WO2018186146A1 - 水素化生成物の製造方法、及びボラン類の除去方法 - Google Patents

水素化生成物の製造方法、及びボラン類の除去方法 Download PDF

Info

Publication number
WO2018186146A1
WO2018186146A1 PCT/JP2018/010295 JP2018010295W WO2018186146A1 WO 2018186146 A1 WO2018186146 A1 WO 2018186146A1 JP 2018010295 W JP2018010295 W JP 2018010295W WO 2018186146 A1 WO2018186146 A1 WO 2018186146A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
compound
hydrogenated product
reaction system
Prior art date
Application number
PCT/JP2018/010295
Other languages
English (en)
French (fr)
Inventor
岡本 能久
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2019511124A priority Critical patent/JPWO2018186146A1/ja
Publication of WO2018186146A1 publication Critical patent/WO2018186146A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B31/00Reduction in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages

Definitions

  • the present invention relates to a method for producing a hydrogenated product by hydrogenation of an electrophilic compound using a metal borohydride, and to produce a hydrogenated product by hydrogenating the electrophilic compound using the metal borohydride compound. And a method for removing boranes.
  • Non-Patent Document 1 As described in the section “Diborane” in Non-Patent Document 1, it is known that diborane reacts with water to produce boric acid and reacts with alcohol to produce a borate ester. . For this reason, after the hydrogenation reaction using borohydride metal, water or alcohol is added to the reaction system, or water or alcohol is used as a reaction solvent, and boranes are often quenched (for example, (See Non-Patent Document 2.)
  • the present inventors hydrogenate an electrophilic compound using a metal borohydride to produce a hydrogenated product, and the hydrogenation includes 50% by mass or more of an aprotic organic solvent having an ether bond.
  • the present inventors have found that the above-mentioned problems can be solved by carrying out in a solvent in a state where an air flow from the inside of the reaction system to the outside of the reaction system is generated, and the present invention has been completed.
  • the electrophilic compound (B) is represented by the following formula (2): R 1 a SiY b X (4-ab) (2) (In Formula (2), R 1 , X, a, and b are the same as in Formula (1), and Y is a halogen atom.)
  • R 1 a SiY b X (4-ab) (2) In Formula (2), R 1 , X, a, and b are the same as in Formula (1), and Y is a halogen atom.
  • the manufacturing method as described in (6) which is a halosilane compound represented by these.
  • a is 1, b is 1, X is a group represented by OR 2 , R 1 is an alkyl group substituted with an alkoxy group, and R 1 is substituted on the alkyl group
  • the alkoxy group has 1 to 3 carbon atoms
  • R 2 is a methyl group or an ethyl group
  • the amount of sodium borohydride used is 1.0 mole relative to the amount of halogen atoms of the halosilane compound.
  • the production method according to (7) which is not less than the equivalent and not more than 2.0 molar equivalent.
  • (9) The production method according to any one of (1) to (8), wherein the amount of boron dissolved in the reaction solution after completion of the reaction is 1 mass ppm or more and 700 mass ppm or less.
  • the electrophilic compound (B) is represented by the following formula (2): R 1 a SiY b X (4-ab) (2) (In Formula (2), R 1 , X, a, and b are the same as in Formula (1), and Y is a halogen atom.)
  • the solvent (S) contains 50% by mass or more of an aprotic organic solvent having an ether bond, The reaction liquid whose boron amount melt
  • the hydrogenated product (A) is produced by hydrogenating the electrophilic compound (B). Hydrogenation is performed using metal borohydride (C) described later. Such a hydrogenation reaction is not particularly limited as long as it can be caused by metal borohydride (C). Typical examples include alcohol formation reaction from ketone or aldehyde, hydrogenation reaction of haloalkanes, conversion reaction of halosilyl group (Si—Hal, Hal is a halogen atom) to hydrosilyl group (Si—H), nitrile And hydrogenation reactions of nitrogen compounds such as amides and sulfur compounds such as sulfoxides.
  • the electrophilic compound (B) is also preferably a compound that generates by hydrogenation a hydrogenated product (A) that decomposes by reaction with water at room temperature of 0 to 40 ° C. or a temperature close to room temperature.
  • each R 1 is independently a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, each X is independently a hydrolyzable group, and a is 0 to 3 is an integer, b is 1 or 2, and a + b is an integer of 1 to 4.
  • the hydrosilane compound (A1) represented by these is mentioned.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • the hydrosilane compound (A1) or the halosilane compound (B1) has a plurality of R 1 s , the plurality of R 1 s may be the same or different from each other.
  • the substituent that the hydrocarbon group as R 1 may have is not particularly limited as long as it does not inhibit the good production of the hydrosilane compound (A1). Specific examples include an alkoxy group, a cycloalkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an alkylthio group, a cycloalkylthio group, an alkenylthio group, an arylthio group, an aralkylthio group, and a halogen atom. Among the above substituents, an alkoxy group, an aryloxy group, and a halogen atom are preferable, and an alkoxy group and a halogen atom are more preferable.
  • the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 6 carbon atoms, still more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group.
  • An alkoxy group having a small number of carbon atoms and a small size tends to favorably advance the hydrogenation reaction.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable in that a side reaction with a metal borohydride (C) hardly occurs.
  • the total number of carbon atoms of the hydrocarbon group which may have a substituent as R 1 is more reactive as a reactive functional group when the total number of carbon atoms is smaller when introduced into the polymer molecular chain. Since it tends to be high, 1 to 12 is preferable, and 1 to 6 is more preferable.
  • the unsubstituted hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, n-octyl group, 2
  • An alkyl group such as an ethylhexyl group, an n-dodecyl group and an n-icosyl group; a cycloalkyl group such as a cyclopropyl group and a cyclohexyl group; an alkenyl group such as a vinyl group, an allyl group and an isopropenyl group; a phenyl group;
  • Aromatic hydrocarbon groups such as o-tolyl group, m-tolyl group, p-tolyl group and naphthalen-1-yl group; and aralkyl groups such as benzyl group, phenethyl group and naphthal
  • a hydrocarbon group having 6 or less carbon atoms is preferable, a hydrocarbon group having 3 or less carbon atoms is more preferable, and a methyl group is particularly preferable.
  • R 1 is preferably a hydrocarbon group having 1 to 3 carbon atoms which may have a substituent from the viewpoint of easy availability and production of the raw material of the hydrosilane compound (A1). Further, R 1 is either substituted by a chlorine atom, that an ether bond preferable from the viewpoint of reactivity.
  • Suitable groups for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 1-chloropropyl group, 2-chloropropyl group, Examples include 3-chloropropyl group, methoxymethyl group, ethoxymethyl group, 1-methoxyethyl group, 2-methoxyethyl group, 1-methoxypropyl group, 2-methoxypropyl group, and 3-methoxypropyl group. Among these, a methoxymethyl group is preferable because the hydrogenation reaction proceeds well.
  • X is a hydrolyzable group.
  • X is not particularly limited as long as it does not inhibit good production of the hydrosilane compound (A1).
  • the hydrosilane compound (A1) or the halosilane compound (B1) has a plurality of X
  • the plurality of X may be the same or different from each other.
  • the hydrolyzable group as X include a halogen atom, a group represented by OR 2 , an acyloxy group having 2 to 8 carbon atoms, and an isocyanate group.
  • R 2 is preferably a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, similar to R 1 .
  • a methoxy group and an ethoxy group are preferable because they are sterically small and do not interfere with the hydrogenation reaction.
  • the acyloxy group having 2 to 8 carbon atoms include acetyloxy group, acryloyloxy group, 2-ethylhexanoyloxy group, and benzoyloxy group.
  • Y is a halogen atom.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are preferable. From the viewpoint of availability of raw materials, a chlorine atom and a bromine atom are more preferable. In terms of ease of handling, a chlorine atom is particularly preferable.
  • hydrosilane compound (A1) represented by the formula (1) obtained by the present invention include methyldimethoxysilane (HSi (CH 3 ) (OCH 3 ) 2 ), methyldiethoxysilane (HSi (CH 3) (OC 2 H 5) 2), ethyl dimethoxy silane (HSi (C 2 H 5) (OCH 3) 2), ethyldiethoxysilane (HSi (C 2 H 5) (OC 2 H 5) 2), n-propyldimethoxysilane (HSi (n-C 3 H 7 ) (OCH 3 ) 2 ), n-propyldiethoxysilane (HSi (n-C 3 H 7 ) (OC 2 H 5 ) 2 ), n-hexyl dimethoxysilane (HSi (n-C 6 H 13) (OCH 3) 2), n- hexyl diethoxy silane (HSi (n-C 6 H 13) (OCH 3) 2),
  • halosilane compound (B1) represented by the formula (2) a compound in which a hydrogen atom bonded to a silicon atom in the hydrosilane compound (A1) represented by the above formula (1) is substituted with a halogen atom Is mentioned.
  • the borohydride metal (C) is not particularly limited as long as it is a compound that can favorably advance the hydrogenation reaction.
  • various hydrogenation reactions can be favorably progressed, and therefore, the following formula (C1): MBH 4 ... (C1) (In the formula (C1), M is lithium, sodium, or potassium.)
  • the compound represented by these is mentioned.
  • sodium borohydride in which M is sodium is preferable because it is inexpensive and easily available.
