WO2018182450A1 - Одностадийный способ получения бутадиена - Google Patents
Одностадийный способ получения бутадиена Download PDFInfo
- Publication number
- WO2018182450A1 WO2018182450A1 PCT/RU2017/000505 RU2017000505W WO2018182450A1 WO 2018182450 A1 WO2018182450 A1 WO 2018182450A1 RU 2017000505 W RU2017000505 W RU 2017000505W WO 2018182450 A1 WO2018182450 A1 WO 2018182450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethanol
- butadiene
- catalyst
- zeolite
- acetaldehyde
- Prior art date
Links
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 92
- 239000003054 catalyst Substances 0.000 claims abstract description 57
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000010457 zeolite Substances 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 27
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229910052709 silver Inorganic materials 0.000 claims abstract description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004332 silver Substances 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052737 gold Inorganic materials 0.000 claims abstract description 7
- 239000010931 gold Substances 0.000 claims abstract description 7
- 239000012071 phase Substances 0.000 claims abstract description 6
- 238000009833 condensation Methods 0.000 claims abstract description 5
- 230000005494 condensation Effects 0.000 claims abstract description 5
- 230000003647 oxidation Effects 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 239000007790 solid phase Substances 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000005828 desilylation reaction Methods 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 3
- 238000012987 post-synthetic modification Methods 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 239000002585 base Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 39
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 8
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000047 product Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DNNCGBUTBRELFI-UHFFFAOYSA-N [Zn].[Ta] Chemical compound [Zn].[Ta] DNNCGBUTBRELFI-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- IRLQAJPIHBZROB-UHFFFAOYSA-N buta-2,3-dienenitrile Chemical compound C=C=CC#N IRLQAJPIHBZROB-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005216 hydrothermal crystallization Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- DNNLEMIRRGUGOZ-UHFFFAOYSA-N oxygen(2-);thorium(4+) Chemical class [O-2].[O-2].[Th+4] DNNLEMIRRGUGOZ-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical group 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/12—Alkadienes
- C07C11/16—Alkadienes with four carbon atoms
- C07C11/167—1, 3-Butadiene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
- C07C2529/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
- C07C2529/74—Noble metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
- C07C2529/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
- C07C2529/76—Iron group metals or copper
Definitions
- the invention relates to the field of chemical industry and is intended to produce monomer butadiene.
- Butadiene is mainly used as a monomer in the synthesis of synthetic rubbers such as butadiene, butadiene-nitrile, butadiene-styrene, etc.
- butadiene is isolated from the products of pyrolysis of petroleum products.
- butadiene is produced by one- or two-stage catalytic dehydrogenation of normal butane and butylenes contained in oil refining gases and associated gases.
- oil refining gases and associated gases due to rising oil prices, technologies for producing butadiene from ethanol are of interest.
- the first methods for producing butadiene from ethanol are two-stage processes: the dehydrogenation of ethanol to acetaldehyde and the subsequent conversion of a mixture of acetaldehyde and ethanol to butadiene.
- copper metal catalysts are used in the dehydrogenation step
- tantalum or magnesium oxide supported catalysts are used in the condensation step.
- the total conversion of ethanol and acetaldehyde in the process is about 35% with a butadiene yield of about 60%.
- the inter regeneration run for said catalysts is 15-30 hours.
- a method is known in which metal oxides selected from elements of groups III, IV and V of the periodic table of elements are used as a catalyst for the synthesis of butadiene from ethanol, preferably oxides of hafnium, zirconium, tantalum zinc and niobium deposited on mesoporous silicon oxide (KR 2014/050 531 A).
- KR 2014/050 531 A mesoporous silicon oxide
- the closest in technical essence is a method for the synthesis of butadiene from ethanol on zirconium containing BEA zeolite synthesized by the hydrothermal method and modified with silver compounds (VL Sushkevich, II Ivanova, E Taarning, Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver, Green Chemistry, 17 (2015) 2552-2559).
- VL Sushkevich, II Ivanova, E Taarning, Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver Green Chemistry, 17 (2015) 2552-2559.
- the small pore size of the zeolite makes it difficult for the reaction products, including coke precursors, to exit the reaction zone, which leads to rapid catalyst deactivation.
- the disadvantages of the known methods are the low selectivity of the conversion of ethanol to butadiene due to the presence of strong acid centers that lead to side reactions of dehydration of ethanol into ethylene and diethyl ether, a high regeneration temperature, and rapid catalyst deactivation. Also, the high price of metals and oxides used in the preparation of the catalyst requires improved performance, mainly the stability of the catalyst, resistance to repeated regeneration and a significant service life.
- the objective of the present invention is to develop a one-step process for the synthesis of butadiene from ethanol and mixtures of ethanol with acetaldehyde on a catalyst that allows to achieve high stability, with high selectivity for the formation of butadiene and resistant to repeated regeneration.
- the problem is solved by the described method for the conversion of ethanol to butadiene in the gas phase in the presence of a mesoporous zeolite catalyst with a BEA type structure having a molar composition of the anionic ZrO 2 (20-1000) SiO 2 framework and containing a metal deposited on it in a zero oxidation state selected from groups: silver, copper, gold, and any combination thereof possible. It is possible to use a catalyst in which zeolites with zirconium atoms in the structure are modified with an alkali metal or a combination thereof.
- a catalyst bound by a binder from the group: silica, alumina.
- the process is carried out under conditions of gas phase condensation at
- the process is carried out under continuous flow conditions in a fixed bed reactor.
- the technical result of the implementation of the method in the scope of the features of claim 1 is a high yield and selectivity of the formation of butadiene with high stability of the catalyst over time.
- the proposed method for producing butadiene in General is as follows.
- the preliminary preparation of the catalyst is carried out by heating it in a stream of inert gas (nitrogen) to 300-500 ° C for 1 hour and calcining at this temperature for 30 minutes, then the reactor is cooled to the reaction temperature, the catalyst is restored in a stream of hydrogen for 30 minutes .
