WO2018181267A1 - 粒子膜の製造方法、静電噴霧用液、及び、粒子膜 - Google Patents

粒子膜の製造方法、静電噴霧用液、及び、粒子膜 Download PDF

Info

Publication number
WO2018181267A1
WO2018181267A1 PCT/JP2018/012338 JP2018012338W WO2018181267A1 WO 2018181267 A1 WO2018181267 A1 WO 2018181267A1 JP 2018012338 W JP2018012338 W JP 2018012338W WO 2018181267 A1 WO2018181267 A1 WO 2018181267A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
particles
particle film
mass
nozzle
Prior art date
Application number
PCT/JP2018/012338
Other languages
English (en)
French (fr)
Inventor
裕之 大和田
Original Assignee
ナガセテクノエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセテクノエンジニアリング株式会社 filed Critical ナガセテクノエンジニアリング株式会社
Priority to KR1020197028780A priority Critical patent/KR102350403B1/ko
Priority to JP2018537560A priority patent/JP6463561B1/ja
Publication of WO2018181267A1 publication Critical patent/WO2018181267A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns

Definitions

  • the present invention relates to a method for producing a particle film, a liquid for electrostatic spraying, and a particle film.
  • a liquid coating method using a so-called electrostatic spraying technique in which a charged liquid is discharged from a nozzle, a large number of fine droplets are formed by a repulsive force due to electrostatic force, and supplied to an object. . Thereby, a thin liquid film can be obtained on the object.
  • a liquid containing particles is ejected onto an object to supply a droplet group to the surface of the object, and then the liquid on the surface is dried to form a particle film on the object.
  • the liquid on the surface is dried to form a particle film on the object.
  • particles disperse in the liquid such as sedimentation in the liquid before discharge, the particles are clogged in the nozzle or the like, and stable electrostatic spraying cannot be performed. It was found that large thickness unevenness was formed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a particle film capable of forming a particle film with reduced thickness unevenness.
  • the method for producing a particle film according to the present invention includes discharging a charged liquid from a nozzle and supplying a liquid droplet group to the surface of an object; Drying the liquid supplied to the surface of the object.
  • the liquid includes particles, a polyhydric alcohol, and a polycarboxylic acid-based dispersant.
  • the present invention since poor dispersion of particles such as sedimentation of particles in a liquid is suppressed, nozzle clogging is suppressed, and stable electrostatic spraying of droplets containing particles is possible. Therefore, it is possible to form a particle film with reduced thickness unevenness on the object.
  • the polycarboxylic acid-based dispersant functions as a binder and contributes to improving the strength of the particle film.
  • the average particle diameter of the particles may be 0.01 to 10 ⁇ m.
  • the particles can be inorganic particles, and the particles can be phosphor particles or carbon-based material particles.
  • polycarboxylic acid dispersant may be a maleic anhydride copolymer.
  • the polyhydric alcohol can be propylene glycol.
  • the object when the droplet group is supplied, the object can be heated, and the discharging step and the drying step can be performed simultaneously.
  • the liquid for electrostatic spraying according to the present invention includes particles, a polyhydric alcohol, and a polycarboxylic acid dispersant.
  • the particle film according to the present invention includes particles and a polycarboxylic acid that bonds the particles to each other.
  • a method for producing a particle film capable of forming a particle film even when a liquid containing particles is electrostatically sprayed is provided.
  • FIG. 1 is a schematic configuration diagram of a liquid coating apparatus according to an embodiment of the present invention.
  • the liquid for electrostatic spraying according to the present invention contains particles, a polyhydric alcohol, and a polycarboxylic acid-based dispersant.
  • particles examples of particles are particles of inorganic materials (inorganic particles) such as metals, oxides, sulfides, phosphates, nitrides, and carbon-based materials.
  • Examples of metals are silver, gold, copper and the like.
  • Examples of the oxide are ceramics such as titania, silica, and alumina; glass; and oxide-based phosphors such as Eu-added BaAl 2 O 4 .
  • Examples of sulfides are sulfide phosphors such as ZnS, ZnCdS, ZnS: Ag, and Al.
  • Examples of phosphates are phosphate-based phosphors such as Ca 10 (PO 4 ) 6 FCl: Sb, Mn.
  • An example of the nitride is a nitride-based phosphor such as (Ba, Sr, Ca) 2 Si 5 N 8 : Eu.
  • Examples of the carbon-based material are carbon black, acetylene black, carbon nanotube, carbon nanofiber, and graphite.
  • the average particle diameter of these particles is 0.01 to 10 ⁇ m.
  • the average particle size can be D50 of the volume-based particle size distribution by a laser diffraction particle size distribution meter.
  • the polyhydric alcohol is an alcohol having a plurality of OH groups. Examples of the polyhydric alcohol are tetraethylene glycol, propylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, and 1,4-butanediol.
  • the polyhydric alcohol is preferably a dihydric alcohol.
  • the polyhydric alcohol may be a mixture of polyhydric alcohols.
  • the boiling point of the polyhydric alcohol is preferably 250 ° C. or less, and more preferably 200 ° C. or less. If the boiling point is too high, the time required for drying may become longer, or the heating temperature of the object required for drying may increase, which may be undesirable. When the heating temperature of the object to be dried is high, the polycarboxylic acid-based dispersant may be decomposed to give color to the particle film. Further, the boiling point of the polyhydric alcohol is preferably 80 ° C. or higher, and more preferably 150 ° C. or higher. If the boiling point of the polyhydric alcohol is too low, the polyhydric alcohol may evaporate too quickly, and it may be difficult to supply the droplet group to the surface of the object.
  • the viscosity of the polyhydric alcohol can be 10 to 100 cP.
  • the relative dielectric constant of the polyhydric alcohol can be 20-40.
  • the relative dielectric constant is [dielectric constant / dielectric constant of vacuum].
  • the polyhydric alcohol is preferably propylene glycol.
  • the polycarboxylic acid-based dispersant is a polymer having an unsaturated carboxylic acid polymer as a basic skeleton, and may be a homopolymer of unsaturated carboxylic acid or a copolymer of plural kinds of unsaturated carboxylic acids. It may be a copolymer of a saturated carboxylic acid and another polymerizable monomer.
  • unsaturated carboxylic acids examples include unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid.
  • Other examples of unsaturated carboxylic acids are unsaturated dicarboxylic acids such as maleic acid and fumaric acid.