  • the metal borohydride (C) may be added to the reaction system in a solid state, or may be added to the reaction system in a state dispersed in a solvent or in a state dissolved in a solvent.
  • a solvent for dispersing or dissolving the metal borohydride (C) a solvent (S) described later is preferably used.
  • the metal borohydride (C) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping.
  • the time for adding the metal borohydride (C) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction.
  • the electrophilic compound (B) may be added to the dispersion or solution of the metal borohydride (C).
  • the electrophilic compound (B) may be added to the reaction system in a state dispersed in a solvent or a state dissolved in a solvent.
  • a solvent for dispersing or dissolving the electrophilic compound (B) a solvent (S) described later is preferably used.
  • the electrophilic compound (B) may be added to the reaction system by dividing it once or several times, or may be continuously added to the reaction system by a method such as dropping.
  • the time for adding the electrophilic compound (B) to the reaction system is not particularly limited, and is appropriately selected according to the progress of the reaction system.
  • tetrahydrofuran, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether are preferable because the hydrogenated product (A) can be easily produced in a good yield.
  • 1,2-dimethoxyethane is more preferred because it is easy to handle and recover after reaction and purification.
  • the amount of the solvent (S) used is not particularly limited as long as the hydrogenated product (A) can be produced in a desired yield.
  • the amount of the solvent (S) used is typically preferably 50 to 1000 parts by weight, more preferably 70 to 800 parts by weight, and more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the electrophilic compound (B). Is particularly preferred.
  • the aforementioned hydrogenated product (A) is produced using the aforementioned electrophilic compound (B), borohydride compound (C) and solvent (S), respectively. Specifically, by reacting the electrophilic compound (B) and the borohydride metal (C) in the solvent (S) in a state where an air flow from the reaction system to the reaction system is generated. A hydrogenated product (A) is produced. Hydrogenation reaction is carried out in a solvent (S) containing 50% by mass or more of an aprotic organic solvent having an ether bond in a state where an air flow from the reaction system to the outside of the reaction system is generated. While the reaction proceeds well, the amount of by-produced boranes in the reaction system at the end of the reaction can be reduced.
  • an opening that can be exhausted to the outside of the system preferably a container having a tube, is used as the reaction container.
  • the reaction vessel is preferably provided with a cooling facility. Boranes discharged to the outside of the reaction system together with the air stream may be quenched in water or alcohol, may be processed by a method such as combustion, or may be adsorbed by an adsorbent. Boranes are preferably quenched with water because they can be processed more safely.
  • the water used for quenching may be acidic, basic, or neutral.
  • Any of the above methods 1) and 2) can be carried out under atmospheric pressure, reduced pressure, or pressurized conditions, and is preferably carried out under atmospheric pressure.
  • the boiling point of the reaction solution can be determined from observation of the boiling state of the reaction solution and the temperature rise stopping when the temperature of the reaction solution is raised.
  • the boiling point of the reaction solution is T 1
  • the reaction solution is heated to (T 1 -20) ° C. or higher, so that the vapor pressure derived from the reaction solution increases and the vapor is discharged out of the reaction system. be able to.
  • the steam discharged out of the system contains boranes by-produced in the hydrogenation reaction. For this reason, the content of boranes by-produced in the reaction solution is reduced by discharging the steam generated by heating out of the reaction system.
  • Some aprotic organic solvents having an ether bond form a complex with diborane or the like, such as tetrahydrofuran.
  • a complex is also discharged out of the reaction system together with the vapor while the complex is formed or separated from the solvent. Therefore, even when an organic solvent capable of forming a complex with diborane or the like is used, most of the by-produced boranes (for example, 70% or more, preferably 80% or more of the by-product) is removed from the reaction solution.
  • the reaction solution is (the boiling point of the reaction solution ⁇ 10) ° C. or higher.
  • the hydrogenation reaction is more preferably performed while the reaction solution is refluxed.
  • an inert gas is blown into the reaction system.
  • the inert gas include nitrogen gas, helium gas, argon gas and the like. Nitrogen gas is preferred because it is easily available and inexpensive.
  • air preferably dry air, can be used as an inert gas.
  • the reaction temperature in the method 2) is not particularly limited. Depending on the type of the electrophilic compound (B) and the type of the metal borohydride (C), the reaction temperature is appropriately set to a temperature at which the intended reaction proceeds satisfactorily.
  • the above hydrogenation reaction may be performed in a batch manner or a continuous manner.
  • the hydrogenation reaction can proceed well.
  • the reaction liquid which contains the hydrogenation product (A) and the solvent (S) and may contain the electrophilic compound (B) is obtained.
  • the solvent (S) contains 50% by mass or more of an aprotic organic solvent having an ether bond.
  • the amount of boron dissolved in the reaction solution is 700 mass ppm or less.
  • the content of the aprotic organic solvent having an ether bond in the solvent (S) is not particularly limited as long as it is 50% by mass or more, but is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass. preferable.
  • the amount of boron dissolved in the reaction solution is 1 mass ppm or more and 700 mass ppm or less, preferably 1 mass ppm or more and 500 mass ppm or less, more preferably 1 mass ppm or more and 400 mass ppm or less.
  • the lower limit of the amount of boron dissolved in the reaction solution may be, for example, 10 ppm by mass or 50 ppm by mass, because it is not necessary to carefully remove boranes. 70 ppm by mass or 100 ppm by mass.
  • the level of 10 mass ppm or more of the amount of boron dissolved in the reaction solution is an easily reachable level, and is ignitable, toxic to the human body, purified hydrogenated product (A) and further.
  • the hydrosilane compound (A1) is often used for introducing a reactive group into a polymer using a hydrosilylation reaction or the like.
  • the amount of boron dissolved in the reaction solution containing the hydrosilane compound (A1) is 10 mass ppm to 700 mass ppm, preferably 10 mass ppm to 500 mass ppm, more preferably 10 mass ppm to 400 mass ppm.
  • the hydrogenated product (A) can be produced by hydrogenating the electrophilic compound (B) with borohydride metal (C).
  • the above reaction solution since the content of the compound containing boron as an impurity is small, it is easy to obtain a high purity hydrogenated product (A). Further, the above reaction solution contains only a small amount of a compound containing boron as an impurity. Therefore, the reaction solution can be used as it is for the preparation of the composition containing the hydrogenation product (A), or the reaction solution can be used as it is for the synthesis reaction using the hydrogenation product (A) as a raw material. There is a case.
  • ⁇ Boron content measurement method The amount of boron dissolved in the reaction solution was quantified by the following procedure. First, a plurality of methanol solutions of triethoxyborane having a known concentration were prepared, and the amounts of boron were measured with an ICP emission analyzer to prepare a calibration curve. Next, the distilled product of (methoxymethyl) dimethoxysilane synthesized by the method described in Example 1 was measured with an ICP emission analyzer, and the amount of boron in the distilled product was quantified from the prepared calibration curve. .
  • 11 B-NMR of (methoxymethyl) dimethoxysilane was measured, and the ratio of the total integration of signals other than the signal derived from the glass tube to the integration of the signal derived from the glass tube used (65 ppm to ⁇ 60 ppm) was determined. Then, a relational expression of the ratio and the amount of boron was created. After transferring the reaction solution to the NMR tube of the same lot as the glass tube used for the preparation of the above-mentioned relational expression, 11 B-NMR is measured, and the integration of the signal derived from the glass tube is different from the signal derived from the glass tube. The total integration ratio of the signals was determined, and the amount of boron dissolved in the reaction solution was quantified using the above relational expression.
  • Example 2 Example 3, and Comparative Examples 1 to 3
  • DME 1,2-dimethoxyethane
  • Example 3 Changing 1,2-dimethoxyethane (DME) to the solvent shown in Table 1, changing the reaction conditions from 84 ° C. (reflux) to the conditions shown in Table 1, and the reaction time after dropping MMDMCS (Methoxymethyl) dimethoxysilane was produced from MMDMCS in the same manner as in Example 1 except that the time was changed from 1.5 hours to the time shown in Table 1.
  • the yield of the hydrogenated product (methoxymethyl) dimethoxysilane after the hydrogenation reaction and the amount of boron dissolved in the reaction solution were measured in the same manner as in Example 1. These measurement results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

