WO2018181774A1 - 新規モノオキシゲナーゼおよびその利用 - Google Patents

新規モノオキシゲナーゼおよびその利用 Download PDF

Info

Publication number
WO2018181774A1
WO2018181774A1 PCT/JP2018/013363 JP2018013363W WO2018181774A1 WO 2018181774 A1 WO2018181774 A1 WO 2018181774A1 JP 2018013363 W JP2018013363 W JP 2018013363W WO 2018181774 A1 WO2018181774 A1 WO 2018181774A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
acid sequence
seq
monooxygenase
Prior art date
Application number
PCT/JP2018/013363
Other languages
English (en)
French (fr)
Inventor
増俊 野尻
八十原 良彦
慎 日比
順 小川
Original Assignee
株式会社カネカ
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立大学法人京都大学 filed Critical 株式会社カネカ
Priority to EP18776149.9A priority Critical patent/EP3604505A4/en
Priority to CN201880022361.2A priority patent/CN110832073A/zh
Priority to JP2019510160A priority patent/JPWO2018181774A1/ja
Publication of WO2018181774A1 publication Critical patent/WO2018181774A1/ja
Priority to US16/584,734 priority patent/US20200010814A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0095Oxidoreductases (1.) acting on iron-sulfur proteins as donor (1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a novel monooxygenase, a gene encoding the same, and use thereof.
  • Optically active ⁇ , ⁇ -2 substituted amino acids are expected as building blocks for peptide drugs in order to increase the stability against peptidases (Non-patent Document 1).
  • Non-Patent Document 2 discloses the production of an optically active ⁇ , ⁇ -2 substituted amino acid by an asymmetric alkylation reaction using an asymmetric phase transfer catalyst. A method is described. Patent Document 1 describes a reaction for synthesizing ⁇ -methyl-L-serine by an enzymatic reaction using L-alanine and formaldehyde as raw materials.
  • Non-Patent Document 2 provides an optically active ⁇ , ⁇ -2-substituted amino acid, there is a problem that complicated steps such as introduction of a protecting group and a deprotection step after the reaction are required.
  • the method of Patent Document 1 is a production method that does not require a protecting group, only L-form ⁇ -methyl-L-serine can be synthesized, and its optical isomer ⁇ -methyl-D-serine is synthesized. I can't do it.
  • an object of the present invention is to provide a novel enzyme protein that enables the production of ⁇ -hydroxyamino acids containing optically active ⁇ , ⁇ -2 substituted amino acids, such as ⁇ -methyl-D-serine.
  • the present inventor has found and isolated a microorganism having the ability to convert 2-aminoisobutyric acid into optically active ⁇ -methyl-D-serine in nature. succeeded in. Furthermore, a novel monooxygenase that converts 2-aminoisobutyric acid to ⁇ -methyl-D-serine was successfully identified by proteomic analysis of the above microorganisms and various analyzes related thereto.
  • one embodiment of the present invention includes the following inventions.
  • a monooxygenase comprising two types of hetero subunits.
  • the ⁇ subunit comprises any protein selected from the group consisting of the following (a) to (d): The monooxygenase according to any one of [1] to [4], wherein the ⁇ subunit includes any protein selected from the group consisting of the following (e) to (h): (A) a protein comprising the amino acid sequence set forth in SEQ ID NO: 1; (B) a protein comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 1, and a subunit containing the protein A protein having monooxygenase activity when complexed with the ⁇ subunit; (C) a monooxygenase which is a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence described in SEQ ID NO: 1 and a subunit containing the protein forms a complex with a ⁇
  • a monooxygenase reaction system for producing a ⁇ -hydroxyamino acid comprising the monooxygenase according to any one of [1] to [5] and an electron transfer protein.
  • the electron transfer protein is any protein selected from the group consisting of the following (i) to (l), and any one selected from the group consisting of the following (m) to (p):
  • the monooxygenase reaction system according to [6] which is a protein of: (I) a protein comprising the amino acid sequence set forth in SEQ ID NO: 3; (J)
  • the amino acid sequence shown in SEQ ID NO: 3 consists of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added, and the following (m) to (p A protein having electron transfer activity when combined with any protein selected from the group consisting of:
  • a transformant comprising the gene according to [8] or the recombinant vector according to [9].
  • the transformant according to [10] which contains the gene shown below: (1) a gene encoding an electron transport system protein, and / or (2) a gene encoding a transporter protein.
  • the electron transfer system protein is any protein selected from the group consisting of the following (i) to (l), and any one selected from the group consisting of the following (m) to (p):
  • the amino acid sequence shown in SEQ ID NO: 3 consists of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added, and the following (m) to (p A protein having electron transfer activity when combined with any protein selected from the group consisting of: (K) A combination with any protein selected from the group consisting of the following (m) to (p) consisting of an amino acid sequence having 80% or more homology with the amino acid sequence shown in SEQ ID NO: 3
  • the transporter protein is any protein selected from the group consisting of the following (q) to (t): : (Q) a protein comprising the amino acid sequence set forth in SEQ ID NO: 5; (R) a protein having a transporter activity consisting of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 5; (S) a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence described in SEQ ID NO: 5 and having transporter activity; (T) A protein encoded by a gene consisting of the base sequence set forth in SEQ ID NO: 10.
  • [15] A step of culturing the transformant according to any one of [10] to [14] in a medium containing an ⁇ -amino acid or an ⁇ , ⁇ -2 substituted amino acid, A method for producing a hydroxyamino acid.
  • Rhodococcus latislaviensis C31-06 strain (Accession number: NITE BP-02370).
  • an ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid can be converted into a ⁇ -hydroxyamino acid simply and efficiently without the need for introducing a protecting group or a deprotecting step. it can.
  • the term “gene” is used interchangeably with “polynucleotide”, “nucleic acid” or “nucleic acid molecule” and is intended to be a polymer of nucleotides.
  • the gene may be present in the form of DNA (eg, cDNA or genomic DNA) or RNA (eg, mRNA).
  • DNA or RNA may be double-stranded or single-stranded.
  • Single-stranded DNA or RNA may be a coding strand (sense strand) or a non-coding strand (antisense strand).
  • the gene may be chemically synthesized, and the codon usage may be changed so that the expression of the encoded protein is improved. Substitutions can be made between codons encoding the same amino acid.
  • protein is used interchangeably with “peptide” or “polypeptide”.
  • polypeptide or “polypeptide”.
  • base and amino acid notation uses the one-letter code or three-letter code defined by IUPAC and IUB as appropriate.
  • Monooxygenase composed of at least two types of hetero (different) subunits (in other words, a heteromonooxygenase composed of two or more different subunits).
  • Monooxygenase is a kind of oxidase and is an enzyme that introduces one oxygen atom into a substrate.
  • Most known monooxygenases function as a single enzyme from the viewpoint of structure, and are constituted by a complex (heterosubunit) as in one embodiment of the present invention.
  • Monooxygenase was not known. Therefore, the discovery of the monooxygenase in one embodiment of the present invention having the above structure is surprising, and it becomes possible to catalyze reactions that are impossible or low in reactivity with conventional monooxygenases. Therefore, in one embodiment of the present invention, a novel and useful monooxygenase that has not been heretofore provided is provided.
  • the monooxygenase in one embodiment of the present invention is preferably composed of two types of hetero (different) subunits.
  • the number of subunits is not particularly limited as long as it has monooxygenase activity when complexed with other subunits, and may be, for example, 2, 3, 4, 5, etc.
  • each subunit of monooxygenase in one embodiment of the present invention is not particularly limited as long as it has monooxygenase activity when complexed with other subunits, such as monomers, dimers, trimers, tetramers, etc. It may be comprised.
  • the monooxygenase in one embodiment of the present invention is composed of a heterodimer, heterotrimer, heterotetramer, heteropentamer, heterohexamer and the like containing the above subunits as long as monooxygenase activity occurs. May be.
  • monooxygenase in one embodiment of the present invention has the characteristic configuration shown above, the details thereof can be appropriately changed. Of course, monooxygenases with such details modified are also within the scope of the present invention.
  • the origin of monooxygenase in one embodiment of the present invention is a fungus, for example, actinomycetes, and examples thereof include the genus Rhodococcus and the genus Nocardia.
  • the monooxygenase is Rhodococcus erythropolis, Rhodococcus rhodochrous, and preferably Rhodococcus rastropis. (Rhodococcus wratislaviensis).
  • Rhodococcus wratislaviensis C31-06 strain The monooxygenase in one embodiment of the present invention was obtained from Rhodococcus wratislaviensis C31-06 strain, as shown in Examples described later.
  • Rhodococcus rhitoclaviensis C31-06 strain is incorporated into the National Institute of Technology and Evaluation (NITE) Patent Microorganisms Deposit Center (292-0818, 2-10-8 Kazusa Kamashika, Kisarazu City, Chiba Prefecture) Depositary: National University Corporation graduate School of Agriculture, Kyoto University Shingo Hibashi (606-8502 Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, Kyoto), Deposit Number: NITE BP-02370 (Deposit Date (Domestic Deposit Date): October 2016 6th, transfer date: Deposited as of March 12, 2018 under the domestic deposit number NITE P-02370). Therefore, the present invention also provides the Rhodococcus wratislaviensis C31-06 strain.
  • the monooxygenase in one embodiment of the present invention can catalyze the reaction of converting an ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid into an optically active ⁇ -hydroxyamino acid. That is, monooxygenase capable of catalyzing the reaction of converting ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid to optically active ⁇ -hydroxyamino acid, preferably ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid
  • a monooxygenase from the genus Rhodococcus that can catalyze the reaction of converting to an active ⁇ -hydroxy amino acid is another preferred embodiment of the present invention.
  • ⁇ -amino acid means an amino acid in which the ⁇ position of the amino acid is monosubstituted.
  • examples of the ⁇ -amino acid in the present embodiment include, but are not limited to, L-aminobutyrate, D-aminobutyrate, and the like.
  • ⁇ , ⁇ -2 substituted amino acid means an amino acid in which the ⁇ position of the amino acid is disubstituted.
  • Examples of ⁇ , ⁇ -2 substituted amino acids in the present embodiment include, but are not limited to, 2-aminoisobutyric acid, L-isovaline, D-isovaline and the like.
  • ⁇ -hydroxy amino acid means an amino acid in which the ⁇ -position of an amino acid is hydroxylated, such as ⁇ -amino acid, ⁇ , ⁇ -2 substituted amino acid, etc. by monooxygenase in one embodiment of the present invention.
  • the substrate is not particularly limited as long as it is an amino acid that has optical activity.
  • the ⁇ -hydroxyamino acid in this embodiment include ⁇ -methyl-D-serine, (2S, 3S) -2-methylthreonine, (2R, 3R) -2-methylthreonine, L-allo-threonine, D -Allo-threonine and the like.
  • the term “optically active ⁇ -hydroxyamino acid” is used synonymously with “ ⁇ -hydroxyamino acid”.
  • the monooxygenase in one embodiment of the present invention is assumed to be converted to a ⁇ -hydroxyamino acid by catalyzing hydroxylation at the ⁇ -position of ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid.
  • Any ⁇ -amino acid, ⁇ , ⁇ -2 substituted amino acid, and ⁇ -hydroxy amino acid may be used as long as they can be converted into optically active ⁇ -hydroxy amino acids by the above monooxygenase. It's okay.
  • the ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid that is converted to ⁇ -hydroxyamino acid by monooxygenase is preferably a compound represented by the following formula (1):
  • R 1 and R 2 are each independently hydrogen or an alkyl group.
  • R 1 is an alkyl group
  • the carbon number thereof may be 1 to 5, preferably 1 to 3, and more preferably 1.
  • the alkyl group may be linear, branched, or cyclic, and preferably may be linear.
  • R 2 is an alkyl group, it is the same as R 1 above.
  • * may or may not be an asymmetric carbon atom.
  • the ⁇ -hydroxyamino acid converted from ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid by monooxygenase is preferably a compound represented by the following formula (2): :
  • R 3 and R 4 are each independently hydrogen or an alkyl group.
  • R 3 is an alkyl group
  • the carbon number thereof may be 1 to 5, preferably 1 to 3, and more preferably 1.
  • the alkyl group may be linear, branched, or cyclic, and preferably may be linear.
  • R 4 is an alkyl group, it is the same as R 3 above.
  • * may or may not be an asymmetric carbon atom, and preferably either * or more preferably * may be an asymmetric carbon atom.
  • At least one or more of reactions for converting an ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid into an optically active ⁇ -hydroxy amino acid represented by the following formulas (3) to (7): Monooxygenases that catalyze the reaction of are preferred: Formula (3) Formula (4) Formula (5) Formula (6) Formula (7)
  • the monooxygenase according to one embodiment of the present invention is an optical form of a ⁇ -hydroxy amino acid obtained in the reaction of converting an ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid into an optically active ⁇ -hydroxy amino acid represented by the above formula. It is preferable that the purity can be converted to 60% or higher, more preferably 80% or higher, and more preferably 85% or higher. Is more preferable, and it is particularly preferable that the conversion is 87% or more.
  • the monooxygenase according to one embodiment of the present invention is such that when the two types of hetero subunits are ⁇ subunit and ⁇ subunit, respectively, the ⁇ subunit is selected from the group consisting of the following (a) to (d):
  • the ⁇ subunit comprises any protein selected from the group consisting of the following (e) to (h): (A) a protein comprising the amino acid sequence set forth in SEQ ID NO: 1; (B) a protein comprising an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 1, and a subunit containing the protein A protein having monooxygenase activity when complexed with the ⁇ subunit; (C) a monooxygenase which is a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence described in SEQ ID NO: 1 and a subunit containing the protein forms a complex with a ⁇ subunit An active
  • the proteins (a) and (e) above are proteins consisting of the amino acid sequences shown in SEQ ID NOs: 1 and 2, both of which are derived from Rhodococcus bratislaviensis.
  • SEQ ID NO: 1 is a polypeptide composed of a full length 378 mino acid residue, and Protein ID is peg. In Protein Discover Software (Thermo Scientific). It is labeled 803.
  • SEQ ID NO: 2 is a polypeptide composed of 373 amino acid residues in total length, and Protein ID is peg. In Protein Discover Software (Thermo Scientific). Labeled as 804.
  • the above proteins (b) and (f) are functionally equivalent mutants, derivatives, variants, alleles, homologs, orthologs, partial peptides, or others of the proteins having the amino acid sequences shown in SEQ ID NOs: 1 and 2.
  • a subunit containing the protein has a monooxygenase activity when it forms a complex with the ⁇ subunit
