WO2018186280A1 - 圧電音響部品 - Google Patents

圧電音響部品 Download PDF

Info

Publication number
WO2018186280A1
WO2018186280A1 PCT/JP2018/013264 JP2018013264W WO2018186280A1 WO 2018186280 A1 WO2018186280 A1 WO 2018186280A1 JP 2018013264 W JP2018013264 W JP 2018013264W WO 2018186280 A1 WO2018186280 A1 WO 2018186280A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
diaphragm
piezoelectric
resonance frequency
acoustic component
Prior art date
Application number
PCT/JP2018/013264
Other languages
English (en)
French (fr)
Inventor
雅英 田村
忠男 砂原
紘司 濱田
鈴木 隆太
Original Assignee
北陸電気工業株式会社
アンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陸電気工業株式会社, アンデン株式会社 filed Critical 北陸電気工業株式会社
Priority to KR1020197032325A priority Critical patent/KR20190130649A/ko
Priority to US16/499,553 priority patent/US10856086B2/en
Priority to DE112018001850.4T priority patent/DE112018001850T5/de
Priority to CN201880021812.0A priority patent/CN110521218B/zh
Priority to JP2018545681A priority patent/JP6516935B2/ja
Priority to TW107111817A priority patent/TW201839754A/zh
Publication of WO2018186280A1 publication Critical patent/WO2018186280A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2842Enclosures comprising vibrating or resonating arrangements of the bandpass type for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/029Manufacturing aspects of enclosures transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/207Shape aspects of the outer suspension of loudspeaker diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/20Securing diaphragm or cone resiliently to support by flexible material, springs, cords, or strands

