WO2018181167A1 - 画像記録装置、ディザマスク及び画像記録方法 - Google Patents

画像記録装置、ディザマスク及び画像記録方法 Download PDF

Info

Publication number
WO2018181167A1
WO2018181167A1 PCT/JP2018/012112 JP2018012112W WO2018181167A1 WO 2018181167 A1 WO2018181167 A1 WO 2018181167A1 JP 2018012112 W JP2018012112 W JP 2018012112W WO 2018181167 A1 WO2018181167 A1 WO 2018181167A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
discharge rate
scan
scanning
recording
Prior art date
Application number
PCT/JP2018/012112
Other languages
English (en)
French (fr)
Inventor
公人 勝山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019509795A priority Critical patent/JP6750099B2/ja
Publication of WO2018181167A1 publication Critical patent/WO2018181167A1/ja
Priority to US16/563,965 priority patent/US10744786B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04595Dot-size modulation by changing the number of drops per dot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/205Ink jet for printing a discrete number of tones
    • B41J2/2054Ink jet for printing a discrete number of tones by the variation of dot disposition or characteristics, e.g. dot number density, dot shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2121Ink jet for multi-colour printing characterised by dot size, e.g. combinations of printed dots of different diameter
    • B41J2/2125Ink jet for multi-colour printing characterised by dot size, e.g. combinations of printed dots of different diameter by means of nozzle diameter selection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/485Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes
    • B41J2/505Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes from an assembly of identical printing elements
    • B41J2/51Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes from an assembly of identical printing elements serial printer type
    • B41J2/512Adjustment of the dot disposition by adjustment of the arrangement of the dot printing elements of a print head, e.g. nozzles, needles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size

Definitions

  • the present invention relates to an image recording apparatus, a dither mask, and an image recording method, and more particularly to a halftone processing technique suitable for ink ejection control in a serial ink jet printer.
  • the serial type ink jet printer has a main scanning operation for performing recording by ejecting ink from nozzles of the recording head while moving the recording head along the main scanning direction, and a medium feeding operation for intermittently conveying the recording medium in the sub scanning direction. An image is recorded on a recording medium by repeating a certain sub-scanning operation.
  • Such an image recording method is based on the recording position error of each dot on the recording medium by each nozzle of the recording head, the ejection amount error of each nozzle, or the landing liquid on the recording medium depending on the recording order and recording timing of the dots.
  • the behavior of the drop that is, the dot behavior changes. Due to the change in dot behavior on the recording medium, density irregularities called “banding” such as changes in the recording density in the repetition cycle of each printing pass, and conspicuous boundaries between printing passes, etc. appear. When banding occurs, there arises a problem that the print image quality deteriorates.
  • Patent Documents 1 and 2 disclose a method for controlling the usage rate of each nozzle by using a mask pattern when assigning a halftone processing result to each scan and each nozzle.
  • the nozzle usage rate represents the frequency with which liquid droplets are ejected from the nozzle to record dots, and may be understood as the nozzle usage frequency or the ejection rate.
  • Patent Document 3 discloses a serial inkjet printer that controls the usage rate of each nozzle of a recording head by performing halftone processing by a systematic dither method using a dither mask.
  • the nozzle usage rate of at least one of the nozzle groups arranged at both ends of the nozzle array of the recording head is equal to the nozzle of the intermediate nozzle group arranged between the nozzle groups at both ends.
  • Banding is suppressed by setting a dither mask threshold value so as to be smaller than the usage rate.
  • Patent Document 3 discloses a method for generating a dither mask for suppressing banding so that the dot density of pixels recorded by the nozzle groups at both ends of the nozzle row is lower than the dot density of pixels recorded by the intermediate nozzle group. It is disclosed.
  • the method of controlling the discharge rate of each nozzle using a mask pattern that assigns the halftone processing result to each scan and each nozzle has a problem in that productivity is reduced.
  • the mask pattern can be used to control which scan and nozzle perform printing for each pixel. This means that printing can be performed, and an extra scan is required, which reduces the printing speed.
  • a dither mask is generated in which the usage rate of at least one end nozzle group in the nozzle row is smaller than the usage rate of the intermediate nozzle group. Dot pattern in which the usage rate is non-uniform between the end nozzle group and the intermediate nozzle group in the nozzle array by performing halftone processing using the dither mask generated by the method described in Patent Document 3 Is generated.
  • the method of reflecting the ejection rate of each nozzle in the halftone processing result is to control the ratio of pixels to be actually recorded for each nozzle among the pixels that can be recorded in advance for each scan and each nozzle. Since this is a method, there is no problem of reduced productivity.
  • the present invention has been made in view of such circumstances, and an image recording apparatus, a dither mask, and an image recording method capable of solving the above-described problems and suppressing the occurrence of density unevenness without reducing productivity.
  • the purpose is to provide.
  • An image recording apparatus includes a recording head having a nozzle row in which a plurality of nozzles that eject ink are arranged in the sub-scanning direction, and a halftone that performs halftone processing on image data using a dither mask Based on the processing unit and the dot data generated through the halftone process, the ink ejection from the nozzles is controlled, and the recording head is moved relative to the recording medium in the main scanning direction perpendicular to the sub-scanning direction.
  • Recording control for controlling the recording of an image on a recording medium by repeating a main scanning operation for recording by discharging ink from the nozzles and a sub-scanning operation for moving the recording medium relative to the recording head in the sub-scanning direction
  • a plurality of times for each of the scanning bands that are regions having a width of the amount of sub-scanning movement per sub-scanning operation in the sub-scanning direction of the recording medium.
  • the plurality of scans required to complete the recording of the scanning band are divided into the first half scanning and the second half scanning based on the scanning order.
  • the nozzle arranged closest to the center of the nozzle row is the front half side central nozzle
  • the nozzle arranged closest to the end of the nozzle row is the front end nozzle.
  • the nozzle arranged closest to the center side of the nozzle row is the middle nozzle in the latter half scanning nozzle group, and the most nozzle row end in the latter half scanning nozzle group.
  • the number of overlap of the number of main scanning operations required for printing one raster formed in the main scanning direction is the rear end nozzle arranged on the side.
  • a unit area represented by the product of the number of overlaps in the main scanning direction and the nozzle pitch of the nozzle row in the sub-scanning direction is defined as a unit area, and a nozzle group for each scan used for printing of each of a plurality of scans.
  • the dither mask has a predetermined nozzle discharge rate that is a relative usage ratio of each nozzle in the nozzle row for at least a part of the recording duty range.
  • a threshold value for generating a dot arrangement that achieves a nozzle discharge rate that satisfies the specified specific condition is set, and the nozzle discharge rate that satisfies the specific condition is 2 from the front-side central nozzle to the front-end nozzle in the first-half scanning nozzle group.
  • the nozzle discharge rate decreases with more than one kind of different inclination, and more than two kinds of different nozzles from the latter half center nozzle to the rear end nozzle in the latter half scanning nozzle group.
  • the sum of the first half discharge rates is the sum of the nozzle discharge rates of the corresponding nozzles.
  • the second half discharge rate sum is obtained by adding the nozzle discharge rates of the corresponding nozzles together.
  • the average ink discharge rate per unit area can be made uniform. Thereby, in the dot arrangement resulting from the halftone processing, the dot density is made uniform, and density unevenness can be suppressed.
  • the average ink discharge rate per unit area is referred to as “average discharge rate per unit area”.
  • the nozzles responsible for recording each position on the recording medium and the scanning order are specified in advance, and the ratio of pixels to be actually recorded is controlled for each nozzle based on the halftone processing result. Therefore, there is no problem of a decrease in productivity.
  • “at least a part of the recording duty range” includes a halftone range.
  • the “inclination of the nozzle discharge rate” can be expressed by a difference in nozzle discharge rate between nozzles adjacent in the sub-scanning direction in the nozzle row.
  • the relationship between the nozzle discharge rates of the nozzle groups in which the sum of the nozzle discharge rates of the corresponding nozzles is constant is referred to as a complementary relationship.
  • the nozzle discharge rate can be a complementary relationship.
  • the nozzle group of the scan belonging to the second half scan which is complementary to the nozzle group for each scan used for the recording of each scan belonging to the first half scan, is the center of the nozzle row It can be set as the structure which has a symmetrical positional relationship on both sides of.
  • the gradient of the nozzle discharge rate is constant in the nozzle group for each scan used for printing each of a plurality of scans. It can be.
  • the nozzle discharge rate has a single slope (constant slope) in the nozzle group for each scan.
  • the inclination changes at the nozzle at the end of the nozzle group for each scan and / or at the branch of the nozzle group.
  • the image recording apparatus in the image recording apparatus according to the fourth aspect, at least one of the first scan and the last scan among the gradients of the nozzle discharge rate in the nozzle group for each scan used for printing each of a plurality of scans.
  • the nozzle group used in the recording can be configured to have the largest inclination of the nozzle discharge rate.
  • the nozzles in at least one nozzle group among the nozzle groups for each scan used for recording each of a plurality of scans can be set as the structure from which the gradient of a discharge rate changes.
  • the first half discharge rate sum increases non-linearly with respect to the change in the nozzle position from the front end nozzle toward the first half side central nozzle
  • the second half discharge rate sum is the second half. It can be configured to decrease nonlinearly with respect to a change in nozzle position from the side center nozzle toward the rear end nozzle.
  • the nozzle discharge rate changes with two or more kinds of inclinations in the nozzle group used for the first scan recording in the first half scan.
  • the inclination from the front end nozzle in the nozzle group used for scanning recording is the first inclination
  • the inclination of the nozzle discharge rate from the front end nozzle toward the front central nozzle is changed from the first inclination to the second inclination.
  • the first slope can be configured to be smaller than the second slope.
  • Bleeding and / or aggregation can be suppressed by minimizing the amount of ink initially recorded on the recording medium for each scanning band.
  • the inclination of the nozzle discharge rate of the nozzle group used for the recording of the central scan among a plurality of scans is zero. There can be a certain configuration.
  • the center scan refers to at least one of the center scan in the scan order of a plurality of scans or two scans corresponding to the center. According to the ninth aspect, it is possible to suppress the nozzle discharge rate near the center of the nozzle row, and to suppress the occurrence of streaks and / or bleeding.
  • a graph shape when the relationship between the position of each nozzle in the nozzle row and the nozzle discharge rate of each nozzle is represented by a graph,
  • the nozzle discharge rate of each nozzle belonging to the first half scanning nozzle group and the nozzle discharge rate of each nozzle belonging to the second half scanning nozzle group can be configured to be symmetrical.
  • the graph shape when the relationship between the position of each nozzle in the nozzle row and the nozzle discharge rate of each nozzle is represented by a graph.
  • the nozzle discharge rate of each nozzle belonging to the first half scanning nozzle group and the nozzle discharge rate of each nozzle belonging to the second half scanning nozzle group may be asymmetrical.
  • the first half discharge rate sum may be smaller than the second half discharge rate sum.
  • the amount of ink initially recorded on the recording medium for each scanning band is suppressed, and bleeding and / or aggregation can be suppressed.
  • the value obtained by averaging the nozzle discharge rates of the nozzles of the nozzle group used for the first scan in the first half scan is the last scan in the second half scan.
  • the nozzle discharge rate of each nozzle of the nozzle group used for the recording can be smaller than the average value.
  • each nozzle belonging to the head scanning nozzle group By setting the average value of the nozzle discharge rates to be smaller than the average value of the nozzle discharge rates of the nozzles belonging to the final scanning nozzle group, the amount of ink that is initially recorded on the recording medium can be suppressed.
  • the average values of the gradients of the nozzle discharge rates are compared with respect to the nozzle groups for each scan used for the recording of each of a plurality of scans In this case, except for the scanning nozzle group in which the average value of the inclination is zero, the average value of the inclination of the nozzle discharge rate of the nozzle group used for the first scanning printing in the first half scanning can be made the smallest.
  • the amount of ink initially recorded on the recording medium for each scanning band can be suppressed, and bleeding and / or aggregation can be suppressed.
  • the specified allowable range is a range in which a variation in average nozzle discharge rate per unit area is 0% or more and 10% or less. It can be set as the structure which is.
  • a recording head having a nozzle row in which a plurality of nozzles for ejecting ink are arranged in the sub-scanning direction is moved relative to the recording medium in the main scanning direction orthogonal to the sub-scanning direction.
  • For halftone processing for recording an image on a recording medium by repeating a main scanning operation for recording by ejecting ink from nozzles and a sub-scanning operation for moving the recording medium relative to the recording head in the sub-scanning direction.
  • a dither mask to be used, and a plurality of main scanning operations are repeated for each scanning band, which is a region having a width of a sub scanning movement amount per sub scanning operation in the sub scanning direction of the recording medium.
  • the plurality of scans required to complete the recording of the scan band are divided into the first half scan and the second half scan based on the scan order.
  • the first half scanning nozzle group which is a nozzle group used for half-scan printing
  • the nozzle arranged closest to the center side of the nozzle row is arranged at the front half side central nozzle
  • the nozzle row is arranged closest to the end of the nozzle row.
  • Nozzle is the front end nozzle
  • the nozzle arranged in the middle of the nozzle row is the most nozzle in the latter half scanning nozzle group in the latter half scanning nozzle group, which is the nozzle group used for printing in the latter half of the nozzle row.
  • the nozzle arranged on the end side of the row is the rear end nozzle
  • the number of main scanning operations required for printing one raster formed in the main scanning direction is the number of overlaps
  • the area of the unit area represented by the product of the nozzle pitches of the nozzle rows in the direction is the unit area, and between the nozzle groups for each scan used for printing each of a plurality of scans.
  • the dither mask has a predetermined nozzle discharge rate that is a relative usage ratio of each nozzle in the nozzle row for at least a part of the recording duty range.
  • a threshold value for generating a dot arrangement that achieves a nozzle discharge rate that satisfies the specified specific condition is set, and the nozzle discharge rate that satisfies the specific condition is 2 from the front-side central nozzle to the front-end nozzle in the first-half scanning nozzle group.
  • the nozzle discharge rate decreases with more than one kind of different inclination, and the nozzle discharge rate decreases with more than two kinds of different inclinations from the middle nozzle to the rear end nozzle in the latter half scanning nozzle group, and belongs to the first half scanning.
  • the sum of the first half discharge rates which is the sum of the nozzle discharge rates of the corresponding nozzles
  • the total second half discharge rate is the sum of the nozzle discharge rates of the corresponding nozzles.
  • An image recording method is an image recording method for recording an image on a recording medium using a recording head having a nozzle row in which a plurality of nozzles that eject ink are arranged in the sub-scanning direction.
  • a halftone process using a dither mask for the halftone process, and the ink ejection from the nozzles based on the dot data generated through the halftone process, and the recording head is used as a recording medium.
  • a recording control step of recording an image on a recording medium by repeating the above, and having a width of a sub-scanning movement amount per sub-scanning operation in the sub-scanning direction of the recording medium In the recording process in which the scanning band recording is completed by repeating a plurality of main scanning operations for each scanning band as a region, the plurality of scannings required to complete the recording of the scanning band is performed as the first half scanning based on the scanning order.
  • the nozzle arranged at the most central side of the nozzle row is the most in the first half central nozzle and the first half scanning nozzle group.
  • the nozzle arranged at the end side of the nozzle row is the front end nozzle
  • the nozzle arranged at the most central side of the nozzle row in the latter half scanning nozzle group which is a nozzle group used for printing in the latter half of the nozzle row, is the latter half side.
  • the nozzle arranged closest to the end of the nozzle row is defined as the rear end nozzle, and one of the rasters formed in the main scanning direction.
  • the number of main scanning operations required for the overlap is the number of overlaps
  • the unit area is the unit area represented by the product of the number of overlaps in the main scanning direction and the nozzle pitch of the nozzle row in the sub-scanning direction.
  • the dither mask is relative to each nozzle in the nozzle row for at least a part of the recording duty range.
  • a threshold is set to generate a dot arrangement in which the nozzle discharge rate, which is a proper usage ratio, satisfies a predetermined specific condition, and the nozzle discharge rate that satisfies the specific condition is determined by the first half scanning nozzle.
  • the nozzle discharge rate decreases with two or more different inclinations from the front half side central nozzle to the front end nozzle
  • the nozzle discharge rate decreases with two or more different slopes, and the nozzle discharge rate between corresponding nozzles for each scan used for printing of each scan belonging to the first half scan
  • the sum of the first half discharge rate is increased from the front end nozzle toward the front half side central nozzle, and the nozzle discharge of the corresponding nozzles for the nozzle group for each scan used for printing of each scan belonging to the second half scan
  • the sum of the latter half discharge rate is reduced from the latter half center nozzle to the rear end nozzle.
  • the same matters as the specific matters of the image recording apparatus specified in the second to fifteenth aspects can be appropriately combined.
  • the image recording method according to the seventeenth aspect can be grasped as a printed material manufacturing method.
  • the present invention when an image is recorded on a recording medium by repeating the main scanning operation and the sub-scanning operation, it is possible to suppress the occurrence of density unevenness without reducing productivity.
  • FIG. 1 is a graph obtained by transcribing the graph of the nozzle effectiveness shown in [FIG. 8] of Patent Document 3.
  • FIG. 2 is a chart showing a discharge rate pattern in which the nozzle effective rate shown in FIG. 1 is developed according to the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 3 is a graph showing the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 4 is a graph obtained by transcribing the graph of the nozzle effectiveness shown in [FIG. 11] of Patent Document 3.
  • FIG. 5 is a chart showing a discharge rate pattern in which the nozzle effective rate shown in FIG. 4 is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG. FIG.
  • FIG. 6 is a graph obtained by calculating the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 7 is a graph obtained by transcribing the graph of the nozzle effectiveness shown in [FIG. 13] of Patent Document 3.
  • FIG. 8 is a chart showing a discharge rate pattern in which the nozzle effective rate shown in FIG. 7 is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 9 is a graph obtained by calculating the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 10 is a diagram transcribed from the graph of the nozzle effectiveness shown in [FIG. 14] of Patent Document 3.
  • FIG. 14 is a diagram transcribed from the graph of the nozzle effectiveness shown in [FIG. 14] of Patent Document 3.
  • FIG. 11 is a chart showing a discharge rate pattern in which the nozzle effective rate shown in FIG. 10A is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG. FIG. 12 is a graph obtained by calculating the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 15 is a diagram illustrating an example in which the nozzle discharge rate is decreased with one kind of inclination from the center nozzle to the end nozzle in the nozzle row.
  • 16 is a chart showing a discharge rate pattern in which the nozzle discharge rate shown in FIG. 15 is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 17 is a graph obtained by calculating the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 18 conceptually shows the nozzle discharge rate and the positional relationship of each scan designed to decrease the inclination from the central nozzle to the respective end nozzles at both ends while changing the inclination from a gentle angle to a steep angle.
  • FIG. 19 is an enlarged view of the nozzle discharge rate profile shown in FIG.
  • FIG. 20 is a diagram illustrating another design example 1 of the nozzle discharge rate in which the first-half scan nozzle group discharge rate and the second-half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 21 is a diagram illustrating another design example 2 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 22 is a diagram illustrating another design example 3 of the nozzle discharge rate in which the first-half scan nozzle group discharge rate and the second-half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 20 is a diagram illustrating another design example 1 of the nozzle discharge rate in which the first-half scan nozzle group discharge rate and the second-half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 21 is a diagram illustrating another design example 2 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and
  • FIG. 23 is a diagram illustrating another design example 4 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 24 is a diagram illustrating another design example 5 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 25 is a diagram illustrating another design example 6 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 26 is a diagram illustrating another design example 7 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 27 is a diagram illustrating another design example 8 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 28 is a diagram illustrating another design example 9 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 30 is an enlarged view of the nozzle discharge rate profile shown in FIG.
  • FIG. 31 is an explanatory diagram showing the nozzle rows of the recording head as symbols.
  • FIG. 32 is an explanatory diagram of a recording operation using the recording head having the nozzle row shown in FIG.
  • FIG. 33 is a diagram showing the relationship between nozzles and rasters and nozzle patterns for each scan.
  • FIG. 34 is a chart showing nozzle groups for each scan for recording a scan band.
  • FIG. 35 is a chart showing an example of the discharge rate of each scanning nozzle group finally obtained by the first embodiment.
  • FIG. 36 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to the first embodiment.
  • FIG. 37 is a chart showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 38 is a graph showing the average discharge rate per unit area based on the discharge rate pattern shown in FIG. FIG.
  • FIG. 39 is a chart showing an example of the discharge rate of each scanning nozzle group finally obtained by the second embodiment.
  • FIG. 40 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to the second embodiment. 41 is a chart showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 42 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • FIG. 43 is a diagram illustrating a relationship between nozzles and rasters in each scan and a part of nozzle patterns in the third embodiment.
  • FIG. 44 is a chart showing nozzle groups for each scan for recording a scan band.
  • FIG. 45 is a chart showing an example of the discharge rate of each scanning nozzle group finally obtained by the third embodiment.
  • FIG. 40 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to the second embodiment.
  • 41 is a chart showing a discharge rate pattern based on the nozzle discharge rate shown in FIG
  • FIG. 46 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to the third embodiment.
  • 47 is a chart showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 48 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • FIG. 49 is a chart showing an example of the discharge rate of each scanning nozzle group finally obtained by the fourth embodiment.
  • FIG. 50 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to the fourth embodiment.
  • 51 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 52 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG. FIG.
  • FIG. 53 is a chart showing an example of the discharge rate of each scanning nozzle group finally obtained by the fifth embodiment.
  • FIG. 54 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method of Example 5.
  • FIG. 55 is a chart showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 56 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • FIG. 57 is a diagram showing an example of the relationship between the nozzles and rasters of each scan and a part of the nozzle pattern.
  • FIG. 58 is a chart showing nozzle groups for each scan of scan 1 and scan 2.
  • FIG. 59 is a diagram showing an example of the relationship between the nozzles and rasters of each scan and a part of the nozzle pattern.
  • FIG. 60 is a chart showing nozzle groups used for printing in each of scan 1, scan 2 and scan 3.
  • FIG. 61 is a diagram showing the relationship between the nozzles and rasters for each scan and a part of the nozzle pattern.
  • FIG. 62 is a chart showing nozzle groups for each of scans 1 to 4.
  • FIG. 63 is a chart showing an example of the discharge rate of each scanning nozzle group obtained by the sixth embodiment.
  • FIG. 64 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method of Example 6.
  • FIG. 65 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG. FIG.
  • FIG. 66 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • FIG. 67 is an excerpt of a part of the scanning bands shown in FIG.
  • FIG. 68 is a diagram showing a nozzle pattern when another setting example is adopted for the range of the scanning band.
  • FIG. 69 is a chart showing nozzles for each scan for recording each unit region when another setting example is adopted for the range of the scan band.
  • FIG. 70 is an external perspective view showing a configuration example of the ink jet recording apparatus.
  • FIG. 71 is a schematic diagram schematically showing a recording medium conveyance path of the ink jet recording apparatus.
  • FIG. 72 is a plan perspective view showing an example of the arrangement of the recording head, temporary curing light source, and main curing light source disposed on the carriage.
  • FIG. 73 is an enlarged view of the recording head.
  • FIG. 74 is a block diagram showing the configuration of the ink jet recording apparatus.
  • FIG. 75 is an explanatory diagram for explaining an example of a multipass image recording method.
  • FIG. 76 is a schematic diagram schematically showing the relationship between the number of each scan by the eight-time drawing operation and the droplet ejection position recorded by each scan.
  • FIG. 77 is a flowchart illustrating a procedure of a dither mask generation method according to the embodiment.
  • FIG. 78 is a flowchart showing an example of an ascending order threshold setting process applied to the ascending order threshold setting process (step S3 in FIG. 77).
  • FIG. 79 is a graph showing an example of the nozzle discharge rate at each stage when the number of stages is four.
  • FIG. 80 is a schematic diagram of a recording head.
  • FIG. 81 is a diagram showing an example of the arrangement of dot priority pixels.
  • FIG. 82 is a block diagram of the dither mask generation apparatus according to the embodiment.
  • the image is recorded by repeating the main scanning operation and the sub scanning operation for conveying the recording medium in the sub scanning direction orthogonal to the main scanning direction. Recording is performed by repeating a plurality of main scanning operations on the same area of the recording medium.
  • the width of the “same area” here in the sub-scanning direction is the same as the width of conveying the recording medium.
  • the width for conveying the recording medium corresponds to the feeding amount (conveying amount) of the recording medium per sub-scanning operation.
  • This “same area” where recording is performed by repeating a plurality of main scanning operations is called a “scanning band”.
  • a new scanning band is recorded each time the main scanning operation and the sub scanning operation are repeated. Focusing on a single scanning band, if the scanning band is called a “target scanning band”, the target scanning band is recorded in the sub-scanning direction for the first time by the first main scanning operation. The medium is transported, and the recording of the target scanning band is further performed in the second main scanning operation, and the main scanning operation and the sub-scanning operation are repeated, so that the recording head passes the target scanning band. Recording of the scanning band of interest is completed.
  • scan 1 scan 2,... Scan INT (N / 2) corresponds to the first half scan
  • scan INT ⁇ (N / 2) +3 ⁇ Scan N corresponds to the second half scan.
  • INT (x) is a function that rounds off the decimal part of x to an integer.
  • scan 1 is the first half scan
  • scan 3 is the second half scan.
  • scanning 1 and scanning 2 correspond to the first half scanning
  • scanning 4 and scanning 5 correspond to the second half scanning. That is, when N is an odd number, the middle scan among scan 1 to scan N is treated as belonging to neither the first half scan nor the second half scan.
  • scan 2 when N is 3 does not belong to either the first half scan or the second half scan.
  • Scan 3 when N is 5 does not belong to either the first half scan or the second half scan. The reason why it is appropriate to consider without including the middle scan when N is an odd number will be described later.
  • first half scan nozzle group In the nozzle row of the recording head, the nozzle group belonging to the first half scan is referred to as “first half scan nozzle group”.
  • the first half scanning nozzle group is a nozzle group responsible for the first half scanning in the nozzle row of the recording head.
  • the nozzle group belonging to the second half scanning is referred to as the “second half scanning nozzle group”.
  • the latter half scanning nozzle group is a nozzle group responsible for the latter half scanning printing in the nozzle row of the printing head.
  • the nozzle group divided by the scanning band width as a unit is referred to as a “scanning nozzle group”. That is, for each of the N scans, the nozzle group used in each scan is the scan nozzle group.
