on one surface of an epoxy resin glass cloth base copper-clad laminate (area 170 mm × 255 mm, copper foil thickness 12 μm, base material thickness 0.1 mm) is patterned by etching to form a conductor pattern A glass cloth substrate was obtained. Next, the polyethylene terephthalate film is peeled from the resin composition layer with the copper foil, and the temperature is 100 ° C. and the pressure is 1.0 MPa using a vacuum thermocompression laminator on the epoxy resin glass cloth substrate on which the conductor pattern is formed. After vacuum thermocompression bonding, a B-stage resin composition layer was formed by heating at 100 ° C. for 30 minutes.
 続いて、樹脂組成物層上の銅箔をエッチングによりパターニングし、銅箔の所定の領域に開口部を形成し、樹脂組成物層エッチング用の金属マスクとして、金属マスク付きの樹脂組成物層を準備した。 Subsequently, the copper foil on the resin composition layer is patterned by etching, an opening is formed in a predetermined region of the copper foil, and a resin composition layer with a metal mask is used as a metal mask for etching the resin composition layer. Got ready.
 次に、金属マスクを介して、表1に記載したエッチング液によって、樹脂組成物層に対して浸漬処理にてエッチング処理を行った。エッチング処理後、樹脂組成物層の表面に残存付着したエッチング液を純水によるスプレー処理によって洗浄した。エッチング液の温度及びエッチング処理に要した時間を表1に示す。 Next, the resin composition layer was subjected to an etching treatment by an immersion treatment with an etching solution described in Table 1 through a metal mask. After the etching treatment, the etching solution remaining on the surface of the resin composition layer was washed by a spray treatment with pure water. Table 1 shows the temperature of the etching solution and the time required for the etching process.
 金属マスクの開口部において、「樹脂残りの有無」及び「アンダーカットの有無」を下記記載の基準によって評価した。
(導体パターン表面上の樹脂残りの有無)
○:導体パターン表面上に樹脂組成物が残っていない。
△:導体パターン表面上に極微量の樹脂組成物が残っているが、プラズマ洗浄処理等の後処理で容易に除去できるレベル。
×:導体パターン表面上に多くの樹脂組成物が残り、後処理で除去されないレベル。
(エポキシ樹脂ガラス布基材上の樹脂残りの有無)
○:基材上に樹脂組成物が残っていない。
△:基材上に極微量の樹脂組成物が残っているが、プラズマ洗浄処理等の後処理で容易に除去できるレベル。
×:基材上に多くの樹脂組成物が残り、後処理で除去されないレベル。
(アンダーカットの有無)
◎:樹脂組成物層にアンダーカットが見られない。
○:樹脂組成物層の底面に微小なアンダーカットが見られる。
△:樹脂組成物層の底面に小さなアンダーカットが見られる。
×:樹脂組成物層の底面に実用上問題となる大きなアンダーカットが見られる。
At the opening of the metal mask, “presence / absence of resin residue” and “presence / absence of undercut” were evaluated according to the following criteria.
(Presence or absence of resin residue on the conductor pattern surface)
○: No resin composition remains on the surface of the conductor pattern.
(Triangle | delta): Although the trace amount resin composition remains on the conductor pattern surface, the level which can be easily removed by post-processing, such as a plasma cleaning process.
X: Level at which many resin compositions remain on the surface of the conductor pattern and are not removed by post-treatment.
(Presence or absence of resin residue on epoxy resin glass cloth substrate)
○: No resin composition remains on the substrate.
(Triangle | delta): Although the trace amount resin composition remains on a base material, the level which can be easily removed by post-processes, such as a plasma cleaning process.
X: A level at which many resin compositions remain on the substrate and are not removed by post-treatment.
(With or without undercut)
A: Undercut is not seen in the resin composition layer.
○: A minute undercut is observed on the bottom surface of the resin composition layer.
Δ: A small undercut is observed on the bottom surface of the resin composition layer.
X: The big undercut which is a problem practically is seen by the bottom face of a resin composition layer.