  • the unsaturated carboxylic acid may be an acid anhydride such as maleic anhydride.
  • Examples of other polymerizable monomers are acrylic acid esters such as methyl acrylate and methyl methacrylate; vinyl acetate; styrene; styrene; olefins having 2 to 4 carbon atoms; acrylamide; vinyl ether.
  • polycarboxylic acids are polyacrylic acid, polymethacrylic acid, acrylic acid / methacrylic acid copolymer, polymaleic acid, (meth) acrylic acid / maleic acid copolymer, methyl (meth) acrylate / maleic acid copolymer And (meth) acrylic acid / maleic anhydride copolymer and (meth) acrylic acid methyl / maleic anhydride copolymer.
  • Other examples are acrylamide / maleic anhydride copolymers, vinyl ether / maleic anhydride copolymers.
  • the polycarboxylic acid may be a copolymer of maleic anhydride and another polymerizable monomer, that is, a maleic anhydride copolymer having a structure derived from maleic anhydride as a repeating unit.
  • the polycarboxylic acid dispersant is hydrophilic and is suitably dissolved in a polyhydric alcohol.
  • the acid anhydride group may be ring-opened to become an ester group such as methyl ester, an amide group, or a carboxyl group.
  • the number average molecular weight Mn of the polycarboxylic acid can be 0.5 to 10 ⁇ 10 4 , and can be 1 to 5 ⁇ 10 4 .
  • the weight average molecular weight Mw can be 5 to 30 ⁇ 10 4 , and can be 10 to 25 ⁇ 10 4 .
  • Each average molecular weight can be measured by GPC using polyethylene glycol and polyethylene oxide as standard substances and a solvent as water (100 mmol / L sodium nitrate aqueous solution).
  • the polycarboxylic acid dispersant may be a metal salt.
  • metals are Na and K.
  • polycarboxylic acid dispersants examples include Kikuei Chemicals' Tixol K-130B, Tixol K-502, and Dow Chemical's TT615.
  • the lower limit of the mass fraction of particles in the total mass of the electrostatic spraying liquid can be 0.1% by mass, 1.0% by mass, 10% by mass, 20% by mass, 30% by mass, and the upper limit. Can be 70 mass%, 60 mass%, 50 mass%, 45 mass%, 40 mass%, 30 mass%, and 5 mass%.
  • the lower limit of the mass fraction of the polyhydric alcohol in the total mass of the electrostatic spraying liquid is 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 70% by mass, and 95% by mass.
  • the upper limit can be 99.9 mass%, 99.0 mass%, 90.0 mass%.
  • the lower limit of the mass fraction of the polycarboxylic acid-based dispersant in the total mass of the electrostatic spraying liquid is 0.01% by mass, 0.05% by mass, 0.1% by mass, 0.2% by mass, 0%.
  • the upper limit may be 5.0% by mass, 4.0% by mass, 3.0% by mass, 2% by mass, and 1% by mass.
  • the liquid for electrostatic spraying can contain additives such as solvents other than polyhydric alcohols, binders, surfactants, and leveling agents.
  • additives such as solvents other than polyhydric alcohols, binders, surfactants, and leveling agents.
  • the total amount of additives in the total mass of the electrostatic spray liquid is preferably 1.0% by mass or less.
  • the solvent are water and methanol.
  • the electrostatic spray liquid can have a relative dielectric constant of 5 to 80.
  • the relative dielectric constant of the liquid can be measured by MODEL 871 manufactured by Nippon Lucas.
  • the relative dielectric constant of the electrostatic spray liquid is determined by its composition.
  • the liquid for electrostatic spraying can have a viscosity of 10 to 500 cP.
  • the liquid for electrostatic spraying can be obtained, for example, by mixing the above materials, stirring for about 5 to 20 minutes with a stirring blade or the like, and then applying and dispersing ultrasonic waves for about 15 minutes to 3 hours.
  • FIG. 1 is a partially broken schematic view of an electrostatic spraying apparatus 100 according to an embodiment of the present invention.
  • the electrostatic spraying apparatus 100 of the present embodiment includes a nozzle 1, an electrostatic spraying unit 10, a counter electrode 20, a power supply 30, and a liquid supply unit 40.
  • At least a part of the inner surface of the nozzle 1 is made of a conductive material.
  • An example of the conductive material is a metal such as stainless steel.
  • the conductive portion on the inner surface of the nozzle 1 is connected to an external power source 30, and the electrostatic spray liquid sent from the liquid supply unit 40 can be charged by the conductive portion of the nozzle 1.
  • the nozzle 1 is connected to the line L10 from the liquid supply unit 40 using the joint 4 at the upper end.
  • the inner diameter of the nozzle 1 is not particularly limited, but can be, for example, 10 to 1000 ⁇ m.
  • the counter electrode 20 is disposed on the side opposite to the nozzle 1 with the substrate SB interposed therebetween.
  • the counter electrode 20 is disposed on an extension line of the axis of the nozzle 1 and is separated from the nozzle 1.
  • the counter electrode 20 is preferably grounded.
  • the distance between the nozzle 1 and the substrate SB is not particularly limited, but can be, for example, about 10 to 60 mm.
  • the counter electrode has a plate shape, and a substrate SB having a surface on which a particle film is to be formed is placed on the counter electrode.
  • the power supply 30 applies a voltage between the nozzle 1 and the counter electrode 20.
  • the voltage is a direct current, and for example, it is preferable to supply the voltage in a pulse form.
  • the voltage is not particularly limited, but can be 5 to 20 kV in this embodiment.
  • the voltage is preferably applied to the counter electrode 20 so that the nozzle 1 side is positive.
  • the liquid supply unit 40 is a device that supplies the above-described electrostatic spraying liquid to the nozzle 1 via the line L10.
  • the liquid supply unit 40 includes a tank 41 for storing the electrostatic spray liquid and a pump 42 for supplying the electrostatic spray liquid from the tank 41 to the nozzle 1 via the line L10.
  • the liquid for electrostatic spraying is supplied to the nozzle 1 through the line L10 by supplying air to the tank 41 in which the pump 42 is in a sealed state.
  • the liquid supply unit 40 supplies the above-described electrostatic spraying liquid to the nozzle 1.
  • the manufacturing method of the particle film using the electrostatic spraying apparatus 100 of this embodiment is demonstrated.
  • the substrate SB to be applied is placed on the counter electrode 20.
  • a voltage is applied between the nozzle 1 inside the electrostatic spray unit 10 and the counter electrode 20 by the power supply 30.
  • the pump 42 is driven and the liquid in the tank 41 is supplied to the tip of the nozzle 1 inside the electrostatic spray unit 10 via the line L10.
  • the liquid is charged by being charged by the nozzle 1 inside the electrostatic spray unit 10, and the liquid protruding from the tip of the nozzle 1 inside the electrostatic spray unit 10 forms a Taylor cone.
