WO2018186036A1 - 電磁誘導加熱調理器 - Google Patents
電磁誘導加熱調理器 Download PDFInfo
- Publication number
- WO2018186036A1 WO2018186036A1 PCT/JP2018/005728 JP2018005728W WO2018186036A1 WO 2018186036 A1 WO2018186036 A1 WO 2018186036A1 JP 2018005728 W JP2018005728 W JP 2018005728W WO 2018186036 A1 WO2018186036 A1 WO 2018186036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input voltage
- induction heating
- electromagnetic induction
- circuit
- switching element
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J27/00—Cooking-vessels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/12—Cooking devices
Definitions
- the present invention relates to an electromagnetic induction heating cooker.
- an induction heating cooker that forms a pan holder for placing a pan for holding a cooked food in a magnetic field generated by an electromagnetic induction heating coil, and heats the pan placed on the pan holder by induction heating.
- Such an induction heating cooker generates a magnetic field by energizing the electromagnetic induction heating coil, generates an induced electromotive force in the pan, and heats the pan itself to perform cooking.
- such an electromagnetic induction heating cooker performs cooking by causing a load current to be generated and heating the pan due to the presence of a pan serving as a resistive load in the magnetic field generated by the induction heating coil. It is.
- the present invention is for solving the above-described problems, and provides an electromagnetic induction heating cooker that can detect the presence or absence of a load without using a current transformer.
- an inverter circuit that includes a pan holder, an electromagnetic induction heating coil that generates a magnetic field in the pan holder, and a switching element, and supplies electric power to the electromagnetic induction heating coil
- a timing output circuit that generates an output control timing waveform of the inverter circuit from the input voltage and the voltage of the switching element, an input voltage fluctuation detection circuit that detects an input voltage fluctuation and generates an input voltage fluctuation waveform, and an input voltage
- a load detection circuit that performs load detection based on the fluctuation waveform and the output control timing waveform, and a main control circuit that determines whether or not a pan is placed in the pan holder based on the load detection
- the load detection circuit detects a load based on an input voltage fluctuation waveform whose output control timing waveform is at a high level among the input voltage fluctuation waveforms. Cormorant to configure.
- load detection is performed based on an input voltage fluctuation waveform whose output control timing waveform is at a high level among input voltage fluctuation waveforms, thereby accurately detecting the presence or absence of a load without using a current transformer.
- An electromagnetic induction heating cooker that can be detected well can be provided.
- FIG. 1 is a block diagram showing a configuration of an electric circuit S of an electromagnetic induction heating cooker.
- a commercial low-frequency AC power source 1 is connected to a full-wave rectifier circuit 2.
- the output of the full wave rectifier circuit 2 is smoothed by a smoothing capacitor 3 and a choke coil (not shown).
- the smoothed output passes through an electromagnetic induction heating coil 4 for high-frequency induction heating, and is connected to a parallel circuit including a resonance capacitor 5, a switching element 6 and a diode 7 connected in series thereto.
- These constitute an inverter circuit that converts direct current into alternating current, and supplies electric power to the electromagnetic induction heating coil 4.
- the pan holder P which arrange
- the switching control circuit 10 is connected to the main control circuit 11 and is controlled by a switching control signal from the main control circuit 11.
- the main control circuit 11 has a microprocessor and a memory, and is a main control circuit that controls the heating operation or various notifications of the electromagnetic induction heating cooker, and controls each of the above parts.
- a timing output circuit 12 and an input voltage detection circuit 14 are connected to the smoothing capacitor 3 through a resistor 8.
- the input voltage detected by the input voltage detection circuit 14 is input to the main control circuit 11 to detect the commercial low frequency AC power supply voltage level.
- the timing output circuit 12 is also connected to the collector terminal of the switching element 6, and the timing at which the collector-emitter voltage Vce of the switching element 6 changes from 0V or 0V with reference to the commercial low-frequency AC power supply voltage. Timing is detected and an output control timing waveform is generated and input to the main control circuit 11.
- the voltage detection circuit 13 is connected to the collector terminal of the switching element 6, detects the collector-emitter voltage Vce of the switching element 6, and inputs it to the main control circuit 11.
- the smoothing capacitor 3 is connected to an input voltage fluctuation detection circuit 9 that detects fluctuations in the input voltage and generates an input voltage fluctuation waveform.
- the input voltage fluctuation waveform from the input voltage fluctuation detection circuit 9 and the output control timing waveform from the timing output circuit 12 are input to the load detection circuit 15.
- the load detection circuit 15 detects the presence or absence of a load current based on the input voltage fluctuation waveform from the input voltage fluctuation detection circuit 9 and the output control timing waveform from the timing output circuit 12. Then, the main control circuit 11 determines the presence / absence of a pan in the pan holder P based on the detection signal of the presence / absence of the load current from the load detection circuit 15.
- the main control circuit 11 adjusts the pulse width of the switching control signal and selects the strength of heating by an operation input to the operation unit provided in the electromagnetic induction heating cooker.