Definitions

  • the present invention relates to a piezoelectric acoustic component in which a piezoelectric sound generating element is housed in a case having a sound emitting hole, and a sound pressure higher than a predetermined level can be obtained in a frequency range of a plurality of scales.
  • FIG. 7 of Japanese Patent No. 3436205 Patent Document 1
  • a piezoelectric vibrating body in which a piezoelectric element having a rectangular contour shape is attached to a metal diaphragm having a rectangular contour shape is housed in a case with a sound emitting hole.
  • a piezoelectric acoustic component is disclosed.
  • This piezoelectric acoustic component is a so-called piezoelectric speaker that can emit sound in a wide frequency range.
  • the usable frequency range is wide, but the sound pressure is low. For example, it may not be audible in the presence of noise such as outdoors or in a car. Therefore, there is a need for a piezoelectric acoustic component that can reliably hear sounds of a plurality of scales.
  • An object of the present invention is to provide a piezoelectric acoustic component capable of audible sound of a plurality of scales even in a noisy place.
  • the present invention relates to a piezoelectric sounding device comprising a metal diaphragm and a piezoelectric sounding element formed on at least one surface of the vibration plate, and an outer peripheral portion of the vibration plate of the piezoelectric sounding element being fixed over the entire circumference.
  • the first space and the second space are formed on both sides of the first space, and at least one sound emitting hole is formed in the wall portion facing the first space, so that the volume of the first space and the one or more space
  • a piezoelectric acoustic component including a case in which a resonator is constituted by a sound emitting hole is an object of improvement.
  • the non-fixed portion located inside the outer peripheral portion of the diaphragm includes a pair of long sides facing each other and a pair of short sides facing each other shorter in length than the long sides, It has a pair of recessed part which becomes convex in the direction which mutually approaches in a pair of long side.
  • the piezoelectric element is provided on a region between the pair of concave portions of the non-fixed portion of the diaphragm, and each contour shape of the diaphragm and the piezoelectric element is a first imaginary line that bisects the pair of short sides. Symmetric with respect to the second virtual line that bisects the pair of long sides.
  • the ratio L1 / W1 between the long side length L1 and the short side length W1 is determined to fall within the range of 1.25 to 1.75.
  • the sound pressures of the primary resonance frequency, the tertiary resonance frequency, and the intermediate frequency between the primary resonance frequency and the tertiary resonance frequency when a sine wave signal is input as an input signal are 80 dB or more, respectively.
  • a resonator is configured.
  • the resonator is preferably configured so that the minimum sound pressure between the primary resonance frequency and the intermediate frequency and the minimum sound pressure between the intermediate frequency and the tertiary resonance frequency are 80 dB or more.
  • the resonator may be configured such that the sound pressure at the intermediate frequency between the primary resonance frequency and the tertiary resonance frequency is equal to or higher than the sound pressure at the primary resonance frequency and the sound pressure at the tertiary resonance frequency.
  • Piezoacoustic parts using a so-called non-fixed portion of a rectangular metal diaphragm have a more unusable space (dead space) that occurs when they are mounted than a piezoelectric acoustic part that uses a circular or elliptical diaphragm. ), There is little demand for products that use piezoelectric acoustic components. However, when a rectangular metal diaphragm is used, it is difficult to obtain a certain level of sound pressure in a predetermined frequency range.
  • the sound pressure of the primary resonance frequency and the frequency of the tertiary resonance frequency do not increase so much, and there is a large difference in the sound pressure at each resonance frequency. I found that there was no frequency response.
  • the inventor has also found that the sound pressure in the intermediate frequency region between the primary resonance frequency and the tertiary resonance frequency can be increased by providing the resonator case with a predetermined sound emitting hole. According to the present invention based on these findings, it is possible to obtain a piezoelectric acoustic component capable of obtaining a sound pressure of 80 dB or more over a frequency range of a plurality of scales. As a result, according to the present invention, the piezoelectric sound generating element using the so-called rectangular metal diaphragm can be audible even in a noisy place.
  • the case may include a sound generating element holder that includes an opening having the same shape as the contour shape of the non-fixed portion of the diaphragm and fixes the outer peripheral portion of the diaphragm.
  • a sound generating element holder that includes an opening having the same shape as the contour shape of the non-fixed portion of the diaphragm and fixes the outer peripheral portion of the diaphragm.
  • the pair of short sides may include a pair of inclined portions that are inclined in directions in which both ends approach each other.
  • the sound pressure of the frequency characteristic can be increased by changing the inclination angle of the inclined portion.
  • a typical concave shape includes a parallel straight line portion extending in parallel with the first imaginary line, and a pair of inclined straight line portions extending away from both ends of the parallel straight line portion and toward the remaining long side corresponding to each other.
  • the outline of the piezoelectric element is a region sandwiched between a pair of linear portions along each parallel straight portion of the pair of concave portions and a pair of inclined linear portions facing in the direction in which the second virtual line of the pair of concave portions extends. It is preferable to use one having a curved portion that curves so as to be convex toward the pair of short sides.
  • the frequency difference between the primary resonance frequency and the tertiary resonance frequency can be adjusted by appropriately changing the curvature of curvature of the piezoelectric element.
  • the concave portion of the non-fixed portion of the diaphragm has a pair of parallel straight portions extending parallel to the second imaginary line and a pair of curves that are convex away from both ends of the parallel straight portions and into the concave portion.
  • the outline of the piezoelectric element is directed toward the pair of short sides in the region sandwiched by the pair of straight portions along the parallel straight portions of the pair of recesses and the pair of convex curved portions of the pair of recesses. It is preferable to have a curved portion that curves so as to be convex.
  • the frequency difference between the primary resonance frequency and the tertiary resonance frequency can be adjusted by appropriately changing the curvature of curvature of the bending portion of the piezoelectric element.
  • the concave portion of the non-fixed portion of the diaphragm is formed of a curved concave portion that curves so as to protrude toward the second imaginary line, and the contour of the piezoelectric element is formed along the pair of curved concave portions and by the pair of curved concave portions. You may provide the curved part which curves so that it may become convex toward a pair of short side within the area
  • the non-fixed portion of the vibration plate is made of an alloy plate in which nickel is mixed with iron having a thickness of 10 ⁇ m to 150 ⁇ m, and the piezoelectric element has a structure in which a plurality of PZT ceramics having a thickness of 10 ⁇ m to 35 ⁇ m are laminated.
  • the acrylic adhesive that bonds the piezoelectric element to the vibration plate preferably has a Shore D hardness of 75 to 85 and a thickness of 1 ⁇ m to 10 ⁇ m.
  • a piezoelectric sounding element comprising a metal diaphragm and a piezoelectric element provided on at least one surface of the diaphragm, and vibration of the piezoelectric sounding element
  • the outer peripheral portion of the plate is fixed over the entire periphery, and the first space and the second space are formed on both sides of the piezoelectric sound generating element.
  • One or more free spaces are formed on the wall portion facing the first space.
  • a piezoelectric acoustic component including a case in which a sound hole is formed employs the following configuration.
  • the non-fixed portion located inside the outer peripheral portion of the diaphragm includes a pair of long sides that face each other and a pair of short sides that are shorter than the long sides and face each other. It has a pair of recessed parts which become convex in the approaching direction.
  • the piezoelectric element is provided on a region between the pair of concave portions of the non-fixed portion of the diaphragm.
  • the contour shapes of the diaphragm and the piezoelectric element are symmetrical with respect to the first virtual line that bisects the pair of short sides and symmetrical with respect to the second virtual line that bisects the pair of long sides. It is stipulated in.
  • the ratio L1 / W1 of the long side length L1 to the short side length W1 is determined to be in the range of 1.25 to 1.55, and the ratio of the concave portion of the non-fixed portion of the diaphragm is determined.
  • the ratio L2 / L1 of the length L2 of the opening that opens to the long side and the length L1 of the long side is 0.4 to 0.6, and the distance between the pair of recesses in the direction toward the second imaginary line
  • the ratio W2 / W1 between the dimension W2 and the short side length W1 is 0.4 to 0.95.
  • the total opening area and the air chamber capacity of one or more sound emitting holes of a resonator provided with one or more sound emitting holes are the primary resonance frequency when a sine wave signal is input as an input signal
  • the sound pressures at the intermediate resonance frequency and the intermediate resonance frequency between the primary resonance frequency and the tertiary resonance frequency are determined to be 80 dB or more, respectively.
  • the sound pressure at the intermediate frequency is determined to be equal to or higher than the sound pressure at the primary resonance frequency and the sound pressure at the tertiary resonance frequency.
  • the resonator is preferably configured such that the minimum sound pressure between the primary resonance frequency and the intermediate frequency and the minimum sound pressure between the intermediate frequency and the tertiary resonance frequency are 80 dB or more, respectively.
  • L1 / W1 is 1.40 to 1.45
  • L2 / L1 is 0.45 to 0.55
  • W2 / W1 is 0.55 to 0.59.
  • FIG. 1 is an exploded perspective view of a piezoelectric acoustic component provided with the piezoelectric sounding element of the present embodiment
  • (B) is an exploded perspective view taken along line BB of FIG. 1 (A). It is a top view of a piezoelectric sounding element.
  • (A) is a figure which shows an example of the frequency characteristic of the piezoelectric acoustic component called a piezoelectric buzzer using the existing disk-shaped diaphragm
  • (B) is a vibration called a piezoelectric speaker which was demonstrated in patent document 1.
  • (C) is a figure which shows an example of the frequency characteristic of the piezoelectric acoustic component of this Embodiment.
  • or (E) is a figure which shows the measurement result of the primary resonant frequency at the time of changing an aspect ratio, a tertiary resonant frequency, and an intermediate
  • FIG. 9 is a diagram showing frequency characteristics when the width dimension W and the length dimension L of the piezoelectric element are changed when the same aspect ratio is made larger than that of FIG. 8 (1: 1.4). It is a figure which shows an example of the result of having tested how the frequency characteristic changes when changing the total opening area of the sound emission hole of a resonator. It is a figure which shows the result of having tested about the influence at the time of changing the number of sound emission holes from 1 to 5 without changing the total opening area of a sound emission hole so much.
  • (A) is a half cut perspective view of the piezoelectric acoustic component of the second embodiment
  • (B) is an exploded perspective view thereof.
  • (A) is a plan view of the piezoelectric sounding element used in the second embodiment, and (B) is a rear view of the piezoelectric sounding element.