- Ethanol or a mixture of ethanol with acetaldehyde is fed to a flow-type reactor with a fixed catalyst bed.
- the resulting products are divided into liquid and gaseous.
- the component composition of the products is determined by chromatographic method.
- residues of products and reagents are removed and regenerated in an oxygen-containing gas.
- the synthesis of butadiene is repeated, starting with pretreatment in a stream of dry inert gas at a temperature of 300-500 ° C.
- Patset.vkh. P ethane. in -flow of incoming acetaldehyde and ethanol, mol / hour;
- Mesoporous Zr-containing zeolites with a structure of type BE A used in the claimed method can be obtained according to the following methods.
- Zr-co-containing BEA zeolite ZrBEA is obtained by hydrothermal crystallization of a gel of the composition 1.0 SiO 2 : 0.005-0.01 ZrO 2 : 0.56 TEAOH: 6 ⁇ 2 ⁇ : 0.56 HF, where ⁇ is a tetraethylammonium cation. at 140 ° C for 10 days.
- the zeolite obtained after crystallization is washed with water, dried at 100 ° C and calcined at 550 ° C for 6 hours.
- mesopores is carried out by desilylation of the obtained ZrBEA zeolite by treatment for 2-24 hours in a 0.2-0.7 M alkaline solution (NaOH, KOH ...) at room temperature.
- a mesoporous zeolite catalyst is obtained which retains the crystalline structure of the starting microporous crystalline silicate.
- mesoporous zeolite catalyst with a BEA type obtained according to methods 1 and 2.
- a feature of mesoporous catalysts with a BEA type structure is the presence of two types of pores - micropores, whose share in the total pore volume of the material is 0.6-0.9, and mesopores formed during desilylation, the proportion of which in the total pore volume of the material is 0.4- 0,1).
- Example 1 20.8 g of tetraethylorthosilicate are mixed with 11.8 g of tetraethylammonium hydroxide and
- the resulting catalyst having a composition of 2Ag-1, 5ZrO 2 -200SiO 2 , is placed in a flow reactor, purged with nitrogen at a temperature of 500 ° C for 1 hour, reduced the temperature to 320 ° C and purged with hydrogen for 0.5 hour. Then switch to a stream of nitrogen (10 ml / min) and serves ethanol at a rate of 1, 2 g / hour. The reaction is carried out for 3 hours. Butadiene with an ethanol conversion of 42%> and a yield of butadiene to converted ethanol of 73% is obtained at the outlet of the reactor.
- Example 3 (comparative).
- Example 4 (comparative). The process is conducted as in example 3, the difference is that the measurement of the process parameters occurs 100 hours after the start of the reaction. Process indicators are presented in table 1.
- the resulting catalyst was filtered, washed with water, dried and calcined at a temperature of 500 ° C. Then it is soaked in moisture capacity with an aqueous solution of silver nitrate until the silver concentration reaches May 1. % (in terms of metal), dried and calcined at a temperature of 500 ° C.
- Example 6 The process is conducted as in example 1, the difference is that they use a catalyst doped with sodium of the composition 30Ag-70ZrO 2 -Al 2 O 3 -5Na 2 O-3000SiO 2 .
- the process indicators are presented in table 1.
- Example 9 The process is carried out as in example 1, the difference is that the process is carried out with the addition of acetaldehyde with an acetaldehyde / ethanol ratio of 1/10. Process indicators are presented in table 1.
- Examples 10-14 illustrate the possibility of implementing a method for producing butadiene in a wide range of variation of process conditions.
- Example 15 The process is conducted as in example 1, the difference is that they use a catalyst with a binder - alumina. Process indicators are presented in table 1.
- the process is conducted, as in example 9, the difference is that the catalyst is used, regenerated in a stream of air at a temperature of 450 ° C.
- the process indicators are presented in table 1.
- the presented examples confirm the possibility of implementing the method of producing butadiene in one step with achieving the claimed technical result, which consists in a high degree of conversion and high yield of butadiene with a stable catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Изобретение относится к газофазному синтезу бутадиена из этанола или этанола в смеси с ацетальдегидом. Способ получения включает превращение этанола или смеси этанола с ацетальдегидом в присутствии катализатора, отличающийся тем, что взаимодействие проводят в присутствии твердофазного катализатора, включающего мезопористый Zr-содержащий цеолит со структурой ВЕА и металл в нулевой степени окисления, выбранный из группы: серебро, медь, золото, и их комбинации. Заявленный способ пригоден для осуществления конденсации в условиях непрерывного потока в реакторе с неподвижным слоем катализатора. Изобретение позволяет обеспечить высокий выход бутадиена, селективность процесса, и высокую стабильность работы катализатора.
Description
ОДНОСТАДИЙНЫЙ СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕНА
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области химической промышленности и предназначено для получения мономера - бутадиена.
УРОВЕНЬ ТЕХНИКИ
Бутадиен используется, главным образом, в качестве мономера при синтезе синтетических каучуков, таких как бутадиеновые, бутадиен-нитрильные, бутадиен- стирольные и т.д.
В настоящее время в промышленности находят применение два основных способа получения бутадиена. В первом случае бутадиен выделяют из продуктов пиролиза нефтепродуктов. Во втором бутадиен получают одно- или двухстадийным каталитическим дегидрированием нормальных бутана и бутиленов, содержащихся в газах нефтепереработки и попутных газах. Однако в связи с ростом цен на нефть вызывают интерес технологии получения бутадиена из этанола.
Исторически первыми способами получения бутадиена из этанола являются процессы, состоящие из двух стадий: дегидрирование этанола до ацетальдегида и последующее превращение смеси ацетальдегида и этанола в бутадиен. При этом на стадии дегидрирования используют катализаторы на основе металлической меди, а на стадии конденсации используют катализаторы из оксида тантала или магния, нанесенного на оксид кремния. Суммарная конверсия этанола и ацетальдегида в процессе составляет около 35% при выходе бутадиена около 60%. Межрегенерационный пробег для упомянутых катализаторов составляет 15-30 часов.
