WO2018186258A1 - リング圧延用主ロールの冷却方法及びリング圧延体の製造方法 - Google Patents

リング圧延用主ロールの冷却方法及びリング圧延体の製造方法 Download PDF

Info

Publication number
WO2018186258A1
WO2018186258A1 PCT/JP2018/012814 JP2018012814W WO2018186258A1 WO 2018186258 A1 WO2018186258 A1 WO 2018186258A1 JP 2018012814 W JP2018012814 W JP 2018012814W WO 2018186258 A1 WO2018186258 A1 WO 2018186258A1
Authority
WO
WIPO (PCT)
Prior art keywords
main roll
ring
mold
cooling
rolling
Prior art date
Application number
PCT/JP2018/012814
Other languages
English (en)
French (fr)
Inventor
琢弥 村井
孝憲 松井
友義 木分
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US16/500,294 priority Critical patent/US20200061686A1/en
Priority to MX2019011915A priority patent/MX2019011915A/es
Priority to EP18781229.2A priority patent/EP3590615B1/en
Publication of WO2018186258A1 publication Critical patent/WO2018186258A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B5/00Extending closed shapes of metal bands by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor

Definitions

  • the present invention relates to a method for cooling a main roll used for ring rolling, and further, the present invention provides a mold for a main roll in order to produce a substantially ring-shaped rolled body (hereinafter referred to as “ring rolled body”). While rolling, the main roll shaft is cooled by the above cooling method, and further, a ring-shaped material (hereinafter referred to as “ring material”) is rolled in the radial direction between the main roll and the mandrel.
  • ring material a ring-shaped material
  • Rings which are used in various industrial fields, are generally ring-shaped parts (hereinafter referred to as “ring parts”). It is produced by doing.
  • the ring rolling body is produced by subjecting a ring material to ring rolling, and a rolling apparatus such as a ring rolling mill is used for ring rolling.
  • the rolling apparatus is provided with a forming roll for reducing the ring material so as to form a ring rolled body.
  • the forming roll include a main roll and a mandrel for reducing the ring material between its inner and outer circumferences.
  • the forming roll is exposed to a high temperature environment during ring rolling, particularly during hot ring rolling. Therefore, it may be required to cool the forming roll in order to protect the forming roll, accurately control the temperature of the forming roll, and improve the quality of the ring rolled body produced using the forming roll. . Therefore, various cooling techniques for forming rolls have been proposed.
  • a technique has been proposed in which a cooling solvent such as cooling water is sprayed on a processing portion provided to surround a rotating shaft in a forming roll. Further, as another example of the cooling technique, a technique has been proposed in which a water channel extending from one end to the other end in the rotation axis direction of the forming roll is provided along the rotation axis of the forming roll so that the cooling water flows through the water channel ( For example, see Patent Document 1 and Patent Document 2.)
  • the cooling medium is sprayed on the processing portion of the forming roll that comes into contact with the ring material, and therefore the temperature of the processing portion of the forming roll may be lowered. Therefore, in ring rolling, there is a possibility that problems such as cracking and deformation failure of the ring material in contact with the processed portion of the forming roll may occur.
  • the ring material is made of a metal material that is difficult to process, such as a Ni-based superalloy, a Co-based alloy, etc.
  • there is a high possibility that the ring material will fail.
  • a mechanism for rotating the forming roll is installed in addition to a mechanism for flowing cooling water through the water channel on the rotating shaft of the forming roll and its peripheral portion. Therefore, the structure of the rolling apparatus becomes complicated to install these mechanisms, and as a result, it is difficult to ensure the strength of the main roll of the rolling apparatus, in particular, the rotation axis of the main roll and its peripheral portion, and the rolling apparatus Maintenance may be difficult.
  • the above problem becomes remarkable. Therefore, in the method of cooling the main roll of the ring rolling mill, the main roll shaft body and its peripheral portion are made easy while maintaining the strength of the main roll shaft body and its peripheral portion sufficiently, and the main roll shaft body and its peripheral portion. It is desired to cool the battery efficiently. Moreover, in the manufacturing method of a ring rolling body, while heating the metal mold
  • a shaft body extending along a rotation axis of the main roll, and a mold disposed so as to surround the shaft body are provided.
  • the shaft body of the main roll is cooled by injecting a liquid into a receiving portion that is recessed from the upper end surface of the mold and surrounds the shaft body of the main roll. Furthermore, the shaft body of the main roll and its peripheral part are cooled.
  • a ring rolled body manufacturing method for producing a ring rolled body by rolling a ring material, wherein a mold of a main roll is heated by a heating mechanism. And a temperature management step for cooling the shaft body of the main roll by the main roll cooling method according to one aspect of the present invention, and the ring material by the main roll and the mandrel temperature-controlled in the temperature management step. Rolling step of performing reduction between the inner and outer peripheries.
  • the strength of the main roll shaft body and its peripheral portion can be sufficiently secured, the main roll can be easily maintained, and the main roll shaft body and its surroundings.
  • the part can be cooled efficiently.
  • the manufacturing method of the ring rolling body which concerns on 1 aspect of this invention, while heating the process part of the metal mold
  • a high-quality ring-rolled body can be produced by using a main roll whose temperature is accurately controlled so as to efficiently cool the portion.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is a flowchart for demonstrating the cooling method of the main roll which concerns on 1st Embodiment of this invention. It is a flowchart for demonstrating the manufacturing method of the ring rolling body which concerns on 1st Embodiment of this invention.
  • FIG. 6 is a cross-sectional view schematically showing a state in which a shaft body and a mold of a main roll in a second embodiment of the present invention are cut along a line corresponding to the line AA in FIG. 2.
  • FIG. 9 is a cross-sectional view schematically showing a state in which a shaft body and a mold of a main roll in a third embodiment of the present invention are cut along a line corresponding to the line AA in FIG. 2.
  • a cooling method for a main roll, a manufacturing method of a substantially ring-shaped rolled body (hereinafter referred to as “ring rolled body”), and a rolling apparatus according to the first to fourth embodiments of the present invention will be described below.
  • the shaft body of the main roll and its peripheral part of the rolling apparatus are mainly cooled.
  • the substantially ring-shaped material hereinafter referred to as “ring material”.
  • the main roll shaft body and its peripheral part are mainly cooled by the cooling method, and the ring material is squeezed between the main roll and the mandrel.
  • the method for cooling the main roll can also be applied to methods for manufacturing a rolled ring other than the first to fourth embodiments of the present invention.
  • the ring rolled body is used to produce a substantially ring-shaped part (hereinafter referred to as “ring part”).
  • the ring component may be a gear used in various industrial fields, a rotating body of a rotating mechanism, and the like. Further, the ring component requires a strict dimensional control, particularly a gas turbine, a steam. A turbine disk or the like used for a turbine, an aircraft jet engine or the like is preferable.
  • the maximum diameter of the outer periphery of the ring-rolled body is preferably about 600 mm or more and about 2000 mm or less. However, the present invention is not limited to this, and the maximum diameter of the outer periphery of the ring rolled body may be smaller than about 600 mm and larger than about 2000 mm, depending on the ring component produced using the ring rolled body. .
  • the ring rolled body is formed by subjecting the ring material to ring rolling.
  • the ring material is preferably prepared using a metal material having excellent high-temperature strength, high-temperature toughness, etc.
  • the ring material is a Ni-based alloy, Fe-based alloy, Co-based alloy having excellent high-temperature strength, high-temperature toughness, etc. It is good to produce using the metal material selected from Ti base alloy etc.
  • the rolling apparatus used with the cooling method of the main roll 1 which concerns on this embodiment, and the manufacturing method of a ring rolling body is demonstrated.
  • the rolling device is configured to be capable of mounting a ring material M formed substantially rotationally symmetric with respect to the central axis C, and the rolling device is configured to perform ring rolling on the ring material M mounted thereon. Yes.
  • the rolling device includes the main roll 1 and the mandrel 2 as described above.
  • the main roll 1 and the mandrel 2 are in contact with the outer circumferential surface m1 and the inner circumferential surface m2 of the ring material M, respectively, and the ring material M is reduced in the radial direction (hereinafter referred to as “ring radial direction”) between them.
  • the rolling apparatus also includes a pair of axial rolls 3 and 4.
  • the pair of axial rolls 3 and 4 are in contact with the upper end surface m3 and the lower end surface m4 in the direction of the central axis C (hereinafter referred to as “ring axis direction”) of the ring material M, and ring the ring material M between them. Roll down in the axial direction.
  • the rolling apparatus also has a liquid supply mechanism 5 that supplies water W for cooling the main roll 1.
  • the temperature of the water W is preferably normal temperature.
  • the rolling device includes an induction heating mechanism 6 configured to induction heat the main roll 1. In ring rolling, the ring material M abuts on the main roll 1 that has been induction heated by the induction heating mechanism 6.
  • the rolling apparatus may be configured as follows.
  • the rolling device may be configured not to include a pair of axial rolls. If the main roll can be cooled, the liquid supply mechanism may supply a liquid other than water.
  • the liquid may have flame retardancy and high fluidity.
  • the liquid may be silicone oil.
  • the rolling device may have a heating mechanism other than the induction heating mechanism.
  • the heating mechanism may be a gas burner or the like.
  • the main roll 1 and the mandrel 2 will be described with reference to FIG.
  • the main roll 1 and the mandrel 2 are rotatable around the rotation axes 1a and 2a, respectively.
  • Each of the main roll 1 and the mandrel 2 is disposed so that one side of the direction of the rotation axis 1a, 2a (hereinafter referred to as “rotation axis direction” in each of the main roll 1 and the mandrel 2) is directed upward. .
  • Each of the main roll 1 and the mandrel 2 has shaft bodies 11 and 21 extending along the rotation axes 1a and 2a, and molds 12 and 22 surrounding the shaft bodies 11 and 21.
  • the shaft bodies 11 and 21 and the molds 12 and 22 are separate bodies, and the molds 12 and 22 are attached to the shaft bodies 11 and 21.
  • the present invention is not limited to this, and the shaft body and the mold may be integrated in at least one of the main roll and the mandrel.
  • the dies 12 and 22 of the main roll 1 and the mandrel 2 have outer peripheral surfaces 12a and 22a formed substantially rotationally symmetrical with respect to the rotation axes 1a and 2a, respectively, and these outer peripheral surfaces 12a and 22a are respectively ring rings. It contacts the outer peripheral surface m1 and the inner peripheral surface m2 of the material M.
  • the outer peripheral surfaces 12a and 22a of the dies 12 and 22 of the main roll 1 and the mandrel 2 have a shape corresponding to the shape of the ring rolled body to be produced.
  • the outer peripheral surface 12a of the mold 12 of the main roll 1 is formed so as to have one concave portion 12b corresponding to one convex portion m5 and extending along the circumferential direction of the main roll 1.
  • the present invention is not limited to this, and the outer peripheral surface of the ring material may be formed other than the shape having one convex portion, and the outer peripheral surface of the mold of the main roll is the outer periphery of such a ring material. It is good to form corresponding to a surface.