水やアルコール等を反応系に加えることなく、反応系から良好にジボラン等のボラン類を除去できる、水素化ホウ素金属によって求電子性化合物の水素化反応を行う、水素化生成物の製造方法と、水素化ホウ素金属を用いて求電子性化合物を水素化して水素化生成物を製造する際に、良好にボラン類を除去できる、ボラン類の除去方法と、を提供すること。 水素化ホウ素金属を用いて求電子性化合物を水素化して水素化生成物を製造する際に、水素化を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤中で、反応系内から反応系外への気流が生じている状態で行う。

Description

水素化生成物の製造方法、及びボラン類の除去方法
 本発明は、水素化ホウ素金属を用いる求電子性化合物の水素化による水素化生成物の製造方法と、水素化ホウ素金属化合物を用いて求電子性化合物を水素化して水素化生成物を製造する際の、ボラン類の除去方法とに関する。
 水素化ホウ素ナトリウムに代表される水素化ホウ素金属は、種々の求電子性化合物を良好に水素化でき、且つ水素化剤の中では比較的安価であるため、水素化剤として広く使用されている。
 また、水素化ホウ素金属を用いて、水素化反応を行う場合、ボランやジボラン等のボラン類が副生することが知られている。なお、ボランが不安定である一方で、ジボランが安定であるため副生するボラン類の大半はジボランとして存在する。
 かかるジボランについて、その発火性や人体に対する有毒性が知られている。また、反応性の高いジボランによる副反応によって、反応生成物が分解する可能性もある。このため、水素化ホウ素金属を用いて水素化反応を行った後には、速やかに副生するボラン類を除去し、適切に処理されることが望まれる。
 ここで、非特許文献1において「ジボラン」の項に記載されるように、ジボランについて、水と反応しホウ酸を生成させ、アルコールと反応してホウ酸エステルを生成させることが知られている。このため、水素化ホウ素金属を用いる水素化反応後には、反応系内に水やアルコール等が加えられ、もしくは反応溶剤として水やアルコールが使用され、ボラン類がクエンチされることが多い(例えば、非特許文献2を参照。)。
「化学辞典」(第1版、第8刷)、株式会社東京化学同人、p.632-633 「新実験化学講座 15 酸化と還元II」(1977年2月発行)、丸善、p.179-207
 しかしながら、水素化生成物が水やアルコール等に対する反応性を有する場合、水素化生成物の分解避けるために反応系内に水やアルコール等を加えることができない。
 本発明は、上記の課題に鑑みなされたものであり、水やアルコール等を反応系に加えることなく、反応系から良好にジボラン等のボラン類を除去できる、水素化ホウ素金属によって求電子性化合物の水素化反応を行う、水素化生成物の製造方法と、水素化ホウ素金属を用いて求電子性化合物を水素化して水素化生成物を製造する際に、良好にボラン類を除去できる、ボラン類の除去方法と、を提供することを目的とする。
 本発明者らは、水素化ホウ素金属を用いて求電子性化合物を水素化して水素化生成物を製造する際に、水素化を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤中で、反応系内から反応系外への気流が生じている状態で行うことにより上記の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
 (1)求電子性化合物(B)の水素化による、水素化生成物(A)の製造方法であって、
 水素化が、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、水素化ホウ素金属(C)を用いて、反応系内から反応系外への気流が生じている状態で行われる、水素化生成物(A)の製造方法。
 (2)気流を、反応液の沸点をT℃とする場合に、(T-20)℃以上の温度で反応液を加熱することにより生じさせる、(1)に記載の製造方法。
 (3)気流を、反応液を還流させることにより生じさせる、(2)に記載の製造方法。
 (4)気流を、反応系内への不活性ガスの導入により生じさせる、(1)に記載の製造方法。
 (5)水素化生成物(A)が、0~40℃で加水分解される化合物である、(1)~(4)のいずれか1つに記載の製造方法。
 (6)水素化生成物(A)が、下記式(1):
SiH(4-a-b)・・・(1)
(式(1)中、Rはそれぞれ独立に置換基を有してもよい炭素原子数1~20の炭化水素基であり、Xはそれぞれ独立に加水分解性基であり、aは0~3の整数であり、bは1又は2であり、a+bは1~4の整数である。)
で表されるヒドロシラン化合物であり、
 水素化ホウ素金属(C)が、水素化ホウ素ナトリウムである、(1)~(5)のいずれか1つに記載の製造方法。
 (7)求電子性化合物(B)が、下記式(2):
SiY(4-a-b)・・・(2)
(式(2)中、R、X、a、及びbは、式(1)と同様であり、Yはハロゲン原子である。)
で表されるハロシラン化合物である、(6)に記載の製造方法。
 (8)aが1であり、bが1であり、XがORで表される基であり、Rがアルコキシ基で置換されたアルキル基であり、Rにおいて、アルキル基上に置換するアルコキシ基の炭素原子数が1~3であり、Rがメチル基又はエチル基であり、水素化ホウ素ナトリウムの使用量が、ハロシラン化合物が有するハロゲン原子の量に対して、1.0モル当量以上2.0モル当量以下である、(7)に記載の製造方法。
 (9)反応終了後の反応液に溶解しているホウ素量が、1質量ppm以上700質量ppm以下である、(1)~(8)のいずれか1つに記載の製造方法。
 (10)求電子性化合物(B)を水素化ホウ素金属(C)により水素化することによる、水素化生成物(A)の製造方法おける、ボラン類の除去方法であって
 水素化を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、反応系内から反応系外への気流が生じている状態で行い、
 ボラン類を、気流とともに反応系外に除去する、方法。
 (11)気流を、反応液の沸点をT℃とする場合に、(T-20)℃以上の温度で反応液を加熱することにより生じさせる、(10)に記載の除去方法。
 (12)気流を、反応液を還流させることにより生じさせる、(11)に記載の除去方法。
 (13)気流を、反応系内への不活性ガスの導入により生じさせる、(10)に記載の除去方法。
 (14)水素化生成物(A)が、0~40℃で加水分解される化合物である、(10)~(13)のいずれか1つに記載の除去方法。
 (15)水素化生成物(A)が、下記式(1):
SiH(4-a-b)・・・(1)
(式(1)中、Rはそれぞれ独立に置換基を有してもよい炭素原子数1~20の炭化水素基であり、Xはそれぞれ独立に加水分解性基であり、aは0~3の整数であり、bは1又は2であり、a+bは1~4の整数である。)
で表されるヒドロシラン化合物であり、
 水素化ホウ素金属(C)が、水素化ホウ素ナトリウムである、(10)~(14)のいずれか1つに記載の除去方法。
 (16)求電子性化合物(B)が、下記式(2):
SiY(4-a-b)・・・(2)
(式(2)中、R、X、a、及びbは、式(1)と同様であり、Yはハロゲン原子である。)
で表されるハロシラン化合物である、(15)に記載の除去方法。
 (17)aが1であり、bが1であり、XがORで表される基であり、Rがアルコキシ基で置換されたアルキル基であり、Rにおいて、アルキル基上に置換するアルコキシ基の炭素原子数が1~3であり、Rがメチル基又はエチル基であり、水素化ホウ素ナトリウムの使用量が、ハロシラン化合物が有するハロゲン原子の量に対して、1.0モル当量以上2.0モル当量以下である、(16)に記載の除去方法。
 (18)反応終了後の反応液に溶解しているホウ素量が、1質量ppm以上700質量ppm以下である、(10)~(17)のいずれか1つに記載の除去方法。
 (19)水素化生成物(A)と、溶剤(S)とを含み、求電子性化合物(B)を含んでいてもよい反応液であって、
 溶剤(S)が、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含み、
 反応液に溶解しているホウ素量が、1質量ppm以上700質量ppm以下である、反応液。
に関する。
 本発明によれば、水やアルコール等を反応系に加えることなく、反応系から良好にジボラン等のボラン類を除去できる、水素化ホウ素金属によって求電子性化合物の水素化反応を行う、水素化生成物の製造方法と、水素化ホウ素金属を用いて求電子性化合物を水素化して水素化生成物を製造する際に、良好にボラン類を除去できる、ボラン類の除去方法と、を提供することができる。
≪水素化生成物の製造方法≫
 以下、水素化生成物の製造方法について説明する。
<水素化生成物(A)及び求電子性化合物(B)>
 水素化生成物(A)は、求電子性化合物(B)を水素化して製造される。水素化は、後述する水素化ホウ素金属(C)を用いて行われる。
 かかる水素化反応は、水素化ホウ素金属(C)により生じ得る反応であれば特に限定されない。典型的な例としては、ケトン又はアルデヒドからのアルコール生成反応、ハロアルカン類の水素化反応、ハロシリル基(Si-Hal、Halはハロゲン原子)のヒドロシリル基(Si-H)への変換反応、二トリルやアミド等の窒素化合物の水素化反応、及びスルホキシド等の硫黄化合物の水素化反応が挙げられる。
 水素化生成物(A)が、0~40℃の室温又は室温に近い温度で水との反応により分解する化合物である場合、水を用いることなく反応系中のボラン類の量を低減できることが、特に効果的である。また、求電子性化合物(B)としても、0~40℃の室温又は室温に近い温度で水との反応により分解する水素化生成物(A)を、水素化により生成させる化合物が好ましい。
 水素化生成物(A)の好適な典型例としては、下記式(1):