  • the specific sequence is not limited as long as the subunit containing the protein has a monooxygenase activity when complexed with the ⁇ subunit.
  • the number of amino acids that may be deleted, substituted or added is not limited as long as the above function is not lost.
  • the number of amino acids may be deleted, substituted or deleted by a known introduction method such as site-directed mutagenesis.
  • the number is such that it can be added, preferably within 5 amino acids, more preferably within 3 amino acids (eg, 3, 2 or 1 amino acid).
  • “mutation” mainly means a mutation artificially introduced by site-directed mutagenesis or the like, but may be a naturally occurring similar mutation.
  • amino acid residue to be substituted is preferably substituted with another amino acid that preserves the properties of the amino acid side chain.
  • amino acid side chain properties include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G).
  • an amino acid having an aliphatic side chain G, A, V, L, I, P
  • an amino acid having a hydroxyl group-containing side chain S, T, Y
  • Amino acids having chains C, M
  • amino acids having carboxylic acid and amide-containing side chains D, N, E, Q
  • amino acids having base-containing side chains R, K, H
  • aromatic-containing side chains H, F, Y, W
  • “functionally equivalent” means that the target protein has a biological function or biochemical function equivalent (same and / or similar) to the target protein.
  • Biological properties may include the specificity of the site to be expressed, the expression level, and the like. Whether or not a protein into which a mutation has been introduced has a desired function can be determined by examining whether or not the protein has monooxygenase activity when the protein is used as a part of a subunit.
  • the above proteins (c) and (g) are also functionally equivalent mutants, derivatives, variants, alleles, homologs, orthologs, partial peptides, or others of the proteins having the amino acid sequences shown in SEQ ID NOs: 1 and 2.
  • the protein (c) as long as the subunit containing the protein has a monooxygenase activity when it forms a complex with the ⁇ subunit.
  • the specific sequence is not limited as long as the subunit containing the protein has a monooxygenase activity when complexed with the ⁇ subunit.
  • Amino acid sequence homology is at least 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95% or more (for example, 95%) in the entire amino acid sequence (or a region necessary for functional expression). %, 96%, 97%, 98%, 99% or more).
  • Amino acid sequence homology can be determined using BLASTN (nucleic acid level) and BLASTX (amino acid level) programs (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The program is based on the algorithm BLAST by Karlin and Altschul (Proc. Natl. Acad. Sci. USA, 87: 2264-2268, 1990, Proc. Natl. Acad.
  • homology intends the ratio of the number of amino acid residues having similar properties (homology, positive, etc.), but more preferably the ratio of the number of identical amino acid residues, ie, identity. (Identity).
  • the properties of amino acids are as described above.
  • SEQ ID NOs: 6 and 7 show the base sequences (Open Reading Frame: ORF) of the genes encoding the proteins consisting of the amino acid sequences shown by SEQ ID NOS: 1 and 2, respectively.
  • a commonly used method for modifying a polynucleotide may be used. That is, a polynucleotide having the genetic information of a desired recombinant protein can be produced by substituting, deleting, inserting and / or adding a specific base of the polynucleotide having the genetic information of the protein.
  • Specific methods for converting the bases of the polynucleotide include, for example, commercially available kits (KOD-Plus Site-Directed Mutagenesis Kit (Toyobo), Transformer Site-Directed Mutagenesis Kit (Clontech), QuickChangeSiteMititeDigit ) Or use of the polymerase chain reaction (PCR). These methods are known to those skilled in the art.
  • the gene may be composed only of a polynucleotide encoding the protein, but other base sequences may be added.
  • the base sequence to be added is not particularly limited, but includes a label (for example, histidine tag, Myc tag or FLAG tag), a fusion protein (for example, streptavidin, cytochrome, GST, GFP or MBP), a promoter sequence, and Examples thereof include a base sequence encoding a signal sequence (for example, an endoplasmic reticulum transition signal sequence, a secretory sequence, etc.).
  • the site to which these base sequences are added is not particularly limited and may be, for example, the N-terminus or C-terminus of the translated protein.
  • Monooxygenase reaction system for producing a ⁇ -hydroxyamino acid comprising the above monooxygenase and an electron transfer system protein.
  • the present monooxygenase reaction system is a system in which the monooxygenase produces ⁇ -hydroxyamino acid by supplying redox power via an electron transfer system protein, and includes the monooxygenase and an electron transfer system protein. As long as the system can produce ⁇ -hydroxyamino acid, it is not particularly limited.
  • the present monooxygenase reaction system may be a system constructed in a living organism or an artificially constructed system outside a living organism.
  • the monooxygenase reaction system is preferably a system constructed in an organism from the viewpoint of the stability and activity of the monooxygenase protein.
  • the construction of the present monooxygenase reaction system in the organism may be that the organism originally has the system, or artificially introduce the system into an organism that does not have the system. Good.
  • the method for artificially introducing the present monooxygenase reaction system and the target of introduction are not particularly limited.
  • Vector> and ⁇ 5. It can be carried out by the method described in the section ⁇ Transformant>.
  • the electron transfer protein in the monooxygenase reaction system is not particularly limited as long as it is a protein that supplies the redox power for the monooxygenase to generate monooxygenase activity.
  • Examples of the electron transfer system protein include a combination of ferredoxin and ferredoxin reductase (ferredoxin is, for example, liske protein, putidaredoxin, adrenodoxin, etc., and ferredoxin reductase is, for example, flavoprotein reductase, putidaredoxin reductase, And a combination of flavodoxin and flavodoxin reductase, P450 reductase, and the like.
  • ferredoxin is, for example, liske protein, putidaredoxin, adrenodoxin, etc.
  • ferredoxin reductase is, for example, flavoprotein reductase, putidaredoxin reductase, And a combination of flavodoxin and flavodoxin reductase, P450 reductase, and the like.
  • the electron transfer system protein is selected from any one protein selected from the group consisting of the following (i) to (l), and from the group consisting of the following (m) to (p):
  • any of the proteins that are: (I) a protein comprising the amino acid sequence set forth in SEQ ID NO: 3; (J)
  • the amino acid sequence shown in SEQ ID NO: 3 consists of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added, and the following (m) to (p A protein having electron transfer activity when combined with any protein selected from the group consisting of:
  • the proteins (i) and (m) above are proteins consisting of the amino acid sequences shown in SEQ ID NOs: 3 and 4, both of which are derived from Rhodococcus bratislaviensis.
  • SEQ ID NO: 3 is a polypeptide composed of a full-length 322 mino acid residue.
  • SEQ ID NO: 4 is a polypeptide composed of a full-length 169 mino acid residue. In Protein Discover Software (Thermo Scientific), the Protein ID is peg. Labeled as 802.
  • the proteins (j) and (n) above are functionally equivalent mutants, derivatives, variants, alleles, homologs, orthologs, partial peptides, or others of the proteins having the amino acid sequences shown in SEQ ID NOs: 3 and 4.
  • a protein (j) such as a fusion protein with a protein or peptide of (j)
  • the electron transfer activity is exhibited when combined with any protein selected from the group consisting of (m) to (p)
  • the protein of (n) its specific sequence as long as it has electron transfer activity when combined with any protein selected from the group consisting of (i) to (l) Is not limited.
  • the above proteins (k) and (o) are also functionally equivalent mutants, derivatives, variants, alleles, homologs, orthologs, partial peptides, or others of the proteins having the amino acid sequences shown in SEQ ID NOs: 3 and 4.
  • the protein (k) electron transfer when combined with any protein selected from the group consisting of (m) to (p)
  • the specific examples thereof are as long as it has electron transfer activity when combined with any protein selected from the group consisting of (i) to (l).
  • SEQ ID NOs: 8 and 9 represent the base sequences (Open Reading Frame: ORF) of the genes encoding the proteins consisting of the amino acid sequences shown by SEQ ID NOs: 3 and 4, respectively.
  • the electron transfer protein is limited to a protein selected from the group consisting of (i) to (l) and a protein selected from the group consisting of (m) to (p). It is intended that other proteins involved in the electron transport system may be included.
  • a monooxygenase gene encoding the protein is provided.
  • the protein is ⁇ 1. It may be a protein constituting the monooxygenase in one embodiment of the present invention described in the section “Monooxygenase>”.
  • Vector> In one embodiment of the invention, ⁇ 3.
  • a vector comprising the gene described in the section ⁇ Gene> is provided. This vector includes not only an expression vector for expressing the above gene in a host cell for producing a transformant, but also a vector used for production of a recombinant protein.
  • the base material vector serving as the base of the vector various commonly used vectors can be used.
  • a plasmid, phage, cosmid or the like can be used, and can be appropriately selected according to the cell to be introduced or the introduction method. That is, the specific type of vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected.
  • an appropriate promoter sequence may be selected to ensure that the gene is expressed, and a gene obtained by incorporating this gene and the gene into various plasmids may be used as an expression vector.
  • Such expression vectors include, for example, phage vectors, plasmid vectors, viral vectors, retroviral vectors, chromosomal vectors, episomal vectors and virus-derived vectors (eg, bacterial plasmids, bacteriophages, yeast episomes, yeast chromosomal elements and viruses (eg, baculo Vectors derived from viruses, papovaviruses, vaccinia viruses, adenoviruses, tripox viruses, pseudorabies viruses, herpes viruses, lentiviruses and retroviruses)) and combinations thereof can be used.
  • virus-derived vectors eg, bacterial plasmids, bacteriophages, yeast episomes, yeast chromosomal elements and viruses (eg, baculo Vectors derived from viruses, papovaviruses, vaccinia viruses, adenoviruses, tripox viruses, pseudorabies viruses, herpes viruses, lentiviruses and retroviruse
  • pQE60, pQE70, pQE80 and pQE9 available from Qiagen
  • pTipQC1 available from Qiagen or Hokkaido System Science
  • pTipRT2 available from Hokkaido System Science
  • pBS Vectors, Pagescript vector, Bluescript vector, pNH8A, pNH16A, pNH18A and pNH46A available from Stratagene
  • ptrc99a, pKK223-3, pKK233-3, pDR540 and pRIT5 available from Addgene
  • pRSF available from MERCK
  • As well as pAC available from Nippon Gene Co., Ltd.
  • Also preferred eukaryotic vectors include pWLNE0, pSV2CAT, pOG44, pXT1 and pSG (available from Stratagene); and pSVK3, pBPV, pMSG and pSVL (available from Addgene).
  • the gene insert is operably linked to an appropriate promoter.
  • suitable promoters may be those known to those skilled in the art, and are not particularly limited.
  • the vector further includes a site for transcription initiation and transcription termination, and a ribosome binding site for translation in the transcription region.
  • the coding portion of the mature transcript expressed by the vector construct will contain a transcription start AUG at the beginning of the polypeptide to be translated and a stop codon appropriately located at the end.
  • the host into which the vector is introduced is not particularly limited, but various cells can be suitably used.
  • suitable hosts include, but are not limited to, bacteria, yeasts, filamentous fungi, plant cells, animal cells and the like. Appropriate culture media and conditions for the above-described host cells can be used as known in the art.
  • the method for introducing the vector into a host cell ie, the transformation method is not particularly limited, and the calcium phosphate method, liposome method, DEAE dextran method, microinjection method, cationic lipid-mediated transfection, electroporation, transduction Alternatively, a conventionally known method such as infection can be suitably used. Such methods are described in many standard laboratory manuals such as Davis et al., Basic Methods In Molecular Biology (1986).
  • Transformant> In one embodiment of the invention, ⁇ 3. Genes described in the section “Gene> or ⁇ 4. A transformant comprising the recombinant vector described in the section ⁇ Vector> is provided.
  • “including a gene or vector” means that it has been introduced into a target cell (host cell) so as to be expressed by a known genetic engineering technique (gene manipulation technique).
  • the “transformant” means not only cells / tissues / organs but also individual organisms.
  • production method As a production method (production method) of the present transformant, a method of transforming the above-described vector can be mentioned.
  • the organism to be transformed is not particularly limited, and examples thereof include various organisms exemplified in the host cell.
  • host cells used in one embodiment of the present invention include bacteria, yeasts, filamentous fungi, plant cells, animal cells and the like, but actinomycetes are preferred from the viewpoint of introduction and expression efficiency.
  • Examples of the actinomycetes include bacteria belonging to the genus Rhodococcus and Nocardia, and preferably Rhodococcus erythropolis, Rhodococcus rhodocrose rhodococcus rhodosocros ), Nocardia globulara, etc. are used. As used in Examples described later, Rhodococcus erythropolis is particularly preferably used as the host cell.
  • the transformant preferably further includes the following genes: (1) a gene encoding an electron transport system protein, and / or (2) a gene encoding a transporter protein.
  • the electron transfer protein is not particularly limited.
  • the protein may be an electron transfer system protein described in the section of monooxygenase reaction system>.
  • the transporter protein is not particularly limited as long as it is a protein having a function of incorporating a substance serving as a substrate for the monooxygenase into the transformant.
  • transporter protein examples include permease (eg, symporter, antiporter, uniporter, etc.), ABC transporter and the like.
  • the transporter protein is preferably any protein selected from the group consisting of the following (q) to (t): (Q) a protein comprising the amino acid sequence set forth in SEQ ID NO: 5; (R) a protein having a transporter activity consisting of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted and / or added in the amino acid sequence shown in SEQ ID NO: 5; (S) a protein comprising an amino acid sequence having 80% or more homology with the amino acid sequence described in SEQ ID NO: 5 and having transporter activity; (T) A protein encoded by a gene consisting of the base sequence set forth in SEQ ID NO: 10.
  • the protein (q) is a protein having the amino acid sequence represented by SEQ ID NO: 5, and is derived from Rhodococcus bratislaviensis.
  • SEQ ID NO: 5 is a polypeptide composed of a full-length 480 mino acid residue.
  • the Protein ID is peg. Labeled 800.
