WO2018181399A1 - めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材 - Google Patents

めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材 Download PDF

Info

Publication number
WO2018181399A1
WO2018181399A1 PCT/JP2018/012591 JP2018012591W WO2018181399A1 WO 2018181399 A1 WO2018181399 A1 WO 2018181399A1 JP 2018012591 W JP2018012591 W JP 2018012591W WO 2018181399 A1 WO2018181399 A1 WO 2018181399A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
alloy
nickel
plated wire
cobalt
Prior art date
Application number
PCT/JP2018/012591
Other languages
English (en)
French (fr)
Inventor
美保 山内
吉章 荻原
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2018538793A priority Critical patent/JP6452912B1/ja
Priority to EP18776537.5A priority patent/EP3604624A4/en
Priority to KR1020197024432A priority patent/KR20190129843A/ko
Priority to CN201880023638.3A priority patent/CN110494597A/zh
Publication of WO2018181399A1 publication Critical patent/WO2018181399A1/ja
Priority to US16/585,903 priority patent/US20200024764A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/64Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component

Definitions

  • the present invention relates to a plated wire rod material having a base material made of aluminum or an aluminum alloy, and a surface treatment film covering the base material, a method for manufacturing the same, and a cable, an electric wire, a coil, and a spring formed using the same. This relates to the member.
  • copper has been used as a material for electric wires because of its high conductivity and excellent corrosion resistance.
  • copper has a large specific gravity, it is difficult to reduce the weight significantly.
  • aluminum has a lower electrical conductivity than copper, but its specific gravity is one-third that of copper. Therefore, aluminum is more suitable as a material for electric wires than copper.
  • aluminum forms an oxide film easily when it comes into contact with air, there is a problem that electrical connection reliability is lower than copper and soldering is difficult.
  • Patent Document 1 a copper clad aluminum electric wire has been proposed (Patent Document 1).
  • This copper-clad aluminum electric wire has Al—Mg-based aluminum as a core material, and is coated with copper having a purity of 99.9% or more at an area coverage of 20% or more and 40% or less. Since it is covered with copper, solderability and corrosion resistance are improved.
  • an aluminum wire is proposed in which a nickel thin film formed by electrolytic nickel plating is coated on the outer periphery of a zinc thin film formed by zinc substitution on the surface of an aluminum core (Patent Document 2).
  • This aluminum wire is easy to cold-draw by wire drawing because the difference in hardness between the aluminum core and the nickel plating film is adjusted to within 100 Hv.
  • the surface of the aluminum core is coated with a nickel plating film, the solderability is also good. Further, since an intermetallic compound is not formed between copper and aluminum like a copper clad aluminum electric wire, there is a feature that fluctuations in mechanical properties in a high temperature atmosphere can be suppressed.
  • the copper clad aluminum wire rod disclosed in Patent Document 1 has a problem that the effect of weight reduction is small compared to a wire rod made of only aluminum because the copper coating layer is thick.
  • a copper clad aluminum wire rod is heated at a high temperature for a long time, an intermetallic compound formed at the interface between copper and aluminum grows, and mechanical properties such as tensile strength deteriorate. It was.
  • the aluminum wire disclosed in Patent Document 2 since the zinc thin film exists between the aluminum core and the nickel plating film, there is a problem that the corrosion resistance such as salt water is inferior and the long-term reliability is impaired, The nickel plating film sometimes peeled off due to heating or the like. Furthermore, since the nickel, which is a difficult plating material, is plated with nickel, the manufacturing process is complicated.
  • an object of the present invention is to provide a plated wire rod material that solves the above problems and has improved salt water corrosion resistance.
  • the present inventors have focused on the mixed layer existing at the interface with the surface treatment film covering the base material in the plated wire rod material based on aluminum or aluminum alloy, It has been found that a plated wire rod with improved salt water corrosion resistance can be provided, and a surface-treated film can be formed on the wire rod.
  • the gist configuration of the present invention is as follows.
  • a plated wire rod material comprising a base material made of aluminum or an aluminum alloy and one or more metal layers, and a surface treatment film covering the base material, wherein the one or more metal layers Among these, the lowermost metal layer which is a metal layer formed on the base material is nickel, nickel alloy, cobalt or cobalt alloy, and the base material is present at the interface between the base material and the surface treatment film.
  • a plated wire rod having a mixed layer containing a metal component therein, a metal component in the surface-treated film, and an oxygen component.
  • the surface treatment coating has the lowermost metal layer and one or more metal layers formed on the lowermost metal layer, and the one or more metal layers are nickel or a nickel alloy.
  • the method for producing a plated wire rod according to any one of (1) to (6) above, (I) The total of one or more acid solutions selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, acetic acid and oxalic acid is 10 to 500 mL / L , (Ii) a nickel compound selected from the group consisting of nickel sulfate, nickel nitrate, nickel chloride, nickel bromide, nickel iodide and nickel sulfamate (0.1 to 500 g / L in terms of nickel metal content), Or a cobalt compound selected from the group consisting of cobalt sulfate, cobalt nitrate, cobalt chloride, cobalt bromide, cobalt iodide and cobalt sulfamate (0.1 to 500 g / L in terms of the metal content of cobalt), The surface of the base material is dissolved
  • a plated wire rod material comprising a base material made of aluminum or an aluminum alloy and one or more metal layers, and a surface treatment film covering the base material.
  • the lowermost metal layer which is a metal layer formed on the base material, is nickel, nickel alloy, cobalt, or cobalt alloy, and the metal in the base material is present at the interface between the base material and the surface treatment film. Due to the presence of the mixed layer containing the components, the metal component in the surface treatment film, and the oxygen component, a zinc-containing layer (particularly a zincate layer) having a thickness of, for example, about 100 nm is formed between the substrate and the surface treatment film.
  • a mixed layer containing a metal component in the base material made of aluminum or an aluminum alloy, a metal component in the surface treatment film, and an oxygen component is composed of the metal component in the base material and the metal component in the surface treatment film. It functions as a diffusion preventing layer for preventing diffusion. Thereby, salt water corrosion resistance is favorable and can provide a plated wire rod.
  • the heat treatment peelability of the surface treatment coating on the substrate is poor.
  • a mechanical anchoring effect is achieved. Even without imparting (anchor effect), excellent heat-resistant peelability is exhibited, and the manufacturing time can be greatly shortened.
  • a plated wire rod material excellent in bending workability can be provided by controlling the thickness of the lowermost metal layer.
  • the solderability of the plated wire rod material can be improved by making the outermost layer metal constituting the surface treatment film a metal having good solderability.
  • FIG. 1A is a perspective view including a cross section of the plated wire rod material of the first embodiment according to the present invention
  • FIG. 1B is a perspective view including a cross section of the plated wire rod material of the second embodiment. is there.
  • FIG. 2 is a perspective view including a cross section of a plated wire rod according to a third embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a method of performing line analysis from the base material portion to the surface treatment coating portion using STEM-EDX in cross-sectional observation of the plated wire rod material.
  • FIG. 1A is a perspective view including a cross section of the plated wire rod according to the first embodiment.
  • the illustrated plated wire rod 10 has a substrate 1 and a surface treatment film 2.
  • wire rod in the present invention is a general term for “wire rod” and “bar rod”, and “wire rod” means that a package is wound in a coil shape, and “bar rod” is This means that the package is not wound.
  • the diameter perpendicular to the longitudinal direction of the wire rod is generally referred to as “wire diameter” regardless of the wire and the rod.
  • the wire rod material preferably has a wire diameter of 0.3 to 3.0 mm, and more preferably 0.5 to 1.0 mm.
  • shape of a wire rod is not specifically limited including shapes, such as a round shape and a flat angle.
  • the substrate 1 is made of aluminum or an aluminum alloy.
  • aluminum means what contains 99 mass% or more of aluminum.
  • the aluminum alloy contains 50% by mass or more of aluminum, further contains additional elements other than Al, such as Si, Fe, Mn, Cu, Ni, Cr, and the balance is inevitable impurities. Inevitable impurities refer to trace components that are inevitably mixed in the manufacturing process and do not affect the characteristics.
  • the type of the substrate is not particularly limited. For example, A1070, A1100 and other 1000 series aluminum specified by JIS H4000: 2014, A3003 and other 3000 series alloys, A5005 and A5052 and other 5000 series alloys, A6061, A6063, and the like.
  • the surface treatment film 2 is composed of one or more metal layers, which is a single metal layer 21 in FIG. 1A, and is formed on the substrate 1.
  • the surface treatment film 2 may be composed of one metal layer or may be composed of two or more metal layers, it is composed of one layer or two or more layers.
  • the metal layer 21 (one layer) formed on the substrate 1 is referred to as a “lowermost metal layer”. Since the plated wire rod 10 shown in FIG. 1A is composed of only one metal layer formed on the substrate 1, the metal layer 21 is the lowermost metal layer.
  • the lowermost metal layer 21 is a metal layer made of nickel (Ni), nickel alloy, cobalt (Co), or cobalt alloy.
  • a suitable thickness of the lowermost metal layer 21 is preferably 0.05 or more and less than 2.0 ⁇ m, more preferably 0.1 or more and 1.5 ⁇ m or less, considering bending workability. Is from 0.2 to 1.0 ⁇ m.