Способы, осуществляемые с подобными гетерогенными каталитическими системами, описаны, например, в следующих патентах: US 2,438,464, US 2,357,855, US 2,447,181, JP 57102822, JP 58059928, GB 573631.
Известны способы получения бутадиена, в котором в качестве катализатора используют оксиды циркония и тория, нанесенные на силикагель (US 2,436,125) или оксид магния (US 2,374,433).
Другим подходом для получения бутадиена является одностадийная конверсия этанола на твердых катализаторах при повышенной температуре. При этом ацетальдегид, необходимый для реакции образуется непосредственно на катализаторе, что увеличивает селективность процесса и уменьшает выход нежелательных побочных продуктов. Суммарная конверсия этанола и ацетальдегида в процессе может составлять 30-70% при выходе бутадиена 45-70%. Межрегенерационный пробег для упомянутых катализаторов составляет 10-100 часов.
Способы, осуществляемые с подобными гетерогенными каталитическими системами, описаны, например, в следующих патентах: GB331402, GB331482, FR665917, WO 2014180778 А1, WO 2014199348 A3, ЕР 3090801 А1. В основном, в указанных патентах используются катализаторы на основе двух компонентов, один из которых представляет собой металл в степени окисления ноль, преимущественно, медь, серебро и золото, и оксид переходного металла, преимущественно, циркония, магния, тантала, цинка.
Конверсия этанола в ацетальдегид была изучена в 'Makshina,W. Janssens,B.F. Sels, Р.А. Jacobs, "Catalytic study of the conversion of ethanol into 1,3-butadiene", Catalysis Today, 198 (2012) 338-344'. В этом исследовании использовался катализатор на основе смешанных оксидов кремния и алюминия, с добавкой индивидуальных переходных металлов или их оксидов.
Известен способ конверсии этанола в газовой фазе в присутствии твердофазного катализатора, содержащего металл выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония или тантала, при температуре 200-400°С, атмосферном давлении и скорости подачи сырья 0.1 - 15 г/г час. см. RU Патент jV° 2440962.
Известен способ, в котором в качестве катализатора синтеза бутадиена из этанола используются оксиды металлов, выбранные из элементов III, IV и V групп периодической системы элементов, предпочтительно оксиды гафния, циркония, тантала цинка и ниобия, нанесенных на мезопористый оксид кремния (KR 2014/050 531 А). Однако, несмотря на большую площадь поверхности носителя, данный способ имеет те же недостатки, что и его прототип (RU 2440962).
Недостатками перечисленных способов на основе оксидных катализаторов и нанесенных оксидных катализаторов является низкий выход бутадиена за счет использования массивных оксидов и/или неравномерного распределения активных металлов и оксидов на поверхности носителей.
Известны способы получения бутадиена из этанола на катализаторах, где в качестве оксидного компонента используются цеолиты структурного типа ВЕА с изоморфно замещенными атомами циркония, тантала и ниобия, полученные гидротермальным методом или пост-синтетическим модифицированием.
Конверсия этанола в бутадиен была изучена в работах «PI Kyriienko, OV Larina, SO Soloviev, SM Orlyk, S Dzwigaj, High selectivity of TaSiBEA zeolite catalysts in 1,3- butadiene production from ethanol and acetaldehyde mixture, Catalysis Communication, 77 (2016) 123-126», «PI Kyriienko, OV Larina, SO Soloviev, SM Orlyk, С Calers, S Dzwigaj,
Ethanol Conversion into 1,3-Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn), ACS Sustainable Chemistry and Engineering, 5 (2017) 2075-2083», « PI Kyriienko, OV Larina, N. Popovych, SO Soloviev, Y. Millot, S Dzwigaj, Effect of the niobium state on the properties of NbSiBEA as bifunctional catalysts for gas- and liquid-phase tandem processes, Journal of Molecular Catalysis A: Chemical, 424 (2016) 27-36», « VL Sushkevich, II Ivanova, Ag-Promoted ZrBEA Zeolites Obtained by Post-Synthetic Modification for Conversion of Ethanol to Butadiene, ChemSusChem, 9 (2016) 2216-2225». В этих исследованиях использовался катализатор на основе цеолита со структурой ВЕА, пост-синтетически модифицированный танталом, цирконием или ниобием с последующим добавлением металлов, выбранных из серебра, меди и цинка.
Наиболее близким по технической сущности является способ синтеза бутадиена из этанола на цирконий содержащем цеолите ВЕА, синтезированном гидротермальным способом и модифицированном соединениями серебра («VL Sushkevich, II Ivanova, Е Taarning, Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver, Green Chemistry, 17 (2015) 2552-2559). Однако малый размер пор цеолита затрудняет выход из реакционной зоны продуктов реакции, включая прекурсоры кокса, что приводит к быстрой дезактивации катализатора.
Недостатками известных способов, включая прототип, являются невысокая селективность превращения этанола в бутадиен из-за присутствия сильных кислотных центров, которые ведут побочные реакции дегидратации этанола в этилен и диэтиловый эфир, высокая температура регенерации, быстрая дезактивация катализатора. Также, высокая цена на металлы и оксиды, использующиеся в получении катализатора, требует улучшения эксплуатационных характеристик, в основном стабильности работы катализатора, устойчивости к многократной регенерации и значительного срока службы. РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является разработка одностадийного процесса синтеза бутадиена из этанола и смесей этанола с ацетальдегидом, на катализаторе, позволяющем достичь высокую стабильность работы, обладающем высокой селективностью образования бутадиена и устойчивому к многократной регенерации.