  • the protein of (r) above is a functionally equivalent variant, derivative, variant, allele, homolog, ortholog, partial peptide, or other protein / peptide of the protein having the amino acid sequence represented by SEQ ID NO: 5. As long as it is a fusion protein or the like and has transporter activity, its specific sequence is not limited.
  • the protein of the above (s) is also a functionally equivalent variant, derivative, variant, allele, homolog, ortholog, partial peptide, or other protein / peptide of the protein having the amino acid sequence represented by SEQ ID NO: 5.
  • the specific sequence is not limited as long as it is intended to be a fusion protein and has transporter activity.
  • SEQ ID NO: 10 represents the base sequence (Open Reading Frame: ORF) of the gene encoding the protein consisting of the amino acid sequence shown in SEQ ID NO: 5, respectively.
  • the transporter protein is not limited to a protein selected from the group consisting of the above (q) to (t), and other substances involved in substance transport (transport) on the cell membrane. It is intended that the protein may comprise:
  • the gene encoding the electron transfer system protein is not included in the introduced host / transformant when it does not have an electron transfer system protein that supplies redox power to the monooxygenase. When it has an electron transfer protein that functions as a compensation and supplies the redox power to the monooxygenase, it can function as an enhancer of the supply of redox power.
  • the transformant contains the gene encoding the transporter protein (2), the incorporation of the monooxygenase substrate into the transformant is promoted, and as a result, the production of ⁇ -hydroxyamino acid is efficiently performed. Has the advantage of being done.
  • ⁇ 6 Process for producing ⁇ -hydroxyamino acid>
  • ⁇ 5. There is provided a method for producing a ⁇ -hydroxyamino acid, comprising a step of culturing the transformant described in the section>Transformant> in a medium containing an ⁇ -amino acid or an ⁇ , ⁇ -2 substituted amino acid.
  • the production of ⁇ -hydroxyamino acid in the present embodiment is ⁇ 5.
  • the transformant described in the section “Transformant> may be used, and other specific configurations, conditions, materials, equipment used, and the like are not particularly limited.
  • Actinomycetes are preferable as the transformant, and Rhodococcus erythropolis, particularly Rhodococcus erythropolis, is particularly preferable.
  • Rhodococcus erythropolis particularly Rhodococcus erythropolis, is particularly preferable.
  • ⁇ -hydroxyamino acids can be produced with high efficiency.
  • the production of ⁇ -hydroxyamino acid by the transformant is established by the presence of the transformant and ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid serving as a substrate in the medium at the same time.
  • the addition timing of the ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid to the medium is not particularly limited. For example, it is introduced simultaneously with the expression of the introduced gene in the transformant or in the transformant. Can be added either before or after expressing the expressed gene, or both.
  • This embodiment may be a mode in which an ⁇ -amino acid or ⁇ , ⁇ -2 substituted amino acid is added to a medium that already contains a transformant. You may carry out by introduce
  • the ⁇ -amino acid, ⁇ , ⁇ -2 substituted amino acid and ⁇ -hydroxyamino acid are ⁇ 1.
  • Monooxygenase> can be used.
  • a conventionally known technique can be suitably used as a method for culturing the host strain of the transformant, and there is no particular limitation.
  • the temperature at the time of culture it is preferably 20 to 45 ° C., more preferably 25 to 35 ° C. according to a conventional method.
  • the reaction time is not particularly limited, the culture is preferably performed for 1 to 120 hours, more preferably 24 to 72 hours after the transgene expression.
  • the method for collecting ⁇ -hydroxyamino acid from the culture or bacterial cells can also be performed according to a method commonly used for obtaining a microbial product, and is not particularly limited.
  • Example 1 Isolation of 2-aminoisobutyric acid-assimilating microorganism and evaluation of hydroxylation activity 0.1% 2-aminoisobutyric acid, 0.1% ammonium chloride, 0.1% potassium dihydrogen phosphate; 1% dipotassium hydrogen phosphate, 0.03% magnesium sulfate heptahydrate, 0.01% Difco Yeast Nitrogen Base w / o Amino Acids and Ammonium Sulfate, using 2 ml of liquid medium for accumulation, Each of the soil samples collected from was cultured with shaking at 28 ° C. for 5 days (all concentrations are shown in (w / v)% (hereinafter the same applies throughout the examples)).
  • the culture medium in which the microorganisms had grown was inoculated into 2 ml of a new accumulation liquid medium. After repeating this operation several times, 2-aminoisobutyric acid assimilating microorganisms were isolated on a 1.5% agar plate medium prepared with the same components. Each of the isolated microorganisms was again inoculated into 2 ml of an accumulation liquid medium and cultured with shaking at 28 ° C. for 5 days. Thereafter, the wet cells collected by centrifugation at 8000 g for 10 minutes and washed twice with 0.85% saline were used for the following resting cell reaction.
  • the resting cell reaction was performed by shaking 10 mM 2-aminoisobutyric acid, 10 mM glucose, 1 mM aminooxyacetic acid, 5% wet cells in 50 mM HEPES buffer (pH 7.5) at 300 rpm for 4 hours.
  • Example 2 Proteome analysis of Wratislaviensis strain C31-06 Wratislaviensis strain C31-06 was added to 250 ml of 2-aminoisobutyric acid-induced liquid medium (0.1% 2-aminoisobutyric acid, 0.1% ammonium chloride, 0.1% potassium dihydrogen phosphate, 0.1% hydrogen phosphate 2 potassium, 0.03% magnesium sulfate heptahydrate, 0.01% Difco Yeast Nitrogen Base w / o Amino Acids and Ammonium Sulfate), or 250 ml of non-induced medium (2-aminoisobutyric acid-derived liquid medium). Using 0.05% glucose instead of 1% 2-aminoisobutyric acid), the cells were cultured at 28 ° C.
  • Each cultured cell was collected by centrifugation at 4 ° C. and 8000 g for 10 minutes, and 7 M urea, 2.0 mM thiourea, 2% CHAPS, 10 mM dithiothreitol, 1 tablet / 10 ml protease inhibitor (Complete Mini, Roche). ) In 50 mM Tris-HCl (pH 8.0) buffer. 0.10 mm beads were added and the cells were crushed with a multi-bead shocker, and then centrifuged at 4 ° C. and 20000 g for 15 minutes. The obtained centrifugal supernatant was used as a cell lysate.
  • the precipitate was washed with a minimum amount of 200 mM TEAB buffer (pH 8.0), combined with the cell lysate, and filtered through a 0.45 ⁇ m filter. The filtrate was then replaced using 200 mM TEAB buffer. To the substituted filtrate, 9.5 mM Tris (2-carbethyl) phosphine was added and treated at 55 ° C. for 60 minutes. Thereafter, iodoacetamide was added to 17.9 mM and treated at room temperature for 30 minutes. Finally, 2 to 4 times the amount of cold acetone was added and treated at ⁇ 20 ° C. for 3 hours. Proteins were recovered by centrifugation at 13000 g for 10 minutes at 4 ° C. Residual acetone was removed by treatment at 37 ° C. for 2 minutes.
  • trypsin digestion of the protein was performed. Specifically, the collected protein was suspended in 200 mM TEAB buffer, and then digested with 47.6 ng / ⁇ l trypsin at 37 ° C. overnight. Thereafter, the obtained digest was labeled in 41 ⁇ l of acetonitrile using a tandem mass tag (TMT) 6-plex labeling kit (Thermo Fisher Scientific). After 60 minutes of reaction at room temperature, 8 ⁇ l of 5% hydroxylamine was added and mixed for 15 minutes. The liquid was then evaporated under vacuum and then dissolved in 100 ⁇ l of 0.1% trifluoroacetic acid.
  • TMT tandem mass tag 6-plex labeling kit
  • the trypsin-digested protein obtained as described above was subjected to LCMS analysis (Prominence Nano Flow System (Shimadzu Corporation)).
  • the obtained mass spectrometry data and R.I. Induced proteins were identified using Protein Discover Software (Thermo Scientific) equipped with a protein database created based on genome information of Wratislaviensis strain C31-06 (obtained by Hokkaido System Science). The results are shown in Table 2.
  • PCR is performed under the following PCR conditions, and peg.
  • a PCR product of 801-804 was obtained.
  • the PCR product was inserted into a vector pTipQC1 (Hokkaido System Science) treated with NcoI and HindIII with NEBuilder HiFi DNA Assembly Master Mix (NewngEngland BioLabs). Then, using this plasmid pQAH1, E. coli JM109 was transformed. The transformant was cultured overnight at 28 ° C. in 2 ml of LB medium (containing 50 ⁇ g / ml ampicillin). After obtaining pQAH1 from this cell, Rhodococcus erythropolis L88 (Hokkaido System Science) was transformed with this plasmid. The transformant was cultured overnight at 28 ° C.
  • 801-804 is a complex that catalyzes 2-aminoisobutyric acid hydroxylation reaction.
  • PCR is performed under the following PCR conditions, and peg. PCR products 801, 802, and 803 were obtained.
  • the PCR product was inserted into the vector pTipQC1 (Qiagen) treated with NcoI and HindIII. Then, using this plasmid pQAH-d804, E. coli was used. E. coli JM109 was transformed. The transformant was cultured overnight at 28 ° C. in 2 ml of LB medium (containing 50 ⁇ g / ml ampicillin). After obtaining pQAH-d804 from this cell, Rhodococcus erythropolis L88 (Hokkaido System Science) was transformed with this plasmid. The transformant was cultured overnight at 28 ° C.
  • PCR is performed under the following PCR conditions, and peg. PCR products 801, 802, and 804 were obtained.
  • PCR is performed under the following PCR conditions, and peg. PCR products of 803 and 804 were obtained.
  • the PCR product was inserted into a vector pQE60 (Qiagen) treated with NcoI and HindIII. Then, using this plasmid pQEHyd, E. coli was used. E. coli JM109 was transformed. The transformant was cultured overnight at 28 ° C. in 2 ml of LB medium (containing 50 ⁇ g / ml ampicillin). Next, a part of the culture solution was added to 250 ml of TB medium (containing 50 ⁇ g / ml ampicillin), and cultured with shaking at 28 ° C.
  • LB medium containing 50 ⁇ g / ml ampicillin
  • IPTG was added to a concentration of 1 mM for the purpose of inducing protein expression.
  • 2-aminoisobutyric acid was added as a reaction substrate to a concentration of 10 mM, and a shaking reaction was started.
  • Rhodococcus bacteria was higher than that of Escherichia coli as the host of this reaction system.
  • PCR is performed under the following PCR conditions, and peg. 800 PCR products were obtained.
  • the PCR product was inserted into a vector pTipRT2 (Hokkaido System Science) treated with NdeI and HindIII using NEBuilder HiFi DNA Assembly Master Mix (New England England BioLabs). Then, using this plasmid pRAT1, E. coli was used. E. coli JM109 was transformed. The transformant was cultured overnight at 28 ° C. in 2 ml of LB medium (containing 50 ⁇ g / ml ampicillin). After obtaining pRAT1 from this cell, pQAH1 Rhodococcus erythropolis L88 produced in Example 3 was transformed with this plasmid.
  • This transformant (pQAH1 / pRAT1 Rhodococcus erythropolis L88) was cultured overnight at 28 ° C. in 2 ml of LB medium (containing 5 ⁇ g / ml tetracycline and 20 ⁇ g / ml chloramphenicol). A part of the culture solution was added to a fresh 2 ml LB medium (5 ⁇ g / ml tetracycline, 20 ⁇ g / ml chloramphenicol included), and cultured with shaking at 28 ° C.
  • thiostrepton was added to a concentration of 0.2 ⁇ g / ml for the purpose of inducing protein expression.
  • 2-aminoisobutyric acid was added as a reaction substrate to a concentration of 10 mM, and the shaking reaction was started.
  • optical purity of the produced ⁇ -methyl-D-serine was 93.5% ee.
  • ⁇ Analysis conditions> ⁇ Measuring instrument: LCMS-2010A (Shimadzu Corporation) Column: Xbridge C18 column (5 ⁇ m: 2.1 ⁇ 150 mm) (Nippon Waters) -Column oven temperature: 40 ° C -Mobile phase A: 5% acetic acid-Mobile phase B: acetonitrile / methanol 90/10 ⁇ Flow rate: 0.25 ml / min ⁇ Gradient setting: 0 to 0.1 minutes 5% Mobile phase B, 0.1 to 30 minutes 5 to 35% Mobile phase B, 30 to 40 minutes 90% Mobile phase B, 40 to 50 minutes 5% mobile phase B MS conditions: Block temperature 200 ° C., Curved desolvation line temperature 250 ° C., Detector voltage 1.5 kV, nebulizing gas flow 1.51 / min 25 ⁇ l of reaction solution and 25 ⁇ l of 0.8% triethylamine acetonitrile solution are mixed, 50 ⁇ l The optical purity analysis was performed using a derivative
  • Example 6 Evaluation of substrate specificity pQAH1 / pRAT1 Rhodococcus erythropolis L88 was cultured in LB medium in the same manner as in Example 5. After inducing protein expression with 0.2 ⁇ g / ml thiostrepton, 10 mM each of L-isovaline, D-isovaline, L-aminobutyrate, D-aminobutyrate was added along with 5% glucose. After the reaction for 26 hours, the reaction supernatant was analyzed by the LCMS analysis method shown in Example 1.
  • PCR is performed under the following PCR conditions, and peg. PCR products of 803 and 804 were obtained.
  • a part of the culture solution was added to 200 ml of TB medium (50 ⁇ g / ml ampicillin, 25 ⁇ g / ml containing chloramphenicol), and cultured with shaking at 20 ° C. After the culture turbidity reached 0.6 (absorption wavelength: 600 nm), IPTG was added to a concentration of 0.5 mM for the purpose of inducing protein expression. After culturing for 16 hours, the cells were collected by centrifugation and washed twice with 0.85% NaCl. The cells were suspended in 0.5 M NaCl, 30 mM imidazole, 20 mM HEPES (pH 8.0), and then sonicated.
  • TB medium 50 ⁇ g / ml ampicillin, 25 ⁇ g / ml containing chloramphenicol
  • IPTG was added to a concentration of 0.5 mM for the purpose of inducing protein expression. After culturing for 16 hours, the cells were collected by centrifugation and washe
  • the above monooxygenase is peg. 803 and peg. It was estimated that each of 804 was composed of a heterotetramer structure as a whole monooxygenase.
  • PCR is performed under the following PCR conditions, and peg. 801 PCR products were obtained.
  • PCR product was inserted into a vector pQE80 (Qiagen) treated with BamHI and HindIII. Then, using this plasmid pQE-801, E. coli Rosetta 2 (DE3) was transformed. This transformant was cultured at 28 ° C. overnight in 2 ml of LB medium (containing 50 ⁇ g / ml ampicillin and 25 ⁇ g / ml chloramphenicol). A part of the culture solution was added to 200 ml of TB medium (50 ⁇ g / ml ampicillin, 25 ⁇ g / ml containing chloramphenicol), and cultured with shaking at 20 ° C.
  • LB medium containing 50 ⁇ g / ml ampicillin and 25 ⁇ g / ml chloramphenicol
  • IPTG IPTG was added to a concentration of 0.5 mM for the purpose of inducing protein expression. After culturing for 16 hours, the cells were collected by centrifugation and washed twice with 0.85% NaCl. The cells were suspended in 0.5 M NaCl, 30 mM imidazole, 20 mM HEPES (pH 8.0), and then sonicated. The centrifuged supernatant of this disrupted solution is introduced into HisTALON Superflow (1.6 ⁇ 2.5 cm) (Takara Bio) and eluted with 0.5 M NaCl, 30 mM imidazole, 150 mM HEPES (pH 8.0). Peg.
  • the enzyme fraction containing 801 was collected. This enzyme fraction is concentrated by ultrafiltration, then introduced into MonoQ 10/100 GL column (1.0 ⁇ 10 cm) (GE Healthcare), and eluted with 1M NaCl, 20 mM Tris-HCl buffer (pH 7.4). Peg. 801 purified enzymes were obtained. 0.77 ⁇ g / ml of peg. 801 is added to a reaction solution containing 10-150 ⁇ M NADH or NADPH, 20-100 ⁇ M dichloroindophenol, 100 mM potassium phosphate buffer (pH 7.5). The enzyme activity of 801 was measured.
  • the Km value in this reaction was measured and found to be 8.2 ⁇ M for NADH and 6.2 mM for NADPH. Therefore, peg. 801 was found to require NADH as a coenzyme.
  • the present invention can be used in fields where a stable protein supply is required, for example, in the field of production of peptide pharmaceuticals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の目的は、光学活性なβ-ヒドロキシアミノ酸の製造を可能にする新規酵素タンパク質を提供することにある。本発明は、2種類のヘテロな(異なる)サブユニットにより構成されていることを特徴とする、モノオキシゲナーゼを提供することにより、上記課題を解決する。