  • At least one of the main roll 1 and the mandrel 2 is preferably rotatable by a drive mechanism (not shown).
  • the drive mechanism is attached to at least one of the shaft bodies 11 and 21 of the main roll 1 and the mandrel 2. It should be attached.
  • the rotation speeds of the main roll 1 and the mandrel 2 may be controllable as necessary. In particular, it is preferable that only the main roll 1 can be rotationally driven.
  • the main roll 1 and the mandrel 2 are also preferably movable in the ring radial direction as the ring material M expands in the ring radial direction.
  • the ring material M is rolled down in the ring radial direction between the outer peripheral surfaces 12a and 22a of the molds 12 and 22 of the main roll 1 and the mandrel 2 in a state of rotating in the ring circumferential direction as the main roll 1 and the mandrel 2 rotate. Is done.
  • the main roll 1 rotates to one side in the rotation direction (indicated by arrow R1) and the mandrel 2 rotates to one side in the rotation direction (indicated by arrow R2).
  • the ring material M rotates toward one side (indicated by arrow F) in the ring circumferential direction along with these rotations will be described.
  • the main roll 1 may be of a size that can be heated by the induction heating mechanism 6 while being difficult to be heated by a heating furnace, a gas burner, etc.
  • the maximum diameter of the outer peripheral surface 12a of the mold 12 in the main roll 1 is The thickness is preferably about 1000 mm or more.
  • the present invention is not limited to this, and the maximum diameter of the outer peripheral surface of the mold in the main roll may be smaller than about 1000 mm as long as the main roll can be appropriately heated.
  • the cooling structure of the main roll 1 will be described with reference to FIGS.
  • the mold 12 of the main roll 1 has a receiving portion 13 that is recessed downward from its upper end surface 12c.
  • the receiving portion 13 opens at the upper end surface 12 c of the mold 12 and extends in the circumferential direction of the main roll 1 so as to surround the shaft body 11.
  • the receiving portion 13 receives the water W supplied from the liquid supply mechanism 5.
  • the mold 12 of the main roll 1 also has a plurality of liquid passages 14 extending from the receiving portion 13 toward the other side in the rotation axis direction, and the plurality of liquid passages 14 are spaced from each other in the circumferential direction of the main roll 1. It is empty.
  • the mold 12 shown in FIGS. 2 and 3 has four liquid paths 14.
  • the present invention is not limited to this, and the mold only needs to have two or more liquid paths, and in particular, the mold preferably has three or more liquid paths.
  • the mold 12 has a mounting hole 15 that penetrates the shaft body 11 so that the shaft body 11 can be inserted.
  • the attachment hole 15 extends from the bottom surface 13 b of the receiving portion 13 to the lower end surface 12 d of the mold 12 along the rotation axis 1 a of the main roll 1.
  • the shaft body 11 is attached to the mold 12 while being inserted into the attachment hole 15.
  • the receiving portion 13 includes an opening edge 13 a positioned on the upper end surface 12 c of the mold 12, a bottom surface 13 b facing the opening edge 13 a, and the outside of the opening edge 13 a and the bottom surface 13 b.
  • An inner peripheral surface 13c extending between the peripheral edges is formed.
  • the bottom surface 13b of the receiving portion 13 is formed by the mold 12 It is preferable to be positioned above the processed portion. As an example, since the centrifugal force is applied to the liquid such as water W in the receiving portion 13 when the main roll 1 is rotated, the bottom surface 13 b has a depth of the receiving portion 13 that can hold the liquid in the receiving portion 13. It is good to form so that.
  • the bottom surface 13b is preferably formed in a substantially flat shape along the horizontal direction.
  • the receiving portion 13 extends from the rotation axis 1 a of the main roll 1.
  • the maximum distance to the inner peripheral surface 13c of the main roll 1 is preferably 3/4 or less of the minimum distance from the rotation axis 1a of the main roll 1 to the outer peripheral surface 12a of the mold 12, and further, 1/2 of the minimum distance.
  • the inner peripheral surface 13c is formed along the vertical direction.
  • the present invention is not limited to this, and the inner peripheral surface may be inclined with respect to the vertical direction.
  • the inner peripheral surface is formed to taper from the bottom surface of the receiving portion toward the opening edge. May be.
  • each liquid passage 14 has an inlet 14 a that opens at the receiving portion 13 and an outlet 14 b that opens at the lower end surface 12 d of the mold 12.
  • Each liquid passage 14 may also communicate with the mounting hole 15 in the radial direction of the main roll 1.
  • each liquid passage 14 is preferably formed so as to be recessed from the inner peripheral surface 15 a of the mounting hole 15, and each liquid passage 14 also preferably extends along the shaft body 11.
  • the present invention is not limited to this, and at least one of the plurality of liquid paths may be spaced from the mounting hole 15 in the radial direction of the main roll.
  • the liquid supply mechanism 5 of the rolling apparatus will be described with reference to FIG.
  • the liquid supply mechanism 5 includes a supply pipe 51 that allows water W to pass therethrough and a valve 52 that is disposed in the supply pipe 51.
  • a supply port 51 a that supplies the water W to the receiving unit 13 is formed at the tip of the supply pipe 51, and the supply port 51 a is located above the receiving unit 13.
  • the valve 52 is openable and closable so as to switch between a state in which the water W flows out from the supply port 51a and a state in which the outflow of water W is stopped.
  • the valve 52 is preferably adjustable in its opening / closing amount so as to adjust the supply amount of water W from the supply port 51a.
  • the liquid supply mechanism 5 also has a temperature detection unit 53 that can detect the temperature of the receiving unit 13 of the main roll 1.
  • the temperature detection unit 53 preferably detects the temperature of the receiving unit 13 in a non-contact manner.
  • the temperature detection unit 53 may be a radiation temperature sensor or the like.
  • the present invention is not limited to this, and the temperature detection unit may be able to detect the temperature of the water discharged from the outlet of the mold.
  • the liquid supply mechanism 5 also includes a control unit 54 that can control the supply of water W from the supply pipe 51 to the receiving unit 13.
  • the control unit 54 is electrically connected to the valve 52 and the temperature detection unit 53.
  • the control unit 54 receives the temperature detection value of the receiving unit 13 from the temperature detection unit 53. Further, the control unit 54 controls the opening / closing of the valve 52 in accordance with the temperature detection value. In particular, it is preferable that the control unit 54 can control the opening / closing amount of the valve 52.
  • the control unit 54 may be a control unit including an electrical component such as a CPU, an electrical circuit, and the like.
  • the induction heating mechanism 6 of the rolling device will be described. Although not particularly illustrated, the induction heating mechanism 6 includes an induction heating coil having a winding wound so as to go around at least once. In the induction heating mechanism 6, magnetic flux lines for induction heating are generated by passing an alternating current through the winding of the induction heating coil.
  • the induction heating mechanism 6 is provided around the outer peripheral surface 12 a of the mold 12 in the main roll 1 so as to induction-heat the processed portion (including the recess 12 b) of the outer peripheral surface 12 a of the mold 12.
  • the induction heating mechanism 6 rotates around the outer peripheral surface 12a of the mold 12 with respect to the rolling area between the main roll 1 and the mandrel 2 (hereinafter referred to as “inner / outer circumferential pressing area”). It is preferable that it is disposed in a region adjacent to the other side (hereinafter referred to as “region immediately before inner and outer circumferential pressure reduction”).
  • the region immediately before the inner and outer circumferential pressure reduction is located within a range of a length obtained by dividing the entire circumferential length of the main roll 1 into four from the inner and outer circumferential reduction region toward the other side in the rotation direction of the main roll 1.
  • the present invention is not limited to this, and the induction heating mechanism may induction-heat the edge shape contact portion of the main roll contacting the edge shape portion formed on the outer peripheral surface of the ring material.
  • the process returns to the operation of obtaining the temperature detection value of the receiving unit 13 by the temperature sensor 52 before such determination (step S2).
  • the valve 52 is opened to supply water W from the supply pipe 51 to the receiving part 13 (step S4).
  • the temperature detection value of the receiving portion 13 is obtained again by the temperature sensor 52 (step S5). It is determined whether or not the temperature detection value of the receiving unit 13 is smaller than the temperature lower limit threshold (step S6).
  • step S4 When the temperature detection value of the receiving unit 13 is equal to or higher than the temperature lower limit threshold (NO), the supply of water W to the receiving unit 13 is continued (step S4).
  • the valve 52 When the temperature detection value of the receiving part 13 is smaller than the temperature lower limit threshold (YES), the valve 52 is closed to stop the supply of water W to the receiving part 13 (step S7). In addition, you may adjust the supply speed of the water W to the receiving part 13 corresponding to the temperature detection value of the receiving part 13.
  • the above operation may be repeated in a situation where the mold 12 of the main roll 1 is induction-heated by the induction heating mechanism 6, thereby appropriately controlling the temperature distribution of the shaft body 11 and the mold 12 of the main roll 1. It is good to be done.
  • Such a cooling method is suitable to be carried out in the rotation state of the main roll 1, but can also be carried out in the rotation stop state of the main roll 1. Note that at least one of the cooling method operations may be performed manually by an operator.
  • the upper temperature limit threshold and the lower temperature threshold may be determined as follows.
  • the upper temperature threshold is preferably about 150 ° C.
  • the lower temperature threshold is preferably about 40 ° C. That is, the temperature detection value of the receiving portion 13 is preferably maintained between about 40 ° C. and about 150 ° C.
  • the present invention is not limited to this, the temperature upper limit threshold is larger than the temperature lower limit threshold, and the temperature upper limit threshold is based on the heat conduction condition from the receiving part of the mold to the bearing part of the shaft body. It may be less than the temperature of the receiving part determined in accordance with the heat-resistant temperature.
  • the manufacturing method of the ring rolling body which concerns on this embodiment is demonstrated with reference to FIG.1 and FIG.5.
  • the process of controlling the temperature of the main roll 1 so as to cool the shaft 11 of the main roll 1 and its peripheral portion while heating the mold 12 of the main roll 1 (hereinafter, “temperature management process”).
  • a step of performing ring rolling on the previously heated ring material M (hereinafter referred to as “rolling step”).
  • the temperature of the ring material M heated in advance is preferably about 850 ° C. or higher and about 1150 ° C. or lower.
  • the temperature of the ring material is not limited to this, and can be adjusted according to the type of metal material used for the ring material so as to produce a high-quality ring rolled body.