  • the surface treatment film 2 includes a lowermost metal layer 21 and one or more metal layers 22 (for example, various functional plating layers) formed on the lowermost metal layer 21. ).
  • the one or more metal layers 22 formed on the lowermost metal layer 21 for example, nickel (Ni), nickel alloy, cobalt (Co), cobalt alloy, iron (Fe), iron alloy, copper (Cu) , Copper alloy, tin (Sn), tin alloy, silver (Ag), silver alloy, gold (Au), gold alloy, platinum (Pt), platinum alloy, rhodium (Rh), rhodium alloy, ruthenium (Ru), ruthenium
  • the metal layer comprised from the metal or alloy suitably selected according to the desired property provision purpose from an alloy, iridium (Ir), an iridium alloy, palladium (Pd), and a palladium alloy is mentioned.
  • nickel, nickel alloy, cobalt, or cobalt alloy is formed on the base material 1 that has been subjected to a surface activation process described later.
  • a lowermost metal layer 21 to be configured is formed.
  • nickel and nickel which have a composition different from that of the lowermost metal layer 21
  • nickel and nickel on the lowermost metal layer 21 as a coating layer for providing the plated wire rod 10 with a function required for each component.
  • a plated wire rod (plating material) 10 having excellent long-term reliability is obtained. be able to.
  • the surface-treated film 2 is a metal having two or more layers including at least a lower metal layer 21 formed for the purpose of improving heat-resistant peelability with respect to the substrate 1 and a metal layer 22 as a coating layer that imparts a function. It is preferable to have layers 21 and 22.
  • a nickel layer is formed on the substrate 1 as the lowermost metal layer 21, and then the solder is wetted as the metal layer 22 that gives a function. Examples thereof include a surface treatment coating 2 in which a gold plating layer 22 having good properties is further formed on the lowermost metal layer 21.
  • a plated wire rod (plating material) 10A having excellent solder wettability can be provided.
  • the method for forming the metal layers 21 and 22 is not particularly limited, but is preferably performed by a wet plating method.
  • a characteristic configuration of the present invention is to control the interface structure between the base material 1 made of aluminum or an aluminum alloy and the surface treatment coating 2 to an appropriate structure, and more specifically, the base material 1 and the surface treatment.
  • the mixed layer 3 containing the metal component in the substrate 1, the metal component in the surface treatment film 2, and the oxygen component is present at the interface of the film 2.
  • aluminum used in the present invention is a base metal having a large ionization tendency, and is generally subjected to substitution treatment, that is, so-called zincate treatment with zinc.
  • the thickness of the zinc-containing layer existing between the aluminum and the surface treatment coating (plating coating) is, for example, about 100 nm. If zinc in the zinc-containing layer is present, the plating may be peeled off due to temperature change, heating, or the like. Further, when zinc diffuses in the surface treatment film and further diffuses and appears in the surface layer of the surface treatment film, there is a problem that the contact resistance is increased. Furthermore, various problems such as a decrease in solder wettability and a decrease in salt water corrosion resistance may be caused. As a result, the characteristics of the plated wire rod may be deteriorated by use and the long-term reliability may be impaired.
  • the surface treatment coating (plating coating) 2 a surface activation treatment process is performed on the surface of the substrate 1, so that the interface between the substrate 1 and the surface treatment coating 2 is formed in the substrate 1.
  • the mixed layer 3 containing the metal component, the metal component in the surface treatment film 2, and the oxygen component is formed.
  • the oxygen component of the mixed layer 3 is bonded to the metal atom (for example, aluminum atom) constituting the substrate 1, and the oxygen component of the mixed layer 3 is the metal atom (for example, nickel atom) constituting the surface treatment film 2.
  • the surface treatment coating 2 can be easily formed on the substrate 1 without providing a particularly large mechanical anchoring effect, that is, a so-called anchor effect.
  • the mixed layer 3 functions as a diffusion preventing layer for preventing the diffusion of the metal component in the substrate 1 and the metal component in the surface treatment film 2
  • the plated wire rod 10 of the present invention has a salt water corrosion resistance. Etc. are improved, and long-term reliability is also excellent. For this reason, for example, in a corrosion test in which a salt spray test using 5% by mass of a saline solution is performed for 8 hours, a plated wire rod exhibiting excellent salt water corrosion resistance can be provided.
  • the mixed layer 3 contains a metal component in the substrate 1, a metal component in the surface treatment coating 2, and an oxygen component, and is formed at the interface between the substrate 1 and the surface treatment coating 2.
  • 1A and 1B show a case where the substrate 1 is completely covered with the mixed layer 3, but in the present invention, "the mixed layer exists at the interface” Includes not only the case where the substrate 1 is completely covered with the mixed layer 3 but also the case where only a part thereof is covered, or the case where the mixed layer 3 is scattered on the substrate 1. Further, as shown in FIGS. 1A and 1B, the interface between the base material 1 and the mixed layer 3 and the interface between the surface treatment coating 2 and the mixed layer 3 are smooth surfaces without unevenness.
  • the interface between the base material 1 and the mixed layer 3 and the interface between the surface treatment coating 2 and the mixed layer 3 are formed in a concavo-convex shape as in the plated wire rod 10B shown in FIG. Also good.
  • the interface between the base material 1 and the mixed layer 3 and the interface between the surface treatment film 2 and the mixed layer 3 are actually formed with smooth curved surfaces as shown in FIGS. 1 (A) and 1 (B). However, it is formed as a curved surface having minute surface irregularities.
  • the average thickness of the mixed layer 3 is preferably in the range of 1.00 nm or more and 40 nm or less as measured in the vertical cross section of the plated wire rod 10. When the average thickness of the mixed layer 3 is within this range, it is possible to obtain a plated wire rod that exhibits excellent heat-resistant peelability. When the average thickness exceeds 40 nm, the bonding force between the base material 1 and the oxygen component of the mixed layer 3 and the bonding force between the surface treatment coating 2 and the oxygen component of the mixed layer 3 in the base material 1 in the mixed layer 3 The bonding strength between the metal component and the metal component in the surface treatment film 2 and the oxygen component is weakened.
  • a preferable range of the average thickness is 5.00 nm or more and 30 nm or less, and by setting the average thickness of the mixed layer 3 within this range, more excellent heat-resistant peelability can be obtained.
  • the mixed layer 3 can be detected by using, for example, a scanning transmission electron microscope / energy dispersive X-ray spectrometer (STEM-EDX). Specifically, when the mixed layer 3 uses STEM-EDX, the detection intensity of the main component of the surface treatment film 2 is 0.5 times or more the detection intensity of the main component of the substrate 1 and 2.0. It can be defined as a region where the detected intensity of oxygen is 10% or more of the sum of the detected intensity of the main component of the substrate 1 and the main component of the surface treatment coating 2.
  • STEM-EDX scanning transmission electron microscope / energy dispersive X-ray spectrometer
  • FIB processing focused ion beam processing
  • the detection intensity of the main component of the surface treatment coating 2 is 0.5 times or more and 2.0 times the detection intensity of the main component of the substrate 1.
  • the vertical length in the plating film laminating direction is determined so that the oxygen detection intensity is 10% or more of the sum of the main component of the substrate 1 and the main component of the surface treatment film 2. Find the average of them.
  • the vertical length, that is, the average thickness of the mixed layer 3 is preferably in the range of 1.00 nm to 40 nm.
  • the average thickness of the mixed layer 3 is obtained by forming an arbitrary cross section of the plated wire rod material by, for example, cross section polishing after resin filling, FIB processing, and cross section forming methods such as ion milling and cross section polisher.
  • the thickness can be obtained by measuring the thickness of a plurality of locations in an arbitrary observation region and calculating the average value.
  • aluminum for example, 1000 series aluminum such as A1100 defined in JIS H4000: 2014
  • aluminum alloy for example, An electrolytic degreasing step, a surface activation treatment step, and a surface treatment coating formation step may be sequentially performed on a wire of 6000 (Al—Mg—Si) alloy such as A6061 defined in JIS H4000: 2014.
  • Al—Mg—Si Al—Mg—Si
  • the aluminum alloy material is not particularly limited, and for example, an extruded material, an ingot material, a hot rolled material, a cold rolled material, or the like can be appropriately selected and used according to the purpose of use.
  • the electrolytic degreasing step is a step of subjecting the substrate 1 to electrolytic degreasing treatment.
  • the substrate 1 is immersed as a cathode in an alkali degreasing bath of 20 to 200 g / L of sodium hydroxide (NaOH), the current density is 2.5 to 5.0 A / dm 2 , the bath temperature is 20 to 70 ° C., and the treatment is performed.
  • the method include electrolytic degreasing under conditions of time 10 to 100 seconds.
  • the surface activation treatment step is a step of performing a novel activation treatment different from the conventional activation treatment, and is the most important step among the steps of producing the plated wire rod of the present invention.
  • the conventional film forming technique when there is no zinc-containing layer (especially a zincate treatment layer), a surface having good heat-resistant peelability with respect to a base material 1 made of aluminum or an aluminum alloy, which is a base metal having a particularly high ionization tendency. It is difficult to form a treatment film (plating film).
  • the same metal atom as the metal atom for example, nickel atom
  • the metal atom for example, nickel atom
  • crystal nuclei or a thin layer can be formed on the substrate 1 before the formation of 21.
  • a mixed layer 3 is formed at the interface between the crystal nucleus or thin layer and the substrate 1.