  • the scan nozzle group corresponding to each scan is expressed as a scan 1 nozzle group, a scan 2 nozzle group, a scan 3 nozzle group, a scan 4 nozzle group,...
  • each nozzle group of the first half scanning nozzle group or the second half scanning nozzle group the nozzle arranged closest to the end of the nozzle row is referred to as an “end nozzle”.
  • the end nozzles of the first-half scanning nozzle group correspond to nozzles located at one end on the upstream side in the paper feed direction among both ends of the nozzle row in the recording head.
  • the end nozzles of the second-half scanning nozzle group correspond to nozzles located at the other end on the downstream side in the paper feed direction among the two ends of the nozzle row in the recording head.
  • the end nozzles of the first half scanning nozzle group are referred to as “front end nozzles”.
  • the end nozzles of the latter half scanning nozzle group are referred to as “rear end nozzles”.
  • the nozzle arranged closest to the center side of the nozzle row is referred to as “center nozzle”.
  • the nozzle (center nozzle) arranged closest to the center of the nozzle row is referred to as “first half side central nozzle”.
  • the nozzle (center nozzle) arranged closest to the center side of the nozzle row is referred to as “second half side center nozzle”.
  • the front half center nozzle and the rear half center nozzle are generally adjacent to each other near the center of the nozzle row.
  • the meaning of “generally” means that a “gap nozzle” that does not belong to either the first-half scan or the second-half scan exists between the first-half scan nozzle group and the second-half scan nozzle group. This is because the nozzle and the central nozzle on the rear half are not adjacent. Details of the “gap nozzle” will be described later.
  • N is an odd number
  • the middle scan of N times does not belong to the first half scan or the second half scan, so the first half center nozzle and the second half center nozzle are not adjacent. The details of how N is an odd number will be described later.
  • the nozzle discharge rate includes an absolute discharge rate and a relative discharge rate.
  • Nozzle absolute discharge rate is the ratio of the recording pixels in which each nozzle discharges ink and records dots among the recording responsible pixels assigned to each nozzle as the pixels responsible for recording by each of the plurality of nozzles in the recording head Is a value indicating
  • ⁇ Nozzle absolute discharge rate is determined for each nozzle.
  • the absolute nozzle discharge rate is expressed by a quotient obtained by dividing the number of pixels in charge assigned to each nozzle as a denominator and the number of recording pixels in which each nozzle discharges ink to record dots as a numerator. It can be represented by a numerical value of 1 or less.
  • the absolute nozzle discharge rate can also be expressed as a percentage.
  • the nozzle absolute discharge rate increases as the recording duty increases, and reaches a maximum value of “1.0” or “100%” at a recording duty of 100%.
  • “Recording duty” refers to the proportion of pixels that are dot-on among the pixels of an image recorded on a recording medium.
  • the recording duty may be referred to by terms such as printing duty, ink duty, printing rate, or recording rate, or may simply be called duty. In the present specification, this is hereinafter referred to as “duty”.
  • the absolute nozzle discharge rate indicates the ratio of discharging ink for each nozzle.
  • the ratio of ejecting ink for each nozzle is equivalent to the ratio of recording pixels for each nozzle.
  • the nozzle absolute discharge rate can be understood as a ratio of using a nozzle, and can be regarded as a nozzle usage rate or a nozzle operation rate.
  • the nozzle absolute discharge rate is set to a reference value of “1.0” or “100%”, which is the usage rate for each nozzle when recording a solid pattern that is a uniform gradation image having the maximum density.
  • the usage rate for each nozzle is shown.
  • the usage rate for each nozzle may be replaced with the ink discharge amount for each nozzle, or may be replaced with the number of recording pixels for each nozzle.
  • the nozzle discharge rate is a control target of the nozzle absolute discharge rate.
  • the nozzle discharge rate is a relative discharge rate that represents a relative ratio of the nozzle absolute discharge rates of the respective nozzles.
  • the nozzle discharge rate has a meaning in the relative ratio between the nozzles of the nozzle absolute discharge rate of each nozzle, and the absolute value or the maximum value of the numerical value of the nozzle discharge rate itself has no meaning as a physical quantity.
  • the sum of the nozzle discharge rates of all the nozzles may be normalized to 1, or the maximum value may be normalized to 1 or “100%”.
  • the nozzle absolute discharge rate of the maximum discharge (maximum usage rate) is set to “100%”, and the nozzle discharge rate is expressed by the ratio to this maximum value. That is, in this embodiment, the value of the nozzle discharge rate is displayed as a percentage.
  • discharge rate simply refers to a nozzle discharge rate that represents the relative usage ratio of each nozzle.
  • slope of discharge rate is introduced about the nozzle discharge rate showing the relative use rate of each nozzle.
  • the difference between the ejection rate of each nozzle and the ejection rate of the nozzle adjacent to the nozzle is expressed as “the slope of the ejection rate” at the nozzle position, or simply This is called “tilt”.
  • “Slope of discharge rate” is synonymous with “Slope of nozzle discharge rate”.
  • the difference in the discharge rate between nozzles adjacent in the sub-scanning direction in the nozzle row indicates the amount of change in the discharge rate between adjacent nozzles.
  • the slope of the discharge rate indicates the change amount or change rate of the discharge rate.
  • the “discharge rate gradient” is the relationship between the position of each nozzle and the nozzle discharge rate. It appears in the shape of a graph as the slope of the graph.
  • the relationship between the nozzle position and the nozzle discharge rate of each nozzle is called a nozzle discharge rate profile, and the graph shape of this profile is called a profile shape.
  • each of the first-half scanning nozzle group and the second-half scanning nozzle group when the difference in discharge rate from the adjacent nozzle is the same at all nozzle positions, it is expressed as one type of inclination or one type of inclination.
  • the problem to be solved occurs when the slope of the discharge rate is different in two or more types depending on the position of the nozzle in each of the first half scanning nozzle group and the second half scanning nozzle group.
  • the paper feed amount is the amount by which the paper is transported in the sub-scanning direction for each main scan. When viewed as the movement of the recording head relative to the paper in the sub-scanning direction, the paper feed amount is understood as the amount of movement of the recording head relative to the paper in the sub-scanning direction for each main scan. Can do.
  • the paper feed amount is represented by the number of rasters in the sub-scanning direction. The number of rasters may be paraphrased as the number of pixels.
  • the paper feed amount corresponds to the sub-scan movement amount per sub-scan operation.
  • the nozzle pitch is a nozzle interval in the sub-scanning direction in the nozzle row, and is a distance between the centers of nozzles adjacent in the sub-scanning direction.
  • the nozzle pitch is expressed in units of the size of one pixel which is the minimum recording unit defined by the recording resolution. That is, the nozzle pitch can be represented by a number obtained by adding 1 to the number of rasters existing between two nozzles adjacent in the sub-scanning direction.
  • a nozzle pitch of “2” means that dots are formed every other raster in one main scan of the recording head.
  • the number of overlaps refers to the number of times of main scanning required to fill all the rasters formed in the main scanning direction with dots.
  • An overlap number of “2” means that one raster in the main scanning direction is completed in two main scans.
  • the nozzle pattern is a nozzle mapping pattern that indicates which of a plurality of nozzles provided in the recording head forms dots at respective positions on the paper. That is, the nozzle pattern is an array pattern of nozzle numbers indicating the correspondence between the position of each pixel in a certain image area and the nozzle number of the nozzle that records each pixel.
  • the nozzle pattern may be a chart corresponding to a relationship diagram that specifies the relationship between pixels and nozzle numbers.
  • the nozzle pattern repeats with a period of “number of overlaps in the main scanning direction and“ paper feed amount ⁇ overlap number ⁇ nozzle pitch ”in the sub-scanning direction.
  • the nozzle pattern shown in [FIG. 4] and [FIG. 5] of Patent Document 3 repeats with a period of 2 pixels in the main scanning direction and 60 pixels in the sub-scanning direction.
  • the nozzle pattern shown in [FIG. 4] and [FIG. 5] of Patent Document 3 has a repetitive minimum unit of “2 columns ⁇ 60 rows” composed of the first column to the second column and the first row to the 60th row. It has a periodicity that repeats in the main scanning direction and the sub-scanning direction. Such periodicity of the nozzle pattern is related to the repetition of the “filling order”, which is the order in which the unit area of the predetermined pixel range is filled with dots. In the main scanning direction, the repetition occurs in units of the number of overlaps, In the sub-scanning direction, repetition occurs in units of the product of the paper feed amount and the number of repeating units in the filling order. The number of repeating units in the filling order is the product of the nozzle pitch and the number of overlaps.
  • the unit area size is such that the main scanning direction matches the number of overlaps, and the sub-scanning direction matches the nozzle pitch.
  • the unit area is a 2 ⁇ 2 pixel range.
  • the area of the unit region is referred to as “unit area”.
  • FIG. 1 is a transcribed graph of the nozzle effectiveness shown in [FIG. 8] of Patent Document 3.
  • nozzle effective rate corresponds to “nozzle discharge rate” in this specification.
  • FIG. 2 shows a discharge rate pattern in which the nozzle effective rate shown in FIG. 1 is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • the discharge rate pattern is an array pattern of nozzle discharge rates indicating a correspondence relationship in which the nozzle discharge rate of the nozzle that records each pixel is specified for each pixel.
  • the discharge rate pattern may be a chart corresponding to a relationship diagram that specifies a relationship between a pixel and a nozzle discharge rate of a nozzle that is responsible for recording the pixel.
  • FIG. 3 is a graph showing the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • the horizontal axis in FIG. 3 indicates the position in the sub-scanning direction by a raster number, and the vertical axis indicates the average discharge rate per unit area.
  • a raster means each line recorded in the main scanning direction.
  • the raster number indicates the raster position in the sub-scanning direction.
  • the average discharge rate per unit area is the average value of the nozzle discharge rates of the pixels belonging to the unit area in the discharge rate pattern.
  • the unit area in raster number 1 is (1, 1), (2, 1), (1, 2), and (2, 2) are the area of a unit region composed of 2 ⁇ 2 pixels.
  • the average discharge rate per unit area 2 ⁇ 2 pixels in raster number 1 is 25% discharge rate in the first row of raster number 1, 100% discharge rate in the second row, and discharge in the first row of raster number 2.
  • the average discharge rate per unit area 2 ⁇ 2 pixels in raster number 3 is obtained as follows.
  • the unit area of raster number 3 is the area of a unit area composed of four pixels (1, 3), (2, 3), (1, 4), and (2, 4).
  • the average discharge rate per unit area 2 ⁇ 2 pixels in raster number 3 is 50% discharge rate in the first row of raster number 3, 100% discharge rate in the second row, and discharge in the first row of raster number 4.
  • the unit area in raster number 5 is the area of a unit area composed of four pixels (1, 5), (2, 5), (1, 6), and (2, 6).
  • the average discharge rate per unit area for each raster number can be calculated according to the same calculation rule.
  • FIG. 3 is a graph showing the average discharge rate per unit area 2 ⁇ 2 pixels in odd raster numbers 1, 3, 5,...
  • the graph shown in FIG. 3 shows that the average discharge rate per unit area varies non-uniformly in the sub-scanning direction.
  • the position of each unit region in the sub-scanning direction is set to an odd raster number. It is only shown assigned.
  • the horizontal axis in FIG. 3 is not limited to odd raster numbers, and the same applies to even raster numbers. In short, it shows that the average ejection rate per unit area is unevenly distributed in the sub-scanning direction.
  • the average discharge rate per unit area 2 ⁇ 2 pixels is unchanged in the main scanning direction. It is clear from the discharge rate pattern shown in FIG. 2 that the average discharge rate per unit area 2 ⁇ 2 pixels is constant in the main scanning direction.
  • the average discharge rate per unit area changes nonuniformly in the sub-scanning direction. That is, when the dither mask is generated so as to have the nozzle discharge rate shown in FIG. 1, the dot arrangement obtained as a result of the halftone process using the generated dither mask is such that the dot density is not uniform in the sub-scanning direction. As a result, density unevenness occurs.
  • FIG. 4 is a transcription of the nozzle effectiveness graph shown in [FIG. 11] of Patent Document 3.
  • FIG. 5 shows a discharge rate pattern in which the nozzle effective rate shown in FIG. 4 is developed according to the nozzle pattern shown in [FIG. 4] and [FIG. FIG. 5 shows the discharge rate pattern of the minimum repeating unit.
  • FIG. 6 is a graph showing the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 7 is a transcription of the nozzle effectiveness graph shown in [FIG. 13] of Patent Document 3.
  • FIG. 8 shows a discharge rate pattern in which the nozzle effective rate shown in FIG. 7 is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 9 is a graph showing the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 10 is a transcription of the nozzle effectiveness graph shown in [FIG. 14] of Patent Document 3.
  • FIG. 11 shows a discharge rate pattern in which the nozzle effective rate shown in FIG. 10A is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 12 is a graph showing the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • FIG. 13 shows a discharge rate pattern in which the nozzle effective rate shown in FIG. 10B is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 14 is a graph showing the average discharge rate per unit area in each raster number based on the discharge rate pattern shown in FIG.
  • the type of “tilt” includes flats with zero tilt. That is, one of the “two types of inclinations” may have zero inclination.
  • the graph illustrated in FIG. 1 includes a section where the nozzle discharge rate is constant and a section where the nozzle discharge rate decreases from the central nozzle toward the end nozzle.
  • a section where the nozzle discharge rate is constant is a section where the slope is zero.
  • [FIG. 8] and [FIG. 11] of Japanese Unexamined Patent Application Publication No. 2016-107603 disclose that the nozzle discharge rate of the nozzle located in the central portion of the nozzle row is set to “1.0” as the maximum value, and the nozzle in the central portion.
  • An example is shown in which the nozzle discharge rate is decreased at a constant inclination from the nozzle toward the nozzle located at the end of the nozzle row, that is, with one kind of inclination.
  • the attachment of [FIG. 8] and [FIG. 11] of JP-A-2016-107603 is omitted.
  • the “nozzle relative discharge rate” described in JP-A-2016-107603 corresponds to the “nozzle discharge rate” in this specification.
  • FIG. 15 shows an example in which the nozzle relative discharge rate is decreased with one kind of inclination from the center nozzle to the end nozzle in the nozzle row.
  • the horizontal axis in FIG. 15 indicates the nozzle number, and the vertical axis indicates the nozzle discharge rate as a percentage.
  • FIG. 16 is a discharge rate pattern in which the nozzle discharge rate shown in FIG. 15 is developed in accordance with the nozzle pattern shown in [FIG. 4] and [FIG.
  • FIG. 17 is a graph showing the average discharge rate per unit area for each raster number based on the discharge rate pattern shown in FIG.
  • the horizontal and vertical axes in FIG. 17 are the same as the horizontal and vertical axes in FIG. As shown in FIG. 17, it can be seen that the average discharge rate per unit area is uniform in the sub-scanning direction.
  • the width of the reduced inclination section that lowers the nozzle discharge rate from the center nozzle to the end nozzle in the nozzle row is narrower than the example described in Japanese Patent Laid-Open No. 2016-107603 or the example of FIG. However, it can be sufficiently suppressed.
  • the width of the reduced inclination section is made as narrow as possible to make the inclination steep, and the inclination near the central nozzle is zero or inclined. It is particularly desirable to reduce the nozzle discharge rate so as not to become excessively large so as to suppress the occurrence of the above-mentioned streaks and bleeding and to enable recording to a high duty.
  • the discharge rate of each nozzle constituting the nozzle row is decreased by changing the inclination from the central nozzle to the end nozzle in the nozzle row, and the distribution of the average discharge rate per unit area becomes uniform.
  • a method for designing the nozzle discharge rate of each nozzle will be described.
  • a method of creating a dither mask that can control the ejection of each nozzle so as to achieve such a nozzle ejection rate, and a halftone processing method of performing halftone processing using the created dither mask will be described.
  • FIG. 18 conceptually shows the nozzle discharge rate and the positional relationship of each scan designed to decrease the inclination from the central nozzle to the respective end nozzles at both ends while changing the inclination from a gentle angle to a steep angle.
  • FIG. FIG. 18 shows an example of a scanning method in which dots are recorded so as to fill a unit area by four scans from scan 1 to scan 4.
  • the horizontal direction in FIG. 18 is the sub-scanning direction.
  • the recording head is illustrated as being moved in the sub-scanning direction with respect to the stopped recording medium. That is, FIG. 18 shows an example in which the scanning band is recorded by four scans, and the position of the nozzle array of the recording head is shown in FIG. 18 by the relative movement of the recording head and the paper by paper feeding for each scan.
  • the movement in the right direction is expressed by the movement of the profile shape of the nozzle discharge rate.
  • a graphic 500 including a broken line ABCDE and a line segment EA schematically shows the nozzle discharge rate of each nozzle in the nozzle array of the recording head.
  • a line segment EA represents a nozzle row. It is understood that the nozzles are arranged along the line segment EA.
  • One end of the line segment EA corresponds to the nozzle number “0” as the minimum nozzle number, and the other end of the line segment EA corresponds to the nozzle number “Nmax” as the maximum nozzle number.
  • the left end nozzle (point E side) in FIG. 18, that is, the downstream end nozzle in the paper feed direction in the nozzle row is set to nozzle number “0”, and the right end (point A side) end nozzle in FIG. That is, the end nozzle on the upstream side in the paper feed direction is set to the nozzle number “Nmax”.
  • a broken line ABCDE represents the nozzle discharge rate of each nozzle, and the vertical direction in FIG. 18 corresponds to the axis indicating the value of the nozzle discharge rate. In FIG. 18, the axis indicating the value of the nozzle discharge rate is not shown.
  • a polygonal line ABCDE corresponds to a graph shape representing the relationship between the position of each nozzle and the nozzle discharge rate. Point C shows the nozzle discharge rate of the central nozzle in the nozzle row.
  • the polygonal line ABCDE is an example of a nozzle discharge rate profile in the nozzle row.
  • the nozzle discharge rate decreases from the central nozzle toward the end nozzles at both ends, and the inclination changes.
  • the slope of the line segment CB is different from the slope of the line segment BA.
  • the slope of the line segment CB near the center nozzle is relatively gentle, and the slope of the line segment BA near the end nozzle is steeper than the slope of the line segment CB.
  • the slope of the line segment CD close to the center nozzle is relatively gentle, and the slope of the line segment DE close to the end nozzle is steeper than the slope of the line segment CD.
  • the serial ink jet printer repeatedly records dots with a width of a scanning band equal to the paper feed amount by paper feeding in the sub-scanning direction and scanning of the recording head in the main scanning direction. Make a record.
  • FIG. 18 focusing on a certain scanning band, even if the nozzle discharge rate of the nozzle group used for recording in each scan is non-uniform, if a specific condition is satisfied, recording of one scanning band is completed. It can be seen that the sum of the nozzle discharge rates of the corresponding nozzles in each nozzle group used for each scan can be made uniform. If the sum of the nozzle discharge rates of the corresponding nozzles of each scan nozzle group used to complete printing for each scan band becomes uniform, the average discharge rate per unit area in the discharge rate pattern is made uniform in the sub-scanning direction. it can.
  • FIG. 19 is an enlarged view of the nozzle discharge rate profile shown in FIG.
  • each nozzle in the nozzle row is divided by the width of the scanning band and classified into a plurality of nozzle groups.
  • the nozzle row is divided into four scanning nozzle groups by the width of the scanning band. In FIG. 19, they are referred to as a scan 1 nozzle group, a scan 2 nozzle group, a scan 3 nozzle group, and a scan 4 nozzle group in accordance with the scan order for recording a scan band.
  • the scanning nozzle groups of the scanning 1 nozzle group to the scanning 4 nozzle group shown in FIG. 19 are shifted and overlapped by the paper feed amount in the order of recording the same scanning band. If the sum of the nozzle discharge rates in this case is constant within the scanning band, it can be seen that the average discharge rate per unit area can be made uniform.
  • the nozzles that record the same raster position are the nozzle 1, nozzle 2, nozzle 3, and nozzle 4, respectively.
  • the sum of “nozzle discharge rate of nozzle 1”, “nozzle discharge rate of nozzle 2”, “nozzle discharge rate of nozzle 3”, and “nozzle discharge rate of nozzle 4” depends on the raster position. It can be seen that the average discharge rate per unit area can be made uniform if it is constant regardless of the nozzle number.
  • Nozzle 1 is a nozzle belonging to the scan 1 nozzle group
  • nozzle 2 is a nozzle belonging to the scan 2 nozzle group
  • nozzle 3 is a nozzle belonging to the scan 3 nozzle group
  • nozzle 4 is a nozzle belonging to the scan 4 nozzle group.
  • the pixel positions recorded by each nozzle are exclusive, and the same pixel is not recorded by different nozzles.
  • “recording the same raster position” means recording the same unit area.
  • a nozzle that records the same raster position is a nozzle that records raster positions belonging to the same unit area. Unit areas are recorded by the nozzles 1 to 4.
  • the nozzle row is divided into a first half scanning nozzle group and a second half scanning nozzle group.
  • the two nozzle groups correspond to the “first half scanning nozzle group”.
  • the scan 3 nozzle group and the scan 4 nozzle group respectively used in the scan 3 and scan 4 which are the latter two scans correspond to the “second scan nozzle group”.
  • corresponding nozzles The nozzles that record the same raster position in each of the scanning 1 nozzle group to the scanning 4 nozzle group are referred to as “corresponding nozzles”.
  • corresponding nozzles The nozzle 1, nozzle 2, nozzle 3, and nozzle 4 described above are “corresponding nozzles”.
  • first half scan nozzle group discharge rate A value obtained by summing up the nozzle discharge rates of the corresponding nozzles of each scan nozzle group belonging to the first half scan nozzle group is referred to as “first half scan nozzle group discharge rate”.
  • second half scanning nozzle group ejection rate A value obtained by summing the nozzle ejection rates of the corresponding nozzles of each scanning nozzle group of the latter half scanning nozzle group is referred to as a “second half scanning nozzle group ejection rate”.
  • Each of the first-half scan nozzle group discharge rate and the second-half scan nozzle group discharge rate is not constant, but when the sum of the first-half scan nozzle group discharge rate and the second-half scan nozzle group discharge rate is constant, the unit area The distribution of the average discharge rate per unit can be made uniform.
  • the “symmetrical position” refers to a symmetric positional relationship with respect to the position of the scanning nozzle group with the central nozzle interposed therebetween.
  • the profile of the nozzle discharge rate shown in FIG. 19 has a shape that is line-symmetric (symmetrical in FIG. 19) with respect to the axis of symmetry As about the center nozzle in the nozzle row.
  • the scanning 4 nozzle group in a symmetric position with respect to the scanning 1 nozzle group has a complementary relationship with the scanning 1 nozzle group.
  • the scanning 3 nozzle group in a symmetrical position with respect to the scanning 2 nozzle group has a complementary relationship with the scanning 2 nozzle group.
  • one scanning nozzle group belonging to the first half scanning nozzle group and one scanning nozzle group belonging to the second half scanning nozzle group are in a one-to-one complementary relationship
  • “one-to-one complementary relationship” or “complementary relationship is one-to-one” It expresses that it is.
  • a case where the scanning nozzle groups in a complementary relationship have a symmetric relationship with the central nozzle interposed therebetween is expressed as “a symmetric complementary relationship” or “a complementary relationship is symmetric”.
  • FIG. 19 shows an example in which the complementary relationship is one-to-one and symmetric.
  • a relative nozzle number j indicating the relative position of the nozzles in the scanning nozzle group is given to (n + 1) nozzles in each scanning nozzle group.
  • the relative nozzle number j is a relative nozzle number defined in each scanning nozzle group. j may take an integer value ranging from 0 to n.
  • the nozzle discharge rate of the relative nozzle number j in the scan i nozzle group is represented by t [i, j]. That is, let the nozzle discharge rate of the scanning 1 nozzle group be t [1,0], t [1,1],... T [1, n]. Similarly, the nozzle discharge rate of the scan 2 nozzle group is t [2,0], t [2,1],... T [2, n], and the nozzle discharge rate of the scan 3 nozzle group is t [3, 0], t [3,1],... T [3, n],...
  • the nozzle discharge rates of the nozzle group of scanning N are t [N, 0], t [N, 1], .... t [N, n].
  • the first scan is set to scan 1, while the number of the first nozzle in each scan nozzle group is set to “0”.
  • the total discharge rate of each nozzle in the first half scanning nozzle group is given by the following formula [1].
  • i is the scan number
  • j is the relative nozzle number
  • t [i, j] is the scan i and the nozzle discharge rate of the relative nozzle number j
  • Tf [j] is the nozzle of the relative nozzle number j of the first half scan nozzle group
  • j is an integer ranging from 0 to n.
  • Tf [j] obtained from Equation [1] is the first-half scanning nozzle group discharge rate, and corresponds to “first-half discharge rate sum”.
  • Equation [2] means that the sum of discharge rates is calculated for each relative nozzle number j of the relative nozzle numbers 0 to n of each scan belonging to the second half scan.
  • the meanings of i, j, and t [i, j] in the equation are the same as in equation [1], and Tl [j] indicates the total nozzle discharge rate of the relative nozzle number j of the second-half scanning nozzle group.
  • Tl [j] obtained from Equation [2] is the latter half scanning nozzle group ejection rate, and corresponds to “the latter half ejection rate sum”.
  • Tf [j] and Tl [j] are designed so that T [j] in Equation [3] is constant regardless of the relative nozzle number j, the average discharge rate per unit area can be made uniform.
  • design Tf [j] is to design t [1, j], t [2, j] .... t [N / 2, j].
  • Designing Tl [j] means designing t [(N / 2) +1, j], t [(N / 2) +2, j] .... t [N, j] That is.
  • Nozzles represented by the same relative nozzle number j correspond to “corresponding nozzles”. That is, each nozzle that takes the sum in Expression [1] and Expression [2] is a “corresponding nozzle”.
  • T [j] in Expression [3] is constant regardless of the relative nozzle number j
  • Tf [j] in Expression [3] the first half scanning nozzle group to which the discharge rate is given by Tf [j] in Expression [3]
  • Tl [j] there is a complementary relationship with the latter half scanning nozzle group to which the discharge rate is given.
  • Is constant in the range of relative nozzle numbers j 0 to n, and the discharge rate of the scan 1 nozzle group and the discharge rate of the scan 4 nozzle group are complementary.
  • the sum of the discharge rates t [2,0] to t [2, n] of the scan 2 nozzle group and the discharge rates t [3,0] to t [3, n] of the scan 3 nozzle group is the relative nozzle.