  • (A) is a diagram showing a sound pressure-frequency characteristic measured by a single piezoelectric sounding element without using a resonator, and (B) is a diagram showing a sound pressure-frequency characteristic of a piezoelectric acoustic component using the resonator. is there.
  • (A) And (B) is the top view and back view of the modification of the piezoelectric sounding element used in 2nd Embodiment.
  • or (D) is a figure which shows the vibration state of the piezoelectric vibration element which vibrates in a different vibration mode.
  • (A) is a diagram showing a sound pressure-frequency characteristic measured by a single piezoelectric sounding element without using a resonator
  • (B) is a diagram showing a sound pressure-frequency characteristic of a piezoelectric acoustic component using the resonator. is there.
  • (A) And (B) is the top view and back view of a piezoelectric sounding element used with the piezoelectric acoustic component of 3rd Embodiment.
  • L1: L2 is set to 1: 0.2, 1: 0.3, and 1:04
  • L1: W1 is set to 1: 1, 1.25: 1, 1.5: 1, 1..
  • FIG. 1A shows an exploded perspective view of a piezoelectric acoustic component 1 provided with the piezoelectric sounding element of the present embodiment
  • FIG. 1B is an exploded perspective view taken along line BB of FIG. 1A.
  • FIG. 2 is a plan view of the piezoelectric sounding element.
  • a piezoelectric acoustic component 1 shown in FIGS. 1 (A) and 1 (B) is a piezoelectric acoustic component used for an application in which an alarm is generated with sounds of a plurality of scales in a noisy environment such as an automobile. .
  • the piezoelectric acoustic component 1 includes a case 6 including a sound generating element holder 9 having an opening 7 between the lower case half 3 and the upper case half 5.
  • the lower case half 3 is integrally formed of an insulating resin such as polypropylene, and includes a rectangular bottom wall 31 and a peripheral wall 32 that rises from the peripheral edge of the bottom wall 31.
  • the lower case half 3 includes a rectangular bottom wall 31 and a peripheral wall 32 standing up from the peripheral edge of the bottom wall 31.
  • the upper case half 5 is integrally formed of an insulating resin such as polypropylene, and includes a rectangular upper wall portion 51 and a peripheral wall portion 32 that stands up from the peripheral edge of the upper wall portion 51.
  • the upper case half 5 includes a rectangular upper wall 51 and a peripheral wall 52 that falls from the peripheral edge of the upper wall 51. In the upper wall portion 51, four sound emitting holes 4 are formed in the vicinity of the four corners.
  • the sound generating element holder 9 is integrally formed of a low thermal expansion and hard insulating resin, for example, an insulating resin such as glass added to polybutylene terephthalate, and the piezoelectric sound generating element 11 is formed around the opening 7.
  • the diaphragm 12 is fixed using adhesion.
  • the opening 7 has the same shape as the contour shape of the non-fixed portion 13 of the diaphragm 12 of the piezoelectric sounding element described in detail later.
  • the non-fixed portion 13 of the diaphragm 12 includes a pair of long sides 7A facing each other and a pair of short sides 7B shorter than the long sides 7A and facing each other, and the pair of long sides 7A includes It has a pair of convex part 7C which becomes convex in the direction which mutually approaches.
  • the contour shape of the opening 7, that is, the contour shape of the non-fixed portion 13 of the diaphragm 12 is symmetric with respect to the first virtual line PL1 that bisects the pair of short sides 7B and the second that bisects the pair of long sides 7A. It has a shape that is symmetric with respect to the virtual line PL2.
  • the lower case half 3, the sound generating element holder 9, and the upper case half 5 are joined to each other by ultrasonic welding in a state where the sound generating element holder 9 is sandwiched between the peripheral wall 32 and the peripheral wall 52.
  • Case 6 has been completed.
  • a first space S1 and a second space S2 are formed inside the case 6 on both sides of the piezoelectric sounding element.
  • the sound emitting hole 4 communicates with the first space S1.
  • the first space S1 constitutes an air chamber of the resonator.
  • the piezoelectric sounding element 11 includes a metal diaphragm 12 and a piezoelectric element 15 provided on at least one surface of the diaphragm 12.
  • the non-fixed portion of the diaphragm 12 includes a pair of long sides 13A opposed to each other and a pair of short sides 13B shorter than the long sides 13A and opposed to each other, and in a direction approaching each other in the pair of long sides 13A. It has a pair of concave portions 13C that are convex.
  • the piezoelectric element 15 is provided on a region between the pair of concave portions 13C of the diaphragm 12, and the contour shapes of the non-fixed portion 13 of the diaphragm 12 and the piezoelectric element 15 bisect the pair of short sides 13B. It is determined to be symmetric with respect to the first virtual line PL1 and symmetric with respect to the second virtual line PL2 that bisects the pair of long sides 13A. Various shapes can be used as the shape of the recess 13C.
  • the recess 13C of the present embodiment includes a pair of parallel straight portions 13Ca extending in parallel with the first imaginary line PL1, and a pair of portions extending from the both ends of the parallel straight portions 13Ca toward the remainder of the corresponding long side 13A.
  • An inclined linear portion 13Cb is provided.
  • the outline of the piezoelectric element 15 is a pair of slopes facing each other in a direction in which the pair of straight portions 15A along the parallel straight portions 13Ca of the pair of recesses 13C and the second virtual line PL2 of the pair of recesses 13C extend.
  • a bending portion 15B that curves so as to protrude toward the pair of short sides 13B in a region sandwiched by the straight portions 13Cb is provided.
  • the frequency difference between the primary resonance frequency and the tertiary resonance frequency can be adjusted by appropriately changing the curvature of curvature of the bending portion 15B of the piezoelectric element 15.
  • the ratio L1 / W1 between the length L1 of the long side 13A and the length W1 of the short side 13B of the non-fixed portion 13 of the diaphragm 12 is in the range of 1.25 to 1.75.
  • the shape of the non-fixed portion 13 of the diaphragm 12 is determined, and the primary resonance frequency and the third order when the resonator provided with one or more sound emission holes inputs a sine wave signal as an input signal.
  • the sound pressure at the intermediate frequency between the resonance frequencies is determined to be equal to or higher than the sound pressure at the primary resonance frequency and the sound pressure at the tertiary resonance frequency.
  • the number of sound emitting holes is arbitrary.
  • FIG. 3A shows an example of frequency characteristics when a sine wave signal is input as an input signal to a piezoelectric acoustic component called a piezoelectric buzzer using a non-fixed portion of an existing disc-shaped diaphragm. .
  • the sound pressure only needs to be increased at one resonance frequency (in this example, 90 dB or more).
  • FIG. 3B shows an example of frequency characteristics of a piezoelectric acoustic component in which a diaphragm called a piezoelectric speaker as described in Patent Document 1 has a rectangular shape.
  • FIG. 3C shows an example of frequency characteristics of the piezoelectric acoustic component of the present embodiment.
  • a piezoelectric speaker using a non-fixed portion of a rectangular diaphragm is required to have a substantially flat sound pressure in a wide frequency range (in this example, a sound pressure of 70 dB level). ).
  • the piezoelectric acoustic component 1 using the so-called rectangular metal diaphragm 12 obtains a somewhat large sound pressure in a predetermined frequency range, like the piezoelectric speaker of FIG. It is difficult [in FIG. 3C, the frequency characteristic graph A is only a piezoelectric sounding element].
  • the inventor uses the diaphragm 12 having the recess 13C on the pair of long sides 13A of the non-fixed portion 13 of the diaphragm 12 as in the present embodiment, the inventor 1 when the sine wave signal is input as the input signal. It has been found that the sound pressure at the second resonance frequency and the frequency at the third resonance frequency are not so large, and that frequency characteristics of sound pressure of 80 dB or more at each resonance frequency can be obtained. Further, the inventor can increase the sound pressure in an intermediate frequency region between the primary resonance frequency and the tertiary resonance frequency when a predetermined sound emitting hole 4 is provided in the case 6 when a sine wave signal is input as an input signal. [See frequency characteristic graph B in FIG. 3C].
  • a sound pressure of 80 dB or more can be obtained over the frequency range of a plurality of musical scales (in the example of FIG. 3C, approximately 1.7 kHz to approximately 3.6 kHz).
  • a piezoelectric acoustic component capable of audible sound in a predetermined frequency range even in a noisy place by using a piezoelectric sound generating element using a so-called rectangular metal diaphragm. be able to.
  • FIG. 4 shows the non-fixed part of the diaphragm as an oval type (round, oval, etc.) (A), square (B), hexagon (C), octagon (D) and dumbbell (E) [book]
  • the shape of the non-fixed portion of the diaphragm and the region of the vibration node and the frequency of the primary resonance frequency and the tertiary resonance frequency when the major axis or the ratio of the major axis to the minor axis or the minor axis were changed were measured.
  • Results are shown.
  • the rightmost column in FIG. 4 shows the shape of the piezoelectric element when the aspect ratio is 1: 1.5 as a reference example.
  • 5A to 5E show the primary resonance frequency ( ⁇ ), the tertiary resonance frequency ( ⁇ ), and the intermediate frequency (when the sine wave signal is input as the input signal when the aspect ratio is changed.
  • the measurement result of ⁇ ) is shown.
  • the intermediate frequency is a frequency at which the sound pressure can be increased by providing a sound emitting hole in the case as in the above embodiment. As can be seen by comparing FIGS.
  • FIG. 6 uses an oblong type (circular, elliptical, etc.) (A), square (B), hexagon (C), octagon (D), and dumbbell shape (E) having the same aspect ratio as the diaphragm. The frequency characteristics obtained only with the piezoelectric sounding element are shown. As can be seen from FIG.
  • the dumbbell type (E) employed in the present embodiment is specified as the preferred contour shape of the non-fixed portion of the diaphragm.
  • FIG. 7B is a curved concave portion that curves so that the concave portion 13C of the non-fixed portion 13 of the diaphragm 12 is convex toward the second imaginary line, and the contour of the piezoelectric element (not shown) is a pair of curved shapes.
  • a curved portion is provided that is curved so as to be convex toward the pair of short sides in a region along the concave portion and sandwiched between the pair of curved concave portions.
  • the concave portion 13C of the non-fixed portion 13 of the diaphragm 12 in FIG. 7C is parallel to the second straight line and the parallel straight portion 13Ca is separated from both ends of the parallel straight portion 13Ca and into the concave portion 13C.
  • a pair of convex curved portions 13b 'that are curved so as to be convex toward the top are provided.
  • the outline of the piezoelectric element (not shown) is a pair of regions in a region sandwiched between the pair of straight portions along the parallel straight portions 13Ca of the pair of recesses 13C and the pair of convex curved portions 13b ′ of the pair of recesses.
  • a bending portion that curves so as to be convex toward the short side is provided. Also in this case, the frequency difference between the primary resonance frequency and the tertiary resonance frequency can be adjusted by appropriately changing the curvature of curvature of the piezoelectric element.
  • [Piezoelectric element shape] 8A and 8B show changes in the frequency characteristics of the piezoelectric acoustic component when a sine wave signal is input as an input signal when the shape and size of the piezoelectric element 15 are changed.
  • the aspect ratio 1 of the diaphragm 12 is 1: 1.3
  • the width dimension of the piezoelectric element (PZT ceramic) is constant 13 mm.
  • FIG. 8B shows changes in frequency characteristics when the length dimension in the direction along the imaginary line PL1 (projection dimension of the curved portion 15B in FIG. 2) is changed.
  • FIG. 8B shows the shape of the piezoelectric element as a rectangular shape.