Description

新規モノオキシゲナーゼおよびその利用
 本発明は、新規モノオキシゲナーゼ、およびそれをコードする遺伝子、ならびにそれらの利用に関する。
 光学活性なα,α-2置換アミノ酸は、ペプチダーゼに対する安定性を高めるため、ペプチド医薬品のビルディングブロックとして期待されている(非特許文献1)。
 光学活性なα,α-2置換アミノ酸の製造方法として、例えば、非特許文献2には、不斉相関移動触媒を用いた不斉アルキル化反応による光学活性なα,α-2置換アミノ酸の製造方法が記載されている。また、特許文献1には、L-アラニンとホルムアルデヒドとを原料とした酵素反応により、α-メチル-L-セリンを合成する反応が記載されている。
特許第4877227号公報(2012年2月15日公開)
Claudio Mapelli et al., J. Med. Chem., 2009, 52, 7788-7799. Takashi Ooi et al., J. Am. Chem. Soc., 2003, 125, 5139-5151
 しかしながら、非特許文献2の方法では、光学活性なα,α-2置換アミノ酸が得られるものの、保護基の導入、反応後の脱保護の工程等の複雑な工程を要するという問題がある。また、特許文献1の方法では、保護基を要しない製法であるものの、L体であるα-メチル-L-セリンしか合成できず、その光学異性体であるα-メチル-D-セリンを合成することはできない。
 したがって、光学活性なα,α-2置換アミノ酸、例えば、光学活性α-メチル-D-セリンを簡便かつ効率的に製造するための改良された方法が求められていた。
 上記の事情に鑑み、本発明の目的は、光学活性なα,α-2置換アミノ酸を含むβ-ヒドロキシアミノ酸、例えば、α-メチル-D-セリンの製造を可能にする新規酵素タンパク質を提供することにある。
 本発明者は、上記目的を達成するため鋭意検討を重ねた結果、自然界において、2-アミノイソ酪酸を光学活性なα-メチル-D-セリンに変換する能力を有する微生物を見出し、単離することに成功した。また、上記微生物のプロテオーム解析およびそれに関連する各種解析により、2-アミノイソ酪酸をα-メチル-D-セリンに変換する新規モノオキシゲナーゼの同定に成功した。さらに、同定した新規モノオキシゲナーゼについて詳細な解析を進めたところ、上記モノオキシゲナーゼが、L-イソバリン、D-イソバリン、L-アミノブチレート、D-アミノブチレート等を基質として用いた場合にも、光学活性なβ-ヒドロキシアミノ酸に変換する活性を有することを見出し、本発明を完成するに至った。したがって、本発明の一態様は、以下の発明を包含するものである。
 〔1〕2種類のヘテロなサブユニットにより構成されていることを特徴とする、モノオキシゲナーゼ。
 〔2〕α-アミノ酸またはα,α-2置換アミノ酸を、β-ヒドロキシアミノ酸に変換する反応を触媒することを特徴とする、〔1〕に記載のモノオキシゲナーゼ。
 〔3〕上記α-アミノ酸またはα,α-2置換アミノ酸が、以下の式(1):
Figure JPOXMLDOC01-appb-C000008
 (式中、
 RおよびRは、それぞれ独立して、水素またはCHである。)
で示される化合物であり、
 上記β-ヒドロキシアミノ酸が、以下の式(2):
Figure JPOXMLDOC01-appb-C000009
 (式中、
 RおよびRは、それぞれ独立して、水素またはCHである。)
で示される化合物であることを特徴とする、〔2〕に記載のモノオキシゲナーゼ。
 〔4〕以下の式(3)~(7)で示される、α-アミノ酸またはα,α-2置換アミノ酸をβ-ヒドロキシアミノ酸に変換する反応の少なくとも一つ以上の反応を触媒することを特徴とする、〔1〕~〔3〕のいずれかに記載のモノオキシゲナーゼ:
式(3)
Figure JPOXMLDOC01-appb-C000010
;式(4)
Figure JPOXMLDOC01-appb-C000011
;式(5)
Figure JPOXMLDOC01-appb-C000012
;式(6)
Figure JPOXMLDOC01-appb-C000013
;式(7)
Figure JPOXMLDOC01-appb-C000014
 〔5〕上記2種類のヘテロなサブユニットを、それぞれαサブユニット、βサブユニットとすると、
 αサブユニットが、以下の(a)~(d)からなる群より選択されるいずれかのタンパク質を含み、
 βサブユニットが、以下の(e)~(h)からなる群より選択されるいずれかのタンパク質を含むことを特徴とする、〔1〕~〔4〕のいずれかに記載のモノオキシゲナーゼ:
 (a)配列番号1に記載されるアミノ酸配列からなるタンパク質;
 (b)配列番号1に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (c)配列番号1に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (d)配列番号6に記載される塩基配列からなる遺伝子にコードされるタンパク質;
 (e)配列番号2に記載されるアミノ酸配列からなるタンパク質;
 (f)配列番号2に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (g)配列番号2に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (h)配列番号7に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 〔6〕〔1〕~〔5〕のいずれかに記載のモノオキシゲナーゼと、電子伝達系タンパク質とを含むことを特徴とする、β-ヒドロキシアミノ酸を製造するためのモノオキシゲナーゼ反応システム。
 〔7〕上記電子伝達系タンパク質が、以下の(i)~(l)からなる群より選択されるいずれかのタンパク質、および以下の(m)~(p)からなる群より選択されるいずれかのタンパク質であることを特徴とする、〔6〕に記載のモノオキシゲナーゼ反応システム:
 (i)配列番号3に記載されるアミノ酸配列からなるタンパク質;
 (j)配列番号3に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (k)配列番号3に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (l)配列番号8に記載される塩基配列からなる遺伝子にコードされるタンパク質;
 (m)配列番号4に記載されるアミノ酸配列からなるタンパク質;
 (n)配列番号4に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (o)配列番号4に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (p)配列番号9に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 〔8〕〔1〕~〔5〕のいずれかに記載のタンパク質をコードするモノオキシゲナーゼ遺伝子。
 〔9〕〔8〕に記載の遺伝子を含むことを特徴とする組換えベクター。
 〔10〕〔8〕に記載の遺伝子または〔9〕に記載の組換えベクターを含むことを特徴とする形質転換体。
 〔11〕
 さらに、以下に示す遺伝子を含む、〔10〕に記載の形質転換体:
 (1)電子伝達系タンパク質をコードする遺伝子、および/または
 (2)トランスポータータンパク質をコードする遺伝子。
 〔12〕上記電子伝達系タンパク質が、以下の(i)~(l)からなる群より選択されるいずれかのタンパク質、および
 以下の(m)~(p)からなる群より選択されるいずれかのタンパク質であることを特徴とする、〔11〕に記載の形質転換体:
 (i)配列番号3に記載されるアミノ酸配列からなるタンパク質;
 (j)配列番号3に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (k)配列番号3に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (l)配列番号8に記載される塩基配列からなる遺伝子にコードされるタンパク質;
 (m)配列番号4に記載されるアミノ酸配列からなるタンパク質;
 (n)配列番号4に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (o)配列番号4に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (p)配列番号9に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 〔13〕上記トランスポータータンパク質が、以下の(q)~(t)からなる群より選択されるいずれかのタンパク質であることを特徴とする、〔11〕または〔12〕に記載の形質転換体:
 (q)配列番号5に記載されるアミノ酸配列からなるタンパク質;
 (r)配列番号5に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、トランスポーター活性を有するタンパク質;
 (s)配列番号5に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、トランスポーター活性を有するタンパク質;
 (t)配列番号10に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 〔14〕上記形質転換体が、ロドコッカス(Rhodococcus)属細菌であることを特徴とする、〔10〕~〔13〕のいずれかに記載の形質転換体。
 〔15〕〔10〕~〔14〕のいずれかに記載の形質転換体を、α-アミノ酸またはα,α-2置換アミノ酸を含む培地中で培養する工程を含むことを特徴とする、β‐ヒドロキシアミノ酸の製造方法。
 〔16〕上記形質転換体に含まれる〔8〕に記載の遺伝子が、ロドコッカス(Rhodococcus)属由来であることを特徴とする、〔15〕に記載の製造方法。
 〔17〕ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis) C31-06株(受託番号:NITE BP-02370)。
 本発明の一態様によれば、保護基の導入や脱保護の工程を要することなく、簡便かつ効率的に、α-アミノ酸またはα,α-2置換アミノ酸をβ-ヒドロキシアミノ酸に変換することができる。
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 本明細書中で使用される場合、用語「遺伝子」は、「ポリヌクレオチド」、「核酸」または「核酸分子」と交換可能に使用され、ヌクレオチドの重合体が意図される。ここで、遺伝子は、DNAの形態(例えば、cDNAもしくはゲノムDNA)、またはRNA(例えば、mRNA)の形態にて存在し得る。DNAまたはRNAは、二本鎖であっても、一本鎖であってもよい。一本鎖DNAまたはRNAは、コード鎖(センス鎖)であっても、非コード鎖(アンチセンス鎖)であってもよい。また、遺伝子は化学的に合成してもよく、コードするタンパク質の発現が向上するように、コドンユーセージ(Codon usage)を変更してもよい。同じアミノ酸をコードするコドン同士であれば置換することも可能である。
 また、用語「タンパク質」は、「ペプチド」または「ポリペプチド」と交換可能に使用される。本明細書において使用される場合、塩基およびアミノ酸の表記は、適宜IUPACおよびIUBの定める1文字表記または3文字表記を使用する。
 <1.モノオキシゲナーゼ>
 本発明の一実施形態において、少なくとも2種類のヘテロな(異なる)サブユニットにより構成されているモノオキシゲナーゼ(換言すれば、2種類以上の異なるサブユニットより構成されるヘテロモノオキシゲナーゼ)を提供する。
 モノオキシゲナーゼは、酸化酵素の一種であり、酸素1原子を基質へ導入する酵素である。従来知られていたモノオキシゲナーゼは、その大部分が、構造の観点から単一の酵素として機能するものであり、本発明の一実施形態におけるような複合体(ヘテロなサブユニット)により構成されるモノオキシゲナーゼは、知られていなかった。したがって、上記構造を有する本発明の一実施形態におけるモノオキシゲナーゼの発見は、驚くべきことであり、従来のモノオキシゲナーゼでは不可能あるいは反応性の低かった反応をも触媒することが可能となる。それ故、本発明の一実施形態では、従来にはなかった新規かつ有用なモノオキシゲナーゼを提供するものである。
 本発明の一実施形態におけるモノオキシゲナーゼは、2種類のヘテロな(異なる)サブユニットにより構成されていることが好ましい。サブユニットの数は、他のサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有する限り特段限定されず、例えば、2つ、3つ、4つ、5つ等であり得る。
 本発明の一実施形態におけるモノオキシゲナーゼの各サブユニットの構造は、他のサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有する限り特段限定されず、例えば、モノマー、ダイマー、トリマー、テトラマー等で構成されていてもよい。また、本発明の一実施形態におけるモノオキシゲナーゼは、モノオキシゲナーゼ活性が生じる限りにおいて、上記のようなサブユニットを含むヘテロダイマー、ヘテロトリマー、ヘテロテトラマー、ヘテロペンタマー、ヘテロヘキサマー等で構成されていてもよい。
 本発明の一実施形態におけるモノオキシゲナーゼは、上記で示される特徴的な構成を有している限り、その細部においては、適宜変更が可能である。当然ながら、そのような細部を変更したモノオキシゲナーゼも、本願発明の範囲に含まれる。
 本発明の一実施形態におけるモノオキシゲナーゼの由来は、菌類、例えば、放線菌であり、例えば、ロドコッカス(Rhodococcus)属、ノカルディア(Nocardia)属等が挙げられる。好ましくは、上記モノオキシゲナーゼは、ロドコッカス エリスロポリス(Rhodococcus erythropolis)、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)、ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)、ノカルディア グロベルラ(Nocardia globerula)由来であり、より好ましくはロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)由来である。
 本発明の一実施形態におけるモノオキシゲナーゼは、後述する実施例で示した通り、ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)C31-06株より取得された。ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)C31-06株は、独立行政法人製品評価技術基盤機構(NITE)特許微生物寄託センター(292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室)に、寄託者:国立大学法人京都大学大学院農学研究科 日比 慎(606-8502 京都府京都市左京区北白川追分町)、受託番号:NITE BP-02370(寄託日(国内寄託日):2016年10月6日、移管日:2018年3月12日、国内寄託受託番号NITE P-02370より移管)として寄託されている。よって、本発明は、当該ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)C31-06株をも提供する。
 本発明の一実施形態におけるモノオキシゲナーゼは、α-アミノ酸またはα,α-2置換アミノ酸を光学活性なβ-ヒドロキシアミノ酸に変換する反応を触媒することができる。すなわち、α-アミノ酸またはα,α-2置換アミノ酸を光学活性なβ-ヒドロキシアミノ酸に変換する反応を触媒することができるモノオキシゲナーゼ、好ましくは、α-アミノ酸またはα,α-2置換アミノ酸を光学活性なβ-ヒドロキシアミノ酸に変換する反応を触媒することができるロドコッカス属由来のモノオキシゲナーゼも、本発明の別の好ましい一実施形態である。
 本明細書において「α-アミノ酸」は、アミノ酸のα位が一置換されたアミノ酸を意味する。本実施形態におけるα-アミノ酸としては、例えば、L-アミノブチレート、D-アミノブチレート等が挙げられるが、これらに限定されない。
 本明細書において「α,α-2置換アミノ酸」は、アミノ酸のα位が二置換されたアミノ酸を意味する。本実施形態におけるα,α-2置換アミノ酸としては、例えば、2-アミノイソ酪酸、L-イソバリン、D-イソバリン等が挙げられるが、これらに限定されない。
 本明細書において「β-ヒドロキシアミノ酸」は、アミノ酸のβ位が水酸化されたアミノ酸を意味し、本発明の一実施形態におけるモノオキシゲナーゼにより、α-アミノ酸、α,α-2置換アミノ酸等の基質が光学的な活性を有するに至ったアミノ酸であれば特段限定されない。本実施形態におけるβ-ヒドロキシアミノ酸としては、例えば、α-メチル-D-セリン、(2S,3S)-2-メチルスレオニン、(2R,3R)-2-メチルスレオニン、L-アロ-スレオニン、D-アロ-スレオニン等が挙げられる。本明細書において「光学活性なβ-ヒドロキシアミノ酸」なる用語は、「β-ヒドロキシアミノ酸」と同義として用いられる。
 本発明の一実施形態におけるモノオキシゲナーゼは、α-アミノ酸またはα,α-2置換アミノ酸のβ位の水酸化を触媒することにより、β-ヒドロキシアミノ酸に変換すると想定される。このような作用機序により、上記モノオキシゲナーゼによって光学活性なβ-ヒドロキシアミノ酸に変換されるものであれば、α-アミノ酸、α,α-2置換アミノ酸およびβ-ヒドロキシアミノ酸は任意のものであってよい。
 本発明の一実施形態において、モノオキシゲナーゼにより、β-ヒドロキシアミノ酸に変換されるα-アミノ酸またはα,α-2置換アミノ酸は、以下の式(1)で示される化合物であることが好ましい:
Figure JPOXMLDOC01-appb-C000015
 (式中、
 RおよびRは、それぞれ独立して、水素またはアルキル基である。)。
 上記Rがアルキル基である場合、その炭素数は、1~5個であってもよく、好ましくは、1~3個であり、より好ましくは、1個である。また、上記Rがアルキル基である場合、アルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよく、好ましくは、直鎖状であり得る。
 上記Rがアルキル基である場合、上記Rと同様である。
 なお、式中*は、不斉炭素原子であっても、不斉炭素原子でなくてもよい。
 また、本発明の一実施形態において、モノオキシゲナーゼにより、α-アミノ酸またはα,α-2置換アミノ酸から変換されるβ-ヒドロキシアミノ酸は、以下の式(2)で示される化合物であることが好ましい:
Figure JPOXMLDOC01-appb-C000016
 (式中、
 RおよびRは、それぞれ独立して、水素またはアルキル基である。)。
 上記Rがアルキル基である場合、その炭素数は、1~5個であってもよく、好ましくは、1~3個であり、より好ましくは、1個である。また、上記Rがアルキル基である場合、アルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよく、好ましくは、直鎖状であり得る。
 上記Rがアルキル基である場合、上記Rと同様である。
 なお、式中*は、不斉炭素原子であっても、不斉炭素原子でなくてもよく、好ましくは*のいずれか、より好ましくは*の両方は、不斉炭素原子であり得る。