  • the number j is constant in the range of 0 to n, and the ejection rate of the scanning 2 nozzle group and the ejection rate of the scanning 3 nozzle group are complementary.
  • the inclination is changed only at the branch of each scanning nozzle group of scanning 1 to scanning 4, and the inclination is constant inside each scanning nozzle group.
  • “Branch of scanning nozzle group” means a boundary portion of each scanning nozzle group in a nozzle row.
  • the branch of the scan 1 nozzle group and the scan 2 nozzle group is a position corresponding to the point B.
  • a branch of the scanning 3 nozzle group and the scanning 4 nozzle group is a position corresponding to the point D. Therefore, in the case of FIG. 19, the discharge rate of each scanning nozzle group can also be expressed by the following equation.
  • A1 in the equation represents the gradient of the discharge rate of the scanning 1 nozzle group.
  • A2 represents the gradient of the discharge rate of the scanning 2 nozzle group. It can be easily obtained from Equation [4] that the slope of the discharge rate of the scanning three nozzle group becomes “ ⁇ A2” and that the slope of the discharge rate of the scanning four nozzle group becomes “ ⁇ A1”.
  • Equation [5] the values of t [1,0], t [2,0], t [3,0], t [4,0] can be arbitrarily designed, but in order to reduce banding, t [ 1,0] is preferably as small as possible (for example, zero), and t [2,0] is t [1, n], t [ 3,0] and t [4,0] are desirably close to t [3, n] and continuous values.
  • ⁇ Other design examples of nozzle discharge rate> 20 to 30 show variations of design examples of nozzle discharge rates in which the first-half scanning nozzle group discharge rate and the second-half scanning nozzle group discharge rate are in a complementary relationship.
  • nozzle discharge rates as exemplified in FIGS. 20 to 30 may be adopted.
  • FIG. 20 shows another design example 1 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the nozzle discharge rate profile shown in FIG. 20 is an example in which the scanning nozzle groups of the first half scanning nozzle group and the second half scanning nozzle group have a complementary relationship, and the complementary scanning nozzle group is in a symmetrical position.
  • FIG. 20 is an example in which the inclination of each of the first half scanning nozzle group and the second half scanning nozzle group is changed only at the branch of each scanning nozzle group from the central nozzle toward the end nozzle.
  • FIG. 20 shows an example in which the gradient of the discharge rate of the scan 2 nozzle group is zero and the gradient of the discharge rate of the scan 3 nozzle group is zero.
  • FIG. 21 shows another design example 2 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the nozzle discharge rate profile shown in FIG. 21 is an example in which the scanning nozzle groups of the first half scanning nozzle group and the second half scanning nozzle group have a complementary relationship, and the complementary scanning nozzle group is in a symmetrical position.
  • FIG. 21 is an example in which the inclination of each of the first half scanning nozzle group and the second half scanning nozzle group is changed only at the branch of each scanning nozzle group from the central nozzle toward the end nozzle.
  • FIG. 21 is a graph in which the nozzle discharge rate of the central nozzle is set to be slightly lower than that in FIG.
  • the nozzle discharge rate of the central nozzle is not necessarily the maximum in the nozzle row.
  • FIG. 22 shows another design example 3 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the nozzle discharge rate profile shown in FIG. 22 is an example in which the complementary relationship is one-to-one but asymmetric.
  • the scanning 1 nozzle group and the scanning 3 nozzle group have a complementary relationship
  • the scanning 2 nozzle group and the scanning 4 nozzle group have a complementary relationship.
  • the sum of the discharge rates t [2,0] to t [2, n] of the scan 2 nozzle group and the discharge rates t [4,0] to t [4, n] of the scan 4 nozzle group is the relative nozzle.
  • FIG. 23 shows another design example 4 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the discharge rate of the sum of the discharge rates of the scan 1 nozzle group and the scan 2 nozzle group is complementary to the discharge rate of the scan 6 nozzle group, and the scan 3 nozzle group and the scan 5 nozzle group are complementary. It is a relationship.
  • the discharge rate of each scanning nozzle group can be expressed by the following equation [9].
  • 19 to 22 show a one-to-one example of the complementary relationship between the scanning nozzle groups of the first-half scanning nozzle group and the second-half scanning nozzle group
  • FIG. 23 shows an example of one-to-two complementary relationship.
  • There are other complementary relationships such as one-to-three, one-to-four,..., Two-to-two, two-to-three,.
  • FIG. 24 shows another design example 5 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the scan 1 nozzle group and the scan 4 nozzle group have a complementary relationship although the inclination is changed within each scan nozzle group.
  • the graph shape of the discharge rate in a complementary relationship means that it is vertically symmetrical, but it is not necessarily symmetrical.
  • vertical symmetry refers to a relationship in which one graph shape can be matched with the other graph shape by inverting it in the vertical direction.
  • the vertical direction in FIG. 24 is the direction of the vertical axis representing the value of the discharge rate.
  • the left-right symmetry here refers to a relationship in which one graph shape can be matched with the other graph shape by reversing it in the left-right direction.
  • the horizontal direction in FIG. 24 is the direction of the horizontal axis representing the position of the nozzle.
  • invert includes inversion and shifting in the vertical direction and / or the horizontal direction.
  • the discharge rate of each scanning nozzle group can be expressed by the following equation [10].
  • F1 (j) in the equation is a function representing a change in the discharge rate of the scanning 1 nozzle group depending on the relative nozzle number j.
  • F2 (j) is a function representing a change in the discharge rate of the scanning 2 nozzle group depending on the relative nozzle number j.
  • the change by the relative nozzle number j of the discharge rate of the scanning 3 nozzle group is expressed by a function “ ⁇ F2 (j)” obtained by inverting F2 (j).
  • the change of the discharge rate of the scanning 4 nozzle group due to the relative nozzle number j is expressed by a function “ ⁇ F1 (j)” obtained by inverting F1 (j).
  • FIG. 25 shows another design example 6 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the scan 1 nozzle group and the scan 4 nozzle group have a complementary relationship although the inclination is changed inside each scan nozzle group.
  • FIG. 25 shows an example in which the graph shape of the discharge rate in a complementary relationship is symmetrical.
  • FIG. 25 shows an example in which the inclination is changed at a plurality of locations inside each of the scanning 1 nozzle group and the scanning nozzle group 4.
  • FIG. 26 shows another design example 7 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the scan 1 nozzle group and the scan 4 nozzle group have a complementary relationship although the inclination is changed within each scan nozzle group.
  • FIG. 26 shows an example in which the inclination is continuously changed in each of the scanning nozzle group 4 and the scanning nozzle group 4.
  • FIG. 26 shows an example in which the graph shape of the discharge rate in a complementary relationship is asymmetrical.
  • FIG. 27 shows another design example 8 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • the scanning 1 nozzle group and the scanning 4 nozzle group are in a complementary relationship although the inclination is changed within each scanning nozzle group.
  • FIG. 27 shows an example in which the inclination is continuously changed in each of the scanning 1 nozzle group and the scanning nozzle group 4.
  • FIG. 27 shows an example in which the graph shape of the discharge rate in a complementary relationship is bilaterally symmetric.
  • Equation [4] the discharge rate t [2, j] of the scan 2 nozzle group is constant, and the discharge rate t [3, j] of the scan 3 nozzle group is constant. Further, the discharge rate of each scanning nozzle group can be expressed by Equation [10].
  • FIG. 28 shows another design example 9 of the nozzle discharge rate in which the first half scan nozzle group discharge rate and the second half scan nozzle group discharge rate are in a complementary relationship.
  • FIG. 28 shows an example in which the inclination is changed in each of the scanning nozzle groups of the scanning 1 nozzle group to the scanning 4 nozzle group.
  • FIG. 28 shows an example in which the inclination is continuously changed inside each scanning nozzle group.
  • the scanning 1 nozzle group and the scanning 3 nozzle group have a complementary relationship
  • the scanning 2 nozzle group and the scanning 4 nozzle group have a complementary relationship.
  • FIG. 28 shows an example in which the graph shape of the nozzle discharge rate is symmetrical, although the complementary scanning nozzle group is not in a symmetric position.
  • the complementary relationship is not one-to-one, but one-to-two, one-to-three, one-to-four, ..., two-to-two, two-to-three, ... Etc., there can be a complementary relationship with any combination of scanning nozzle groups. Even when the gradient of the discharge rate is changed inside each scanning nozzle group, the complementary scanning may not be symmetrical. Although the first-half scanning nozzle group and the second-half scanning nozzle group have a complementary relationship, there is an example in which any combination of each scanning nozzle group that belongs to the first-half scanning nozzle group and each scanning nozzle group that belongs to the second-half scanning nozzle group does not have a complementary relationship.
  • FIG. 29 shows the positional relationship of each scan when N is 3.
  • FIG. 29 is a drawing replacing FIG.
  • FIG. 30 is an enlarged view of the nozzle discharge rate profile shown in FIG.
  • the notation rules in FIGS. 29 and 30 are the same as the notation rules in FIGS. 19 and 20.
  • FIG. 2 It is also effective to reduce the ejection rate of the scanning 1 nozzle group by making the ejection rates of the first scanning nozzle group and the latter scanning nozzle group asymmetric as in the example of 23.
  • the slopes of the discharge rates of the scanning 1 nozzle group are steeper in the examples of FIGS. 19 to 21, and as a result, the nozzle discharge rate near the center nozzle is excessive. It is effective in suppressing the occurrence of streaks and bleeding near the center nozzle without increasing the size, and can record up to a high duty.
  • the amount of ink that is initially recorded on the paper is reduced, so that ink bleeding and / or aggregation as described in JP-A-2009-184344 is achieved. It is effective for suppression.
  • the average value of the ejection rates of the nozzles of the nozzle group used for the first scan printing in the first half scan is the last scan printing in the second half scan. It is smaller than the average value of the nozzle discharge rate of each nozzle of the nozzle group to be used.
  • the average discharge rate of each nozzle belonging to the scan 1 nozzle group is smaller than the average discharge rate of each nozzle belonging to the scan 4 nozzle group.
  • the average value is obtained by dividing the integrated value, which is the sum of the data values, by the number of data, so the magnitude relationship of the average values is the same as the magnitude relationship of the integrated values.
  • the nozzle discharge rate changes with two or more kinds of inclinations within the scanning 1 nozzle group.
  • the inclination from the front end nozzle in the scanning 1 nozzle group is the first inclination
  • the inclination of the discharge rate from the front end nozzle toward the front half side central nozzle is changed from the first inclination to the second inclination.
  • the first slope is smaller than the second slope.
  • the discharge rate of the first scan nozzle group can be suppressed, and the amount of ink in the first scan recorded by each scan band can be suppressed. .
  • the number of nozzles in the nozzle row of the recording head is 30, the nozzle pitch of the nozzle row is “2”, the paper feed amount is “15”, and the number of overlaps in the main scanning direction is “2”.
  • the number of nozzles in the nozzle row of the recording head is 30, the nozzle pitch of the nozzle row is “2”, the paper feed amount is “15”, and the number of overlaps in the main scanning direction is “2”.
  • FIG. 31 is an explanatory diagram showing symbolized nozzle rows of a recording head having 30 nozzles and a nozzle pitch of “2”.
  • the nozzle row is divided into cells in pixel units, and numerals 0 to 29 indicating nozzle numbers are written in the cells.
  • the position of the cell to which the nozzle number is assigned represents the position of the nozzle.
  • FIG. 32 is an explanatory diagram of a recording operation using the recording head having the nozzle row shown in FIG. FIG. 32 shows a state in which the recording head relatively moves in the sub-scanning direction as the paper is conveyed in the sub-scanning direction. The sheet is conveyed from the bottom to the top of FIG. As shown in FIG. 32, the paper feed amount in the sub-scanning direction is 15 pixels, and the recording of the scan band is completed by four scans of scan 1 to scan 4. The paper feed amount corresponds to the “relative movement amount per sub-scanning operation”.
  • FIG. 33 is a diagram showing the relationship between nozzles and rasters and nozzle patterns for each scan.
  • the left diagram in FIG. 33 shows how the recording operations of scan 1 to scan 4 are repeated.
  • the central view of FIG. 33 shows a nozzle pattern of a repetitive minimum unit.
  • the right diagram in FIG. 33 shows a nozzle pattern for each scanning band.
  • the number shown in each cell of the nozzle pattern indicates the nozzle number of the nozzle that records the pixel corresponding to the position of that cell.
  • FIG. 34 shows the nozzle group for each scan.
  • the nozzle group for each scan means a nozzle group for each scan used for printing of each scan.
  • FIG. 34 shows nozzles for each scan for recording each unit area in each scan band.
  • the description of the nozzle number represents the nozzle of that nozzle number.
  • the nozzles of the scanning 1 nozzle group are nozzle numbers 23 to 29.
  • the nozzles of the scanning 2 nozzle group are nozzle numbers 15-22.
  • the nozzle number 22 is a gap nozzle for recording a gap raster.
  • the background of the cell of the nozzle number 22 is differentiated and displayed by painting a screen tone.
  • the nozzles of the scanning 3 nozzle group are nozzle numbers 8 to 14.
  • the nozzles of the scanning 4 nozzle group are nozzle numbers 0 to 7.
  • Nozzle number 7 is a gap nozzle for recording a gap raster.
  • the background of the cell of nozzle number 7 is differentiated and displayed by painting a screen tone.
  • the nozzle number of the gap nozzle is referred to as “gap nozzle number”.
  • the description of the gap nozzle number may refer to the gap nozzle of that nozzle number.
  • each scanning band cannot be divided by the unit area, and there is a gap.
  • This gap corresponds to a raster recorded using nozzle number 7 and nozzle number 22.
  • Such a gap raster is called a gap raster.
  • the gap raster as long as the discharge rate of the nozzle that records the gap raster is continuous with the discharge rate of the nozzles before and after the gap raster, the sum of the discharge rates in the unit area including the gap raster is also substantially constant.
  • the case where the slope of the discharge rate of each scanning nozzle group is not made constant means the case where the slope is changed inside the scanning nozzle group.
  • FIG. 35 shows an example of the discharge rate of each scanning nozzle group finally obtained by the first embodiment.
  • a method for designing the nozzle discharge rate will be described.
  • the ejection rate of the first half scanning nozzle group is designed.
  • nozzles that are arranged at the ends of the scanning nozzle groups and nozzles that are branches of the scanning nozzle groups are determined.
  • the “nozzle disposed at the end” includes, in addition to the end nozzle, a nozzle located at the end in each scanning nozzle group.
  • the end nozzle of scan 1 is set to nozzle number 29
  • the branch nozzle with scan 2 is set to nozzle number 23, 22 or 21, and the nozzle arranged at the end of the scan 2 nozzle group is set to nozzle number. Determined in 15.
  • a nozzle that is a branch of each scanning nozzle group may be a gap nozzle, or may be a nozzle that differs by about “ ⁇ 1 nozzle” before and after the gap nozzle.
  • the nozzle number 22 as the gap nozzle exists in the scan 2, but the gap nozzle does not necessarily exist depending on the scanning method.
  • the nozzles arranged at the ends of each scanning nozzle group may be determined as branch nozzles.
  • the nozzle number 23 at the end of the scan 1 nozzle group or the nozzle number 21 at the end of the scan 2 nozzle group may be determined as the branch nozzle.
  • the discharge rate of each nozzle and branch nozzle arranged at the end of each scanning nozzle group is determined. Then, from the discharge rates determined for the nozzles and branch nozzles arranged at the ends of each scan nozzle group, the discharge rates of the nozzles between them are determined by linear interpolation. That is, the discharge rate of the nozzles between the nozzles arranged at the end of each scanning nozzle group and the branch nozzles is determined to be continuous by interpolation.
  • the end nozzle of scan 1 is set to nozzle number 29
  • the branch nozzles of scan 1 and scan 2 are set to nozzle number 21, and the nozzle arranged at the end of scan 2 is set to nozzle number 15.
  • the discharge rate of nozzle number 29 is set to 25%
  • the discharge rate of nozzle number 21 is set to 100%
  • the discharge rate of nozzle number 15 is set to 100%
  • each of the nozzles between them is linearly interpolated. The discharge rate of each nozzle was determined.
  • the ejection rate of each scanning nozzle group of the second half scanning nozzle group is determined so that the sum of the ejection rate of each scanning nozzle group of the first half scanning nozzle group is constant.
  • the ejection rate of the scanning 4-nozzle group is obtained.
  • the discharge rate of nozzle number 0 is set to 25%, which is the same as nozzle number 29.
  • 106.25% is obtained by adding the discharge rate of 81.25% for nozzle number 23 of scan 1 and the discharge rate of 25% for nozzle number 0 of scan 4. This value corresponds to T1 in equation [4].
  • the discharge rates of nozzle numbers 24 to 29 for scan 1 are subtracted from T1 to obtain the discharge rates of nozzle numbers 1 to 6 that form pairs for scan 4.
  • the nozzle that is paired with scan 1 with respect to nozzle number 24 with scan 1 is nozzle number 1.
  • 34.375% is obtained by subtracting 71.875% (discharge rate of nozzle number 24) of scan 1 from 106.25% (T1) as the discharge rate of nozzle 1 of scan 4.
  • the discharge rate of each nozzle of the scan 4 can be obtained according to the equation [5].
  • the discharge rate of each nozzle can also be obtained.
  • the discharge rate of nozzle number 7 which is a gap nozzle is obtained.
  • the discharge rate is increased by 9.375% from nozzle number 23 to nozzle number 22 to 90.625%, so in the second half scan, the discharge rate of nozzle number 6 is increased by 9.375% to 90.625% and To do.
  • the discharge rate of nozzle number 8 in scan 3 is set to the same value as the discharge rate of nozzle number 21 in scan 2 (100% in this example). Then, 200% is obtained by adding the discharge rate 100% of the nozzle number 15 of the scan 2 and the discharge rate 100% of the nozzle number 8 of the scan 3. This value corresponds to T2 in equation [4].
  • Equation [4] the ejection rates of the nozzle numbers 16 to 21 of the scan 2 are subtracted from the T2 to obtain the ejection rates of the nozzle numbers 9 to 14 that form the pair of the scan 3.
  • the discharge rates of nozzle numbers 9 to 14 are all 100%.
  • the discharge rate of each nozzle in the scan 3 can be obtained according to the equation [5].
  • the discharge rate of each nozzle can also be obtained.
  • the target nozzle discharge rate can be designed.
  • the discharge rate and nozzle pattern of each nozzle are developed into a discharge rate pattern, and the branch nozzle with the most uniform average discharge rate per unit area is determined. In this case, care should be taken that the sum of the discharge rates of the nozzles designed for each branch nozzle is the same.
  • FIG. 36 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to Example 1 described above.
  • the horizontal axis of FIG. 36 represents the nozzle number, and the vertical axis represents the nozzle discharge rate.
  • FIG. 37 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 38 is a graph showing the average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • the horizontal axis in FIG. 38 represents the raster number, and the vertical axis represents the average discharge rate per unit area. As shown in FIG. 38, the average discharge rate per unit area is substantially uniform.
  • Example 2 of nozzle discharge rate design method a method for designing the nozzle discharge rate when the inclination is changed only at the branch of each scanning nozzle group and corresponding to the example in which the complementary relationship is one-to-one but left-right asymmetric will be described with a specific example.
  • FIG. 39 shows an example of the discharge rate of each scanning nozzle group finally obtained by the second embodiment.
  • the nozzle discharge rate design method will be described with reference to the example of FIG. First, as already described, the nozzles and branch nozzles arranged at the ends of the respective scan nozzle groups are determined in the first half scan nozzle group, and the discharges of the nozzles and branch nozzles arranged at the ends of the respective scan nozzle groups are determined. The rate is determined, linear interpolation is performed, and the ejection rate of each nozzle in the first half scanning nozzle group is obtained.
  • the end nozzle of scan 1 is set to nozzle number 29, the branch nozzle with scan 2 is set to nozzle number 21, and the nozzle arranged at the end of scan 2 is set to nozzle number 15. Then, the discharge rate of nozzle number 29 is set to 0%, the discharge rate of nozzle number 21 is set to 40%, the discharge rate of nozzle number 15 is set to 100%, and each of the nozzles between them is linearly interpolated. The discharge rate of each nozzle was determined.
  • the ejection rate of each scanning nozzle group of the second half scanning nozzle group is determined so that the sum of the ejection rate of each scanning nozzle group of the first half scanning nozzle group is constant.
  • the ejection rate of the scanning 4 nozzle group is determined so as to be complementary to the scanning 2.
  • the discharge rate of the nozzle number 0 is set to 0%.
  • 100% is obtained by adding 100% of the discharge rate of nozzle number 15 of scan 2 and 0% of the discharge rate of nozzle number 0 of scan 4. This value corresponds to T2 in Equation [6].
  • the discharge rate of each nozzle can also be obtained by increasing the number by.
  • the discharge rate of nozzle number 7 which is a gap nozzle is obtained.
  • the discharge rate is reduced by 5% from nozzle number 21 to nozzle number 22. Therefore, in the second half scan, the discharge rate of nozzle number 6 is increased by 5% to 65% to be the discharge rate of nozzle number 7.
  • the discharge rate of nozzle No. 8 for scanning 3 is obtained.
  • the discharge rate is reduced by 5% from nozzle number 22 to nozzle number 23. Therefore, in the second half scan, the discharge rate of nozzle number 7 is increased by 5% to 70%, and the discharge rate of nozzle number 8 is set. Then, 100% is obtained by adding the discharge rate 30% of the nozzle number 23 of the scan 1 and the discharge rate 70% of the nozzle number 8 of the scan 3. This value corresponds to T1 in equation [6].
  • the discharge rates of the nozzle numbers 9 to 14 that are paired with the scan 3 are obtained by subtracting the discharge rates of the nozzle numbers 24 to 29 of the scan 1 from T1 as shown in Equation [6].
  • the discharge rate of each nozzle of scan 3 can be obtained according to equation [7].
  • the discharge rate of each nozzle can also be obtained.
  • the target nozzle discharge rate can be designed.
  • FIG. 40 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to Example 2 described above.
  • the horizontal axis in FIG. 40 represents the nozzle number, and the vertical axis represents the nozzle discharge rate.
  • FIG. 41 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 42 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • the horizontal axis in FIG. 42 represents the raster number, and the vertical axis represents the average discharge rate per unit area. As shown in FIG. 42, the average discharge rate per unit area is uniform.
  • Example 3 of nozzle discharge rate design method Next, a method for designing the nozzle discharge rate when the inclination is changed only at the branch of each scanning nozzle group and the complementary relationship is not one-to-one will be described.
  • the complementary relationship is one-to-two.
  • N 6
  • FIG. 43 is a diagram illustrating a relationship between nozzles and rasters in each scan and a part of the nozzle pattern in the third embodiment.
  • the left diagram in FIG. 43 shows how the recording operations of scan 1 to scan 6 are repeated.
  • the central view of FIG. 43 shows a part of the nozzle pattern.
  • the right diagram in FIG. 43 shows a part of the nozzle pattern for each scanning band.
  • FIG. 44 shows nozzle groups for each scan.
  • the notation rules in FIGS. 43 and 44 are based on the notation rules in FIGS. 33 and 34.
  • the nozzle number 18 and nozzle number 23 in the first half scanning and the nozzle number 4 and nozzle number 9 in the second half scanning correspond to the gap nozzles.
  • FIG. 45 shows an example of the discharge rate of each scanning nozzle group finally obtained by the third embodiment.
  • the nozzle discharge rate design method will be described with reference to this example. First, as described above, the nozzles and branch nozzles arranged at the ends of the respective scan nozzle groups in the first half scan nozzle group are determined, and the discharges of the nozzles and the branch nozzles arranged at the ends of the respective scan nozzle groups are determined. The rate is determined, linear interpolation is performed, and the ejection rate of each nozzle in the first half scanning nozzle group is obtained.
  • the end nozzle of scan 1 is set to nozzle number 27, the branch nozzle of scan 1 and scan 2 is set to nozzle number 23, the branch nozzle of scan 2 and scan 3 is set to nozzle number 18, and the end of scan 3 is set.
  • Nozzle number 14 is defined as the nozzle arranged in Then, the discharge rate of nozzle number 27 is set to 0%, the discharge rate of nozzle number 23 is set to 20%, the discharge rate of nozzle number 18 is set to 80%, and the discharge rate of nozzle number 14 is set to 100%. Each nozzle was linearly interpolated to determine the discharge rate of each nozzle.
  • the ejection rate of each scanning nozzle group of the second half scanning nozzle group is determined so that the sum of the ejection rate of each scanning nozzle group of the first half scanning nozzle group is constant.
  • the discharge rate of the scan 6 nozzle group is determined so as to be complementary to the sum of the discharge rates of scan 1 and scan 2.
  • the discharge rate of nozzle number 0 is set to 0%.
  • the discharge rate 83% of the sum of the discharge rate 15% of the nozzle number 24 of the scan 1 and the discharge rate 68% of the nozzle number 19 of the scan 2 is added to the discharge rate 0% of the nozzle number 0 of the scan 6 to 83%.
  • Ask for. This value corresponds to T1 in equation [8].
  • the discharge rate of gap nozzle number 4 Since the combination of scan 1 and scan 2 in the first half scan and scan 6 in the second half scan have a two-to-one complementary relationship, the increase in the discharge rate in the gap nozzle number 23 included in scan 1 and scan 2 in the first half scan The discharge rate is increased by the gap nozzle number 4 of the scan 6 as much as. The discharge rate is increased by 5% from nozzle number 24 to nozzle number 23, the discharge rate is increased by 12% from nozzle number 23 to nozzle number 22, and both are increased by 17%. 68% increased from 17% to 17% is set as the discharge rate of the gap nozzle number 4.
  • the ejection rate of the scanning 5 nozzle group is obtained.
  • the discharge rate of nozzle No. 5 for scanning 5 is obtained.
  • the discharge rate is increased by 12% from nozzle number 19 to nozzle number 18. Therefore, in the second half scan, the discharge rate of nozzle number 4 is increased by 12% to 80%, and the discharge rate of nozzle number 5 is set.
  • Equation [8] the ejection rates of nozzle numbers 15 to 17 for scan 3 are subtracted from T3 to obtain the ejection rates of nozzle numbers 6 to 8 that form a pair for scan 5. .
  • the discharge rate of each nozzle of the scan 5 can be obtained according to the equation [9].
  • the discharge rate of each nozzle of 6 to 8 can be obtained.
  • the discharge rate of the gap nozzle number 9 is also increased from the 95% discharge rate of the nozzle number 8 to 100% in the scan 5 as well.