Поставленная задача решается описываемым способом конверсии этанола в бутадиен в газовой фазе в присутствии мезопористого цеолитного катализатора со структурой типа ВЕА, имеющего молярный состав анионного каркаса ZrO2 (20-1000)SiO2, и содержащего нанесенный на него металл в нулевой степени окисления, выбранный из группы: серебро, медь, золото, и их любой возможной комбинации.
Возможно использование катализатора, в котором цеолиты с атомами циркония в структуре, модифицированы щелочным металлом или их комбинацией.
Возможно использование катализатора, связанного связующим из группы: оксид кремния, оксид алюминия.
Предпочтительно, процесс осуществляют в условиях газофазной конденсации при
200-400 °С, при атмосферном давлении, при скорости подачи сырья 0.1 - 15 г/г- час.
При проведении процесса с использованием смеси этанола с ацетальдегидом процесс осуществляют при массовом отношении ацетальдегида к этанолу в смеси, равном (1-3): 10, соответственно.
Предпочтительно, процесс проводят в условиях непрерывного потока в реакторе с неподвижным слоем катализатора.
Возможна регенерация катализатора при температуре 350-650 °С в токе кислород содержащего газа с повторным использованием катализатора для синтеза бутадиена с сохранением начальных показателей активности, селективности и прочности.
Техническим результатом осуществления способа в объеме признаков п.1 является высокий выход и селективность образования бутадиена при высокой стабильности работы катализатора во времени.
Данный результат обусловлен подбором катализаторов, структура которых обеспечивает беспрепятственный доступ исходных реагентов и продуктов реакции к активным центрам и предохраняет внешнюю поверхность кристаллов от накопления продуктов уплотнения. Облегчение массопереноса молекул реагентов к активным центрам цеолита, расположенных внутри каналов цеолита, а также массопереноса продуктов реакции из зоны реакции приводит к достижению высоких выходов целевого продукта. Это приводит к снижению скорости глубокой конденсации с образованием побочных продуктов и продуктов уплотнения и увеличения скорости регенерации с уменьшением температуры регенерации.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Предлагаемый способ получения бутадиена в общем виде осуществляют следующим образом.
Предварительную подготовку катализатора производят путем его нагревания в токе инертного газа (азот) до 300-500°С в течение 1 часа и прокаливания при этой температуре в течении 30 мин, затем реактор охлаждают до температуры реакции, восстанавливают катализатор в токе водорода в течении 30 мин. Этанол или смесь этанола с ацетальдегидом подают в реактор проточного типа с неподвижным слоем катализатора. На выходе из реактора полученные продукты разделяют на жидкие и газообразные.
Компонентный состав продуктов определяют хроматографическим методом. После реакции током инертного газа удаляют остатки продуктов и реагентов и проводят регенерацию в кислород содержащем газе. Далее повторяют синтез бутадиена, начиная с предобработки в токе сухого инертного газа при температуре 300-500 °С.
Конверсию и выход целевого продукта на превращенные реагенты рассчитывают следующим образом:
Конверсия (%) = Пбут/(пацет.вх.+ "этан. вх.)'200;
ВЫХОД (%) = Пбут/(Пацет.пр + ПЭтап. пр 200;
где Пбут - поток бутадиена, моль/час;
Пацет.вх.» пэтан. вх. -поток входящего ацетальдегида и этанола, моль/час;
Пацет.пр.> пэтан. пр.— поток превращенного ацетальдегида и этанола, моль/час.
Мезопористые Zr-содержащие цеолиты со структурой типа BE А, используемые в заявленном способе можно получить согласно нижеприведённым методикам.
1- ый метод: получают Zr-co держащий цеолит ВЕА (ZrBEA) путем гидротермальной кристаллизации геля состава 1.0 SiO2:0.005-0.01 ZrO2:0.56 ТЭАОН:6 Н2О:0.56 HF, где ТЭА - катион тетраэтиламмония. при 140 °С в течение 10 дней. Полученный после кристаллизации цеолит промывают водой, сушат при 100°С и прокаливают при 550°С в течение 6 часов. Создание мезопор осуществляют путем десилилирования полученного цеолита ZrBEA путем обработки в течение 2-24 ч в 0.2-0.7 М щелочном растворе (NaOH, КОН...) при комнатной температуре. В результате осуществления обработки получают мезопористый цеолитный катализатор, который сохраняет кристаллическую структуру исходного микропористого кристаллического силиката.
2- ой метод: получают десилилированные образцы цеолита ВЕА путём обработки кристаллических алюмосиликатов со структурой цеолита ВЕА в 0,1-0,7 М щелочном растворе (NaOH, КОН...) в течение 3-24 часов при комнатной температуре. Полученные десилилированные мезопористые цеолиты (deSiAl-BEA) подвергают деалюминировапию в растворе концентрированной азотной кислоты при 80°С в течение 12 часов до полного удаления А1. Далее проводят обработку раствором ZrOCl2 в диметилсульфоксиде при температуре 130 °С в течение 12 часов, что приводит к внедрению атомов Zr в позиции каркаса цеолита, изначально занимаемые алюминием. В результате получают Zr- содержащий мезопористый цеолит Zr-(BEA).
На последнем этапе в полученный по способу 1 и 2 мезопористый цеолитный катализатор со структурой типа ВЕА вводят металлы, выбранные из группы: серебро, медь, золото.
Особенностью мезопористых катализаторов со структурой типа ВЕА является присутствие двух типов пор - микропор, доля которых в общем объеме пор материала составляет 0,6-0,9, и образовавшихся в процессе десилилирования мезопор, доля которых в общем объеме пор материала составляет 0,4-0,1).
Ниже приведены примеры, иллюстрирующие осуществление изобретения и достижение технического результата по сравнению с известными способами получения бутадиена.