SiH(4-a-b)・・・(1)
(式(1)中、Rはそれぞれ独立に置換基を有してもよい炭素原子数1~20の炭化水素基であり、Xはそれぞれ独立に加水分解性基であり、aは0~3の整数であり、bは1又は2であり、a+bは1~4の整数である。)
で表されるヒドロシラン化合物(A1)が挙げられる。
 上記式(1)で表されるヒドロシラン化合物(A1)を生成させるためには、求電子性化合物(B)として、下記式(2):
SiY(4-a-b)・・・(2)
(式(2)中、R、X、a、及びbは、前述の式(1)と同様であり、Yはハロゲン原子である。)
で表されるハロシラン化合物(B1)を好ましく用いることができる。
 式(1)及び式(2)において、Rは、置換基を有していてもよい炭素原子数1~20の炭化水素基である。ヒドロシラン化合物(A1)又はハロシラン化合物(B1)が複数のRを有する場合、複数のRは同一であっても、互いに異なっていてもよい。
 Rとしての炭化水素基が有し得る置換基としては、ヒドロシラン化合物(A1)の良好な生成を阻害しない基であれば特に限定されない。具体的には、アルコキシ基、シクロアルコキシ基、アルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、ハロゲン原子等が挙げられる。
 上記の置換基のなかでは、アルコキシ基、アリールオキシ基、及びハロゲン原子が好ましく、アルコキシ基、及びハロゲン原子がより好ましい。
 アルコキシ基としては、炭素原子数1~10のアルコキシ基が好ましく、炭素原子数1~6のアルコキシ基がより好ましく、メトキシ基及びエトキシ基がさらにより好ましく、メトキシ基が特に好ましい。炭素原子数が少なく、立体的に小さいアルコキシ基のほうが、水素化反応が良好に進行する傾向がある。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、水素化ホウ素金属(C)との副反応が生じにくいという点で、フッ素原子、及び塩素原子が好ましい。
 Rとしての置換基を有してもよい炭化水素基の炭素原子数の総数は、ポリマー分子鎖に導入した際に、炭素原子数の総数が少ないほうが、反応性官能基としての反応性が高くなる傾向にあることから、1~12が好ましく、1~6がより好ましい。
 無置換の炭素原子数1~20の炭化水素基の好適な例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基、及びn-イコシル基等のアルキル基;シクロプロピル基、及びシクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、及びイソプロペニル基等のアルケニル基;フェニル基、o-トリル基、m-トリル基、p-トリル基、及びナフタレン-1-イル基等の芳香族炭化水素基;ベンジル基、フェネチル基、及びナフタレン-1-イルメチル基等のアラルキル基が挙げられる。炭素原子数が多くなりすぎると反応性が低下することから、これらの中では炭素原子数6以下の炭化水素基が好ましく、炭素原子数3以下の炭化水素基がより好ましく、メチル基が特に好ましい。
 Rとしては、ヒドロシラン化合物(A1)の原料の入手や製造が容易である点等から、置換基を有してもよい炭素原子数1~3の炭化水素基が好ましい。
 また、Rは、塩素原子で置換されているか、エーテル結合を含むのが反応性の観点で好ましい。
 Rとしての好適な基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、1-クロロプロピル基、2-クロロプロピル基、3-クロロプロピル基、メトキシメチル基、エトキシメチル基、1-メトキシエチル基、2-メトキシエチル基、1-メトキシプロピル基、2-メトキシプロピル基、3-メトキシプロピル基が挙げられる。
 これらの中では、水素化反応が良好に進行することから、メトキシメチル基が好ましい。
 Xは、加水分解性基である。Xは、ヒドロシラン化合物(A1)の良好な生成を阻害しなければ特に限定されない。ヒドロシラン化合物(A1)又はハロシラン化合物(B1)が複数のXを有する場合、複数のXは同一であっても、互いに異なっていてもよい。
 Xとしての加水分解性基の好ましい例としては、ハロゲン原子、ORで表される基、炭素原子数2~8のアシルオキシ基、及びイソシアネート基が挙げられる。
 Rとしては、Rと同様の、置換基を有していてもよい炭素原子数1~20の炭化水素基が好ましい。ORで表される基としては、立体的に小さく、水素化反応を妨げないことから、メトキシ基、及びエトキシ基が好ましい。
 炭素原子数2~8のアシルオキシ基としては、例えば、アセチルオキシ基、アクリロイルオキシ基、2-エチルヘキサノイルオキシ基、及びベンゾイルオキシ基等が挙げられる。
 式(2)中、Yはハロゲン原子である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が好ましい。原料の入手性の観点で塩素原子、臭素原子がより好ましい。取扱いの容易さの面で塩素原子が特に好ましい。
 式(1)及び式(2)において、原料の入手性の点から、aは1であるのが好ましい。Xは、ORで表される基が好ましく、Rがメチル基、又はエチル基であるのがより好ましい。Rは、アルコキシ基で置換されたアルキル基であるのが好ましい。Rとしての好適な基において、アルキル基上に置換するアルコキシ基の炭素原子数は1~3である。
 そして、式(1)及び式(2)において、aが1であり、XがORで表される基であり、Rがメチル基、又はエチル基であり、Rがアルコキシ基で置換されたアルキル基であるのが、得られるヒドロシラン化合物(A1)の有用性の面で特に好ましい。特に好ましいヒドロシラン化合物において、R中のアルコキシ基の炭素原子数は1~3である。
 本発明によって得られる式(1)で表されるヒドロシラン化合物(A1)の好適な具体例としては、メチルジメトキシシラン(HSi(CH)(OCH)、メチルジエトキシシラン(HSi(CH)(OC)、エチルジメトキシシラン(HSi(C)(OCH)、エチルジエトキシシラン(HSi(C)(OC)、n-プロピルジメトキシシラン(HSi(n-C)(OCH)、n-プロピルジエトキシシラン(HSi(n-C)(OC)、n-ヘキシルジメトキシシラン(HSi(n-C13)(OCH)、n-ヘキシルジエトキシシラン(HSi(n-C13)(OC)、フェニルジメトキシシラン(HSi(Ph)(OCH)、フェニルジエトキシシラン(HSi(Ph)(OC)、クロロメチルジメトキシシラン(HSi(CHCl)(OCH)、クロロメチルジエトキシシラン(HSi(CHCl)(OC)、クロロメチルジイソプロペニルオキシシラン(HSi(CHCl)(OC(CH)=CH)、クロロメチルメトキシメチルシラン(HSi(CHCl)(OCH)(CH))、クロロメチルエトキシメチルシラン(HSi(CHCl)(OC)(CH))、ビス(クロロメチル)メトキシシラン(HSi(CHCl)(OCH))、ビス(クロロメチル)エトキシシラン(HSi(CHCl)(OC))、1-クロロエチルジメトキシシラン(HSi(CHClCH)(OCH)、2-クロロエチルジメトキシシラン(HSi(CHCHCl)(OCH)、1-クロロプロピルジメトキシシラン(HSi(CHClCHCH)(OCH)、2-クロロプロピルジメトキシシラン(HSi(CHCHClCH)(OCH)、3-クロロプロピルジメトキシシラン(HSi(CHCHCHCl)(OCH)、フルオロメチルジメトキシシラン(HSi(CHF)(OCH)、メトキシメチルジメトキシシラン(HSi(CHOCH)(OCH)、メトキシメチルジエトキシシラン(HSi(CHOCH)(OC)、メトキシメチルジイソプロペニルオキシシラン(HSi(CHOCH)(OC(CH)=CH)、(ジメトキシメチル)ジメトキシシラン(HSi(CH(OCH)(OCH)、エトキシメチルジメトキシシラン(HSi(CHOC)(OCH)、エトキシメチルジエトキシシラン(HSi(CHOC)(OC)、1-メトキシエチルジメトキシシラン(HSi(CH(OCH)CH)(OCH)、トリメトキシメチルジメトキシシラン(HSi(C(OCH)(OCH)、(メトキシメチル)メチルメトキシシラン(HSi(CHOCH)(CH)(OCH))、ビス(メトキシメチル)メトキシシラン(HSi(CHOCH(OCH))、及びメチルチオメチルジメトキシシラン(HSi(CHSCH)(OCH)等が挙げられる。ただし、ヒドロシラン化合物(A1)は、これらに限定されない。
 得られるシランの有用性から、上記の中では、メチルジメトキシシラン、エチルジメトキシシラン、n-プロピルジメトキシシラン、n-ヘキシルジメトキシシラン、フェニルジメトキシシラン、クロロメチルジメトキシシラン、クロロメチルジエトキシシラン、クロロメチルメトキシメチルシラン、ビス(クロロメチル)メトキシシラン、メトキシメチルジメトキシシラン、メトキシメチルジエトキシシラン、(メトキシメチル)メチルメトキシシラン、ビス(メトキシメチル)メトキシシランが好ましく、メトキシメチルジメトキシシランがより好ましい。
 式(2)で表されるハロシラン化合物(B1)の好適な具体例としては、上記式(1)で表されるヒドロシラン化合物(A1)におけるケイ素原子に結合する水素原子をハロゲン原子に置換した化合物が挙げられる。
<水素化ホウ素金属(C)>
 水素化ホウ素金属(C)としては、水素化反応を良好に進行させ得る化合物であれば特に限定されない。
 好適な水素化ホウ素金属(C)としては、種々の水素化反応を良好に進行させやすいことから、下記式(C1):
MBH・・・(C1)
(式(C1)中、Mは、リチウム、ナトリウム、又はカリウムである。)
で表される化合物が挙げられる。式(C1)で表される化合物の中では、安価且つ入手が容易であることから、Mがナトリウムである水素化ホウ素ナトリウムが好ましい。