  • the target nozzle discharge rate can be designed.
  • FIG. 46 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to Example 3 described above.
  • the horizontal axis in FIG. 46 represents the nozzle number, and the vertical axis represents the nozzle discharge rate.
  • FIG. 47 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 48 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • the horizontal axis in FIG. 48 represents the raster number, and the vertical axis represents the average discharge rate per unit area. As shown in FIG. 48, the average discharge rate per unit area is substantially uniform.
  • Example 4 of nozzle discharge rate design method Here, first, an example in which the inclination is changed at one place or several places inside the scanning nozzle group as shown in FIG. 24 or FIG. 25 will be described. As a specific example, description will be made using an example in which the inclination is changed at two locations inside the scanning nozzle group as shown in FIG. However, for easy comparison with the example shown in FIG. 36 and the example of Patent Document 3, the discharge rate of the nozzles at both ends in the nozzle row is set to 25%.
  • the scanning method such as the number of nozzles in the nozzle row, the paper feed amount, the nozzle pitch, and the number of overlaps in the main scanning direction is the same as the example shown in FIGS.
  • FIG. 49 shows an example of the discharge rate of each scanning nozzle group finally obtained by the fourth embodiment.
  • the nozzle discharge rate design method will be described with reference to this example.
  • the change point nozzle refers to a nozzle at a change point of inclination.
  • the nozzle at the end of scanning 1 is determined as nozzle number 29, the nozzle that branches from scanning 2 is set as nozzle number 21, and the nozzle located at the end of scanning 2 is determined as nozzle number 15.
  • the discharge rate for nozzle number 29 was set to 25%
  • the discharge rate for nozzle number 21 was set to 100%
  • the discharge rate for nozzle number 15 was set to 100%.
  • the change point nozzles are determined at two locations of nozzle number 28 and nozzle number 24, the discharge rate of nozzle number 28 is 32.5%, and the discharge rate of nozzle number 24 is 77.5%.
  • each nozzle discharge rate between the nozzles arranged at the end of each scanning nozzle group of the first half scanning nozzle group, the branch nozzle, and the change point nozzle is obtained by linear interpolation.
  • the ejection rate of each scanning nozzle group of the second half scanning nozzle group is determined so that the sum of the ejection rate of each scanning nozzle group of the first half scanning nozzle group is constant.
  • the discharge rate of the scanning 4 nozzle group is obtained so as to have an interpolating relationship with scanning 1.
  • the discharge rate of nozzle No. 0 is set to 25% in scan 4.
  • the discharge rate of 110% is obtained by adding 85% of the discharge rate of nozzle number 23 in scan 1 and 25% of the discharge rate of nozzle number 0 in scan 4. This value corresponds to T1 in equation [4].
  • the discharge rates of nozzle numbers 1 to 6 that form pairs of scan 4 are obtained by subtracting the discharge rates of nozzle numbers 24 to 29 of scan 1 from T1, respectively.
  • the discharge rate of each nozzle in the scan 4 can be obtained according to the equation [10].
  • F1 (j) in Equation [10] is obtained.
  • the discharge rate t [1,0] of the nozzle number 29 is 25%
  • F1 (0) to F1 (6) are the discharge rate at the corresponding nozzle and t [1,0] (25%), respectively.
  • F1 (0) 0%
  • F1 (1) 7.5%
  • F1 (2) 18.75%
  • F1 (3) 30%
  • F1 (4) 41.25%
  • F1 (5 ) 52.5%
  • F1 (6) 60%.
  • (4) 43.75% obtained by adding 18.75% is set as the discharge rate of nozzle number 2, and so on.
  • the discharge rates of nozzle numbers 1 to 6 of scan 4 are obtained.
  • the discharge rate of gap nozzle number 7 Since the discharge rate is increased by 7.5% from nozzle number 23 to nozzle number 22 in the first half scan, the discharge rate of nozzle number 6 is also increased by 7.5% to 92.5% in the second half scan and is set to the discharge rate of nozzle number 7.
  • the discharge rate of nozzle No. 8 for scanning 3 is obtained. Since the discharge rate is increased by 7.5% from nozzle number 22 to nozzle number 21 in the first half scan, the discharge rate of nozzle number 7 is also increased by 7.5% to 100% in the second half scan to obtain the discharge rate of nozzle number 8. Then, 200% is obtained by adding the discharge rate 100% of the nozzle number 15 of the scan 2 and the discharge rate 100% of the nozzle number 8 of the scan 3. This value corresponds to T2 in equation [4].
  • the ejection rates of the nozzle numbers 9 to 14 to be paired with the scan 3 are obtained by subtracting the ejection rates of the nozzle numbers 16 to 21 of the scan 2 from T2 as shown in Equation [4].
  • the discharge rate of each nozzle in the scan 3 can be obtained according to the equation [10].
  • F2 (j) in equation [10] is obtained from the discharge rate of each nozzle of scan 2
  • each scan 3 is calculated from the obtained F2 (j) and the discharge rate t [3,6] of nozzle number 8 of scan 3.
  • the discharge rate of the nozzle can be obtained.
  • the method for obtaining the discharge rate of each nozzle of the scan 4 based on the equation [10] is as described above and can be obtained in the same manner.
  • the target nozzle discharge rate can be designed.
  • FIG. 50 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method according to Example 4 described above.
  • the horizontal axis in FIG. 50 represents the nozzle number, and the vertical axis represents the nozzle discharge rate.
  • FIG. 51 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 52 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • the horizontal axis in FIG. 52 represents the raster number, and the vertical axis represents the average discharge rate per unit area. As shown in FIG. 52, the average discharge rate per unit area is substantially uniform.
  • Example 5 of nozzle discharge rate design method Next, an example in which the inclination is changed inside each scanning nozzle group and the inclination is continuously changed as shown in FIGS. 26 to 28 will be described. Note that the discharge rate of the nozzles at both ends of the nozzle row is set to 25% so that it can be easily compared with the example of FIG. 36 and the example shown in Patent Document 3.
  • FIG. 53 shows an example of the discharge rate of each scanning nozzle group finally obtained by the fifth embodiment.
  • the nozzles and branch nozzles arranged at the ends of the scanning nozzle groups and the nozzles of change points of inclination are determined, and the discharge rate of each of these nozzles is determined.
  • the setting is exactly the same as in FIG. 49 of the fourth embodiment.
  • the end nozzle of scan 1 is nozzle number 29, the branch nozzle with scan 2 is nozzle number 21, the nozzle arranged at the end of scan 2 is nozzle number 15, the discharge rate of nozzle number 29 is 25%, nozzle
  • the discharge rate of No. 21 was set to 100%, and the discharge rate of No. 15 was set to 100%.
  • the change point nozzles are determined at two locations of nozzle number 28 and nozzle number 24, the discharge rate of nozzle number 28 is 32.5%, and the discharge rate of nozzle number 24 is 77.5%.
  • each nozzle discharge rate between the nozzles arranged at the end of each scanning nozzle group, branch nozzles and change point nozzles is obtained by curve interpolation.
  • curve interpolation For example, spline interpolation is used as the curve interpolation.
  • the method for obtaining the discharge rate of the latter-half scanning nozzle group is the same as in the case of the fourth embodiment, and a description thereof will be omitted.
  • the target nozzle discharge rate can be designed.
  • FIG. 54 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method of Example 5.
  • the horizontal axis in FIG. 54 represents the nozzle number, and the vertical axis represents the nozzle discharge rate.
  • FIG. 55 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 56 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG.
  • the horizontal axis in FIG. 56 represents the raster number, and the vertical axis represents the average discharge rate per unit area. As shown in FIG. 56, the average discharge rate per unit area is substantially uniform.
  • ⁇ Preferable nozzle discharge rate profile> As described above, in order to reduce banding, it is desirable to make the gradient of the discharge rate in each scanning nozzle group constant as shown in FIG. In addition, in order to suppress ink bleeding and / or aggregation as described in Japanese Patent Application Laid-Open No. 2009-184344, it may be effective to reduce the amount of ink that is initially recorded on paper for each scanning band. In this case, the discharge rate of the scanning one nozzle group is suppressed as shown in FIG. 40 and FIG. 46, or the discharge rate of the nozzle group on the end side among the scanning one nozzle groups is suppressed as shown in FIG. 50 and FIG. It may be effective to do.
  • Example when the number of overlaps is "1">> The case where the number of overlaps is “2” has been described so far, but the number of overlaps may be “1” when the invention is implemented. Even when the number of overlaps is “1”, the nozzle discharge rate design method for each nozzle in the nozzle row itself is exactly the same as when the number of overlaps is “2”. Is omitted.
  • FIGS. 57 to 62 show examples of the scanning method with the overlap number “1”.
  • FIG. 57 is a diagram showing a relationship between a nozzle and a raster for each scan and a part of a nozzle pattern when the nozzle pitch of the nozzle row is “2”, the number of nozzles is 25, and the paper feed amount is “25”. is there.
  • FIG. 58 is a diagram showing nozzle groups for each of scan 1 and scan 2.
  • Nozzle number 12 is a gap nozzle.
  • each scan band is recorded in two scans. If the scan 1 and the scan 2 are complementary, the distribution of the average discharge rate per unit area in the discharge rate pattern can be made uniform.
  • FIG. 59 is a diagram showing a relationship between a nozzle and a raster for each scan and a part of the nozzle pattern when the nozzle pitch of the nozzle row is “3”, the number of nozzles is 25, and the paper feed amount is “25”. is there.
  • FIG. 60 is a diagram showing nozzle groups for each of scan 1, scan 2 and scan 3.
  • FIG. Nozzle number 8 is a gap nozzle.
  • each scan band is recorded by three odd scans. Therefore, it is necessary to make the discharge rate constant for the nozzle group of the scan 2 in the middle of the three times. If the scan 1 and the scan 3 are in a complementary relationship, the distribution of the average discharge rate per unit area in the discharge rate pattern can be made uniform.
  • FIG. 61 is a diagram showing a relationship between a nozzle and a raster of each scan and a part of the nozzle pattern when the nozzle pitch of the nozzle row is “4”, the number of nozzles is 25, and the paper feed amount is “25”. is there.
  • FIG. 62 is a diagram showing nozzle groups for each of scans 1 to 4.
  • Nozzle number 6 is a gap nozzle.
  • each scan band is recorded by four scans.
  • the sum of the discharge rates of the corresponding nozzles of the scan nozzle groups of scan 1 and scan 2 as the first half scan is defined as the first half scan nozzle group discharge rate, and the corresponding nozzles of the scan nozzle groups of scan 3 and scan 4 as the second half scan.
  • the sum of the discharge rates is the second-half scanning nozzle group discharge rate
  • the distribution of the average discharge rate per unit area in the discharge rate pattern can be made uniform.
  • Examples 1 to 5 described so far are examples in which the inclination is changed at the branch of the scanning nozzle group.
  • the configuration is not limited to the configuration in which the inclination is changed at the branch of the scanning nozzle group, and the inclination may be changed inside the scanning nozzle group other than the branch without changing the inclination at the branch.
  • the discharge rate of each nozzle can be designed by the same method as already described.
  • a specific example will be described.
  • FIG. 63 shows an example of the discharge rate of each scanning nozzle group obtained by the sixth embodiment.
  • the scanning method of the sixth embodiment is assumed to be the scanning method shown in FIGS.
  • the nozzles arranged at the ends and the nozzles at the change points of the inclination are determined in the first half scanning nozzle group, the discharge rate is determined for each of the nozzles arranged at the ends and the change point nozzles, and linear interpolation is performed between them.
  • a nozzle that is a branch of each scanning nozzle group is not determined.
  • Example 6 the end nozzle of the scan 1 nozzle group is set to nozzle number 29, the nozzle arranged at the end of the scan 2 nozzle group is set to nozzle number 15, and the change point nozzle is set to nozzle number 19.
  • the discharge rate of nozzle number 29 is set to 25%
  • the discharge rate of nozzle number 19 is set to 100%
  • the discharge rate of nozzle number 15 is set to 100%.
  • FIG. 64 is a graph of the nozzle discharge rate designed according to the nozzle discharge rate design method of Example 6.
  • the horizontal axis in FIG. 64 represents the nozzle number, and the vertical axis represents the discharge rate.
  • FIG. 65 is a diagram showing a discharge rate pattern based on the nozzle discharge rate shown in FIG.
  • FIG. 66 is a graph showing an average discharge rate per unit area based on the discharge rate pattern shown in FIG. 66, the horizontal axis represents the position in the sub-scanning direction by a raster number, and the vertical axis represents the average discharge rate per unit area. As shown in FIG. 66, the average discharge rate per unit area is substantially uniform.
  • Procedure 1 First, the ejection rate of the first half scanning nozzle group is arbitrarily designed. Here, it is designed so that the difference in discharge rate between adjacent nozzles is small and continuous.
  • Procedure 2 Next, the discharge rate of the latter half scanning nozzle group is obtained so as to complement the first half scanning nozzle group.
  • This procedure 2 includes the following procedure 21 to procedure 24.
  • Procedure 21 First, the discharge rate of the end nozzle of the last scan of the second half scan is set to the same value as the discharge rate of the end nozzle of the first scan of the first half scan.
  • the discharge rate of nozzle number 0 in scan 4 is set to the same value as the discharge rate of nozzle number 29 in scan 1.
  • Procedure 22 Then, each nozzle discharge rate of the last scan of the second half scan is obtained so as to be in a complementary relationship with the scan that forms the pair of the first half scan.
  • the discharge rate of the scan 4 is obtained so as to be complementary to the paired scan 1.
  • the complementary relationship between the first and second scans is not one-to-one, but one-to-two, one-to-three,. It is calculated so as to be complementary to the discharge rate taken.
  • Step 23 Next, if there is a gap nozzle, determine the discharge rate of the gap nozzle and the discharge rate of the nozzle that will be the end of the next scan. If there is no gap nozzle, determine the discharge rate of the nozzle that will be the end of the next scan. Ask.
  • the discharge rate of the nozzle number 8 that is the end of the gap nozzle number 7 and the next scan 3 is obtained.
  • the discharge rate is calculated in the same way as the change in the discharge rate when moving from the end of the complementary scan to the end of the next complementary scan in the first half scan.
  • the discharge rate is determined to change when moving from one end to the next scan end.
  • the sign of the change is reversed.
  • the discharge rate increases by 9.375% from the nozzle number 23 at the end of scan 1 in the first half scan to the gap nozzle number 22, so the nozzle number 6 from the nozzle number 6 at the end of the scan 4 in the second half scan is also 9.375.
  • the discharge rate is increased by 9.375% from the gap nozzle number 22 of the first half scan to the nozzle number 21 which is the end of the scan 2
  • the nozzle number 8 which is the end of the scan nozzle 3 of the gap 4 of the second scan 4 is also 9.375.
  • the purpose of obtaining the discharge rate of the gap nozzle in the second half scan and the nozzle at the end of each scan of the second half scan in this way is to make the discharge rate of the central nozzle in the first half scan and the second half scan coincide with each other so as not to cause a step.
  • the nozzle number 15 corresponds to the central nozzle for the first half scanning
  • the nozzle number 14 corresponds to the central nozzle for the second half scanning.
  • the discharge rates of the central nozzle for the first half scan and the central nozzle for the second half scan that are adjacent in the vicinity are made to coincide.
  • the change in the discharge rate in each scan nozzle group in the second half scan coincides with the change in the discharge rate in each scan nozzle group in the complementary relationship of the first half scan.
  • the discharge rate of the first half scan nozzle group is designed so that the difference in discharge rate between adjacent nozzles is small and continuous, the change in discharge rate at each gap nozzle and the end of each scan in the second half scan By making it coincide with the change in the discharge rate in the first half scan, it is possible to design the difference in the discharge rate between adjacent nozzles to be small and continuous even in the second half scan nozzle group.
  • the discharge rate is the sum of the discharge rates of the multiple scans that are complementary
  • the discharge rate is determined to change when moving from the end of the current scan to the end of the next scan in the second half scan, as much as the change in the discharge rate when moving from one to the next complementary scan end.
  • Step 24 Obtain the nozzle discharge rate of the last scan of the second half scan by the above procedure. If there is a gap nozzle, the discharge rate of the gap nozzle, the discharge rate of the nozzle that becomes the end of the next scan, and the gap nozzle If not, after determining the discharge rate of the nozzle that will be the end of the next scan, the nozzle discharge rate of the next scan is determined so as to be complementary to the scan that forms the pair of the first half scan. In the example of FIG. 35, the ejection rate of scanning 3 is obtained so as to have a complementary relationship with the paired scanning 2.
  • step 24 can be repeated to determine the discharge rate of the latter half scanning nozzle group.
  • the ejection rate of the latter half scanning nozzle group can be obtained according to the following procedure.
  • Procedure 31 Determine the discharge rate of the end nozzle of the last scan in the second half scan.
  • Procedure 32 The discharge rate of each nozzle in the last scan is obtained so as to complement the first half scan.
  • Procedure 33 Obtain the discharge rate of the gap nozzle and the nozzle at the end of the second scan from the end so that the discharge rate changes as much as in the first half scan.
  • Procedure 34 The nozzle discharge rate of the second scanning from the last is obtained so as to complement the first half scanning.
  • Procedure 35 Obtain the discharge rate of the gap nozzle and the nozzle at the end of the third scan from the end so that the discharge rate changes by the same amount as in the first half scan.
  • Procedure 36 Determine the nozzle discharge rate of the third scan from the last so as to complement the first half scan.
  • the procedure after step 33 is omitted.
  • the procedure after procedure 35 is omitted.
  • the procedure shown by the procedure 31 to the procedure 36 is a procedure for obtaining the ejection rate of each nozzle from the scanning nozzle group of the last scanning. Conversely, the ejection of each nozzle from the scanning nozzle group of the first scanning including the central nozzle is performed.
  • the procedure for obtaining the rate may be used. In this case, the procedure is as follows.
  • Procedure 41 Determine the discharge rate of the central nozzle of the first scan of the second half scan.
  • Procedure 42 Obtain the discharge rate of each nozzle in the first scan so as to complement the first half scan.
  • Procedure 43 Obtain the discharge rate of the gap nozzle and the nozzle that is the end of the second scan from the beginning so that the discharge rate changes by the same amount as in the first half scan.
  • Procedure 44 Obtain the discharge rate of each nozzle in the second scan from the beginning so as to complement the first half scan.
  • Procedure 45 Obtain the discharge rate of the gap nozzle and the nozzle that is the end of the third scan from the beginning so that the discharge rate changes by the same amount as in the first half scan.
  • Step 46 Obtain the nozzle discharge rates of the third scan from the beginning so as to complement the first half scan.
  • the same value as the ejection rate of the central nozzle in the first half scanning is first determined as the ejection rate of the central nozzle in the first scanning in the second half scanning.
  • the same value as the discharge rate 100% of the nozzle number 15 that is the center nozzle of the first half scan is determined as the discharge rate of the nozzle number 14 that is the center nozzle of the second half scan. Since the method of obtaining after the procedure 42 is the same as the method of obtaining already described, the explanation is omitted.
  • the nozzle discharge rate design support device for performing the process of determining the nozzle discharge rate of each nozzle that satisfies the target specific condition, computer hardware and software It can be realized by a combination of That is, each procedure of the nozzle discharge rate design method according to the present disclosure described above can be executed by a computer.
  • the average per unit area of the discharge rate pattern It is possible to determine the nozzle discharge rate of each nozzle at which the discharge rate is made uniform.
  • the average ejection rate per unit area of the ejection rate pattern can be increased.
  • the nozzle discharge rate of each nozzle to be made uniform can be determined.
  • the nozzle discharge rate design support device may be incorporated in a dither mask generation device to be described later, or may be configured as a separate device separate from the dither mask generation device.
  • FIG. 67 is an excerpt of the first scan band shown in FIG.
  • the range of the scan band [1] in which the raster of nozzle number 0 of the last scan in each scan band is the first row has been described as a “scan band”.
  • the range that can be regarded as a “scanning band” is in addition to the scanning band [1].
  • the range of the scan band is in addition to the scanning band [1].
  • the range for example, in the case of FIG. 67, as another setting of the scan band range including the nozzle number 29 that is the last nozzle of the first scan and the nozzle number 0 that is the first nozzle of the last scan, There are ways to set the range. 68 and 69 show the nozzle pattern in this case and the nozzles for each scan for recording each unit area.
  • FIG. 68 shows a nozzle pattern when the setting of the scanning band [2] shown in FIG. 67 is adopted for the range of the scanning band.
  • FIG. 69 is a chart showing the nozzles of each scan for recording each unit area when the setting of the scan band [2] shown in FIG. 67 is adopted for the range of the scan band.
  • each scanning nozzle group and the gap nozzle differ depending on how the scanning band range is set.
  • each nozzle discharge rate can be designed in the same manner by the nozzle discharge rate design method described above.
  • FIG. 70 is an external perspective view showing a configuration example of the ink jet recording apparatus.
  • the ink jet recording apparatus 10 is an example of a serial ink jet printer, and is a wide format printer that records a color image on a recording medium 12 using ultraviolet curable ink.
  • the form of the ink jet recording apparatus is not limited to this example.
  • the inkjet recording apparatus 10 includes an apparatus main body 20 and support legs 22 that support the apparatus main body 20.
  • the apparatus main body 20 is provided with a recording head 24, a platen 26, a guide mechanism 28, and a carriage 30.
  • the recording head 24 is a drop-on-demand ink jet head that discharges ink toward the recording medium 12.
  • the term “recording head” is synonymous with a term such as a print head, a print head, a print head, a drawing head, an ink ejection head, a liquid ejection head, a droplet ejection head, or a droplet ejection head.
  • the term “inkjet recording apparatus” is synonymous with terms such as an inkjet printing apparatus, an inkjet printer, an inkjet printer, or an inkjet image forming apparatus. “Recording” is used as a term encompassing the meaning of printing, printing, printing, drawing, or image formation.
  • the recording medium 12 may be a permeable medium or a non-permeable medium.
  • the term “recording medium” is a generic term for a medium to which ink is attached, and includes various media such as a printing medium, a recording medium, an image forming medium, an image receiving medium, an ejection medium, a printing medium, a recording sheet, or a printing sheet. That are called in simple terms.
  • the platen 26 is a member that supports the recording medium 12.
  • the guide mechanism 28 and the carriage 30 function as a head moving unit that movably supports the recording head 24.
  • the guide mechanism 28 is disposed above the platen 26 so as to extend along the head scanning direction, which is a direction intersecting the conveyance direction of the recording medium 12 and parallel to the medium support surface of the platen 26. ing.
  • the upper direction of the platen 26 means a position higher than the platen 26 with the direction of gravity as “downward”.
  • the conveyance direction of the recording medium 12 may be referred to as a “paper feed direction”.
  • a direction orthogonal to the paper feeding direction and parallel to the recording surface of the recording medium 12 may be referred to as a “paper width direction”.
  • the carriage 30 is supported so as to be able to reciprocate in the paper width direction along the guide mechanism 28.
  • a direction parallel to the reciprocating direction of the carriage 30 corresponds to the “main scanning direction”.
  • a direction parallel to the conveyance direction of the recording medium 12 corresponds to the “sub-scanning direction”. That is, the paper width direction is the main scanning direction, and the paper feeding direction is the sub-scanning direction.
  • the sub-scanning direction is denoted as the X direction
  • the main scanning direction is denoted as the Y direction.
  • the carriage 30 is equipped with a recording head 24, temporary curing light sources 32A and 32B, and main curing light sources 34A and 34B.
  • the recording head 24, the temporary curing light sources 32 ⁇ / b> A and 32 ⁇ / b> B, and the main curing light sources 34 ⁇ / b> A and 34 ⁇ / b> B move integrally with the carriage 30 along the guide mechanism 28.
  • the recording head 24 can be moved relative to the recording medium 12 in the main scanning direction by reciprocating the carriage 30 along the guide mechanism 28 in the main scanning direction.
  • the temporary curing light sources 32 ⁇ / b> A and 32 ⁇ / b> B irradiate ultraviolet rays for temporarily curing the ink that has landed on the recording medium 12.
  • Temporary curing means that the ink is partially cured to such an extent that the movement and deformation of the ink droplet immediately after the droplet ejection are prevented.
  • the temporary curing process may be called “partial curing”, “semi-curing”, “pinning”, “set”, or the like. In this specification, the term “temporary curing” is used.
  • main curing a process of further irradiating with ultraviolet rays to sufficiently cure the ink is called “main curing” or “curing”.
  • main curing a process of further irradiating with ultraviolet rays to sufficiently cure the ink.
  • main curing a process of further irradiating with ultraviolet rays to sufficiently cure the ink.
  • main curing a process of further irradiating with ultraviolet rays to sufficiently cure the ink.
  • main curing is used.
  • the main curing light sources 34 ⁇ / b> A and 34 ⁇ / b> B are light sources that perform additional exposure after temporary curing and finally irradiate ultraviolet rays for main curing of the ink.
  • the apparatus main body 20 is provided with an attachment portion 38 for attaching the ink cartridge 36.
  • the ink cartridge 36 is a replaceable ink tank that stores ultraviolet curable ink.
  • the ink cartridge 36 is provided corresponding to each color ink used in the inkjet recording apparatus 10.
  • the ink jet recording apparatus 10 of this example is configured to use four colors of ink of cyan (C), magenta (M), yellow (Y), and black (K).
  • Each ink cartridge 36 for each color is connected to the recording head 24 by an ink supply path (not shown) formed independently. When the remaining amount of ink for each color is low, the ink cartridge 36 is replaced.
  • a maintenance unit for the recording head 24 is provided on the right side of the apparatus main body 20 as viewed from the front.
  • the maintenance unit is provided with a cap for keeping the recording head 24 moisturized and sucking nozzles during non-printing, and a wiping member for cleaning the nozzle surface that is the ink ejection surface of the recording head 24.
  • a blade and / or a web can be used as the wiping member.
  • FIG. 71 is a schematic diagram schematically illustrating a recording medium conveyance path of the inkjet recording apparatus 10. As shown in FIG. 71, the upper surface of the platen 26 becomes the support surface of the recording medium 12. A nip roller 40 is disposed upstream of the position of the platen 26 in the paper feeding direction.
  • the recording medium 12 of this example is supplied in the form of a continuous paper (also called a winding paper) wound in a roll shape.
  • the recording medium 12 sent out from the supply-side roll 42 is conveyed by the nip roller 40.
  • An image is recorded by the recording head 24 on the recording medium 12 that has reached directly below the recording head 24.