 本発明の一実施形態において、以下の式(3)~(7)で示される、α-アミノ酸またはα,α-2置換アミノ酸を光学活性なβ-ヒドロキシアミノ酸に変換する反応の少なくとも一つ以上の反応を触媒するモノオキシゲナーゼが好ましい:
式(3)
Figure JPOXMLDOC01-appb-C000017
;式(4)
Figure JPOXMLDOC01-appb-C000018
;式(5)
Figure JPOXMLDOC01-appb-C000019
;式(6)
Figure JPOXMLDOC01-appb-C000020
;式(7)
Figure JPOXMLDOC01-appb-C000021
 本発明の一実施形態におけるモノオキシゲナーゼは、上記式で示される、α-アミノ酸またはα,α-2置換アミノ酸を光学活性なβ-ヒドロキシアミノ酸に変換する反応において、得られるβ-ヒドロキシアミノ酸の光学純度が60%以上となるように変換しうるものであるのが好ましく、80%以上となるように変換しうるものであるのがより好ましく、85%以上となるように変換しうるものであるのがさらに好ましく、87%以上となるように変換しうるものであるのがとりわけ好ましい。
 本発明の一実施形態におけるモノオキシゲナーゼは、上記2種類のヘテロなサブユニットを、それぞれαサブユニット、βサブユニットとすると、αサブユニットが、以下の(a)~(d)からなる群より選択されるいずれかのタンパク質を含み、βサブユニットが、以下の(e)~(h)からなる群より選択されるいずれかのタンパク質を含むことが好ましい:
 (a)配列番号1に記載されるアミノ酸配列からなるタンパク質;
 (b)配列番号1に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (c)配列番号1に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (d)配列番号6に記載される塩基配列からなる遺伝子にコードされるタンパク質;
 (e)配列番号2に記載されるアミノ酸配列からなるタンパク質;
 (f)配列番号2に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (g)配列番号2に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
 (h)配列番号7に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 上記(a)および(e)のタンパク質は、配列番号1および2で示されるアミノ酸配列からなるタンパク質であり、いずれも、ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)に由来する。配列番号1は、全長378ミノ酸残基から構成されるポリペプチドであり、Protein Discover Software(Thermo Scientific社)において、Protein IDがpeg.803と標識されている。また、配列番号2は、全長373アミノ酸残基から構成されるポリペプチドであり、Protein Discover Software(Thermo Scientific社)において、Protein IDがpeg.804と標識されている。
 上記(b)および(f)のタンパク質は、配列番号1および2で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等であって、(b)のタンパク質の場合には、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有する限りにおいて、(f)のタンパク質の場合には、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有する限りにおいて、その具体的な配列については限定されない。ここで欠失、置換または付加されてもよいアミノ酸の数は、上記機能を失わせない限り、限定されてないが、部位特異的突然変異誘発法等の公知の導入法によって欠失、置換または付加できる程度の数をいい、好ましくは5アミノ酸以内であり、より好ましくは3アミノ酸以内(例えば、3、2または1アミノ酸)である。また、明細書中において「変異」とは、部位特異的突然変異誘発法等によって人為的に導入された変異を主に意味するが、天然に存在する同様の変異であってもよい。
 置換されるアミノ酸残基は、アミノ酸側鎖の性質が保存されている別のアミノ酸に置換されていることが好ましい。例えば、アミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸およびアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ酸(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)が挙げられる(括弧内はいずれもアミノ酸の一文字表記を表す)。あるアミノ酸配列に対する1または複数個のアミノ酸残基の欠失、付加および/または他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている。さらに、変異後のアミノ酸残基は、共通した性質をできるだけ多く有するアミノ酸残基に変異していることがより好ましい。
 本明細書において「機能的に同等」とは、対象となるタンパク質が、目的とするタンパク質と同等(同一および/または類似)の生物学的機能や生化学的機能を有することを意図する。生物学的な性質には発現する部位の特異性や、発現量等も含まれ得る。変異を導入したタンパク質が所望の機能を有するかどうかは、そのタンパク質をサブユニットの一部として用いた場合に、モノオキシゲナーゼ活性を有するかどうか調べることにより判断できる。
 上記(c)および(g)のタンパク質も、配列番号1および2で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等を意図しており、(c)のタンパク質の場合には、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有する限りにおいて、(g)のタンパク質の場合には、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有する限りにおいて、その具体的な配列については限定されない。
 アミノ酸配列の相同性とは、アミノ酸配列全体(または機能発現に必要な領域)で、少なくとも80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上(例えば、95%、96%、97%、98%、99%以上)の配列の同一性を有することを意味する。アミノ酸配列の相同性は、BLASTN(核酸レベル)やBLASTX(アミノ酸レベル)のプログラム(Altschul et al. J. Mol. Biol., 215: 403-410, 1990)を利用して決定することができる。該プログラムは、KarlinおよびAltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA, 87:2264-2268, 1990, Proc. Natl. Acad. Sci. USA, 90: 5873-5877, 1993)に基づいている。BLASTNによって塩基配列を解析する場合には、パラメーターは例えばscore=100、wordlength=12とする。また、BLASTXによってアミノ酸配列を解析する場合には、パラメーターは例えばscore=50、wordlength=3とする。また、Gapped BLASTプログラムを用いて、アミノ酸配列を解析する場合は、Altschulら(Nucleic Acids Res. 25: 3389-3402, 1997)に記載されているように行うことができる。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。比較対象の塩基配列またはアミノ酸配列を最適な状態にアラインメントするために、付加または欠失(例えば、ギャップ等)を許容してもよい。
 本明細書において「相同性」とは、性質が類似のアミノ酸残基数の割合(homology、positive等)を意図しているが、より好ましくは、同一のアミノ酸残基数の割合、すなわち同一性(identity)である。なお、アミノ酸の性質については上述したとおりである。
 上記(d)および(h)のタンパク質について、配列番号6および7は、それぞれ配列番号1および2で示されるアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列(Open Reading Frame:ORF)を示す。
 上記遺伝子・タンパク質を得る方法としては、通常行われるポリヌクレオチド改変方法を用いてもよい。すなわち、タンパク質の遺伝情報を有するポリヌクレオチドの特定の塩基を置換、欠失、挿入および/または付加することで、所望の組換えタンパク質の遺伝情報を有するポリヌクレオチドを作製することができる。ポリヌクレオチドの塩基を変換する具体的な方法としては、例えば市販のキット(KOD-Plus Site-Directed Mutagenesis Kit(東洋紡)、Transformer Site-Directed Mutagenesis Kit(Clontech)、QuickChange Site Directed Mutagenesis Kit(Stratagene)等)の使用、またはポリメラーゼ連鎖反応法(polymerase chain reaction:PCR)の利用が挙げられる。これらの方法は当業者に公知である。
 また、上記遺伝子は、上記タンパク質をコードするポリヌクレオチドのみからなるものであってもよいが、その他の塩基配列が付加されていてもよい。付加される塩基配列としては、特に限定されないが、標識(例えば、ヒスチジンタグ、MycタグまたはFLAGタグなど)、融合タンパク質(例えば、ストレプトアビジン、シトクロム、GST、GFPまたはMBPなど)、プロモーター配列、およびシグナル配列(例えば、小胞体移行シグナル配列、および分泌配列など)をコードする塩基配列などが挙げられる。これらの塩基配列が付加される部位は特に限定されるものではなく、例えば、翻訳されるタンパク質のN末端であっても、C末端でもあってもよい。
 <2.モノオキシゲナーゼ反応システム>
 本発明の一実施形態において、上記モノオキシゲナーゼと、電子伝達系タンパク質とを含む、β-ヒドロキシアミノ酸を製造するためのモノオキシゲナーゼ反応システムを提供する。
 本モノオキシゲナーゼ反応システムは、電子伝達系タンパク質を介した酸化還元力の供給により、上記モノオキシゲナーゼがβ-ヒドロキシアミノ酸を製造するシステムであり、上記モノオキシゲナーゼと、電子伝達系タンパク質とを含み、かつ、β-ヒドロキシアミノ酸を製造できるシステムであれば、特段限定されない。
 本モノオキシゲナーゼ反応システムは、生物体内で構築されたシステムであってもよく、生物体外で人工的に構築されたシステムであってもよい。本モノオキシゲナーゼ反応システムは、モノオキシゲナーゼタンパク質の安定性および活性の観点から、生物体内で構築されたシステムであることが好ましい。
 本モノオキシゲナーゼ反応システムの生物体内での構築は、生物が当該システムを元々有しているものであってもよく、当該システムを有しない生物に人工的に当該システムを導入することであってもよい。
 本モノオキシゲナーゼ反応システムを人工的に導入する方法および導入対象は、特段限定されないが、例えば、後述する<4.ベクター>および<5.形質転換体>の項に記載の方法により行われ得る。
 本モノオキシゲナーゼ反応システムにおける電子伝達系タンパク質は、上記モノオキシゲナーゼがモノオキシゲナーゼ活性を生じるための酸化還元力を供給するタンパク質であれば特段限定されない。
 電子伝達系タンパク質としては、例えば、フェレドキシンおよびフェレドキシンレダクターゼの組み合わせ(フェレドキシンは、例えば、リスケタンパク質、プチダレドキシン、アドレノドキシン等であり、フェレドキシンレダクターゼは、例えば、フラボタンパク質レダクターゼ、プチダレドキシンレダクターゼ、アドレノドキシンレダクターゼ等である)、フラボドキシンおよびフラボドキシンレダクターゼの組み合わせ、P450レダクターゼ等が挙げられる。
 本発明の一実施形態において、電子伝達系タンパク質は、以下の(i)~(l)からなる群より選択されるいずれかのタンパク質、および以下の(m)~(p)からなる群より選択されるいずれかのタンパク質であることが好ましい:
 (i)配列番号3に記載されるアミノ酸配列からなるタンパク質;
 (j)配列番号3に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (k)配列番号3に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (l)配列番号8に記載される塩基配列からなる遺伝子にコードされるタンパク質;
 (m)配列番号4に記載されるアミノ酸配列からなるタンパク質;
 (n)配列番号4に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (o)配列番号4に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
 (p)配列番号9に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 上記(i)および(m)のタンパク質は、配列番号3および4で示されるアミノ酸配列からなるタンパク質であり、いずれも、ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)に由来する。配列番号3は、全長322ミノ酸残基から構成されるポリペプチドであり、Protein Discover Software(Thermo Scientific社)において、Protein IDがpeg.801と標識されている。また、配列番号4は、全長169ミノ酸残基から構成されるポリペプチドであり、Protein Discover Software(Thermo Scientific社)において、Protein IDがpeg.802と標識されている。
 上記(j)および(n)のタンパク質は、配列番号3および4で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等であって、(j)のタンパク質の場合には、(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有する限りにおいて、(n)のタンパク質の場合には、(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有する限りにおいて、その具体的な配列については限定されない。
 上記(k)および(o)のタンパク質も、配列番号3および4で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等を意図しており、(k)のタンパク質の場合には、(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有する限りにおいて、(o)のタンパク質の場合には、(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有する限りにおいて、その具体的な配列については限定されない。
 上記(l)および(p)のタンパク質について、配列番号8および9は、それぞれ配列番号3および4で示されるアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列(Open Reading Frame:ORF)を示す。
 なお、本実施形態において、電子伝達系タンパク質は、上記(i)~(l)からなる群より選択されるタンパク質、および上記(m)~(p)からなる群より選択されるタンパク質に限定されるものではなく、電子伝達系に関与するその他のタンパク質を含み得ることを意図する。
 遺伝子・タンパク質に関する一般的な記載(例えば、用語の定義等)については、<1.モノオキシゲナーゼ>の項の記載を援用するものとする。
 <3.遺伝子>
 本発明の一実施形態において、上記タンパク質をコードするモノオキシゲナーゼ遺伝子を提供する。
 本実施形態において、上記タンパク質は、<1.モノオキシゲナーゼ>の項に記載した本発明の一実施形態におけるモノオキシゲナーゼを構成するタンパク質であり得る。
 <4.ベクター>
 本発明の一実施形態において、<3.遺伝子>の項に記載の遺伝子を含むベクターを提供する。本ベクターとしては、形質転換体作製のために宿主細胞内で、上記遺伝子を発現させるための発現ベクターのほか、組換えタンパク質の生産に用いるものも含まれる。
 上記ベクターの母体となる基材ベクターとしては、一般的に使用される種々のベクターを用いることができる。例えば、プラスミド、ファージまたはコスミド等を用いることができ、導入される細胞または導入方法に応じて適宜選択できる。つまり、ベクターの具体的な種類は特に限定されるものではなく、宿主細胞中で発現可能なベクターを適宜選択すればよい。宿主細胞の種類に応じて、確実に上記遺伝子を発現させるために適宜プロモーター配列を選択し、これと上記遺伝子とを各種プラスミド等に組み込んだものを発現ベクターとして用いればよい。かかる発現ベクターは、例えば、ファージベクター、プラスミドベクター、ウイルスベクター、レトロウイルスベクター、染色体ベクター、エピソームベクターおよびウイルス由来ベクター(例えば、細菌プラスミド、バクテリオファージ、酵母エピソーム、酵母染色体エレメントおよびウイルス(例えば、バキュロウイルス、パポバウイルス、ワクシニアウイルス、アデノウイルス、トリポックスウイルス、仮性狂犬病ウイルス、ヘルペスウイルス、レンチウイルスおよびレトロウイルス))ならびにそれらの組合せに由来するベクター(例えば、コスミドおよびファージミド)を利用可能である。
 細菌における使用に好ましいベクターの中には、例えば、pQE60、pQE70、pQE80およびpQE9(Qiagenから入手可能);pTipQC1(Qiagenまたは北海道システムサイエンスから入手可能)、pTipRT2(北海道システムサイエンスから入手可能);pBSベクター、Phagescriptベクター、Bluescriptベクター、pNH8A、pNH16A、pNH18AおよびpNH46A(Stratageneから入手可能);ptrc99a、pKK223-3、pKK233-3、pDR540およびpRIT5(Addgeneから入手可能);pRSF(MERCKから入手可能);ならびにpAC((株)ニッポンジーンから入手可能)が含まれる。また、好ましい真核生物ベクターの中には、pWLNE0、pSV2CAT、pOG44、pXT1およびpSG(Stratageneから入手可能);ならびにpSVK3、pBPV、pMSGおよびpSVL(Addgeneから入手可能)が含まれる。
 また、上記遺伝子のインサートは、適切なプロモーターに作動可能に連結されることが好ましい。他の適切なプロモーターとしては、当業者に知られたものを利用可能であり、特に限定されないが、例えば、lacUV5プロモーター、trpプロモーター、trcプロモーター、tacプロモーター、lppプロモーター、tufBプロモーター、recAプロモーター、pLプロモーター、lacIプロモーター、lacZプロモーター、T3プロモーター、T7プロモーター、SV40初期プロモーターおよび後期プロモーター、ならびにレトロウイルスLTRのプロモーターが挙げられる。