 水素化ホウ素金属(C)は、固体状で反応系に加えられてもよく、溶剤に分散された状態や、溶剤に溶解した状態で反応系に加えられてもよい。水素化ホウ素金属(C)を、分散又は溶解させる溶剤としては、後述する溶剤(S)が好ましく使用される。
 水素化ホウ素金属(C)は、1度又は数度に分割して反応系に加えられてもよく、滴下等の方法により連続的に反応系に加えられてもよい。水素化ホウ素金属(C)を反応系内に加える時間は特に限定されず、反応の進行状況に応じて適宜選択される。
 また、水素化ホウ素金属(C)の分散液、又は溶液に対して、求電子性化合物(B)が加えられてもよい。この場合、求電子性化合物(B)は、溶剤に分散された状態や、溶剤に溶解した状態で反応系に加えられてもよい。求電子性化合物(B)を、分散又は溶解させる溶剤としては、後述する溶剤(S)が好ましく使用される。また、求電子性化合物(B)は、1度又は数度に分割して反応系に加えられてもよく、滴下等の方法により連続的に反応系に加えられてもよい。求電子性化合物(B)を反応系内に加える時間は特に限定されず、反応系の進行状況に応じて適宜選択される。
 水素化ホウ素金属(C)の使用量は、求電子性化合物(B)から所望する収率で水素化生成物(A)を生成させることができれば特に限定されない。
 水素化ホウ素金属(C)の使用量は、求電子性化合物(B)1.0モルから所望する構造の水素化生成物(A)1.0モルを生成させるための、化学量論的な水素化ホウ素金属(C)の必要量を1.0モル当量とする場合に、0.5モル当量以上10.0モル当量以下が好ましく1.0モル当量以上5.0モル当量以下がより好ましく、1.2モル当量以上3.0モル当量以下が特に好ましい。
 特に、aが1であり、XがORで表される基であり、Rがメチル基、又はエチル基であり、Rがアルコキシ基で置換されたアルキル基である、式(2)で表されるハロシラン化合物(B1)を求電子性化合物(B)として用いて、水素化ホウ素ナトリウムによって水素化を行い式(1)で表されるヒドロシラン化合物(A1)を水素化生成物(A)として製造する場合、水素化ホウ素ナトリウムの使用量は、ハロシラン化合物(B1)が有するハロゲン原子の量に対して、1.2モル当量以上3.0モル当量以下であるのが好ましい。なお、R中のアルコキシ基の炭素原子数は1~3である。
<溶剤(S)>
 求電子性化合物(B)と、水素化ホウ素金属(C)とを反応させる際には、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)を用いる。
 これにより、求電子性化合物(B)の水素化ホウ素金属(C)による水素化が良好に進行する。
 エーテル結合を有する非プロトン性有機溶剤の好適な具体例としては、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等の環状エーテル類;ジエチルエーテル、ジn-ブチルエーテル、シクロペンチルメチルエーテル等のジアルキルエーテル類;アニソール等のアルコキシベンゼン類;メトキシ酢酸メチル、メトキシ酢酸エチル等のアルコキシアルカン酸エステル類;1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル(トリグライム)、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)、テトラプロピレングリコールジメチルエーテル等のグリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のグリコールアルキルエーテルアセテートが挙げられる。これらのエーテル結合を有する非プロトン性有機溶剤は2種以上を組み合わせて用いてもよい。
 これらの中では、水素化生成物(A)を良好な収率で製造しやすいことから、テトラヒドロフラン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、及びトリエチレングリコールジメチルエーテルが好ましい。取扱いや反応後の回収、精製が容易であることから1,2-ジメトキシエタンがより好ましい。
 溶剤(S)におけるエーテル結合を有する非プロトン性有機溶剤の含有量は50質量%以上であれば特に限定されないが、70質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。溶剤(S)におけるエーテル結合を有する非プロトン性有機溶剤の含有量が多いほど、水素化の反応性が向上する傾向にある。
 溶剤(S)において、エーテル結合を有する非プロトン性有機溶剤とともに他の溶剤を用いる場合、他の溶剤の種類は、求電子性化合物(B)の水素化ホウ素金属(C)による水素化を阻害しない限り特に限定されない。
 他の溶剤としては、典型的には、炭化水素系有機溶剤が好ましい。その中でも、エーテル結合を有する非プロトン性有機溶剤と混和する溶剤がより好ましい。
 他の溶剤として使用できる炭化水素系有機溶剤の好適な具体例としては、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等のアルカン;トルエン、キシレン、メシチレン、エチルベンゼン等の芳香族溶剤等が挙げられる。
 溶剤(S)の使用量は、所望する収率で水素化生成物(A)を生成させることができる限り特に限定されない。溶剤(S)の使用量は、典型的には、求電子性化合物(B)100質量部に対して、50~1000質量部が好ましく、70~800質量部がより好ましく、100~500質量部が特に好ましい。
<反応方法>
 前述した水素化生成物(A)は、それぞれ前述した求電子性化合物(B)と水素化ホウ素化合物(C)と溶剤(S)とを用いて製造される。
 具体的には、求電子性化合物(B)と水素化ホウ素金属(C)とを、溶剤(S)中で、反応系内から反応系外への気流が生じている状態で反応させることにより、水素化生成物(A)が製造される。
 水素化反応を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、反応系内から反応系外への気流が生じている状態で反応させることによって、水素化反応を良好に進行させつつ、反応終了時の反応系内の副生したボラン類の量を低減することができる。
 なお、反応系外への気流を生じさせるため、反応容器としては、系外への排気が可能な開口、好ましくは管を備える容器を用いる。溶剤(S)を反応系に戻すため、反応容器が冷却設備を備えることも好ましい。
 気流とともに反応系外へ排出されたボラン類は、水やアルコール中でクエンチされてもよく、燃焼等の方法によって処理されてもよく、吸着剤に吸着されてもよい。より安全に処理できることから、ボラン類が水でクエンチされるのが好ましい。クエンチに使用される水は、酸性であってもよく、塩基性であってもよく、中性であってもよい。
 反応系内から、反応系外への気流を生じさせる方法は、特に限定されない。好ましい方法としては、下記、1)及び2)の方法が挙げられる。
1)反応液の沸点をTとする場合に、(T-20)℃以上の温度で反応液を加熱する方法。
2)反応系内へ不活性ガスを導入する方法。
 上記1)及び2)の方法は、いずれも、大気圧下、減圧下、加圧下のいずれの条件でも行うことができ、大気圧下で行われるのが好ましい。
 1)の方法において、反応液の沸点は、反応液の沸騰状態の観察と、反応液を昇温する際に温度上昇が停止することから決定することができる。
 反応液の沸点をTとする場合に、反応液を、(T-20)℃以上に加熱することにより、反応液に由来する蒸気圧が高くなり、当該蒸気を反応系外に排出させることができる。系外に排出される蒸気は、水素化反応において副生したボラン類を含む。このため、加熱により生じる蒸気の反応系外への排出によって、反応液中の副生したボラン類の含有量が低減される。
 なお、エーテル結合を有する非プロトン性有機溶剤の中には、テトラヒドロフランのようにジボラン等と錯体を形成するものがある。しかし、かかる錯体も、錯体が形成されたまま、もしくは溶剤と分離の上で、蒸気とともに反応系外に排出される。このためジボラン等と錯体を形成し得る有機溶剤を用いる場合でも、副生したボラン類のほとんど(例えば、副生量の70%以上、好ましくは80%以上)が反応液中から除去される。
 1)の方法では、水素化反応を良好に進行させやすかったり、蒸気の発生量が多く副生したボラン類を除去しやすかったりすることから、反応液を(反応液の沸点-10)℃以上に加熱するのが好ましく、反応液を還流させながら水素化反応を行うのがより好ましい。
 2)の方法では、反応系内に不活性ガスを吹き込む。反応系内に吹き込まれた不活性ガスを反応系外に排出することによって、反応系内で副生したボラン類が反応系外に排出される。
 不活性ガスの好適な例としては、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。入手が容易で安価である点等から窒素ガスが好ましい。
 求電子性化合物(B)及び水素化生成物(A)が、空気中の酸素により容易に酸化されない物質である場合、空気、好ましくは乾燥空気を不活性ガスとして用いることもできる。
 2)の方法における反応温度は特に限定されない。求電子性化合物(B)の種類や、水素化ホウ素金属(C)の種類に応じて、反応温度は、目的とする反応が良好に進行する温度に適宜設定される。
 なお、上記の水素化反応は、バッチ式で行われてもよいし、連続式で行われてもよい。
 以上の方法により、水素化生成物(A)の収率が所望する値に達するまで、水素化反応が行われる。この場合、除去すべきボラン類の量と、ボラン類の除去操作の容易性とを勘案して、反応液に溶解しているホウ素量が、好ましくは1質量ppm以上700質量ppm以下、より好ましくは1質量ppm以上500質量ppm以下、特に好ましくは1質量ppm以上400質量ppm以下となるまで反応が継続される。