  • the metal component of the base material 1 and the metal component of the surface treatment film 2 can each be combined with the oxygen component of the mixed layer 3.
  • the surface-treated coating 2 can be easily formed on the base material 1 without forming a zinc-containing layer containing zinc as a main component by zincate treatment or the like, and further, the plated wire with improved salt water corrosion resistance. Bar material can be produced.
  • the surface of the substrate 1 after the electrolytic degreasing treatment is subjected to (i) one or more acid solutions selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and phosphoric acid.
  • it is preferably carried out by treatment with 1 to 100 seconds.
  • oxygen be included in the activation treatment liquid at a dissolved oxygen concentration of 3 to 100 ppm because the mixed layer 3 can be formed efficiently.
  • the thickness of the coating layer composed of the main component metals (nickel, cobalt, etc.) deposited on the surface of the substrate 1 by this surface activation treatment is 0.5 ⁇ m or less.
  • a surface treatment film forming step is performed.
  • the surface treatment film 2 may be formed only by the lowermost metal layer 21, but depending on the purpose of imparting characteristics (function) to the plated wire rod 10, Further, one or more (other) metal layers 22 can be formed, and the surface treatment film 2 can be formed of at least two or more metal layers 21 and 22 including the lowermost metal layer 21.
  • the lowermost metal layer 21 is a metal layer made of nickel (Ni), nickel alloy, cobalt (Co), or cobalt alloy.
  • the lowermost metal layer 21 can be formed by a wet plating method of electrolytic plating or electroless plating using a plating solution containing nickel (Ni) or cobalt (Co).
  • Tables 1 and 2 exemplify plating bath compositions and plating conditions when the lowermost metal layer 21 is formed by nickel (Ni) plating or cobalt (Co) plating.
  • each metal layer 22 has characteristics (functions) as a plated wire rod. Depending on the purpose of imparting, it can be formed by a wet plating method of electrolytic plating or electroless plating. Tables 1 to 11 show nickel (Ni) plating, cobalt (Co) plating, iron (Fe) plating, copper (Cu) plating, tin (Sn) plating, silver (Ag) plating, and silver (Ag) -tin, respectively.
  • the surface treatment coating 2 can be variously combined by appropriately combining the lowermost metal layer 21 as described above and one or more metal layers 22 formed on the lowermost metal layer 21 according to the application. It is possible to change the layer structure.
  • the plated wire rod of the present invention can be used for all purposes. Specifically, conductive members such as electric wires and cables, battery members such as current collector meshes and nets, spring members such as connectors and terminals (for electrical contacts), bonding wires for semiconductors, voice coils, etc. It can be suitably used as a coil used for a coil, a generator, a motor, or the like.
  • conductive members include cabtyre cables, overhead power transmission lines, OPGW, underground cables, submarine cables and other power cables, telephone cables, coaxial cables and other communication cables, robot cables, and wired drone cables.
  • EV / HEV charging cables offshore wind power generation twisting cables, elevator cables, umbilical cables, electric wires for trains, jumper wires, etc., equipment wires such as trolley wires, automobile wire harnesses, marine wires
  • electric wires for transportation such as electric wires for airplanes, bus bars, lead frames, flexible flat cables, lightning rods, antennas, connectors, terminals, and cable knitting.
  • the spring member include spring electrodes, terminals, connectors, semiconductor probe springs, and the like.
  • the surface activation treatment is carried out using one or more acid solutions selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid and phosphoric acid, 10 to 500 mL / L, sulfuric acid
  • An activation treatment solution containing a nickel compound selected from the group consisting of nickel, nickel nitrate, nickel chloride and nickel sulfamate (0.1 to 500 g / L in terms of nickel metal content) The treatment was performed under the conditions of a treatment temperature of 20 to 60 ° C., a current density of 0.1 to 20 A / dm 2 and a treatment time of 1 to 100 seconds.
  • the invention examples 1 to 27 form the surface treatment film 2 composed of the lowermost metal layer 21 and the coated metal layer 22 formed on the lowermost metal layer 21 by the surface treatment film formation process described above.
  • the plated wire rod 10 of the present invention was produced.
  • Inventive Examples 30 and 31 formed the surface-treated film 2 composed of the lowermost metal layer 21 by the surface-treated film forming process described above, and produced the plated wire rod 10 of the present invention.
  • the kind of the base material 1, the kind of the metal compound contained in the activation treatment liquid used for the surface activation treatment, the average thickness (nm) of the mixed layer 3, and the lowermost metal layer 21 and the covering metal layer 22 are configured.
  • Table 12 shows the types and average thickness ( ⁇ m) of the metal compounds. Further, the formation conditions of the metal layers 21 and 22 constituting the surface treatment film 2 were performed according to the plating conditions shown in Tables 1 to 11.
  • Invention Example 28 Invention Example 28, similarly to Invention Example 1, after electrolytic degreasing treatment, surface activation treatment was conducted.
  • the surface activation treatment is performed from the group consisting of one or more acid solutions 200 mL / L selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and phosphoric acid, and nickel sulfate, nickel nitrate, nickel chloride, and nickel sulfamate.
  • an activated treatment solution containing a selected nickel compound (10 g / L in terms of nickel metal content) treatment temperature 10 ° C., current density 0.05 A / dm 2 and treatment time 0.5 It was performed under the condition of processing in seconds.
  • the plated wire rod produced in Invention Example 28 had a low processing temperature, a low current density, and a short processing time, so the average thickness of the mixed layer 3 was 0.98 nm.
  • Invention Example 29 In Invention Example 29, similarly to Invention Example 1, after electrolytic degreasing treatment, surface activation treatment was conducted.
  • the surface activation treatment is performed from the group consisting of one or more acid solutions 200 mL / L selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and phosphoric acid, and nickel sulfate, nickel nitrate, nickel chloride, and nickel sulfamate.
  • an activated treatment solution containing a selected nickel compound (10 g / L in terms of nickel metal) treated at a treatment temperature of 50 ° C., a current density of 5 A / dm 2 and a treatment time of 150 seconds. I went under the conditions to do.
  • Conventional Example 1 has a thickness of 110 nm by performing electrolytic degreasing treatment on the aluminum wire (outer diameter ⁇ 0.9 mm) shown in Table 12 under the above-described conditions, and then performing conventional zinc substitution treatment (zincate treatment). A zinc-containing layer was formed. Then, the surface treatment film formed of the two metal layers in which the nickel plating layer and the gold plating layer are laminated with the thickness shown in Table 12 by the surface treatment film formation process described above without performing the surface activation process. To form a plated wire rod.
  • the heat-resistant peelability shown in Table 13 is “13 (very good)” when no plating peeling was observed, and “ ⁇ ( “Excellent)”, “ ⁇ (good)” when 85% or more and less than 95% of the test area are in good contact, and “ ⁇ (impossible)” when the adhesion region is less than 85% of the test area.
  • ⁇ (very good)”, “ ⁇ (excellent)”, and “ ⁇ (good)” were evaluated as having acceptable thermal peelability.
  • solder wettability For the solder wettability, the solder wet time was measured for each specimen (plated wire rod) produced by the above-described method using a solder checker (SAT-5100 (trade name, manufactured by Resuka Co., Ltd.)) It evaluated from this measured value. Table 13 shows the evaluation results. Details of measurement conditions for solder wettability shown in Table 13 are shown below. The solder wettability is determined as “ ⁇ (pass)” when the solder wet time is less than 3 seconds, and determined as “ ⁇ (fail)” when it is not joined even after being immersed for 3 seconds or more. evaluated.
  • SAT-5100 trade name, manufactured by Resuka Co., Ltd.
  • Solder type Sn-3Ag-0.5Cu Temperature: 250 ° C
  • Test piece size ⁇ 0.9mm ⁇ 30mm
  • Flux isopropyl alcohol-25% rosin immersion speed: 25 mm / sec.
  • Immersion time 10 seconds
  • Immersion depth 10 mm
  • the salt water corrosion resistance was evaluated by conducting a salt spray test using a 5 mass% NaCl aqueous solution at 35 ⁇ 5 ° C. for each specimen (plated wire rod) produced by the above-described method. Three samples were prepared for each specimen, and the salt spray test time was 8 hours. Thereafter, it was visually determined whether or not a corrosion product was generated. Table 13 shows the evaluation results.
  • the salt water corrosion resistance shown in Table 13 is “ ⁇ (excellent)” when all three pieces cannot be confirmed before the test, and “ ⁇ (excellent)” when there are two pieces. The case where the change was confirmed was “ ⁇ (good)”, and the case where the change was confirmed in all was “ ⁇ (impossible)”. In this test, cases corresponding to “ ⁇ (very good)”, “ ⁇ (excellent)”, and “ ⁇ (good)” were evaluated as having acceptable salt water corrosion resistance.
  • solder wettability, salt water corrosion resistance and bending workability are acceptable levels.
  • Inventive Examples 1-27 and 30-31 in which the average thickness of the mixed layer 3 is in the range of 1.00 nm to 40 nm is excellent in heat-resistant peelability, and in particular, Inventive Examples 3-5, 7 In the cases of -27 and 30-31, excellent heat-resistant peelability was exhibited.
  • Inventive Examples 1 to 11 and 13 to 31 in which the thickness of the lowermost metal layer 21 is 0.05 or more and less than 2.0 ⁇ m is excellent in bending workability, and in particular, Inventive Examples 1 to 9, 13 to No. 31 showed very good bending workability.
  • Conventional Example 1 since the zinc-containing layer was formed on the aluminum-based substrate by performing the zincate treatment on the aluminum-based substrate, the saltwater corrosion resistance was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本発明に係るめっき線棒材(10)は、アルミニウム又はアルミニウム合金からなる基材(1)と、1層以上の金属層を備え、該基材(1)を被覆する表面処理被膜(2)とを有する。前記1層以上の金属層のうち、前記基材(1)上に形成されている金属層である最下金属層(21)が、ニッケル、ニッケル合金、コバルト又はコバルト合金である。前記基材(1)と前記表面処理被膜(2)との界面に、前記基材(1)中の金属成分と、前記表面処理被膜中の金属成分と、酸素成分とを含有する混合層(3)が存在する。