- the intensity of heating is controlled to be constant or the intensity is varied by a built-in control program.
- the main control circuit 11 determines the presence or absence of a pan based on the detection signal from the load detection circuit 15 and controls the intensity of heating or stopping.
- FIG. 2 shows operation waveforms when there is a pan during the heating operation of the electromagnetic induction heating cooker, and (a) collector-emitter voltage Vce of the switching element, (b) output control timing waveform, and (c) switching element, respectively.
- a current, (d) an input voltage fluctuation waveform, and (e) a switching element drive signal are shown.
- the state with a pan is a state where the pan N is placed on the pan holder P.
- the switching control circuit 10 In response to the switching control signal from the main control circuit 11, the switching control circuit 10 outputs a switching element drive signal.
- the switching element drive signal When the switching element drive signal is ON (High level), the switching element 6 becomes conductive and the switching element current Ic flows. While the switching element 6 is conducting, the collector-emitter voltage Vce of the switching element 6 is 0V.
- the switching control circuit 10 When the switching control circuit 10 receives the switching control signal from the main control circuit 11 and the switching element drive signal is turned OFF (Low level), the switching element current Ic does not flow, while the collector-emitter voltage Vce of the switching element 6 does not flow. Begins to rise. The collector-emitter voltage Vce generated at this time varies in proportion to the switching element current Ic that flows when the switching element 6 is ON.
- the timing at which the switching element 6 is turned off is controlled by the main control circuit 11 depending on the strength of heating. Further, the period of the collector-emitter voltage Vce of the switching element 6 is determined by the reactance component of the electromagnetic induction heating coil 4 and the pot for induction heating and the resonance frequency by the resonance capacitor 5.
- the collector-emitter voltage Vce of the switching element 6 becomes 0 V at a period determined by the resonance frequency.
- the timing at which the collector-emitter voltage Vce of the switching element 6 changes from 0 V and the timing when it becomes 0 V is detected, and the timing output circuit 12 outputs the output control timing in synchronization with the collector-emitter voltage waveform of the switching element 6 A waveform is generated and input to the main control circuit 11.
- the main control circuit 11 that detects the fall of the output control timing waveform, that is, that the collector-emitter voltage Vce of the switching element 6 has become 0 V, outputs a switching control signal after a certain period, and the switching control circuit 10 The switching element drive signal is turned ON.
- the switching element current Ic when the collector-emitter voltage Vce of the switching element 6 becomes 0 V, the regenerative current Ir by the inverter circuit flows in the reverse direction. After the collector-emitter voltage Vce of the switching element 6 becomes 0V, the main control circuit 11 outputs a switching control signal and the switching control circuit 10 turns on the switching element drive signal. It is desirable that Ir be within a period.
- the input voltage fluctuation waveform fluctuates in proportion to the magnitude of the switching element current Ic.
- the switching element current Ic flows when the switching element 6 is turned on.
- This switching element current Ic is supplied from the current stored in the commercial low frequency AC power source 1 and the smoothing capacitor 3. At this time, the current supplied from the smoothing capacitor 3 is supplied from the commercial low-frequency AC power source 1 during the period B when the switching element 6 is turned off.
- the regenerative current Ir is generated, and the regenerative current Ir from the resonant capacitor 5 flows into the smoothing capacitor 3, so that the input voltage fluctuation waveform becomes large. Thereafter, the current is gradually stored in the smoothing capacitor 3 and the input voltage is smoothed, so that the input voltage fluctuation waveform does not change.
- the load detection circuit 15 uses the output control timing waveform to reduce the input voltage fluctuation waveform to LOW during the output control timing waveform is LOW level (OFF period), so that the regenerative current Ir flows (H ) And the period (I) during which the switching element 6 is ON is not detected, and the input voltage fluctuation during the period (C) is input to the main control circuit 11. . That is, load detection is performed based on the size of the area K of the input voltage fluctuation waveform while the output control timing waveform is at the High level (ON period).
- the waveform of the input voltage fluctuation waveform changes in proportion to the switching element current Ic when the switching element 6 is turned on. Therefore, when the pan N is not present, the input voltage fluctuation waveform is smaller than when the pan N is present.
- the load detection circuit 15 uses the output control timing waveform to reduce the input voltage fluctuation waveform to LOW while the output control timing waveform is LOW level (OFF period), so that the regenerative current Ir flows (L ) And the period (M) in which the switching element 6 is ON, the input voltage fluctuation is not detected, and the input voltage fluctuation during the period (N) is input to the control circuit. That is, load detection is performed based on the area Q of the input voltage fluctuation waveform while the output control timing waveform is at a high level (ON period).