Пример 1. 20,8 г тетраэтилортосиликата смешивают с 11,8 г гидроксида тетраэтиламмония и
7,8 г воды и проводят гидролиз при температуре 50°С с удалением образующегося этанола. Далее добавляют 0,13 г хлорида цирконила и при перемешивании добавляют 5 г 40% водного раствора плавиковой кислоты. Полученный гель переносят в тефлоновый автоклав и проводят кристаллизацию при температуре 140°С в течение 5 дней. Полученный после кристаллизации цеолит промывают водой, сушат при 100°С и прокаливают при 550°С в течение 6 часов.
К 120 мл 0,5 моль/л раствора NaOH добавляют 20 г полученного на предыдущей стадии микропористого кристаллического силиката со структурой ВЕА с SiO2/ZrO2=200. Полученную суспензию перемешивают при комнатной температуре в течение 0.5 ч. По окончании щелочной обработки материал отделяют на фильтре, промывают дистиллированной водой, высушивают при 100°С в течение 24 ч, прокаливают при 550°С в течение 24 ч. В результате получают мезопористый катализатор с цеолитной структурой ВЕА с объемом пор 0,226 см /г, с долями микропор и мезопор в объеме пор 0,74 и 0,26, соответственно. Далее его пропитывают по влагоемкости водным раствором нитрата серебра до достижения концентрации серебра 1 мае. % (в пересчете на металл), сушат и прокаливают при температуре 500 °С.
Полученный катализатор, имеющий состав 2Ag-l,5ZrO2-200SiO2, помещают в проточный реактор, продувают азотом при температуре 500°С в течение 1 часа, снижают температуру до 320°С и продувают водородом в течение 0,5 часа. Затем переключают на поток азота (10 мл/мин) и подают этанол со скоростью 1 ,2 г/час. Реакцию проводят в течение 3-х часов. На выходе из реактора получают бутадиен с конверсией этанола 42%> и выходом бутадиена на превращенный этанол 73%.
Непрореагировавший этанол направляют на рецикл. Результаты эксперимента представлены в таблице 1.
Пример 2.
Процесс ведут как в примере 1, отличие состоит в том, что измерение параметров процесса происходит через 100 часов после начала реакции. Показатели процесса представлены в таблице 1. Пример 3 (сравнительный).
Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют оксид циркония и серебро (по прототипу RU 2440962), нанесенный на силикагель. Показатели процесса представлены в таблице 1.
Пример 4 (сравнительный). Процесс ведут как в примере 3, отличие состоит в том, что измерение параметров процесса происходит через 100 часов после начала реакции. Показатели процесса представлены в таблице 1.
Анализ результатов, полученных в примерах 1-4, показывает преимущества предлагаемого способа получения бутадиена из этанола по сравнению с известными способами. Как следует из примеров, при использовании известных катализаторов не обеспечивается высокая конверсия и выход бутадиена. При использовании катализаторов, содержащих мезопористые цеолитные материалы и заявленные металлы, достигается высокая конверсия этанола, высокий выход бутадиена и высокая стабильность катализатора. Пример 5.
К 120 мл 0,7 моль/л раствора NaOH добавляют 20 г цеолита ВЕА с Si02/Al203=75. Полученную суспензию перемешивают при комнатной температуре в течение 0.5 ч, после чего материал отделяют на фильтре, промывают дистиллированной водой, высушивают при 100°С в течение 24 ч, прокаливают при 550°С в течение 24 ч. В результате получают мезопористый цеолитный катализатор со структурой ВЕА с объемом пор 0,45 см3/г, с долями микропор и мезопор в объеме пор 0,60 и 0,40, соответственно.
К 250 мл концентрированной азотной кислоты (65 мае. %) добавляют 10 г полученного десилилированного микропористого кристаллического алюмосиликата со структурой ВЕА с SiO2/Al2O3=3000. Полученную смесь нагревают при температуре 80°С в течение 12 часов. Полученный деалюминированный цеолит фильтруют промывают водой и сушат.
К раствору 20 г ZrOCl2 в 200 мл диметилсульфоксида добавляют 5 г полученного - мезопористого цеолита ВЕА с SiO2/Al2O3=3000. Смесь нагревают при температуре 130 °С в течение 12 часов. Полученный катализатор фильтруют, промывают водой, сушат и прокаливают при температуре 500 °С. Далее его пропитывают по влагоемкости водным раствором нитрата серебра до достижения концентрации серебра 1 мае. % (в пересчете на металл), сушат и прокаливают при температуре 500 °С.
Испытания полученного катализатора состава 30Ag-70ZrO2-Al2O3-3000SiO2 ведут как в примере 1.
Пример 6. Процесс ведут как в примере 1, отличие состоит в том, что используют катализатор допированный натрием состава 30Ag-70ZrO2-Al2O3-5Na2O-3000SiO2. Процесс проводят при добавке ацетальдегида с соотношением ацетальдегид/этанол=1/10.Показатели процесса представлены в таблице 1.
Далее, в примерах, показана возможность осуществления процессов с различными катализаторами из ряда заявленных при разных условиях проведения процесса.
Пример 7.
Процесс ведут как в примере 1, отличие состоит в том, что вместо серебра катализатор содержит медь, и процесс проводят при добавке ацетальдегида с соотношением ацетальдегид/этанол составляет 1/10. Показатели процесса представлены в таблице 1.
Пример 8.
Процесс ведут как в примере 5, отличие состоит в том, что вместо меди катализатор содержит золото. Показатели процесса представлены в таблице 1.
Пример 9. Процесс ведут как в примере 1, отличие состоит в том, что процесс проводят при добавке ацетальдегида с соотношением ацетальдегид/этанол составляет 1/10. Показатели процесса представлены в таблице 1.
Примеры 10-14 иллюстрируют возможность осуществления способа получения бутадиена в широкой области варьирования условий процесса.
Пример 15.
Процесс ведут как в примере 1, отличие состоит в том, что используют катализатор со связующим - оксидом алюминия. Показатели процесса представлены в таблице 1.