  • the temperature management process is performed. Specifically, the main roll 1 is rotated (process P1). An operation of induction heating the main roll 1 by the induction heating mechanism 6 (hereinafter referred to as “induction heating operation”) and an operation of cooling the main roll 1 by the cooling method (hereinafter referred to as “cooling operation”) are started ( Step P2). Thereafter, if the temperature distribution of the shaft 11 of the main roll 1 and the mold 12 is appropriately controlled (step P3), the induction heating operation and the cooling operation are ended (step P4). Further, the rotation of the main roll 1 is stopped (process P5). When a problem such as an electrical ground fault occurs during energization of the induction heating mechanism 6, the supply of water W from the liquid supply mechanism 5 to the receiving portion 13 may be stopped.
  • a rolling process is performed. Specifically, the ring material M heated in advance is mounted on the rolling device (process P6). The main roll 1 and the mandrel 2 are rotated, and the pair of axial rolls 3 and 4 are rotated. With these rotations, the ring material M heated in advance is rotated around the central axis C in the circumferential direction of the ring. Rotate toward the side (indicated by arrow F) (process P7). The induction heating operation is started again (step P8).
  • reducing operation are performed in the order of the operation of reducing the ring material M in the ring radial direction by the main roll 1 and the mandrel 2 and the operation of reducing the ring material M in the ring axis direction by the pair of axial rolls 3 and 4. Is repeated) (step P9).
  • the main roll 1 and the mandrel 2 are relatively moved in the ring radial direction with respect to the center of the ring material M in the radial direction, whereby the ring material M is deformed so as to increase its diameter. it can.
  • the reduction work is finished, and at the same time, the induction heating work for the main roll 1 is finished (process P11). Thereafter, the rotation of the ring material M is stopped (process P12).
  • the induction heating operation may be continued without being stopped.
  • a cooling operation may be performed during the reduction operation.
  • the induction heating operation is performed almost continuously from the start to the start of the reduction operation, and also during the reduction of the ring material M.
  • the induction heating operation is performed for a predetermined time (hereinafter referred to as “heating time before reduction”) at a predetermined temperature (hereinafter referred to as “reduction”) in the processed portion of the outer peripheral surface 12a of the mold 12 in the main roll 1. This is referred to as “preheating temperature”.
  • the induction heating operation is performed so that the processed portion of the outer peripheral surface 12a of the mold 12 in the main roll 1 has a predetermined temperature (hereinafter referred to as “heating temperature during rolling”).
  • the heating time before rolling, the heating temperature before rolling, and the heating temperature during rolling should be as follows. Considering that the mold 12 of the main roll 1 is sufficiently heated before the rolling operation so as to efficiently improve the quality of the produced rolled ring, and that induction heating is also performed during the rolling operation,
  • the pre-reduction heating time is preferably about 3 minutes or more, and the pre-reduction heating temperature is preferably about 100 ° C. or more, preferably about 150 ° C. or more, and more preferably about 300 ° C. or more.
  • the heating time before rolling should be about 1 hour or less, and the heating temperature before rolling. Is preferably lower than the softening temperature of the material of the main roll 1. Specifically, when the material of the outer peripheral surface 12a of the mold 12 in the main roll 1 is hot mold steel defined in JIS G4404 or its improved steel, the heating temperature before rolling is less than the tempering temperature. In other words, the softening temperature is preferably the tempering temperature.
  • the heating temperature before rolling in this case is preferably lower than the solution treatment temperature. That is, the softening temperature is preferably the solution treatment temperature.
  • the heating temperature during the rolling is preferably in the range of about 300 ° C. or higher and lower than the temperature of the ring material M to be preheated.
  • the upper limit value may be set according to the material of the main roll 1 and the upper limit value is particularly preferably set to a temperature at which the softening of the main roll 1 can be prevented. That is, the heating temperature during the rolling is preferably lower than the softening temperature of the material of the mold 12 in the main roll 1, similarly to the heating temperature before the rolling.
  • the temperature of induction heating by the induction heating mechanism 6 can be efficiently controlled within the above range while the temperature distribution in the radial direction of the ring material M is controlled to an appropriate temperature range while suppressing heat removal of the ring material M. It is good to adjust so that.
  • the temperature of induction heating by the induction heating mechanism 6 may be adjusted so as to make the temperature distribution in the radial direction of the ring material M uniform.
  • the induction heating operation may be completed before or after the reduction operation is completed.
  • the timing at which the induction heating operation is temporarily interrupted before the ring material reduction operation is started and then restarted can be either immediately before the start of the ring material reduction operation, at the start, or after the start.
  • the interruption time of the induction heating operation is preferably set within a range in which the temperature of the main roll can be maintained so as to efficiently improve the quality such as the dimensional accuracy of the produced ring rolled body.
  • the reduction work may be performed in a state where the induction heating work is stopped.
  • the pre-rolling heating time is preferably about 15 minutes or more and about 2 hours or less, and more preferably about 30 minutes or more and about 1 hour or less.
  • the receiving part 13 which is dented from the upper end surface 12c of the metal mold
  • the receiving part 13 is separated from the processed part (including the recess 12b) of the outer peripheral surface 12a of the mold 12 in contact with the ring material M, the processed part of the mold 12 and the ring material M in contact with the processed part. Can be effectively prevented from lowering the temperature.
  • the shaft body 11 of the main roll 1 and its peripheral part can be efficiently cooled. Since the receiving part 13 opens widely toward the outside of the main roll 1 at the upper end surface 12 c of the mold 12, the inside of the receiving part 13 can be easily cleaned from the opening of the receiving part 13. Therefore, the main roll 1 can be easily maintained. Since the receiving portion 13 is formed on the mold 12, it is possible to prevent the strength of the shaft body 11 from being lowered by the cooling structure of the main roll 1. Therefore, the strength of the rotation support structure of the main roll 1 can be sufficiently ensured.
  • the water W injected into the receiving portion 13 extends from the receiving portion 13 toward the other side in the rotational axis direction in the mold 12 and The liquid flows in a plurality of liquid passages 14 spaced apart from each other in the circumferential direction. Therefore, the water W is stored in the receiving part 13, and then the water W in the receiving part 13 is sent to the plurality of liquid paths 14. As a result, the water W stops in the main roll 1 so that the main roll 1, in particular, the shaft body 11 can be efficiently cooled.
  • the strength of the main roll 1 is increased by the added plurality of liquid paths 14. Can be suppressed. That is, the strength of the main roll 1 can be sufficiently secured.
  • the water W that has flowed into the liquid path 14 passes from the outlet 14 b of the liquid path 14 that opens at the lower end surface 12 d of the mold 12 to the outside of the main roll 1. Discharged. Therefore, since the water W in the main roll 1 can be replaced, the main roll 1 can be efficiently cooled.
  • the shaft body 11 of the main roll 1 can be efficiently cooled by the above cooling method even when the mold 12 of the main roll 1 is heated.
  • heating the main roll 1 that maintains a certain shape makes temperature management in hot ring rolling easier. That is, it is possible to accurately manage the temperature of the processing portion of the mold 12 that performs hot ring rolling on the ring material M while cooling the shaft body 11 that needs to be prevented from being exposed to a high temperature. Therefore, a high-quality ring rolled body can be produced by hot ring rolling using the main roll 1 that enables accurate temperature control in this way.
  • a main roll cooling method, a ring rolled body manufacturing method, and a rolling apparatus according to a second embodiment of the present invention will be described.
  • the method for cooling the main roll and the method for manufacturing the rolled ring body according to this embodiment are the same as those according to the first embodiment.
  • the rolling apparatus according to this embodiment is the same as that according to the first embodiment except for the liquid path in the cooling structure of the main roll.
  • the liquid path 16 in the cooling structure of the main roll 1 will be described with reference to FIG.
  • the mold 12 of the main roll 1 of the present embodiment has a plurality of liquid paths 16 formed in blind holes instead of the plurality of liquid paths 14 penetrating as in the first embodiment.
  • Each liquid passage 16 has an inlet 16a that opens at the receiving portion 13 and a bottom 16b that is positioned at the lower end thereof.
  • the other structure of the liquid path 16 is the same as that of the liquid path 14 of the first embodiment.
  • a method for cooling a main roll, a method for manufacturing a rolled ring body, and a rolling apparatus according to a third embodiment of the present invention will be described.
  • the method for cooling the main roll and the method for manufacturing the rolled ring body according to this embodiment are the same as those according to the first embodiment.
  • the rolling apparatus according to this embodiment is the same as that according to the first embodiment except for the receiving part in the cooling structure of the main roll.
  • the receiving part 17 in the cooling structure of the main roll 1 is demonstrated.
  • the mold 12 of the main roll 1 of the present embodiment has a receiving portion 17 that is recessed downward from the upper end surface 12c.
  • the receiving portion 17 opens at the upper end surface 12c of the mold 12, and the shaft body 11 is opened. It extends in the circumferential direction of the main roll 1 so as to surround it.
  • the receiving part 17 receives water W supplied from the liquid supply mechanism 5.
  • the receiving portion 17 includes an opening edge 17a formed on the upper end surface 12c of the mold 12, a bottom surface 17b facing the opening edge 17a, an inner peripheral surface 17c positioned between the opening edge 17a and the outer peripheral edge of the bottom surface 17b.
  • the bottom surface 17 b is formed in a concave shape so as to taper toward the inlet 14 a of the liquid passage 14. Therefore, the water W in the receiving part 17 can be efficiently guided to the liquid path 14 by the bottom surface 17b.
  • a projection 17d that protrudes toward the rotation axis 1a of the main roll 1 with respect to the lower area is formed in the upper area of the inner peripheral surface 17c. Therefore, the protrusion 17d can prevent the water W in the receiving portion 17 from leaking outside through the opening of the receiving portion 17 when the main roll 1 rotates.
  • the bottom surface 17b of the receiving portion 17 is also located above the processed portion of the outer peripheral surface 12a of the mold 12 as in the first embodiment.
  • the bottom surface 17b can be held in the receiving portion 17 as in the first embodiment. It is good to form so that the depth of such a receiving part 17 may be provided.
  • the maximum distance from the rotation axis 1a of the main roll 1 to the inner peripheral surface 17c of the receiving portion 17 is also the same as in the first embodiment from the rotation axis 1a of the main roll 1 to the outer peripheral surface 12a of the mold 12.
  • the distance is preferably 3/4 or less of the minimum distance, and more preferably 1/2 or less of the minimum distance.
  • the mold of the main roll in the first to fourth embodiments passes through the liquid passage as in the first and third embodiments, and the second and fourth embodiments.
  • a plurality of liquid paths composed of blind hole-shaped liquid paths may be provided.
  • the main roll mold in the first to fourth embodiments may be configured not to have a liquid passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