- the load detection for determining the presence or absence of the pan N when the load detection for determining the presence or absence of the pan N is performed, while the output control timing waveform is at the LOW level, the period during which the regenerative current Ir flows by switching the input voltage fluctuation waveform to LOW and the switching element The input voltage fluctuation is not detected during the period when 6 is ON, and the input voltage fluctuation waveform is the period when the regenerative current Ir is not flowing and the switching element 6 is OFF. Since load detection is performed based on the area Q (integrated value), the influence of fluctuations in the input voltage due to the regenerative current Ir can be reduced.
- FIG. 4 is a perspective view of the electromagnetic induction heating cooker 50 provided with the electric circuit S of the first embodiment.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG.
- the same structure as Embodiment 1 attaches
- the electromagnetic induction heating cooker 50 includes a main body 51, a lid body 52, and a pan N.
- a pan holder P is formed in the main body 51.
- the pan holder P is a recess that opens upward in the main body 51 and is configured so that the pan N can be stored in a state where the cooked food is held inside.
- the lid body 52 is attached to the main body 51 with its rear end portion pivotally supported so as to open and close the opening of the pan holder P of the main body 51.
- the pan N can be attached to and detached from the pan holder P.
- the pan N is covered with the main body 51 and the lid 52, and the electromagnetic induction heating cooker. 50 is held inside.
- the pan N is held inside the electromagnetic induction heating cooker 50 in a state where the electromagnetic induction heating cooker 50 cannot be visually recognized from the outside. That is, such an electromagnetic induction heating cooker 50 can recognize from the outside whether or not the pan N is provided inside the main body 51 when the lid body 52 is closed with respect to the main body 51. It becomes impossible.
- an electromagnetic induction heating coil 4 constituting the electric circuit S is provided below the pan holder P and inside the main body 51.
- the electric circuit S has a power plug 51a.
- the power plug 51 a is led out of the main body 51, and the electromagnetic induction heating cooker 50 obtains electric power when connected to a commercial low frequency AC power source 1.
- the bottom surface of the pan N provided in the pan holder P is located in the magnetic field generated by the electromagnetic induction heating coil 4. That is, the pot N is induction-heated by the change of the magnetic field generated by the electromagnetic induction heating coil 4 and can cook the food to be held inside.