  • the droplets are split by electrostatic force, and a large number of minute droplet groups are ejected toward the counter electrode 20 having an opposite charge while spreading in a direction perpendicular to the ejection direction.
  • the particles are moderately dispersed in the tank 41, the nozzle 1, the line L10, and the like, and segregation of particles such as sedimentation is suppressed. Therefore, particles in the nozzle 1 are less likely to be clogged, and electrostatic spraying can be stably performed from the nozzle, so that a fine droplet group including particles can be stably supplied to the substrate SB. Therefore, it is possible to manufacture a particle film with reduced thickness unevenness.
  • the thickness of the particle film can be controlled according to the amount of droplets to be supplied.
  • the particle film PF according to the present embodiment is formed on the substrate SB.
  • the particle film PF contains the above particles and a polycarboribic acid-based dispersant. Specifically, in the particle film PF, the polycarboxylic acid-based dispersant bonds particles.
  • the thickness of the particle film PF can be 0.5 to 200 ⁇ m.
  • the lower limit of the mass fraction of particles in the total mass of the particle film can be 90% by mass, 95% by mass, 96% by mass, 97% by mass, 98% by mass, and the upper limit is 99%. And 99.95% by mass, 99.95% by mass, 99.90% by mass, and 99.5% by mass.
  • the lower limit of the mass fraction of the polycarboxylic acid-based dispersant in the total mass of the particle film PF may be 0.01% by mass, 0.05% by mass, 0.1% by mass, and 0.5% by mass.
  • the upper limit can be 1.5 mass%, 2 mass%, and 5 mass%.
  • the particle film PF can contain the above-described additives such as a binder, a surfactant, and a leveling agent.
  • the total amount of additives in the total mass of the particle film PF is preferably 0.6% by mass or less.
  • the particle As a use of such a particle film, for example, if the particle is a phosphor particle, it can be used as a light emitting part of a light source. In the conventional method, it is difficult to form a thin film containing phosphor particles at a high concentration, and even when a large amount of a binder such as a silicone resin is added to the liquid, a sufficient thickness and particle concentration cannot be realized.
  • a binder such as a silicone resin
  • the particles are particles of a carbon-based material such as carbon nanotubes
  • a black film is obtained as a pigment particle layer provided on the surface of the substrate.
  • a conventional solvent that disperses particles of carbon-based material, such as DMF, has a low viscosity or poor dispersibility, so that the nozzle is easily clogged, and adhesion is poor and smoothness is not good.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the method of electrostatic spraying is not limited to the above-described embodiment.
  • the nozzle may be non-conductive and may be charged by providing an electrode needle in the nozzle or the nozzle outlet.
  • the method for supplying the liquid to the nozzle is not limited to the above-described embodiment.
  • the counter electrode 20 is also plate-shaped, but the shape of the counter electrode 20 can be changed to a desired form according to the shape of the application target.
  • the object to be applied is not particularly limited, and for example, the liquid can be applied to various objects such as a substrate having an uneven surface.
  • Examples 1 to 10, Comparative Examples 1 to 5 Using the electrostatic spraying apparatus of FIG. 1, electrostatic spraying was performed on the substrate with the liquid for electrostatic spraying in the combination of phosphor particles, dispersant solution, and solvent shown in Table 1.
  • the material of the phosphor particles was ZnS, and the average particle size was 6 ⁇ m.
  • the mass percentages of the phosphor particles, the dispersant solution, and the solvent in the electrostatic spraying liquid were 39%, 2.0%, and 59%, respectively.
  • Prior to spraying stirring by rotation and revolution of the container and dispersion treatment with ultrasonic waves for 30 minutes were performed. The substrate was heated to 100 ° C. during spraying.
  • the dispersant solution is a dispersant, and the remaining about 80% by mass is a solvent such as water or methanol.
  • the dispersant in K-130B, TT615, K-502 is a maleic anhydride copolymer.
  • K-130B had a number average molecular weight Mn of 2.75 ⁇ 10 4 and a weight average molecular weight Mw of 16.5 ⁇ 10 4 .
  • Nozzle Made of stainless steel, applied voltage 10 kV Substrate (Si substrate), nitrogen gas pressure for liquid supply 0.002 MPa
  • the distance between the substrate and the tip of the nozzle with electrode was set to the distance at which electrostatic spraying could be performed most stably by moving the distance back and forth by 5 mm with 30 mm as a standard. Spraying was performed so that the average thickness of the particle film was 20 ⁇ m.
  • Nozzle clogging and particle film formation When there is no clogging of particles in the nozzle or device, and a particle film with a thickness variation of 10% or less can be formed, ⁇ is given. No, when a particle film having a thickness variation of ⁇ 15% or less could be formed, and ⁇ when there was no clogging of the particles in the nozzle or the apparatus and the thickness variation was within ⁇ 25%. When the nozzle was clogged and a particle film with a thickness exceeding ⁇ 25% was formed, x was marked.
  • Drying A case where a dried particle film was obtained immediately after spraying was marked with ⁇ , a case where it was held in an oven after spraying and dried within 90 minutes at 90 ° C., and a case where it was dried within 90 minutes after spraying in an oven at 120 ° C. for 60 minutes. The case where it was dried within a circle was marked with ⁇ , and the case where it took 60 minutes or more at 150 ° C. to dry in the oven after spraying was marked as x.
  • Adhesion indicates that the particle film does not peel or crack even when it is physically contacted, and ⁇ indicates that the particle on the surface can be removed by rubbing, and the particle film peels or cracks due to physical contact.
  • the case where it did is set as (triangle
  • Table 2 shows the characteristics of the solvents used in the examples and comparative examples, and the results of testing in advance whether the liquid of 100% solvent can be electrostatically sprayed (misted) with the electrostatic spraying apparatus of FIG. .
  • When mist is possible and mist is extremely spread ⁇ , when mist is possible and mist is spread ⁇ , when mist is possible and mist spread is narrow, mist is impossible The case where there existed was set as x.
  • Non-polyhydric alcohols usually used for electrostatic spraying such as isopropyl alcohol (IPA), gamma butyrolactone, N-methylpyrrolidone (NMP), have good electrostatic spraying characteristics of the solvent itself but contain particles. It was difficult to form a particle film without uneven thickness.
  • IPA isopropyl alcohol
  • NMP N-methylpyrrolidone