主ロールの冷却方法において、主ロールの軸体及びその周辺部分の強度を十分に確保し、主ロールのメンテナンスを容易にし、かつ主ロールの軸体及びその周辺部分を効率的に冷却する。リング圧延体の製造方法において、高品質のリング圧延体を作製する。本発明は、リング圧延用の主ロール1を、その回転軸線方向の一方側を上方に向けた状態で冷却する主ロール1の冷却方法と、それを含むリング圧延体の製造方法とに関する。冷却方法においては、回転軸線方向の一方側を向く主ロール1の金型12の上端面12cから凹むと共に主ロール1の軸体11を囲む受け部13,17に液体Wを注入することによって、軸体11を冷却する。リング圧延体の製造方法においては、金型12を誘導加熱機構6によって加熱すると共に上記冷却方法によって軸体11を冷却し、さらに、主ロール1とマンドレル2との間でリング素材Mを圧下して、リング圧延体を製造する。

Description

リング圧延用主ロールの冷却方法及びリング圧延体の製造方法
 本発明は、リング圧延に用いられる主ロールの冷却方法に関し、さらに、本発明は、略リング形状の圧延体(以下、「リング圧延体」という)を作製するために、主ロールの金型を加熱する一方で上記冷却方法によって主ロールの軸体を冷却し、さらに、主ロールとマンドレルとの間で略リング形状の素材(以下、「リング素材」という)をその径方向に圧下するリング圧延体の製造方法に関する。
 各種産業分野にて利用されるギア、回転機構の回転体等には、略リング形状の部品(以下、「リング部品」という)が用いられ、多くの場合、リング部品は、リング圧延体を加工することによって作製される。リング圧延体は、リング素材にリング圧延を施すことによって作製され、リング圧延にはリングローリングミル等の圧延装置が用いられる。
 圧延装置には、リング圧延体を形作るようにリング素材を圧下するための成形ロールが設けられ、例えば、成形ロールとしては、リング素材をその内外周間にて圧下する主ロール及びマンドレルが挙げられる。成形ロールは、リング圧延中、特に、熱間リング圧延中に高温環境下に晒される。そのため、成形ロールを保護し、成形ロールの温度を的確に管理し、かつ成形ロールを用いて作製されるリング圧延体の品質を高めるために、成形ロールを冷却することが要求される場合がある。そのため、種々の成形ロールの冷却技術が提案されている。
 冷却技術の一例として、成形ロールにおいて回転軸を囲むように設けられる加工部に、冷却水等の冷却溶媒を噴霧する技術が提案されている。また、上記冷却技術の別の一例として、成形ロールの回転軸に沿って成形ロールの回転軸方向の一端から他端まで延びる水路を設けて、水路に冷却水を流す技術が提案されている(例えば、特許文献1及び特許文献2を参照)。
特開昭58-025834号公報 特開昭54-101757号公報
 しかしながら、上記冷却技術の一例のようなリング圧延においては、リング素材に接触する成形ロールの加工部に冷却媒体が噴霧されるので、成形ロールの加工部の温度が低下するおそれがある。そのため、リング圧延においては、成形ロールの加工部に接触するリング素材の割れ、変形不良等の不具合が生ずるおそれがある。特に、リング素材が、Ni系超合金、Co系合金等のように加工し難い金属材料から作製される場合、リング素材の不具合が生ずる可能性が高くなる。上記冷却技術の一例では、成形ロールのうち、成形ロールの回転軸及びその周辺部分が冷却され難いという問題もある。
 さらに、上記冷却技術の別の一例において、成形ロールの回転軸及びその周辺部分には、水路に冷却水を流す機構に加えて、成形ロールを回転させる機構が設置される。そのため、これらの機構を設置するために圧延装置の構造が複雑になり、その結果、圧延装置の主ロール、特に、主ロールの回転軸及びその周辺部分の強度を確保し難く、かつ圧延装置のメンテナンスが困難になるおそれがある。
 特に、上記冷却技術の一例及び別の一例をリングローリングミルの主ロールに適用する場合、上記問題が顕著になる。よって、リングローリングミルの主ロールの冷却方法においては、主ロールの軸体及びその周辺部分の強度を十分に確保しつつ、主ロールのメンテナンスを容易にし、かつ主ロールの軸体及びその周辺部分を効率的に冷却することが望まれる。また、リング圧延体の製造方法においては、主ロールの金型、特に、リング素材と接触する金型の加工部を加熱する一方で主ロールの軸体及びその周辺部分を効率的に冷却するように的確に温度管理された主ロールを用いて、高品質のリング圧延体を作製することが望まれる。
 課題を解決するために、本発明の一態様に係る主ロールの冷却方法によれば、主ロールの回転軸線に沿って延びる軸体と、該軸体を囲むように配置される金型とを有し、かつリング圧延に用いられる主ロールを、その回転軸線方向の一方側を上方に向けた状態で冷却する主ロールの冷却方法であって、前記回転軸線方向の一方側を向く前記主ロールの金型の上端面から凹むと共に前記主ロールの軸体を囲む受け部に液体を注入することによって、前記主ロールの軸体を冷却する。さらには、主ロールの軸体及びその周辺部分を冷却する。
 本発明の一態様に係るリング圧延体の製造方法によれば、リング素材を圧延することによってリング圧延体を作製するリング圧延体の製造方法であって、加熱機構によって主ロールの金型を加熱し、かつ本発明の一態様に係る主ロールの冷却方法によって前記主ロールの軸体を冷却する温度管理工程と、該温度管理工程にて温度管理された前記主ロールとマンドレルとによって前記リング素材の内外周間の圧下を行う圧延行程とを含む。
 本発明の一態様に係る主ロールの冷却方法によれば、主ロールの軸体及びその周辺部分の強度を十分に確保でき、主ロールを容易にメンテナンスでき、かつ主ロールの軸体及びその周辺部分を効率的に冷却できる。また、本発明の一態様に係るリング圧延体の製造方法によれば、主ロールの金型、特に、リング素材と接触する金型の加工部を加熱する一方で主ロールの軸体及びその周辺部分を効率的に冷却するように的確に温度管理された主ロールを用いて、高品質のリング圧延体を作製することができる。
本発明の第1実施形態に係る主ロールの冷却方法及びリング圧延体の製造方法に用いられる圧延装置を概略的に示す斜視図である。 本発明の第1実施形態における圧延装置の主ロールの軸体及び金型を概略的に示す平面図である。 図2のA-A線断面図である。 本発明の第1実施形態に係る主ロールの冷却方法を説明するためのフローチャートである。 本発明の第1実施形態に係るリング圧延体の製造方法を説明するためのフローチャートである。 本発明の第2実施形態における主ロールの軸体及び金型を図2のA-A線に相当する線に沿って切断した状態で概略的に示す断面図である。 本発明の第3実施形態における主ロールの軸体及び金型を図2のA-A線に相当する線に沿って切断した状態で概略的に示す断面図である。
 本発明の第1~第4実施形態に係る主ロールの冷却方法、略リング形状の圧延体(以下、「リング圧延体」という)の製造方法、及び圧延装置について以下に説明する。なお、主ロールの冷却方法においては、圧延装置の主ロールの軸体及びその周辺部分を主に冷却する。また、リング圧延体の製造方法においては、主ロールの金型、特に、略リング形状の素材(以下、「リング素材」という)と接触する金型の外周面の加工部を加熱する一方で上記冷却方法によって主ロールの軸体及びその周辺部分を主に冷却し、さらに、主ロールとマンドレルとの間でリング素材を圧下する。なお、主ロールの冷却方法は、本発明の第1~第4実施形態以外のリング圧延体の製造方法に適用することもできる。
 本発明の第1~第4実施形態にて、リング圧延体は、略リング形状の部品(以下、「リング部品」という)を作製するために用いられる。一例として、リング部品は、各種産業分野にて利用されるギア、回転機構の回転体等であるとよく、さらに、リング部品は、厳密な寸法管理を必要とするもの、特に、ガスタービン、蒸気タービン、航空機のジェットエンジン等に用いられるタービンディスク等であると好ましい。また、一例として、リング圧延体の外周の最大直径は約600mm以上かつ約2000mm以下であると好ましい。しかしながら、本発明はこれに限定されず、リング圧延体の外周の最大直径は、リング圧延体を用いて作製するリング部品に応じて、約600mmよりも小さく、かつ約2000mmよりも大きくてもよい。
 さらに、本発明の第1~第4実施形態にて、リング圧延体は、リング素材にリング圧延を施すことによって形作られる。特に、リング素材は、高温強度、高温靱性等に優れる金属材料を用いて作製されるとよく、例えば、リング素材は、高温強度、高温靱性等に優れるNi基合金、Fe基合金、Co基合金、Ti基合金等から選択される金属材料を用いて作製されるとよい。
 [第1実施形態]
 本発明の第1実施形態に係る主ロールの冷却方法、リング圧延体の製造方法、及び圧延装置について説明する。
 [圧延装置について]