  • the aspect ratio 1 of the diaphragm 12 is set to 1: 1.3
  • the width dimension of the piezoelectric element (PZT ceramic) (dimension in the direction along the second imaginary line PL2) is constant 13 mm
  • the first imaginary line PL1 The change of the frequency characteristic when the length dimension of the direction in alignment with is changed is shown. 8A and 8B, it can be seen that the length dimension and shape in the direction along the first imaginary line PL1 have an influence on the sound pressure at the first resonance frequency and the second resonance frequency.
  • 8A and 8B are plan views of the piezoelectric sound generating elements (a) to (j) each showing the shape of the target piezoelectric element.
  • FIG. 9 shows the case where the same aspect ratio is set as compared with the case of FIG. 8 (1: 1.4), and the width dimension W2 (dimension in the direction along the second virtual line PL2) and the length dimension L of the piezoelectric element.
  • the frequency characteristics when a sine wave signal is input as the input signal when (the dimension in the direction along the first virtual line PL1) is changed are shown.
  • the aspect ratio is increased, the difference between the sound pressure at the primary resonance frequency and the sound pressure at the tertiary resonance frequency is increased, but the length of the piezoelectric element is increased.
  • the difference between the sound pressure at the primary resonance frequency and the sound pressure at the tertiary resonance frequency does not increase, and that there is no great variation in the sound pressure in the high frequency range.
  • the shape and dimensions of the piezoelectric element are appropriately adjusted in consideration of the tendency seen from FIGS.
  • FIG. 10 shows a case where the total opening area of the sound emitting holes of the resonator is changed from 1.8 cc to 10 cc as an example of the front cavity volume (resonator air chamber volume) in the present embodiment.
  • the result of having tested how the frequency characteristic changes when a sine wave signal is input as an input signal is shown.
  • the aspect ratio of the diaphragm was 1: 1.3
  • the shape of the piezoelectric element was oval
  • the width dimension was fixed to 10 mm
  • the length dimension was fixed to 15 mm.
  • FIG. 10 shows the results of testing the effect of changing the number of sound emitting holes from one to five without changing the total opening area of the sound emitting holes.
  • the piezoelectric sounding element and the resonator (case and sound emitting hole) used in each of the above tests satisfy the following conditions.
  • the non-fixed portion 13 of the diaphragm 12 is preferably made of an alloy plate in which nickel is mixed with iron having a thickness of 10 ⁇ m to 150 ⁇ m.
  • the piezoelectric element preferably has a structure in which a plurality of layers of PZT ceramic having a thickness of 10 ⁇ m to 35 ⁇ m are laminated. Further, the Shore D hardness of the acrylic adhesive for bonding the piezoelectric element to the vibration plate is preferably 75 to 85 and the thickness is 1 ⁇ m to 10 ⁇ m.
  • FIG. 12A and 12B are a half cut perspective view and an exploded perspective view of the piezoelectric acoustic component 1 of the second embodiment, and FIG. 13A is used in the second embodiment.
  • FIG. 13 is a plan view of the piezoelectric sounding element 11, and
  • FIG. 13B is a rear view of the piezoelectric sounding element.
  • the second embodiment differs from the first embodiment shown in FIGS. 1 and 2 in the shape of the piezoelectric sounding element 11 and the position and number of the sound emitting holes 4. The other points are not different from the first embodiment. Therefore, in FIG. 12 and FIG. 13, the same reference numerals as those used for explaining FIG. 1 and FIG.
  • the diaphragm 12 of the piezoelectric sounding element 11 has a rectangular shape, and the piezoelectric element 15 is attached to the back surface of the diaphragm 12.
  • the contour shape of the non-fixed portion 13 of the diaphragm 12 is a so-called dumbbell shape.
  • FIG. 14A shows the sound pressure-frequency characteristics measured by the piezoelectric sounding element 11 alone without using the resonator (lower case half 3), and FIG. 14B shows the piezoelectric sound using the resonator. The sound pressure-frequency characteristics of the parts are shown. As can be seen from a comparison of FIGS. 14A and 14B, the sound pressure increases in the range of 1.7 kHz to 3 kHz.
  • FIGS. 15A and 15B show a modification of the piezoelectric sounding element 11 used in the second embodiment.
  • the contour shape of the dumbbell-shaped non-fixed portion 13 of the diaphragm 12 of the piezoelectric sounding element 11 includes a pair of inclined portions 13Ba in which a pair of short sides 13B are inclined in directions approaching to both ends.
  • a pair of inclined portions 13Ba By providing such a pair of inclined portions 13Ba, it is possible to improve the harmonic component of the frequency characteristics by changing the inclination angle of the inclined portion 13Ba. That is, when the shape of the piezoelectric sounding element 11 is adopted, it is possible to improve the sound pressure at the frequency portion indicated by the arrow in FIG. 17A.
  • FIG. 16A to 16D show the piezoelectric sounding element when it is vibrated in the primary vibration mode, when it is vibrated in the tertiary vibration mode, when it is vibrated in the quaternary vibration mode, and when it is vibrated in the quaternary vibration mode. It is a figure which shows the vibration state of the diaphragm 12 at the time of making it vibrate in a mode.
  • the white portion is a deformed and convex portion
  • the black portion is a deformed and concave portion.
  • FIG. 17A shows the sound pressure-frequency characteristics measured with the piezoelectric sounding element 11 alone without using the resonator (lower case half 3)
  • FIG. 17B shows the piezoelectric sound using the resonator. The sound pressure-frequency characteristics of the parts are shown. As can be seen from a comparison between FIGS. 14A and 14B, the sound pressure is higher in the range of 1.7 kHz to 3 kHz than before the improvement.
  • [Third Embodiment] 18A and 18B are a plan view and a rear view of the piezoelectric sounding element 11 used in the piezoelectric acoustic component according to the third embodiment.
  • the third embodiment differs from the second embodiment shown in FIGS. 12 and 13 in the shape of the piezoelectric sounding element 11. The other points are not different from the second embodiment. Therefore, in FIG. 18, the same parts as those in the second embodiment shown in FIGS. 12 and 13 are denoted by the same reference numerals as those used to describe FIGS. 12 and 13, and the description thereof is omitted. To do.
  • the diaphragm 12 of the piezoelectric sounding element 11 has a rectangular shape, and the piezoelectric element 15 is attached to the back surface of the diaphragm 12.
  • the contour shape of the non-fixed portion 13 of the diaphragm 12 has an inclined linear portion that the non-fixed portion 13 of the diaphragm according to the first and second embodiments has.
  • dumbbell shape There is no so-called dumbbell shape. That is, the recess 13C has a complete rectangular shape. According to this configuration, it is not necessary to perform special processing on the diaphragm 12.
  • one sound emitting hole is formed at the center of the upper wall portion of the upper case half as in the second embodiment.
  • FIG. 19 shows that L1: L2 shown in FIG. 18A in this embodiment is 1: 0.2, 1: 0.3, and 1: 0.4, and L1: W1 is 1.25: 1, Primary natural frequency when a sinusoidal signal is input as an input signal when 1.5 / 1, 1.75: 1 and 2: 1, and W2 / W1 is changed in the range of 0.2 to 1. It is a figure which shows the change of * and a 3rd natural frequency ⁇ .
  • L1: L2 shown in FIG. 18A in this embodiment is 1: 0.5, 1: 0.6, and 1: 0.7
  • L1: W1 is 1.25: 1. , 1.5: 1, 1.75: 1 and 2: 1, and changes in the primary natural frequency ⁇ and the tertiary natural frequency ⁇ when W2 / W1 is changed in the range of 0.2 to 1.
  • FIG. 20 shows that L1: L2 shown in FIG. 18A in this embodiment is 1: 0.2, 1: 0.3, and 1: 0.4, and L1: W1 is 1.
  • 21A to 21C show piezoelectric sound generation when L1: L2 is 1: 0.4 and L1: W1 is 1.4: 1, 1.5: 1, 1.6: 1. It can be obtained only with the element. It is a figure which shows the sound pressure-frequency characteristic when a sine wave signal is input as an input signal. 21D to 21F, L1: L2 is set to 1: 0.5, and L1: W1 is set to 1: 1, 1.4: 1, 1.5: 1, 1.6: 1. It is a figure which shows the sound pressure-frequency characteristic when a sine wave signal is input as an input signal, which is obtained only with the piezoelectric sounding element in the case.
  • L1: L2 is set to 1: 0.6
  • L1: W1 is set to 1: 1, 1.4: 1, 1.5: 1, 1.6: 1.
  • the ratio L1 / W1 of the long side length L1 to the short side length W1 is determined to be in the range of 1.25 to 1.75, and the diaphragm
  • the ratio L2 / L1 between the length L2 of the opening that opens to the long side of the concave portion of the non-fixed portion and the length L1 of the long side is 0.4 to 0.7, and the direction toward the second imaginary line If the ratio W2 / W1 between the dimension W2 between the pair of recesses and the length W1 of the short side is 0.4 to 0.95, the sound pressure increases in the range of about 2 kHz to about 3 kHz.
  • the total opening area and the air chamber capacity of one or more sound emitting holes are the primary resonance when a sine wave signal is input as an input signal.
  • the sound pressure of the frequency, the third resonance frequency, and the intermediate frequency between the first resonance frequency and the third resonance frequency are determined to be 80 dB or more, respectively.
  • the total opening area and the air chamber capacity of one or more sound emitting holes are such that the sound pressure at the intermediate frequency between the primary resonance frequency and the tertiary resonance frequency when a sine wave signal is input as the input signal is the primary resonance. It is preferable that the frequency is set to be equal to or higher than the sound pressure of the frequency and the sound pressure of the third resonance frequency.
  • the diaphragm of the piezoelectric sounding element has a rectangular shape, and the piezoelectric element has the diaphragm.
  • the contour shape of the non-fixed part of the diaphragm, which is attached to the back surface, has an inclined linear part that the non-fixed part of the diaphragm of the first embodiment and the second embodiment has.
  • dumbbell shape There is no so-called dumbbell shape. That is, the recess (13C) has a complete rectangular shape.
  • the ratio L1 / W1 of the long side length L1 (30 mm) and the short side length W1 (21 mm) of the used diaphragm (12) is 1.43, and the length of the concave portion of the non-fixed part of the diaphragm
  • the ratio L2 / L1 between the length L2 (15 mm) of the opening that opens to the side and the length L1 of the long side is 0.5, and the dimension W2 between the pair of recesses in the direction toward the second imaginary line
  • the ratio W2 / W1 of (12 mm) to the short side length W1 was 0.57.
  • one sound emitting hole (4) is formed at the center of the upper wall portion of the upper case half as in the second embodiment.
  • the non-fixed portion (13) of the diaphragm (12) is made of an alloy plate in which nickel is mixed with iron having a thickness of 50 ⁇ m.
  • the piezoelectric element has a structure in which a plurality of PZT ceramics having a thickness of 20 ⁇ m are laminated. Further, the Shore D hardness of the acrylic adhesive for bonding the piezoelectric element to the diaphragm was 82 and the thickness thereof was about 1 to 10 ⁇ m.
  • the thickness dimension of the sound emitting hole (4) is 1 mm
  • the radius and the air chamber capacity of the sound emitting hole (4) are 5.5 mm and 6 cc, 7 mm and 8 cc, and 8.
  • the results of testing how the sound pressure-frequency characteristics change when a sine wave signal is input as an input signal when 5 mm and 10 cc, 10 mm and 10 cc, and 11.5 mm and 14 cc are shown are shown.
  • the sound pressure at the intermediate frequency between the tertiary resonance frequencies is 80 dB or more.
  • the sound pressure at the intermediate frequency between the primary resonance frequency and the tertiary resonance frequency is higher than the sound pressure at the primary resonance frequency and the sound pressure at the tertiary resonance frequency. It has become.
  • the resonator is configured so that the sound pressure is 80 dB or more. Therefore, in a considerably wide frequency range, the sound pressure rises and the sound pressure difference becomes small, and there is an advantage that the sound becomes flat even when the sound is swept.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