Figure JPOXMLDOC01-appb-T000001
(実施例4)
 溶融シリカの含有量を65質量%とし、ビフェニルアラルキル型エポキシ樹脂の含有量を23質量%とした以外は、実施例1と同様の方法により、エッチング処理を行った。
(実施例5)
 溶融シリカの含有量を50質量%とし、ビフェニルアラルキル型エポキシ樹脂の含有量を38質量%とした以外は、実施例1と同様の方法により、エッチング処理を行った。
(実施例6~8)
 無機充填材として、溶融シリカの代わりにガラス、クレー、水酸化アルミニウムを用いた以外は実施例5と同様の方法により、エッチング処理を行った。
(実施例9~21)
 エッチング液として表1に記載のエッチング液を用いた以外は実施例1と同様の方法により、エッチング処理を行った。
(比較例1)
 溶融シリカの含有量を48質量%とし、ビフェニルアラルキル型エポキシ樹脂の含有量を40質量%とした以外は実施例1と同様の方法により、エッチング処理を行った。エッチング時間を30分まで延長したが、導体パターン表面上及びエポキシ樹脂ガラス布基材上に大量の樹脂残りがあり、樹脂組成物層をエッチング加工することができなかった。結果を表2に示す。
(比較例2~4)
 比較例2では、エッチング液の水酸化カリウムの含有量を10質量%とし、比較例3及び4ではさらに、エタノールアミン化合物として、N-(β-アミノエチル)エタノールアミン及びN-メチルエタノールアミンをそれぞれ40質量%添加した以外は実施例1と同様の方法により、エッチング処理を行った。エッチング時間を30分まで延長したが、導体パターン表面上及びエポキシ樹脂ガラス布基材上に大量の樹脂残りがあり、樹脂組成物層をエッチング加工することができなかった。結果を表2に示す。
(比較例5)
 実施例1と同様の方法により得られた金属マスク付きの樹脂組成物層をレーザー加工法によりエッチング処理し、その後、マスクパターンを除去した。これを光学顕微鏡で観察した結果、導体パターンが除去されている部分があり、また、樹脂組成物層に変形や変質といった欠点が確認された。
(比較例6)
 実施例1と同様の方法により得られた金属マスク付きの樹脂組成物層をウェットブラストによりエッチング処理し、その後、マスクパターンを除去した。これを光学顕微鏡で観察した結果、樹脂組成物層のエッチング量にばらつきがあり、エポキシ樹脂ガラス布基材上に樹脂組成物が残っている箇所があった。また、表面の一部又は全部が露出された導体パターンにはブラスト処理によって付けられた傷が多数確認された。
Figure JPOXMLDOC01-appb-T000001
Example 4
Etching was performed in the same manner as in Example 1 except that the content of fused silica was 65% by mass and the content of the biphenyl aralkyl epoxy resin was 23% by mass.
(Example 5)
Etching was performed in the same manner as in Example 1 except that the content of fused silica was 50% by mass and the content of the biphenyl aralkyl type epoxy resin was 38% by mass.
(Examples 6 to 8)
Etching was performed in the same manner as in Example 5 except that glass, clay, and aluminum hydroxide were used as the inorganic filler instead of fused silica.
(Examples 9 to 21)
Etching treatment was performed in the same manner as in Example 1 except that the etching solutions listed in Table 1 were used as the etching solution.
(Comparative Example 1)
Etching treatment was performed in the same manner as in Example 1 except that the content of fused silica was 48 mass% and the content of the biphenyl aralkyl type epoxy resin was 40 mass%. Although the etching time was extended to 30 minutes, a large amount of resin remained on the surface of the conductor pattern and on the epoxy resin glass cloth substrate, and the resin composition layer could not be etched. The results are shown in Table 2.
(Comparative Examples 2 to 4)
In Comparative Example 2, the content of potassium hydroxide in the etching solution was 10% by mass. In Comparative Examples 3 and 4, N- (β-aminoethyl) ethanolamine and N-methylethanolamine were further added as ethanolamine compounds. Etching was performed in the same manner as in Example 1 except that 40% by mass of each was added. Although the etching time was extended to 30 minutes, a large amount of resin remained on the surface of the conductor pattern and on the epoxy resin glass cloth substrate, and the resin composition layer could not be etched. The results are shown in Table 2.
(Comparative Example 5)
The resin composition layer with a metal mask obtained by the same method as in Example 1 was etched by a laser processing method, and then the mask pattern was removed. As a result of observing this with an optical microscope, there was a portion where the conductor pattern was removed, and defects such as deformation and alteration were confirmed in the resin composition layer.
(Comparative Example 6)
The resin composition layer with a metal mask obtained by the same method as in Example 1 was etched by wet blasting, and then the mask pattern was removed. As a result of observing this with an optical microscope, there were variations in the etching amount of the resin composition layer, and there were places where the resin composition remained on the epoxy resin glass cloth substrate. Moreover, many scratches made by blasting were confirmed on the conductor pattern in which part or all of the surface was exposed.
Figure JPOXMLDOC01-appb-T000002
 実施例1~21では、比較例5又は比較例6と比べて、樹脂組成物層に変形や変質といった欠点が発生することや、接続パッド上に傷が発生すること無く、また、樹脂組成物層のエッチング時に導体パターンが一緒に除去されること無く、エポキシ樹脂ガラス布基材上に実用上問題となるレベルの樹脂組成物が残ること無く、樹脂組成物層をエッチング加工することができた。
Figure JPOXMLDOC01-appb-T000002
In Examples 1 to 21, as compared with Comparative Example 5 or Comparative Example 6, the resin composition layer does not have defects such as deformation and alteration, and scratches are not generated on the connection pads. The resin composition layer could be etched without leaving the conductive pattern on the epoxy resin glass cloth substrate without leaving a conductive composition level on the epoxy resin glass cloth substrate when the layer was etched. .
 実施例10、12~16と実施例1とを比較すると、樹脂組成物用のエッチング液にエタノールアミン化合物を添加することにより、実用上問題となるレベルの樹脂残りやアンダーカットを発生させずに、エッチング時間を短くすることができた。 A comparison between Examples 10 and 12 to 16 and Example 1 shows that by adding an ethanolamine compound to the etching solution for the resin composition, there is no practically problematic level of resin residue or undercut. Etching time could be shortened.
 実施例4及び5では、実施例1と比較して、溶融シリカの含有量が少なくなったため、エッチング時間は長くなったが、実用上問題となるレベルのアンダーカットは発生しなかった。 In Examples 4 and 5, since the content of fused silica was reduced as compared with Example 1, the etching time was increased, but no practically problematic undercut occurred.