  • a take-up roll 44 that winds up the recording medium 12 after image recording is provided downstream of the position of the recording head 24 in the paper feeding direction.
  • a guide 46 is provided in the conveyance path of the recording medium 12 between the platen 26 and the take-up roll 44.
  • a roll-to-roll type paper conveying unit is employed in which the recording medium 12 fed from the supply-side roll 42 is taken up by the take-up roll 44 via the platen 26.
  • the configuration of the sheet conveying means is not limited to this example when the invention is implemented.
  • a form in which the take-up roll 44 is omitted or a form having a cutter that cuts the recording medium 12 into a desired size is also possible.
  • the recording medium 12 is not limited to continuous paper, but may be in the form of cut paper (ie, sheet) separated one by one.
  • a temperature adjusting unit 50 for adjusting the temperature of the recording medium 12 during image recording is provided on the back side of the platen 26, that is, on the opposite side of the platen 26 from the medium support surface that supports the recording medium 12.
  • the temperature control unit 50 By adjusting the temperature by the temperature control unit 50, the viscosity of the ink landed on the recording medium 12 and the physical property values such as the surface tension become desired values, and a desired dot diameter can be obtained.
  • a pre-temperature control unit 52 is provided upstream of the temperature control unit 50 in the paper feed direction, and an after-temperature control unit 54 is provided downstream of the temperature control unit 50 in the paper feed direction.
  • omits the pre temperature control part 52 and / or the after temperature control part 54 is also possible.
  • FIG. 72 is a plan perspective view showing an example of the arrangement of the recording head 24, temporary curing light sources 32A and 32B, and main curing light sources 34A and 34B arranged on the carriage 30.
  • FIG. FIG. 73 is an enlarged view of the recording head 24. In FIG. 73, the paper feeding direction is the direction from the bottom to the top of the figure.
  • nozzle rows are indicated by dotted lines, and individual illustrations of nozzles are omitted.
  • each nozzle row is arranged in the order of the yellow nozzle row 61Y, the magenta nozzle row 61M, the cyan nozzle row 61C, and the black nozzle row 61K from the left in FIG.
  • the type of ink color (number of colors) and the combination of colors are not limited to this embodiment.
  • CMYK complementary metal-oxide-semiconductor
  • a configuration using a light ink such as light cyan or light magenta, or a configuration using another special color ink instead of or in combination with the light ink is also possible. It is possible to add a nozzle row for ejecting the corresponding ink in accordance with the type of ink color used. Moreover, there is no limitation in particular about the arrangement order of the nozzle row according to color. However, among the plurality of ink types, a configuration in which the nozzle row of ink having relatively low curing sensitivity to ultraviolet light is disposed on the side closer to the temporary curing light source 32A or 32B is preferable.
  • a head module is configured for each of the color-specific nozzle rows 61C, 61M, 61Y, and 61K, and the recording head 24 is configured by arranging these head modules.
  • a head module 24Y having a nozzle row 61Y for discharging yellow ink
  • a head module 24M having a nozzle row 61M for discharging magenta ink
  • a head module 24C having a nozzle row 61C for discharging cyan ink
  • the head modules 24K having the nozzle rows 61K that discharge black ink are arranged at equal intervals so as to be aligned along the reciprocating movement direction of the carriage 30 (that is, the main scanning direction).
  • the entire module group of the head modules 24Y, 24M, 24C, and 24K for each color may be interpreted as a “recording head”, or each head module may be interpreted as a “recording head”.
  • the nozzles are formed by dividing the ink flow path for each color inside one recording head and ejecting a plurality of colors of ink with one head. A configuration with columns is also possible.
  • each of the nozzle rows 61C, 61M, 61Y, and 61K has a plurality of nozzles 62 arranged at regular intervals in the sub-scanning direction.
  • FIG. 73 shows an example in which 30 nozzles 62 are arranged in each of the color-specific nozzle rows 61C, 61M, 61Y, and 61K.
  • Each nozzle 62 is assigned a nozzle number 0 to 29.
  • the nozzle numbers in this example are assigned to the respective nozzles 62 by sequential numbers in order from one end side in the sub-scanning direction to the other end side in the nozzle row.
  • the nozzle number starts from 0, but the first nozzle number may be 1.
  • the leading number can be any integer greater than or equal to zero.
  • the nozzle number can be used as an identification number indicating the position of each nozzle 62.
  • the nozzle row in which 30 nozzles 62 are arranged in a line along the sub-scanning direction is shown, but the number of nozzles constituting the nozzle row and the arrangement form of the nozzles are not limited to this example.
  • a piezo jet method is employed in which ink is ejected by deformation of a piezoelectric element.
  • an electrostatic actuator may be used instead of the piezoelectric element.
  • a thermal jet system in which ink is heated using a heating element (heating element) such as a heater to generate bubbles and ink droplets are ejected by the pressure. Since the ultraviolet curable ink generally has a higher viscosity than the solvent ink, when using the ultraviolet curable ink, it is preferable to adopt a piezo jet method having a relatively large ejection force.
  • the recording head 24 discharges ink to the recording medium 12 while moving in the main scanning direction, and performs image recording in an area having a certain length in the sub-scanning direction of the recording medium 12.
  • the recording head 24 performs the same image recording in the next area, and thereafter, the recording medium 12 is moved by a certain amount in the sub-scanning direction.
  • the image recording can be performed over the entire recording area of the recording medium 12 by repeating the same image recording every time.
  • the recording head 24 is a serial recording head.
  • the inkjet recording apparatus 10 of the present embodiment employs a multi-pass method that realizes a predetermined recording resolution by scanning the recording head 24 in the main scanning direction a plurality of times.
  • FIG. 74 is a block diagram showing the configuration of the inkjet recording apparatus 10.
  • the ink jet recording apparatus 10 includes a control device 102.
  • the control device 102 for example, a computer provided with a central processing unit (CPU) can be used.
  • the control device 102 performs overall control of the entire inkjet recording apparatus 10 by executing various programs read from the information storage unit 124.
  • the control device 102 includes a recording medium conveyance control unit 104, a carriage drive control unit 106, a light source control unit 108, an image processing unit 110, and an ejection control unit 112. Each of these units can be realized by hardware, software, or a combination thereof. “Software” is synonymous with “program” or “application”.
  • the recording medium conveyance control unit 104 controls the conveyance driving unit 114 that conveys the recording medium 12.
  • the conveyance drive unit 114 includes a drive motor that drives the nip roller 40 (see FIG. 71) and a drive circuit thereof.
  • the recording medium conveyance control unit 104 serves as a sub-scanning driving unit.
  • the recording medium 12 transported onto the platen 26 is intermittently fed in the sub-scanning direction in units of swath widths in accordance with scanning in the main scanning direction (movement of the printing pass) by the recording head 24.
  • the swath width is the length in the sub-scanning direction determined by the scanning repetition cycle due to the reciprocating movement of the carriage 30, and the nozzle row length, which is the length of the nozzle row in the sub-scanning direction, is expressed by the number of scanning repetitions. It is obtained by dividing by a certain number of passes. “Swas” has the same meaning as the scanning band.
  • the number of passes which is the number of scan repetitions, is the number of scans necessary to complete drawing with the set recording resolution, and is determined by the drawing mode. Details of the drawing mode will be described later.
  • the carriage drive control unit 106 controls the main scanning drive unit 116 that moves the carriage 30 in the main scanning direction.
  • the main scanning drive unit 116 includes a drive motor connected to a moving mechanism of the carriage 30 and a control circuit thereof.
  • the encoder 130 is attached to the driving motor of the main scanning driving unit 116 and the driving motor of the conveyance driving unit 114 described above.
  • the encoder 130 inputs a pulse signal corresponding to the rotation amount and rotation speed of each drive motor to the control device 102. Accordingly, the control device 102 can grasp the position of the carriage 30 and the position of the recording medium 12 based on the pulse signal input from the encoder 130.
  • the light source control unit 108 controls light emission of the temporary curing light sources 32A and 32B via the light source drive circuit 118 and controls light emission of the main curing light sources 34A and 34B via the light source drive circuit 119.
  • the image processing unit 110 performs image processing on the image data input via the image input interface 126 and converts the image data into dot data for printing.
  • a simple notation “IF” is used as an alternative notation instead of the description “interface”.
  • IF is an abbreviation for “interface”.
  • the image processing unit 110 functions as a halftone processing unit that performs halftone processing by a dither method. That is, the image processing unit 110 performs a pixel value quantization process on a continuous tone image that is input image data using a dither mask, and generates a halftone image corresponding to the dot data for printing. .
  • the dither mask used for the halftone process of the image processing unit 110 is generated by reflecting the nozzle discharge rate designed by applying the nozzle discharge rate design method according to the present disclosure. An example of a dither mask generation method will be described later.
  • the ejection control unit 112 controls the ejection of ink from each nozzle 62 of the recording head 24 by controlling the head driving circuit 128 that drives the recording head 24 based on the dot data generated by the image processing unit 110.
  • the control device 102 is a form of a recording control unit.
  • the process in which the image processing unit 110 performs the halftone process corresponds to an example of a halftone process.
  • the process of controlling the image recording operation by the control device 102 corresponds to an example of a recording control process.
  • a process in which the inkjet recording apparatus 10 records an image on a recording medium corresponds to an embodiment of an image recording method.
  • the information storage unit 124 uses a non-volatile memory, for example, and stores various programs and various data necessary for the control of the control device 102.
  • the information storage unit 124 stores a control program executed by each unit of the control device 102, a scanning pattern program, and the like as programs.
  • the scanning pattern program is a multi-pass image recording program, and the recording head 24 is reciprocated in the main scanning direction (print path movement) and the number of passes (scanning) with respect to the recording medium 12 intermittently conveyed in the sub-scanning direction. Number of repetitions).
  • the movement of the print path that accompanies the movement of the recording head 24 in the main scanning direction includes at least one of the moving direction of the recording head 24 at the time of dot formation, the selection of nozzles that eject ink, and the ejection timing.
  • a scanning pattern determined by the combination of the movement of the printing pass and the number of passes is called a “scanning pattern”.
  • An input device 122 and a display device 120 are connected to the control device 102.
  • various means such as a keyboard, a mouse, a touch panel, or operation buttons can be adopted, and an appropriate combination thereof may be used.
  • the input device 122 inputs an external operation signal manually by an operator who is a user to the control device 102.
  • a liquid crystal display or the like is used for the display device 120.
  • the operator can input various information using the input device 122. Further, the operator can confirm the input content and other various information, the system status, and the like through the display on the display device 120.
  • the sensor 132 is attached to the carriage 30.
  • the control device 102 can grasp the width of the recording medium 12 based on the sensor signal input from the sensor 132.
  • FIG. 75 is an explanatory diagram for explaining an example of a multipass image recording method.
  • the configuration of the recording head 24 is simplified, and the case where the recording head 24 has only one nozzle row and printing is performed with the single nozzle row 61 will be described as an example. It can be understood that the nozzle row 61 represents one of the nozzle rows 61C, 61M, 61Y, and 61K described in FIG.
  • FIG. 75 For the convenience of illustration, the configuration in which the recording medium is intermittently fed in the sub-scanning direction is illustrated in FIG. 75 so that the recording medium is stopped and the recording head 24 is intermittently moved in the sub-scanning direction.
  • the recording medium In FIG. 75, the recording medium is not shown, and only the movement of the recording head 24 is shown.
  • the horizontal direction in FIG. 75 is the main scanning direction.
  • the vertical direction in FIG. 75 is the sub-scanning direction.
  • ink is ejected from the nozzles 62 when the recording head 24 is moving in the main scanning direction.
  • two-dimensional image recording is performed on the recording medium by a combination of the reciprocating movement of the recording head 24 along the main scanning direction and the intermittent feeding of the recording medium in the sub-scanning direction.
  • image recording may be replaced by the terms drawing, drawing, printing, or image formation.
  • the main scanning operation in which the recording head 24 moves in the main scanning direction and ejects ink from the nozzle 62 to record dots includes scanning in the forward pass in the main scanning direction and scanning in the return pass. possible.
  • An image may be recorded by scanning in both the forward and backward directions, or an image may be recorded by scanning only in one of the forward and backward directions.
  • scanning in both the forward and backward directions is performed, one reciprocal scan is counted as two scans of the forward scan and the backward scan.
  • the relative positional relationship between the (N + 1) -th recording medium and the recording head 24 (here, the positional relationship in the sub-scanning direction) ) Is as shown in FIG. That is, in order to perform image recording with a desired recording resolution in N times of writing, the recording medium is intermittently fed in the first, second, third,. The positional relationship is such that it leads to a position corresponding to the length of.
  • the (N + 1) th scanning is performed by moving in the sub-scanning direction by “nozzle row length + 1 nozzle pitch” from the first scanning sub-scanning direction position.
  • the “nozzle row length” is the length in the sub-scanning direction of the nozzle row 61 in which the nozzles 62 are arranged side by side in the sub-scanning direction, and corresponds to the distance between nozzles of the nozzles located at both ends of the nozzle row.
  • the “nozzle pitch” is a nozzle interval in the sub-scanning direction in the nozzle row.
  • the main scanning 600 dpi ⁇ sub scanning is performed by 8 passes (8 times writing) of 2 passes in the main scanning direction ⁇ 4 passes in the sub scanning direction.
  • npi nozzle per inch
  • dpi dot per inch
  • One inch is about 25.4 millimeters.
  • droplet ejection point interval the interval between the droplet ejection points determined from the recording resolution
  • droplet ejection point lattice the lattice representing the position of the droplet ejection points that can be recorded
  • a “droplet point” is synonymous with a “pixel” that can control dot recording or non-recording.
  • the “droplet point interval” is synonymous with the “pixel interval” and corresponds to the minimum dot interval in the recording resolution.
  • the “droplet dot grid” is synonymous with the “pixel grid”.
  • “Lattice” is synonymous with a cell of a matrix represented by rows and columns.
  • the droplet ejection point interval in the main scanning direction is 25.4 (millimeters) /600 ⁇ 42.3 micrometers
  • the feed amount and position are controlled in units of droplet ejection point intervals determined from this recording resolution.
  • the droplet ejection point interval determined from the recording resolution may be referred to as “resolution pitch” or “pixel pitch”.
  • the nozzle pitch can be expressed in units of length, but instead, it can be expressed in terms of the droplet ejection point interval (pixel pitch) in the sub-scanning direction. For example, when the nozzle arrangement density is 100 npi with respect to the recording resolution of 400 dpi, the nozzle pitch is four times the pixel pitch in the sub-scanning direction. The pitch can be expressed as “4”.
  • the droplet ejection point line in the main scanning direction is filled by two scans, and the droplet ejection point line in the sub-scanning direction is filled by four scans.
  • 2 ⁇ 4 droplet ejection point grids are recorded in 8 scans (that is, 8 passes).
  • the “droplet point line” means a scanning line and is synonymous with raster.
  • FIG. 76 is a schematic diagram schematically showing the relationship between the numbers (1 to 8) of the respective scans by the eight-time drawing operation and the droplet ejection positions recorded by the scans.
  • each cell numbered from 1 to 8 represents the droplet ejection position (pixel position) recorded by the nozzle, and the numbers from 1 to 8 were recorded when the pixel position was scanned a number of times. This represents the number of scans to be performed.
  • a cell (pixel) to which the number “1” is attached represents a droplet ejection position to be recorded in the first scan.
  • the arrangement distribution of numbers 1 to 8 representing the scanning order for recording each droplet ejection position is based on the repetition of a “2 ⁇ 4” grid in the main scanning direction 2 ⁇ sub-scanning direction 4. It is a unit.
  • This 2 ⁇ 4 lattice is called “basic unit lattice” or “2 ⁇ 4 lattice”.
  • “Basic unit cell” has the same meaning as “unit region”.
  • the filling method (droplet ejection order) of the 2 ⁇ 4 lattice is not limited to the example shown in FIG. 76 and can be variously assumed.
  • the recording resolution and the scanning pattern are determined, and the number of cells of the basic unit cell, the cell arrangement form, and the scanning number of each cell are determined.
  • the scan number represents the scan order.
  • the inkjet recording apparatus 10 is applied with multi-pass drawing control, and can change the recording resolution by changing the number of printing passes.
  • three types of modes a high production mode, a standard mode, and a high image quality mode, are prepared, and the recording resolution is different in each mode.
  • the recording resolution is synonymous with “printing resolution”.
  • the drawing mode can be selected according to the printing purpose and application.
  • the term “drawing mode” may be replaced with “printing mode”.
  • recording is performed with a recording resolution of 600 dpi main scanning ⁇ 400 dpi sub-scanning, and recording with a recording resolution of 600 dpi is realized by two passes in the main scanning direction, that is, two scans. That is, in the first scan, dots are formed with a resolution of 300 dpi. The first scan is performed by the forward path of the carriage 30, for example. In the second scan, dots are formed so as to complement the middle of the dots formed in the first scan with 300 dpi, and a resolution of 600 dpi is obtained in the main scanning direction. The second scan is performed, for example, by the return path of the carriage 30.
  • the nozzle pitch is 100 npi, and dots are formed with a resolution of 100 dpi in the sub-scanning direction by one main scanning. Therefore, a recording resolution of 400 dpi is realized by performing complementary printing by four-pass printing (four scans).
  • recording is performed at a recording resolution of 600 dpi ⁇ 800 dpi, and a resolution of 600 dpi ⁇ 800 dpi is obtained by 2-pass printing in the main scanning direction and 8-pass printing in the sub-scanning.
  • printing is performed with a resolution of 1200 ⁇ 1200 dpi, and a recording resolution of 1200 dpi ⁇ 1200 dpi is obtained with 4 passes in the main scanning direction and 12 passes in the sub-scanning direction.
  • a dither mask that reflects the nozzle discharge rate is generated using the nozzle discharge rate of each nozzle generated according to the nozzle discharge rate design method described above.
  • the threshold value of each pixel of the dither mask is set so that the nozzle discharge rate is determined as a control target and the nozzle absolute discharge rate is increased while the nozzle discharge rate is generally maintained as the duty increases. Is set.
  • FIG. 77 is a flowchart illustrating a procedure of a dither mask generation method according to the embodiment.
  • the dither mask generation method of the present embodiment includes a step of setting an initial dot arrangement of the dither mask (step S1), a step of setting threshold values in descending order from the initial dot arrangement (step S2), and threshold values in ascending order from the initial dot arrangement. (Step S3).
  • the processing of each step in the flowchart shown in FIG. 77 is performed by a computer that functions as a dither mask generation device.
  • the computer functions as a dither mask generation device by executing a program.
  • the initial dot arrangement is an extremely low duty dot arrangement and does not reflect the nozzle discharge rate.
  • the “very low duty” initial duty corresponding to the initial dot arrangement can be, for example, greater than 0% and 1% or less, and more preferably 0.1% or more and 0.5% or less. The value of With such a low duty, the influence of the nozzle discharge rate setting can be almost ignored.
  • the duty of the initial dot arrangement is not limited to the numerical values exemplified above, and may be a value small enough to ignore the influence of the nozzle discharge rate setting.
  • step S1 dots having the number of dots corresponding to a predetermined initial duty are arranged in a mask area which is a pixel arrangement area equivalent to the mask size of the dither mask.
  • the descending threshold setting process shown in step S2 is a process of performing a process of setting a threshold of each gradation without reflecting the nozzle discharge rate using a known threshold setting method.
  • the “descending order” is a procedure in which a threshold value is set in descending order of a threshold value, and a threshold value having a small value is sequentially set.
  • the “descending order” in step S2 means a process of sequentially setting a small threshold value from the threshold value of the gradation corresponding to the initial dot arrangement.
  • step S2 a process is performed in which small threshold values are sequentially set to the non-threshold value pixels in descending order while gradually removing dots from the initial dot arrangement.
  • the “threshold non-set pixel” in descending order is a pixel with a dot. “With dot” is synonymous with “dot on”.
  • the ascending order threshold value setting step shown in step S3 is a step of performing a process of setting the threshold value to the non-threshold value setting pixels in ascending order by reflecting the nozzle discharge rate.
  • “Ascending order” is a procedure in which threshold values are set in descending order of threshold values, and threshold values with a large value are sequentially set.
  • “Ascending order” in step S3 means a process in which a threshold value of a larger value is sequentially set from the threshold value of the gradation corresponding to the initial dot arrangement.
  • step S2 the order of the threshold setting process in descending order (step S2) and the threshold setting process in ascending order (step S3) can be interchanged.
  • FIG. 78 is a flowchart showing an example of an ascending order threshold setting process applied to the ascending order threshold setting process (step S3 in FIG. 77).
  • Stage Q is a variable indicating the stage of the nozzle discharge rate.
  • the nozzle discharge rate can be used as the “priority pixel setting rate”, and the term “nozzle discharge rate” can be understood by replacing the “priority pixel setting rate”.
  • FIG. 79 shows an example of the nozzle discharge rate at each stage when the number of stages is four.
  • the horizontal axis represents the nozzle number
  • the vertical axis represents the nozzle discharge rate.
  • a description will be given by taking a recording head having 30 nozzles as an example.
  • each nozzle Under the setting of the stage 1 nozzle discharge rate, each nozzle can record dots only within the range of the nozzle absolute discharge rate shown in the stage 1 graph. That is, when the nozzle discharge rate of each nozzle is set as shown in the graph of stage 1, the upper limit of the duty that can be recorded is determined under the setting. In the case of stage 1 in FIG. 79, the upper limit of the duty that can be recorded is approximately 63%. Therefore, in order to set the dither mask threshold to the maximum duty of 100%, the discharge rate must be further increased from stage 1 and the nozzle discharge rates of all the nozzles must be set to “100%” at the last stage. That is, it is necessary to change the nozzle discharge rate setting to a plurality of stages of at least two stages in accordance with an increase in the threshold value set for the pixels for which the threshold value of the dither mask is not set.
  • the number of steps can be any number of two or more.
  • FIG. 80 is a schematic diagram of a recording head having 30 nozzles.
  • the recording head 24A has a nozzle row 61A in which 30 nozzles 62 are arranged in a row at equal intervals in the sub-scanning direction. From the nozzle 62 at the upper end of FIG. 12, which is one end of the nozzle row 61A, toward the lower end of FIG. 12, which is the other end, in order for each nozzle 62, unique nozzle numbers 0, 1, 2, respectively. ... 30 is assigned.
  • the nozzle array density of the nozzle row 61 ⁇ / b> A For example, it is assumed that the nozzle array density is 300 npi in the sub-scanning direction.
  • the nozzle discharge rate of each nozzle 62 in the nozzle row 61A of the recording head 24A shown in FIG. 80 can be set by switching to the nozzle discharge rate of each step of steps 1 to 4.
  • step S14 the nozzle discharge rate of each nozzle 62 in the recording head 24A is set.
  • the nozzle discharge rate set here corresponds to one form of the priority pixel setting rate
  • the nozzle discharge rate setting step in step S14 corresponds to one form of the priority pixel setting rate setting step.
  • step S16 of FIG. 78 a nozzle number (that is, a nozzle pattern) corresponding to each pixel is set according to the scanning pattern.
  • the process of step S16 includes each pixel of the dither mask in accordance with a scanning pattern when image recording is performed by the inkjet recording apparatus 10 for an image region (that is, a mask region) having a pixel arrangement equal to the mask size of the dither mask. Is a step of performing a process of setting a nozzle number corresponding to.
  • the nozzle number corresponding to each pixel means the nozzle number of the nozzle responsible for recording each pixel.
  • Step S16 corresponds to determining a corresponding nozzle number for each pixel of the dither mask.
  • the dither mask that is the generation target is a matrix of m rows ⁇ n columns, for each pixel in the image area composed of a two-dimensional pixel array of m rows ⁇ n columns.
  • the corresponding nozzle number is determined.
  • the nozzle number pattern that defines the corresponding nozzle number is called a dither mask nozzle pattern.
  • step S16 corresponds to a process of setting a nozzle pattern representing the correspondence between each pixel of the dither mask and the nozzle number responsible for recording each pixel position, and corresponds to one form of the “nozzle pattern setting process”.
  • the nozzle pattern of the dither mask is such that, for example, the nozzle pattern of the minimum repeating unit shown in FIG. 33 is repeated.
  • step S18 a dot priority pixel is set based on the nozzle discharge rate in stage Q set in step S14 and the nozzle pattern set in step S16.
  • Step S18 corresponds to a form of “dot priority pixel setting step”.
  • a dot priority pixel is a pixel group which becomes a candidate of the pixel which sets a threshold among the pixels of a dither mask.
  • FIG. 81 is a diagram showing an example of arrangement of dot priority pixels.
  • the nozzle numbers shown in FIG. 81 are the same as in the example of FIG.
  • the nozzle pattern shown in FIG. 33 repeats in 60 pixels (paper feed amount 15 pixels ⁇ 4 times) in the sub-scanning direction, of which only 18 pixels are shown in FIG.
  • the size of the dither mask is preferably such that the size in the sub-scanning direction is an integral multiple of the minimum repeating unit of the nozzle pattern, and the size in the main scanning direction is an integral multiple of the minimum repeating unit of the nozzle pattern. .
  • the dither mask size is assumed to be a multiple of the minimum repetition unit, for example, 60 ⁇ 60 pixels.
  • a dot priority pixel of 20 ⁇ 18 pixels, which is a part of a 60 ⁇ 60 pixel dither mask, is illustrated.
  • the discharge rate value is rounded to the second decimal place and displayed to the second decimal place.
  • the nozzle pattern corresponding to the 60 ⁇ 60 pixel dither mask is the nozzle used in the odd and even columns. Is different.
  • the nozzles used for recording in the odd-numbered columns (the first column from the left in FIG. 81, the third column, the fifth column,...) are referred to as “left nozzles”, and the even-numbered columns (from the left in FIG.
  • the nozzles used for printing in the second row, the fourth row, the sixth row,...) are called “right nozzles”.
  • FIG. 81 shows an example of the arrangement of dot priority pixels set based on the nozzle discharge rate shown in FIG. 79 and the nozzle pattern shown in FIG.
  • the “left nozzle discharge rate” means the nozzle discharge rate of each nozzle that records pixels belonging to the odd-numbered columns in the nozzle pattern corresponding to the 60 ⁇ 60 pixel dither mask.
  • “right nozzle discharge rate” means the nozzle discharge rate of each nozzle that records pixels belonging to even columns in a nozzle pattern corresponding to a 60 ⁇ 60 pixel dither mask.