 なお、ボラン類の除去を念入りに行う必要が無い点で、水素化反応後に反応液中に溶解しているホウ素量の下限値は、例えば、10質量ppmであってもよく、50質量ppmであってもよく、70質量ppmであってもよく、100質量ppmであってもよい。
 求電子性化合物(B)と、水素化ホウ素金属(C)とを反応させる時間は特に限定されない。
 例えば、求電子性化合物(B)が、前述の式(2)で表されるアルコキシハロシラン化合物(B1)である場合、アルコキシハロシラン化合物(B1)と、水素化ホウ素金属(C)とを反応させる時間は、アルコキシハロシラン化合物(B1)又は水素化ホウ素金属(C)を反応系内に添加する時間も含めて、典型的には、1時間~24時間であり、1時間30分~10時間が好ましく、2時間~5時間がより好ましい。反応時間が短いと、反応による発熱で反応系の温度が急上昇する懸念がある。反応時間が長いと、水素化生成物(A)が分解する懸念がある。
 ただし、式(2)で表されるアルコキシハロシラン化合物(B1)におけるRの炭素原子数が大きい場合、水素化反応に長時間を要する場合がある。反応時間は、この点を考慮のうえ、必要に応じて反応の進行状況を分析しながら、適宜決定されるのが好ましい。
 以上説明した方法によれば、水素化ホウ素金属(C)により求電子性化合物(B)を水素化して水素化生成物(A)を製造する際に、良好に水素化反応を進行させることができ、且つ、水やアルコール等を反応系に加えることなく、反応系から良好にジボラン等のボラン類を除去できる。
<反応液>
 上記方法によれば、水素化生成物(A)と、溶剤(S)とを含み、求電子性化合物(B)を含んでいてもよい反応液が得られる。
 溶剤(S)は、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む。反応液に溶解しているホウ素量は、700質量ppm以下である。
 溶剤(S)におけるエーテル結合を有する非プロトン性有機溶剤の含有量は50質量%以上であれば特に限定されないが、70質量%以上が好ましく、90質量%以上がより好ましく、100質量%が特に好ましい。
 反応液中に溶解しているホウ素量は、1質量ppm以上700質量ppm以下であり、好ましくは1質量ppm以上500質量ppm以下であり、より好ましくは1質量ppm以上400質量ppm以下である。
 なお、ボラン類の除去を念入りに行う必要が無い点で、反応液中に溶解しているホウ素量の下限値は、例えば、10質量ppmであってもよく、50質量ppmであってもよく、70質量ppmであってもよく、100質量ppmであってもよい。
 反応液に溶解しているホウ素量についての10質量ppm以上との水準は、到達が容易な水準であって、且つ、発火性や人体に対する有毒性、水素化生成物(A)の精製や更なる反応への適用についての問題がほぼない水準である。
 特に水素化生成物が、前述のヒドロシラン化合物(A1)である場合、かかるヒドロシラン化合物(A1)は、ヒドロシリル化反応等を利用したポリマーへの反応性基の導入に用いられることが多い。ここで、ヒドロシラン化合物(A1)を含む反応液に溶解しているホウ素量が10質量ppm以上700質量ppm以下、好ましくは10質量ppm以上500質量ppm以下、より好ましくは10質量ppm以上400質量ppm以下である場合、反応液中に含まれるヒドロシラン化合物(A1)の回収及び精製や、反応液から回収されたヒドロシラン化合物(A1)を用いて反応性基を導入されたポリマーの特性への悪影響が少ない。
 もちろん、反応液に溶解するホウ素量が1質量ppm以上10質量ppm未満である場合も、反応液中に含まれるヒドロシラン化合物(A1)等の水素化生成物(A)を種々の用途に好適に利用できる。
 上記の反応液において、前述の通り、水素化生成物(A)は、求電子性化合物(B)を、水素化ホウ素金属(C)により水素化して製造され得る。上記の反応液を用いると、不純物であるホウ素を含む化合物の含有量が少ないため、高純度の水素化生成物(A)の取得が容易である。
 また、上記の反応液は、不純物であるホウ素を含む化合物を少量しか含まない。このため、上記の反応液を水素化生成物(A)を含む組成物の調製にそのまま使用出来たり、上記の反応液を水素化生成物(A)を原料として用いる合成反応にそのまま使用出来たりする場合がある。
 以下に、具体的な実施例を挙げて本発明をより詳細に説明する。本発明は、下記実施例に限定されるものではない。
〔実施例1〕
((メトキシメチル)ジメトキシクロロシラン(MMDMCS)の合成)
 窒素雰囲気に置換された反応容器に、(メトキシメチル)トリメトキシシラン50gと、0.41g(0.01モル当量)の塩化亜鉛とを加えて、撹拌した。反応容器の内温を10℃未満まで下げた後、21.3g(0.90モル当量)の塩化アセチルを、反応容器の内温が15℃を超えないように、ゆっくりと滴下した。滴下終了から30分後に、蒸留精製により、低沸点成分や縮合体を除去して、(メトキシメチル)ジメトキシクロロシラン(MMDMCS)を得た。(メトキシメチル)トリメトキシシラン基準のMMDMCSの収率は70%であり、MMDMCSの純度は約80%であった。
 MMDMCSのH-NMR(CDCl)の測定結果は以下の通りである。
 3.66(s,6H);3.40(s,3H);3.31(s,2H)
((メトキシメチル)ジメトキシシランの合成)
 MMDMCSに対して1.5当量の水素化ホウ素ナトリウムと、MMDMCSの質量に対して3倍の質量の1,2-ジメトキシエタン(DME)とを、水素化反応用の反応容器内に加えた。
 反応容器の内容物を撹拌しながら、反応液が反応温度(還流温度、84℃)となるまで加熱した。反応温度に到達した後、還流状態を保持したまま、適切な時間をかけてMMDMCSを反応容器に滴下した。
 MMDMCSの滴下後、還流条件下で、1.5時間反応を行った。
 反応終了後、H-NMRにより、水素化生成物である(メトキシメチル)ジメトキシシランの収率を確認した。また、反応液に溶解するホウ素量を、11B-NMRにより測定した。その具体的な測定方法を以下に記す。(メトキシメチル)ジメトキシシランの収率と、ホウ素量の測定結果とを、表1に記す。
<ホウ素量測定方法>
 反応液に溶解するホウ素量を以下の手順で定量した。
 まず、濃度既知のトリエトキシボランのメタノール溶液を複数作成し、それらのホウ素量を、ICP発光分析装置にて測定し、検量線を作成した。
 次に、実施例1に記載の方法で合成された(メトキシメチル)ジメトキシシランの蒸留精製品をICP発光分析装置にて測定し、作成した検量線から、蒸留精製品中のホウ素量を定量した。
 また、(メトキシメチル)ジメトキシシランの11B-NMRを測定し、使用したガラスチューブ由来のシグナル(65ppm~-60ppm)の積分に対する、ガラスチューブ由来のシグナル以外のシグナルの積分の合計の比を求め、その比とホウ素量の関係式を作成した。
 反応液を、前述の関係式の作製に用いたガラスチューブと同ロットのNMRガラスチューブに移した後に、11B-NMRを測定し、ガラスチューブ由来のシグナルの積分に対する、ガラスチューブ由来のシグナル以外のシグナルの積分の合計の比を求め、上記関係式を用いて、反応液に溶解するホウ素量を定量した。
〔実施例2、実施例3、及び比較例1~3〕
 1,2-ジメトキシエタン(DME)を、表1に記載の溶剤に変更することと、反応条件を84℃(還流)から表1に記載の条件に変更することと、MMDMCS滴下後の反応時間を1.5時間から表1に記載の時間に変更したこととの他は、実施例1と同様にしてMMDMCSから、(メトキシメチル)ジメトキシシランを製造した。
 水素化反応後の、水素化生成物である(メトキシメチル)ジメトキシシランの収率と、反応液に溶解するホウ素量とを、実施例1と同様に測定した。これらの測定結果を表1に記す。
 表1に記載される溶剤の略称は以下の通りである。
DME:1,2-ジメトキシエタン
THF:テトラヒドロフラン
DME/Hx:1,2-ジメトキシエタン(57質量%)とヘキサン(43質量%)との混合溶剤
 なお、上記の各実施例及び比較例において、水素化反応終了後の反応液における、原料である、MMDMCSの残存量をH-NMRにより、確認した。
 その結果、実施例1~3と比較例3とでは、MMDMCSの消失が認められ、比較例1では、ごくわずかなMMDMCSの残存が認められ、比較例2では、仕込み量に対して30%程度のMMDMCSの残存が認められた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3によれば、求電子性化合物(B)であるMMDMCSを、水素化ホウ素金属(C)である水素化ホウ素ナトリウムにより水素化する、水素化生成物(A)である(メトキシメチル)ジメトキシシランの製造方法において、還流により、反応系内から反応系外への気流を生じさせた状態で水素化反応を行うことにより、反応後の反応液中の副生したボラン類の量(ホウ素量)を顕著に低減できることが分かる。
 他方、比較例1~3によれば、MMDMCSと水素化ホウ素ナトリウムとの反応を、反応系内から反応系外への気流を生じさせることなく行う場合、反応後の反応液に、副生したボランが多量に残存することが分かる。
 なお、原料の転化率が低い場合には、そもそもジボランの副生量が少ないうえ、ジボランは揮発性の化合物であるため、例えば比較例3のように長時間反応を行った場合、複製したジボランが相当程度、反応液から揮発すると考えるのが自然である。
 しかし、実施例のように還流条件下で水素化反応を行った場合、原料の転化率が低い比較例2や、かなり長時間の反応を行った比較例3よりも、反応液に溶解するホウ素量が顕著に低減されていた。
 以上より、水素化ホウ素ナトリウムのような水素化ホウ素金属(C)を用いて、水素化反応を行う場合に、還流のような方法で反応系内から反応系外への気流を生じさせると、ジボラン等の副生ボランの除去効果が顕著であることが分かる。