- An electric circuit S is provided inside the main body 51.
- the electromagnetic induction heating cooker 50 includes, for example, an electric cooker that cooks rice or an electric cooking pot that cooks boiled food.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
- Cookers (AREA)
Abstract
電磁誘導加熱調理器において、鍋置き部と、鍋置き部に磁界を発生させる電磁誘導加熱コイルと、スイッチング素子を備え、電磁誘導加熱コイルに電力を供給するインバータ回路と、入力電圧とスイッチング素子の電圧とからインバータ回路の出力制御タイミング波形を生成するタイミング出力回路と、入力電圧の変動を検出し、入力電圧変動波形を生成する入力電圧変動検出回路と、入力電圧変動波形と、出力制御タイミング波形とに基づいて、負荷検出を行う負荷検出回路と、負荷検出に基づき、鍋置き部に鍋が置かれているか否かを判断する主制御回路と、を備え、負荷検出回路は、入力電圧変動波形のうち、出力制御タイミング波形がHighレベルの間の入力電圧変動波形に基づき、負荷検出を行うよう構成する。
Description
本発明は、電磁誘導加熱調理器に関する。
従来から、電磁誘導加熱コイルが生じる磁界内に、調理物を保持する鍋を配置する鍋置き部を形成し、鍋置き部に置かれた鍋を誘導加熱して加熱調理を行う誘導加熱調理器がある。この様な誘導加熱調理器は、電磁誘導加熱コイルに通電を行うことで磁界を発生させて、鍋に誘導起電力を生じさせ、鍋自体を発熱させて加熱調理を行う。
つまり、この様な電磁誘導加熱調理器は、誘導加熱コイルが発生させる磁界の中に、抵抗負荷となる鍋が存在することによって、負荷電流が発生し鍋が発熱して、加熱調理を行うものである。
つまり、この様な電磁誘導加熱調理器は、誘導加熱コイルが発生させる磁界の中に、抵抗負荷となる鍋が存在することによって、負荷電流が発生し鍋が発熱して、加熱調理を行うものである。
このような電磁誘導加熱方式の加熱調理器では、電磁誘導加熱コイルが生じる磁界中に抵抗負荷が存在しない場合、つまり、負荷抵抗となる鍋が鍋置き部に配置されていない状態の場合、無負荷状態となり負荷電流が発生しない。
このような現象を用いて、従来から、電磁誘導加熱コイルに通電を行ったときの負荷電流の発生の有無を検出し、負荷電流を検出できなかったときには、鍋が鍋置き部に配置されていないと判断して、加熱動作を停止させるように制御されている。
そして、この負荷電流の有無の検出方法として、変流器を有する低周波交流検出手段を用いるものがある(例えば、特許文献1)。
このような現象を用いて、従来から、電磁誘導加熱コイルに通電を行ったときの負荷電流の発生の有無を検出し、負荷電流を検出できなかったときには、鍋が鍋置き部に配置されていないと判断して、加熱動作を停止させるように制御されている。
そして、この負荷電流の有無の検出方法として、変流器を有する低周波交流検出手段を用いるものがある(例えば、特許文献1)。
しかしながら、このような負荷の有無の検出方法は、変流器を用いる必要があり、電気回路の構成が複雑になる。また、変流器を用いるので、電気回路を構成する部品が高価になるという課題がある。
本発明は上記の課題を解決するためのものであり、変流器を用いることなく、負荷の有無を検出することができる電磁誘導加熱調理器を提供するものである。
上記の課題を解決するため、電磁誘導加熱調理器において、鍋置き部と、鍋置き部に磁界を発生させる電磁誘導加熱コイルと、スイッチング素子を備え、電磁誘導加熱コイルに電力を供給するインバータ回路と、入力電圧とスイッチング素子の電圧とからインバータ回路の出力制御タイミング波形を生成するタイミング出力回路と、入力電圧の変動を検出し、入力電圧変動波形を生成する入力電圧変動検出回路と、入力電圧変動波形と、出力制御タイミング波形とに基づいて、負荷検出を行う負荷検出回路と、負荷検出に基づき、鍋置き部に鍋が置かれているか否かを判断する主制御回路と、を備え、負荷検出回路は、入力電圧変動波形のうち、出力制御タイミング波形がHighレベルの間の入力電圧変動波形に基づき、負荷検出を行うよう構成する。
本発明によれば、入力電圧変動波形のうち、出力制御タイミング波形がHighレベルの間の入力電圧変動波形に基づいて負荷検出を行うことで、変流器を用いることなく、負荷の有無を精度よく検出することができる電磁誘導加熱調理器を提供することができる。
実施の形態1.
図1~図3を参照して、実施の形態1を説明する。
図1は、電磁誘導加熱調理器の電気回路Sの構成を示すブロック図である。
商用低周波交流の電源1は、全波整流回路2に接続される。この全波整流回路2の出力は、平滑コンデンサ3、及び、チョークコイル(図示なし)により平滑化される。
図1~図3を参照して、実施の形態1を説明する。
図1は、電磁誘導加熱調理器の電気回路Sの構成を示すブロック図である。
商用低周波交流の電源1は、全波整流回路2に接続される。この全波整流回路2の出力は、平滑コンデンサ3、及び、チョークコイル(図示なし)により平滑化される。
平滑化された出力は、高周波誘導加熱用の電磁誘導加熱コイル4を経て、これに直列に接続された共振コンデンサ5、スイッチング素子6及びダイオード7からなる並列回路に接続されている。これらは、直流を交流に変換するインバータ回路を構成しており、電磁誘導加熱コイル4に電力を供給する。尚、インバータ回路から電力を受けた電磁誘導加熱コイル4が生じる磁界内には、内部に調理物を保持する鍋Nを配置する鍋置き部Pが設けられている。