 上記ベクターは、さらに、転写開始、転写終結のための部位、および、転写領域中に翻訳のためのリボゾーム結合部位を含むことが好ましい。ベクター構築物によって発現される成熟転写物のコード部分は、翻訳されるべきポリペプチドの始めに転写開始AUGを含み、そして終わりに適切に位置される終止コドンを含むことになる。
 ベクターが導入される宿主としては、特に限定されないが、各種細胞を好適に用いることができる。適切な宿主の代表的な例としては、細菌、酵母、糸状菌、植物細胞、動物細胞等が挙げられるが、特に限定されるものではない。上記の宿主細胞のための適切な培養培地および条件は当分野で公知ものを利用可能である。
 上記ベクターを宿主細胞に導入する方法、すなわち形質転換方法も特に限定されるものではなく、リン酸カルシウム法、リポソーム法、DEAEデキストラン法、マイクロインジェクション法、カチオン性脂質媒介トランスフェクション、エレクトロポレーション、形質導入または感染等の従来公知の方法を好適に用いることができる。このような方法は、DavisらによるBasic Methods In Molecular Biology (1986)のような多くの標準的研究室マニュアルに記載されている。
 <5.形質転換体>
 本発明の一実施形態において、<3.遺伝子>の項に記載の遺伝子または<4.ベクター>の項に記載の組換えベクターを含む形質転換体を提供する。ここで、「遺伝子またはベクターを含む」とは、公知の遺伝子工学的手法(遺伝子操作技術)により、対象細胞(宿主細胞)内に発現可能に導入されていることを意味する。また、上記「形質転換体」とは、細胞・組織・器官のみならず、生物個体を含む意味である。
 本形質転換体の作製方法(生産方法)としては、上述したベクターを形質転換する方法が挙げられる。また、形質転換の対象となる生物も特に限定されるものではなく、上記宿主細胞で例示した各種生物を挙げることができる。
 本発明の一実施形態において使用される宿主細胞としては、細菌、酵母、糸状菌、植物細胞、動物細胞等が挙げられるが、導入および発現効率の観点から、放線菌が好ましい。
 放線菌としては、例えば、ロドコッカス(Rhodococcus)属、ノカルディア(Nocardia)属細菌等が挙げられ、好ましくは、ロドコッカス エリスロポリス(Rhodococcus erythropolis)、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)、ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)、ノカルディア グロベルラ(Nocardia globerula)等が用いられる。後述する実施例でも使用されているように、ロドコッカス エリスロポリス(Rhodococcus erythropolis)が宿主細胞として特に好ましく用いられる。
 本発明の一実施形態において、上記形質転換体は、以下に示す遺伝子をさらに含むことが好ましい:
 (1)電子伝達系タンパク質をコードする遺伝子、および/または
 (2)トランスポータータンパク質をコードする遺伝子。
 本電子伝達系タンパク質としては、特段限定されないが、例えば、<2.モノオキシゲナーゼ反応システム>の項で記載した電子伝達系タンパク質であり得る。
 本トランスポータータンパク質は、上記モノオキシゲナーゼの基質となる物質を形質転換体の内部に取り込む機能を有するタンパク質であれば特段限定されない。
 トランスポータータンパク質としては、例えば、パーミアーゼ(例えば、シンポーター、アンチポーター、ユニポーター等)、ABCトランスポーター等が挙げられる。
 本発明の一実施形態において、トランスポータータンパク質は、以下の(q)~(t)からなる群より選択されるいずれかのタンパク質であることが好ましい:
 (q)配列番号5に記載されるアミノ酸配列からなるタンパク質;
 (r)配列番号5に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、トランスポーター活性を有するタンパク質;
 (s)配列番号5に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、トランスポーター活性を有するタンパク質;
 (t)配列番号10に記載される塩基配列からなる遺伝子にコードされるタンパク質。
 上記(q)のタンパク質は、配列番号5で示されるアミノ酸配列からなるタンパク質であり、ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis)に由来する。配列番号5は、全長480ミノ酸残基から構成されるポリペプチドであり、Protein Discover Software(Thermo Scientific社)において、Protein IDがpeg.800と標識されている。
 上記(r)のタンパク質は、配列番号5で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等であって、トランスポーター活性を有する限りにおいて、その具体的な配列については限定されない。
 上記(s)のタンパク質も、配列番号5で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等を意図しており、トランスポーター活性を有する限りにおいて、その具体的な配列については限定されない。
 上記(t)のタンパク質について、配列番号10は、それぞれ配列番号5で示されるアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列(Open Reading Frame:ORF)を示す。
 なお、本実施形態において、トランスポータータンパク質は、上記(q)~(t)からなる群より選択されるタンパク質に限定されるものではなく、細胞膜上での物質輸送(トランスポート)に関与するその他のタンパク質を含み得ることを意図する。
 遺伝子・タンパク質に関する一般的な記載(例えば、用語の定義等)については、<1.モノオキシゲナーゼ>の項の記載を援用するものとする。
 形質転換体が上記(1)電子伝達系タンパク質をコードする遺伝子を含むことにより、上記モノオキシゲナーゼへの酸化還元力の供給が促進され、その結果として、β-ヒドロキシアミノ酸の製造が効率的に行われるという利点を有する。
 上記(1)電子伝達系タンパク質をコードする遺伝子は、導入先の宿主/形質転換体が、上記モノオキシゲナーゼへの酸化還元力の供給を行う電子伝達系タンパク質を有していないときは、それを補償するものとして機能し、上記モノオキシゲナーゼへの酸化還元力の供給を行う電子伝達系タンパク質を有しているときは、酸化還元力の供給を強化するものとして機能し得る。
 また、形質転換体が(2)トランスポータータンパク質をコードする遺伝子を含むことにより、形質転換体内部へのモノオキシゲナーゼ基質の取り込みが促進され、その結果として、β-ヒドロキシアミノ酸の製造が効率的に行われるという利点を有する。
 <6.β‐ヒドロキシアミノ酸の製造方法>
 本発明の一実施形態において、<5.形質転換体>の項に記載の形質転換体を、α-アミノ酸またはα,α-2置換アミノ酸を含む培地中で培養する工程を含む、β‐ヒドロキシアミノ酸の製造方法を提供する。本実施形態におけるβ‐ヒドロキシアミノ酸の製造は、<5.形質転換体>の項に記載の形質転換体を用いるものであればよく、その他の具体的な構成、条件、材料、および使用設備等については、特段限定されない。
 上記形質転換体としては、放線菌が好ましく、特に、ロドコッカス属細菌、とりわけ、ロドコッカス エリスロポリス(Rhodococcus erythropolis)が好ましく用いられる。このような細菌を用いることで、β‐ヒドロキシアミノ酸を高効率で製造することができる。
 本実施形態において、上記形質転換体によるβ‐ヒドロキシアミノ酸の製造は、培地中に、形質転換体と、基質となるα-アミノ酸またはα,α-2置換アミノ酸が同時に存在していることにより成立する。α-アミノ酸またはα,α-2置換アミノ酸の培地への添加時期は、特に限定されることはないが、例えば、形質転換体内で導入した遺伝子を発現させるのと同時に、または形質転換体内で導入した遺伝子を発現させる前後のいずれか、もしくは両方において、添加され得る。本実施形態は、形質転換体がすでに含まれている培地へ、α-アミノ酸またはα,α-2置換アミノ酸を添加する態様であってもよく、α-アミノ酸またはα,α-2置換アミノ酸がすでに含まれている培地へ、形質転換体を投入することにより行われてもよい。このような条件は、上記に限らず、効率的なβ‐ヒドロキシアミノ酸の製造が可能なように、当業者により適宜設定され得る。
 本実施形態において、α-アミノ酸、α,α-2置換アミノ酸およびβ‐ヒドロキシアミノ酸は、<1.モノオキシゲナーゼ>の項に記載されたものであり得る。
 上記形質転換体を培養する工程に関しては、形質転換体の宿主菌株の培養方法として従来公知の手法を好適に利用でき、特に限定されない。例えば、培養時の温度であれば、常法にしたがい、20~45℃とするのが好ましく、25~35℃とするのがより好ましい。反応時間も特に限定されないが、導入遺伝子発現から1~120時間培養することが好ましく、24~72時間培養することがより好ましい。
 培養物または菌体からのβ‐ヒドロキシアミノ酸の採取方法についても、微生物生産物を得るのに常用される方法に従って行うことができ、特に限定されない。
 その他、上記<1>~<6>の各項目で記載した内容は、他の項目においても適宜援用できることを付言する。また、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。以下、実施例により本発明を更に詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
 〔実施例1〕2-アミノイソ酪酸資化性微生物の単離および水酸化活性の評価
 0.1% 2-アミノイソ酪酸、0.1% 塩化アンモニウム、0.1% リン酸2水素カリウム、0.1% リン酸水素2カリウム、0.03% 硫酸マグネシウム7水和物、0.01% Difco Yeast Nitogen Base w/o Amino Acids and Ammoniumu Sulfateで構成される2mlの集積用液体培地を用いて、自然界から採取した土壌サンプル各種を、28℃で5日間、振とう培養した(濃度はすべて(w/v)%で示す(以下、実施例全体に渡って同様))。微生物が生育してきた培養液を、2mlの新しい集積用液体培地に接種した。この操作を数回繰り返した後、同成分で調製した1.5% 寒天プレート培地にて、2-アミノイソ酪酸資化性微生物を単離した。単離した各微生物を再び2mlの集積用液体培地に播種し、28℃で5日間、振とう培養した。その後、8000gで10分間の遠心操作で集菌し、0.85%食塩水で2回洗浄した湿菌体を、以下の休止菌体反応に用いた。休止菌体反応は、10mM 2-アミノイソ酪酸、10mM グルコース、1mM アミノオキシ酢酸、5% 湿菌体を、50mM HEPESバッファー(pH7.5)中、300rpmで4時間振とうすることにより行った。
 結果を表1に示す。表1に示す通り、3種類の微生物において、α-メチル-D-セリンの生成が確認された。
Figure JPOXMLDOC01-appb-T000022
 <分析条件>
・測定機器:LCMS-2010A(島津製作所)
・カラム:Xbridge C18 カラム(5μm:2.1×150mm)(日本ウォーターズ)
・カラムオーブン温度:40℃
・移動相A:10mM 酢酸アンモニウム(pH5.0)
・移動相B:メタノール
・流速:0.3ml/分
・グラジエント設定:0~0.5分 0~1% 移動相B、0.5~18分 1~5% 移動相B、18~19分 5~9% 移動相B、19~29.5分 9~17% 移動相B、29.5~40分 17~60% 移動相B
・MS条件:ブロック温度 200℃、Curved desolvation line温度 250℃、Detector voltage 1.5kV、nebulizing gas flow 1.51/分
 AccQ-Tag derivation kit(日本ウォーターズ)を用いて、分析溶液中のアミノ酸を誘導化した後に、LCMS分析に供した。
 〔実施例2〕R. wratislaviensis C31-06株のプロテオーム解析
 R. wratislaviensis C31-06株を、250mlの2-アミノイソ酪酸誘導液体培地(0.1% 2-アミノイソ酪酸、0.1% 塩化アンモニウム、0.1% リン酸2水素カリウム、0.1% リン酸水素2カリウム、0.03% 硫酸マグネシウム7水和物、0.01% Difco Yeast Nitogen Base w/o Amino Acids and Ammoniumu Sulfate)、または250mlの非誘導培地(2-アミノイソ酪酸誘導液体培地において、0.1% 2-アミノイソ酪酸の代わりに0.05%グルコースを使用)を用いて、28℃で38.5時間培養した(各々、n=3)。それぞれの培養菌体を、4℃、8000gで10分間の遠心分離で集菌し、7M尿素、2.0mMチオウレア、2%CHAPS、10mM ジチオスレイトール、1tablet/10ml プロテアーゼ阻害剤(Complete Mini,ロシュ)を含む50mM Tris-HCl(pH8.0)バッファーに懸濁した。0.10mmビーズを添加し、マルチビーズショッカーで菌体を破砕した後、4℃、20000gで15分間、遠心分離を行った。得られた遠心上清を細胞溶解液として使用した。200mM TEABバッファー(pH8.0)を最小量用いて沈殿物を洗浄し、細胞溶解液と合わせて、0.45μmのフィルターでろ過した。次いで、200mM TEABバッファーを用いてろ液を置換した。置換したろ液に9.5mM Tris(2-carboxyethyl)phosphineを添加し、55℃で60分間、処理した。その後、ヨードアセトアミドを17.9mMとなるように添加し、室温で30分間、処理した。最後に、2~4倍量の冷アセトンを添加し、-20℃で3時間、処理した。4℃、13000gで10分間の遠心分離により、タンパク質を回収した。残存アセトンは、37℃で2分間処理することにより、除去した。
 次いで、タンパク質のトリプシン消化を行った。具体的には、回収したタンパク質を200mM TEABバッファーで懸濁した後、47.6ng/μlのトリプシンを用いて、37℃で終夜、消化処理した。その後、得られた消化物を、tandem mass tag(TMT)6-plex labeling kit(Thermo Fisher Scientific)を用いて、41μlの アセトニトリル中でラベル化した。室温で60分間の反応後、8μlの5%ヒドロキシルアミンを添加して15分間混合した。次いで、真空下で液体を蒸発させた後、100μlの0.1% トリフルオロ酢酸に溶解した。
 上記により得られたトリプシン消化タンパク質を、LCMS分析(Prominence Nano Flow System(島津製作所))に供した。得られた質量分析のデータと、R. wratislaviensis C31-06株のゲノム情報(北海道システムサイエンスで取得)を基に作成したタンパク質データベースを備えたProtein Discover Software(Thermo Scientific社)を用いて、誘導タンパク質の同定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000023
 <分析条件>
・測定機器:Prominence Nano Flow System(島津製作所)
・カラム:Monolithic silica capillaryカラム (500cm長、0.1mm ID)(京都モノテック)
・カラムオーブン温度:40℃
・移動相A:0.1% ギ酸水溶液
・移動相B:0.1% ギ酸アセトニトリル
・流速:500ml/分
・グラジエント設定:0~600分 5~45% 移動相B
・MS条件:LTQ Velos linear ion trap mass spectrometer(Thermo Scientific)、2.3kVのESI voltage、LTQ Velos ion trap上のイオントランスファーチューブ温度=280℃
 〔実施例3〕2-アミノイソ酪酸水酸化酵素および電子伝達系タンパク質の同定
 実施例2で得られたProtein ID peg.801-804が2-アミノイソ酪酸水酸化反応を触媒する複合体であると予想されたことから、これらをコードする遺伝子の取得を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.801-804のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム (100ng/μl、1μl)
・ポリメラーゼ:PrimeSTAR Max Premix(2×)(タカラバイオ)(25μl)
・プライマー(pTipQC1_5’ Hyd):TGTTTAACTTTAAGAAGGAGATATACCATGGTTGCACCAACCTCGAA(配列番号11)(10μM、1μl)
・プライマー(pTipQC1_3’ Hyd):TGGTGATGGTGATGCTCGAGAGATCTACTAGAGATCGAGGACGAGCC(配列番号12)(10μM、1μl)
・増幅条件:98℃ 10秒、55℃ 5秒、72℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、PCR産物を、NcoIとHindIIIとで制限酵素処理したベクターpTipQC1(北海道システムサイエンス)に挿入した。次いで、本プラスミドpQAH1を用いて、E.coli JM109を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン含)中、28℃で終夜培養した。本菌体からpQAH1を取得後、本プラスミドを用いて、Rhodococcus erythropolis L88(北海道システムサイエンス)を形質転換した。本形質転換体を、2mlのLB培地(20μg/ml クロラムフェニコール含)中、28℃で終夜培養した。培養液の一部を新しい2mlのLB培地(20μg/ml クロラムフェニコール含)へ添加し、28℃で振とう培養を行った。培養液濁度が0.8(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、チオストレプトンを0.2μg/mlの濃度となるように添加した。次いで、反応基質として、2-アミノイソ酪酸を10mMの濃度となるように添加し、振とう反応を開始した。
 その結果、48時間の反応後において、2.7mMのα-メチル-D-セリンの生成が確認された。
 以上より、peg.801-804が2-アミノイソ酪酸水酸化反応を触媒する複合体であることが分かった。
 <分析条件>
・測定機器:Shimadzu LC-VP(島津製作所)
・カラム:Xbridge C18 カラム(5μm:2.1×150mm)(日本ウォーターズ)
・カラムオーブン温度:40℃
・移動相A:Waters AccQ-Tag Eluent A
・移動相B:メタノール
・流速:0.3ml/分
・グラジエント設定:0~0.1分 0% 移動相B、0.1~0.5分 0~1% 移動相B、0.5~18分 1~5% 移動相B、18~19分 5~9% 移動相B、19~29.5分 9~17% 移動相B、29.5~40分 17~60% 移動相B、40~43分 60~0% 移動相B、43~55分 0% 移動相B