 最初に、図1を参照して、本実施形態に係る主ロール1の冷却方法及びリング圧延体の製造方法にて用いられる圧延装置について説明する。圧延装置は、中心軸線Cを基準として略回転対称に形成されるリング素材Mを装着可能に構成され、さらに、圧延装置は、それに装着されたリング素材Mにリング圧延を施すように構成されている。
 具体的には、圧延装置は、上述のような主ロール1とマンドレル2とを備える。主ロール1及びマンドレル2は、それぞれリング素材Mの外周面m1及び内周面m2に接触し、かつそれらの間にてリング素材Mをその径方向(以下、「リング径方向」という)に圧下する。圧延装置はまた一対のアキシャルロール3,4を備える。一対のアキシャルロール3,4は、リング素材Mにおける中心軸線Cの方向(以下、「リング軸線方向」という)の上端面m3及び下端面m4に接触し、かつそれらの間でリング素材Mをリング軸線方向にて圧下する。
 圧延装置はまた、主ロール1を冷却する水Wを供給する液体供給機構5を有する。一例として、水Wの温度は常温であると好ましい。さらに、圧延装置は、主ロール1を誘導加熱するように構成された誘導加熱機構6を備える。リング圧延においては、リング素材Mが、誘導加熱機構6によって誘導加熱された主ロール1に当接する。
 しかしながら、本発明はこれに限定されず、圧延装置は次のように構成されてもよい。圧延装置は、一対のアキシャルロールを備えない構成であってもよい。主ロールを冷却できれば、液体供給機構が水以外の液体を供給してもよい。特に、液体は、難燃性及び高い流動性を有するとよく、例えば、液体はシリコンオイル等であってもよい。また、主ロールを加熱できれば、圧延装置は、誘導加熱機構以外の加熱機構を有してもよく、例えば、加熱機構はガスバーナ等であってもよい。
 [主ロール及びマンドレルについて]
 図1を参照して、主ロール1及びマンドレル2について説明する。主ロール1及びマンドレル2はそれぞれ回転軸線1a,2aを中心に回転可能である。主ロール1及びマンドレル2のそれぞれは、その回転軸線1a,2aの方向(以下、主ロール1及びマンドレル2のそれぞれにて「回転軸線方向」という)の一方側を上方に向けるように配置される。
 主ロール1及びマンドレル2のそれぞれは、その回転軸線1a,2aに沿って延びる軸体11,21と、該軸体11,21を囲む金型12,22とを有する。軸体11,21及び金型12,22は別体であり、金型12,22は軸体11,21に取り付けられている。しかしながら、本発明はこれに限定されず、主ロール及びマンドレルの少なくとも一方において、軸体及び金型を一体としてもよい。
 主ロール1及びマンドレル2の金型12,22は、それぞれ回転軸線1a,2aを基準として略回転対称に形成された外周面12a,22aを有し、これらの外周面12a,22aが、それぞれリング素材Mの外周面m1及び内周面m2に接触する。主ロール1及びマンドレル2の金型12,22の外周面12a,22aは、作製されるリング圧延体の形状に対応した形状を有する。一例として、図1に示したリング素材Mは、その外周面m1から突出すると共にリング素材Mの周方向(以下、「リング周方向」という)に沿って延びる1つの凸部分m5を有するように形成され、主ロール1の金型12の外周面12aは、1つの凸部分m5に対応すると共に主ロール1の周方向に沿って延びる1つの凹部分12bを有するように形成される。しかしながら、本発明はこれに限定されず、リング素材の外周面は、1つの凸部分を有する形状以外に形成されてもよく、主ロールの金型の外周面は、このようなリング素材の外周面に対応して形成されるとよい。
 主ロール1及びマンドレル2の少なくとも一方は、駆動機構(図示せず)によって回転駆動可能であると好ましく、この場合、駆動機構は、主ロール1及びマンドレル2の少なくとも一方の軸体11,21に取り付けられるとよい。必要に応じて、主ロール1及びマンドレル2の回転速度は制御可能であるとよい。特に、主ロール1のみが回転駆動可能であると好ましい。主ロール1やマンドレル2はまた、リング素材Mのリング径方向の拡大に応じてリング径方向に移動可能であるとよい。
 リング素材Mは、主ロール1及びマンドレル2の回転に伴ってリング周方向に回転した状態で、主ロール1及びマンドレル2の金型12,22の外周面12a,22a間でリング径方向に圧下される。なお、後述するリング圧延体の製造方法では、主ロール1がその回転方向の一方側(矢印R1により示す)に回転すると共にマンドレル2がその回転方向の一方側(矢印R2により示す)に回転し、これらの回転に伴って、リング素材Mがリング周方向の一方側(矢印Fにより示す)に向かって回転する場合について説明する。
 さらに、主ロール1は、誘導加熱機構6によって加熱できる一方で加熱炉、ガスバーナ等によって加熱困難である大きさであるとよく、特に、主ロール1における金型12の外周面12aの最大直径は、約1000mm以上であると好ましい。しかしながら、本発明はこれに限定されず、主ロールを適切に加熱できれば、主ロールにおける金型の外周面の最大直径は約1000mmよりも小さくてもよい。
 [主ロールの冷却構造]
 図2及び図3を参照して主ロール1の冷却構造について説明する。主ロール1の金型12は、その上端面12cから下方に凹む受け部13を有する。受け部13は、金型12の上端面12cにて開口し、かつ軸体11を囲むように主ロール1の周方向に広がっている。かかる受け部13が液体供給機構5から供給される水Wを受け入れる。
 主ロール1の金型12はまた、受け部13から回転軸線方向の他方側に向かって延びる複数の液路14を有し、複数の液路14は、主ロール1の周方向に互いに間隔を空けている。一例として、図2及び図3に示した金型12は4個の液路14を有する。しかしながら、本発明はこれに限定されず、金型は2個以上の液路を有すればよく、特に、金型は3個以上の液路を有すると好ましい。
 さらに、金型12は、軸体11を挿入可能とするように貫通する取付孔15を有する。取付孔15は、主ロール1の回転軸線1aに沿って受け部13の底面13bから金型12の下端面12dまで延びている。軸体11は、取付孔15に挿入された状態で金型12に取り付けられる。
 かかる主ロール1の冷却構造にて、受け部13には、金型12の上端面12cに位置する開口縁13aと、該開口縁13aに対向する底面13bと、開口縁13a及び底面13bの外周縁間で延びる内周面13cとが形成される。
 リング素材Mに接触する金型12の外周面12aの加工部における温度低下を防ぐことと、金型12の強度低下を防ぐこととを考慮した場合、受け部13の底面13bは、金型12の加工部よりも上方に位置すると好ましい。一例として、主ロール1の回転時に、受け部13内における水W等の液体には遠心力が加わるので、底面13bは、かかる液体を受け部13内で保持できるような受け部13の深さを付与するように形成されるとよい。底面13bは、水平方向に沿って略平坦形状に形成されるとよい。
 また、金型12の外周面12aの温度低下を防ぐことと、金型12における軸体11の周辺部分の強度低下を防ぐこととを考慮した場合、主ロール1の回転軸線1aから受け部13の内周面13cまでの最大距離は、主ロール1の回転軸線1aから金型12の外周面12aまでの最小距離の3/4以下であるとよく、さらには、同最小距離の1/2以下であると好ましい。内周面13cは垂直方向に沿って形成されている。しかしながら、本発明はこれに限定されず、内周面は、垂直方向に対して傾斜してもよく、例えば、内周面は、受け部の底面から開口縁に向かって先細るように形成されてもよい。
 さらに、主ロール1の冷却構造にて、各液路14は、受け部13にて開口する流入口14aと、金型12の下端面12dにて開口する流出口14bとを有する。各液路14はまた、主ロール1の径方向にて取付孔15と連通するとよい。特に、各液路14は、取付孔15の内周面15aから凹むように形成されると好ましく、各液路14はまた、軸体11に沿って延びると好ましい。しかしながら、本発明はこれに限定されず、複数の液路のうち少なくとも1つが、取付孔15に対して主ロールの径方向に間隔を空けてもよい。
 [液体供給機構について]
 図1を参照して圧延装置の液体供給機構5について説明する。液体供給機構5は、水Wを通過可能とする供給管51と、該供給管51に配置されるバルブ52とを有する。供給管51の先端には、水Wを受け部13に供給する供給口51aが形成され、供給口51aは受け部13の上方に位置する。バルブ52は、供給口51aから水Wを流出させた状態と、水Wの流出を止めた状態とを切り換えるように開閉可能になっている。特に、バルブ52は、供給口51aからの水Wの供給量を調節するようにその開閉量を調節可能であると好ましい。
 液体供給機構5はまた、主ロール1の受け部13の温度を検出可能な温度検出部53を有する。温度検出部53は、受け部13の温度を非接触式に検出すると好ましく、一例として、温度検出部53は放射温度センサ等であるとよい。しかしながら、本発明はこれに限定されず、温度検出部は、金型の流出口から排出される水の温度を検出可能であってもよい。