Claims (19)

  1.  求電子性化合物(B)の水素化による、水素化生成物(A)の製造方法であって、
     前記水素化が、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、水素化ホウ素金属(C)を用いて、反応系内から反応系外への気流が生じている状態で行われる、水素化生成物(A)の製造方法。
  2.  前記気流を、反応液の沸点をT℃とする場合に、(T-20)℃以上の温度で反応液を加熱することにより生じさせる、請求項1に記載の製造方法。
  3.  前記気流を、反応液を還流させることにより生じさせる、請求項2に記載の製造方法。
  4.  前記気流を、反応系内への不活性ガスの導入により生じさせる、請求項1に記載の製造方法。
  5.  前記水素化生成物(A)が、0~40℃で加水分解される化合物である、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記水素化生成物(A)が、下記式(1):
    SiH(4-a-b)・・・(1)
    (式(1)中、Rはそれぞれ独立に置換基を有してもよい炭素原子数1~20の炭化水素基であり、Xはそれぞれ独立に加水分解性基であり、aは0~3の整数であり、bは1又は2であり、a+bは1~4の整数である。)
    で表されるヒドロシラン化合物であり、
     前記水素化ホウ素金属(C)が、水素化ホウ素ナトリウムである、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記求電子性化合物(B)が、下記式(2):
    SiY(4-a-b)・・・(2)
    (式(2)中、R、X、a、及びbは、前記式(1)と同様であり、Yはハロゲン原子である。)
    で表されるハロシラン化合物である、請求項6に記載の製造方法。
  8.  前記aが1であり、前記bが1であり、前記XがORで表される基であり、前記Rがアルコキシ基で置換されたアルキル基であり、前記Rにおいて、アルキル基上に置換するアルコキシ基の炭素原子数が1~3であり、前記Rがメチル基又はエチル基であり、前記水素化ホウ素ナトリウムの使用量が、前記ハロシラン化合物が有するハロゲン原子の量に対して、1.0モル当量以上2.0モル当量以下である、請求項7に記載の製造方法。
  9.  反応終了後の反応液に溶解しているホウ素量が、1質量ppm以上700質量ppm以下である、請求項1~8のいずれか1項に記載の製造方法。
  10.  求電子性化合物(B)を水素化ホウ素金属(C)により水素化することによる、水素化生成物(A)の製造方法おける、ボラン類の除去方法であって
     前記水素化を、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含む溶剤(S)中で、反応系内から反応系外への気流が生じている状態で行い、
     前記ボラン類を、前記気流とともに反応系外に除去する、方法。
  11.  前記気流を反応液の沸点をT℃とする場合に、(T-20℃)以上の温度で反応液を加熱することにより生じさせる、請求項10に記載の除去方法。
  12.  前記気流を、反応液を還流させることにより生じさせる、請求項11に記載の除去方法。
  13.  前記気流を、反応系内への不活性ガスの導入により生じさせる、請求項10に記載の除去方法。
  14.  前記水素化生成物(A)が、0~40℃で加水分解される化合物である、請求項10~13のいずれか1項に記載の除去方法。
  15.  前記水素化生成物(A)が、下記式(1):
    SiH(4-a-b)・・・(1)
    (式(1)中、Rはそれぞれ独立に置換基を有してもよい炭素原子数1~20の炭化水素基であり、Xはそれぞれ独立に加水分解性基であり、aは0~3の整数であり、bは1又は2であり、a+bは1~4の整数である。)
    で表されるヒドロシラン化合物であり、
     前記水素化ホウ素金属(C)が、水素化ホウ素ナトリウムである、請求項10~14のいずれか1項に記載の除去方法。
  16.  前記求電子性化合物(B)が、下記式(2):
    SiY(4-a-b)・・・(2)
    (式(2)中、R、X、a、及びbは、前記式(1)と同様であり、Yはハロゲン原子である。)
    で表されるハロシラン化合物である、請求項15に記載の除去方法。
  17.  前記aが1であり、前記bが1であり、前記XがORで表される基であり、前記Rがアルコキシ基で置換されたアルキル基であり、前記Rにおいて、アルキル基上に置換するアルコキシ基の炭素原子数が1~3であり、前記Rがメチル基又はエチル基であり、前記水素化ホウ素ナトリウムの使用量が、前記ハロシラン化合物が有するハロゲン原子の量に対して、1.0モル当量以上2.0モル当量以下である、請求項16に記載の除去方法。
  18.  反応終了後の反応液に溶解しているホウ素量が、1質量ppm以上700質量ppm以下である、請求項10~17のいずれか1項に記載の除去方法。
  19.  水素化生成物(A)と、溶剤(S)とを含み、求電子性化合物(B)を含んでいてもよい反応液であって、
     前記溶剤(S)が、エーテル結合を有する非プロトン性有機溶剤を50質量%以上含み、
     前記反応液に溶解しているホウ素量が、1質量ppm以上700質量ppm以下である、反応液。
PCT/JP2018/010295 2017-04-07 2018-03-15 水素化生成物の製造方法、及びボラン類の除去方法 WO2018186146A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511124A JPWO2018186146A1 (ja) 2017-04-07 2018-03-15 水素化生成物の製造方法、及びボラン類の除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017077092 2017-04-07
JP2017-077092 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186146A1 true WO2018186146A1 (ja) 2018-10-11