次に、スイッチング素子6は、スイッチング制御回路10により制御される。スイッチング制御回路10は、主制御回路11に接続しており、主制御回路11からのスイッチング制御信号により制御されている。主制御回路11は、マイクロプロセッサ及びメモリを有し、電磁誘導加熱調理器の加熱動作の制御又は各種報知の制御、及び上記の各部の制御を行う主となる制御回路である。
次に、平滑コンデンサ3には、抵抗8を介してタイミング出力回路12と入力電圧検出回路14が接続される。そして、入力電圧検出回路14にて検出された入力電圧は主制御回路11に入力され、商用低周波交流の電源電圧レベルを検出している。タイミング出力回路12は、スイッチング素子6のコレクタ端子にも接続され、商用低周波交流の電源電圧を基準に、スイッチング素子6のコレクタ-エミッタ間電圧Vceが0Vから変化するタイミング、又は、0Vとなるタイミングを検出し、出力制御タイミング波形を生成して、主制御回路11に入力している。電圧検出回路13は、スイッチング素子6のコレクタ端子に接続され、スイッチング素子6のコレクタ-エミッタ間電圧Vceを検出し、主制御回路11に入力する。
平滑コンデンサ3には、入力電圧の変動を検出し、入力電圧変動波形を生成する入力電圧変動検出回路9が接続されている。そして、入力電圧変動検出回路9からの入力電圧変動波形と、タイミング出力回路12からの出力制御タイミング波形が、負荷検出回路15に入力される。負荷検出回路15は、入力電圧変動検出回路9からの入力電圧変動波形と、タイミング出力回路12からの出力制御タイミング波形に基づき、負荷電流の有無を検出する。そして、主制御回路11は、負荷検出回路15からの負荷電流の有無の検出信号に基づき、鍋置き部Pにおける鍋の有無を判断する。
主制御回路11は、図示されていないが、電磁誘導加熱調理器に設けられた操作部への操作入力により、スイッチング制御信号のパルス幅を調整し、加熱の強弱を選択する。又は、組み込まれた制御プログラムによって、加熱の強弱を一定に制御、又は強弱を可変する。また、主制御回路11は、負荷検出回路15からの検出信号に基づき、鍋の有無を判断し、加熱の強弱又は停止を制御する。
図2は、電磁誘導加熱調理器の加熱動作中における鍋有り時の動作波形であり、それぞれ(a)スイッチング素子のコレクタ-エミッタ間電圧Vce、(b)出力制御タイミング波形、(c)スイッチング素子電流、(d)入力電圧変動波形、(e)スイッチング素子駆動信号、を示す。尚、鍋ありの状態とは、鍋置き部Pに鍋Nが置かれた状態である。
主制御回路11からのスイッチング制御信号を受け、スイッチング制御回路10は、スイッチング素子駆動信号を出力する。スイッチング素子駆動信号がON(Highレベル)の時、スイッチング素子6は導通となり、スイッチング素子電流Icが流れる。スイッチング素子6が導通している間は、スイッチング素子6のコレクタ-エミッタ間電圧Vceは0Vとなる。
主制御回路11からのスイッチング制御信号を受けたスイッチング制御回路10により、スイッチング素子駆動信号がOFF(Lowレベル)となると、スイッチング素子電流Icは流れなくなる一方、スイッチング素子6のコレクタ-エミッタ間電圧Vceは上昇を始める。このとき発生するスイッチング素子6のコレクタ-エミッタ間電圧Vceは、スイッチング素子6がONしていた時に流れるスイッチング素子電流Icに比例して大きさが変わる。
スイッチング素子6をOFFするタイミングは、加熱の強弱によって主制御回路11が制御する。またスイッチング素子6のコレクタ-エミッタ間電圧Vceの周期は、電磁誘導加熱コイル4と誘導加熱する鍋のリアクタンス成分と、共振コンデンサ5による共振周波数によって決まる。
共振周波数によって決まった周期で、スイッチング素子6のコレクタ-エミッタ間電圧Vceは0Vになる。このスイッチング素子6のコレクタ-エミッタ間電圧Vceが0Vから変化するタイミング、及び、0Vとなるタイミングを検出し、タイミング出力回路12は、スイッチング素子6のコレクタ-エミッタ間電圧波形に同期した出力制御タイミング波形を生成し、主制御回路11へ入力する。
出力制御タイミング波形の立下り、すなわち、スイッチング素子6のコレクタ-エミッタ間電圧Vceが0Vになったことを検出した主制御回路11は、一定期間の後スイッチング制御信号を出力し、スイッチング制御回路10にスイッチング素子駆動信号をONさせる。
スイッチング素子電流Icは、スイッチング素子6のコレクタ-エミッタ間電圧Vceが0Vになったとき、インバータ回路による回生電流Irが逆方向に流れる。スイッチング素子6のコレクタ-エミッタ間電圧Vceが0Vになってから、主制御回路11がスイッチング制御信号を出力し、スイッチング制御回路10にスイッチング素子駆動信号をONさせるまでの一定期間は、この回生電流Irがおさまる期間であることが望ましい。
入力電圧変動波形は、スイッチング素子電流Icの大きさに比例して変動する。スイッチング素子6がONしたことでスイッチング素子電流Icが流れる。このスイッチング素子電流Icは、商用低周波交流の電源1と平滑コンデンサ3に蓄えられた電流から供給される。このとき平滑コンデンサ3から供給された電流分は、スイッチング素子6がOFFとなる期間Bに、商用低周波交流の電源1より平滑コンデンサ3供給される。
スイッチング素子6がOFFの期間(B)には、スイッチング素子6のコレクタ-エミッタ間電圧Vceが発生している期間(C)に加え、スイッチング素子駆動信号がONされるまでの一定期間(D)が含まれる。この一定期間(D)は、回生電流Irが発生しており、平滑コンデンサ3には、共振コンデンサ5からの回生電流Irが流れ込むため、入力電圧変動波形が大きくなる。以降は徐々に電流が平滑コンデンサ3に蓄えられ、入力電圧が平滑化されていくことで、入力電圧変動波形は変化しなくなる。
負荷検出回路15は、出力制御タイミング波形を用いて、出力制御タイミング波形がLOWレベルの間(OFFされる期間)は、入力電圧変動波形をLOWに落とすことで、回生電流Irが流れる期間(H)とスイッチング素子6がONしている期間(I)の間の入力電圧変動分を検出しないように構成し、期間(C)の間の入力電圧変動分を主制御回路11へ入力している。すなわち、出力制御タイミング波形がHighレベルの間(ONされる期間)の入力電圧変動波形の面積Kの大きさに基づき、負荷検出を行っている。