 実施例5の溶融シリカの代わりに、ガラス、クレー、水酸化アルミニウムを使用した実施例6~8では、エッチングは可能であったものの、溶融シリカに比べて、エッチング時間はいずれも長くなった。しかしながら、実用上問題となるレベルのアンダーカットは発生しなかった。 In Examples 6 to 8 using glass, clay, and aluminum hydroxide instead of the fused silica of Example 5, etching was possible, but the etching time was longer than that of fused silica. However, there was no level of undercut that would cause a practical problem.
 実施例1の水酸化カリウムの代わりに、水酸化ナトリウム、水酸化リチウムを使用した実施例17及び18でも、実用上問題となるレベルのアンダーカットが発生しなかった。
 実施例19では、実施例10と比較して、エッチング液の温度を高くしたため、エッチング時間は短くなったが、エポキシ樹脂ガラス布基材上に実用上問題となるレベルの樹脂組成物が残ることなく、樹脂組成物層をエッチング加工することができた。実施例20及び21では、実施例10と比較して、エッチング液の温度を低くしたため、エッチング時間は長くなったが、実用上問題となるレベルのアンダーカットは発生しなかった。
(実施例22~28)
 エッチング液として表3に記載のエッチング液を用いた以外は実施例1と同様の方法により、エッチング処理を行った。
(実施例29)
 溶融シリカの含有量を50質量%とし、ビフェニルアラルキル型エポキシ樹脂の含有量を38質量%とした以外は、実施例22と同様の方法により、エッチング処理を行った。
(実施例30~32)
 無機充填材として、溶融シリカの代わりにガラス、クレー、水酸化アルミニウムを用いた以外は実施例29と同様の方法により、エッチング処理を行った。
(実施例33及び34)
 エッチング液として表3に記載のエッチング液を用いた以外は実施例22と同様の方法により、エッチング処理を行った。
In Examples 17 and 18 in which sodium hydroxide and lithium hydroxide were used instead of the potassium hydroxide of Example 1, an undercut at a level causing a practical problem did not occur.
In Example 19, compared with Example 10, since the temperature of the etching solution was increased, the etching time was shortened, but a practically problematic level resin composition remained on the epoxy resin glass cloth substrate. The resin composition layer could be etched. In Examples 20 and 21, since the temperature of the etching solution was lowered as compared with Example 10, the etching time became longer, but undercutting at a level causing a practical problem did not occur.
(Examples 22 to 28)
Etching treatment was performed in the same manner as in Example 1 except that the etching solutions listed in Table 3 were used as the etching solution.
(Example 29)
Etching was performed in the same manner as in Example 22 except that the content of fused silica was 50% by mass and the content of the biphenyl aralkyl type epoxy resin was 38% by mass.
(Examples 30 to 32)
Etching was performed in the same manner as in Example 29 except that glass, clay and aluminum hydroxide were used as the inorganic filler instead of fused silica.
(Examples 33 and 34)
Etching treatment was performed in the same manner as in Example 22 except that the etching solutions listed in Table 3 were used as the etching solution.
Figure JPOXMLDOC01-appb-T000003
 実施例22~34では、比較例5又は比較例6と比べて、樹脂組成物層に変形や変質といった欠点が発生することや、接続パッド上に傷が発生すること無く、また、樹脂組成物層のエッチング時に導体パターンが一緒に除去されること無く、エポキシ樹脂ガラス布基材上に実用上問題となるレベルの樹脂組成物が残ること無く、樹脂組成物層をエッチング加工することができた。
Figure JPOXMLDOC01-appb-T000003
In Examples 22 to 34, as compared with Comparative Example 5 or Comparative Example 6, the resin composition layer does not have defects such as deformation and alteration, and scratches are not generated on the connection pads. The resin composition layer could be etched without leaving the conductive pattern on the epoxy resin glass cloth substrate without leaving a conductive composition level on the epoxy resin glass cloth substrate when the layer was etched. .
 実施例22~34と実施例9~16とを比較すると、2種以上のエタノールアミン化合物を含有する樹脂組成物用のエッチング液を使用している実施例22~34では、アンダーカットが発生し難かった。 When Examples 22 to 34 and Examples 9 to 16 are compared, undercuts occur in Examples 22 to 34 using an etching solution for a resin composition containing two or more kinds of ethanolamine compounds. It was difficult.
 実施例22、25~28の比較から、樹脂組成物用のエッチング液が、エタノールアミン化合物としてN-(β-アミノエチル)エタノールアミンを含有する実施例22、25及び26では、エッチング時間が短く、アンダーカットも発生しなかった。樹脂組成物用のエッチング液が、エタノールアミン化合物としてN-(β-アミノエチル)エタノールアミンを含有していない実施例27では、小さなアンダーカットが発生し、樹脂組成物用のエッチング液が、エタノールアミン化合物としてN-(β-アミノエチル)エタノールアミンを含有していない実施例28では、アンダーカットは発生しなかったものの、エッチング時間が長くなった。 From the comparison of Examples 22 and 25 to 28, the etching time was short in Examples 22, 25 and 26 in which the etching solution for the resin composition contained N- (β-aminoethyl) ethanolamine as the ethanolamine compound. Undercut did not occur. In Example 27 in which the etching solution for the resin composition did not contain N- (β-aminoethyl) ethanolamine as the ethanolamine compound, a small undercut occurred, and the etching solution for the resin composition was ethanol. In Example 28 which did not contain N- (β-aminoethyl) ethanolamine as the amine compound, undercut did not occur, but the etching time was long.