騒音の大きな場所でも、複数音階の音を可聴できる圧電音響部品を提供する。圧電発音素子11は、金属製の振動板12及び振動板12の少なくとも片面上に設けられた圧電素子15から構成されている。振動板12の非固定部は、互いに対向する一対の長辺13Aと該長辺13Aよりも長さが短く互いに対向する一対の短辺13Bを備え、一対の長辺13A中に互いに近づく方向に凸となる一対の凹部13Cを有している。圧電素子15は、振動板12の一対の凹部13Cの間の領域上に設けられており、振動板12の非固定部13及び圧電素子15のそれぞれの輪郭形状が、一対の短辺13Bを二分する第1の仮想線PL1に対して対称となり且つ一対の長辺13Aを二分する第2の仮想線PL2に対して対称となるように定められている。

Description

圧電音響部品
 本発明は、圧電発音素子が放音孔を備えたケース内に収納され、複数音階分の周波数範囲において所定以上の音圧を得ることができる圧電音響部品に関するものである。
 特許第3436205号公報(特許文献1)の図7には、輪郭形状が四角形の金属製の振動板に輪郭形状が四角形の圧電素子を貼り付けた圧電振動体を放音孔付きのケースに収納した圧電音響部品が開示されている。この圧電音響部品は、広い周波数範囲で音を出すことができる、いわゆる圧電スピーカである。
特許第3436205号公報
 特許文献1に示された圧電音響部品では、使用可能な周波数範囲は広いものの音圧が低く、例えば、屋外や、自動車の車内等のように騒音があるところでは可聴できない場合がある。そのため複数音階の音を確実に可聴できる圧電音響部品が求められている。
 本発明の目的は、騒音の大きな場所でも、複数音階の音を可聴できる圧電音響部品を提供することにある。
 本発明は、金属製の振動板及び振動板の少なくとも片面上に設けられた圧電素子からなる圧電発音素子と、圧電発音素子の振動板の外周部を全周に亘って固定し、圧電発音素子の両側に第1の空間と第2の空間を形成するように構成され、第1の空間と対向する壁部に1以上の放音孔が形成されて第1の空間の容積と1以上の放音孔により共振器を構成しているケースとを備えてなる圧電音響部品を改良の対象とする。本発明の圧電音響部品では、振動板の外周部の内側に位置する非固定部分が、互いに対向する一対の長辺と該長辺よりも長さが短く互いに対向する一対の短辺を備え、一対の長辺中に互いに近づく方向に凸となる一対の凹部を有している。そして圧電素子は、振動板の非固定部の一対の凹部の間の領域上に設けられており、振動板及び圧電素子のそれぞれの輪郭形状が、一対の短辺を二分する第1の仮想線に対して対称となり且つ一対の長辺を二分する第2の仮想線に対して対称となるように定められている。また長辺の長さL1と短辺の長さW1の比L1/W1が、1.25~1.75の範囲に入るように定められている。そして入力信号として正弦波信号を入力したときの1次共振周波数と、3次共振周波数と、1次共振周波数と3次共振周波数の間の中間周波数の音圧が、それぞれ80dB以上になるように共振器が構成されている。
 特に、1次共振周波数と中間周波数の間の最小音圧及び中間周波数と3次共振周波数の間の最小音圧も、80dB以上になるように共振器が構成されているのが好ましい。
 また1次共振周波数と3次共振周波数の間の中間周波数の音圧が、1次共振周波数の音圧及び3次共振周波数の音圧以上になるように、共振器が構成されていてもよい。
 いわゆる非固定部が矩形状の金属製の振動板を用いた圧電音響部品は、円形や楕円形等の振動板を用いた圧電音響部品よりも、実装した場合に発生する使用できないスペース(デッドスペース)が少ないので、圧電音響部品が使用される製品では、一定の需要が見込まれる。しかしながら矩形の金属製の振動板を用いた場合には、所定の周波数範囲においてある程度大きな音圧を得ることが難しい。発明者は、一対の長辺に凹部を有する振動板を用いると、1次共振周波数の音圧と3次共振周波数の周波数があまり大きくならず、しかもそれぞれの共振周波数における音圧に大きな差がない周波数特性が得られることを見いだした。また発明者は、所定の放音孔を設けた共振器ケースに設けると、1次共振周波数と3次共振周波数の間の中間周波数領域における音圧を増大できることを見いだした。これらの知見に基づく、本発明によれば、複数音階分の周波数範囲にわたって80dB以上の音圧を得ることができる圧電音響部品を得ることができる。その結果、本発明によれば、いわゆる矩形状の金属製の振動板を用いた圧電発音素子を用いて、騒音が大きな場所でも可聴できる。
 ケースは、振動板の非固定部の輪郭形状と同一形をなす開口部を備えて、振動板の外周部を固定する発音素子ホルダを備えていても良い。このような発音素子ホルダを用いると、振動板の非固定部の輪郭形状は、開口部の形状によって決まることになる。その結果、振動板の形状としては、矩形を用いることができ、振動板の加工価格を低減できる。
 一対の短辺は、両端部に互いに近付く方向に傾斜する一対の傾斜部を備えていてもよい。このような一対の傾斜部を設けると、傾斜部の傾斜角度を変えることにより、周波数特性の音圧を高めることができる。
 振動板の非固定部の凹部の形状は種々の形状が利用できる。代表的な凹部の形状は、第1の仮想線と平行に延びる平行直線部と、該平行直線部の両端部から互いに離れ且つ対応する長辺の残部に向かって延びる一対の傾斜直線部を備えて構成されている。この場合、圧電素子の輪郭は、一対の凹部のそれぞれの平行直線部に沿う一対の直線部と、一対の凹部の第2の仮想線が延びる方向に対向する一対の傾斜直線部によって挟まれる領域内で一対の短辺に向かって凸となるように湾曲する湾曲部を備えたものを用いるのが好ましい。圧電素子の湾曲の曲率を適宜に変えることにより、1次共振周波数と3次共振周波数の間の周波数差を調整することができる。
 また振動板の非固定部の凹部は、第2の仮想線と平行に延びる平行直線部と、該平行直線部の両端部から互いに離れ且つ凹部内に向かって凸となるように湾曲する一対の凸状湾曲部を備えて構成されていてもよい。この場合も圧電素子の輪郭は、一対の凹部のそれぞれの平行直線部に沿う一対の直線部と、一対の凹部の前記一対の凸状湾曲部によって挟まれる領域内で一対の短辺に向かって凸となるように湾曲する湾曲部を備えているのが好ましい。この場合にも、圧電素子の湾曲部の湾曲の曲率を適宜に変えることにより、1次共振周波数と3次共振周波数の間の周波数差を調整することができる。
 さらに振動板の非固定部の凹部は、第2の仮想線に向かって凸となるように湾曲する湾曲凹部からなり、圧電素子の輪郭は、一対の前記湾曲凹部に沿い且つ一対の湾曲凹部によって挟まれる領域内で一対の短辺に向かって凸となるように湾曲する湾曲部を備えていてもよい。
 なお自動車の車内向けまたは車外向けのアラームとして使用するような場合の実用的な条件としては、次のようにするのが好ましい。振動板の非固定部は、厚みが10μm~150μmの鉄にニッケルを配合した合金製板からなり、圧電素子は厚みが10μm~35μmのPZTセラミックが複数層積層された構造を有しており、圧電素子を振動板に接着するアクリル系接着剤のショアD硬度が75~85であり且つ厚みが1μm~10μmであるのが好ましい。
 さらに約2kHzから約3kHzの間で、ある程度の音圧を得る場合には、金属製の振動板及び振動板の少なくとも片面上に設けられた圧電素子からなる圧電発音素子と、圧電発音素子の振動板の外周部を全周に亘って固定し、圧電発音素子の両側に第1の空間と第2の空間を形成するように構成され、第1の空間と対向する壁部に1以上の放音孔が形成されているケースとを備えてなる圧電音響部品において、次の構成を採用する。すなわち振動板の外周部の内側に位置する非固定部分は、互いに対向する一対の長辺と該長辺よりも長さが短く互いに対向する一対の短辺を備え、一対の長辺中に互いに近づく方向に凸となる一対の凹部を有している。圧電素子は、振動板の非固定部の一対の凹部の間の領域上に設けられている。そして振動板及び圧電素子のそれぞれの輪郭形状が、一対の短辺を二分する第1の仮想線に対して対称となり且つ一対の長辺を二分する第2の仮想線に対して対称となるように定められている。その上、長辺の長さL1と短辺の長さW1の比L1/W1が、1.25~1.55の範囲に入るように定められており、振動板の非固定部の凹部の長辺に開口する開口部の長さL2と、長辺の長さL1との比L2/L1が0.4~0.6であり、第2の仮想線に向かう方向の一対の凹部間の寸法W2と短辺の長さW1の比W2/W1が0.4~0.95である。この場合も、1つ以上の放音孔を設けた共振器の1以上の放音孔の総開口面積及び空気室容量が、入力信号として正弦波信号を入力したときの1次共振周波数と、3次共振周波数と、1次共振周波数と3次共振周波数の間の中間周波数の音圧が、それぞれ80dB以上になるようになるように定められている。そしてこの場合、中間周波数の音圧が、1次共振周波数の音圧及び3次共振周波数の音圧以上になるように定めるのが好ましい。特に、1次共振周波数と中間周波数の間の最小音圧及び中間周波数と3次共振周波数の間の最小音圧が、それぞれ80dB以上になるように共振器が構成されているのが好ましい。この場合、L1/W1が1.40~1.45であり、L2/L1が0.45~0.55であり、W2/W1が0.55~0.59であるのが好ましい。
(A)は本実施の形態の圧電発音素子を備えた圧電音響部品の分解斜視図であり、(B)は図1(A)のB-B線分解斜視図である。 圧電発音素子の平面図である。 (A)は既存の円板状の振動板を用いた圧電ブザーと呼ばれる圧電音響部品の周波数特性の一例を示す図であり、(B)は特許文献1で説明したような圧電スピーカと呼ばれる振動板が矩形状を呈している圧電音響部品の周波数特性の一例を示す図であり、(C)は本実施の形態の圧電音響部品の周波数特性の一例を示す図である。 振動板として、小判型(円形、楕円形等)(A)、四角形(B)、六角形(C)、八角形(D)及びダンベル形(E)を用い、且つそれら振動板の中央部に実質的に同じ面積の圧電素子を配置したときの、アスペクト比を変えた場合の振動板の形状及び振動の節の領域と、1次共振周波数と3次共振周波数の周波数を測定した結果を示す図である。 (A)乃至(E)は、アスペクト比を変えた場合の1次共振周波数と3次共振周波数と中間周波数の測定結果を示す図である。 振動板として、同じアスペクト比の小判型(円形、楕円形等)(A)、四角形(B)、六角形(C)、八角形(D)及びダンベル形(E)を用いたときで、圧電発音素子だけで得られる周波数特性を示す図である。 (A)乃至(D)は、凹部の形状が異なる場合において、同じアスペクト比(1:1.3)の場合で、1次共振周波数と3次共振周波数の差Δがどのように変化するのかを確認した結果を示す図である。 (A)及び(B)は、圧電素子の形状寸法を変えた場合における圧電音響部品の周波数特性の変化を示す図である。 図8の場合よりも同じアスペクト比を大きくした場合(1:1.4)で、圧電素子の幅寸法Wと長さ寸法Lを変えたときの周波数特性を示す図である。 共振器の放音孔の総開口面積を変えた場合において、周波数特性がどのように変わるのかを試験した結果の一例を示す図である。 放音孔の総開口面積はあまり変えずに、放音孔の数を1個から5個に変えた場合の影響について試験した結果を示す図である。 (A)は第2の実施の形態の圧電音響部品の半部切断斜視図であり、(B)はその分解斜視図である。 (A)は第2の実施の形態で用いる圧電発音素子の平面図であり、(B)は圧電発音素子の背面図である。 (A)は共鳴器を用いずに圧電発音素子単体で測定した音圧-周波数特性を示す図であり、(B)は共鳴器を用いた圧電音響部品の音圧-周波数特性を示す図である。 (A)及び(B)は、第2の実施の形態で用いる圧電発音素子の変形例の平面図及び背面図である。 (A)乃至(D)は、異なる振動モードで振動する圧電振動素子の振動状態を示す図である。 (A)は共鳴器を用いずに圧電発音素子単体で測定した音圧-周波数特性を示す図であり、(B)は共鳴器を用いた圧電音響部品の音圧-周波数特性を示す図である。 (A)及び(B)は、第3の実施の形態の圧電音響部品で用いる圧電発音素子の平面図及び背面図である。 第3の実施の形態においてL1:L2を1:0.2,1:0.3及び1:04とし、L1:W1を1:1,1.25:1,1.5:1,1.75:1及び2:1とし、W2/W1を0.2~1の範囲で変えた場合における1次固有振動数◆と3次固有振動数■の変化を示す図である。 第3の実施の形態において、L1:L2を1:0.5,1:0.6及び1:0.7とし、L1:W1を1:1,1.25:1,1.5:1,1.75:1及び2:1とし、W2/W1を0.2~1の範囲で変えた場合における1次固有振動数◆と3次固有振動数■の変化を示す図である。 (A)乃至(I)は、第3の実施の形態において、L1:L2及びL1:W1を変えた場合の圧電発音素子だけで得られる音圧-周波数特性を示す図である。 (A)乃至(E)は、第4の実施の形態において、放音孔の厚み寸法を一定として、放音孔直径及び空気室容量を変えたときに、音圧-周波数特性がどのように変わるのかを試験した結果を示す図である。