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明に係る粒子膜の製造方法は、帯電した液体をノズルから吐出させ、対象物の表面に前記液体の液滴群を供給する工程と、前記対象物の表面に供給された前記液体を乾燥させる工程と、を備える。前記液体は、粒子と、多価アルコールと、ポリカルボン酸系分散剤とを含む。

Description

粒子膜の製造方法、静電噴霧用液、及び、粒子膜
 本発明は、粒子膜の製造方法、静電噴霧用液、及び、粒子膜に関する。
 従来より、帯電した液体をノズルから排出させ、静電気力による反発力で多数の微少な液滴を形成して対象物に供給する、いわゆる静電噴霧技術を利用した液塗布方法が知られている。これにより、対象物上に薄い液膜を得ることができる。
特開2006-58628号公報 特開2004-136655号公報
 ところで、静電噴霧技術を利用して、粒子を含む液体を対象物に吐出して対象物の表面に液滴群を供給し、その後、表面の液体を乾燥させて、対象物上に粒子膜を形成することが考えられる。
 しかしながら、この場合、吐出前に液中で粒子が沈降するなど液中での粒子の分散性が悪くなるためか、粒子がノズル内等で詰まったり、安定な静電噴霧ができず、粒子膜に大きな厚みのムラが形成されることが判明した。
 本発明は上記課題に鑑みてなされたものであり、厚みのムラの低減された粒子膜の形成が可能な粒子膜の製造方法等を提供することを目的とする。
 本発明に係る粒子膜の製造方法は、帯電した液体をノズルから吐出させ、対象物の表面に前記液体の液滴群を供給する工程と、
 前記対象物の表面に供給された前記液体を乾燥させる工程と、を備え、る。前記液体は、粒子と、多価アルコールと、ポリカルボン酸系分散剤とを含む。
 本発明によれば、液体中での粒子の沈降などの粒子の分散不良が抑制されるため、ノズルの詰まりが抑制され、粒子を含む液滴の安定的な静電噴霧が可能となる。したがって、対象物上に、厚みのムラの低減された粒子膜の形成が可能となる。
 また、乾燥後にポリカルボン酸系分散剤がバインダーとして機能して粒子膜の強度の向上に寄与する。
 ここで、前記粒子の平均粒径は0.01~10μmであることができる。
 また、前記粒子は、無機粒子であることができ、また、前記粒子は、蛍光体粒子又は炭素系材料の粒子であることもできる。
 また、前記ポリカルボン酸系分散剤は無水マレイン酸共重合体であることができる。
 また、前記多価アルコールは、プロピレングリコールであることができる。
 また、前記液滴群の供給の際に前記対象物を加熱して、前記吐出工程と前記乾燥工程とを同時に行うことができる。
 本発明に係る静電噴霧用液は、粒子と、多価アルコールと、ポリカルボン酸系分散剤とを含む。
 本発明に係る粒子膜は、粒子と、前記粒子同士を結合するポリカルボン酸と、を含む。
 本発明によれば、粒子を含む液を静電噴霧する場合であっても、粒子膜の形成が可能な粒子膜の製造方法等が提供される。
図1は、本発明の1実施形態に係る液塗布装置の概略構成図である。
 本発明の実施形態について説明する。
 (静電噴霧用液)
 本発明に掛かる静電噴霧用液は、粒子、多価アルコール、及び、ポリカルボン酸系分散剤を含む。
 (粒子)
 粒子の例は、金属、酸化物、硫化物、リン酸塩、窒化物、炭素系材料等の無機材料の粒子(無機粒子)である。
 金属の例は、銀、金、銅などである。酸化物の例は、チタニア、シリカ、アルミナなどのセラミクス;ガラス;及び、Eu添加BaAlなどの酸化物系蛍光体である。硫化物の例は、ZnS、ZnCdS、ZnS:Ag,Al等の硫化物系蛍光体である。リン酸塩の例は、Ca10(POFCl:Sb,Mnなどのリン酸塩系蛍光体である。窒化物の例は、(Ba,Sr,Ca)Si:Eu等の窒化物系蛍光体である。炭素系材料の例は、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、黒鉛である。
 これらの粒子の平均粒径の例は、0.01~10μmである。平均粒径は、レーザ回折式粒度分布計による体積基準の粒度分布のD50であることができる。
 (多価アルコール)
 多価アルコールは、OH基を複数有するアルコールである。多価アルコールの例は、テトラエチレングリコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、1、4-ブタンジオールである。多価アルコールは、2価アルコールであることが好適である。多価アルコールは、多価アルコールの混合物であってもよい。
 多価アルコールの沸点は250℃以下であることが好適であり、200℃以下であることがより好適である。沸点が高すぎると乾燥に必要時間が長くなったり、乾燥に必要な対象物の加熱温度が高くなったりして好ましくない場合がある。乾燥必要な対象物の加熱温度が高い場合、ポリカルボン酸系分散剤が分解して粒子膜に着色を与える場合がある。また、多価アルコールの沸点は80℃以上であることが好適であり、150℃以上であることがより好適である。また、多価アルコールの沸点が低すぎると、多価アルコールの蒸発が早すぎて対象物の表面まで液滴群を供給することが困難になる場合がある。
 多価アルコールの粘度は、10~100cPであることができる。
 多価アルコールの比誘電率は、20~40であることができる。比誘電率とは、[誘電率/真空の誘電率]である。
 なかでも、多価アルコールは、プロピレングリコールで有ることが好適である。
 (ポリカルボン酸系分散剤)
 ポリカルボン酸系分散剤は、不飽和カルボン酸の重合体を基本骨格とするポリマーであり、不飽和カルボン酸の単独重合体でもよく、複数種の不飽和カルボン酸の共重合体でも良く、不飽和カルボン酸と他の重合性モノマーとの共重合体であってもよい。
 不飽和カルボン酸の例は、アクリル酸、メタクリル酸等の不飽和モノカルボン酸である。不飽和カルボン酸の他の例は、マレイン酸、フマル酸等の不飽和ジカルボン酸である。不飽和カルボン酸は、無水マレイン酸などの酸無水物でもよい。
 他の重合性モノマーの例は、アクリル酸メチル、メタクリル酸メチルなどのアクリル酸エステル;酢酸ビニル;スチレン;スチレン;炭素数2から4のオレフィン;アクリルアミド;ビニルエーテル、である。