 実施例29では、実施例22と比較して、溶融シリカの含有量が少なくなったため、エッチング時間は長くなったが、アンダーカットは発生しなかった。
 実施例29の溶融シリカの代わりに、ガラス、クレー、水酸化アルミニウムを使用した実施例30~32では、エッチングは可能であったものの、溶融シリカに比べて、エッチング時間はいずれも長くなった。しかしながら、アンダーカットは発生しなかった。
In Example 29, since the content of fused silica was reduced as compared with Example 22, the etching time was increased, but undercut did not occur.
In Examples 30 to 32 using glass, clay, and aluminum hydroxide instead of the fused silica of Example 29, etching was possible, but the etching time was longer than that of fused silica. However, undercut did not occur.
 実施例22の水酸化カリウムの代わりに、水酸化ナトリウム又は水酸化リチウムを使用した実施例33及び34でも、アンダーカットが発生しなかった。
(実施例35)
 実施例1において、金属マスクを介して、水酸化カリウムを30質量%及びN-(β-アミノエチル)エタノールアミン30質量%を含むエッチング液(処理温度80℃)によって樹脂組成物層の一部を除去した(工程(A))。その後、水酸化カリウムを0.3質量%及びN-(β-アミノエチル)エタノールアミン0.3質量%を含む水洗除去液(処理温度20℃)によって、残りの樹脂組成物層を完全に除去した(工程(B))。工程(B)の後、樹脂組成物層の表面に残存付着したエッチング液を純水によるスプレー処理によって洗浄した。工程(A)及び工程(B)共に浸漬処理にて行った。工程(B)を含まない実施例10と比較して、導体パターン表面を含め、エポキシ樹脂ガラス布基材上に樹脂組成物層が残ること無く、エッチング除去されていることを確認した。また、実用上問題となるレベルのアンダーカットは確認されなかった。エッチング液の温度及びエッチング処理に要した時間を表4及び表5に示す。
In Examples 33 and 34 using sodium hydroxide or lithium hydroxide instead of the potassium hydroxide of Example 22, no undercut occurred.
(Example 35)
In Example 1, a part of the resin composition layer was etched with an etching solution (treatment temperature 80 ° C.) containing 30% by mass of potassium hydroxide and 30% by mass of N- (β-aminoethyl) ethanolamine through a metal mask. Was removed (step (A)). Thereafter, the remaining resin composition layer is completely removed by a water washing removal solution (treatment temperature 20 ° C.) containing 0.3% by mass of potassium hydroxide and 0.3% by mass of N- (β-aminoethyl) ethanolamine. (Step (B)). After the step (B), the etching solution remaining on the surface of the resin composition layer was washed by spraying with pure water. Step (A) and step (B) were both performed by immersion treatment. Compared with Example 10 not including the step (B), it was confirmed that the resin composition layer was removed by etching without leaving the resin composition layer on the epoxy resin glass cloth substrate including the surface of the conductor pattern. In addition, an undercut at a level causing a practical problem was not confirmed. Tables 4 and 5 show the temperature of the etching solution and the time required for the etching process.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(実施例36~46)
 工程(A)におけるエッチング液及び/又は工程(B)における水洗除去液の配合を表4及び表5に記載の配合に変更した以外は、実施例35と同様の方法により、エッチング処理を行った。実施例36~39と実施例35とを比較すると、エッチング液における水酸化カリウムの含有量が多くなるにしたがって、樹脂組成物層がエッチング除去されるまでにかかる時間は短くなった。また、実施例40~46と実施例35とを比較すると、エッチング液におけるエタノールアミン化合物及びアルカリ金属水酸化物の種類を変えることによって、エッチング除去されるまでの時間が変化したが、エポキシ樹脂ガラス布基材上に実用上問題となるレベルの樹脂組成物が残ることは無く、アンダーカットは発生しなかった。一方、実施例37及び39と実施例35とを比較すると、水酸化カリウム又はエタノールアミン化合物の含有量が多くなると、底面に微小なアンダーカットが発生する傾向が見られたが、実用上問題無いレベルだった。
(実施例47及び48)
 溶融シリカの含有量を65質量%、50質量%とし、ビフェニルアラルキル型エポキシ樹脂の含有量を23質量%、38質量%とした以外は、実施例35と同様の方法により、エッチング処理を行った。溶融シリカの含有量が少なくなるにしたがって、樹脂組成物層が全てエッチング除去されるまでにかかる時間は長くなったが、いずれもエポキシ樹脂ガラス布基材上に樹脂組成物が残ること無く、アンダーカットは発生しなかった。
(実施例49~51)
 無機充填材として、溶融シリカの代わりにガラス、クレー、水酸化アルミニウムを用いた以外は、実施例35と同様の方法により、エッチング処理を行った。樹脂組成物層が全てエッチング除去されるまでにかかる時間は長くなったが、いずれもエポキシ樹脂ガラス布基材上に樹脂組成物が残ること無く、アンダーカットは発生しなかった。
(実施例52~58)
 工程(A)又は工程(B)における処理温度を表4又は表5記載の温度に変更した以外は、実施例35と同様の方法により、エッチング処理を行った。実施例52~54と実施例35とを比較すると、工程(A)の処理温度が低くなるしたがって、樹脂組成物層がエッチング除去されるまでにかかる時間は長くなったが、エポキシ樹脂ガラス布基材上に実用上問題となるレベルの樹脂組成物が残ること無く、エッチング除去されていることを確認した。また、実用上問題となるレベルのアンダーカットは確認されなかった。また、エッチング除去された樹脂組成物層の断面形状は、工程(A)の処理温度が高くなると、底面に微小なアンダーカットが見られたが、実用上問題ないレベルだった。実施例55~58と実施例35とを比較すると、工程(B)における処理温度は高くなるほど、エポキシ樹脂ガラス布基材上に樹脂が残りやすくなる傾向があった。また、エッチング除去された樹脂組成物層の断面形状にアンダーカットは発生しなかった。