Пример 16.
Процесс ведут как в примере 1, отличие состоит в том, что используют катализатор со связующим - оксидом кремния. Показатели процесса представлены в таблице 1.
Пример 17.
Процесс ведут, как в примере 9, отличие состоит в том, что используется катализатор, регенерированный в токе воздуха при температуре 450 °С. Показатели процесса представлены в таблице 1. Таким образом, представленные примеры подтверждают возможность осуществление способа получения бутадиена в одну стадию с достижением заявленного технического результата, заключающегося в высокой степени конверсии и высоком выходе бутадиена при стабильной работе катализатора.
Хотя настоящее изобретение было подробно описано на примерах вариантов, которые представляются предпочтительными, эти примеры осуществления изобретения приведены только в целях иллюстрации изобретения. Данное описание не должно рассматриваться как ограничивающее объем изобретения, поскольку в описанные этапы способа могут быть внесены изменения, не выходящие за рамки прилагаемой формулы изобретения, направленные на то, чтобы адаптировать их к конкретным условиям или ситуациям. В пределах сферы действия изобретения, которая определяется пунктами формулы изобретения, возможны различные варианты и модификации, включая эквивалентные решения.
Таблица 1
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
Claims
1. Одностадийный способ получения бутадиена, путем конверсии этанола или смеси этанола с ацетальдегидом в бутадиен в газовой фазе в присутствии твердофазного катализатора, отличающийся тем, что твердофазный катализатор включает мезопористый Zr-содержащий цеолит со структурой ВЕА и металл в нулевой степени окисления, выбранный из группы, состоящей из серебра, меди, золота или их любой возможной комбинации.
2. Способ по п.1, отличающийся тем, что мезопористый цеолит со структурой ВЕА, получают путем его десилилирования в щелочном водном растворе, содержащем 0,1-0.7 моль/л водорастворимого основания.
3. Способ по п.1, отличающийся тем, что введение Zr в цеолит осуществляют путем прямого гидротермального синтеза, либо путем пост-синтетического модифицирования алюмосодержащего цеолита ВЕА.
4. Способ по п.1, отличающийся тем, что мезопористый Zr-содержащий цеолит модифицируют, по меньшей мере, одним щелочным металлом или их любой возможной комбинацией.
5. Способ по п.1, отличающийся тем, что используют катализатор со связующим, выбранным из группы, состоящей из оксида кремния, оксида алюминия.
6. Способ по п.1 , отличающийся тем, что конверсию осуществляют в условиях газофазной конденсации при 200-400 °С, при атмосферном давлении, при скорости подачи сырья 0.1 - 15 г/г- час.
7. Способ по п.1, отличающийся тем, что конверсию осуществляют при массовом отношении ацетальдегида к этанолу в смеси, равном (0-3): 10, соответственно.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780066926.2A CN109890782A (zh) | 2017-03-31 | 2017-07-07 | 生产丁二烯的单阶段方法 |
EP17903142.2A EP3604260A4 (en) | 2017-03-31 | 2017-07-07 | ONE-STAGE PROCESS FOR THE PRODUCTION OF BUTADIENE |
EA201892697A EA201892697A1 (ru) | 2017-03-31 | 2017-07-07 | Одностадийный способ получения бутадиена |
US16/305,056 US11136276B2 (en) | 2017-03-31 | 2017-07-07 | Single-stage method of butadiene production |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017110879A RU2656602C1 (ru) | 2017-03-31 | 2017-03-31 | Одностадийный способ получения бутадиена |
RU2017110879 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018182450A1 true WO2018182450A1 (ru) | 2018-10-04 |
Family
ID=62560417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2017/000505 WO2018182450A1 (ru) | 2017-03-31 | 2017-07-07 | Одностадийный способ получения бутадиена |
Country Status (6)
Country | Link |
---|---|
US (1) | US11136276B2 (ru) |
EP (1) | EP3604260A4 (ru) |
CN (1) | CN109890782A (ru) |
EA (1) | EA201892697A1 (ru) |
RU (1) | RU2656602C1 (ru) |
WO (1) | WO2018182450A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10647625B2 (en) * | 2017-02-07 | 2020-05-12 | Battelle Memorial Institute | Single step conversion of ethanol to butadiene |
CN112958146A (zh) * | 2019-12-12 | 2021-06-15 | 中国科学院大连化学物理研究所 | 一种mfi分子筛纳米片负载的锆基催化剂及其在制备丁二烯反应中的应用 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3090631B1 (fr) * | 2018-12-21 | 2020-12-25 | Ifp Energies Now | Procédé de production de butadiène à partir d’éthanol avec régénération in situ du catalyseur de la deuxième étape réactionnelle |
CN112479222A (zh) * | 2019-09-11 | 2021-03-12 | 中国科学院大连化学物理研究所 | 多级孔纯硅沸石分子筛及其制备方法 |
CN113289670B (zh) * | 2021-04-14 | 2022-11-08 | 中山大学 | 一种制备1,3-丁二烯的催化剂及其制备方法 |
CN115518670B (zh) * | 2021-06-24 | 2023-10-31 | 中国石油化工股份有限公司 | 烯烃化反应催化剂及其制备方法和应用 |