・検出:蛍光検出器(励起波長250nm 発光波長395nm)
 AccQ-Tag derivation kit(日本ウォーターズ)を用いて、分析溶液中のアミノ酸を誘導化した後に、LC分析に供した。
 〔実施例4〕peg.803、804の機能解析
 〔4.1〕
 Protein ID peg.801、802、803を発現する形質転換放線菌の構築を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.801、802、803のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム (100ng/μl、1μl)
・ポリメラーゼ:PrimeSTAR Max Premix(2×)(タカラバイオ)(25μl)
・プライマー(pTipQC1_5’ 803):TGTTTAACTTTAAGAAGGAGATATACCATGACCATCATCGAACACGG(配列番号13)(10μM、1μl)
・プライマー(pTipQC1_3’ Hyd):TGGTGATGGTGATGCTCGAGAGATCTACTAGAGATCGAGGACGAGCC(配列番号12)(10μM、1μl)
・増幅条件:98℃ 10秒、55℃ 5秒、72℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、PCR産物を、NcoIとHindIIIとで制限酵素処理したベクターpTipQC1(Qiagen)に挿入した。次いで、本プラスミドpQAH-d804を用いて、E.coli JM109を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン含)中、28℃で終夜培養した。本菌体からpQAH-d804を取得後、本プラスミドを用いて、Rhodococcus erythropolis L88(北海道システムサイエンス)を形質転換した。本形質転換体を、2mlのLB培地(20μg/ml クロラムフェニコール含)中、28℃で終夜培養した。培養液の一部を新しい2mlのLB培地(20μg/ml クロラムフェニコール含)へ添加し、28℃で振とう培養を行った。培養液濁度が0.8(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、チオストレプトンを0.2μg/mlの濃度となるように添加した。次いで、反応基質として、2-アミノイソ酪酸を10mMの濃度となるように添加し、振とう反応を開始した。
 その結果、48時間の反応後において、培養上清には、α-メチル-D-セリンの生成は確認できなかった。
 実施例3の結果と本結果より、水酸化活性発現にはpeg.804タンパク質が必要であることが分かった。
 〔4.2〕
 続いて、Protein ID peg.801、802、804を発現する形質転換放線菌の構築を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.801、802、804のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム (100ng/μl、1μl)
・ポリメラーゼ:PrimeSTAR Max Premix(2×)(タカラバイオ)(25μl)
・プライマー(pTipQC1_5’ Hyd):TGTTTAACTTTAAGAAGGAGATATACCATGGTTGCACCAACCTCGAA(配列番号11)(10μM、1μl)
・プライマー(joint802-4_3’):CGCTACCGATTACAAACTTGGACATTCTTAACCAACCTTTCCTGGGC(配列番号14)(10μM、1μl)
または
・プライマー(joint804-2_5’):CCCGAGCCCAGGAAAGGTTGGTTAAGAATGTCCAAGTTTGTAATCGG(配列番号15)(10μM、1μl)
・プライマー(pTipQC1_3’ Hyd):TGGTGATGGTGATGCTCGAGAGATCTACTAGAGATCGAGGACGAGCC(配列番号12)(10μM、1μl)
・増幅条件:98℃ 10秒、55℃ 5秒、72℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、2種類のPCR産物を、NcoIとHindIIIとで制限酵素処理したベクターpTipQC1(Qiagen)に挿入した。次いで、本プラスミドpQAH-d803を用いて、E.coli JM109を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン含)中、28℃で終夜培養した。本菌体からpQAH-d803を取得後、本プラスミドを用いて、Rhodococcus erythropolis L88(北海道システムサイエンス)を形質転換した。本形質転換体を、2mlのLB培地(20μg/ml クロラムフェニコール含)中、28℃で終夜培養した。培養液の一部を新しい2mlのLB培地(20μg/ml クロラムフェニコール含)へ添加し、28℃で振とう培養を行った。培養液濁度が0.8(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、チオストレプトンを0.2μg/mlの濃度となるように添加した。次いで、反応基質として、2-アミノイソ酪酸を10mMの濃度となるように添加し、振とう反応を開始した。
 その結果、48時間の反応後において、培養上清には、α-メチル-D-セリンの生成は確認できなかった。
 実施例3の結果と本結果より、水酸化活性発現にはpeg.803タンパク質が必要であることが分かった。
 〔比較例1〕形質転換大腸菌についての反応性評価
 Protein ID peg.801-804を発現する形質転換大腸菌の構築を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.803、804のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム (100ng/μl、1μl)
・ポリメラーゼ:Tsk Gflex DNA Polymerase(タカラバイオ)(1.25ユニット/μl、1μl)
・プライマー(pQE60_5’ Hyd):GAATTCATTAAAGAGGAGAAATTAACCATGGTTGCACCAACCTCGAA(配列番号16)(10μM、1μl)
・プライマー(pQE60_3’ Hyd):CAACAGGAGTCCAAGCTCAGCTAATTACTAGAGATCGAGGACGAGCC(配列番号17)(10μM、1μl)
・増幅条件:98℃ 10秒、58℃ 15秒、68℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、PCR産物を、NcoIとHindIIIとで制限酵素処理したベクターpQE60(Qiagen)に挿入した。次いで、本プラスミドpQEHydを用いて、E.coli JM109を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン含)中、28℃で終夜培養した。次いで、培養液の一部を、250mlのTB培地(50μg/ml アンピシリン含)へ添加し、28℃で振とう培養を行った。培養液濁度が0.6(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、IPTGを1mMの濃度となるように添加した。16時間の培養後、反応基質として、2-アミノイソ酪酸を10mMの濃度となるように添加し、振とう反応を開始した。
 その結果、48時間の反応後において、0.2mMのα-メチル-D-セリンの生成が確認された。これは、実施例3と比較して、α-メチル-D-セリンの生成量が少ない結果であった。
 以上より、本反応系の宿主としては、大腸菌よりもロドコッカス属細菌において、反応性がより高まることが分かった。
 〔実施例5〕peg.800導入による反応性評価
 相同性検索の結果に基づき、実施例2で得られたProtein ID peg.800が、2-アミノイソ酪酸のトランスポーターであると予想されたことから、peg.800をコードする遺伝子の取得を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.800のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム(100ng/μl、1μl)
・ポリメラーゼ: PrimeSTAR Max Premix(2×)(タカラバイオ)(25μl)
・プライマー(pTipRT2_NdeI_5’ 800):GTTTAACTTTAAGAAGGAGATATACATATGACAGTGAATCATTCCCA(配列番号18)(10μM、1μl)
・プライマー(pTipRT2_HindIII_3’ 800):TGGTGATGGTGATGCTCGAGAGATCTATCAGATTCTGGGCTGCAGAA(配列番号19)(10μM、1μl)
・増幅条件:98℃ 10秒、55℃ 5秒、72℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、PCR産物を、NdeIとHindIIIとで制限酵素処理したベクターpTipRT2(北海道システムサイエンス)に挿入した。次いで、本プラスミドpRAT1を用いて、E.coli JM109を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン含)中、28℃で終夜培養した。本菌体からpRAT1を取得後、本プラスミドを用いて、実施例3で作製したpQAH1 Rhodococcus erythropolis L88を形質転換した。本形質転換体(pQAH1/pRAT1 Rhodococcus erythropolis L88)を、2mlのLB培地(5μg/ml テトラサイクリン、20μg/ml クロラムフェニコール含)中、28℃で終夜培養した。培養液の一部を新しい2mlのLB培地(5μg/ml テトラサイクリン、20μg/ml クロラムフェニコール含)へ添加し、28℃で振とう培養を行った。培養液濁度が0.8(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、チオストレプトンを0.2μg/mlの濃度となるように添加した。次いで、反応基質として、2-アミノイソ酪酸を10mMの濃度となるように添加し、振とう反応を開始した。
 その結果、48時間の反応後において、培養上清には、8.5mMのα-メチル-D-セリンの生成が確認された。
 本実施例では、実施例3よりも多くの生成物が確認されたことから、peg.800タンパク質が反応性を向上させることが分かった。
 なお、生成したα-メチル-D-セリンの光学純度は93.5%eeであった。
 <分析条件>
・測定機器:LCMS-2010A(島津製作所)
・カラム:Xbridge C18 カラム(5μm:2.1×150mm)(日本ウォーターズ)
・カラムオーブン温度:40℃
・移動相A:5%酢酸
・移動相B:アセトニトリル/メタノール=90/10
・流速:0.25ml/分
・グラジエント設定:0~0.1分 5% 移動相B、0.1~30分 5~35% 移動相B、30~40分 90% 移動相B、40~50分 5% 移動相B
・MS条件:ブロック温度 200℃、Curved desolvation line温度 250℃、Detector voltage 1.5kV、nebulizing gas flow 1.51/分
 25μlの反応溶液と25μlの0.8%トリエチルアミンアセトニトリル溶液とを混合し、50μlの2,3,4,6,-tetra-O-acetyl-β-D-glucopyranosyl isocyanateで誘導化したものを用いて、光学純度分析を行った。
 〔実施例6〕基質特異性評価
 実施例5と同様の方法により、pQAH1/pRAT1 Rhodococcus erythropolis L88をLB培地で培養した。0.2μg/mlのチオストレプトンでタンパク質の発現を誘導した後、10mMのL-イソバリン、D-イソバリン、L-アミノブチレート、D-アミノブチレートのそれぞれを、5% グルコースと共に添加した。26時間の反応後、実施例1に示すLCMS分析法にて、反応上清を分析した。
 その結果、各基質について分子量が16増加した生成物が確認されたことから、水酸化反応が進行していることが分かった。NMR及び旋光度解析の結果から、L-イソバリンを基質とした際には(2S,3S)-2-メチルスレオニンが、D-イソバリンを基質とした際には(2R,3R)-2-メチルスレオニンが、L-アミノブチレートを基質とした際にはL-アロ-スレオニンが、D-アミノブチレートを基質とした際にはD-アロ-スレオニンが、それぞれ生成していることが確認された。
 なお、(2S,3S)-2-メチルスレオニンおよび(2R,3R)-2-メチルスレオニンのNMRの結果は、以下の通りである(表3)。
Figure JPOXMLDOC01-appb-T000024
 〔実施例7〕peg.803、804の構造解析
 Protein ID peg.803、804を発現する形質転換大腸菌の構築を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.803、804のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム (100ng/μl、1μl)
・ポリメラーゼ:PrimeSTAR Max Premix(2×)(タカラバイオ)(25μl)
・プライマー(pQE_804_5’):TCGCATCACCATCACCATCACGGATCCATGGTTGCACCAACCTCGAA(配列番号20)(10μM、1μl)
・プライマー(pQE_803_3’):CAACAGGAGTCCAAGCTCAGCTAATTATTAGTCCGCCTGATTCGTAA(配列番号21)(10μM、1μl)
・増幅条件:98℃ 10秒、55℃ 5秒、72℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、PCR産物を、BamHIとHindIIIとで制限酵素処理したベクターpQE80(Qiagen)に挿入した。次いで、本プラスミドpQE804-803を用いて、E.coli Rosetta 2(DE3)を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン、25μg/ml クロラムフェニコール含)中、28℃で終夜培養した。培養液の一部を、200mlのTB培地(50μg/ml アンピシリン、25μg/ml クロラムフェニコール含)へ添加し、20℃で振とう培養を行った。培養液濁度が0.6(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、IPTGを0.5mMの濃度となるように添加した。16時間の培養後、菌体を遠心分離により回収し、0.85% NaClで2回洗浄した。本菌体を、0.5M NaCl、30mM イミダゾール、20mM HEPES(pH8.0)に懸濁後、超音波破砕した。遠心分離した本破砕液の上清を、HisTALON Superflow(1.6×2.5cm)(タカラバイオ)に導入し、0.5M NaCl、30mM イミダゾール、150mM HEPES(pH8.0)で溶出することにより、peg.803、804を含む酵素画分を回収した。本酵素画分を限外濾過により濃縮後、Superdex 200 Increase 10/300GL column(1.0×30cm)(GEヘルスケア)に導入し、10mM HEPES(pH8.0)、0.14M NaClを用いてpeg.803、804の分子量を測定したところ、約180,000であった。peg.803、804の推定分子量はそれぞれ42,000、43,000であることから、上記SDS-PAGE分析の結果と併せて、peg.803とpeg.804とが等モルで会合していることが分かった。
 以上より、上記モノオキシゲナーゼは、peg.803およびpeg.804の各々で構成され、モノオキシゲナーゼ全体としてヘテロテトラマー構造を取ることが推定された。
 〔実施例8〕peg.801の補酵素の同定
 Protein ID peg.801を発現する形質転換大腸菌の構築を試みた。
 具体的には、以下のPCR条件の下でPCRを行い、peg.801のPCR産物を得た。
 <PCR条件>
・鋳型:R. wratislaviensis C31-06株のゲノム (100ng/μl、1μl)
・ポリメラーゼ:PrimeSTAR Max Premix(2×)(タカラバイオ)(25μl)
・プライマー(pQE_801_5’):TCGCATCACCATCACCATCACGGATCCATGACCAATTCAGATAGTTC(配列番号22)(10μM、1μl)
・プライマー(pQE_801_3’):CAACAGGAGTCCAAGCTCAGCTAATTACTAGAGATCGAGGACGAGCC(配列番号23)(10μM、1μl)
・増幅条件:98℃ 10秒、55℃ 5秒、72℃ 1分を30サイクル。
 NEBuilder HiFi DNA Assembly Master Mix(New England BioLabs)を用いて、PCR産物を、BamHIとHindIIIとで制限酵素処理したベクターpQE80(Qiagen)に挿入した。次いで、本プラスミドpQE-801を用いて、E.coli Rosetta 2(DE3)を形質転換した。本形質転換体を、2mlのLB培地(50μg/ml アンピシリン、25μg/ml クロラムフェニコール含)中、28℃で終夜培養した。培養液の一部を、200mlのTB培地(50μg/ml アンピシリン、25μg/ml クロラムフェニコール含)へ添加し、20℃で振とう培養を行った。培養液濁度が0.6(吸収波長:600nm)となった後に、タンパク質の発現を誘導する目的で、IPTGを0.5mMの濃度となるように添加した。16時間の培養後、菌体を遠心分離により回収し、0.85% NaClで2回洗浄した。本菌体を、0.5M NaCl、30mM イミダゾール、20mM HEPES(pH8.0)に懸濁後、超音波破砕した。遠心分離した本破砕液の上清を、HisTALON Superflow(1.6×2.5cm)(タカラバイオ)に導入し、0.5M NaCl、30mM イミダゾール、150mM HEPES(pH8.0)で溶出することにより、peg.801を含む酵素画分を回収した。本酵素画分を限外濾過により濃縮後、MonoQ 10/100 GL column(1.0×10cm)(GEヘルスケア)に導入し、1M NaCl、20mM Tris-HClバッファー(pH7.4)で溶出することにより、peg.801の精製酵素を得た。0.77μg/mlのpeg.801を、10-150μM NADHまたはNADPH、20-100μM ジクロロインドフェノール、100mM リン酸カリウムバッファー(pH7.5)を含む反応液に添加して、peg.801の酵素活性を測定した。
 本反応におけるKm値を測定したところ、NADHに対しては、8.2μM、NADPHに対しては、6.2mMであった。したがって、peg.801は、NADHを補酵素として要求することが分かった。
 本発明は、安定したタンパク質の供給が求められる分野、例えば、ペプチド医薬の製造等の分野において利用することができる。
  NITE BP-02370