(実施例59)
 エッチング液として表6又は表7記載のエッチング液を用いた以外は実施例35と同様の方法により、エッチング処理を行った。工程(B)を含まない実施例22と比較して、導体パターン表面を含め、エポキシ樹脂ガラス布基材上に樹脂組成物層が残ること無く、エッチング除去されていることを確認した。また、実用上問題となるレベルのアンダーカットは確認されなかった。エッチング液の温度及びエッチング処理に要した時間を表6及び表7に示す。
Figure JPOXMLDOC01-appb-T000005
(Examples 36 to 46)
Etching treatment was performed in the same manner as in Example 35, except that the composition of the etching solution in step (A) and / or the water washing removal solution in step (B) was changed to the formulation shown in Table 4 and Table 5. . Comparing Examples 36 to 39 and Example 35, the time taken for the resin composition layer to be removed by etching was shortened as the content of potassium hydroxide in the etching solution increased. In addition, when Examples 40 to 46 and Example 35 were compared, the time until removal by etching was changed by changing the type of ethanolamine compound and alkali metal hydroxide in the etching solution. There was no practically problematic level of the resin composition remaining on the fabric substrate, and no undercut occurred. On the other hand, when Examples 37 and 39 were compared with Example 35, when the content of potassium hydroxide or ethanolamine compound increased, a tendency to generate minute undercuts on the bottom surface was observed, but there was no practical problem. It was a level.
(Examples 47 and 48)
Etching treatment was performed in the same manner as in Example 35 except that the content of fused silica was 65% by mass and 50% by mass, and the content of the biphenyl aralkyl type epoxy resin was 23% by mass and 38% by mass. . As the content of fused silica decreased, the time taken for all the resin composition layers to be removed by etching increased, but in both cases, the resin composition did not remain on the epoxy resin glass cloth substrate, Cut did not occur.
(Examples 49 to 51)
Etching was performed in the same manner as in Example 35 except that glass, clay, and aluminum hydroxide were used as the inorganic filler instead of fused silica. Although it took a long time to remove all the resin composition layers by etching, none of the resin compositions remained on the epoxy resin glass cloth base material, and no undercut occurred.
(Examples 52 to 58)
Etching treatment was performed in the same manner as in Example 35 except that the treatment temperature in step (A) or step (B) was changed to the temperature described in Table 4 or Table 5. Comparing Examples 52 to 54 and Example 35, the processing temperature in the step (A) was lowered. Therefore, the time taken for the resin composition layer to be removed by etching was increased. It was confirmed that the resin composition having a practically problematic level was not etched on the material and was removed by etching. In addition, an undercut at a level causing a practical problem was not confirmed. In addition, the cross-sectional shape of the resin composition layer removed by etching was at a level where there was no practical problem, although a minute undercut was observed on the bottom surface when the processing temperature in the step (A) was increased. Comparing Examples 55 to 58 and Example 35, the higher the treatment temperature in the step (B), the more the resin tends to remain on the epoxy resin glass cloth substrate. Further, no undercut occurred in the cross-sectional shape of the resin composition layer removed by etching.