Description

めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材
 本発明は、アルミニウム又はアルミニウム合金からなる基材と、該基材を被覆する表面処理被膜とを有するめっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材に関するものである。
 近年の環境規制に対応して、自動車などの分野において、軽量化が強く求められるようになっている。その中で電力供給及び信号伝達で重要部品である電線、ケーブルの軽量化は、自動車の燃費向上及び自動車製造時の省力化、安全性に対して寄与することから、特に期待されている。
 従来、電線の材料としては、高導電率及び耐腐食性に優れていることから、銅が用いられてきた。しかし、銅は比重が大きいため、大幅な軽量化が困難である。これに対して、アルミニウムは、銅よりも導電率が低いものの比重が銅の3分の1であることから電線の材料として銅よりも適している。しかし、アルミニウムは、空気と接触すると容易に酸化膜を形成するため、銅よりも電気的な接続信頼性が低く、半田付けがしにくいなどの問題がある。
 これらの問題を解決するために、銅クラッドアルミニウム電線が提案されている(特許文献1)。この銅クラッドアルミニウム電線は、Al-Mg系のアルミニウムを芯材とし、その周囲に純度が99.9%以上の銅を面積被覆率20%以上、40%以下で被覆したものであり、アルミニウムが銅で覆われているため、半田付け性及び耐食性が改善されている。また、アルミニウムコアの表面上に亜鉛置換によって形成させた亜鉛薄膜の外周に、電解ニッケルめっきによりニッケルめっき被膜を被覆させたアルミニウム線が提案されている(特許文献2)。このアルミニウム線は、アルミニウムコアとニッケルめっき被膜との硬さの差が100Hv以内に調整されていることにより、伸線による冷間引抜き加工が容易である。また、アルミニウムコアの表面にニッケルめっき被膜が被覆されているため、半田付け性も良好である。さらに、銅クラッドアルミニウム電線のように銅とアルミニウムとの間に金属間化合物が形成されないため、高温雰囲気における機械的特性の変動を抑制できるという特徴がある。
 しかし、特許文献1に開示されている銅クラッドアルミニウム線棒は、銅の被覆層が厚いため、アルミニウムのみからなる線棒と比較して、軽量化の効果が小さいという問題があった。また、銅クラッドアルミニウム線棒に対して高温で長時間加熱を行うと銅とアルミニウムとの界面に形成されている金属間化合物が成長し、引張強度などの機械的特性が低下するという問題があった。特許文献2に開示されているアルミニウム線では、亜鉛薄膜がアルミニウムコアとニッケルめっき被膜との間に存在するため、塩水等の耐食性に劣り、長期信頼性が損なわれるとの問題があり、また、加熱などによりニッケルめっき被膜が剥離することがあった。さらに、難めっき材であるアルミニウムにニッケルめっきをするため、製造工程が複雑であった。
特開平4-230905号公報 特開2003-301292号公報
 そこで本発明の目的は、上記問題を解決し、塩水耐食性が改善されためっき線棒材を提供することにある。
 本発明者らは、鋭意検討を行った結果、アルミニウム又はアルミニウム合金を基材とするめっき線棒材において、基材を被覆する表面処理被膜との界面に存在する混合層に着目することにより、塩水耐食性が改善されためっき線棒材を提供することができ、また、表面処理被膜を線棒に形成することができることを見出した。
 すなわち、本発明の要旨構成は以下のとおりである。
(1)アルミニウム又はアルミニウム合金からなる基材と、1層以上の金属層から構成され、該基材を被覆する表面処理被膜とを有するめっき線棒材であって、前記1層以上の金属層のうち、前記基材上に形成されている金属層である最下金属層が、ニッケル、ニッケル合金、コバルト又はコバルト合金であり、前記基材と前記表面処理被膜との界面に、前記基材中の金属成分と、前記表面処理被膜中の金属成分と、酸素成分とを含有する混合層が存在する、めっき線棒材。
(2)前記混合層の平均厚さが、前記めっき線棒材の垂直断面で測定して、1.00nm以上40nm以下の範囲である、(1)に記載のめっき線棒材。
(3)前記めっき線棒材の断面観察にて、SETM-EDXを用いて前記基材側から前記表面処理被膜側にわたって線分析を行い、得られた前記めっき線棒材の各成分の検出強度プロファイルにおいて、
前記表面処理被膜の主成分の検出強度が前記基材の主成分の検出強度に対して0.5倍以上2.0倍以下であり、かつ、酸素の検出強度が前記基材の主成分と前記表面処理被膜の主成分の検出強度との和の10%以上となる範囲のめっき被膜積層方向への垂直長さが、1.00nm以上40nm以下の範囲である、(1)または(2)に記載のめっき線棒材。
(4)前記最下金属層の厚さが0.05以上2.0μm未満である、(1)~(3)までのいずれかに記載のめっき線棒材。
(5)前記表面処理被膜は、前記最下金属層と、該最下金属層上に形成された1層以上の金属層とを有し、該1層以上の金属層が、ニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金、銅、銅合金、錫、錫合金、銀、銀合金、金、金合金、白金、白金合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウム、イリジウム合金、パラジウム及びパラジウム合金の群から選択されるいずれか1種で形成されている、(1)~(4)までのいずれかに記載のめっき線棒材。
(6)前記1層以上の金属層は、2層以上の金属層である、(5)に記載のめっき線棒材。
(7)上記(1)~(6)までのいずれかに記載のめっき線棒材の製造方法であって、
(i)硫酸、硝酸、塩酸、フッ酸、リン酸、臭化水素酸、ヨウ化水素酸、酢酸及びシュウ酸の中から選択される1つ以上の酸溶液の合計が10~500mL/Lと、
(ii)硫酸ニッケル、硝酸ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル及びスルファミン酸ニッケルからなる群から選択されるニッケル化合物(ニッケルのメタル分に換算して0.1~500g/L)、又は、硫酸コバルト、硝酸コバルト、塩化コバルト、臭化コバルト、ヨウ化コバルト及びスルファミン酸コバルトからなる群から選択されるコバルト化合物(コバルトのメタル分に換算して0.1~500g/L)と、
を含有する活性化処理液を使用して、前記基材の表面を、活性化処理液中の溶存酸素濃度3~100ppm、処理温度10~60℃、電流密度0.05~20A/dm及び処理時間0.5~150秒にて処理する表面活性化処理工程を含む、めっき線棒材の製造方法。
(8)(1)~(6)までのいずれかに記載のめっき線棒材を用いて形成されたケーブル。
(9)(1)~(6)までのいずれかに記載のめっき線棒材を用いて形成された電線。
(10)(1)~(6)までのいずれかに記載のめっき線棒材を用いて形成されたコイル。
(11)(1)~(6)までのいずれかに記載のめっき線棒材を用いて形成されたばね部材。
 本発明によれば、アルミニウム又はアルミニウム合金からなる基材と、1層以上の金属層から構成され、基材を被覆する表面処理被膜とを有するめっき線棒材であって、1層以上の金属層のうち、基材上に形成されている金属層である最下金属層が、ニッケル、ニッケル合金、コバルト又はコバルト合金であり、基材と表面処理被膜との界面に、基材中の金属成分と、表面処理被膜中の金属成分と、酸素成分とを含有する混合層が存在することによって、基材と表面処理被膜との間に、例えば100nm程度の厚さの亜鉛含有層(特にジンケート処理層)が介在する従来のアルミニウムからなるめっき線棒材に比べて、工程が簡略化された結果低コストでかつ安全に製造できる。また、アルミニウム又はアルミニウム合金からなる基材中の金属成分と、表面処理被膜中の金属成分と、酸素成分とを含有する混合層が、基材中の金属成分及び表面処理被膜中の金属成分の拡散を防止する拡散防止層として機能する。これにより、塩水耐食性が良好めっき線棒材を提供できる。
 また、従来、アルミニウム又はアルミニウム合金からなる基材と表面処理被膜との界面に酸化物が存在すると基材に対する表面処理被膜の耐熱剥離性が悪いというのが技術常識であったところ、本発明では、基材と表面処理被膜との界面に、基材中の金属成分と、表面処理被膜中の金属成分と、酸素成分とを含有する混合層の厚さを制御することで、機械的投錨効果(アンカー効果)を付与しなくても優れた耐熱剥離性を示し、かつ製造時間も大幅に短縮することができる。
 また、本発明では、最下金属層の厚さを制御することにより、曲げ加工性に優れためっき線棒材を提供することができる。
 また、本発明では、表面処理被膜を構成する最表層の金属を半田濡れ性の良い金属にすることにより、めっき線棒材の半田濡れ性も改善できる。
図1(A)は、本発明に従う第1実施形態のめっき線棒材の横断面を含む斜視図であり、(B)は第2実施形態のめっき線棒材の横断面を含む斜視図である。 図2は、本発明に従う第3実施形態のめっき線棒材の横断面を含む斜視図である。 図3は、めっき線棒材の断面観察にて、STEM-EDXを用いて基材の部分から表面処理被膜の部分にわたって線分析を行う方法を説明するための図である。
 次に、本発明に従う実施形態を、図面を参照しながら以下で説明する。図1(A)は、第1実施形態のめっき線棒材の横断面を含む斜視図である。図示のめっき線棒材10は、基材1と表面処理被膜2とを有している。
 本発明でいう「線棒材」とは、「線材」および「棒材」の総称であり、「線材」とは荷姿がコイル状に巻いているものを意味し、「棒材」とは荷姿が巻いていないものを意味する。なお、以下、説明を容易にするために、線棒材の長手方向に垂直な径は、線材および棒材の別にかかわらず、総称して「線径」と称する。また、本発明において、線棒材は、線径が0.3以上3.0mmであることが好ましく、0.5~1.0mmであることがより好ましい。なお、線棒材の形状は、丸形、平角、等の形状を含み、特に限定されない。
(基材)
 基材1は、アルミニウム又はアルミニウム合金からなる。ここで、アルミニウムとはアルミニウムを99質量%以上含有するものをいう。また、アルミニウム合金とは、アルミニウムを50質量%以上含有し、Al以外の添加元素、例えばSi、Fe、Mn、Cu、Ni、Crなどをさらに含有し、残部は不可避不純物である。不可避不純物とは、製造工程において、不可避的に混入するものであり、特性に影響を及ぼさない微量な成分のことをいう。基材の種類は特に限定されないが、例えばJIS H4000:2014で規定されているA1070、A1100などの1000系のアルミニウム、A3003などの3000系合金、A5005、A5052などの5000系合金、A6061、A6063などの6000系合金、A7075などの7000系合金、A8021、A8079などの8000系合金が挙げられる。また、基材1として、国際公開第2018/012481号及び国際公開第2018/012482号に記載のアルミニウム線又はアルミニウム合金線を用いてもよい。
(表面処理被膜)
 表面処理被膜2は、1層以上の金属層、図1(A)では1層の金属層21で構成され、基材1上に形成されている。ここで、表面処理被膜2は、1層の金属層で構成される場合と2層以上の金属層で構成される場合があるため、1層で構成される場合及び2層以上で構成される場合のいずれにおいても、本発明では、基材1上に形成されている(1層の)金属層21を、「最下金属層」と呼称することとする。なお、図1(A)に示すめっき線棒材10は、基材1上に形成されている金属層の1層のみで構成されているため、この金属層21は最下金属層である。
 最下金属層21は、ニッケル(Ni)、ニッケル合金、コバルト(Co)又はコバルト合金から構成される金属層である。最下金属層21の好適な厚さは、曲げ加工性を考慮すると、0.05以上2.0μm未満であることが好ましく、0.1以上1.5μm以下であることがより好ましく、より好適には0.2以上1.0μm以下である。