次に、鍋Nが鍋置き部Pに置かれていない状態について説明する。図3は、本発明の電磁誘導加熱調理器の加熱動作中の鍋無し時の動作波形であり、それぞれ、(a)スイッチング素子のコレクタ-エミッタ間電圧Vce、(b)出力制御タイミング波形、(c)スイッチング素子電流、(d)入力電圧変動波形、(e)スイッチング素子駆動信号、を示す。尚、鍋無しとは、鍋Nが鍋置き部Pに置かれていない状態である。
入力電圧変動波形は、スイッチング素子6をONした時のスイッチング素子電流Icに比例して、波形の大きさが変化する。従って、鍋Nが無い状態の場合、鍋Nが有る状態に比べて、入力電圧変動波形が小さくなっている。負荷検出回路15は、出力制御タイミング波形を用いて、出力制御タイミング波形がLOWレベルの間(OFFされる期間)は、入力電圧変動波形をLOWに落とすことで、回生電流Irが流れる期間(L)とスイッチング素子6がONしている期間(M)の間、入力電圧変動分を検出しないように構成し、期間(N)の間の入力電圧変動分を制御回路へ入力している。すなわち、出力制御タイミング波形がHighレベルの間(ONされる期間)入力電圧変動波形の面積Qにより、負荷検出を行っている。
以上のように、鍋Nの有無を判断する負荷検知を行う際に、出力制御タイミング波形がLOWレベルの間は、入力電圧変動波形をLOWに落とすことで、回生電流Irが流れる期間とスイッチング素子6がONしている期間の間、入力電圧変動分を検出しないように構成して、回生電流Irが流れていない期間であって、スイッチング素子6がOFFしている間の入力電圧変動波形の面積Q(積分値)により、負荷検知を行うので、回生電流Irによる入力電圧の変動の影響を低減することができる。
つまり、回生電流Irが流れていない期間であってスイッチング素子6がOFFしている期間は、鍋Nが有る場合と無い場合、入力電圧変動波形に大きな差が出るので、負荷検出の有無をより精度よく判断することができ、負荷検知の精度を向上させることができる。尚、実際の負荷検知の判断は、上記の面積Qと面積Kが、有る閾値Xより大きい場合、負荷がある(鍋Nがある)と判断し、閾値X未満の場合は負荷が無い(鍋Nは無い)と判断する。閾値Xは、面積Qの値と面積Kの値の間となる値が設定される。
実施の形態2.
図4及び図5を参照して実施の形態2を説明する。図4は、実施の形態1の電気回路Sを備えた電磁誘導加熱調理器50の斜視図である。図5は、図4のA-A断面図である。尚、実施の形態1と同じ構成は、同じ符号を付し説明を省略する。
図4及び図5を参照して実施の形態2を説明する。図4は、実施の形態1の電気回路Sを備えた電磁誘導加熱調理器50の斜視図である。図5は、図4のA-A断面図である。尚、実施の形態1と同じ構成は、同じ符号を付し説明を省略する。
電磁誘導加熱調理器50は、本体51と蓋体52と鍋Nを有する。本体51には、鍋置き部Pが形成されている。鍋置き部Pは、本体51の上方向に向けて開口する凹部であり、鍋Nが内部に調理物を保持した状態で、収納することが可能に構成されている。
蓋体52は、本体51の鍋置き部Pの開口を開閉するように、本体51に対して後端部分を軸支持されて取り付けられる。蓋体52が本体51に対して開いている状態では、鍋置き部Pに対して鍋Nを着脱することができる。また、鍋置き部Pに鍋Nが設けられていて、蓋体52が本体51に対して閉じている状態では、鍋Nは、本体51と蓋体52に覆われて、電磁誘導加熱調理器50の内部に保持される。
従って、鍋Nは、電磁誘導加熱調理器50が外側から視認することができない状態で、電磁誘導加熱調理器50の内部に保持される。つまり、このような電磁誘導加熱調理器50は、蓋体52が本体51に対して閉じられた状態の場合、本体51の内部に鍋Nが設けられているか否か、外部から認識することができない状態となる。
次に、この鍋置き部Pの下方であって本体51の内部には、電気回路Sを構成する電磁誘導加熱コイル4が設けられる。電気回路Sは電源プラグ51aを有している。この電源プラグ51aは、本体51の外部に導出されており、商用低周波交流の電源1に接続することで、電磁誘導加熱調理器50は電力を得る。
また、鍋置き部Pに設けられる鍋Nの底面は、この電磁誘導加熱コイル4が発生する磁界内に位置する。つまり、鍋Nは、電磁誘導加熱コイル4が生じる磁界の変化により誘導加熱されて、内部に保持する調理物の加熱調理を行うことができる。また、本体51の内部には、電気回路Sが設けられている。
以上のように各部を構成することで、負荷検出の有無をより精度よく判断することができ、負荷検知の精度を向上させることができるので、電磁誘導加熱調理器50の内部に、鍋Nが保持されているか否かを精度よく判断することができる。従って、使用者が、電磁誘導加熱調理器50に鍋Nを入れ忘れて、加熱動作を開始させても、負荷検出を精度よく行うことができ、鍋Nが無い状態を検知して、無駄な加熱調理動作を停止することができる。尚、本実施の形態の電磁誘導加熱調理器50は、例えば、お米を炊飯する電気炊飯器又は煮物などの調理を行う電気調理鍋などがある。
1 商用低周波交流の電源、2 全波整流回路、3 平滑コンデンサ、4 電磁誘導加熱コイル、5 共振コンデンサ、6 スイッチング素子、7 ダイオード、8 抵抗、9 入力電圧変動検出回路、10 スイッチング制御回路、11 主制御回路、12 タイミング出力回路、13 電圧検出回路、14 入力電圧検出回路、15 負荷検出回路、N 鍋、P 鍋置き部、S 電気回路、50 電磁誘導加熱調理器、51a 電源プラグ。
Claims (5)
- 鍋置き部と、
前記鍋置き部に磁界を発生させる電磁誘導加熱コイルと、
スイッチング素子を備え、前記電磁誘導加熱コイルに電力を供給するインバータ回路と、
入力電圧と前記スイッチング素子の電圧とから前記インバータ回路の出力制御タイミング波形を生成するタイミング出力回路と、
前記入力電圧の変動を検出し、入力電圧変動波形を生成する入力電圧変動検出回路と、