  • Left nozzle priority pixel number means the number of dot priority pixels in a main scanning direction raster composed of pixels belonging to odd columns in a nozzle pattern corresponding to a 60 ⁇ 60 pixel dither mask.
  • Light nozzle priority pixel number means the number of dot priority pixels in the main scanning direction raster composed of pixels belonging to even columns in a nozzle pattern corresponding to a 60 ⁇ 60 pixel dither mask.
  • a dot priority pixel is given a number “1” flag, and a cell indicating the pixel is filled with a gray tone.
  • the non-dot priority pixels are numbered “0”. That is, it is shown that a pixel assigned “1” in the 20 ⁇ 18 pixel matrix area is dot-priority pixel on, and a pixel assigned “0” is dot-priority pixel off.
  • FIG. 81 the nozzle number of the nozzle for recording each raster, the nozzle discharge rate, and the number of dot priority pixels for each raster are shown together with the dot priority pixel arrangement example.
  • the “raster” here is a main scanning direction raster in which pixels are arranged in the main scanning direction which is the horizontal direction (row direction) in FIG.
  • the number of dot priority pixels of each raster is obtained by multiplying the nozzle discharge rate of the nozzle that records the corresponding raster by “the number of main scanning pixels of the dither mask / the number of passes in the main scanning direction”.
  • the number of main scanning pixels of the dither mask refers to the number of pixels in the main scanning direction of the dither mask. In the case of the example in FIG. 81, the number of main scanning pixels of the dither mask is 60 pixels, and the number of passes in the main scanning direction is “2”, so “number of main scanning pixels in the dither mask / number of passes in the main scanning direction” is 30 pixels. is there.
  • the nozzle discharge rate of nozzle number 0 is 25%
  • the total number of dot priority pixels in the mask size of the dither mask is obtained by multiplying the nozzle discharge rate of each nozzle that records each raster by the “number of main scanning pixels / number of main scanning direction passes” of the dither mask. This is the total number of dot priority pixels of the nozzle.
  • the dot priority pixel of each nozzle of each raster is set so that the probability of occurrence of the dot priority pixel is proportional to the nozzle ejection rate.
  • rand () in conditional expression 1 is a random number in the range of 0 to less than 100.
  • a random number in the range of 0 to less than 100 is generated with equal probability using the rand () function, and the generated random value rand () is compared with the nozzle discharge rate. If the ratio is less than or equal to the rate, the pixel is set as a dot priority pixel.
  • the left nozzle dot priority pixel number of each raster shown in FIG. 81 is the target number of dot priority pixels of the left nozzle in each raster, and can be obtained in advance by calculation as described above.
  • the right nozzle dot priority pixel number of each raster shown in FIG. 81 is a target number of dot priority pixels of the right nozzle in each raster, and can be obtained in advance by calculation as described above.
  • the number of dot priority pixels that are actually set can vary depending on the value of the random number.
  • ⁇ Second example of dot priority pixel setting method> In addition to using conditional expression 1, there are various methods for randomly setting dot priority pixels. For example, first, the number of priority pixels set in each raster to be recorded by each nozzle is obtained as an integer value, and then the first dot priority pixel is set to the pixel having the number obtained by “rand () RAND_MAX% number of recording pixels”. .
  • the “number of recording pixels” is the number of pixels that each nozzle is responsible for recording in each raster, and is equal to “number of main scanning pixels / number of passes in the main scanning direction”. rand () RAND_MAX is an integer random number in the range of 0 to less than RAND_MAX.
  • RAND_MAX is an integer that is at least larger than the number of recording pixels.
  • RAND_MAX 65536 can be set.
  • “%” Is a remainder operator.
  • a% b represents a remainder obtained by dividing a by b. That is, rand ()
  • RAND_MAX% recording pixel number is a remainder obtained by dividing an integer random number in the range of 0 or more and less than RAND_MAX by “recording pixel number”.
  • the second dot priority pixel is set to the pixel of the number corresponding to the integer obtained by rand () RAND_MAX% (number of recording pixels ⁇ 1).
  • “recording pixel number 30”
  • an integer from 0 to 28 is associated with the pixel number of 29 pixels excluding the first dot priority pixel
  • rand () RAND_MAX% (recording pixel number)
  • the pixel number corresponding to the integer obtained in -1) is set as the second dot priority pixel.
  • the third dot priority pixel is set to the pixel of the number corresponding to the integer obtained by rand () RAND_MAX% (recording pixel number ⁇ 2).
  • dot priority pixels can be set in the same order by the number of dot priority pixels.
  • the threshold pixel set up to the previous stage may or may not be included in the dot priority pixel at that stage.
  • the dot priority pixel candidates at the stage to the previous stage are used. And the number of thresholds is excluded from the number of dot priority pixels.
  • the dot priority pixel setting method in the first and second examples, an example using the rand () function is shown, but there are various methods for setting dot priority pixels in a random manner. It is not limited to the form using a function.
  • the dot priority pixel setting method is not limited to a random setting method, and may be a method of setting at regular intervals. An example of a method for setting dot priority pixels at regular intervals will be described below.
  • the ejection pixel interval is the ejection interval of each nozzle in each raster, and corresponds to 1 pixel if the number of passes in the main scanning direction is 1, and 2 pixels if the number of passes in the main scanning direction is 2.
  • the dot priority pixels are set in step S18 in FIG. 78, and the process proceeds to step S20.
  • a threshold value is temporarily set for all pixels of the dither mask, the threshold value not set and the dot priority pixel, and the graininess is evaluated.
  • the granularity evaluation index for example, a known index such as RMS (Root-Mean-Square) granularity can be used.
  • the RMS granularity is a standard deviation calculated after applying a blurring filter considering human visual characteristics such as VTF (Visual (Transfer Function) to the dot arrangement.
  • step S20 The granularity evaluation result in step S20 is stored in a memory or the like, and the process proceeds to step S22.
  • step S22 it is determined whether or not the granularity evaluation in step S20 has been completed for all candidate pixels that are candidates for pixels for which a threshold is to be set. All candidate pixels are a set of threshold unset and dot priority pixels for which a threshold can be temporarily set in step S20.
  • step S22 if there is a candidate pixel that has not been evaluated for granularity, the determination in step S22 is No, and the process returns to step S20. That is, the process of step S20 is repeated by changing the pixels for which the threshold value is temporarily set within the range of candidate pixels for which no threshold value has been set and which are dot priority pixels.
  • step S20 When the granularity evaluation process in step S20 is completed for all candidate pixels, the determination in step S22 is Yes, and the process proceeds to step S24.
  • step S24 a threshold is set for a pixel having the best granularity based on the result of evaluating the granularity of all candidate pixels.
  • the process of step S24 corresponds to one form of the “threshold setting process”.
  • step S26 it is determined whether or not the setting of a predetermined number of threshold values has been completed.
  • the “predetermined number” is a predetermined value that is predetermined as the number of threshold values set under the setting of the nozzle discharge rate at the same stage.
  • the “predetermined number” in the flowchart shown in FIG. 78 is set to a number smaller than the number of all dot priority pixels set in step S18, for example, the total number of todd priority pixels ⁇ 0.8. If the predetermined number is set equal to the number of all-dot priority pixels, there is a concern that the graininess deteriorates in the vicinity of the predetermined number.
  • the granular deterioration can be reduced by setting the predetermined number to be smaller than the number of all-dot priority pixels.
  • the predetermined number is set too small, the performance of suppressing the discharge rate of the end nozzles in the nozzle row will deteriorate. Therefore, when setting the predetermined number, it is preferable to set an appropriate value from the viewpoint of coexistence of a reduction in grain deterioration and a performance of suppressing the discharge rate of the end nozzle.
  • the predetermined number is in the range of 0.6 to 0.9 times the number of all dot priority pixels, and more preferably in the range of 0.7 to 0.8 times.
  • step S26 If it is determined in step S26 that the predetermined number of threshold values has not been set, the process returns to step S20. On the other hand, when the setting of the predetermined number of threshold values is completed in step S26, the process proceeds to step S28.
  • step S28 it is determined whether or not all stages of processing have been completed. If the processing of all the stages is not completed for the stage Q of the nozzle discharge rate, 1 is added to the value of stage Q, the value of stage Q is changed to “Q + 1” (step S30), and the process returns to step S14.
  • step S16 The setting is changed to the nozzle ejection rate of the next stage changed in step S30, and the above processing loop (step S14 to step S28) is repeated.
  • the process of step S16 can be abbreviate
  • step S18 The process in which the dot priority pixel is newly set in step S18 through the setting of the nozzle discharge rate at a stage different from the previous time after step S30 corresponds to one form of “the process of changing the dot priority pixel”.
  • the nozzle discharge rate for each nozzle set by the nozzle discharge rate process in step S14 is equal to the number of thresholds corresponding to the predetermined number of thresholds in step S26.
  • the setting is changed to at least two stages according to the corresponding threshold area (that is, depending on the threshold value set in step S24).
  • step S18 before the thresholds are set for all the dot priority pixels once set in step S18, that is, when the setting of a predetermined number of thresholds smaller than the number of dot priority pixels is completed, a new value is passed through step S30. In step S18, the setting is changed to another dot priority pixel setting.
  • step S28 in the last stage, the nozzle discharge rate of all nozzles is set to “100%”, dot priority pixels are set to all pixels, and the total number of pixels is set to “predetermined number” in step S26. .
  • the threshold setting may be set in a separate loop only at the last stage, and the setting and determination of dot priority pixels may be omitted.
  • the process of setting the nozzle discharge rate of each nozzle to “100%” and setting all pixels as dot priority pixels is performed.
  • a configuration in which another processing loop that does not determine the dot priority pixel except for the setting of the nozzle discharge rate and the setting of the dot priority pixel may be employed without performing it.
  • Adopting such another processing loop is essentially equivalent to setting the nozzle discharge rate of all nozzles to “100%” and setting all pixels to dot priority pixels.
  • the transition to another processing loop corresponds to one form of the “last stage” setting in the “multiple stages”.
  • the absolute discharge rate of each nozzle is set while maintaining the relative ratio of the discharge of each nozzle according to the nozzle discharge rate (that is, the priority pixel setting rate). Can be increased. Note that the “relative ratio of discharge from each nozzle” here depends on the nozzle discharge rate, but cannot be made completely equal.
  • FIG. 82 is a block diagram of the dither mask generation apparatus according to the embodiment.
  • the dither mask generation apparatus 150 includes a nozzle discharge rate setting unit 152, a nozzle pattern setting unit 154, a dot priority pixel setting unit 156, and a threshold setting unit 158.
  • the dither mask generation apparatus 150 includes a scanning pattern information acquisition unit 160, a stage switching unit 162, and a threshold number determination unit 164. Each of these units can be realized by a hardware circuit such as an integrated circuit, computer hardware and software, or an appropriate combination thereof. Further, the function of the dither mask generation apparatus 150 may be installed in the control apparatus 102 described with reference to FIG.
  • the nozzle discharge rate setting unit 152 sets the nozzle discharge rate for each nozzle according to the stage of the nozzle discharge rate prepared in advance.
  • the nozzle discharge rate setting unit 152 performs the processing described in step S14 in FIG.
  • the nozzle discharge rate setting unit 152 corresponds to one form of the priority pixel setting rate setting unit.
  • the stage switching unit 162 shown in FIG. 82 designates the stage of the nozzle discharge rate set by the nozzle discharge rate setting unit 152.
  • the stage switching unit 162 performs the process described in step S30 of FIG.
  • the nozzle discharge rate setting unit 152 sets the nozzle discharge rate at the stage specified by the stage switching unit 162.
  • the nozzle pattern setting unit 154 performs processing for specifying the nozzle corresponding to each pixel of the dither mask 166 based on the scanning pattern information obtained from the scanning pattern information acquisition unit 160. That is, the nozzle pattern setting unit 154 performs a process of associating at least one nozzle in charge of recording each pixel position with respect to each pixel of the dither mask 166.
  • the scanning pattern information acquisition unit 160 acquires scanning pattern information corresponding to the drawing mode from a scanning pattern program or the like. As described above, since the scanning pattern program defines the reciprocal scanning and the number of passes of the recording head 24 in the main scanning direction with respect to the recording medium 12 intermittently conveyed in the sub-scanning direction, the scanning pattern 24 scans from the scanning pattern program. It is possible to determine the pattern.
  • the nozzle pattern setting unit 154 determines a scanning pattern when the recording head 24 is moved relative to the recording medium 12 in the main scanning direction and the sub-scanning direction.
  • the nozzle pattern setting unit 154 performs processing for determining which nozzle 62 of the recording head 24 records each pixel of the dither mask 166 based on the scanning pattern.
  • the nozzle pattern setting unit 154 generates nozzle pattern data 168 that is nozzle pattern data indicating the correspondence between each pixel of the dither mask 166 and the nozzle responsible for recording each pixel.
  • the nozzle pattern data 168 is generated from the nozzle pattern data described with reference to FIG. 33, for example.
  • the nozzle pattern setting unit 154 performs the processing described in step S16 in FIG.
  • the method of generating the nozzle pattern data 168 is not limited to the method of determining based on the scanning pattern program, and various methods can be used. Since the nozzle pattern data 168 can be determined by the drawing mode and the size and arrangement of the dither mask 166, nozzle pattern data corresponding to each of a plurality of types of drawing modes can be held in an information storage unit such as a memory in advance. .
  • the dot priority pixel setting unit 156 performs a process for setting dot priority pixels based on the nozzle discharge rate data 170 and the nozzle pattern data 168. In addition, the dot priority pixel setting unit 156 performs a process of changing the dot priority pixel before threshold values are set for all the dot priority pixels that have been once set. Changing the dot priority pixel before the threshold value is set for all of the dot priority pixels that have been set once, that is, in a state in which at least some of the dot priority pixels that have been set are pixels for which no threshold value has been set. , Which means changing the dot priority pixel. The dot priority pixel setting unit 156 performs the process described in step S18 of FIG.
  • the threshold setting unit 158 prepares a dither mask 166 including pixels for which no threshold is set, and performs processing for setting a threshold for pixels for which the threshold is not set in the dither mask 166.
  • the threshold setting unit 158 performs the processing described in steps S20 to S24 in FIG.
  • the threshold setting unit 158 sets the threshold values of all the pixels of the dither mask 166, whereby the dither mask 166 that is the generation target is completed.
  • the threshold number determination unit 164 manages the number of thresholds set by the threshold setting unit 158, and determines whether or not a predetermined number of thresholds have been set.
  • the threshold number determination unit 164 performs the process described in step S26 of FIG.
  • the determination result of the threshold number determination unit 164 is notified to the dot priority pixel setting unit 156.
  • the dot priority pixel setting unit 156 performs processing for changing the dot priority pixel based on the information obtained from the threshold number determination unit 164.
  • the determination result of the threshold number determination unit 164 is notified to the stage switching unit 162.
  • the stage switching unit 162 performs processing for changing the stage of the nozzle discharge rate based on information obtained from the threshold number determination unit 164.
  • the function of the nozzle discharge rate setting unit 152 corresponds to one form of the priority pixel setting rate setting function.
  • the function of the nozzle pattern setting unit 154 corresponds to one form of the nozzle pattern setting function.
  • the function of the dot priority pixel setting unit 156 corresponds to one form of a dot priority pixel setting function and a function of changing the dot priority pixel.
  • the function of the threshold setting unit 158 corresponds to one form of the threshold setting function.
  • processors that can change their circuit configuration after manufacturing, such as a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array) that is a general-purpose processor that functions as various processing units by executing programs. Examples include a dedicated electric circuit that is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (PLD) and an ASIC (Application Specific Integrated Circuit).
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types.
  • one processing unit may be configured by a plurality of FPGAs or a combination of a CPU and an FPGA.
  • the plurality of processing units may be configured by one processor.
  • configuring a plurality of processing units with one processor first, as represented by a computer such as a client or a server, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units.
  • SoC system-on-chip
  • a form of using a processor that implements the functions of the entire system including a plurality of processing units with a single IC (integrated circuit) chip. is there.
  • various processing units are configured using one or more of the various processors as a hardware structure.
  • the hardware structure of these various processors is more specifically an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • the dither mask generation method according to the present disclosure includes a nozzle pattern setting step that sets a nozzle pattern that represents a correspondence relationship between each pixel of the dither mask and a nozzle that is responsible for recording each pixel position; Among them, a dot priority pixel setting step for setting a dot priority pixel that is a candidate pixel for setting a threshold value, a threshold setting step for setting a threshold value for pixels belonging to the dot priority pixel, and dot priority pixel setting for at least some of the threshold values And a step of changing dot priority pixels before threshold values are set for all of the dot priority pixels once set in the process.
  • this dither mask generation method when a threshold value is set in the dither mask, the dot priority pixel is set reflecting the nozzle pattern, and the threshold value is set in the pixel belonging to the dot priority pixel. Then, before setting the threshold values for all the dot priority pixels that have been set once, the dot priority pixels are changed, and the threshold values are set for the pixels belonging to the changed dot priority pixels. In this way, by changing the dot priority pixels and setting the threshold value, the restriction on the threshold arrangement is relaxed, and a dither mask with good graininess can be generated.
  • “Change the dot priority pixel before setting the threshold value for all of the dot priority pixels that have been set once” means that at least some of the pixel priority pixels that have been set have not yet been set. This means that the dot priority pixel is changed in a certain state.
  • a priority pixel setting rate that represents a ratio of dot priority pixels in the recording responsible pixels that are assigned to each nozzle as pixels in which a plurality of nozzles are in charge of recording among the pixels of the dither mask is set.
  • the dot priority pixel setting step can be configured to set the dot priority pixels based on the nozzle pattern and the priority pixel setting rate for each nozzle.
  • the “priority pixel setting rate” can be a ratio or the number representing the ratio of the dot priority pixels in the recording charge pixels allocated for each nozzle.
  • the priority pixel setting ratio is expressed as a ratio, for example, the division quotient with the number of recording pixels (that is, the number of recording pixels) as the denominator and the number of dot priority pixels (that is, the number of dot priority pixels) as the numerator. That is, it can be defined by “number of dot priority pixels / number of recording pixels”. Of course, the ratio can also be defined as a percentage.
  • the priority pixel setting rate can also be defined by the number of dot priority pixels. Since the number of recording pixels for each nozzle in the dither mask pixels can be specified based on the nozzle pattern, the number of dot priority pixels for each nozzle corresponds to information representing the ratio of dot priority pixels in the recording pixels.
  • the priority pixel setting rate can be determined based on the target nozzle discharge rate.
  • a nozzle discharge rate designed according to the nozzle discharge rate design method already described can be used as the priority pixel setting rate.
  • the priority pixel setting rate of each nozzle it can set suitably from a viewpoint of obtaining the banding suppression effect.
  • the priority pixel setting rate for suppressing the banding can be determined according to the nozzle arrangement, other print head characteristics, drawing conditions, and the like.
  • the method for generating the dither mask based on the nozzle discharge rate as the control target is not limited to the method described above.
  • the dither mask may be generated by a method described in Japanese Patent Application Laid-Open No. 2016-107603.
  • the method described in Japanese Patent Application Laid-Open No. 2016-107603 is a method for reflecting the nozzle discharge rate in the evaluation index when setting the threshold value of the dither mask.
  • a nozzle discharge rate of each nozzle to be controlled When a nozzle discharge rate of each nozzle to be controlled is given, various methods including known methods can be applied as a dither mask generation method that can obtain a dot arrangement that can realize the nozzle discharge rate. it can.
  • the threshold value is set so that the sum of the sum of the nozzle discharge rates of the corresponding nozzles of each nozzle group used for printing is a constant value that falls within a prescribed allowable range.
  • the threshold value is set so that a dot arrangement with a nozzle discharge rate that satisfies a specific condition is obtained.
  • the nozzle discharge rate used as the control target when generating the dither mask corresponds to the “predetermined specific nozzle discharge rate”, that is, the “nozzle discharge rate satisfying the specific condition”.
  • each nozzle discharge rate is designed so that the average discharge rate per unit area is uniform while the nozzle discharge rates are unevenly biased. Contains.
  • the average discharge rate per unit area means the average discharge rate of each unit area. Since the average discharge rate per unit area becomes uniform, the density of dot arrangement becomes uniform as a result.
  • each nozzle discharge rate is unevenly biased, the discharge rate pattern will inevitably become non-uniform, but considering the discharge rate averaged in the unit area, it can be made substantially uniform.
  • substantially uniform means that the nozzle pitch and the paper feed amount are relatively prime, and each scanning band has a gap raster that cannot be divided by the unit area. This is because it is not possible to record with the nozzle. However, depending on the scanning specifications, there may be a case where the gap can be made completely uniform.
  • the effect of the technology of the present disclosure can be measured using an index that represents "how uniform the non-uniformity of each nozzle discharge rate has been.”
  • an index represented by the following formula is defined as “uniformization ratio”, and the effect can be verified from the value of the uniformization ratio.
  • Each nozzle discharge rate” in the definition formula of the uniformity ratio may be an absolute discharge rate or a relative discharge rate. The value of the uniformization ratio is the same at both discharge rates.
  • the “maximum value of each nozzle discharge rate” in the equation is also “the maximum value of the discharge rate of each pixel of the discharge rate pattern”, and the “minimum value of each nozzle discharge rate” is “the discharge value of each pixel of the discharge rate pattern”. It is also the minimum rate.
  • the maximum value of the average discharge rate per unit area means the maximum value of the average discharge rate when the discharge rate of each pixel of the discharge rate pattern is averaged for each unit region.
  • the minimum value of the average discharge rate per unit area means the minimum value of the average discharge rate when the discharge rate of each pixel of the discharge rate pattern is averaged for each unit region. That is, the uniformization ratio is an index that represents “how uniform the non-uniform discharge rate can be made”.
  • the uniformity varies depending on the nozzle discharge rate of each nozzle. That is, if the nozzle discharge rate of each nozzle is uniform, the average discharge rate per unit area in the discharge rate pattern is also uniform.
  • the uniformity of the average discharge rate per unit area varies depending on the absolute discharge rate (nozzle absolute discharge rate) and duty of each nozzle. That is, the larger the absolute discharge rate of each nozzle and the higher the duty, the more uneven the average discharge rate per unit area.
  • the maximum value of the average discharge rate is 78.91% and the minimum value is 76.56%.
  • the value is rounded to the second decimal place.
  • the uniformization ratio becomes 3.1%.
  • the value of the uniformization ratio obtained from [Equation 13] was multiplied by 100 to display a percentage, and the second decimal place was rounded off. That is, when the fluctuation range of the nozzle discharge rate of each nozzle is 100%, it means that the fluctuation range of the average discharge rate per unit area can be suppressed to 3.1% and uniformized.
  • the uniformization ratio in the case of the example shown in FIGS. 48 to 48 is 2%.
  • the uniformization ratio in the example shown in FIGS. 50 to 52 is 3.8%.
  • the uniformization ratio in the example shown in FIGS. 54 to 56 is 4.0%.
  • the uniformization ratio in the case of the example shown in FIGS. 64 to 66 is 2.5%.
  • the uniformity ratio of the example shown in FIG. 1 ([FIG. 8] of Patent Document 3) is 25%.
  • the uniformity ratio of the example shown in FIG. 4 ([FIG. 11] of Patent Document 3) is 12.5%.
  • the uniformity ratio of the example shown in FIG. 7 ([FIG. 13] of Patent Document 3) is 25%.
  • the uniformization ratio of the example shown in FIG. 10A (FIG. 14A of Patent Document 3) is 25%.
  • the uniformization ratio is 25%.
  • the uniformity ratio of the example shown in FIG. 4 is the smallest, but the uniformity ratio is still 12.5%, which is realized by the setting example based on the nozzle discharge rate design method according to the present disclosure. It can be seen that it is at least three times larger than the homogenization ratio.
  • a judgment criterion that the homogenization ratio is “0% or more and 10% or less” can be set.
  • the nozzle discharge rate at which the homogenization ratio is 10% or less is presumed to have been designed using the method of the present disclosure.
  • the homogenization ratio can be used as an index representing the fluctuation of the average nozzle discharge rate per unit area.
  • the “nozzle discharge rate of each nozzle” is determined by, for example, interrupting printing without performing the next main scan (scan 2) after performing the first main scan (scan 1). It can be easily understood from the printed matter recorded by only one main scanning.
  • the dots recorded by each nozzle are arranged apart on the printed matter recorded by only one main scan, and the dots recorded by each nozzle can be distinguished and counted.
  • the main scanning of each time can be separated and recorded in the sub-scanning direction by adjusting the paper feed amount, and the number of dots recorded by each nozzle can be counted for each main scanning.
  • the number of dots recorded by each nozzle can be obtained with high accuracy by averaging the number of dots counted for each main scan for each nozzle.
  • the number of pixels that each nozzle is responsible for recording in one main scan is determined by the recording resolution, the main scanning recording width, and the number of overlaps in the main scanning direction.
  • the ratio of the number of dots actually recorded by each nozzle to the number of pixels that each nozzle is responsible for recording becomes the ejection rate of each nozzle.
  • the discharge rate obtained in this manner is an absolute discharge rate (nozzle absolute discharge rate) that changes depending on the duty, but the nozzle absolute discharge rate can be replaced with a relative discharge rate (nozzle discharge rate).
  • the nozzle pattern is information indicating which nozzle is used to record each pixel.
  • the nozzle pattern information includes information on the number of nozzles in the nozzle row, nozzle pitch, paper feed amount, number of overlaps in the main scanning direction, scanning method information including scanning to start recording, and recording only specific nozzles. It can be obtained from the print result of the dedicated chart.
  • discharge rate of each nozzle is developed into “discharge rate pattern” according to “nozzle pattern”, and “average discharge per unit area” is calculated from the discharge rate pattern Rate ".
  • the corresponding “nozzle pattern” is obtained and the number of pixels each nozzle is responsible for recording (ie, the number of corresponding pixels of each nozzle in the nozzle pattern) ),
  • the ratio of the number of ON pixels in each recording pixel is determined to be “nozzle discharge rate of each nozzle”, and “nozzle discharge rate of each nozzle” is set to “nozzle pattern” according to “nozzle pattern”.
  • the average discharge rate per unit area can be obtained from the discharge rate pattern.
  • the image when determining the nozzle discharge rate from the printed material or the digital data of the dot arrangement needs to be a solid image.