 以下、図面を参照して本発明の圧電音響部品の実施の形態について説明する。
 [第1の実施の形態]
 図1(A)は、本実施の形態の圧電発音素子を備えた圧電音響部品1の分解斜視図を示しており、図1(B)は図1(A)のB-B線分解斜視図である。図2は、圧電発音素子の平面図である。なお、本実施の形態では、理解を容易にするため、一部の部品の厚み寸法を誇張して描いている。図1(A)及び(B)に示す圧電音響部品1は、例えば自動車内のように雑音が多い環境の中で複数音階の音でアラームを発生するような用途に使用する圧電音響部品である。
 圧電音響部品1は、下側ケース半部3と上側ケース半部5との間に開口部7を有する発音素子ホルダ9を備えたケース6を備えている。下側ケース半部3は、ポリプロピレン等の絶縁樹脂によって一体に成形されており、長方形状の底壁部31と底壁部31の周縁部から起立する周壁部32とを備えている。下側ケース半部3は長方形状の底壁部31と底壁部31の周縁部から起立する周壁部32とを備えている。上側ケース半部5は、ポリプロピレン等の絶縁樹脂によって一体に成形されており、長方形状の上壁部51と上壁部51の周縁部から起立する周壁部32とを備えている。上側ケース半部5は長方形状の上壁部51と上壁部51の周縁部から立ち下がる周壁部52とを備えている。上壁部51には、四隅近傍に4つの放音孔4が形成されている。
 発音素子ホルダ9は、低熱膨張で硬質の絶縁樹脂、例えばポリブチレンテフタレートにガラスが添加された等の絶縁樹脂により一体に成形されており、開口部7の周囲には、圧電発音素子11の振動板12が接着を用いて固定される。開口部7は、後に詳しく説明する圧電発音素子の振動板12の非固定部13の輪郭形状と同一形状を呈している。具体的に振動板12の非固定部13は、互いに対向する一対の長辺7Aとこの長辺7Aよりも長さが短く互いに対向する一対の短辺7Bを備え、一対の長辺7A中に互いに近づく方向に凸となる一対の凸部7Cを有している。開口部7の輪郭形状即ち振動板12の非固定部13の輪郭形状は、一対の短辺7Bを二分する第1の仮想線PL1に対して対称となり且つ一対の長辺7Aを二分する第2の仮想線PL2に対して対称となる形状を有している。
 なお下側ケース半部3と発音素子ホルダ9と上側ケース半部5は、周壁部32と周壁部52との間に発音素子ホルダ9を挟んだ状態で相互に超音波溶着により気密に接合されてケース6が完成している。これによって圧電発音素子11が発音素子ホルダ9に固定され状態で、ケース6の内部には圧電発音素子の両側に第1の空間S1と第2の空間S2が形成される。放音孔4は、第1の空間S1と連通している。第1の空間S1が共振器の空気室を構成している。
 図2に示すように圧電発音素子11は、金属製の振動板12及び振動板12の少なくとも片面上に設けられた圧電素子15から構成されている。振動板12の非固定部は、互いに対向する一対の長辺13Aと該長辺13Aよりも長さが短く互いに対向する一対の短辺13Bを備え、一対の長辺13A中に互いに近づく方向に凸となる一対の凹部13Cを有している。圧電素子15は、振動板12の一対の凹部13Cの間の領域上に設けられており、振動板12の非固定部13及び圧電素子15のそれぞれの輪郭形状が、一対の短辺13Bを二分する第1の仮想線PL1に対して対称となり且つ一対の長辺13Aを二分する第2の仮想線PL2に対して対称となるように定められている。凹部13Cの形状は種々の形状が利用できる。本実施の形態の凹部13Cは、第1の仮想線PL1と平行に延びる平行直線部13Caと、該平行直線部13Caの両端部から互いに離れ且つ対応する長辺13Aの残部に向かって延びる一対の傾斜直線部13Cbを備えて構成されている。この場合、圧電素子15の輪郭は、一対の凹部13Cのそれぞれの平行直線部13Caに沿う一対の直線部15Aと、一対の凹部13Cの第2の仮想線PL2が延びる方向に対向する一対の傾斜直線部13Cbによって挟まれる領域内で一対の短辺13Bに向かって凸となるように湾曲する湾曲部15Bを備えている。圧電素子15の湾曲部15Bの湾曲の曲率を適宜に変えることにより、1次共振周波数と3次共振周波数の間の周波数差を調整することができる。
 本実施の形態では、前述の振動板12の非固定部13の長辺13Aの長さL1と短辺13Bの長さW1の比L1/W1が、1.25~1.75の範囲に入るように振動板12の非固定部13の形状が定められており、1つ以上の放音孔を設けた共振器が、入力信号として正弦波信号を入力したときの1次共振周波数と3次共振周波数の間の中間周波数の音圧が、1次共振周波数の音圧及び3次共振周波数の音圧以上になるように定められている。なお後に説明するように放音孔の数は任意である。
 [実施の形態の周波数特性]
 図3(A)は、既存の円板状の振動板の非固定部を用いた圧電ブザーと呼ばれる圧電音響部品に、入力信号として正弦波信号を入力したときの周波数特性の一例を示している。この図から判るように圧電ブザーでは、一つの共振周波数で音圧が高くなればよい(この例では90dB以上)。これに対して図3(B)は、特許文献1で説明したような圧電スピーカと呼ばれる振動板が矩形状を呈している圧電音響部品の周波数特性の一例を示している。図3(C)は、本実施の形態の圧電音響部品の周波数特性の一例を示している。
 図3(B)に示すように、矩形状の振動板の非固定部を用いる圧電スピーカでも、広い周波数範囲において音圧がほぼフラットになることが求められる(この例では、70dB台の音圧)。本実施の形態のように、いわゆる矩形状の金属製の振動板12を用いた圧電音響部品1は、図3(B)の圧電スピーカと同様に、所定の周波数範囲においてある程度大きな音圧を得ることが難しい[図3(C)において、周波数特性グラフAが圧電発音素子だけの場合である]。
 発明者は、本実施の形態のように、振動板12の非固定部13の一対の長辺13Aに凹部13Cを有する振動板12を用いると、入力信号として正弦波信号を入力したときの1次共振周波数の音圧と3次共振周波数の周波数があまり大きくならず、しかもそれぞれの共振周波数における音圧80dB以上の周波数特性が得られることを見いだした。また発明者は、所定の放音孔4をケース6に設けると、入力信号として正弦波信号を入力したときの1次共振周波数と3次共振周波数の間の中間周波数領域における音圧を増大できることを見いだした[図3(C)の周波数特性グラフB参照]。本実施の形態によれば、複数音階分の周波数範囲[図3(C)の例では、ほぼ1.7kHz~ほぼ3.6kHz]にわたって80dB以上の音圧を得ることができる。その結果、本実施の形態によれば、いわゆる矩形状の金属製の振動板を用いた圧電発音素子を用いて、騒音が大きな場所でも所定の周波数範囲の音を可聴できる圧電音響部品を提供することができる。
 [振動板の非固定部の形状の特定]
 上記実施の形態において、振動板12の非固定部13の形状を特定した理由を以下に説明する。図4は、振動板の非固定部のとして、小判型(円形、楕円形等)(A)、四角形(B)、六角形(C)、八角形(D)及びダンベル形(E)[本実施の形態のように一対の長辺に一対の凹部を有する形状]を用い、且つそれら振動板の非固定部の中央部に実質的に同じ面積の圧電素子を配置したときの、アスペクト比(長軸または長辺と短軸たは短辺の比)を変えた場合の振動板の非固定部の形状及び振動の節の領域と、1次共振周波数と3次共振周波数の周波数を測定した結果を示している。図4の右端の列は、アスペクト比1:1.5の時の圧電素子の形状を参考例として示している。そして図5(A)乃至(E)は、アスペクト比を変えた場合において、入力信号として正弦波信号を入力したときの1次共振周波数(◆)と3次共振周波数(■)と中間周波数(▲)の測定結果を示している。なお中間周波数は、上記実施の形態と同様にケースに放音孔を設けて音圧を上げることができた周波数である。図5(A)乃至(E)を比較すると判るように、本実施の形態で採用するダンベル型の振動板の非固定部を用いると、1次共振周波数と3次共振周波数を大きくして、しかも1次共振周波数と3次共振周波数の差を狭くすることができることが判る。また図6は、振動板として、同じアスペクト比の小判型(円形、楕円形等)(A)、四角形(B)、六角形(C)、八角形(D)及びダンベル形(E)を用いたときで、圧電発音素子だけで得られる周波数特性を示している。図6から判るように、ダンベル形(E)では、1次共振周波数と3次共振周波数の差を最も小さくできる。このようなことから本実施の形態で採用しているダンベル型(E)が好ましい振動板の非固定部の輪郭形状として特定した。
 [振動板12の非固定部13の凹部の変形例]
 図7(A)乃至(D)は、振動板12の非固定部13の凹部の形状が異なる場合において、同じアスペクト比(1:1.3)の場合で、1次共振周波数と3次共振周波数の差Δがどのように変化するのかを確認した結果を示している。図7(A)の凹部13Cは、上記実施の形態と同じものである。
 図7(B)は、振動板12の非固定部13の凹部13Cが第2の仮想線に向かって凸となるように湾曲する湾曲凹部からなり、図示しない圧電素子の輪郭は、一対の湾曲凹部に沿い且つ一対の湾曲凹部によって挟まれる領域内で一対の短辺に向かって凸となるように湾曲する湾曲部を備えている場合である。
 図7(C)の振動板12の非固定部13の凹部13Cは、第2の仮想線と平行に延びる平行直線部13Caと、該平行直線部13Caの両端部から互いに離れ且つ凹部13C内に向かって凸となるように湾曲する一対の凸状湾曲部13b´を備えて構成されている。この場合も図示しない圧電素子の輪郭は、一対の凹部13Cのそれぞれの平行直線部13Caに沿う一対の直線部と、一対の凹部の一対の凸状湾曲部13b´によって挟まれる領域内で一対の短辺に向かって凸となるように湾曲する湾曲部を備えている。この場合にも、圧電素子の湾曲の曲率を適宜に変えることにより、1次共振周波数と3次共振周波数の間の周波数差を調整することができる。
 [圧電素子の形状]
 図8(A)及び(B)は、圧電素子15の形状寸法を変えた場合において、入力信号として正弦波信号を入力したときの圧電音響部品の周波数特性の変化を示している。図8(A)は、振動板12のアスペクト比1を1:1.3とし、圧電素子(PZTセラミック)の幅寸法(第2の仮想線PL2に沿う方向の寸法)13mm一定として、第1の仮想線PL1に沿う方向の長さ寸法(図2の湾曲部15Bの突出寸法)を変えた時の周波数特性の変化を示しており、図8(B)は圧電素子の形状を矩形状にした場合に振動板12のアスペクト比1を1:1.3とし、圧電素子(PZTセラミック)の幅寸法(第2の仮想線PL2に沿う方向の寸法)13mm一定として、第1の仮想線PL1に沿う方向の長さ寸法を変えた時の周波数特性の変化を示している。図8(A)及び(B)からは、第1の仮想線PL1に沿う方向の長さ寸法及び形状が、第1の共振周波数及び第2の共振周波数の音圧に影響があることが判る。図8(A)及び(B)の下部領域には、それぞれ対象とする圧電素子の形状を示した圧電発音素子(a)乃至(j)の平面図を示してある。図8(A)及び(B)からは、第1の仮想線PL1に沿う方向の長さ寸法を長くすると、1次共振周波数と3次共振周波数の音圧が上昇するものの、あまり長くすると1次共振周波数の音圧と3次共振周波数の音圧の差が極端に大きくなる。この傾向は、圧電素子の第1の仮想線PL1に沿う方向の形状が完全な矩形状の場合[図8(B)]のほうがこの傾向が強い。このような傾向を考慮して、圧電素子の形状を定めればよい。
 図9は、図8の場合よりも同じアスペクト比を大きくした場合(1:1.4)で、圧電素子の幅寸法W2(第2の仮想線PL2に沿う方向の寸法)と長さ寸法L(第1の仮想線PL1に沿う方向の寸法))を変えたときに、入力信号として正弦波信号を入力したときの周波数特性を示している。図8と図9を比較すると判るように、アスペクト比を大きくすると、1次共振周波数の音圧と3次共振周波数の音圧の差が大きくなるものの、圧電素子の長さ寸法を長くしたときに、1次共振周波数の音圧と3次共振周波数の音圧の差が大きくならず、しかも周波数が高い範囲において音圧に大きなバラツキが生じないことが判る。実際上、図8及び図9から判る傾向を考慮して、圧電素子の形状と寸法を適宜に調整することになる。