(Example 59)
Etching treatment was performed in the same manner as in Example 35 except that the etching liquid described in Table 6 or 7 was used as the etching liquid. Compared with Example 22 which does not include the step (B), it was confirmed that the resin composition layer was etched away without remaining on the epoxy resin glass cloth substrate including the conductor pattern surface. In addition, an undercut at a level causing a practical problem was not confirmed. Tables 6 and 7 show the temperature of the etching solution and the time required for the etching process.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(実施例60~65)
 工程(A)におけるエッチング液及び/又は工程(B)における水洗除去液の配合を表6及び表7に記載の配合に変更した以外は、実施例59と同様の方法により、エッチング処理を行った。実施例59、62~65の比較から、樹脂組成物用のエッチング液が、エタノールアミン化合物としてN-(β-アミノエチル)エタノールアミンを含有する実施例59、62及び63では、エッチング時間が短く、アンダーカットも発生しなかった。樹脂組成物用のエッチング液が、エタノールアミン化合物としてN-(β-アミノエチル)エタノールアミンを含有していない実施例64では、小さなアンダーカットが発生し、樹脂組成物用のエッチング液が、エタノールアミン化合物としてN-(β-アミノエチル)エタノールアミンを含有していない実施例65では、アンダーカットは発生しなかったものの、エッチング時間が長くなった。
(実施例66)
 溶融シリカの含有量を50質量%とし、ビフェニルアラルキル型エポキシ樹脂の含有量を38質量%とした以外は、実施例59と同様の方法により、エッチング処理を行った。実施例59と比較して、溶融シリカの含有量が少なくなったため、エッチング時間は長くなったが、アンダーカットは発生しなかった。
(実施例67~69)
 無機充填材として、溶融シリカの代わりにガラス、クレー、水酸化アルミニウムを用いた以外は実施例59と同様の方法により、エッチング処理を行った。エッチングは可能であったものの、溶融シリカに比べて、エッチング時間はいずれも長くなった。アンダーカットは発生しなかった。
(実施例70~71)
 エッチング液として表6又は表7記載のエッチング液を用いた以外は実施例59と同様の方法により、エッチング処理を行った。水酸化カリウムの代わりに、水酸化ナトリウム、水酸化リチウムを使用した場合でも、アンダーカットは発生しなかった。
Figure JPOXMLDOC01-appb-T000007
(Examples 60 to 65)
Etching treatment was performed in the same manner as in Example 59, except that the composition of the etching solution in step (A) and / or the water washing removal solution in step (B) was changed to the formulation shown in Table 6 and Table 7. . From a comparison of Examples 59 and 62 to 65, in Examples 59, 62 and 63 in which the etching solution for the resin composition contains N- (β-aminoethyl) ethanolamine as the ethanolamine compound, the etching time is short. Undercut did not occur. In Example 64 in which the etching solution for the resin composition did not contain N- (β-aminoethyl) ethanolamine as the ethanolamine compound, a small undercut occurred, and the etching solution for the resin composition was ethanol. In Example 65 not containing N- (β-aminoethyl) ethanolamine as the amine compound, undercut did not occur, but the etching time was long.
Example 66
Etching treatment was performed in the same manner as in Example 59 except that the content of fused silica was 50% by mass and the content of the biphenyl aralkyl type epoxy resin was 38% by mass. Compared with Example 59, since the content of fused silica was reduced, the etching time was longer, but no undercut occurred.
(Examples 67 to 69)
Etching was performed in the same manner as in Example 59 except that glass, clay, and aluminum hydroxide were used as the inorganic filler instead of fused silica. Although etching was possible, the etching time was longer than that of fused silica. Undercut did not occur.
(Examples 70 to 71)
Etching treatment was performed in the same manner as in Example 59 except that the etching solutions shown in Table 6 or Table 7 were used as the etching solutions. Even when sodium hydroxide or lithium hydroxide was used instead of potassium hydroxide, undercut did not occur.
 本発明のエッチング液は、無機充填材が高い含有量で充填された耐熱性、誘電特性、機械強度、耐化学薬品性等に優れた絶縁樹脂組成物層をエッチング加工することができ、例えば、多層ビルドアップ配線板、部品内蔵モジュール基板、フリップチップパッケージ基板、パッケージ基板搭載用マザーボード等における絶縁樹脂の微細加工に適用できる。 The etching solution of the present invention can etch an insulating resin composition layer excellent in heat resistance, dielectric properties, mechanical strength, chemical resistance, etc. filled with a high content of inorganic filler, for example, It can be applied to fine processing of insulating resin in multilayer build-up wiring boards, component built-in module substrates, flip chip package substrates, package substrate mounting motherboards, and the like.
1 回路基板
2 絶縁層
3 半田接続パッド、接続パッド
4 樹脂組成物層
5 金属マスク
6 銅箔
DESCRIPTION OF SYMBOLS 1 Circuit board 2 Insulating layer 3 Solder connection pad, connection pad 4 Resin composition layer 5 Metal mask 6 Copper foil

Claims (10)

  1.  アルカリ不溶性樹脂及び50~80質量%の無機充填剤を含む樹脂組成物用のエッチング液において、該エッチング液が、15~45質量%のアルカリ金属水酸化物を含有することを特徴とするエッチング液。 An etching solution for a resin composition comprising an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, wherein the etching solution contains 15 to 45% by mass of an alkali metal hydroxide .
  2.  アルカリ金属水酸化物が、水酸化カリウムと、水酸化ナトリウムと、水酸化リチウムとの中から選ばれる少なくとも1種の化合物であることを特徴とする請求項1に記載の樹脂組成物用のエッチング液。 The etching for a resin composition according to claim 1, wherein the alkali metal hydroxide is at least one compound selected from potassium hydroxide, sodium hydroxide, and lithium hydroxide. liquid.
  3.  無機充填材が、シリカと、ガラスと、クレーと、水酸化アルミニウムとの中から選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載の樹脂組成物用のエッチング液。 The etching liquid for resin composition according to claim 1 or 2, wherein the inorganic filler is at least one selected from silica, glass, clay, and aluminum hydroxide.