 また、表面処理被膜2は、図1(B)に示すように、最下金属層21と、最下金属層21上に形成される1層以上の金属層22(例えば各種の機能めっき層等)とで構成されていてもよい。
 最下金属層21上に形成される1層以上の金属層22としては、例えば、ニッケル(Ni)、ニッケル合金、コバルト(Co)、コバルト合金、鉄(Fe)、鉄合金、銅(Cu)、銅合金、錫(Sn)、錫合金、銀(Ag)、銀合金、金(Au)、金合金、白金(Pt)、白金合金、ロジウム(Rh)、ロジウム合金、ルテニウム(Ru)、ルテニウム合金、イリジウム(Ir)、イリジウム合金、パラジウム(Pd)及びパラジウム合金の中から、所望の特性付与目的に応じて適宜選択される金属又は合金から構成される金属層が挙げられる。例えば、最下金属層21上に1層又は2層以上の金属層22を形成する場合、後述する表面活性化処理工程を行った基材1上に、ニッケル、ニッケル合金、コバルト又はコバルト合金から構成される最下金属層21を形成する。その後、最下金属層21上に、各種部品ごとで必要とされる機能をめっき線棒材10に付与するための被覆層として、(最下金属層21とは異なる組成である)ニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金、銅、銅合金、錫、錫合金、銀、銀合金、金、金合金、白金、白金合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウム、イリジウム合金、パラジウム及びパラジウム合金の中から選択される金属又は合金から構成される金属層を1層又は2層以上形成することで、長期信頼性に優れためっき線棒材(めっき材)10を得ることができる。特に、表面処理被膜2は、基材1に対する耐熱剥離性向上等の目的で形成される最下金属層21と、機能を付与する被覆層としての金属層22とを少なくとも含む2層以上の金属層21、22を有していることが好ましい。最下金属層21と金属層22とで構成した表面処理被膜2としては、例えば、最下金属層21としてニッケル層を基材1上に形成した後に、機能を付与する金属層22として半田濡れ性が良好な金めっき層22を最下金属層21上にさらに形成した表面処理被膜2が挙げられる。最下金属層21上に金属層22を形成することによって、半田濡れ性に優れためっき線棒材(めっき材)10Aを提供することができる。また、金属層21、22の形成方法としては、特に限定はしないが、湿式めっき法によって行なうことが好ましい。
(本発明の特徴的な構成)
 本発明の特徴的な構成は、アルミニウム又はアルミニウム合金からなる基材1と表面処理被膜2との界面構造を適切な構造に制御することにあり、より具体的には、基材1と表面処理被膜2の界面に、基材1中の金属成分と、表面処理被膜2中の金属成分と、酸素成分とを含有する混合層3が存在するという構成である。
 ところで、本発明に用いられるアルミニウムは、イオン化傾向が大きい卑な金属であり、亜鉛によって置換処理、いわゆるジンケート処理を行うのが一般的である。従来のジンケート処理では、アルミニウムと表面処理被膜(めっき被膜)との間に存在する亜鉛含有層の厚さは、例えば100nm程度である。この亜鉛含有層の亜鉛が存在すると、温度の変化、加熱などによって、めっきが剥離することがある。また、亜鉛が表面処理被膜中で拡散し、さらに表面処理被膜の表層にまで拡散・出現すると、接触抵抗を上昇させてしまうという問題がある。さらに、半田濡れ性の低下、塩水耐食性の低下など、様々な問題を引き起こし、結果として、めっき線棒材の特性が使用によって劣化して長期信頼性が損なわれるケースがある。
 このため、基材1と表面処理被膜2との間に亜鉛含有層を存在させないことが望ましい。しかしながら、従来の被膜形成技術では、亜鉛含有層(特にジンケート処理層)が存在しない場合、基材1、特に、イオン化傾向が大きい卑な金属である基材1に対して耐熱剥離性が良好な表面処理被膜(めっき被膜)を形成することが難しい。
 そこで、表面処理被膜(めっき被膜)2を形成するに先立ち、基材1の表面に、表面活性化処理工程を行なうことによって、基材1と表面処理被膜2との界面に、基材1中の金属成分と、表面処理被膜2中の金属成分と、酸素成分とを含有する混合層3を形成させる。これにより、混合層3の酸素成分が基材1を構成する金属原子(例えばアルミニウム原子)と結合し、また混合層3の酸素成分が表面処理被膜2を構成する金属原子(例えばニッケル原子)と結合する結果、特に大きな機械的投錨効果、いわゆるアンカー効果を付与しなくても、表面処理被膜2を基材1に対して簡便に形成できる。また、混合層3が、基材1中の金属成分と、表面処理被膜2中の金属成分の拡散を防止する拡散防止層として機能することにより、本発明のめっき線棒材10は、塩水耐食性なども改善され、長期信頼性にも優れている。このため、例えば5質量%の食塩水を用いる塩水噴霧試験を8時間行う腐食試験において、優れた塩水耐食性を示すめっき線棒材を提供することができる。
 混合層3は、基材1中の金属成分と、表面処理被膜2中の金属成分と、酸素成分とを含有し、基材1と表面処理被膜2との界面に形成されている。なお、図1(A)及び図1(B)では、基材1が混合層3によって完全に被覆されている場合を示しているが、本発明において、「界面に混合層が存在する」とは、基材1が混合層3によって完全に被覆されている場合だけでなく、一部のみ被覆されている場合や、基材1上に混合層3が点在している場合も含まれる。また、図1(A)及び図1(B)に示すように、基材1と混合層3との界面、及び表面処理被膜2と混合層3との界面は、凹凸のない滑らかな面であってもよく、図2に示すめっき線棒材10Bのように、基材1と混合層3との界面、及び表面処理被膜2と混合層3との界面が、凹凸形状で形成されていてもよい。なお、基材1と混合層3との界面、及び表面処理被膜2と混合層3との界面は、実際には図1(A)及び図1(B)に示すように滑らかな曲面で形成されておらず、微小な表面凹凸を有する曲面として形成されている。
 混合層3の平均厚さは、めっき線棒材10の垂直断面で測定して、1.00nm以上40nm以下の範囲であることが好ましい。混合層3の平均厚さがこの範囲であることにより、優れた耐熱剥離性を示すめっき線棒材を得ることができる。平均厚さが40nmを超えると、基材1と混合層3の酸素成分との結合力、表面処理被膜2と混合層3の酸素成分との結合力よりも、混合層3における基材1中の金属成分と表面処理被膜2中の金属成分と酸素成分との結合力が弱くなる。そのため、混合層3の破壊が生じ、基材1に対する表面処理被膜2の耐熱剥離性が低下する傾向にある。一方、平均厚さが1.00nm未満であると、基材1と混合層3の酸素成分との結合力と、表面処理被膜2と混合層3の酸素成分との結合力が十分に発揮されないため、基材1に対する表面処理被膜2の耐熱剥離性が低下する傾向にある。平均厚さの好ましい範囲は、5.00nm以上30nm以下であり、混合層3の平均厚さをこの範囲設定することにより、より優れた耐熱剥離性を得ることができる。
 混合層3は、例えば、走査透過型電子顕微鏡/エネルギー分散型X線分光分析器(STEM-EDX)を用いることにより検出することができる。具体的に、混合層3は、STEM-EDXを用いたときに、表面処理被膜2の主成分の検出強度が、基材1の主成分の検出強度に対して0.5倍以上2.0倍以下であり、かつ酸素の検出強度が、基材1の主成分と表面処理被膜2の主成分の検出強度との和の10%以上となる領域として定義することができる。例えば、めっき線棒材の断面観察にて、基材上の任意の点において、50μm間隔で一直線上に並ぶ5点を定め、その各5点において集束イオンビーム加工(FIB加工)を行う。その後、STEM-EDXを用いて、1nm/pixel以上の解像度で、基材1と表面処理被膜2との界面が中心付近となるように100nm×100nmの範囲の面分析を行う(図3参照)。さらに、これによって得られた組成マッピング像の中心部において、基材1側から表面処理被膜2側まで70nm以上の範囲で線分析を行う。それにより得られためっき線棒材の各成分の検出強度プロファイルにおいて、表面処理被膜2の主成分の検出強度が基材1の主成分の検出強度に対して0.5倍以上2.0倍以下であり、かつ、酸素の検出強度が基材1の主成分と表面処理被膜2の主成分の検出強度との和の10%以上となる範囲のめっき被膜積層方向への垂直長さを求め、それらの平均を求める。この垂直長さ、すなわち混合層3の平均厚さが、1.00nm以上40nm以下の範囲であることが好ましい。なお、混合層3の平均厚さは、めっき線棒材の任意の横断面を、例えば、樹脂埋め後の断面研磨、FIB加工、さらにはイオンミリング、クロスセクションポリッシャ等の断面形成法によって形成し、任意の観察領域において複数箇所の厚さを測定し、その平均値を算出することにより求めることができる。
(めっき線棒材の製造方法)
 次に、本発明に従うめっき線棒材の製造方法におけるいくつかの実施形態を以下で説明する。
 例えば、図1(A)に示す断面層構造をもつめっき線棒材を製造するには、アルミニウム(例えばJIS H4000:2014で規定されているA1100などの1000系のアルミニウム)、及びアルミニウム合金(例えばJIS H4000:2014で規定されているA6061などの6000(Al-Mg-Si)系合金)の線材に対し、電解脱脂工程、表面活性化処理工程及び表面処理被膜形成工程を順次行なえばよい。また、上記各工程の間には、必要に応じて水洗工程をさらに行なうことが好ましい。なお、アルミニウム合金素材は、特に限定はなく、例えば、押出材、鋳塊材、熱間圧延材、冷間圧延材等を、使用目的に応じて適宜選択して用いることができる。
(電解脱脂工程)
 電解脱脂工程は、基材1を電解脱脂処理する工程である。例えば、20~200g/Lの水酸化ナトリウム(NaOH)のアルカリ脱脂浴中に陰極として基材1を浸漬させ、電流密度2.5~5.0A/dm、浴温20~70℃、処理時間10~100秒の条件で電解脱脂する方法が挙げられる。
(表面活性化処理工程)
 電解脱脂工程を行った後に、表面活性化処理工程を行なう。表面活性化処理工程は、従来の活性化処理とは異なる新規な活性化処理を行う工程であって、本発明のめっき線棒材を製造する工程の中で最も重要な工程である。
 従来の被膜形成技術では、亜鉛含有層(特にジンケート処理層)が存在しないと、特にイオン化傾向が大きい卑な金属であるアルミニウム又はアルミニウム合金からなる基材1に対して耐熱剥離性の良好な表面処理被膜(めっき被膜)を形成することが難しいとされている。本発明では、表面活性化処理工程を行なうことによって、その後に基材1上に形成される最下金属層21を構成する金属原子(例えばニッケル原子)と同一の金属原子を、最下金属層21の形成前に基材1上に結晶核あるいは薄い層として形成することができると考えられる。そして、この結晶核あるいは薄い層と基材1との界面に混合層3が形成される。これにより、基材1の金属成分及び表面処理被膜2の金属成分がそれぞれ混合層3の酸素成分と結合することができる。その結果、ジンケート処理等により、亜鉛を主成分とする亜鉛含有層を形成しなくても、表面処理被膜2を基材1に対して簡便に形成でき、さらには塩水耐食性が改善されためっき線棒材を作製することができる。
 表面活性化処理は、好ましくは、電解脱脂処理を行った後の基材1の表面を、(i)硫酸、硝酸、塩酸、フッ酸及びリン酸の中から選択される1つ以上の酸溶液10~500mL/Lと、(ii)硫酸ニッケル、硝酸ニッケル、塩化ニッケル及びスルファミン酸ニッケルからなる群から選択されるニッケル化合物(ニッケルのメタル分に換算して0.1~500g/L)、又は、硫酸コバルト、硝酸コバルト、塩化コバルト及びスルファミン酸コバルトからなる群から選択されるコバルト化合物(コバルトのメタル分に換算して0.1~500g/L)と、を含有する活性化処理液を使用し、処理温度10~60℃、好ましくは、20℃~60℃、電流密度0.05~20A/dm好ましくは、0.1~20A/dm及び処理時間0.5~150秒、好ましくは1~100秒にて処理することによって行われる。また、活性化処理液中に、溶存酸素濃度3~100ppmの割合で酸素を含有させると、効率的に混合層3を形成することができるため好ましい。この表面活性化処理で基材1の表面に析出される主成分金属(ニッケル、コバルト等)から構成される被覆層の厚さは、0.5μm以下である。