 ポリカルボン酸の例は、ポリアクリル酸、ポリメタクリル酸、アクリル酸/メタクリル酸共重合体、ポリマレイン酸、(メタ)アクリル酸/マレイン酸共重合体、(メタ)アクリル酸メチル/マレイン酸共重合体、(メタ)アクリル酸/無水マレイン酸共重合体、(メタ)アクリル酸メチル/無水マレイン酸共重合体である。他の例は、アクリルアミド/無水マレイン酸共重合体、ビニルエーテル/無水マレイン酸共重合体である。ポリカルボン酸は、無水マレイン酸と他の重合性モノマーとの共重合体、すなわち、無水マレイン酸由来の構造を繰り返し単位として有する無水マレイン酸共重合体であることができる。ポリカルボン酸系分散剤は、親水性であり、多価アルコールに好適に溶解する。
 無水マレイン酸共重合体の場合、酸無水物基は、開環してメチルエステル等のエステル基、アミド基、カルボキシル基となっていてもよい。
 ポリカルボン酸の数平均分子量Mnは、0.5~10×10であることができ、1~5×10であることができる。重量平均分子量Mwは5~30×10であることができ、10~25×10であることができる。各平均分子量は、ポリエチレングリコール及びポリエチレンオキサイドを標準物質とし、溶媒を水(100mmol/Lの硝酸ナトリウム水溶液)としたGPCにより測定できる。
 ポリカルボン酸系分散剤は、金属塩であってもよい。金属の例は、Na,Kである。
 ポリカルボン酸系分散剤の例は、共栄社化学のチクゾールK-130B、チクゾールK-502、ダウケミカルのTT615である。
 静電噴霧用液の全体の質量に占める粒子の質量分率の下限は、0.1質量%、1.0質量%、10質量%、20質量%、30質量%とすることができ、上限は70質量%、60質量%、50質量%、45質量%、40質量%、30質量%、5質量%とすることができる。
 静電噴霧用液の全体の質量に占める多価アルコールの質量分率の下限は、30質量%、40質量%、50質量%、55質量%、60質量%、70質量%、95質量%とすることができ、上限は99.9質量%、99.0質量%、90.0質量%とすることができる。
 静電噴霧用液の全体の質量に占めるポリカルボン酸系分散剤の質量分率の下限は、0.01質量%、0.05質量%、0.1質量%、0.2質量%、0.5質量%、1.0質量%とすることができ、上限は5.0質量%、4.0質量%、3.0質量%、2質量%、1質量%とすることができる。
 静電噴霧用液は、他に、多価アルコール以外の溶媒、バインダー、界面活性剤、レベリング剤等の添加剤を含むことができる。静電噴霧用液の全体の質量に占める添加剤の総量は1.0質量%以下とすることが好適である。溶媒の例は、水、メタノールである。
 静電噴霧用液は、その比誘電率が5~80であることができる。液の比誘電率は、日本ルフト製MODEL871により測定することが出来る。静電噴霧用液の比誘電率は、その組成によって定まる。
 静電噴霧用液は、粘度が10~500cPであることができる。
 静電噴霧用液は、例えば、上記材料を混合し、攪拌羽根等により5~20分程度攪拌し、その後、15分~3時間程度超音波を印加して分散させることにより得ることができる。
 (粒子膜の製造方法)
 図1は、本発明の実施形態にかかる静電噴霧装置100の一部破断模式図である。本実施形態の静電噴霧装置100は、ノズル1、静電噴霧ユニット10、対向電極20、電源30、及び、液体供給部40を備える。
 ノズル1の内面の少なくとも一部は、導電性材料から成る。導電性材料の例は、ステンレススチールなどの金属である。ノズル1の内面の導電性の部分は外部の電源30と接続されており、このノズル1の導電性の部分によって液体供給部40より送られてくる静電噴霧用液を帯電させることができる。ノズル1は上端で継ぎ手4を用いて液体供給部40からのラインL10と接続されている。
 ノズル1の内径は特に限定されないが、例えば、10~1000μmとすることができる。
 対向電極20は、基板SBを挟んでノズル1とは反対側に配置されている。対向電極20は、ノズル1の軸線の延長線上に配置されており、ノズル1から離間されている。対向電極20は接地されていることが好ましい。ノズル1と基板SBとの距離も特に限定されないが、例えば、10~60mm程度とすることができる。
 本実施形態では、対向電極は板状であり、対向電極上に、粒子膜を形成すべき表面を有する基板SBが載置されている。
 電源30は、ノズル1と対向電極20との間に電圧を印加する。通常、電圧は、直流であり、例えば、パルス状に供給することが好ましい。電圧は特に限定されないが、本実施形態では、5~20kVとすることができる。電圧は、対向電極20に対して、ノズル1側がプラスと成るように印加することが好ましい。
 液体供給部40は、ラインL10を介してノズル1に対して上述の静電噴霧用液を供給する装置である。
 液体供給部40は、静電噴霧用液を貯留する槽41と、槽41からラインL10を介してノズル1に静電噴霧用液を供給するポンプ42とを備える。本実施形態では、ポンプ42が密閉状態にある槽41に空気を供給することにより、ラインL10を介して静電噴霧用液がノズル1に供給される。本実施形態では、液体供給部40は、上述の静電噴霧用液をノズル1に対して供給する。
 続いて、本実施形態の静電噴霧装置100を用いる粒子膜の製造方法について説明する。
 まず、対向電極20上に、塗布対象となる基板SBを載置する。続いて、電源30により、静電噴霧ユニット10内部のノズル1と対向電極20との間に電圧を印加する。また、ポンプ42を駆動して、槽41内の液体をラインL10を介して静電噴霧ユニット10内部のノズル1の先まで供給する。液体には、静電噴霧ユニット10内部のノズル1により電荷が与えられて帯電し、静電噴霧ユニット10内部のノズル1の先端から突出する液体はテイラーコーンを形成する。コーンの先では、静電気力により液滴が分裂し、吐出方向と直交する方向に広がりながら多数の微少な液滴群が反対電荷を有する対向電極20に向かって射出される。
 これにより、静電噴霧用液の多数の液滴群を基板SB上に供給することができる。
 ここで、予め、基板SBを加熱しておくと、基板SBに着弾した液滴が瞬時に乾燥する。したがって、液滴群の着弾毎に乾燥した粒子が順次堆積して粒子膜が形成する。
 一方、液滴群の供給中に基板SBを加熱しない場合には、液滴群の供給により静電噴霧用液の膜が基板上に形成される。その後、基板SBの加熱等の液の乾燥により、基板上に粒子膜が形成する。
 ここで、液の乾燥とは、液からの多価アルコールの蒸発である。