 [共振器(ケースの放音孔)の効果]
 図10は、本実施の形態において、共振器の放音孔の総開口面積を、フロントキャビティの容積(共振器の空気室容量)を一例として1.8ccから10ccの容積に変えた場合において、入力信号として正弦波信号を入力したときの周波数特性がどのように変わるのかを試験した結果を示している。なおこの試験では、振動板のアスペクト比を1:1.3として、圧電素子の形状を小判形で幅寸法を10mm、長さ寸法を15mmに固定した。この状態で放音孔の総開口面積を変えるために、1つの放音孔を設け且つその直径を2.5mm~9.9mmの範囲でフロントキャビティの容積に対応して変更した。なお図10において、fcavは中間周波数の値である。図10からは、総開口面積をあまり大きくすると(eの場合)、放音孔の総開口面積が適正な範囲であれば、中間周波数の値も大きく変わらず、しかも中間周波数の音圧にも大きな差が生じないことが判る。また図11は、放音孔の総開口面積はあまり変えずに、放音孔の数を1個から5個に変えた場合の影響について試験した結果を示している。フロントキャビティの容積が7.5ccのときに最も、1次共振周波数の音圧と3次共振周波数の音圧の差が大きくならず、かつ高音圧な周波数特性が得られたため、フロントキャビティの容積は7.5ccを選択した。放音孔の数以外の試験条件は、図10の試験の場合と同じである。図11からは、総開口面積が変わらなければ、放音孔の数は周波数特性に影響がないことが判る。したがってこの結果からは、放音孔の数は、1以上であればよいことがわかる。なおこの結論は、本実施の形態において導き出された結論であって、共振器の構成が変わった場合の全てにおいて、共通に言える結果であるか否かは定かではない。
 [実施例の条件]
 上記の各試験で用いた圧電発音素子及び共振器(ケースと放音孔)は、以下の条件を満たすものであった。振動板12の非固定部13は、厚みが10μm~150μmの鉄にニッケルを配合した合金製の板からなるのが好ましい。また圧電素子は厚みが10μm~35μmのPZTセラミックが複数層積層された構造を有しているのが好ましい。さらに圧電素子を振動板に接着するアクリル系の接着剤のショアD硬度が75~85であり且つ厚みが1μm~10μmであるのが好ましい。
 [第2の実施の形態]
 図12(A)及び(B)は、第2の実施の形態の圧電音響部品1の半部切断斜視図及びその分解斜視図であり、図13(A)は第2の実施の形態で用いる圧電発音素子11の平面図であり、図13(B)は圧電発音素子の背面図である。第2の実施の形態は、図1及び図2に示した第1の実施の形態と、圧電発音素子11の形状及び放音孔4の位置と数が相違する。その他の点は、第1の実施の形態と相違するところはない。そこで図12及び図13には、図1及び図2に示した第1の実施の形態と同様の部分には、図1及び図2を説明するために用いた符号と同じ符号を付して説明を省略する。本実施の形態では、圧電発音素子11の振動板12が矩形形状を呈しており、圧電素子15が振動板12の裏面に貼り付けられている。本実施の形態においても、振動板12の非固定部13の輪郭形状はいわゆるダンベル形になっている。
 この構成によれば、振動板12に特別な加工を施す必要がない。また本実施の形態では、上側ケース半部5の上壁部51の中央に1個の放音孔4が形成されている。図14(A)は、共鳴器(下側ケース半部3)を用いずに圧電発音素子11単体で測定した音圧-周波数特性を示し、図14(B)は共鳴器を用いた圧電音響部品の音圧-周波数特性を示している。図14(A)及び(B)を比較すると判るように、1.7kHz~3kHzの範囲において、音圧が上昇している。
 [振動板の非固定部の形状の変形例]
 図15(A)及び(B)は、第2の実施の形態で用いる圧電発音素子11の変形例を示している。この圧電発音素子11の振動板12のダンベル形の非固定部13の輪郭形状は、一対の短辺13Bが、それぞれ両端部に互いに近付く方向に傾斜する一対の傾斜部13Baを備えている。このような一対の傾斜部13Baを設けると、傾斜部13Baの傾斜角度を変えることにより、周波数特性の高調波成分を高める改善をすることができる。すなわちこの圧電発音素子11の形状を採用すると、図17Aに矢印で示す周波数部分の音圧を増加させる改善をすることができる。図16(A)乃至(D)には、この圧電発音素子を1次振動モードで振動させた場合、3次振動モードで振動させた場合、4次振動モードで振動させた場合、5次振動モードで振動させた場合の振動板12の振動状態を示す図である。これらの図において、白い部分が変形して凸となっている部分であり、黒い部分が変形して凹となっている部分である。図17(A)は、共鳴器(下側ケース半部3)を用いずに圧電発音素子11単体で測定した音圧-周波数特性を示し、図17(B)は共鳴器を用いた圧電音響部品の音圧-周波数特性を示している。図14(A)及び(B)を比較すると判るように、1.7kHz~3kHzの範囲において、改善前よりも音圧が上昇している。
 [第3の実施の形態]
 図18(A)及び(B)は、第3の実施の形態の圧電音響部品で用いる圧電発音素子11の平面図及び背面図である。第3の実施の形態は、図12及び図13に示した第2の実施の形態と、圧電発音素子11の形状が相違する。その他の点は、第2の実施の形態と相違するところはない。そこで図18には、図12及び図13に示した第2の実施の形態と同様の部分には、図12及び図13を説明するために用いた符号と同じ符号を付して説明を省略する。本実施の形態でも、圧電発音素子11の振動板12が矩形形状を呈しており、圧電素子15が振動板12の裏面に貼り付けられている。本実施の形態においては、振動板12の非固定部13の輪郭形状は、第1の実施の形態及び第2の実施の形態の振動板の非固定部13が有する傾斜直線部を有していない、いわゆるダンベル形になっている。すなわち凹部13Cが完全な矩形形状を呈している。この構成によれば、振動板12に特別な加工を施す必要がない。また本実施の形態では、第2の実施の形態と同様に上側ケース半部の上壁部の中央に1個の放音孔が形成されている。
 図19は、本実施の形態において図18(A)に示したL1:L2を1:0.2,1:0.3及び1:0.4とし、L1:W1を1.25:1,1.5:1,1.75:1及び2:1とし、W2/W1を0.2~1の範囲で変えた場合において、入力信号として正弦波信号を入力したときの1次固有振動数◆と3次固有振動数■の変化を示す図である。また図20は、本実施の形態において図18(A)に示したL1:L2を1:0.5,1:0.6及び1:0.7とし、L1:W1を1.25:1,1.5:1,1.75:1及び2:1とし、W2/W1を0.2~1の範囲で変えた場合における1次固有振動数◆と3次固有振動数■の変化を示す図である。
 また図21(A)乃至(C)は、L1:L2を1:0.4とし、L1:W1を1.4:1,1.5:1,1.6:1とした場合の圧電発音素子だけで得られる。入力信号として正弦波信号を入力したときの音圧-周波数特性を示す図である。また図21(D)乃至(F)は、L1:L2を1:0.5とし、L1:W1を1:1,1.4:1,1.5:1,1.6:1とした場合の圧電発音素子だけで得られる、入力信号として正弦波信号を入力したときの音圧-周波数特性を示す図である。さらに図21(G)乃至(I)は、L1:L2を1:0.6とし、L1:W1を1:1,1.4:1,1.5:1,1.6:1とした場合の圧電発音素子だけで得られる、入力信号として正弦波信号を入力したときの音圧-周波数特性を示す図である。図19乃至図21を見ると判るように、長辺の長さL1と短辺の長さW1の比L1/W1が、1.25~1.75の範囲に入るように定め、振動板の非固定部の凹部の長辺に開口する開口部の長さL2と、長辺の長さL1との比L2/L1を0.4~0.7とし、第2の仮想線に向かう方向の一対の凹部間の寸法W2と短辺の長さW1の比W2/W1を0.4~0.95とすると、約2kHz~約3kHzの範囲において、音圧が上昇している。これらの圧電発音素子を1以上の共振器を構成するケース内に入れる場合、1以上の放音孔の総開口面積及び空気室容量は、入力信号として正弦波信号を入力したときの1次共振周波数と、3次共振周波数と、1次共振周波数と3次共振周波数の間の中間周波数の音圧が、それぞれ80dB以上になるように定められる。さらに1以上の放音孔の総開口面積及び空気室容量は、入力信号として正弦波信号を入力したときの1次共振周波数と3次共振周波数の間の中間周波数の音圧が、1次共振周波数の音圧及び3次共振周波数の音圧以上になるように定められているのが好ましい。
 [第4の実施の形態]
 第4の実施の形態は、図18(A)及び(B)に示した第3の実施の形態と同様に、圧電発音素子の振動板が矩形形状を呈しており、圧電素子が振動板の裏面に貼り付けられているもので、振動板の非固定部の輪郭形状は、第1の実施の形態及び第2の実施の形態の振動板の非固定部が有する傾斜直線部を有していない、いわゆるダンベル形になっている。すなわち凹部(13C)が完全な矩形形状を呈しているものである。使用した振動板(12)の長辺の長さL1(30mm)と短辺の長さW1(21mm)の比L1/W1は、1.43であり、振動板の非固定部の凹部の長辺に開口する開口部の長さL2(15mm)と、長辺の長さL1との比L2/L1は0.5であり、第2の仮想線に向かう方向の一対の凹部間の寸法W2(12mm)と短辺の長さW1の比W2/W1は0.57であった。また本実施の形態では、第2の実施の形態と同様に上側ケース半部の上壁部の中央に1個の放音孔(4)が形成されている。また振動板(12)の非固定部(13)は、厚みが50μmの鉄にニッケルを配合した合金製の板からなる。また圧電素子は厚みが20μmのPZTセラミックが複数層積層された構造を有している。さらに圧電素子を振動板に接着するアクリル系の接着剤のショアD硬度が82であり且つその厚みが約1~10μmであった。
 そして図22(A)乃至(E)は、放音孔(4)の厚み寸法を1mmとして、放音孔(4)の半径及び空気室容量を5.5mm及び6cc、7mm及び8cc、8.5mm及び10cc、10mm及び10cc、並びに11.5mm及び14ccとしたときに、入力信号として正弦波信号を入力したときの音圧-周波数特性がどのように変わるのかを試験した結果を示している。図22(A)乃至(E)から分かるように、いずれの条件であっても、入力信号として正弦波信号を入力したときの1次共振周波数と、3次共振周波数と、1次共振周波数と3次共振周波数の間の中間周波数の音圧が、それぞれ80dB以上になるようになっている。また図22(A)及び(B)の例では、1次共振周波数と3次共振周波数の間の中間周波数の音圧が、1次共振周波数の音圧及び3次共振周波数の音圧以上になっている。図22(C)乃至(E)の例では、1.8KHz~3.2KHzの周波数周囲において、1次共振周波数と中間周波数の間の最小音圧及び中間周波数と3次共振周波数の間の最小音圧も、80dB以上になるように共振器が構成されている。したがってかなり広い周波数範囲において、音圧が上昇して且つ音圧差が小さくなっており、音をスイープさせる場合においても音がフラットになる利点がある。
 なお放音孔の厚み寸法を2mm及び3mmとした場合について同じ条件で試験を行ったが、放音孔の厚み寸法は音圧の変化に影響がないことが確認できた。またL1/W1が、1.40~1.45であり、L2/L1が、0.45~0.55であり、W2/W1が、0.55~0.59であれば、図22(C)乃至(E)の例と同様の音圧―周波数特性が得られる。
 本発明によれば、騒音の大きな場所でも、複数音階の音を可聴できる圧電音響部品を提供できる。
 1    圧電音響部品
 3    下側ケース半部
 4    放音孔
 5    上側ケース半部
 6    ケース
 7    開口部
 7A   長辺
 7B   短辺
 7C   凸部
 9    発音素子ホルダ
 11   圧電発音素子
 12   振動板
 13   非固定部
 13A  長辺
 13B  短辺
 13C  凹部
 13Ca 平行直線部
 13Cb 傾斜直線部
 15   圧電素子
 15A  直線部
 15B  湾曲部
 31   底壁部
 32   周壁部
 51   上壁部
 52   周壁部
 PL1  第1の仮想線
 PL2  第2の仮想線
 S1   第1の空間
 S2   第2の空間