 液体供給機構5はまた、供給管51から受け部13への水Wの供給を制御可能とする制御部54を有する。制御部54は、バルブ52と温度検出部53とに電気的に接続されている。制御部54は、温度検出部53から受け部13の温度検出値を受け取る。さらに、制御部54は、温度検出値に応じてバルブ52の開閉を制御する。特に、制御部54は、バルブ52の開閉量を制御可能であると好ましい。なお、一例として、制御部54は、CPU等の電気部品、電気回路等を備えるコントロールユニットであるとよい。
 [誘導加熱機構について]
 圧延装置の誘導加熱機構6について説明する。特に図示はしないが、誘導加熱機構6は、少なくとも一周周回するように巻かれた巻線を有する誘導加熱コイルを備える。かかる誘導加熱機構6においては、誘導加熱コイルの巻線に交流電流を流すことによって、誘導加熱のための磁束線が発生する。
 図1に示すように、誘導加熱機構6は、金型12の外周面12aの加工部(凹部12bを含む)を誘導加熱するように、主ロール1における金型12の外周面12aの周囲に配置されている。特に、誘導加熱機構6は、金型12の外周面12aの周囲にて、主ロール1及びマンドレル2間の圧下領域(以下、「内外周圧下領域」という)に対して主ロール1の回転方向の他方側に隣接する領域(以下、「内外周圧下直前領域」という)に配置されると好ましい。一例として、内外周圧下直前領域は、内外周圧下領域から主ロール1の回転方向の他方側に向かって、主ロール1の全周長さを四分割した長さの範囲内に位置すると好ましい。しかしながら、本発明はこれに限定されず、誘導加熱機構が、リング素材の外周面に形成されるエッジ形状部に接触する主ロールのエッジ形状接触部を誘導加熱してもよい。
 [主ロールの冷却方法について]
 本実施形態に係る主ロール1の冷却方法について図1及び図4を参照して説明する。最初に、バルブ52は閉じ、かつ供給管51からの水Wの供給は停止されている(ステップS1)。温度センサ52によって受け部13の温度検出値を得る(ステップS2)。制御部54によって、受け部13の温度検出値が所定の温度上限閾値よりも大きいか否かを判定する(ステップS3)。
 受け部13の温度検出値が温度上限閾値以下である場合(NO)、かかる判定の前にて温度センサ52によって受け部13の温度検出値を得る作業に戻る(ステップS2)。その一方で、受け部13の温度検出値が温度上限閾値よりも大きい場合(YES)、供給管51から受け部13に水Wを供給すべくバルブ52を開く(ステップS4)。なお、受け部13に水Wを供給する前に、スケールの発生を防ぐような前処理を水Wに施してもよい。次に、温度センサ52によって受け部13の温度検出値を再び得る(ステップS5)。受け部13の温度検出値が温度下限閾値よりも小さい否かを判定する(ステップS6)。
 受け部13の温度検出値が温度下限閾値以上である場合(NO)、受け部13への水Wの供給を継続する(ステップS4)。受け部13の温度検出値が温度下限閾値よりも小さい場合(YES)、受け部13への水Wの供給を停止すべくバルブ52を閉じる(ステップS7)。なお、受け部13の温度検出値に対応して受け部13への水Wの供給速度を調節してもよい。
 上記作業は、誘導加熱機構6によって主ロール1の金型12が誘導加熱される状況において繰り返し行われるとよく、これによって、主ロール1の軸体11及び金型12の温度分布が適切に制御されるとよい。かかる冷却方法は、主ロール1の回転状態にて実施することに適するが、主ロール1の回転停止状態で実施することも可能である。なお、冷却方法の作業のうち少なくとも1つが、オペレータによって手動で行われてもよい。
 上記冷却方法においては、温度上限閾値及び温度下限閾値は次のように定められるとよい。温度上限閾値は約150℃であると好ましく、かつ温度下限閾値は約40℃であると好ましい。すなわち、受け部13の温度検出値が約40℃以上かつ約150℃以下の間で維持されるとよい。
 しかしながら、本発明はこれに限定されず、温度上限閾値は、温度下限閾値よりも大きく、かつ温度上限閾値は、金型の受け部から軸体の軸受部への熱伝導条件に基づいて軸受部の耐熱温度に対応して定められる受け部の温度未満であってもよい。
 [リング圧延体の製造方法について]
 本実施形態に係るリング圧延体の製造方法について図1及び図5を参照して説明する。当該製造方法では、主ロール1の金型12を加熱する一方で主ロール1の軸体11及びその周辺部分を冷却するように主ロール1の温度を管理する工程(以下、「温度管理工程」という)を実施し、かつ予め加熱したリング素材Mに対してリング圧延を施す工程(以下、「圧延工程」という)を実施する。圧延工程については、予め加熱されたリング素材Mの温度は約850℃以上かつ約1150℃以下であると好ましい。しかしながら、リング素材の温度は、これに限定されず、高品質のリング圧延体を作製するように、リング素材に用いられる金属材料の種類に応じて調節可能である。
 最初に温度管理工程を実施する。具体的には、主ロール1を回転させる(工程P1)。誘導加熱機構6によって主ロール1を誘導加熱する作業(以下、「誘導加熱作業」という)と、上記冷却方法によって主ロール1を冷却する作業(以下、「冷却作業」という)とを開始する(工程P2)。その後、主ロール1の軸体11及び金型12の温度分布が適切に制御されたのであれば(工程P3)、誘導加熱作業と冷却作業とを終了する(工程P4)。さらに、主ロール1の回転を停止する(工程P5)。なお、誘導加熱機構6への通電中、電気的な地絡等の問題が生ずる場合には、液体供給機構5から受け部13への水Wの供給を停止するとよい。
 次に、圧延工程を実施する。具体的には、予め加熱されたリング素材Mを圧延装置に装着する(工程P6)。主ロール1及びマンドレル2を回転させ、かつ一対のアキシャルロール3,4を回転させて、これらの回転に伴って、予め加熱されたリング素材Mがその中心軸線C周りにてリング周方向の一方側(矢印Fにより示す)に向かって回転する(工程P7)。誘導加熱作業を再び開始する(工程P8)。主ロール1及びマンドレル2によりリング素材Mをリング径方向に圧下する作業、一対のアキシャルロール3,4によりリング素材Mをリング軸線方向に圧下する作業の順に、これらの作業(以下、「圧下作業」という)を繰り返す(工程P9)。このとき、主ロール1及びマンドレル2をリング素材Mの径方向の中心を基準としてリング径方向に相対的に移動させ、これによって、リング素材Mを、その直径を拡大するように変形させることができる。リング素材Mが所望の形状に変形したのであれば(工程P10)、圧下作業を終了し、それと同時に、主ロール1に対する誘導加熱作業を終了する(工程P11)。その後、リング素材Mの回転を停止する(工程P12)。なお、温度管理工程から圧延工程に移行する間にて、誘導加熱作業を一旦止めずにそのまま継続してもよい。圧下作業中に冷却作業が行われてもよい。また、圧延工程の終了後において、特に、主ロール1の軸体11及びその周辺部分が予熱をもつ場合には、冷却作業をさらに実施するとよい。
 [誘導加熱作業の詳細について]
 ここで、誘導加熱作業の詳細について説明する。上述のように、誘導加熱作業は、その開始から圧下作業開始までの間ほぼ継続的に行われ、かつリング素材Mの圧下中にも行われる。圧下作業前において、誘導加熱作業は、所定の時間(以下、「圧下前加熱時間」という)の間、主ロール1における金型12の外周面12aの加工部を所定の温度(以下、「圧下前加熱温度」という)とするように行われる。圧下作業中において、誘導加熱作業は、主ロール1における金型12の外周面12aの加工部を所定の温度(以下、「圧下中加熱温度」という)とするように行われる。
 圧下前加熱時間、圧下前加熱温度、及び圧下中加熱温度は次のようになっているとよい。作製されるリング圧延体の品質を効率的に高めるように圧下作業前に主ロール1の金型12を十分に加熱することと、誘導加熱が圧下作業中にも行われることとを考慮すると、圧下前加熱時間は約3分以上であるとよく、かつ圧下前加熱温度は、約100℃以上であるとよく、約150℃以上であると好ましく、約300℃以上であるとさらに好ましい。
 その一方で、主ロール1の軟化を防止することと、リング圧延体の製造効率の低下を防ぐこととを考慮すると、圧下前加熱時間は約1時間以下であるとよく、かつ圧下前加熱温度は、主ロール1の素材における軟化温度未満であるとよい。具体的には、主ロール1における金型12の外周面12aの素材が、JIS G4404にて規定される熱間金型用鋼又はその改良鋼である場合、圧下前加熱温度は焼き戻し温度未満であるとよく、すなわち、軟化温度が焼き戻し温度であるとよい。また、主ロール1の材質に強度及び耐熱性が求められる場合、Ni基超耐熱合金を用いてもよく、この場合の圧下前加熱温度は固溶化処理温度未満であるとよい。すなわち、軟化温度が固溶化処理温度であるとよい。
 さらに、圧下中加熱温度は、約300℃以上かつ予め加熱されるリング素材Mの温度以下の範囲であるとよい。この上限値はまた、主ロール1の材料等に応じて設定されるとよく、特に、上限値は、主ロール1の軟化を防止可能とする温度に設定されるとよい。すなわち、圧下中加熱温度は、圧下前加熱温度と同様に、主ロール1における金型12の素材の軟化温度未満であるとよい。