(表面処理被膜形成工程)
 表面活性化処理工程を行った後に、表面処理被膜形成工程を行う。表面処理被膜形成工程では、最下金属層21だけで表面処理被膜2を形成してもよいが、めっき線棒材10に特性(機能)を付与する目的に応じて、最下金属層21上にさらに1層以上の(他の)金属層22を形成して、最下金属層21を含む少なくとも2層以上の金属層21、22で表面処理被膜2を形成することができる。
[最下金属層形成工程]
 最下金属層21は、ニッケル(Ni)、ニッケル合金、コバルト(Co)又はコバルト合金から構成される金属層である。最下金属層21は、ニッケル(Ni)又はコバルト(Co)を含有するめっき液を用い、電解めっき又は無電解めっきの湿式めっき法によって形成することができる。表1及び表2に、ニッケル(Ni)めっき又はコバルト(Co)めっきにより最下金属層21を形成する際のめっき浴組成及びめっき条件を例示する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[最下金属層以外の金属層形成工程]
 表面処理被膜2を構成する金属層21、22のうち、最下金属層21以外の(他の)金属層22を形成する場合に、各金属層22は、めっき線棒材に特性(機能)を付与する目的に応じて、電解めっき又は無電解めっきの湿式めっき法によって形成することができる。表1~表11に、それぞれニッケル(Ni)めっき、コバルト(Co)めっき、鉄(Fe)めっき、銅(Cu)めっき、錫(Sn)めっき、銀(Ag)めっき、銀(Ag)-錫(Sn)めっき、銀(Ag)-パラジウム(Pd)めっき、金(Au)めっき、パラジウム(Pd)めっき及びロジウム(Rh)めっきにより金属層を形成する際のめっき浴組成及びめっき条件を例示する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表面処理被膜2は、用途に応じて、上述したような最下金属層21と、最下金属層21上に形成される1層、又は2層以上の金属層22とを適正に組み合わせて様々な層構成に変更して形成することが可能である。
 本発明のめっき線棒材は、あらゆる用途が対象となり得る。具体的には、電線、ケーブル等の導電部材、集電体用のメッシュ、網等の電池用部材、コネクタ、端子等の(電気接点用)ばね部材、半導体用のボンディングワイヤー、ボイスコイル等のコイル、発電機、モーターに用いられる巻線等として好適に用いることができる。
 導電部材のより具体例としては、キャブタイヤケーブル、架空送電線、OPGW、地中電線、海底ケーブルなどの電力用電線、電話用ケーブル、同軸ケーブルなどの通信用電線、ロボットケーブル、有線ドローン用ケーブル、EV/HEV用充電ケーブル、洋上風力発電用捻回ケーブル、エレベータケーブル、アンビリカルケーブル、電車用架線、ジャンパ線などの車両用電線、トロリ線などの機器用電線、自動車用ワイヤーハーネス、船舶用電線、飛行機用電線などの輸送用電線、バスバー、リードフレーム、フレキシブルフラットケーブル、避雷針、アンテナ、コネクタ、端子、ケーブルの編粗などが挙げられる。
 ばね部材のより具体的な用途例としては、ばね電極、端子、コネクタ、半導体プローブ用ばねなどが挙げられる。
 なお、上述したところは、この発明のいくつかの実施形態を例示したにすぎず、請求の範囲において種々の変更を加えることができる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(発明例1~27、30~31)
 発明例1~27は、表12に示すアルミニウム線材(外径φ0.9mm)上に、上述した条件で電解脱脂処理を行った後、表面活性化処理を行った。発明例27に示す合金1は国際公開第2018/012481号に記載の線材である。表面活性化処理は、発明例1~16及び18~27、30では、硫酸、硝酸、塩酸、フッ酸及びリン酸の中から選択される1つ以上の酸溶液10~500mL/Lと、硫酸ニッケル、硝酸ニッケル、塩化ニッケル及びスルファミン酸ニッケルからなる群から選択されるニッケル化合物(ニッケルのメタル分に換算して0.1~500g/L)と、を含有する活性化処理液を使用し、処理温度20~60℃、電流密度0.1~20A/dm及び処理時間1~100秒にて処理する条件で行った。また、発明例17、31では、硫酸、硝酸、塩酸、フッ酸及びリン酸の中から選択される1つ以上の酸溶液300mL/Lと、硫酸コバルト、硝酸コバルト、塩化コバルト及びスルファミン酸コバルトからなる群から選択されるコバルト化合物(コバルトのメタル分に換算して50g/L)と、を含有する活性化処理液を使用し、処理温度30℃、電流密度2A/dm及び処理時間20~60秒にて処理する条件で行った。その後、発明例1~27は、上述した表面処理被膜形成処理によって、最下金属層21と、最下金属層21上に形成された被覆金属層22とで構成された表面処理被膜2を形成し、本発明のめっき線棒材10を作製した。発明例30、31は、上述した表面処理被膜形成処理によって、最下金属層21で構成された表面処理被膜2を形成し、本発明のめっき線棒材10を作製した。基材1の種類、表面活性化処理に用いる活性化処理液中に含有させる金属化合物の種類、混合層3の平均厚さ(nm)、ならびに最下金属層21及び被覆金属層22を構成する金属化合物の種類及び平均厚さ(μm)を、表12に示す。また、表面処理被膜2を構成する各金属層21、22の形成条件については、表1~表11に示すめっき条件により行なった。
(発明例28)
 発明例28では、発明例1と同様に、電解脱脂処理を行った後、表面活性化処理を行った。表面活性化処理は、硫酸、硝酸、塩酸、フッ酸及びリン酸の中から選択される1つ以上の酸溶液200mL/Lと、硫酸ニッケル、硝酸ニッケル、塩化ニッケル及びスルファミン酸ニッケルからなる群から選択されるニッケル化合物(ニッケルのメタル分に換算して10g/L)と、を含有する活性化処理液を使用し、処理温度10℃、電流密度0.05A/dm及び処理時間0.5秒にて処理する条件で行った。その後、上述した表面処理被膜形成処理によって、表12に示す厚さでニッケルめっき層と金めっき層が積層された2層の金属層で構成される表面処理被膜を形成し、めっき線棒材を作製した。発明例28で作製しためっき線棒材は、処理温度が低く、電流密度が小さく、また、処理時間も短かったため、混合層3の平均厚さが0.98nmであった。
(発明例29)
 発明例29では、発明例1と同様に、電解脱脂処理を行った後、表面活性化処理を行った。表面活性化処理は、硫酸、硝酸、塩酸、フッ酸及びリン酸の中から選択される1つ以上の酸溶液200mL/Lと、硫酸ニッケル、硝酸ニッケル、塩化ニッケル及びスルファミン酸ニッケルからなる群から選択されるニッケル化合物(ニッケルのメタル分に換算して10g/L)と、を含有する活性化処理液を使用し、処理温度50℃、電流密度5A/dm及び処理時間150秒にて処理する条件で行った。その後、上述した表面処理被膜形成処理によって、表12に示す厚さでニッケルめっき層と金めっき層が積層された2層の金属層で構成される表面処理被膜を形成し、めっき線棒材を作製した。発明例29で作製しためっき線棒材は、処理時間が長かったため、混合層3の平均厚さが48nmであった。
(従来例1)
 従来例1は、表12に示すアルミニウム線(外径φ0.9mm)上に、上述した条件で電解脱脂処理を行い、その後、従来の亜鉛置換処理(ジンケート処理)を行うことによって、厚さ110nmの亜鉛含有層を形成した。その後、表面活性化処理を行うことなく、上述した表面処理被膜形成処理によって、表12に示す厚さでニッケルめっき層と金めっき層が積層された2層の金属層で構成される表面処理被膜を形成し、めっき線棒材を作製した。
Figure JPOXMLDOC01-appb-T000012
(評価方法)
<基材に対する表面処理被膜の耐熱剥離性>
 基材に対する表面処理被膜の耐熱剥離性は、上述した方法で作製した供試材(めっき線棒材)に対して200℃168時間加熱処理を行った後、剥離試験を行い評価した。剥離試験は、JIS H 8504:1999に規定される「めっきの密着性試験方法」の「19.巻き付け試験方法」に基づき行なった。表13に評価結果を示す。なお、表13に示す耐熱剥離性は、めっき剥離が見られなかった場合を「◎(非常に優れる)」、試験面積の95%以上100%未満が良好に密着していた場合を「○(優れる)」、試験面積の85%以上95%未満が良好に密着していた場合を「△(良好)」、そして、密着領域が試験面積の85%未満である場合を「×(不可)」とし、本試験では、「◎(非常に優れる)」、「○(優れる)」及び「△(良好)」に該当する場合を、耐熱剥離性が合格レベルにあるとして評価した。
<半田濡れ性>
 半田濡れ性は、上述した方法で作製した各供試材(めっき線棒材)について、ソルダーチェッカー(SAT-5100(商品名、(株)レスカ製))を用いて半田濡れ時間を測定し、この測定値から評価した。表13に評価結果を示す。なお、表13に示す半田濡れ性における測定条件の詳細を下記に示す。半田濡れ性は、半田濡れ時間が3秒未満である場合を「◎(合格)」と判定し、3秒以上浸漬しても接合しなかった場合を「×(不合格)」と判定し、評価した。
 半田の種類:Sn-3Ag-0.5Cu
温度:250℃
試験片サイズ:φ0.9mm×30mm
フラックス:イソプロピルアルコール-25%ロジン
浸漬速度:25mm/sec.
浸漬時間:10秒
浸漬深さ:10mm
<塩水耐食性>
 塩水耐食性は、上述した方法で作製した各供試材(めっき線棒材)について、35±5℃で5質量%NaCl水溶液を用いた塩水噴霧試験を行い評価した。供試材ごとに3本ずつサンプルを作製し、それぞれ塩水噴霧試験時間を8時間とした。その後、腐食生成物が発生しているか否かを目視で判定した。表13に評価結果を示す。なお、表13に示す塩水耐食性は、試験前から変化が確認できないものが3本全てである場合を「◎(非常に優れる)」、2本である場合を「○(優れる)」、1本である場合を「△(良好)」とし、全てで変化を確認した場合を「×(不可)」とした。本試験では、「◎(非常に優れる)」、「○(優れる)」及び「△(良好)」に該当する場合を、塩水耐食性が合格レベルにあるとして評価した。
 試験片サイズ:φ0.9mm×30mm
<曲げ加工性>
 曲げ加工性は、上述した方法で作製した各供試材(めっき線棒材)について、JIS H 2248:2006に規定される「金属材料曲げ試験方法」の「6.1 押曲げ法」に基づき評価した。表13に評価結果を示す。なお、表13に示す曲げ加工性は、割れや剥がれが無い場合を「◎(非常に優れる)」、僅かな割れがあるが剥がれの無い場合を「○(優れる)」、僅かな剥がれのある場合を「△(良好)」、そして、剥がれが大きい場合を「×(不可)」とし、本試験では、「◎(非常に優れる)」、「○(優れる)」及び「△(良好)」に該当する場合を、曲げ加工性が合格レベルにあるとして評価した。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、発明例1~31ではいずれも、半田濡れ性、塩水耐食性及び曲げ加工性が合格レベルである。また、混合層3の平均厚さが、1.00nm以上40nm以下の範囲である発明例1~27、30~31では、耐熱剥離性にも優れており、特に、発明例3~5、7~27、30~31では、非常に優れた耐熱剥離性を示していた。また、最下金属層21の厚さが0.05以上2.0μm未満である発明例1~11、13~31では、曲げ加工性に優れており、特に、発明例1~9、13~31では、非常に優れた曲げ加工性を示していた。一方、従来例1では、アルミニウム系基材に対してジンケート処理を行うことによって、アルミニウム系基材上に亜鉛含有層が形成されているため、塩水耐食性が劣っていた。
 10、10A、10B めっき線棒材
 1 基材
 2 表面処理被膜
 3 混合層
 21 最下金属層
 22 金属層(被覆金属層)