Claims (14)

  1.  金属製の振動板及び前記振動板の少なくとも片面上に設けられた圧電素子からなる圧電発音素子と、
     前記圧電発音素子の前記振動板の外周部を全周に亘って固定し、前記圧電発音素子の両側に第1の空間と第2の空間を形成するように構成され、前記第1の空間と対向する壁部に1以上の放音孔が形成されて前記第1の空間の容積と前記1以上の放音孔により共振器を構成しているケースとを備えてなる圧電音響部品であって、
     前記振動板の前記外周部の内側に位置する非固定部分は、互いに対向する一対の長辺と該長辺よりも長さが短く互いに対向する一対の短辺を備え、前記一対の長辺中に互いに近づく方向に凸となる一対の凹部を有しており、
     前記圧電素子は、前記振動板の前記非固定部の前記一対の凹部の間の領域上に設けられており、
     前記振動板及び前記圧電素子のそれぞれの輪郭形状が、前記一対の短辺を二分する第1の仮想線に対して対称となり且つ前記一対の長辺を二分する第2の仮想線に対して対称となるように定められており、
     前記振動板の前記非固定部分の前記長辺の長さL1と前記短辺の長さW1の比L1/W1が、1.25~1.75の範囲に入るように定められており、
     入力信号として正弦波信号を入力したときの1次共振周波数と、3次共振周波数と前記1次共振周波数と前記3次共振周波数の間の中間周波数の音圧が、それぞれ80dB以上になるように前記共振器が構成されている圧電音響部品。
  2.  前記中間周波数の音圧が、前記1次共振周波数の音圧及び前記3次共振周波数の音圧以上になるように、前記共振器が構成されている請求項1に記載の圧電音響部品。
  3.  前記1次共振周波数と前記中間周波数の間の最小音圧及び前記中間周波数と前記3次共振周波数の間の最小音圧が、それぞれ80dB以上になるように前記共振器が構成されている請求項1に記載の圧電音響部品。
  4.  前記ケースは、前記振動板の前記非固定部の輪郭形状と同一形をなす開口部を備えて、前記振動板の外周部を固定する発音素子ホルダを備えている請求項1に記載の圧電音響部品。
  5.  前記一対の短辺は、両端部に互いに近付く方向に傾斜する一対の傾斜部を備えている請求項1乃至4のいずれか1項に記載の圧電音響部品。
  6.  前記振動板の裏面に前記圧電素子が設けられている請求項1乃至5のいずれか1項に記載の圧電音響部品。
  7.  前記振動板の前記非固定部の前記凹部は、前記第1の仮想線と平行に延びる平行直線部と、該平行直線部の両端部から互いに離れ且つ対応する前記長辺の残部に向かって延びる一対の傾斜直線部を備えて構成されており、
     前記圧電素子の輪郭は、一対の前記凹部のそれぞれの前記平行直線部に沿う一対の直線部と、前記一対の凹部の前記第2の仮想線が延びる方向に対向する一対の傾斜直線部によって挟まれる領域内で前記一対の短辺に向かって凸となるように湾曲する湾曲部を備えている請求項1乃至6のいずれか1項に記載の圧電音響部品。
  8.  前記振動板の前記非固定部の前記凹部は、前記2の仮想線と平行に延びる平行直線部と、該平行直線部の両端部から互いに離れ且つ前記凹部内に向かって凸となるように湾曲する一対の凸状湾曲部を備えて構成されており、
     前記圧電素子の輪郭は、一対の前記凹部のそれぞれの前記平行直線部に沿う一対の直線部と、前記一対の凹部の前記一対の凸状湾曲部によって挟まれる領域内で前記一対の短辺に向かって凸となるように湾曲する湾曲部を備えている請求項1乃至6のいずれか1項に記載の圧電音響部品。
  9.  前記振動板の前記非固定部の前記凹部は、前記2の仮想線に向かって凸となるように湾曲する湾曲凹部からなり、
     前記圧電素子の輪郭は、一対の前記湾曲凹部に沿い且つ一対の湾曲凹部によって挟まれる領域内で前記一対の短辺に向かって凸となるように湾曲する湾曲部を備えている請求項1乃至6のいずれか1項に記載の圧電音響部品。
  10.  前記振動板の非固定部は、厚みが10μm~150μmの鉄にニッケルを配合した合金製板からなり、
     前記圧電素子は厚みが10μm~35μmのPZTセラミックが複数層積層された構造を有しており、
     前記圧電素子を前記振動板に接着するアクリル系接着剤のショアD硬度が75~85であり且つ厚みが1μm~10μmであることを特徴とする請求項2に記載の圧電音響部品。
  11.  金属製の振動板及び前記振動板の少なくとも片面上に設けられた圧電素子からなる圧電発音素子と、
     前記圧電発音素子の前記振動板の外周部を全周に亘って固定し、前記圧電発音素子の両側に第1の空間と第2の空間を形成するように構成され、前記第1の空間と対向する壁部に1以上の放音孔が形成されている共振器を構成するケースとを備えてなる圧電音響部品であって、
     前記振動板の前記外周部の内側に位置する非固定部分は、互いに対向する一対の長辺と該長辺よりも長さが短く互いに対向する一対の短辺を備え、前記一対の長辺中に互いに近づく方向に凸となる一対の凹部を有しており、
     前記圧電素子は、前記振動板の前記非固定部の前記一対の凹部の間の領域上に設けられており、
     前記振動板及び前記圧電素子のそれぞれの輪郭形状が、前記一対の短辺を二分する第1の仮想線に対して対称となり且つ前記一対の長辺を二分する第2の仮想線に対して対称となるように定められており、
     前記長辺の長さL1と前記短辺の長さW1の比L1/W1が、1.25~1.75の範囲に入るように定められており、
     前記振動板の前記非固定部の前記凹部の前記長辺に開口する開口部の長さL2と、前記長辺の長さL1との比L2/L1が0.4~0.7であり、前記第2の仮想線に向かう方向の前記一対の凹部間の寸法W2と前記短辺の長さW1の比W2/W1が0.4~0.95であり、
     前記共振器の前記1以上の放音孔の総開口面積及び空気室容量が、入力信号として正弦波信号を入力したときの1次共振周波数と、3次共振周波数と、前記1次共振周波数と前記3次共振周波数の間の中間周波数の音圧が、それぞれ80dB以上になるように定められている圧電音響部品。
  12.  前記振動板の裏面に前記圧電素子が設けられている請求項11に記載の圧電音響部品。
  13.  前記1次共振周波数と前記中間周波数の間の最小音圧及び前記中間周波数と前記3次共振周波数の間の最小音圧が、それぞれ80dB以上になるように前記共振器が構成されている請求項12に記載の圧電音響部品。
  14.  前記L1/W1が、1.40~1.45であり、
     前記L2/L1が、0.45~0.55であり、
    前記W2/W1が、0.55~0.59である請求項13に記載の圧電音響部品。
PCT/JP2018/013264 2017-04-03 2018-03-29 圧電音響部品 WO2018186280A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197032325A KR20190130649A (ko) 2017-04-03 2018-03-29 압전 음향 부품
US16/499,553 US10856086B2 (en) 2017-04-03 2018-03-29 Piezoelectric acoustic component
DE112018001850.4T DE112018001850T5 (de) 2017-04-03 2018-03-29 Piezoelektrisches akustisches Bauteil
CN201880021812.0A CN110521218B (zh) 2017-04-03 2018-03-29 压电音响部件
JP2018545681A JP6516935B2 (ja) 2017-04-03 2018-03-29 圧電音響部品
TW107111817A TW201839754A (zh) 2017-04-03 2018-04-03 壓電音響零件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-073858 2017-04-03
JP2017073858 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186280A1 true WO2018186280A1 (ja) 2018-10-11

Family

ID=63712129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013264 WO2018186280A1 (ja) 2017-04-03 2018-03-29 圧電音響部品

Country Status (7)

Country Link
US (1) US10856086B2 (ja)
JP (1) JP6516935B2 (ja)
KR (1) KR20190130649A (ja)
CN (1) CN110521218B (ja)
DE (1) DE112018001850T5 (ja)
TW (1) TW201839754A (ja)
WO (1) WO2018186280A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193788A1 (ja) * 2020-03-27 2021-09-30 北陸電気工業株式会社 圧電音響部品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055791B (zh) * 2019-12-28 2022-10-28 荣耀终端有限公司 扬声器内核、扬声器模组及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126869A1 (en) * 2004-12-09 2006-06-15 Belltec Electronics Co., Ltd. Flat piezoelectric speaker actuator
JP2006303770A (ja) * 2005-04-19 2006-11-02 Dotsudoueru B M S:Kk 圧電振動素子及び該圧電振動素子を備えた音声変換装置
JP2012029087A (ja) * 2010-07-23 2012-02-09 Nec Corp 発振装置
JP2012217013A (ja) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd 発振装置及び電子機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436205B2 (ja) 1999-02-22 2003-08-11 株式会社村田製作所 圧電音響部品
US6978032B2 (en) * 2001-11-29 2005-12-20 Matsushita Electric Industrial Co., Ltd. Piezoelectric speaker
JP3979334B2 (ja) * 2003-04-21 2007-09-19 株式会社村田製作所 圧電型電気音響変換器
DE602007009988D1 (de) * 2006-06-08 2010-12-02 Nxp Bv Hren
WO2011105046A1 (ja) * 2010-02-23 2011-09-01 パナソニック株式会社 圧電型音響変換器
KR101889727B1 (ko) * 2011-08-08 2018-08-20 호쿠리쿠 덴키 고교 가부시키가이샤 압전 발음 소자
CN203563195U (zh) * 2013-10-28 2014-04-23 广州市番禺奥迪威电子有限公司 一种压电式受话器
KR101542186B1 (ko) * 2014-04-18 2015-08-06 한국세라믹기술원 피에조 파이버 컴포지트 구조체를 이용한 압전 스피커
CN204069315U (zh) * 2014-07-17 2014-12-31 瑞声光电科技(常州)有限公司 振动发声装置
CN105072548A (zh) * 2015-07-15 2015-11-18 苏州攀特电陶科技股份有限公司 压电振动带发声装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126869A1 (en) * 2004-12-09 2006-06-15 Belltec Electronics Co., Ltd. Flat piezoelectric speaker actuator
JP2006303770A (ja) * 2005-04-19 2006-11-02 Dotsudoueru B M S:Kk 圧電振動素子及び該圧電振動素子を備えた音声変換装置
JP2012029087A (ja) * 2010-07-23 2012-02-09 Nec Corp 発振装置
JP2012217013A (ja) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd 発振装置及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193788A1 (ja) * 2020-03-27 2021-09-30 北陸電気工業株式会社 圧電音響部品

Also Published As

Publication number Publication date
CN110521218B (zh) 2021-02-19
US20200045475A1 (en) 2020-02-06
CN110521218A (zh) 2019-11-29
DE112018001850T5 (de) 2019-12-19
JPWO2018186280A1 (ja) 2019-04-11
KR20190130649A (ko) 2019-11-22
TW201839754A (zh) 2018-11-01
US10856086B2 (en) 2020-12-01
JP6516935B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
JP3180646B2 (ja) スピーカ
US6107722A (en) Ultrasound transducer
US10536779B2 (en) Electroacoustic transducer
WO2018186280A1 (ja) 圧電音響部品
US20130223657A1 (en) Electronic device
CN108471577A (zh) 一种声学装置
JP2000201391A (ja) 音響振動センサ
JPH06269090A (ja) 圧電型超音波送受波器
US7227966B2 (en) Piezo-electric speaker
JP3555505B2 (ja) スピーカ
US9207645B2 (en) Acoustic radiating membrane for a musical watch
CN108933983B (zh) 扬声器
WO2021193788A1 (ja) 圧電音響部品
JP2013172237A (ja) 電気音響変換器及び電子機器
JPH09327095A (ja) 超音波送信器
JPWO2021193788A5 (ja)
KR200470232Y1 (ko) 압전 스피커
JP3180787B2 (ja) スピーカ
JP2004104481A (ja) 屈曲型送波器
JPH0323757Y2 (ja)
WO2020189032A1 (ja) スピーカ、および楽器ケース
JPWO2008084685A1 (ja) 圧電スピーカおよびその製造方法
JP2020170912A (ja) 発音体
JP2015012384A (ja) 超音波発音体、超音波素子およびこれを用いたパラメトリックスピーカ
JP2012039329A (ja) 超音波送受信器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545681

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032325

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18781839

Country of ref document: EP

Kind code of ref document: A1