 また、誘導加熱機構6による誘導加熱の温度は、上記範囲内にて、リング素材Mの抜熱を抑制しながら、リング素材Mの径方向の温度分布を適切な温度範囲に効率的に制御可能とするように調節されるとよい。一例として、誘導加熱機構6による誘導加熱の温度は、リング素材Mの径方向の温度分布を均一化するように調節されるとよい。
 しかしながら、本発明はこれに限定されず、リング圧延体の製造方法は次のようになっていてもよい。圧下作業の終了前又は終了後に誘導加熱作業が終了してもよい。誘導加熱作業をリング素材の圧下作業の開始前に一旦中断した後に再開するタイミングは、リング素材の圧下作業の開始直前、開始時、又は開始後のいずれかとすることができる。特に、誘導加熱作業の中断時間は、作製されるリング圧延体の寸法精度等の品質を効率的に高めるような主ロールの温度を維持できる範囲に定められるとよい。また、誘導加熱作業を停止した状態で圧下作業が行われてもよい。この場合、圧下前加熱時間は、約15分以上かつ約2時間以下であるとよく、さらに、約30分以上かつ約1時間以下であると好ましい。
 [作用及び効果について]
 以上、本実施形態に係る主ロール1の冷却方法によれば、主ロール1の金型12の上端面12cから凹むと共に主ロール1の軸体11を囲む受け部13が水Wを受けて、受け部内13の水Wによって主ロール1が冷却されるので、軸体11を効率的に冷却できる。その一方で、受け部13は、リング素材Mと接触する金型12の外周面12aの加工部(凹部12bを含む)と離れているので、金型12の加工部及びそれに接触するリング素材Mの温度低下を効率的に防止できる。よって、主ロール1の軸体11及びその周辺部分を効率的に冷却できる。受け部13は金型12の上端面12cにて主ロール1の外部に向けて広く開口するので、受け部13の開口からその内部を容易にクリーニングできる。よって、主ロール1を容易にメンテナンスできる。受け部13は金型12に形成されるので、主ロール1の冷却構造によって軸体11の強度が低下することを防止できる。よって、主ロール1の回転支持構造の強度を十分に確保できる。
 本実施形態に係る主ロール1の冷却方法によれば、受け部13に注入された水Wが、金型12にて受け部13から回転軸線方向の他方側に向かって延びると共に主ロール1の周方向に互いに間隔を空けた複数の液路14に流れる。そのため、水Wが受け部13に溜められて、その後、受け部13内の水Wが複数の液路14に送られる。その結果、主ロール1、特に、軸体11を効率的に冷却可能とするように水Wが主ロール1内に停留する。また、受け部13に加えて主ロール1に設けられる複数の液路14が、主ロール1の周方向に互いに間隔を空けているので、追加された複数の液路14によって主ロール1の強度が低下することを抑制できる。すなわち、主ロール1の強度を十分に確保できる。
 本実施形態に係る主ロール1の冷却方法によれば、液路14に流れた水Wが、金型12の下端面12dにて開口する液路14の流出口14bから主ロール1の外部に排出される。そのため、主ロール1内の水Wを入れ替えることができるので、主ロール1を効率的に冷却できる。
 本実施形態に係るリング圧延体の製造方法によれば、主ロール1の金型12が加熱される場合であっても、上記冷却方法によって主ロール1の軸体11を効率的に冷却できる。リング圧延中に変形するリング素材Mを直接加熱することと比較して、一定の形状を保つ主ロール1を加熱することは、熱間リング圧延における温度管理をより容易にする。すなわち、高温に晒されることを防ぐ必要がある軸体11を冷却しながら、リング素材Mに熱間リング圧延を施す金型12の加工部の温度を的確に管理できる。よって、このように的確な温度管理を可能とする主ロール1を用いた熱間リング圧延によって、高品質のリング圧延体を作製できる。
 [第2実施形態]
 本発明の第2実施形態に係る主ロールの冷却方法、リング圧延体の製造方法、及び圧延装置について説明する。本実施形態に係る主ロールの冷却方法及びリング圧延体の製造方法は、第1実施形態に係るものと同様である。本実施形態に係る圧延装置は、主ロールの冷却構造における液路を除いて第1実施形態に係るものと同様である。
 [主ロールの冷却構造における液路について]
 図6を参照して主ロール1の冷却構造における液路16について説明する。本実施形態の主ロール1の金型12は、第1実施形態のように貫通する複数の液路14の代わりに、止まり穴形状に形成された複数の液路16を有する。各液路16は、受け部13にて開口する流入口16aと、その下端に位置する底16bとを有する。液路16の他の構成は第1実施形態の液路14のものと同様である。
 [作用及び効果について]
 以上、本実施形態に係る主ロール1の冷却方法によれば、第1実施形態に係る主ロール1の冷却方法にて貫通する複数の液路14によりもたらされる作用及び効果の代わりに、以下の作用及び効果を得ることができる。すなわち、止まり穴形状の液路16に流れた水Wが、液路16の底16bの上方にて溜められるので、主ロール1内で水Wが蒸発し、蒸発に伴う気化熱によって、主ロール1、特に、主ロール1の軸体11及びその周辺部分を効率的に冷却できる。なお、本実施形態に係る主ロール1の冷却方法に基づくその他の作用及び効果及びリング圧延体の製造方法に基づく作用及び効果は、第1実施形態に係るものと同様である。
 [第3実施形態]
 本発明の第3実施形態に係る主ロールの冷却方法、リング圧延体の製造方法、及び圧延装置について説明する。本実施形態に係る主ロールの冷却方法及びリング圧延体の製造方法は、第1実施形態に係るものと同様である。本実施形態に係る圧延装置は、主ロールの冷却構造における受け部を除いて第1実施形態に係るものと同様である。
 [主ロールの冷却構造における受け部について]
 図7を参照して主ロール1の冷却構造における受け部17について説明する。本実施形態の主ロール1の金型12は、その上端面12cから下方に凹む受け部17を有し、受け部17は、金型12の上端面12cにて開口し、かつ軸体11を囲むように主ロール1の周方向に延びている。受け部17は、液体供給機構5から供給される水Wを受ける。
 受け部17は、金型12の上端面12cに形成される開口縁17aと、該開口縁17aに対向する底面17bと、開口縁17a及び底面17bの外周縁間に位置する内周面17cとを有する。底面17bは、液路14の流入口14aに向かって先細るように凹形状に形成されている。そのため、底面17bによって、受け部17内の水Wを効率的に液路14に導くことができる。また、内周面17cの上側区域には、その下側区域に対して主ロール1の回転軸線1a側に突出する突起17dが形成されている。そのため、突起17dによって、受け部17内の水Wが主ロール1の回転時に受け部17の開口から外部に漏れることを防止できる。
 受け部17の底面17bもまた、第1実施形態と同様に、金型12の外周面12aの加工部よりも上方に位置すると好ましい。一例として、第1実施形態と同様に、主ロール1の回転時に、受け部17内における水W等の液体には遠心力が加わるので、底面17bは、かかる液体を受け部17内で保持できるような受け部17の深さを付与するように形成されるとよい。さらに、主ロール1の回転軸線1aから受け部17の内周面17cまでの最大距離もまた、第1実施形態と同様に、主ロール1の回転軸線1aから金型12の外周面12aまでの最小距離の3/4以下であるとよく、さらには、同最小距離の1/2以下であると好ましい。
 [第4実施形態]
 本発明の第4実施形態に係る主ロールの冷却方法、リング圧延体の製造方法、及び圧延装置については、これらのうち主ロールの冷却方法及びリング圧延体の製造方法が、第2実施形態に係るものと同様になっている。また、本実施形態に係る圧延装置は、主ロールの金型が第3実施形態と同様の受け部を有する点を除いて第2実施形態に係るものと同様になっている。
 ここまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものでは
なく、本発明は、その技術的思想に基づいて変形及び変更可能である。
 例えば、本発明の第1変形例として、第1~第4実施形態における主ロールの金型が、第1及び第3実施形態のように貫通する液路と、第2及び第4実施形態のように止まり穴形状の液路とから成る複数の液路を有してもよい。
 本発明の第2変形例として、第1~第4実施形態における主ロールの金型が、液路を有さないように構成することもできる。
 1 主ロール、1a 回転軸線、11 軸体、12 金型、12c 上端面、12d 下端面、13 受け部、13b 底面、14 液路、14b 流出口、16 液路、16b 底、17 受け部、17b 底面、2 マンドレル、M リング素材、m1 外周面、m2 内周面、W 水、S1~S6 ステップ、P1~P12 工程、R1,R2,F 矢印