 本実施形態によれば、上述の静電噴霧用液を用いているので、槽41、ノズル1、ラインL10などにおいて、粒子が適度に分散されて沈降等の粒子の偏析が抑制される。したがって、ノズル1内での粒子が詰まりにくくなり、また、安定的にノズルから静電噴霧が行えて、粒子を含む微細な液滴群を安定的に基板SBに供給できる。したがって、厚みのムラの低減された粒子膜を製造できる。粒子膜の厚みは、供給する液滴群の量に応じて制御できる。
 また、多価アルコールとしてプロピレングリコールを用いると、さらに、膜の平滑性、膜の基板への密着性、及び、乾燥の容易性に優れる。
 (粒子膜)
 本実施形態にかかる粒子膜PFは、基板SB上に形成される。粒子膜PFは、上記の粒子及びポリカルリボン酸系分散剤を含む。具体的には、粒子膜PFにおいて、ポリカルボン酸系分散剤は、粒子同士を結合している。
 粒子膜PFの厚みは、0.5~200μmとすることができる。
 粒子膜PFにおいて、粒子膜の全体の質量に占める粒子の質量分率の下限は、90質量%、95質量%、96質量%、97質量%、98質量%とすることができ、上限は99.99質量%、99.95質量%、99.90質量%、99.5質量%とすることができる。
 粒子膜PFの全体の質量に占めるポリカルボン酸系分散剤の質量分率の下限は、0.01質量%、0.05質量%、0.1質量%、0.5質量%とすることができ、上限は1.5質量%、2質量%、5質量%とすることができる。
 粒子膜PFは、他に、バインダー、界面活性剤、レベリング剤等の上述した添加剤を含むことができる。粒子膜PFの全体の質量に占める添加剤の総量は0.6質量%以下とすることが好適である。
 このような粒子膜の用途としては、例えば、粒子が蛍光体粒子であれば、光源の発光部として利用できる。従来方法では、蛍光体粒子を高濃度に含む薄膜を形成することは困難で有り、液にシリコーン樹脂等のバインダーを大量に添加しても十分な薄さ及び粒子濃度を実現できなかった。
 また、粒子が、カーボンナノチューブなどの炭素系材料の粒子であれば、基板の表面に設けられた顔料粒子層となり黒色の膜が得られる。炭素系材料の粒子を分散する従来の溶媒、例えば、DMFなどでは、粘度が低いためか分散性も悪くてノズルが詰まりやすく、また、密着性も悪く、平滑性も良くない。
 本発明は上記実施形態に限定されず様々な変形態様が可能である。
 例えば、静電噴霧の方法は、上記実施形態に限定されず、例えば、ノズルが非導電性であり、ノズル内やノズル出口に電極針を設けて帯電させる態様でも良い。また、液のノズルへの供給方法も、上記の態様に限定されない。
 また、上記実施形態では、液体の塗布対象が基板SBであるので、対向電極20も板状であるが、対向電極20の形状は、塗布対象の形状に合わせて所望の形態に変えることもできる。また、塗布の対象物も、特に限定されず、例えば、表面に凹凸のある基板等種々の物に液体を塗布できる。
 (実施例1~10、比較例1~5)
 図1の静電噴霧装置を用い、表1の蛍光体粒子、分散剤溶液、及び、溶媒の組み合わせの静電噴霧用液で、基板に対して静電噴霧を行った。蛍光体粒子の材料はZnSであり、平均粒径6μmであった。静電噴霧用液中の、蛍光体粒子、分散剤溶液、溶媒の質量%は、それぞれ、39%、2.0%、59%とした。噴霧の前に、容器の自転及び公転による攪拌と、30分の超音波による分散処理を行った。噴霧の際には、基板を100℃に加熱しておいた。なお、分散剤溶液の約20質量%が分散剤であり、残りの約80質量%が水、メタノール等の溶媒である。K-130B、TT615、K-502中の分散剤は、無水マレイン酸共重合体である。
 具体的には、K-130Bの数平均分子量Mnは2.75×10、重量平均分子量Mwは16.5×10であった。
 また、装置の条件を以下に示す。
 ノズル:ステンレス製、印加電圧10kV
 基板(Si基板)、液供給用窒素ガス圧力0.002MPa
 なお、基板と電極付ノズルの先端との距離は、30mmを標準として5mmずつ距離を前後させてみて、最も安定して静電噴霧できた距離とした。粒子膜の厚みが平均20μmとなるように噴霧した。
 ノズル詰まり及び粒子膜の形成:粒子のノズルや装置内での詰まりがなく、厚みのバラツキが10%以内の粒子膜を形成できた場合には◎とし、粒子のノズルや装置内での詰まりがなく、厚みのバラつきが±15%以内の粒子膜を形成できた場合には○とし、粒子のノズルや装置内での詰まりがなく、厚みのバラつきが±25%以内であった場合には△とし、ノズルが詰り±25%を超える膜厚のバラつきの粒子膜が形成された場合には×とした。
 乾燥性:噴霧後に直ちに乾燥した粒子膜が得られた場合を◎とし、噴霧後にオーブン内保持して90℃で60分以内に乾燥した場合を○とし、噴霧後にオーブン内で120℃で60分以内に乾燥した場合を○とし、噴霧後にオーブン内で乾燥させるために150℃で60分以上要した場合を×とした。
 密着性:粒子膜に物理的な接触を与えても剥がれたり割れたりしなかった場合を◎とし、表面の粒子が擦ると取れる場合を○とし、粒子膜が物理的な接触によって剥がれたり割れたりした場合を△とし、乾燥後の粒子膜が浮き上がって剥がれてしまった場合を×とした。
 平滑性:顕微鏡による観察で凹凸がなく均一な粒子膜の場合を◎とし、数か所のブツザラが発生した場合を○とし、梨地状の粒子膜又は膜厚のうねりや不均一が発生した場合を×とした。
 着色:乾燥後の粒子膜に茶褐色等の変色が無い場合をの場合を◎とし、乾燥後の粒子膜に茶褐色等の変色が発生した場合を×とした。
 また、実施例及び比較例で用いた溶媒について、その特性と、溶媒100%の液について図1の静電噴霧装置で静電噴霧(ミスト化)可能かどうかあらかじめ試験した結果を表2に示す。
 ミスト化が可能でかつミストがきわめて広がった場合を◎、ミスト化が可能でかつミストが広がった場合を○、ミスト化が可能でかつミストの広がりが狭い場合を△、ミスト化が不可能であった場合を×とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ポリカルボン酸系分散剤と、多価アルコールとの組み合わせにより、詰まりを抑制して厚みのムラの低減された粒子膜の形成が可能であった。イソプロピルアルコール(IPA)、ガンマブチロラクトン、N-メチルピロリドン(NMP)など、静電噴霧に通常用いられる多価アルコールでない溶媒では、溶媒自体の静電噴霧特性は良好ながらも、粒子を含む場合には厚みのムラのない粒子膜の形成は困難であった。
 1…ノズル、20…対向電極、30…電源、40…液体供給部、100…静電噴霧装置。