  • the solid image is an image having a uniform gradation with a predetermined gradation. If the gradation of the image is low, the number of dots to be recorded is small, or the number of dots in the dot arrangement digital data is small, and it is difficult to accurately determine the ejection rate and ratio. On the other hand, when the gradation is too high, dots are recorded on most recording pixels, and it is difficult to accurately determine the discharge rate and ratio. If the duty is in the range of 30% to 70%, a sufficient number of dots are recorded, and there are still vacant pixels in charge of recording, so the ejection rate and ratio can be obtained accurately. That is, it is preferable to obtain information such as the nozzle discharge rate by using a printed matter relating to a solid image having a predetermined gradation in which the duty is in the range of 30% to 70%, or digital data of dot arrangement.
  • the fluctuation range of the nozzle discharge rate of each nozzle is small, the denominator in the definition formula of the uniformization ratio is small, and it is difficult to accurately obtain the uniformization ratio. If the fluctuation range of each nozzle discharge rate is 10% or more, the uniformization ratio can be obtained accurately.
  • the nozzle discharge rate and discharge rate pattern of each nozzle can be obtained from the print result (printed material) of a uniform image with a predetermined duty in the range of 30 to 70% or the digital data of dot arrangement by the above method.
  • the average discharge rate per unit area is obtained, and if the fluctuation range of the nozzle discharge rate of each nozzle is 10% or more and the uniformization ratio is 10% or less, it is designed using the method of the present disclosure. Can be determined.
  • Modern inkjet printers can record dots of different sizes.
  • the duty of any size dot arrangement or the arrangement of the dot arrangement of each size is in the range of 30 to 70%,
  • the fluctuation range of the nozzle discharge rate is 10% or more and the uniformization ratio is 10% or less It can be determined that the method of the present disclosure has been used.
  • any one of the “medium dot arrangement and small dot arrangement combined” has a duty cycle in the range of 30 to 70%, the fluctuation range of the nozzle discharge rate of each nozzle is 10% or more, and is uniform If the ratio is 10% or less, it can be determined that the method of the present disclosure has been used.
  • a wide format printer using an ultraviolet curable ink has been described as an example of an ink jet recording apparatus which is an example of an image recording apparatus.
  • the invention is not limited to one using an ultraviolet curable ink.
  • the present invention can be applied to various ink jet recording apparatuses that record images on a recording medium using various types of ink.
  • the recording medium and the recording head need only be moved relative to each other in the main scanning direction and the sub-scanning direction, and the main scanning operation is performed by moving the recording medium in the main scanning direction.
  • the sub-scanning operation may be performed by moving the recording head in the sub-scanning direction.
  • image device includes the concept of terms such as a printing press, a printer, a printing device, a printing device, an image forming device, an image output device, or a drawing device.
  • image recording apparatus includes the concept of a printing system that combines a plurality of apparatuses.
  • Image is to be interpreted in a broad sense and includes color images, black and white images, single color images, gradation images, uniform density (solid) images, and the like.
  • the “image” is not limited to a photographic image, but is used as a comprehensive term including a pattern, a character, a symbol, a line drawing, a mosaic pattern, a color painting pattern, other various patterns, or an appropriate combination thereof.
  • the term “orthogonal” or “perpendicular” refers to a case of intersecting at an angle of substantially 90 ° in an aspect of intersecting at an angle of less than 90 ° or greater than 90 °. The mode which produces the same operation effect as is included.
  • the term “parallel” includes aspects that can be regarded as being substantially parallel among the aspects that are strictly non-parallel, and that can provide substantially the same operational effects as when parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Color, Gradation (AREA)

Abstract

生産性を落とすことなく、濃度ムラの発生を抑制することができる画像記録装置、ディザマスク及び画像記録方法を提供する。ノズル列を有する記録ヘッドを記録媒体に対して主走査方向に相対移動させで記録を行う主走査動作と、記録媒体を記録ヘッドに対して副走査方向に相対移動させる副走査動作とを繰り返す画像記録装置において、各ノズルのノズル吐出率をディザマスクにより制御する。ディザマスクは、少なくとも一部の記録デューティの範囲について、各走査バンドを記録する前半走査の記録に用いられる各ノズル群の対応するノズル同士のノズル吐出率の総和と、後半走査の記録に用いられる各ノズル群の対応するノズル同士のノズル吐出率の総和の和が、規定の許容範囲に収まる一定の値になる閾値の設定がなされている。

Description

画像記録装置、ディザマスク及び画像記録方法
 本発明は、画像記録装置、ディザマスク及び画像記録方法に係り、特にシリアル式インクジェットプリンタにおけるインク吐出制御に好適なハーフトーン処理技術に関する。
 シリアル式インクジェットプリンタは、主走査方向に沿って記録ヘッドを移動させながら記録ヘッドのノズルからインクを吐出して記録を行う主走査動作と、副走査方向へ記録媒体を間欠搬送する媒体送り動作である副走査動作とを繰り返して記録媒体に画像を記録する。
 このような画像記録方法は、記録ヘッドの各ノズルによる記録媒体への各ドットの記録位置誤差や各ノズルの吐出量誤差、若しくは、ドットの記録順や記録タイミングなどによって記録媒体上での着弾液滴の挙動、すなわちドット挙動が変わる。記録媒体上でのドット挙動が変化することに起因して、各印刷パスの繰り返し周期で記録濃度に変化を生じたり、各印刷パスの境界が目立ったりするなどの「バンディング」と呼ばれる濃度ムラが発生する。バンディングが発生すると、印刷画質が低下するという問題が発生する。
 かかる問題に対して、例えば、特許文献1及び2には、ハーフトーン処理結果を各走査及び各ノズルに割り当てる際にマスクパターンを用いて、各ノズルの使用率を制御する方法が開示されている。ノズルの使用率は、ドットを記録するためにノズルから液滴を吐出する頻度を表しており、ノズルの使用頻度、若しくは、吐出率と理解してもよい。
 特許文献3には、ディザマスクを用いた組織的ディザ法によるハーフトーン処理を行うことにより、記録ヘッドの各ノズルの使用率を制御するシリアル式インクジェットプリンタが開示されている。
 特許文献3に記載のプリンタでは、記録ヘッドのノズル列の両端部のそれぞれに配置されたノズル群の少なくとも一方のノズル使用率が、両端部のノズル群の間に配置された中間ノズル群のノズル使用率よりも小さくなるように、ディザマスクの閾値を設定することにより、バンディングの抑制を図っている。特許文献3は、バンディング抑制のため、ノズル列の両端部のノズル群によって記録される画素のドット密度を、中間ノズル群によって記録される画素のドット密度よりも低くするディザマスクを生成する方法が開示されている。
 なお、特許文献3における「印刷ヘッド」は、本明細書における「記録ヘッド」に対応する用語であると理解される。
特開2005-88467号公報 特開2009-160876号公報 特開2010-162770号公報
 特許文献1及び2に記載された方法のように、ハーフトーン処理結果を各走査及び各ノズルに割り当てるマスクパターンを用いて各ノズルの吐出率を制御する方法は、生産性が低下してしまう課題がある。すなわち、特許文献1及び2に記載された方法のように、各画素に対して何れの走査及びノズルによって記録を行うかをマスクパターンによって制御できることの前提は、何れの走査及びノズルでもその画素を記録できるということであり、それだけ余分な走査が必要となるため、印刷速度が低下してしまう。
 これに対し、特許文献3に記載されている方法のように、ハーフトーン処理に適用するディザマスクに各ノズルの吐出率を反映して、各ノズルの吐出率を制御する方法の場合、上記の生産性が低下する課題を解消することができる。つまり、ハーフトーン処理結果に各ノズルの吐出率を反映させる場合、各々の画素に対して記録可能な走査及びノズルは予め1つに定められており、余分な走査の必要がないため、上記した生産性低下の問題を回避できる。
 特許文献3に記載された方法では、ノズル列における少なくとも一方の端部のノズル群の使用率を中間部のノズル群の使用率よりも小さくするディザマスクを生成する。特許文献3に記載された方法により生成されるディザマスクを用いてハーフトーン処理を行うことにより、ノズル列における端部のノズル群と中間部のノズル群とで使用率が不均一となるドットパターンが生成される。
 このようにハーフトーン処理結果に各ノズルの吐出率を反映させる方法は、各走査及び各ノズルに予め定められた記録可能な画素の中で、実際に記録する画素の割合をノズルごとに制御する方法となるため、生産性の低下という問題がない。
 その一方で、ハーフトーン処理結果に各ノズルの吐出率を反映して各ノズルによるドットの記録を制御する方法の場合、ノズル列における各ノズルの吐出率を不均一に偏らせると、各ノズルの吐出率の設定の仕方によっては、単位面積あたりの平均の吐出率が不均一になってしまう。その結果、ハーフトーン処理した結果のドット配置においてドットの密度が不均一になり、ドット密度の疎密による濃度ムラを生じてしまう。かかる課題の具体的な説明と、原因の考察について詳細は後述する。
 本発明はこのような事情に鑑みてなされたもので、上記の課題を解決し、生産性を落とすことなく、濃度ムラの発生を抑制することができる画像記録装置、ディザマスク及び画像記録方法を提供することを目的とする。
 課題を解決するために、次の発明態様を提供する。
 第1態様に係る画像記録装置は、インクを吐出する複数のノズルが副走査方向に配列されたノズル列を有する記録ヘッドと、画像データに対してディザマスクを用いてハーフトーン処理を行うハーフトーン処理部と、ハーフトーン処理を経て生成されたドットデータに基づき、ノズルからのインクの吐出を制御し、かつ、記録ヘッドを記録媒体に対して副走査方向と直交する主走査方向に相対移動させながらノズルからインクを吐出して記録を行う主走査動作と、記録媒体を記録ヘッドに対して副走査方向に相対移動させる副走査動作とを繰り返して記録媒体に画像を記録させる制御を行う記録制御部と、を備え、記録媒体の副走査方向に副走査動作の1回あたりの副走査移動量の幅を有する領域である走査バンドの各々に対して、複数回の主走査動作を繰り返して走査バンドの記録を完了させる記録過程において、走査バンドの記録の完了に要する複数回の走査を走査順に基づき前半走査と後半走査とに分け、ノズル列のうち前半走査の記録に用いられるノズル群である前半走査ノズル群において最もノズル列の中央の側に配置されたノズルを前半側中央ノズル、前半走査ノズル群において最もノズル列の端の側に配置されたノズルを前端ノズル、ノズル列のうち後半走査の記録に用いられるノズル群である後半走査ノズル群において最もノズル列の中央の側に配置されたノズルを後半側中央ノズル、後半走査ノズル群において最もノズル列の端の側に配置されたノズルを後端ノズル、主走査方向に形成されるラスタの1本の記録に要する主走査動作の回数をオーバーラップ数、主走査方向のオーバーラップ数と副走査方向のノズル列のノズルピッチの積で表される単位面積の領域を単位領域、複数回の各走査の記録にそれぞれ用いられる走査ごとのノズル群の間で同じ単位領域を記録するノズルを、対応するノズルという場合に、ディザマスクは、少なくとも一部の記録デューティの範囲について、ノズル列の各ノズルの相対的な使用比率であるノズル吐出率が、予め定められた特定の条件を満たすノズル吐出率になるドット配置を生成する閾値の設定がなされており、特定の条件を満たすノズル吐出率は、前半走査ノズル群において前半側中央ノズルから前端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、後半走査ノズル群において後半側中央ノズルから後端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、前半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた前半吐出率総和が、前端ノズルから前半側中央ノズルに向かって増加し、かつ、後半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた後半吐出率総和が、後半側中央ノズルから後端ノズルに向かって減少し、かつ、複数回の各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士の前半吐出率総和と後半吐出率総和の和が、規定の許容範囲内に収まる一定の値となる画像記録装置である。
 第1態様によれば、単位面積あたりの平均的なインク吐出率を均一化することができる。これにより、ハーフトーン処理した結果のドット配置においてドットの密度が均一化され、濃度ムラを抑制することができる。なお、単位面積あたりの平均的なインク吐出率を「単位面積あたりの平均吐出率」という。また、第1態様は、記録媒体上の各位置の記録を担当するノズルと走査順が予め特定されており、ハーフトーン処理結果に基づき、実際に記録する画素の割合がノズルごとに制御されるため、生産性の低下という問題がない。
 「少なくとも一部の記録デューティの範囲」は、中間調の範囲を含むことが好ましい。「ノズル吐出率の傾き」は、ノズル列内において副走査方向に隣接するノズル間のノズル吐出率の差分によって表すことができる。
 第2態様として、第1態様の画像記録装置において、ノズル列における異なるノズル群について、対応するノズル同士のノズル吐出率の和が一定となるノズル群同士のノズル吐出率の関係を、補完関係という場合に、前半走査に属する各走査の記録に用いられる走査ごとのノズル群のノズル吐出率に対して、後半走査に属する各走査の記録に用いられる走査ごとのノズル群のいずれか1つのノズル群のノズル吐出率が補完関係である構成とすることができる。
 第3態様として、第2態様の画像記録装置において、前半走査に属する各走査の記録に用いられる走査ごとのノズル群とそれぞれ補完関係にある後半走査に属する走査のノズル群が、ノズル列の中心を挟んで対称の位置関係にある構成とすることができる。
 第4態様として、第1態様から第3態様のいずれか一態様の画像記録装置において、複数回の各走査の記録に用いられる走査ごとのノズル群内においてノズル吐出率の傾きは一定である構成とすることができる。
 バンディングに対するロバスト性を確保するには、走査ごとのノズル群内においてノズル吐出率の傾きが1種類(傾きが一定)であることが好ましい。第4態様の場合、走査ごとのノズル群の端のノズル、及び/又は、ノズル群の分岐にて傾きが変化する。
 第5態様として、第4態様の画像記録装置において、複数回の各走査の記録に用いられる走査ごとのノズル群におけるノズル吐出率の傾きのうち、最初の走査及び最後の走査の少なくとも一方の走査の記録に用いられるノズル群のノズル吐出率の傾きが最も大きい構成とすることができる。
 第6態様として、第1態様から第3態様のいずれか一態様の画像記録装置において、複数回の各走査の記録に用いられる走査ごとのノズル群のうち、少なくとも1つのノズル群の内部においてノズル吐出率の傾きが変化する構成とすることができる。
 第7態様として、第6態様の画像記録装置において、前半吐出率総和が、前端ノズルから前半側中央ノズルに向かうノズル位置の変化に対して非線形に増加し、かつ、後半吐出率総和が、後半側中央ノズルから後端ノズルに向かうノズル位置の変化に対して非線形に減少する構成とすることができる。
 第8態様として、第6態様又は第7態様の画像記録装置において、前半走査における最初の走査の記録に用いるノズル群の内部において2種類以上の傾きでノズル吐出率が変化しており、最初の走査の記録に用いるノズル群の内部における前端ノズルからの傾きを第一の傾きとし、前端ノズルから前半側中央ノズルの側に向かってノズル吐出率の傾きが第一の傾きから第二の傾きへと変化する場合に、第一の傾きの方が第二の傾きより小さい構成とすることができる。
 各走査バンドについて記録媒体に最初に記録するインク量を極力抑えることにより、滲み及び/又は凝集を抑制することができる。
 第9態様として、第1態様から第8態様のいずれか一態様の画像記録装置において、複数回の走査のうち、中央部の走査の記録に用いられるノズル群のノズル吐出率の傾きはゼロである構成とすることができる。
 中央部の走査とは、複数回の走査の走査順における中央の1つの走査、若しくは、中央に相当する2つの走査のうちの少なくとも一方を指す。第9態様によれば、ノズル列の中央付近のノズル吐出率を抑えて、スジ及び/又は滲みの発生を抑制することができる。
 第10態様として、第1態様から第9態様のいずれか一態様の画像記録装置において、ノズル列の各ノズルの位置と各ノズルのノズル吐出率の関係をグラフにより表した場合のグラフ形状について、前半走査ノズル群に属する各ノズルのノズル吐出率と、後半走査ノズル群に属する各ノズルのノズル吐出率とが対称の形である構成とすることができる。
 第11態様として、第1態様から第9態様のいずれか一態様の画像記録装置において、ノズル列の各ノズルの位置と各ノズルのノズル吐出率の関係をグラフにより表した場合のグラフ形状について、前半走査ノズル群に属する各ノズルのノズル吐出率と、後半走査ノズル群に属する各ノズルのノズル吐出率とが非対称の形である構成とすることができる。
 第12態様として、第11態様の画像記録装置において、前半吐出率総和が、後半吐出率総和よりも小さい構成とすることができる。
 第12態様によれば、各走査バンドについて記録媒体に最初に記録するインク量が抑えられ、滲み及び/又は凝集を抑制すことができる。
 第13態様として、第11態様又は第12態様の画像記録装置において、前半走査における最初の走査の記録に用いるノズル群の各ノズルのノズル吐出率を平均化した値が、後半走査における最後の走査の記録に用いるノズル群の各ノズルのノズル吐出率を平均化した値よりも小さい構成とすることができる。
 前半走査における最初の走査の記録に用いるノズル群を先頭走査ノズル群と呼び、後半走査における最後の走査の記録に用いるノズル群を最終走査ノズル群と呼ぶ場合に、先頭走査ノズル群に属する各ノズルのノズル吐出率の平均値が、最終走査ノズル群に属する各ノズルのノズル吐出率の平均値よりも小さい構成とすることで、記録媒体に最初に記録するインク量が抑えられる。
 第14態様として、第11態様から第13態様のいずれか一態様の画像記録装置において、複数回の各走査の記録に用いられる走査ごとのノズル群についてノズル吐出率の傾きの平均値を比較した場合に、傾きの平均値がゼロとなる走査のノズル群を除き、前半走査における最初の走査の記録に用いるノズル群のノズル吐出率の傾きの平均値が最も小さい構成とすることができる。
 第12態様から第14態様の各態様によれば、各走査バンドについて記録媒体に最初に記録するインク量が抑えられ、滲み及び/又は凝集を抑制することができる。
 第15態様として、第1態様から第14態様のいずれか一態様の画像記録装置において、規定の許容範囲は、単位面積あたりの平均のノズル吐出率の変動が0%以上10%以下となる範囲である構成とすることができる。
 第16態様に係るディザマスクは、インクを吐出する複数のノズルが副走査方向に配列されたノズル列を有する記録ヘッドを記録媒体に対して副走査方向と直交する主走査方向に相対移動させながらノズルからインクを吐出して記録を行う主走査動作と、記録媒体を記録ヘッドに対して副走査方向に相対移動させる副走査動作とを繰り返して記録媒体に画像を記録するためのハーフトーン処理に用いるディザマスクであって、記録媒体の副走査方向に副走査動作の1回あたりの副走査移動量の幅を有する領域である走査バンドの各々に対して、複数回の主走査動作を繰り返して走査バンドの記録を完了させる記録過程において、走査バンドの記録の完了に要する複数回の走査を走査順に基づき前半走査と後半走査とに分け、ノズル列のうち前半走査の記録に用いられるノズル群である前半走査ノズル群において最もノズル列の中央の側に配置されたノズルを前半側中央ノズル、前半走査ノズル群において最もノズル列の端の側に配置されたノズルを前端ノズル、ノズル列のうち後半走査の記録に用いられるノズル群である後半走査ノズル群において最もノズル列の中央の側に配置されたノズルを後半側中央ノズル、後半走査ノズル群において最もノズル列の端の側に配置されたノズルを後端ノズル、主走査方向に形成されるラスタの1本の記録に要する主走査動作の回数をオーバーラップ数、主走査方向のオーバーラップ数と副走査方向のノズル列のノズルピッチの積で表される単位面積の領域を単位領域、複数回の各走査の記録にそれぞれ用いられる走査ごとのノズル群の間で同じ単位領域を記録するノズルを、対応するノズルという場合に、ディザマスクは、少なくとも一部の記録デューティの範囲について、ノズル列の各ノズルの相対的な使用比率であるノズル吐出率が、予め定められた特定の条件を満たすノズル吐出率になるドット配置を生成する閾値の設定がなされており、特定の条件を満たすノズル吐出率は、前半走査ノズル群において前半側中央ノズルから前端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、後半走査ノズル群において後半側中央ノズルから後端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、前半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた前半吐出率総和が、前端ノズルから前半側中央ノズルに向かって増加し、かつ、後半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた後半吐出率総和が、後半側中央ノズルから後端ノズルに向かって減少し、かつ、複数回の各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士の前半吐出率総和と後半吐出率総和の和が、規定の許容範囲内に収まる一定の値となるディザマスクである。
 第16態様のディザマスクについて、第2態様から第15態様にて特定した画像記録装置の特定事項と同様の事項を適宜組み合わせることができる。
 第17態様に係る画像記録方法は、インクを吐出する複数のノズルが副走査方向に配列されたノズル列を有する記録ヘッドを用いて記録媒体に画像を記録する画像記録方法であって、画像データに対してディザマスクを用いてハーフトーン処理を行うハーフトーン処理工程と、ハーフトーン処理を経て生成されたドットデータに基づき、ノズルからのインクの吐出を制御し、かつ、記録ヘッドを記録媒体に対して副走査方向と直交する主走査方向に相対移動させながらノズルからインクを吐出して記録を行う主走査動作と、記録媒体を記録ヘッドに対して副走査方向に相対移動させる副走査動作とを繰り返して記録媒体に画像を記録する記録制御工程と、を含み、記録媒体の副走査方向に副走査動作の1回あたりの副走査移動量の幅を有する領域である走査バンドの各々に対して、複数回の主走査動作を繰り返して走査バンドの記録を完了させる記録過程において、走査バンドの記録の完了に要する複数回の走査を走査順に基づき前半走査と後半走査とに分け、ノズル列のうち前半走査の記録に用いられるノズル群である前半走査ノズル群において最もノズル列の中央の側に配置されたノズルを前半側中央ノズル、前半走査ノズル群において最もノズル列の端の側に配置されたノズルを前端ノズル、ノズル列のうち後半走査の記録に用いられるノズル群である後半走査ノズル群において最もノズル列の中央の側に配置されたノズルを後半側中央ノズル、後半走査ノズル群において最もノズル列の端の側に配置されたノズルを後端ノズル、主走査方向に形成されるラスタの1本の記録に要する主走査動作の回数をオーバーラップ数、主走査方向のオーバーラップ数と副走査方向のノズル列のノズルピッチの積で表される単位面積の領域を単位領域、複数回の各走査の記録にそれぞれ用いられる走査ごとのノズル群の間で同じ単位領域を記録するノズルを、対応するノズルという場合に、ディザマスクは、少なくとも一部の記録デューティの範囲について、ノズル列の各ノズルの相対的な使用比率であるノズル吐出率が、予め定められた特定の条件を満たすノズル吐出率になるドット配置を生成する閾値の設定がなされており、特定の条件を満たすノズル吐出率は、前半走査ノズル群において前半側中央ノズルから前端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、後半走査ノズル群において後半側中央ノズルから後端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、前半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた前半吐出率総和が、前端ノズルから前半側中央ノズルに向かって増加し、かつ、後半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた後半吐出率総和が、後半側中央ノズルから後端ノズルに向かって減少し、かつ、複数回の各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士の前半吐出率総和と後半吐出率総和の和が、規定の許容範囲内に収まる一定の値となる画像記録方法である。
 第17態様の画像記録方法について、第2態様から第15態様にて特定した画像記録装置の特定事項と同様の事項を適宜組み合わせることができる。第17態様の画像記録方法は、印刷物の製造方法として把握することができる。
 本発明によれば、主走査動作と副走査動作を繰り返して記録媒体に画像を記録する際に、生産性を落とすことなく、濃度ムラの発生を抑制することができる。