Claims (11)

  1.  アルミニウム又はアルミニウム合金からなる基材と、1層以上の金属層から構成され、該基材を被覆する表面処理被膜とを有するめっき線棒材であって、
     前記1層以上の金属層のうち、前記基材上に形成されている金属層である最下金属層が、ニッケル、ニッケル合金、コバルト又はコバルト合金であり、
     前記基材と前記表面処理被膜との界面に、前記基材中の金属成分と、前記表面処理被膜中の金属成分と、酸素成分とを含有する混合層が存在することを特徴とするめっき線棒材。
  2.  前記混合層の平均厚さが、前記めっき線棒材の垂直断面で測定して、1.00nm以上40nm以下の範囲である、請求項1に記載のめっき線棒材。
  3.  前記めっき線棒材の断面観察にて、SETM-EDXを用いて前記基材側から前記表面処理被膜側にわたって線分析を行い、得られた前記めっき線棒材の各成分の検出強度プロファイルにおいて、
     前記表面処理被膜2の主成分の検出強度が前記基材の主成分の検出強度に対して0.5倍以上2.0倍以下であり、かつ、酸素の検出強度が前記基材の主成分と前記表面処理被膜の主成分の検出強度との和の10%以上となる範囲のめっき被膜積層方向への垂直長さが、1.00nm以上40nm以下の範囲である、請求項1または2に記載のめっき線棒材。
  4.  前記最下金属層の厚さが0.05μm以上2.0μm未満である、請求項1~3までのいずれか1項に記載のめっき線棒材。
  5.  前記表面処理被膜は、前記最下金属層と、該最下金属層上に形成された1層以上の金属層とを有し、該1層以上の金属層が、ニッケル、ニッケル合金、コバルト、コバルト合金、鉄、鉄合金、銅、銅合金、錫、錫合金、銀、銀合金、金、金合金、白金、白金合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウム、イリジウム合金、パラジウム及びパラジウム合金の群から選択されるいずれかで形成されている、請求項1~4までのいずれか1項に記載のめっき線棒材。
  6.  前記1層以上の金属層は、2層以上の金属層である、請求項5に記載のめっき線棒材。
  7.  請求項1~6までのいずれか1項に記載のめっき線棒材の製造方法であって、
    (i)硫酸、硝酸、塩酸、フッ酸、リン酸、臭化水素酸、ヨウ化水素酸、酢酸及びシュウ酸の中から選択される1つ以上の酸溶液の合計が10~500mL/Lと、
    (ii)硫酸ニッケル、硝酸ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル及びスルファミン酸ニッケルからなる群から選択されるニッケル化合物(ニッケルのメタル分に換算して0.1~500g/L)、又は、硫酸コバルト、硝酸コバルト、塩化コバルト、臭化コバルト、ヨウ化コバルト及びスルファミン酸コバルトからなる群から選択されるコバルト化合物(コバルトのメタル分に換算して0.1~500g/L)と、
    を含有する活性化処理液を使用して、前記基材の表面を、活性化処理液中の溶存酸素濃度3ppm以上100ppm以下、処理温度10~60℃、電流密度0.05~20A/dm及び処理時間0.5~150秒にて処理する表面活性化処理工程を含む、めっき線棒材の製造方法。
  8.  請求項1~6までのいずれか1項に記載のめっき線棒材を用いて形成されたケーブル。
  9.  請求項1~6までのいずれか1項に記載のめっき線棒材を用いて形成された電線。
  10.  請求項1~6までのいずれか1項に記載のめっき線棒材を用いて形成されたコイル。
  11.  請求項1~6までのいずれか1項に記載のめっき線棒材を用いて形成されたばね部材。
PCT/JP2018/012591 2017-03-31 2018-03-27 めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材 WO2018181399A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018538793A JP6452912B1 (ja) 2017-03-31 2018-03-27 めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材
EP18776537.5A EP3604624A4 (en) 2017-03-31 2018-03-27 MACHINE-PLATED WIRE MATERIAL, ITS PRODUCTION PROCESS, AND CABLE, ELECTRIC WIRE, COIL AND SPRING ELEMENT FORMED THEREOF
KR1020197024432A KR20190129843A (ko) 2017-03-31 2018-03-27 도금 선봉재 및 그 제조 방법, 그리고 이것을 사용하여 형성된 케이블, 전선, 코일 및 스프링 부재
CN201880023638.3A CN110494597A (zh) 2017-03-31 2018-03-27 镀敷线棒材及其制造方法以及使用其形成的电缆、电线、线圈和弹簧构件
US16/585,903 US20200024764A1 (en) 2017-03-31 2019-09-27 Plated wire rod material, method for producing same, and cable, electric wire, coil and spring member, each of which is formed using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070064 2017-03-31
JP2017-070064 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/585,903 Continuation US20200024764A1 (en) 2017-03-31 2019-09-27 Plated wire rod material, method for producing same, and cable, electric wire, coil and spring member, each of which is formed using same