Claims (9)

  1.  帯電した液体をノズルから吐出させ、対象物の表面に前記液体の液滴群を供給する工程と、
     前記対象物の表面に供給された前記液体を乾燥させる工程と、を備え、
     前記液体は、粒子と、多価アルコールと、ポリカルボン酸系分散剤とを含む、
     粒子膜の製造方法。
  2.  前記粒子の平均粒径は0.01~10μmである、請求項1記載の方法。
  3.  前記粒子は、無機粒子である請求項1又は2記載の方法。
  4.  前記粒子は、蛍光体粒子又は炭素系材料の粒子である請求項1又は2記載の方法。
  5.  前記ポリカルボン酸系分散剤は無水マレイン酸共重合体である、請求項1~4のいずれか1項記載の方法。
  6.  前記多価アルコールは、プロピレングリコールである、請求項1~5のいずれか1項記載の方法。
  7.  前記液滴群の供給の際に前記対象物を加熱して、前記吐出工程と前記乾燥工程とを同時に行う、請求項1~6のいずれか1項記載の方法。
  8.  粒子と、多価アルコールと、ポリカルボン酸系分散剤とを含む、静電噴霧用液。
  9.  粒子と、前記粒子同士を結合するポリカルボン酸と、を含む、粒子膜。
PCT/JP2018/012338 2017-03-31 2018-03-27 粒子膜の製造方法、静電噴霧用液、及び、粒子膜 WO2018181267A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197028780A KR102350403B1 (ko) 2017-03-31 2018-03-27 입자막의 제조 방법, 및 정전 분무용 액
JP2018537560A JP6463561B1 (ja) 2017-03-31 2018-03-27 粒子膜の製造方法、静電噴霧用液、及び、粒子膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071551 2017-03-31
JP2017071551 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181267A1 true WO2018181267A1 (ja) 2018-10-04