WO2023007677A1 (ja) * | 2021-07-29 | 2023-02-02 | Toyo Tire株式会社 | 1,3-ブタジエン用合成触媒及びその製造方法、並びに1,3-ブタジエンの製造方法 |
CN113996330B (zh) * | 2021-11-12 | 2022-08-30 | 中国科学院大连化学物理研究所 | 一种球磨法制备的Zr基MFI分子筛催化剂及其应用 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR665917A (fr) | 1928-12-15 | 1929-09-25 | Procédé pour obtenir des dioléfines directement des alcools | |
GB331482A (en) | 1929-01-30 | 1930-06-30 | Serge Vassiliewitsch Lebedev | Improvements in or relating to the preparation of diolefines directly from alcohols |
GB331402A (en) | 1929-07-13 | 1930-07-03 | Carl Franz Frauenberger | Improvements in throw-off mechanism for platen presses |
US2357855A (en) | 1941-12-15 | 1944-09-12 | Szukiewicz Waclaw | Method for producing butadiene |
US2374433A (en) | 1942-06-08 | 1945-04-24 | Universal Oil Prod Co | Production of butadiene |
GB573631A (en) | 1941-12-15 | 1945-11-29 | Waclaw Szukiewicz | Manufacture of butadiene |
US2436125A (en) | 1944-08-30 | 1948-02-17 | Rohm & Haas | Silica-zirconia catalysts and method of preparation |
US2438464A (en) | 1944-08-30 | 1948-03-23 | Rohm & Haas | Catalytic process for producing butadiene |
US2447181A (en) | 1944-08-30 | 1948-08-17 | Rohm & Haas | Silica-magnesia catalyst and preparation thereof |
JPS57102822A (en) | 1980-12-16 | 1982-06-26 | Takeda Chem Ind Ltd | Preparation of butadiene |
JPS5859928A (ja) | 1981-10-02 | 1983-04-09 | Takeda Chem Ind Ltd | ブタジエンの製造法 |
RU2440962C1 (ru) | 2010-07-29 | 2012-01-27 | Общество с ограниченной ответственностью "УНИСИТ" (ООО "УНИСИТ") | Одностадийный способ получения бутадиена |
KR20140050531A (ko) | 2012-10-19 | 2014-04-29 | 한국화학연구원 | 에탄올로부터 1,3-부타디엔 제조를 위한 규칙적인 메조세공 실리카계 촉매 및 이를 이용한 1,3-부타디엔의 제조방법 |
WO2014180778A1 (en) | 2013-05-07 | 2014-11-13 | Synthos S.A. | Process for the production of 1,3-butadiene |
WO2014199348A2 (en) | 2013-06-13 | 2014-12-18 | Basf Se | Metal doped silicate catalysts for the selective conversion of ethanol to butadiene |
EP3090801A1 (en) | 2015-05-08 | 2016-11-09 | The Siam Cement Public Company Limited | Catalyst for 1,3-butadiene production from ethanol |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2514425C1 (ru) * | 2012-11-16 | 2014-04-27 | Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") | Катализатор для получения бутадиена превращением этанола |
EP3007823B1 (en) * | 2013-06-13 | 2022-12-28 | Basf Se | Process for the preparation of butadiene |
US10351487B2 (en) * | 2014-10-14 | 2019-07-16 | Gevo, Inc | Methods for conversion of ethanol to functionalized lower hydrocarbons and downstream hydrocarbons |
FR3038849B1 (fr) * | 2015-07-13 | 2019-11-29 | IFP Energies Nouvelles | Catalyseur oxyde mixte mesoporeux comprenant du silicium |
-
2017
- 2017-03-31 RU RU2017110879A patent/RU2656602C1/ru active
- 2017-07-07 EP EP17903142.2A patent/EP3604260A4/en not_active Withdrawn
- 2017-07-07 US US16/305,056 patent/US11136276B2/en active Active
- 2017-07-07 WO PCT/RU2017/000505 patent/WO2018182450A1/ru active Application Filing
- 2017-07-07 CN CN201780066926.2A patent/CN109890782A/zh active Pending
- 2017-07-07 EA EA201892697A patent/EA201892697A1/ru unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR665917A (fr) | 1928-12-15 | 1929-09-25 | Procédé pour obtenir des dioléfines directement des alcools | |
GB331482A (en) | 1929-01-30 | 1930-06-30 | Serge Vassiliewitsch Lebedev | Improvements in or relating to the preparation of diolefines directly from alcohols |
GB331402A (en) | 1929-07-13 | 1930-07-03 | Carl Franz Frauenberger | Improvements in throw-off mechanism for platen presses |
US2357855A (en) | 1941-12-15 | 1944-09-12 | Szukiewicz Waclaw | Method for producing butadiene |
GB573631A (en) | 1941-12-15 | 1945-11-29 | Waclaw Szukiewicz | Manufacture of butadiene |
US2374433A (en) | 1942-06-08 | 1945-04-24 | Universal Oil Prod Co | Production of butadiene |
US2447181A (en) | 1944-08-30 | 1948-08-17 | Rohm & Haas | Silica-magnesia catalyst and preparation thereof |
US2438464A (en) | 1944-08-30 | 1948-03-23 | Rohm & Haas | Catalytic process for producing butadiene |
US2436125A (en) | 1944-08-30 | 1948-02-17 | Rohm & Haas | Silica-zirconia catalysts and method of preparation |
JPS57102822A (en) | 1980-12-16 | 1982-06-26 | Takeda Chem Ind Ltd | Preparation of butadiene |
JPS5859928A (ja) | 1981-10-02 | 1983-04-09 | Takeda Chem Ind Ltd | ブタジエンの製造法 |
RU2440962C1 (ru) | 2010-07-29 | 2012-01-27 | Общество с ограниченной ответственностью "УНИСИТ" (ООО "УНИСИТ") | Одностадийный способ получения бутадиена |
KR20140050531A (ko) | 2012-10-19 | 2014-04-29 | 한국화학연구원 | 에탄올로부터 1,3-부타디엔 제조를 위한 규칙적인 메조세공 실리카계 촉매 및 이를 이용한 1,3-부타디엔의 제조방법 |
WO2014180778A1 (en) | 2013-05-07 | 2014-11-13 | Synthos S.A. | Process for the production of 1,3-butadiene |