前記入力電圧変動波形と、前記出力制御タイミング波形とに基づいて、負荷検出を行う負荷検出回路と、
前記負荷検出に基づき、前記鍋置き部に鍋が置かれているか否かを判断する主制御回路と、
を備え、
前記負荷検出回路は、前記入力電圧変動波形のうち、前記出力制御タイミング波形がHighレベルの間の入力電圧変動波形に基づき、前記負荷検出を行う電磁誘導加熱調理器。 - 前記出力制御タイミング波形は、前記スイッチング素子がOFFしている期間であって、且つ前記スイッチング素子に回生電流が流れていない期間にHighレベルとなる請求項1に記載の電磁誘導加熱調理器。
- 前記主制御回路は、前記出力制御タイミング波形がHighレベルの間の前記入力電圧変動波形の積分値が閾値以上の場合に、前記鍋置き部に前記鍋が置かれていると判断する請求項1又は2に記載の電磁誘導加熱調理器。
- 前記インバータ回路に駆動信号を与えるスイッチング制御回路と、
前記スイッチング素子の電圧を検出する電圧検出回路と、をさらに備え、
前記主制御回路は、前記スイッチング制御回路を制御するスイッチング制御信号を与える請求項1~3の何れか一項に記載の電磁誘導加熱調理器。 - 本体と蓋体を有し、
前記本体には、前記鍋置き部が形成され、
前記蓋体は、前記鍋置き部を開閉するように、前記本体に取り付けられる請求項1~4の何れか一項に記載の電磁誘導加熱調理器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880011539.3A CN110461193B (zh) | 2017-04-06 | 2018-02-19 | 电磁感应加热烹调器 |
JP2019511087A JP6779369B2 (ja) | 2017-04-06 | 2018-02-19 | 電磁誘導加熱調理器 |
TW107109830A TWI674818B (zh) | 2017-04-06 | 2018-03-22 | 電磁感應加熱調理器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017075891 | 2017-04-06 | ||
JP2017-075891 | 2017-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186036A1 true WO2018186036A1 (ja) | 2018-10-11 |
Family
ID=63712506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005728 WO2018186036A1 (ja) | 2017-04-06 | 2018-02-19 | 電磁誘導加熱調理器 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6779369B2 (ja) |
CN (1) | CN110461193B (ja) |
TW (1) | TWI674818B (ja) |
WO (1) | WO2018186036A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023172211A1 (en) * | 2021-07-05 | 2023-09-14 | Mamur Teknoloji Sistemleri San. A.S. | Load sensing method for a single switch partial resonance inverter circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313880A (ja) * | 1988-06-14 | 1989-12-19 | Toshiba Corp | 電磁調理器 |
JP2003070641A (ja) * | 2001-08-31 | 2003-03-11 | Matsushita Electric Ind Co Ltd | 電磁誘導加熱式炊飯器 |
JP2005013578A (ja) * | 2003-06-27 | 2005-01-20 | Toshiba Corp | 炊飯器 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5111014A (en) * | 1988-06-14 | 1992-05-05 | Kabushiki Kaisha Toshiba | Electromagnetic cooker including load control |
JP3735491B2 (ja) * | 1999-06-30 | 2006-01-18 | 株式会社東芝 | 加熱調理器 |
WO2007056050A1 (en) * | 2005-11-03 | 2007-05-18 | Kurt Manufacturing Company, Inc. | Controller to provide a uniform temperature for electric frying pans |
JP2008119417A (ja) * | 2006-11-16 | 2008-05-29 | Matsushita Electric Ind Co Ltd | 誘導加熱式炊飯器 |
JP4909968B2 (ja) * | 2008-09-29 | 2012-04-04 | 日立アプライアンス株式会社 | 電磁誘導加熱装置 |
JP2011023163A (ja) * | 2009-07-14 | 2011-02-03 | Panasonic Corp | 炊飯器 |
JP5872235B2 (ja) * | 2011-10-05 | 2016-03-01 | 日立アプライアンス株式会社 | 電磁誘導加熱装置 |
CN202505018U (zh) * | 2012-01-18 | 2012-10-31 | 九阳股份有限公司 | 一种安全合盖电压力锅 |
JP2013252167A (ja) * | 2012-06-05 | 2013-12-19 | Panasonic Corp | 誘導加熱炊飯器 |