  4.  前記エッチング液が、5~40質量%のエタノールアミン化合物を含有することを特徴とする請求項1~3のいずれかに記載のエッチング液。 4. The etching solution according to claim 1, wherein the etching solution contains 5 to 40% by mass of an ethanolamine compound.
  5.  エタノールアミン化合物が、エタノールアミン、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-メチルジエタノールアミン及びN-エチルジエタノールアミンからなる群から選ばれる少なくとも1種の化合物であることを特徴とする請求項4に記載のエッチング液。 The ethanolamine compound is at least one selected from the group consisting of ethanolamine, N- (β-aminoethyl) ethanolamine, N-methylethanolamine, N-ethylethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine. The etching solution according to claim 4, wherein the etching solution is a compound.
  6.  エタノールアミン化合物が、エタノールアミン、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-メチルジエタノールアミン及びN-エチルジエタノールアミンからなる群から選ばれる少なくとも2種の化合物であることを特徴とする請求項4に記載の樹脂組成物用のエッチング液。 The ethanolamine compound is at least two selected from the group consisting of ethanolamine, N- (β-aminoethyl) ethanolamine, N-methylethanolamine, N-ethylethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine. It is a compound, The etching liquid for resin compositions of Claim 4 characterized by the above-mentioned.
  7.  エタノールアミン化合物として、少なくともN-(β-アミノエチル)エタノールアミンを含有する請求項6に記載の樹脂組成物用のエッチング液。 The etching solution for a resin composition according to claim 6, comprising at least N- (β-aminoethyl) ethanolamine as the ethanolamine compound.
  8.  アルカリ不溶性樹脂及び50~80質量%の無機充填剤を含む樹脂組成物層のエッチング方法において、請求項1~7のいずれかに記載のエッチング液によって、該樹脂組成物層を除去する工程を含むことを特徴とするエッチング方法。 A method for etching a resin composition layer comprising an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler, comprising the step of removing the resin composition layer with the etching solution according to any one of claims 1 to 7. An etching method characterized by the above.
  9.  アルカリ不溶性樹脂及び50~80質量%の無機充填剤を含む樹脂組成物層のエッチング方法において、
    (A)請求項4~7のいずれかに記載のエッチング液によって、該樹脂組成物層の一部を除去する工程、
    (B)アルカリ金属水酸化物及びエタノールアミン化合物を含み、それらの含有量がそれぞれ前記エッチング液におけるアルカリ金属水酸化物及びエタノールアミン化合物の含有量よりも少ない水洗除去液によって残りの樹脂組成物層を完全に除去する工程、
    をこの順に含むことを特徴とするエッチング方法。
    In the method for etching a resin composition layer comprising an alkali-insoluble resin and 50 to 80% by mass of an inorganic filler,
    (A) a step of removing a part of the resin composition layer with the etching solution according to any one of claims 4 to 7;
    (B) Resin composition layer remaining by washing and removing liquid containing alkali metal hydroxide and ethanolamine compound, the contents of which are less than the contents of alkali metal hydroxide and ethanolamine compound in the etching solution, respectively. A step of completely removing
    The etching method characterized by including these in this order.
  10.  樹脂組成物層を除去する工程が浸漬処理である請求項8又は9に記載のエッチング方法。 The etching method according to claim 8 or 9, wherein the step of removing the resin composition layer is an immersion treatment.
PCT/JP2018/014156 2017-04-06 2018-04-02 Etchant for resin composition and etching method WO2018186362A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019511238A JP6929936B2 (en) 2017-04-06 2018-04-02 Etching liquid and etching method for resin composition
CN201880021886.4A CN110461920A (en) 2017-04-06 2018-04-02 Etching solution and engraving method for resin combination
KR1020197026733A KR102340959B1 (en) 2017-04-06 2018-04-02 Etching liquid for resin composition and etching method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017076148 2017-04-06
JP2017-076148 2017-04-06
JP2017248831 2017-12-26
JP2017-248831 2017-12-26
JP2018-026675 2018-02-19
JP2018026675 2018-02-19

Publications (1)

Publication Number Publication Date
WO2018186362A1 true WO2018186362A1 (en) 2018-10-11

Family

ID=63713216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014156 WO2018186362A1 (en) 2017-04-06 2018-04-02 Etchant for resin composition and etching method

Country Status (5)

Country Link
JP (1) JP6929936B2 (en)
KR (1) KR102340959B1 (en)
CN (1) CN110461920A (en)
TW (1) TW201842165A (en)
WO (1) WO2018186362A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6674075B1 (en) * 2018-10-24 2020-04-01 三菱製紙株式会社 Etching solution for resin composition and etching method
WO2020085447A1 (en) * 2018-10-24 2020-04-30 三菱製紙株式会社 Etchant and etching method for resin composition
WO2020158610A1 (en) * 2019-01-28 2020-08-06 三菱製紙株式会社 Etching liquid for resin compositions and etching method
JP2021019079A (en) * 2019-07-19 2021-02-15 三菱製紙株式会社 Etching method for resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203563A1 (en) * 2019-04-03 2020-10-08 三菱製紙株式会社 Etching liquid for liquid crystal polymer and method for etching liquid crystal polymer
CN115011348B (en) * 2022-06-30 2023-12-29 湖北兴福电子材料股份有限公司 Aluminum nitride etching solution and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330540A (en) * 1986-07-23 1988-02-09 Canon Electronics Inc Method of modifying surface of resin