WO2014199348A2 (en) | 2013-06-13 | 2014-12-18 | Basf Se | Metal doped silicate catalysts for the selective conversion of ethanol to butadiene |
EP3090801A1 (en) | 2015-05-08 | 2016-11-09 | The Siam Cement Public Company Limited | Catalyst for 1,3-butadiene production from ethanol |
Non-Patent Citations (8)
Title |
---|
GIZETDINOVA A.F: "Osobennosti sinteza tseolita VEA - komponenta katalizatorov alkilirovaniya [Features of the synthesis of zeolite BEA - a component of alkylation catalysts]", OAO "ANGARSKIY ZAVOD KATALIZATOROV I ORGANICHESKOGO SINTEZA" [OJSC ANGARSK PLANT OF CATALYSTS AND ORGANIC SYNTHESIS], 2011, pages 1 - 14, XP009515428, Retrieved from the Internet <URL:www.mitllc.ru/docs/26.pdf> * |
MAKSHINA,W.JANSSENS,B.F.SELS, P.A. JACOBS: "Catalytic study of the conversion of ethanol into 1,3-butadiene", CATALYSIS TODAY, vol. 198, 2012, pages 338 - 344, XP002746743, DOI: 10.1016/j.cattod.2012.05.031 |
PI KYRIIENKOOV LARINAN. POPOVYCHSO SOLOVIEVY. MILLOTS DZWIGAJ: "Effect of the niobium state on the properties of NbSiBEA as bifunctional catalysts for gas- and liquid-phase tandem processes", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 424, 2016, pages 27 - 36, XP029757849, DOI: 10.1016/j.molcata.2016.06.024 |
PI KYRIIENKOOV LARINASO SOLOVIEVSM ORLYKC CALERSS DZWIGAJ: "Ethanol Conversion into 1,3-Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn", ACS SUSTAINABLE CHEMISTRY AND ENGINEERING, vol. 5, 2017, pages 2075 - 2083 |
PI KYRIIENKOOV LARINASO SOLOVIEVSM ORLYKS DZWIGAJ: "High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture", CATALYSIS COMMUNICATION, vol. 77, 2016, pages 123 - 126, XP029413462, DOI: 10.1016/j.catcom.2016.01.023 |
See also references of EP3604260A4 |
VL SUSHKEVICHII IVANOVA: "Ag-Promoted ZrBEA Zeolites Obtained by Post-Synthetic Modification for Conversion of Ethanol to Butadiene", CHEMSUSCHEM, vol. 9, 2016, pages 2216 - 2225 |
VL SUSHKEVICHII IVANOVAE TAAMING: "Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver", GREEN CHEMISTRY, vol. 17, 2015, pages 2552 - 2559, XP002778350 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10647625B2 (en) * | 2017-02-07 | 2020-05-12 | Battelle Memorial Institute | Single step conversion of ethanol to butadiene |
CN112958146A (zh) * | 2019-12-12 | 2021-06-15 | 中国科学院大连化学物理研究所 | 一种mfi分子筛纳米片负载的锆基催化剂及其在制备丁二烯反应中的应用 |
CN112958146B (zh) * | 2019-12-12 | 2022-04-19 | 中国科学院大连化学物理研究所 | 一种mfi分子筛纳米片负载的锆基催化剂及其在制备丁二烯反应中的应用 |
Also Published As
Publication number | Publication date |
---|---|
EP3604260A1 (en) | 2020-02-05 |
EA201892697A1 (ru) | 2020-02-14 |
EP3604260A4 (en) | 2021-04-07 |
US11136276B2 (en) | 2021-10-05 |
CN109890782A (zh) | 2019-06-14 |
RU2656602C1 (ru) | 2018-06-06 |
US20200317589A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2656602C1 (ru) | Одностадийный способ получения бутадиена | |
JP6084963B2 (ja) | 1,3−ブタジエンの製造方法 | |
AU2004256082B2 (en) | Process for producing alkylene oxide | |
EP0099715B1 (en) | Catalyst composition, method for its production and its use in the production of hydrocarbons from synthesis gas | |
JP6053366B2 (ja) | ゼオライト触媒、ゼオライト触媒の製造方法および低級オレフィンの製造方法 | |
EP0351066B1 (en) | Chemical process and catalyst | |
EP0351067B1 (en) | Chemical process and catalyst | |
JP2016510057A (ja) | ジメチルエーテルのカルボニル化のためのプロセス | |
EA007767B1 (ru) | Производство олефинов | |
CN105102374A (zh) | 脱水-水解方法及其催化剂 | |
WO2015121411A1 (en) | Dehydration-hydrolysis processes and catalysts therefor | |
RU2741547C2 (ru) | Получение катализатора на основе zsm-5; использование в способе деалкилирования этилбензола | |
RU2425091C1 (ru) | Способ получения высокооктанового бензина и/или ароматических углеводородов с низким содержанием бензола | |
CN108285151B (zh) | 一种Ce同晶取代LTL分子筛及其制备方法 | |
US5684207A (en) | Preparation of methyl isobutyl ketone | |
KR20150067247A (ko) | 붕소 제올라이트에 기초하는 촉매의 제조 | |
RU2751701C1 (ru) | Катализатор дегидрирования пропана и способ получения пропилена с его использованием | |
US5208201A (en) | Chemical process and catalyst | |
JP6251788B2 (ja) | ゼオライト触媒、ゼオライト触媒の製造方法および低級オレフィンの製造方法 | |
JP2002320857A (ja) | イソブチレン合成用触媒、その製造方法、およびイソブチレンの製造方法 | |
WO2021132239A1 (ja) | インデンの製造方法 | |
WO2022270401A1 (ja) | シクロペンタジエンの製造方法 | |
US10207964B2 (en) | Process for making cumene by alkylation of benzene using an organotemplate-free zeolite beta | |
WO2016125578A1 (ja) | 1,3-ブタジエンの製造方法 | |
JP2022127708A (ja) | ベンゼンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903142 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017903142 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017903142 Country of ref document: EP Effective date: 20191031 |