JP2014230569A (ja) * | 2013-05-28 | 2014-12-11 | パナソニック株式会社 | 炊飯器 |
CN203354297U (zh) * | 2013-06-17 | 2013-12-25 | 威斯达电器(中山)制造有限公司 | 烹饪装置 |
CN105852649B (zh) * | 2015-01-19 | 2019-05-21 | 佛山市顺德区美的电热电器制造有限公司 | 烹饪器具的自检方法、自检装置和烹饪器具 |
JP6572431B2 (ja) * | 2015-05-19 | 2019-09-11 | パナソニックIpマネジメント株式会社 | 炊飯器 |
CN205514015U (zh) * | 2016-01-27 | 2016-08-31 | 佛山市顺德区美的电热电器制造有限公司 | 电烹饪器 |
-
2018
- 2018-02-19 CN CN201880011539.3A patent/CN110461193B/zh not_active Expired - Fee Related
- 2018-02-19 WO PCT/JP2018/005728 patent/WO2018186036A1/ja active Application Filing
- 2018-02-19 JP JP2019511087A patent/JP6779369B2/ja active Active
- 2018-03-22 TW TW107109830A patent/TWI674818B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313880A (ja) * | 1988-06-14 | 1989-12-19 | Toshiba Corp | 電磁調理器 |
JP2003070641A (ja) * | 2001-08-31 | 2003-03-11 | Matsushita Electric Ind Co Ltd | 電磁誘導加熱式炊飯器 |
JP2005013578A (ja) * | 2003-06-27 | 2005-01-20 | Toshiba Corp | 炊飯器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023172211A1 (en) * | 2021-07-05 | 2023-09-14 | Mamur Teknoloji Sistemleri San. A.S. | Load sensing method for a single switch partial resonance inverter circuit |
Also Published As
Publication number | Publication date |
---|---|
CN110461193B (zh) | 2021-05-18 |
CN110461193A (zh) | 2019-11-15 |
TWI674818B (zh) | 2019-10-11 |
TW201838477A (zh) | 2018-10-16 |
JP6779369B2 (ja) | 2020-11-04 |
JPWO2018186036A1 (ja) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107801264B (zh) | 烹饪装置及其控制方法 | |
CN101326856B (zh) | 感应加热装置及其相应操作和烹饪器具检测方法 | |
JP5454576B2 (ja) | 誘導加熱調理器 | |
KR101999511B1 (ko) | 유도가열조리기 및 그의 동작 방법 | |
CN107436198B (zh) | 锅具温度检测系统、方法和电磁炉 | |
KR100529925B1 (ko) | 유도가열 전기밥솥 및 그 동작방법 | |
KR100629334B1 (ko) | 유도가열 조리기기 및 그 동작방법 | |
JP4821791B2 (ja) | 誘導加熱調理器 | |
JP2006114311A (ja) | 誘導加熱調理器 | |
WO2018186036A1 (ja) | 電磁誘導加熱調理器 | |
KR20050103704A (ko) | 유도가열 조리기기의 인버터 회로 제어장치 | |
JPWO2015159353A1 (ja) | 誘導加熱調理器 | |
JP2007287702A (ja) | 誘導加熱調理器 | |
KR102142412B1 (ko) | Emi를 감소시킨 조리 기기 및 그 동작방법 | |
JP3376227B2 (ja) | インバータ装置 | |
JP2010182561A (ja) | 誘導加熱調理器 | |
KR20210081053A (ko) | 전자 유도 가열 조리기기 및 그의 구동 모듈 | |
JP2012249718A (ja) | 電気炊飯器 | |
KR20190101824A (ko) | 선택된 조리 유형의 적합성을 판단하는 가열 장치 | |
KR20190110808A (ko) | 공진 주파수 추종을 수행하는 조리 기기 및 그 동작방법 | |
JP5974965B2 (ja) | 高周波加熱調理器 | |
KR102153499B1 (ko) | 가열 장치 및 이의 출력 제어 방법 | |
KR0152836B1 (ko) | 유도가열조리기의 주파수대역 변환회로 | |
JP2014230569A (ja) | 炊飯器 | |
JP4863974B2 (ja) | 誘導加熱調理器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18780462 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511087 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18780462 Country of ref document: EP Kind code of ref document: A1 |