Family

ID=63713228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010295 WO2018186146A1 (ja) 2017-04-07 2018-03-15 水素化生成物の製造方法、及びボラン類の除去方法

Country Status (2)

Country Link
JP (1) JPWO2018186146A1 (ja)
WO (1) WO2018186146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213450A (zh) * 2021-12-29 2022-03-22 南京杰运医药科技有限公司 一种甲氧基甲基二甲氧基硅烷的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173174A (ja) * 1993-12-17 1995-07-11 Mitsui Toatsu Chem Inc アルケニルシランの合成法
JPH07173173A (ja) * 1993-12-17 1995-07-11 Mitsui Toatsu Chem Inc アルケニルシランの合成法
JP2003119200A (ja) * 2001-10-10 2003-04-23 Jsr Corp シラン類の製造方法
JP4061194B2 (ja) * 2001-02-08 2008-03-12 富山化学工業株式会社 6−置換アルキルアミノ−3−ピリジルホウ酸誘導体またはその塩およびそれらの製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173174A (ja) * 1993-12-17 1995-07-11 Mitsui Toatsu Chem Inc アルケニルシランの合成法
JPH07173173A (ja) * 1993-12-17 1995-07-11 Mitsui Toatsu Chem Inc アルケニルシランの合成法
JP4061194B2 (ja) * 2001-02-08 2008-03-12 富山化学工業株式会社 6−置換アルキルアミノ−3−ピリジルホウ酸誘導体またはその塩およびそれらの製造法
JP2003119200A (ja) * 2001-10-10 2003-04-23 Jsr Corp シラン類の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLOUVIER, BERTRAND ET AL.: "Synthesis and Biological Studies of Novel 2-Aminoalkylethers as Potential Antiarrhythmic Agents for the Conversion of Atrial Fibrillation", J. MED. CHEM., vol. 50, no. 12, 2007, pages 2818 - 2841, XP055557875, Retrieved from the Internet <URL:DOI:10.1021/jm0604528> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213450A (zh) * 2021-12-29 2022-03-22 南京杰运医药科技有限公司 一种甲氧基甲基二甲氧基硅烷的合成方法

Also Published As

Publication number Publication date
JPWO2018186146A1 (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6959864B2 (ja) フッ素化合物
KR900003953B1 (ko) 알콕시 실란의 제조방법
CN1584108A (zh) 有机金属化合物
JPS63258481A (ja) シリコン金属とアルコールとの反応によるトリアルコキシシラン製造の改良法
US9840523B2 (en) Process of synthesizing diisopropylamino-disilanes
US9181283B2 (en) Methods of preparing low molecular weight carbosilanes and precursors thereof
FR2678620A1 (fr) Nouveaux 1,3-disilacyclobutanes et leur procede de fabrication.
US20120004437A1 (en) Method for producing (meth)acrylosilanes
CN113544309A (zh) 铟化合物以及使用该铟化合物的含铟膜成膜方法
JP5115729B2 (ja) トリアルキルシリル基で保護されたアセト酢酸エステル基含有有機ケイ素化合物及びその製造方法
CN107868098B (zh) 含不饱和键的硅烷化合物的精制方法和制造方法
CN101039949B (zh) 甲硅烷基烷氧基甲基卤化物的制备方法
WO2018186146A1 (ja) 水素化生成物の製造方法、及びボラン類の除去方法
KR20180034288A (ko) 불포화 결합 함유 실란 화합물의 정제 방법 및 제조 방법
EP0459499B1 (en) Process for preparing silacycloalkanes
US4778910A (en) Method of making alkylalkoxysilanes
JPS6320834B2 (ja)
JP6555385B1 (ja) ケチミン構造を有する有機ケイ素化合物の製造方法
JPS6332336B2 (ja)
US20100113812A1 (en) Process for preparing organic silane compounds having beta-cyano ester group
US20110200513A1 (en) Method for producing monosilane and tetraalkoxysilane
RU2417228C1 (ru) Способ получения алкоксисиланов
JP2022531178A (ja) アルコキシシリル含有チオカルボン酸エステルの製造方法
JP2007051071A (ja) トリオルガノクロロシランの製造方法
JP2015535802A (ja) トリアルコキシシランを用いたモノシランの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781331

Country of ref document: EP

Kind code of ref document: A1