Claims (5)

  1.  主ロールの回転軸線に沿って延びる軸体と、該軸体を囲むように配置される金型とを有し、かつリング圧延に用いられる主ロールを、その回転軸線方向の一方側を上方に向けた状態で冷却する主ロールの冷却方法であって、
     前記回転軸線方向の一方側を向く前記主ロールの金型の上端面から凹むと共に前記主ロールの軸体を囲む受け部に液体を注入することによって、前記主ロールの軸体を冷却する主ロールの冷却方法。
  2.  前記受け部に注入された液体が、前記金型にて前記受け部から前記回転軸線方向の他方側に向かって延びると共に前記主ロールの周方向に互いに間隔を空けた複数の液路に流れる、請求項1に記載の主ロールの冷却方法。
  3.  前記複数の液路のうち少なくとも1つの液路に流れた液体が、前記回転軸線方向の他方側に位置する前記金型の下端面にて開口する前記少なくとも1つの液路の流出口から前記主ロールの外部に排出される、請求項2に記載の主ロールの冷却方法。
  4.  前記複数の液路のうち少なくとも1つの液路に流れた液体が、止まり穴形状の前記少なくとも1つの液路に形成される底の上方にて溜められる、請求項2に記載の主ロールの冷却方法。
  5.  リング素材を圧延することによってリング圧延体を作製するリング圧延体の製造方法であって、
     加熱機構によって主ロールの金型を加熱し、かつ請求項1~4のいずれか一項に記載の主ロールの冷却方法によって前記主ロールの軸体を冷却する温度管理工程と、
     該温度管理工程にて温度管理された前記主ロールとマンドレルとによって前記リング素材の内外周間の圧下を行う圧延行程と
     を含むリング圧延体の製造方法。
PCT/JP2018/012814 2017-04-04 2018-03-28 リング圧延用主ロールの冷却方法及びリング圧延体の製造方法 WO2018186258A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/500,294 US20200061686A1 (en) 2017-04-04 2018-03-28 Method of cooling main roll for ring rolling and method of manufacturing ring rolled body
MX2019011915A MX2019011915A (es) 2017-04-04 2018-03-28 Metodo de enfriamiento de rodillo principal para laminacion anular y metodo de fabricacion de cuerpo laminado anular.
EP18781229.2A EP3590615B1 (en) 2017-04-04 2018-03-28 Method of cooling main roll for ring rolling and method of manufacturing ring rolled body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074512A JP6842664B2 (ja) 2017-04-04 2017-04-04 リング圧延用主ロールの冷却方法及びリング圧延体の製造方法
JP2017-074512 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018186258A1 true WO2018186258A1 (ja) 2018-10-11

Family

ID=63712982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012814 WO2018186258A1 (ja) 2017-04-04 2018-03-28 リング圧延用主ロールの冷却方法及びリング圧延体の製造方法

Country Status (5)

Country Link
US (1) US20200061686A1 (ja)
EP (1) EP3590615B1 (ja)
JP (1) JP6842664B2 (ja)
MX (1) MX2019011915A (ja)
WO (1) WO2018186258A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482790B (zh) * 2018-11-06 2024-02-02 佛山市顺德区皇力五金电器有限公司 一种可调式五金件轧环设备
PL239801B1 (pl) 2020-03-25 2022-01-10 Zarmen Fpa Spolka Z Ograniczona Odpowiedzialnoscia Sposób kształtowania pierścieni bezszwowych w procesie walcowania i zespół do kształtowania pierścieni bezszwowych w procesie walcowania
CN114346135B (zh) * 2020-12-17 2022-08-02 韶能集团(韶关)华南精锻科技有限公司 一种热辗环用中空芯辊装置
US20240139798A1 (en) * 2021-01-19 2024-05-02 Hitachi Astemo, Ltd. Manufacturing method of ball screw using rolling machine
CN116117042B (zh) * 2023-04-04 2023-06-30 山西天宝集团有限公司 一种自动碾成新能源风力发电l环型法兰的制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466861B1 (ja) * 1967-08-12 1971-02-20
JPS54101757A (en) 1978-01-27 1979-08-10 Mitsubishi Heavy Ind Ltd Forming roll
JPS5825834A (ja) 1981-07-31 1983-02-16 Toyota Motor Corp 熱間リングロ−リングミル装置
JPH06312204A (ja) * 1993-04-30 1994-11-08 Mitsubishi Materials Corp 環状素材の圧延方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235835A (en) * 1988-12-28 1993-08-17 Furukawa Aluminum Co., Ltd Method and apparatus for controlling flatness of strip in a rolling mill using fuzzy reasoning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466861B1 (ja) * 1967-08-12 1971-02-20
JPS54101757A (en) 1978-01-27 1979-08-10 Mitsubishi Heavy Ind Ltd Forming roll
JPS5825834A (ja) 1981-07-31 1983-02-16 Toyota Motor Corp 熱間リングロ−リングミル装置
JPH06312204A (ja) * 1993-04-30 1994-11-08 Mitsubishi Materials Corp 環状素材の圧延方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3590615A4

Also Published As

Publication number Publication date
MX2019011915A (es) 2020-01-09
EP3590615B1 (en) 2021-05-05
JP2018176172A (ja) 2018-11-15
JP6842664B2 (ja) 2021-03-17
US20200061686A1 (en) 2020-02-27
EP3590615A4 (en) 2020-03-25
EP3590615A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2018186258A1 (ja) リング圧延用主ロールの冷却方法及びリング圧延体の製造方法
JP6158463B1 (ja) リング圧延体の製造方法
JP5393933B2 (ja) 再生式レイングパイプ
JP6196414B1 (ja) リング圧延体の製造方法
WO2009037982A1 (ja) 高温還元鉄を用いたホットブリケットアイアンの製造方法並びにそのための熱間成形用還元鉄の温度制御方法及び装置
CN105728964A (zh) 一种轧辊堆焊工艺
WO2016035664A1 (ja) リング成形体の製造方法
US10422014B2 (en) Heat-treatment device and heat-treatment method
EP2695954B1 (en) Annular workpiece quenching method and quenching apparatus used in the method
JP2013248627A (ja) リング材の熱間圧延方法
JP5443843B2 (ja) 冷間圧延用鍛鋼ロールの製造方法
JP2015199121A (ja) 圧延ロール及びリング圧延方法
CN103805763B (zh) 一种细化轧辊表层组织的形变热处理方法
EP3099482B1 (en) Enhanced surface structure
US11951561B2 (en) Method for producing a welded cavity valve
JP2009203525A (ja) 転がり軸受の製造ライン
JP2012045611A (ja) 金属部品の加工成形方法
WO2019172385A1 (ja) ワークの焼き戻し方法、及びこの方法で得られた機械部品
JP6630577B2 (ja) 焼入方法
JP3729657B2 (ja) 一次被覆層の再溶融処理方法及び装置
JP4322741B2 (ja) 誘導加熱による針状ころ軸受外輪の軌道面の表面焼入方法及び焼入装置
JP3929205B2 (ja) 一次被覆層の溶融処理方法
KR102560881B1 (ko) 워크롤 국부 열처리 방법
JPH05329569A (ja) 金属リング体の成形方法及びその装置
JP4446530B2 (ja) 金属被覆層を有するリング材の平均直径修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018781229

Country of ref document: EP

Effective date: 20191004