Claims (17)

  1.  2種類のヘテロなサブユニットにより構成されていることを特徴とする、モノオキシゲナーゼ。
  2.  α-アミノ酸またはα,α-2置換アミノ酸を、β-ヒドロキシアミノ酸に変換する反応を触媒することを特徴とする、請求項1に記載のモノオキシゲナーゼ。
  3.  上記α-アミノ酸またはα,α-2置換アミノ酸が、以下の式(1):
    Figure JPOXMLDOC01-appb-C000001
     (式中、
     RおよびRは、それぞれ独立して、水素またはCHである。)
    で示される化合物であり、
     上記β-ヒドロキシアミノ酸が、以下の式(2):
    Figure JPOXMLDOC01-appb-C000002
     (式中、
     RおよびRは、それぞれ独立して、水素またはCHである。)
    で示される化合物であることを特徴とする、請求項2に記載のモノオキシゲナーゼ。
  4.  以下の式(3)~(7)で示される、α-アミノ酸またはα,α-2置換アミノ酸をβ-ヒドロキシアミノ酸に変換する反応の少なくとも一つ以上の反応を触媒することを特徴とする、請求項1~3のいずれか1項に記載のモノオキシゲナーゼ:
    式(3)
    Figure JPOXMLDOC01-appb-C000003
    ;式(4)
    Figure JPOXMLDOC01-appb-C000004
    ;式(5)
    Figure JPOXMLDOC01-appb-C000005
    ;式(6)
    Figure JPOXMLDOC01-appb-C000006
    ;式(7)
    Figure JPOXMLDOC01-appb-C000007
  5.  上記2種類のヘテロなサブユニットを、それぞれαサブユニット、βサブユニットとすると、
     αサブユニットが、以下の(a)~(d)からなる群より選択されるいずれかのタンパク質を含み、
     βサブユニットが、以下の(e)~(h)からなる群より選択されるいずれかのタンパク質を含むことを特徴とする、請求項1~4のいずれか1項に記載のモノオキシゲナーゼ:
     (a)配列番号1に記載されるアミノ酸配列からなるタンパク質;
     (b)配列番号1に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
     (c)配列番号1に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがβサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
     (d)配列番号6に記載される塩基配列からなる遺伝子にコードされるタンパク質;
     (e)配列番号2に記載されるアミノ酸配列からなるタンパク質;
     (f)配列番号2に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
     (g)配列番号2に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなるタンパク質で、かつ、当該タンパク質を含むサブユニットがαサブユニットと複合体を形成したときにモノオキシゲナーゼ活性を有するタンパク質;
     (h)配列番号7に記載される塩基配列からなる遺伝子にコードされるタンパク質。
  6.  請求項1~5のいずれか1項に記載のモノオキシゲナーゼと、電子伝達系タンパク質とを含むことを特徴とする、β-ヒドロキシアミノ酸を製造するためのモノオキシゲナーゼ反応システム。
  7.  上記電子伝達系タンパク質が、以下の(i)~(l)からなる群より選択されるいずれかのタンパク質、および以下の(m)~(p)からなる群より選択されるいずれかのタンパク質であることを特徴とする、請求項6に記載のモノオキシゲナーゼ反応システム:
     (i)配列番号3に記載されるアミノ酸配列からなるタンパク質;
     (j)配列番号3に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (k)配列番号3に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (l)配列番号8に記載される塩基配列からなる遺伝子にコードされるタンパク質;
     (m)配列番号4に記載されるアミノ酸配列からなるタンパク質;
     (n)配列番号4に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (o)配列番号4に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (p)配列番号9に記載される塩基配列からなる遺伝子にコードされるタンパク質。
  8.  請求項1~5のいずれか1項に記載のタンパク質をコードするモノオキシゲナーゼ遺伝子。
  9.  請求項8に記載の遺伝子を含むことを特徴とする組換えベクター。
  10.  請求項8に記載の遺伝子または請求項9に記載の組換えベクターを含むことを特徴とする形質転換体。
  11.  さらに、以下に示す遺伝子を含む、請求項10に記載の形質転換体:
     (1)電子伝達系タンパク質をコードする遺伝子、および/または
     (2)トランスポータータンパク質をコードする遺伝子。
  12.  上記電子伝達系タンパク質が、以下の(i)~(l)からなる群より選択されるいずれかのタンパク質、および
     以下の(m)~(p)からなる群より選択されるいずれかのタンパク質であることを特徴とする、請求項11に記載の形質転換体:
     (i)配列番号3に記載されるアミノ酸配列からなるタンパク質;
     (j)配列番号3に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (k)配列番号3に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、以下の(m)~(p)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (l)配列番号8に記載される塩基配列からなる遺伝子にコードされるタンパク質;
     (m)配列番号4に記載されるアミノ酸配列からなるタンパク質;
     (n)配列番号4に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (o)配列番号4に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、上記の(i)~(l)からなる群より選択されるいずれかのタンパク質と組み合わせたときに電子伝達活性を有するタンパク質;
     (p)配列番号9に記載される塩基配列からなる遺伝子にコードされるタンパク質。
  13.  上記トランスポータータンパク質が、以下の(q)~(t)からなる群より選択されるいずれかのタンパク質であることを特徴とする、請求項11または12に記載の形質転換体:
     (q)配列番号5に記載されるアミノ酸配列からなるタンパク質;
     (r)配列番号5に記載されるアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、かつ、トランスポーター活性を有するタンパク質;
     (s)配列番号5に記載されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、トランスポーター活性を有するタンパク質;
     (t)配列番号10に記載される塩基配列からなる遺伝子にコードされるタンパク質。
  14.  上記形質転換体が、ロドコッカス(Rhodococcus)属細菌であることを特徴とする、請求項10~13のいずれか1項に記載の形質転換体。
  15.  請求項10~14のいずれか1項に記載の形質転換体を、α-アミノ酸またはα,α-2置換アミノ酸を含む培地中で培養する工程を含むことを特徴とする、β‐ヒドロキシアミノ酸の製造方法。
  16.  上記形質転換体に含まれる請求項8に記載の遺伝子が、ロドコッカス(Rhodococcus)属由来であることを特徴とする、請求項15に記載の製造方法。
  17.  ロドコッカス ラティスラビエンシス(Rhodococcus wratislaviensis) C31-06株(受託番号:NITE BP-02370)。
PCT/JP2018/013363 2017-03-31 2018-03-29 新規モノオキシゲナーゼおよびその利用 WO2018181774A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18776149.9A EP3604505A4 (en) 2017-03-31 2018-03-29 NOVEL MONOOXYGENASE AND USE THEREOF
CN201880022361.2A CN110832073A (zh) 2017-03-31 2018-03-29 新型单加氧酶及其用途
JP2019510160A JPWO2018181774A1 (ja) 2017-03-31 2018-03-29 新規モノオキシゲナーゼおよびその利用
US16/584,734 US20200010814A1 (en) 2017-03-31 2019-09-26 Novel monooxygenase and utilization thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071338 2017-03-31
JP2017-071338 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/584,734 Continuation-In-Part US20200010814A1 (en) 2017-03-31 2019-09-26 Novel monooxygenase and utilization thereof

Publications (1)

Publication Number Publication Date
WO2018181774A1 true WO2018181774A1 (ja) 2018-10-04

Family

ID=63676152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013363 WO2018181774A1 (ja) 2017-03-31 2018-03-29 新規モノオキシゲナーゼおよびその利用

Country Status (5)

Country Link
US (1) US20200010814A1 (ja)
EP (1) EP3604505A4 (ja)
JP (1) JPWO2018181774A1 (ja)
CN (1) CN110832073A (ja)
WO (1) WO2018181774A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029610A1 (ja) * 2008-09-09 2010-03-18 サントリーホールディングス株式会社 ハイブリッドアルファーグルコシドトランスポーター
JP2011084564A (ja) * 1998-09-03 2011-04-28 Japan Science & Technology Agency アミノ酸輸送蛋白及びその遺伝子
JP4877227B2 (ja) 2005-05-20 2012-02-15 味の素株式会社 L−セリン誘導体の製造方法およびこれに用いる酵素
JP2012529274A (ja) * 2009-06-08 2012-11-22 イェンネワイン バイオテクノロジー ゲーエムベーハー ヒトミルクオリゴ糖の合成

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1811029A4 (en) * 2004-11-10 2008-03-12 Marine Biotech Inst Co Ltd PROCESS FOR ISOLATING THE P450 GENE
CN1329506C (zh) * 2005-09-06 2007-08-01 清华大学 一种具有颗粒状甲烷单加氧酶活性的重组菌及其应用
JP5246639B2 (ja) * 2006-09-28 2013-07-24 味の素株式会社 4−ヒドロキシ−l−イソロイシンの製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084564A (ja) * 1998-09-03 2011-04-28 Japan Science & Technology Agency アミノ酸輸送蛋白及びその遺伝子
JP4877227B2 (ja) 2005-05-20 2012-02-15 味の素株式会社 L−セリン誘導体の製造方法およびこれに用いる酵素
WO2010029610A1 (ja) * 2008-09-09 2010-03-18 サントリーホールディングス株式会社 ハイブリッドアルファーグルコシドトランスポーター
JP2012529274A (ja) * 2009-06-08 2012-11-22 イェンネワイン バイオテクノロジー ゲーエムベーハー ヒトミルクオリゴ糖の合成

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402
CLAUDIO MAPELLI ET AL., J. MED. CHEM., vol. 52, 2009, pages 7788 - 7799
DAVIS ET AL., BASIC METHODS IN MOLECULAR BIOLOGY, 1986
FANG, T. ET AL.: "Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,, vol. 98, no. 2, 2014, pages 671 - 679, XP035328418 *
JACKSON, B. G. ET AL.: "Enantioselective Syntheses of 1-Carbacephalosporins from Chemoenzymically Derived β-Hydroxy-α-Amino Acids: Applications to the Total Synthesis of Carbacephem Antibiotic Loracarbef", TETRAHEDRON, vol. 56, no. 31, 28 July 2000 (2000-07-28), pages 5667 - 5677, XP004213797 *
KIMURA, T. ET AL.: "Enzymatic Synthesis of β-Hydroxy-α-amino Acids Based on Recombinant d- and l-Threonine Aldolases", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 119, no. 49, 1997, pages 11734 - 11742, XP055558740 *
MUELLER, L. A. ET AL.: "Characterization of a tyrosinase from Amanita muscaria involved in betalain biosynthesis", PHYTOCHEMISTRY, vol. 42, no. 6, August 1996 (1996-08-01), pages 1511 - 1515, XP055558731 *
NARITA, M. ET AL.: "A natural variant of bovine dopamine β-monooxygenase with phenylalanine as residue 208: purification and characterization of the variant homo- and heterotetramers of (F208) 4 and (F208) 2 (L208) 2", FEBS LETTERS, vol. 396, no. 2-3, November 1996 (1996-11-01), pages 208 - 212, XP055558735 *
PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 2268
PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
See also references of EP3604505A4
TAKASHI OOI ET AL., J. AM. CHEM. SOC., vol. 125, 2003, pages 5139 - 5151

Also Published As

Publication number Publication date
JPWO2018181774A1 (ja) 2020-02-20
EP3604505A1 (en) 2020-02-05
US20200010814A1 (en) 2020-01-09
CN110832073A (zh) 2020-02-21
EP3604505A4 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
Zelasko et al. Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems
JP7292442B2 (ja) 改変アミノアシルtRNA合成酵素およびその用途
JP5590649B2 (ja) 変異体ピロリジル−tRNA合成酵素及びこれを用いる非天然アミノ酸組み込みタンパク質の製造方法
US20150376581A1 (en) T7 rna polymerase variants and methods of using the same
JP5419220B2 (ja) エステル結合を含む非天然タンパク質の製造方法
US8883459B2 (en) Process for production of cis-4-hydroxy-L-proline
Gourinchas et al. A synthetic biology approach for the transformation of L-α-amino acids to the corresponding enantiopure (R)-or (S)-α-hydroxy acids
JP4936290B2 (ja) 非天然型アミノ酸を組み込んだタンパク質の製造方法
US20220348974A1 (en) Biotin synthases for efficient production of biotin
CN108998462A (zh) 含锰离子重组蛋白的大肠杆菌表达系统及其应用方法
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
WO2018181774A1 (ja) 新規モノオキシゲナーゼおよびその利用
US20190330672A1 (en) Highly efficient and tunable system for the incorporation of unnatural amino acids into proteins in escherichia coli
WO2021219124A1 (zh) 经修饰的苏氨酸转醛酶及其应用
WO2016068218A1 (ja) デヒドロゲナーゼ化した変異酵素及びその用途
CN112831532A (zh) 一种酶促合成d-亮氨酸的方法
JP6735461B2 (ja) 組換え大腸菌及びその利用
JP7289836B2 (ja) プロリンヒドロキシラーゼ、ならびにそれに伴う使用、方法および生成物
JP5697327B2 (ja) シス−ヒドロキシ−l−プロリンの製造方法
US20220267742A1 (en) Nadph-regeneration system based on monomeric isocitrate dehydrogenase and use thereof
KR102067475B1 (ko) 3-히드록시프로피온산 반응 전사인자를 이용한 3-하이드록시프로피온산 선택성 유전자회로 및 이를 이용한 3-히드록시프로피온산 생산 균주의 스크리닝 방법
JP6996714B2 (ja) N-サクシニル-ヒドロキシ-d-アミノ酸及び/又はヒドロキシ-d-アミノ酸の製造方法
KR101617371B1 (ko) 메타게놈 유래 신규 베이어 빌리거 모노옥시게나아제 BVMOgm1
KR101619864B1 (ko) 메타게놈 유래 신규 베이어 빌리거 모노옥시게나아제 BVMOsm1
KR20230162685A (ko) 아실 CoA 화합물 환원 활성을 갖는 재조합 폴리펩티드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018776149

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018776149

Country of ref document: EP

Effective date: 20191031