Publications (1)

Publication Number Publication Date
WO2018181399A1 true WO2018181399A1 (ja) 2018-10-04

Family

ID=63676246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012591 WO2018181399A1 (ja) 2017-03-31 2018-03-27 めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材

Country Status (7)

Country Link
US (1) US20200024764A1 (ja)
EP (1) EP3604624A4 (ja)
JP (1) JP6452912B1 (ja)
KR (1) KR20190129843A (ja)
CN (1) CN110494597A (ja)
TW (1) TW201837240A (ja)
WO (1) WO2018181399A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129344A1 (ja) * 2018-12-18 2020-06-25 古河電気工業株式会社 ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体
CN115066514A (zh) * 2020-02-25 2022-09-16 住友电气工业株式会社 金属材料及金属材料的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726836B (zh) * 2020-12-31 2021-05-01 大陸商汕頭市駿碼凱撒有限公司 銅微合金導線及其製備方法
CN114108043B (zh) * 2021-11-19 2023-08-11 山东省路桥集团有限公司 钢结构桥梁锈蚀区域的修复再生预处理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229889A (ja) * 1989-04-25 1991-10-11 Alum Pechiney 高速電解法を用いての導電性基体の連続被覆方法とその装置
JPH04230905A (ja) 1990-08-31 1992-08-19 Sumitomo Electric Ind Ltd 銅被覆アルミニウム複合線及びその製造方法
JP2000096288A (ja) * 1998-09-18 2000-04-04 Furukawa Electric Co Ltd:The 半田付性に優れるNiめっきアルミ基複合材および前記Niめっきアルミ基複合材の製造方法
JP2003301292A (ja) 2002-04-12 2003-10-24 Totoku Electric Co Ltd めっきアルミニウム線およびエナメル被覆めっきアルミニウム線
JP2012057225A (ja) * 2010-09-10 2012-03-22 Honda Motor Co Ltd メッキ前処理方法
JP2015015299A (ja) * 2013-07-03 2015-01-22 Jx日鉱日石金属株式会社 電磁波シールド用金属箔、電磁波シールド材及びシールドケーブル
JP2015229791A (ja) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 電子部品用金属材料、それを用いたコネクタ端子、コネクタ及び電子部品
WO2016157713A1 (ja) * 2015-03-27 2016-10-06 オリエンタル鍍金株式会社 銀めっき材及びその製造方法
WO2018012482A1 (ja) 2016-07-13 2018-01-18 古河電気工業株式会社 アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品
WO2018012481A1 (ja) 2016-07-13 2018-01-18 古河電気工業株式会社 アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256028A (en) * 1975-11-04 1977-05-09 Tahei Asada Direct electrolytic plating method of surface of aluminum material
JP3422595B2 (ja) * 1995-06-12 2003-06-30 日本パーカライジング株式会社 アルミニウム合金用亜鉛置換処理浴
FR2796656B1 (fr) * 1999-07-22 2001-08-17 Pechiney Aluminium Procede de nickelage en continu d'un conducteur en aluminium et dispositif correspondant
US20060157352A1 (en) * 2005-01-19 2006-07-20 Corus Aluminium Walzprodukte Gmbh Method of electroplating and pre-treating aluminium workpieces
EP1838490A1 (en) * 2005-01-19 2007-10-03 Aleris Aluminum Koblenz GmbH Method of electroplating and pre-treating aluminium workpieces
KR101324443B1 (ko) * 2011-10-17 2013-10-31 이병록 광학필름 생산용 가이드롤의 표면처리 방법
DE102012018159A1 (de) * 2012-09-14 2014-03-20 Feindrahtwerk Adolf Edelhoff Gmbh & Co. Kg Verfahren zum Beschichten von Aluminiumleitern
CN104233420A (zh) * 2013-06-14 2014-12-24 无锡市森信精密机械厂 一种铝或铝合金表面直接电镀高结合力镍层方法
KR20190097078A (ko) * 2016-12-27 2019-08-20 후루카와 덴끼고교 가부시키가이샤 표면 처리재와 그 제조방법 및 이 표면 처리재를 이용하여 제작한 부품

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229889A (ja) * 1989-04-25 1991-10-11 Alum Pechiney 高速電解法を用いての導電性基体の連続被覆方法とその装置
JPH04230905A (ja) 1990-08-31 1992-08-19 Sumitomo Electric Ind Ltd 銅被覆アルミニウム複合線及びその製造方法
JP2000096288A (ja) * 1998-09-18 2000-04-04 Furukawa Electric Co Ltd:The 半田付性に優れるNiめっきアルミ基複合材および前記Niめっきアルミ基複合材の製造方法
JP2003301292A (ja) 2002-04-12 2003-10-24 Totoku Electric Co Ltd めっきアルミニウム線およびエナメル被覆めっきアルミニウム線
JP2012057225A (ja) * 2010-09-10 2012-03-22 Honda Motor Co Ltd メッキ前処理方法
JP2015015299A (ja) * 2013-07-03 2015-01-22 Jx日鉱日石金属株式会社 電磁波シールド用金属箔、電磁波シールド材及びシールドケーブル
JP2015229791A (ja) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 電子部品用金属材料、それを用いたコネクタ端子、コネクタ及び電子部品
WO2016157713A1 (ja) * 2015-03-27 2016-10-06 オリエンタル鍍金株式会社 銀めっき材及びその製造方法
WO2018012482A1 (ja) 2016-07-13 2018-01-18 古河電気工業株式会社 アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品
WO2018012481A1 (ja) 2016-07-13 2018-01-18 古河電気工業株式会社 アルミニウム合金材並びにこれを用いた導電部材、電池用部材、締結部品、バネ用部品および構造用部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604624A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129344A1 (ja) * 2018-12-18 2020-06-25 古河電気工業株式会社 ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体
CN112753080A (zh) * 2018-12-18 2021-05-04 古河电气工业株式会社 电缆以及具备该电缆的连接结构体、布线及系泊型移动体
JPWO2020129344A1 (ja) * 2018-12-18 2021-11-04 古河電気工業株式会社 ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体
JP7354147B2 (ja) 2018-12-18 2023-10-02 古河電気工業株式会社 ケーブル、ならびにこのケーブルを具える接続構造体、ワイヤーハーネスおよび係留型移動体
US11923110B2 (en) 2018-12-18 2024-03-05 Furukawa Electric Co., Ltd. Cable, connection structure provided with cable, wire harness, and moored mobile body
CN115066514A (zh) * 2020-02-25 2022-09-16 住友电气工业株式会社 金属材料及金属材料的制造方法
CN115066514B (zh) * 2020-02-25 2024-04-02 住友电气工业株式会社 金属材料及金属材料的制造方法

Also Published As

Publication number Publication date
US20200024764A1 (en) 2020-01-23
EP3604624A1 (en) 2020-02-05
JPWO2018181399A1 (ja) 2019-04-04
KR20190129843A (ko) 2019-11-20
JP6452912B1 (ja) 2019-01-16
TW201837240A (zh) 2018-10-16
EP3604624A4 (en) 2021-01-13
CN110494597A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
JP6560455B2 (ja) 表面処理材及びその製造方法、並びにこの表面処理材を用いて作製した部品
JP6452912B1 (ja) めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材
JP6615350B2 (ja) 表面処理材およびこれを用いて作製した部品
JP6279170B1 (ja) 表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品
JP6535136B2 (ja) 表面処理材およびこれを用いて作製した部品
TWI693304B (zh) 鍍覆線棒
JP2018104821A (ja) 表面処理材及びこれを用いて作製した部品
JP2018172710A (ja) 接続構造体及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538793

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024432

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018776537

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018776537

Country of ref document: EP

Effective date: 20191031