Family

ID=63676365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012338 WO2018181267A1 (ja) 2017-03-31 2018-03-27 粒子膜の製造方法、静電噴霧用液、及び、粒子膜

Country Status (3)

Country Link
JP (1) JP6463561B1 (ja)
KR (1) KR102350403B1 (ja)
WO (1) WO2018181267A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233180A (ja) * 1989-03-07 1990-09-14 Jutaku Toshi Seibi Kodan 外部用不燃可撓形多彩模様塗層の形成方法
JPH07508047A (ja) * 1991-12-03 1995-09-07 ローム アンド ハース カンパニー 粒子吸着方法
JP2004027225A (ja) * 2002-06-12 2004-01-29 Rohm & Haas Co プレ塗料およびプレ塗料から塗料を調製する方法
JP2010507477A (ja) * 2006-10-25 2010-03-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 多層コーティングの製造方法
JP2015051429A (ja) * 2013-08-03 2015-03-19 ベック株式会社 化粧方法
JP2016121221A (ja) * 2014-12-24 2016-07-07 アイシン化工株式会社 水性防錆塗料組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301154A (ja) * 2000-04-20 2001-10-30 Dainippon Printing Co Ltd 電圧印加により表面張力が低下する液体の電界ジェットによる付着方法
JP3956224B2 (ja) 2002-09-24 2007-08-08 コニカミノルタホールディングス株式会社 液体吐出装置
JP2004283763A (ja) * 2003-03-24 2004-10-14 Kubokou Paint Kk 塗膜形成法
JP4455953B2 (ja) 2004-08-20 2010-04-21 日本電波工業株式会社 レジスト膜の電着機構及びこれを用いた水晶振動子の製造方法
JP2007211172A (ja) * 2006-02-10 2007-08-23 Hitachi Chem Co Ltd 水系帯電防止塗料及びそれを用いた帯電防止塗膜
JP2009233507A (ja) * 2008-03-26 2009-10-15 Nippon Paint Co Ltd 積層塗膜形成方法および塗装物
WO2012060390A1 (ja) * 2010-11-05 2012-05-10 関西ペイント株式会社 塗料組成物及び塗膜形成方法
JP5271437B1 (ja) * 2012-05-14 2013-08-21 ナガセテクノエンジニアリング株式会社 静電塗布装置及び液体の塗布方法
JP6645087B2 (ja) * 2015-09-24 2020-02-12 富士ゼロックス株式会社 静電粉体塗装方法、及び粉体塗料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233180A (ja) * 1989-03-07 1990-09-14 Jutaku Toshi Seibi Kodan 外部用不燃可撓形多彩模様塗層の形成方法
JPH07508047A (ja) * 1991-12-03 1995-09-07 ローム アンド ハース カンパニー 粒子吸着方法
JP2004027225A (ja) * 2002-06-12 2004-01-29 Rohm & Haas Co プレ塗料およびプレ塗料から塗料を調製する方法
JP2010507477A (ja) * 2006-10-25 2010-03-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 多層コーティングの製造方法
JP2015051429A (ja) * 2013-08-03 2015-03-19 ベック株式会社 化粧方法
JP2016121221A (ja) * 2014-12-24 2016-07-07 アイシン化工株式会社 水性防錆塗料組成物

Also Published As

Publication number Publication date
JP6463561B1 (ja) 2019-02-06
KR20190123768A (ko) 2019-11-01
JPWO2018181267A1 (ja) 2019-04-04
KR102350403B1 (ko) 2022-01-11

Similar Documents

Publication Publication Date Title
US5658499A (en) Aqueous silver compositions
US10767071B2 (en) Liquid material for forming three-dimensional object and material set for forming three-dimensional object, three-dimensional object producing method and three-dimensional object producing apparatus
KR100720802B1 (ko) 박리층용 페이스트의 제조방법 및 적층형 전자 부품의제조방법
TW200540230A (en) Ink jet printable thick film ink compositions and processes
JPS6369555A (ja) 静電噴霧コ−ティングヘッドおよびそれを用いたコ−ティング方法
JP2007280730A (ja) プラズマディスプレイパネルの製造方法
Soliwoda et al. Electrospray deposition of gold nanoparticles from aqueous colloids on solid substrates
JP6463561B1 (ja) 粒子膜の製造方法、静電噴霧用液、及び、粒子膜
JP5526157B2 (ja) 改良された接着剤組成物
WO2021149737A1 (ja) 2次電池の製造方法または2次電池
JP2010137220A (ja) スプレーによる薄膜形成方法及びこの薄膜を用いた電極形成方法
JP2007103296A (ja) プラズマディスプレイパネルの製造方法
WO2021182162A1 (ja) 2次電池の製造方法または2次電池
CN110191550A (zh) 一种制作立体无机电致发光器件的方法
JP4586964B2 (ja) 鋼板印字用ペイント及び鋼板印字方法
JP2007103276A (ja) 塗工装置、塗工方法、および、プラズマディスプレイパネルの製造方法
JP4420236B2 (ja) 蛍光面の形成方法及び表示デバイス
KR101667105B1 (ko) 무기바인더를 이용한 평탄층의 제조방법 및 그에 따른 광 추출 기판
JP5092221B2 (ja) 電子部品の製造方法
JP4645005B2 (ja) ペーストおよびそれを用いたディスプレイパネル用部材の製造方法
JP2002126615A (ja) 流動性物質吐出方法及びそれを用いた蛍光体形成方法
WO2022054673A2 (ja) 塗布方法、燃料電池の製造方法または燃料電池、2次電池の製造方法または2次電池、全固体電池の製造方法または全固体電池
CN111822310B (zh) 一种薄膜制备方法及薄膜
JPH0977949A (ja) 水性銀組成物
JP2011187286A (ja) 透明導電膜及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537560

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028780

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775102

Country of ref document: EP

Kind code of ref document: A1