JP2000013032A (en) * 1998-06-19 2000-01-14 Hitachi Chem Co Ltd Manufacture of multilayer printed wiring board
JP2003261699A (en) * 2002-03-08 2003-09-19 Toray Eng Co Ltd Etching solution for liquid crystal polymer and etching method using the same
JP2004504439A (en) * 2000-07-18 2004-02-12 スリーエム イノベイティブ プロパティズ カンパニー Liquid crystal polymer for flexible circuits
JP2006028207A (en) * 2004-07-12 2006-02-02 Polyplastics Co Method for plating-pretreating liquid-crystalline polymer molded article
JP2006282791A (en) * 2005-03-31 2006-10-19 Toray Eng Co Ltd Etching solution of liquid crystal polymer and method for etching liquid crystal polymer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6923919B2 (en) * 2000-07-18 2005-08-02 3M Innovative Properties Company Liquid crystal polymers for flexible circuits
JP2003101244A (en) 2001-09-27 2003-04-04 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing the same
JP2006012892A (en) * 2004-06-22 2006-01-12 Mitsubishi Paper Mills Ltd Liquid and method for desmearing
JP5138277B2 (en) 2007-05-31 2013-02-06 京セラSlcテクノロジー株式会社 Wiring board and manufacturing method thereof
JP2010111795A (en) * 2008-11-07 2010-05-20 Chisso Corp Releasing fluid
KR102582537B1 (en) 2015-08-31 2023-09-26 스미토모 베이클리트 컴퍼니 리미티드 Manufacturing method of printed wiring board, manufacturing method of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330540A (en) * 1986-07-23 1988-02-09 Canon Electronics Inc Method of modifying surface of resin
JP2000013032A (en) * 1998-06-19 2000-01-14 Hitachi Chem Co Ltd Manufacture of multilayer printed wiring board
JP2004504439A (en) * 2000-07-18 2004-02-12 スリーエム イノベイティブ プロパティズ カンパニー Liquid crystal polymer for flexible circuits
JP2003261699A (en) * 2002-03-08 2003-09-19 Toray Eng Co Ltd Etching solution for liquid crystal polymer and etching method using the same
JP2006028207A (en) * 2004-07-12 2006-02-02 Polyplastics Co Method for plating-pretreating liquid-crystalline polymer molded article
JP2006282791A (en) * 2005-03-31 2006-10-19 Toray Eng Co Ltd Etching solution of liquid crystal polymer and method for etching liquid crystal polymer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6674075B1 (en) * 2018-10-24 2020-04-01 三菱製紙株式会社 Etching solution for resin composition and etching method
WO2020085447A1 (en) * 2018-10-24 2020-04-30 三菱製紙株式会社 Etchant and etching method for resin composition
CN112912466A (en) * 2018-10-24 2021-06-04 三菱制纸株式会社 Etching solution and etching method for resin composition
KR20210068134A (en) 2018-10-24 2021-06-08 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
KR102327244B1 (en) 2018-10-24 2021-11-16 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
WO2020158610A1 (en) * 2019-01-28 2020-08-06 三菱製紙株式会社 Etching liquid for resin compositions and etching method
JP6774589B1 (en) * 2019-01-28 2020-10-28 三菱製紙株式会社 Etching solution and etching method for resin composition
KR20210097219A (en) 2019-01-28 2021-08-06 미쓰비시 세이시 가부시키가이샤 Etching liquid and etching method of resin composition
JP2021019079A (en) * 2019-07-19 2021-02-15 三菱製紙株式会社 Etching method for resin composition
JP7341766B2 (en) 2019-07-19 2023-09-11 三菱製紙株式会社 Etching method for resin compositions

Also Published As

Publication number Publication date
JP6929936B2 (en) 2021-09-01
TW201842165A (en) 2018-12-01
CN110461920A (en) 2019-11-15
JPWO2018186362A1 (en) 2020-01-16
KR20190120771A (en) 2019-10-24
KR102340959B1 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2018186362A1 (en) Etchant for resin composition and etching method
JP6514808B2 (en) Wiring board manufacturing method
JP6514807B2 (en) Wiring board manufacturing method
KR102327244B1 (en) Etching liquid and etching method of resin composition
KR20200000700U (en) Printed wiring board
WO2020158610A1 (en) Etching liquid for resin compositions and etching method
JP6674075B1 (en) Etching solution for resin composition and etching method
JP7341766B2 (en) Etching method for resin compositions
JP3209290U (en) Printed wiring board
JP2020033492A (en) Etching liquid for resin composition
JP2004240233A (en) Solder resist composition, circuit board and method for manufacturing the same
JP3242925U (en) etching equipment
JP3240214U (en) etching equipment
JP2022042708A (en) Resin composition etching method
JP5249890B2 (en) Method for forming solder resist
JP2022106534A (en) Desmear liquid for thermosetting resin
TWI675256B (en) Process for forming solder resist patterns
JP2022032447A (en) Etching device
JP2022013120A (en) Etching device
JP2017033989A (en) Method for forming solder resist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026733

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019511238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781548

Country of ref document: EP

Kind code of ref document: A1