図1は、特許文献3の[図8]に示されたノズル有効率のグラフを転記した図である。 図2は、図1に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す図表である。 図3は、図2に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化した図である。 図4は、特許文献3の[図11]に示されたノズル有効率のグラフを転記した図である。 図5は、図4に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す図表である。 図6は、図5に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化した図である。 図7は、特許文献3の[図13]に示されたノズル有効率のグラフを転記した図である。 図8は、図7に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す図表である。 図9は、図8に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化した図である。 図10は、特許文献3の[図14]に示されたノズル有効率のグラフを転記した図である。 図11は、図10の(a)に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す図表である。 図12は、図11に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化した図である。 図13は、図10の(b)に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す図表である。 図14は、図13に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化した図である。 図15は、ノズル列の中央ノズルから端ノズルに向かって1種類の傾きでノズル吐出率を減少させる場合の例を示す図である。 図16は、図15に示されたノズル吐出率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す図表である。 図17は、図16に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化した図である。 図18は、ノズル列の中央ノズルから両端のそれぞれの端ノズルに向かって、傾きを緩やかな角度から急な角度に変えながら下げるように設計したノズル吐出率と各走査の位置関係を概念的に示す図である。 図19は、図18に示したノズル吐出率のプロファイルの拡大図である。 図20は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例1を示す図である。 図21は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例2を示す図である。 図22は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例3を示す図である 図23は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例4を示す図である。 図24は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例5を示す図である。 図25は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例6を示す図である。 図26は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例7を示す図である。 図27は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例8を示す図である。 図28は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例9を示す図である。 図29は、走査バンドの記録完了に要する走査の回数がN=3の場合の各走査の位置関係を示す図である。 図30は、図29に示したノズル吐出率のプロファイルの拡大図である。 図31は、記録ヘッドのノズル列を記号化して示した説明図である。 図32は、図31に示したノズル列を有する記録ヘッドを用いた記録動作の説明図である。 図33は、各走査のノズルとラスタの関係、及びノズルパターンを示す図である。 図34は、走査バンドを記録する各走査のノズル群を示す図表である。 図35は、実施例1により最終的に得られる各走査ノズル群の吐出率の例を示す図表である。 図36は、実施例1に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。 図37は、図35に示されたノズル吐出率に基づく吐出率パターンを示す図表である。 図38は、図37に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。 図39は、実施例2により最終的に得られる各走査ノズル群の吐出率の例を示す図表である。 図40は、実施例2に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。 図41は、図40に示されたノズル吐出率に基づく吐出率パターンを示す図表である。 図42は、図41に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。 図43は、実施例3における各走査のノズルとラスタの関係、及びノズルパターンの一部を示す図である。 図44は、走査バンドを記録する各走査のノズル群を示す図表である。 図45は、実施例3により最終的に得られる各走査ノズル群の吐出率の例を示す図表である。 図46は、実施例3に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。 図47は、図46に示されたノズル吐出率に基づく吐出率パターンを示す図表である。 図48は、図47に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。 図49は、実施例4により最終的に得られる各走査ノズル群の吐出率の例を示す図表である。 図50は、実施例4に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。 図51は、図50に示されたノズル吐出率に基づく吐出率パターンを示す図である。 図52は、図51に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。 図53は、実施例5により最終的に得られる各走査ノズル群の吐出率の例を示す図表である。 図54は、実施例5のノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。 図55は、図54に示されたノズル吐出率に基づく吐出率パターンを示す図表である。 図56は、図55に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。 図57は、各走査のノズルとラスタの関係及びノズルパターンの一部の例を示した図である。 図58は、走査1及び走査2の各走査のノズル群を示した図表である。 図59は、各走査のノズルとラスタの関係及びノズルパターンの一部の例を示した図である。 図60は、走査1、走査2及び走査3の各走査の記録に用いるノズル群を示した図表である。 図61は、各走査のノズルとラスタの関係及びノズルパターンの一部を示した図である。 図62は、走査1~走査4の各走査のノズル群を示した図表である。 図63は、実施例6によって得られる各走査ノズル群の吐出率の例を示す図表である。 図64は、実施例6のノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。 図65は、図64に示されたノズル吐出率に基づく吐出率パターンを示す図である。 図66は、図65に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。 図67は、図33に示した一部の走査バンドを抜粋した図である。 図68は、走査バンドの範囲について他の設定例を採用した場合のノズルパターンを示す図である。 図69は、走査バンドの範囲について他の設定例を採用した場合の各単位領域を記録する各走査のノズルを示した図表である。 図70は、インクジェット記録装置の構成例を示す外観斜視図である。 図71は、インクジェット記録装置の記録媒体搬送路を模式的に示す模式図である。 図72は、キャリッジ上に配置される記録ヘッド、仮硬化光源及び本硬化光源の配置形態の例を示す平面透視図である。 図73は、記録ヘッドの拡大図である。 図74は、インクジェット記録装置の構成を示すブロック図である。 図75は、マルチパス方式の画像記録方法の一例を説明するための説明図である。 図76は、8回書きの描画動作による各走査の番号と、各走査によって記録される打滴位置の関係を模式的に示した模式図である。 図77は、実施形態に係るディザマスク生成方法の手順を示すフローチャートである。 図78は、昇順の閾値設定工程(図77のステップS3)に適用される昇順の閾値設定処理の例を示すフローチャートである。 図79は、段階数が4段階である場合の各段階のノズル吐出率の例を示すグラフである。 図80は、記録ヘッドの模式図である。 図81は、ドット優先画素の配置の例を示した図である。 図82は、実施形態に係るディザマスク生成装置のブロック図である。
 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
 《用語の説明》
 本開示において使用する用語について説明する。
 (1)走査バンドについて
 シリアル式インクジェットプリンタは、インク滴を吐出するノズルが副走査方向に複数個並ぶノズル列を有する記録ヘッドを主走査方向へ移動しつつ記録媒体にインク滴を吐出して記録する主走査動作と、記録媒体を主走査方向と直交する副走査方向に搬送する副走査動作とを繰り返して画像の記録を行う。記録媒体の同じ領域に対して、複数回の主走査動作を繰り返して記録が行われる。ここでいう「同じ領域」の副走査方向の幅は、記録媒体を搬送する幅と同じである。記録媒体を搬送する幅は、副走査動作の1回あたりの記録媒体の送り量(搬送量)に相当する。複数回の主走査動作を繰り返して記録が行われるこの「同じ領域」のことを「走査バンド」という。
 主走査動作と副走査動作が繰り返される都度、新たな走査バンドが記録される。ある1つの走査バンドに着目して、その走査バンドを「着目走査バンド」と呼ぶとことにすると、1回目の主走査動作によって、その着目走査バンドが初めて記録された後に、副走査方向に記録媒体が搬送され、2回目の主走査動作で更に着目走査バンドの記録が行われ、・・・というように主走査動作と副走査動作が繰り返されて、記録ヘッドが着目走査バンドを通り過ぎて、着目走査バンドの記録が完了する。
 (2)前半走査と後半走査について
 本開示では、上記の記録過程において、各走査バンドを記録する複数の走査を、前半走査と後半走査とに分ける考え方を導入する。整数であるNを偶数として各走査バンドをN回の走査によって記録完了する場合、前半走査は、走査1、走査2、・・・走査N/2が該当し、後半走査は、走査(N/2)+1、走査(N/2)+2、・・・走査Nが該当する。例えば、Nが4の場合、走査1と走査2が前半走査に該当し、走査3と走査4が後半走査に該当する。
 Nが奇数の場合は、走査1、走査2、・・・走査INT(N/2)が前半走査に該当し、走査INT{(N/2)+2}、走査INT{(N/2)+3}・・・走査Nが後半走査に該当する。ここでINT(x)は、xの小数点以下を切り捨てて整数にする関数である。
 例えば、Nが3の場合、走査1が前半走査、走査3が後半走査となる。また、例えばNが5の場合、走査1と走査2が前半走査に該当し、走査4と走査5が後半走査に該当する。つまり、Nが奇数の場合は、走査1から走査Nのうち真ん中の走査は、前半走査と後半走査の何れにも属しないものとして扱う。例えば、Nが3の場合の走査2は、前半走査と後半走査の何れにも属しない。Nが5の場合の走査3は、前半走査と後半走査の何れにも属しない。なお、Nが奇数の場合に、真ん中の走査を含めずに考察することが適切である理由は後述する。
 記録ヘッドのノズル列のうち、前半走査に属するノズル群を「前半走査ノズル群」という。前半走査ノズル群は、記録ヘッドのノズル列において前半走査の記録を担うノズル群である。後半走査に属するノズル群を「後半走査ノズル群」という。後半走査ノズル群は、記録ヘッドのノズル列において後半走査の記録を担うノズル群である。
 (3)走査ノズル群について
 記録ヘッドのノズル列において、走査バンドの幅を単位として区分けされたノズル群を「走査ノズル群」という。すなわち、N回の走査の各走査に対して、それぞれの走査で使用するノズル群が走査ノズル群である。各走査に対応する走査ノズル群は、走査バンドを記録する走査順序に従い、走査1ノズル群、走査2ノズル群、走査3ノズル群、走査4ノズル群・・・走査Nノズル群のように表記される。
 (4)端ノズルと中央ノズルについて
 前半走査ノズル群、又は後半走査ノズル群の各ノズル群において、最もノズル列の端の側に配置されたノズルを「端ノズル」という。前半走査ノズル群の端ノズルは、記録ヘッドにおけるノズル列の両端のうち、紙送り方向の上流側である一方の端に位置するノズルに相当する。後半走査ノズル群の端ノズルは、記録ヘッドにおけるノズル列の両端のうち、紙送り方向の下流側である他方の端に位置するノズルに相当する。前半走査ノズル群の端ノズルを「前端ノズル」という。後半走査ノズル群の端ノズルを「後端ノズル」という。
 前半走査ノズル群、又は後半走査ノズル群の各ノズル群において、最もノズル列の中央の側に配置されたノズルを「中央ノズル」という。前半走査ノズル群において、最もノズル列の中央の側に配置されたノズル(中央ノズル)を「前半側中央ノズル」という。後半走査ノズル群において、最もノズル列の中央の側に配置されたノズル(中央ノズル)を「後半側中央ノズル」という。
 前半側中央ノズルと後半側中央ノズルは、概ね、ノズル列の中央付近において隣接する。ここで「概ね」と記載した意味は、前半走査及び後半走査の何れの走査にも属さない「隙間ノズル」が前半走査ノズル群と後半走査ノズル群との間に存在する場合に、前半側中央ノズルと後半側中央ノズルは隣接しないためである。「隙間ノズル」について、詳細は後述する。また、Nが奇数の場合、N回のうち真ん中の走査は前半走査にも後半走査にも属さないため、前半側中央ノズルと後半側中央ノズルは隣接しない。Nが奇数の場合の扱いについても、詳細は後述する。
 (5)吐出率について
 ここで、吐出率について説明する。ノズルの吐出率には、絶対的な吐出率と、相対的な吐出率とがある。ノズル絶対吐出率とは、記録ヘッドにおける複数のノズルのそれぞれが記録を担当する画素としてノズルごとに割り当てられる記録担当画素のうち、それぞれのノズルがインクを吐出してドットを記録する記録画素の割合を示す値である。
 ノズル絶対吐出率はノズルごとに定められる。ノズル絶対吐出率は、ノズルごとに割り当てられた記録担当画素の数を分母とし、各ノズルがインクを吐出してドットを記録する記録画素の数を分子とする割り算の商で表され、0以上1以下の数値で表すことができる。また、ノズル絶対吐出率は、百分率で表すことも可能である。ノズル絶対吐出率は、記録デューティが増すと共に増加し、記録デューティ100%で最大値の「1.0」又は「100%」となる。「記録デューティ」とは、記録媒体に記録される画像の各画素の中でドットオンとなる画素の割合をいう。記録デューティは、印字デューティ、インクデューティ、印字率、又は記録率などの用語で呼ばれる場合があり、若しくは、単に、デューティと呼ばれる場合がある。本明細書では以後「デューティ」と表記する。
 要するに、ノズル絶対吐出率は、ノズルごとのインクを吐出する割合を示している。ノズルごとのインクを吐出する割合は、ノズルごとの記録画素の割合と同等である。ノズル絶対吐出率は、ノズルを使用する割合と理解でき、ノズル使用率、或いはノズル稼働率と見做すことができる。
 ノズル絶対吐出率は、具体的には、最大濃度の均一階調画像であるベタパターンの記録を行う際のノズルごとの使用率を基準値である「1.0」又は「100%」とした場合の、ノズルごとの使用率を表したものである。ノズルごとの使用率は、ノズルごとのインク吐出量と置き換えてもよいし、ノズルごとの記録画素の画素数と置き換えてもよい。
 これに対し、各ノズルの相対的な使用比率をノズル吐出率と呼ぶ。ノズル吐出率は、ノズル絶対吐出率の制御目標となる。ノズル吐出率は、各ノズルのノズル絶対吐出率の相対的な比率を表す相対吐出率である。ノズル吐出率は、各ノズルのノズル絶対吐出率のノズル間における相対的な比率に意味があり、ノズル吐出率の数値自体の絶対値や最大値は、特に物理量としての意味はない。各ノズルのノズル吐出率の絶対値は、全ノズルのノズル吐出率の総和を1に規格化してもよいし、最大値を1又は「100%」に規格化してもよい。本実施形態では、便宜上、最大吐出(最大の使用率)のノズル絶対吐出率を「100%」として、この最大値に対する比率によってノズル吐出率を表すことにする。つまり、本実施形態では、ノズル吐出率の値を百分率で表示する。以後、単に「吐出率」という場合には、各ノズルの相対的な使用比率を表すノズル吐出率を指す。
 (6)吐出率の傾きについて
 本開示では、各ノズルの相対的な使用比率を表すノズル吐出率について「傾き」という概念を導入する。前半走査ノズル群及び後半走査ノズル群のそれぞれのノズル群において、各ノズルの吐出率と、そのノズルと隣接するノズルの吐出率との差分を、そのノズル位置における「吐出率の傾き」、若しくは単に「傾き」という。「吐出率の傾き」は「ノズル吐出率の傾き」と同義である。ノズル列において副走査方向に隣接するノズル間の吐出率の差分は、隣接するノズル間の吐出率の変化量を示している。吐出率の傾きは、吐出率の変化量或いは変化率を示す。
 例えば、横軸にノズルの位置を示すノズル番号をとり、縦軸にノズル吐出率の値をとる場合の座標系において、「吐出率の傾き」は、各ノズルの位置とノズル吐出率の関係を表すグラフの傾きとしてグラフ形状に表れる。ノズルの位置と各ノズルのノズル吐出率の関係をノズル吐出率のプロファイルといい、このプロファイルのグラフ形状をプロファイル形状という。
 前半走査ノズル群及び後半走査ノズル群のそれぞれにおいて、全てのノズル位置で隣接するノズルとの吐出率の差分が同じ場合には、1種類の傾き、若しくは、傾きが1種類であると表現する。
 解決しようとする課題は、前半走査ノズル群及び後半走査ノズル群のそれぞれにおいて、吐出率の傾きがノズルの位置によって2種類以上異なる値である場合に発生する。
 《課題の説明》
 ここで、解決しようとする課題について、特許文献3に記載の技術内容を例示して説明する。以下、特許文献3の記載の一部を利用しながら説明する。なお、「用紙」若しくは「紙」という用語は、「記録媒体」と同義の意味で用いる。
 〈課題1の説明〉
 特許文献3の段落[0032]~[0036]、[図4]及び[図5]には、ノズル列のノズル数が「30」、紙送り量が「15」、ノズルピッチが「2」、主走査方向のオーバーラップ数が「2」である場合のノズルパターンが示されている。本明細書では、特許文献3の[図4]及び[図5]の添付を省略する。
 紙送り量とは、1回の主走査につき、用紙が副走査方向に搬送される量をいう。用紙に対する記録ヘッドの相対的な副走査方向の移動として捉えると、紙送り量は、1回の主走査につき、記録ヘッドが用紙に対して副走査方向に相対的に移動する量と理解することができる。紙送り量は、副走査方向のラスタ数で表される。ラスタ数は、画素数と言い換えてもよい。紙送り量は、副走査動作の1回あたりの副走査移動量に相当する。
 ノズルピッチとは、ノズル列における副走査方向のノズル間隔であり、副走査方向に隣り合うノズルの中心間の距離である。ノズルピッチは、記録解像度によって規定される最小記録単位である1画素のサイズを単位として表される。すなわち、ノズルピッチは、副走査方向に隣り合う2つのノズル間に存在するラスタの数に値1を加えた数で表すことができる。ノズルピッチが「2」とは、1回の記録ヘッドの主走査で、1ラスタおきにドットが形成されることを意味する。
 オーバーラップ数とは、主走査方向に形成する1本のラスタをドットですべて埋めるために必要な主走査の回数のことをいう。オーバーラップ数が「2」とは、2回の主走査で、主走査方向の1本のラスタが完成することを意味する。
 ノズルパターンとは、用紙上の各位置のドットを記録ヘッドが備える複数のノズルのうちのいずれのノズルで形成するかを示すノズルマッピングのパターンである。つまり、ノズルパターンは、ある画像領域内の各画素の位置と、各画素を記録するノズルのノズル番号との対応関係を示すノズル番号の配列パターンである。ノズルパターンは、画素とノズル番号の関係を特定した関係図に相当する図表であってよい。
 特許文献3に記載のとおり、ノズルパターンは、主走査方向にはオーバーラップ数、副走査方向には「紙送り量 ×オーバーラップ数×ノズルピッチ」の周期で繰り返す。特許文献3の[図4]及び[図5]に示されたノズルパターンは、主走査方向に2画素、副走査方向に60画素の周期で繰り返す。
 特許文献3の[図4]及び[図5]に示されたノズルパターンは、第1列~第2列及び第1行~第60行から成る「2列×60行」の繰り返し最小単位が主走査方向及び副走査方向に繰り返す周期性を持つ。このようなノズルパターンの周期性は、所定画素範囲の単位領域をドットで埋める順序である「埋め順」の繰り返しと関連しており、主走査方向では、オーバーラップ数を単位として繰り返しが生じ、副走査方向では、紙送り量と埋め順の繰り返し単位数との積を単位として繰り返しが生じる。埋め順の繰り返し単位数は、ノズルピッチとオーバーラップ数との積である。
 単位領域のサイズは、主走査方向がオーバーラップ数に一致し、副走査方向がノズルピッチに一致する。オーバーラップ数が「2」、かつ、ノズルピッチが「2」である本例の場合、単位領域は2×2の画素範囲である。単位領域の面積を「単位面積」という。単位面積とは、主走査方向にはオーバーラップ数、副走査方向にはノズルピッチに相当する画素数から成る単位領域の面積を示す。つまり、単位面積は、「オーバーラップ数×ノズルピッチ」の画素範囲から成る単位領域の面積である。本例の場合、単位面積が2×2=4回の走査で埋められる。
 図1は、特許文献3の[図8]に示されたノズル有効率のグラフを転記したものである。「ノズル有効率」という用語は、本明細書でいう「ノズル吐出率」に相当する。
 図2は、図1に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す。吐出率パターンとは、各画素を記録するノズルのノズル吐出率を画素ごとに特定した対応関係を示すノズル吐出率の配列パターンである。吐出率パターンは、画素とその画素の記録を担当するノズルのノズル吐出率との関係を特定した関係図に相当する図表であってよい。
 図3は、図2に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化したものである。図3の横軸は、副走査方向の位置をラスタ番号によって示しており、縦軸は単位面積あたりの平均吐出率を示している。ラスタとは、主走査方向に記録される各ラインを意味する。ラスタ番号とは、副走査方向のラスタの位置を示す。図3では、単位面積あたりの平均吐出率は、吐出率パターンにおける単位面積に属する各画素のノズル吐出率の平均値である。
 図2に示された吐出率パターンにおける各セルの位置を列番号xと行番号yとを用いて(x,y)の座標形式で表記する場合、ラスタ番号1における単位面積は、(1,1)、(2,1)、(1,2)、(2,2)の2×2画素から成る単位領域の面積である。ラスタ番号1における単位面積2×2画素あたりの平均吐出率は、ラスタ番号1の1列目の吐出率25%と2列目の吐出率100%、並びに、ラスタ番号2の1列目の吐出率100%と2列目の吐出率100%を平均化して吐出率81.25%を求める。つまり、ラスタ番号1における単位面積あたりの平均吐出率は、(25+100+100+100)/4=81.25である。
 ラスタ番号2における単位面積は、ラスタ番号1における単位面積と同じであり、(1,1)、(2,1)、(1,2)、(2,2)の4画素から成る単位の面積である。したがって、ラスタ番号2における単位面積あたりの平均吐出率は、ラスタ番号1における単位面積あたりの平均吐出率と同じ(25+10+100+100)/4=81.25である。つまり、同じ単位領域内に属するラスタ番号における単位面積あたりの平均吐出率は、同じ値になるため、図3では、奇数のラスタ番号における単位面積あたりの平均吐出率を示した。
 同様にして、ラスタ番号3における単位面積2×2画素あたりの平均吐出率を以下のようにして求める。ラスタ番号3の単位面積は、(1,3)、(2,3)、(1,4)、(2,4)の4画素から成る単位領域の面積である。ラスタ番号3における単位面積2×2画素あたりの平均吐出率は、ラスタ番号3の1列目の吐出率50%と2列目の吐出率100%、並びに、ラスタ番号4の1列目の吐出率100%と2列目の吐出率100%を平均化して吐出率87.5%を求める。つまり、ラスタ番号3における単位面積あたりの平均吐出率は、(50+100+100+100)/4=87.5である。
 ラスタ番号5における単位面積は、(1,5)、(2,5)、(1,6)、(2,6)の4画素から成る単位領域の面積である。ラスタ番号5における単位面積あたりの平均吐出率は、(75+100+100+100)/4=93.75である。
 以下、同様の演算ルールに従い、各ラスタ番号における単位面積あたりの平均吐出率を算出することができる。
 奇数のラスタ番号1、3、5、・・・における単位面積2×2画素あたりの平均吐出率を求めてグラフ化すると、図3のようになる。
 図3に示したグラフは、単位面積あたりの平均吐出率が副走査方向に不均一に変化してしまうことを示しており、各単位領域の副走査方向の位置を便宜的に奇数ラスタ番号に割当てて示しているだけである。図3の横軸は、奇数ラスタ番号に限らず、偶数ラスタ番号としても同様であり、要するに、単位面積あたりの平均吐出率が副走査方向に不均一な分布であることを示している。
 なお、この例の場合、単位面積2×2画素あたりの平均吐出率は、主走査方向には不変である。単位面積2×2画素あたりの平均吐出率が主走査方向について一定であることは、図2に示す吐出率パターンから明らかである。
 図3に示されているように、特許文献3に記載の技術では、単位面積あたりの平均吐出率が副走査方向に不均一に変化してしまう。つまり、図1に示されるノズル吐出率となるようにディザマスクを生成した場合、この生成したディザマスクを用いてハーフトーン処理した結果得られるドット配置は、ドットの密度が副走査方向に不均一となり、濃度ムラを生じてしまう。
 かかる問題は、特許文献3の[図11]、[図13]及び[図14]に記載されたいずれのノズル有効率を採用した場合にも同様に発生する。
 図4は、特許文献3の[図11]に示されたノズル有効率のグラフを転記したものである。図5は、図4に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す。図5には、繰り返し最小単位の吐出率パターンを示した。
 図6は、図5に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化したものである。
 図7は、特許文献3の[図13]に示されたノズル有効率のグラフを転記したものである。図8は、図7に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す。
 図9は、図8に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化したものである。
 図10は、特許文献3の[図14]に示されたノズル有効率のグラフを転記したものである。図11は、図10の(a)に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す。
 図12は、図11に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化したものである。
 図13は、図10の(b)に示されたノズル有効率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンを示す。
 図14は、図13に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化したものである。
 図4、図7、図10の(a)及び(b)の各図における横軸と縦軸は、図1における横軸と縦軸と同様である。また、図6、図9、図12及図13の各図における横軸と縦軸は、図3における横軸と縦軸と同じである。
 図3、図6、図9、図12及び図14に示されているとおり、図1、図4、図7、図10の(a)及び(b)のいずれのノズル吐出率を採用した場合でも、単位面積あたりの平均吐出率は、副走査方向に不均一に変化してしまう。その結果、これらのノズル吐出率を反映して生成したディザマスクを用いてハーフトーン処理を行うと、その結果得られるドット配置は、ドットの密度が副走査方向に不均一となり、濃度ムラを生じてしまう。
 このような課題は、記録ヘッドのノズル列における中央ノズルから端ノズルに向かって、少なくとも2種類の傾きを有してノズル吐出率が変化するよう設定される場合に顕在化する。
 「傾き」の種類には、傾きがゼロであるフラットも含まれる。つまり、「2種類の傾き」のうち1種類は、傾きがゼロであってよい。図1に例示したグラフは、中央ノズルから端ノズルに向かって、ノズル吐出率が一定である区間と、ノズル吐出率が減少する区間とを含んでいる。ノズル吐出率が一定である区間は、傾きがゼロの区間である。
 〈課題2の説明〉
 一方で、特開2016-107603号公報の[図8]及び[図11]には、ノズル列における中央部に位置するノズルのノズル吐出率を最大値の「1.0」として、この中央部のノズルからノズル列の端部に位置するノズルに向かって一定の傾きで、つまり、1種類の傾きで、ノズル吐出率を減少させる例が示されている。本明細書において、特開2016-107603号公報の[図8]及び[図11]の添付を省略する。特開2016-107603号公報でいう「ノズル相対吐出率」は、本明細書における「ノズル吐出率」に相当する。
 図15は、ノズル列の中央ノズルから端ノズルに向かって1種類の傾きでノズル相対吐出率を減少させる場合の例が示されている。図15の横軸はノズル番号を示し、縦軸はノズル吐出率を百分率で表示している。
 図16は、図15に示されたノズル吐出率を、特許文献3の[図4]及び[図5]に示されたノズルパターンに従って展開した吐出率パターンである。
 図17は、図16に示された吐出率パターンを基に、各ラスタ番号における単位面積あたりの平均吐出率を求めてグラフ化したものである。図17の横軸と縦軸は、図3の横軸と縦軸と同様である。図17に示されたとおり、単位面積あたりの平均吐出率は副走査方向に対して均一であることが分かる。
 バンディングを低減するために、ノズル列の中央ノズルから端ノズルに向かってノズル吐出率を下げる場合に、特開2016-107603号公報に記載の例、又は図15の例のように、中央ノズルから端ノズルに向かって一定の傾きで、つまり1種類の傾きで、ノズル吐出率を下げる単純な下げ方の場合、図17に示されたように、単位面積あたりの平均吐出率を均一にできる。
 しかしながら、この場合、中央ノズルにおけるノズル吐出率が大きくなり、中央ノズルが記録するラスタにおける中央ノズルの記録が支配的になるため、仮に、中央ノズルが不吐になったり、若しくは、着弾ずれを生じたりする場合にスジが目立ってしまう。また、中央ノズルから吐出されるインク量が多くなるため、滲みが生じやすいという課題もある。
 更に、各ノズルのノズル吐出率のプロファイル形状を概ね保ちながら記録可能なデューティに上限があるため、十分な濃度の印刷ができないリスクもある。例えば、図15に示したノズル吐出率のプロファイル形状の場合、デューティ63%までしか記録できない。逆に言うと、デューティ63%まで記録すると中央ノズルでは吐出率が100%になってしまう。
 ここで、バンディングに関しては、ノズル列の中央ノズルから端ノズルに向かってノズル吐出率を下げる低減傾斜区間の幅を特開2016-107603号公報に記載の例、又は図15の例などよりも狭めても十分に抑制可能である。
 したがって、スジや滲みの抑制及び高デューティ記録の観点からすると、図1に示した例のように、低減傾斜区間の幅をできるだけ狭めて傾斜を急峻にし、中央ノズル付近では傾きをゼロ若しくは傾きを緩やかにしてノズル吐出率が過剰に大きくならないようにすることで、上記のスジや滲みの発生を抑制し、かつ、高デューティまで記録できるようにすることが特に望ましい。
 図1に示した例(特許文献3の[図8])の場合、ノズル吐出率のプロファイル形状を保ちながらデューティ90%まで記録することできる。そして、デューティ63%の場合、中央ノズルの吐出率は、未だ70%であるためスジや滲みが目立ちにくい。
 上記の観点からバンディングを抑制できる範囲で、できるだけ中央ノズル付近では傾きをゼロ若しくは傾きを緩やかにして、ノズル吐出率を下げる幅を狭めることが望ましい。
 その一方で、中央ノズルから端ノズルに向かって傾きを変えながらノズル吐出率を下げる場合、その下げ方に注意しないと、課題1で述べたとおり、吐出率パターンにおける単位面積あたりの平均吐出率が副走査方向に不均一な分布になってしまい、濃度ムラが発生する。
 《実施形態の概要》
 本開示では、ノズル列を構成する各ノズルの吐出率を、ノズル列の中央ノズルから端ノズルに向かって傾きを変えて減少させ、かつ、単位面積あたりの平均吐出率の分布が均一になるように各ノズルのノズル吐出率を設計する方法を説明する。そして、そのようなノズル吐出率になるように各ノズルの吐出を制御し得るディザマスクを作成する方法、及び、作成したディザマスクを使ってハーフトーン処理を行うハーフトーン処理方法を説明する。
 《課題解決の原理》
 ここでは、まず、単位面積あたりの平均吐出率の分布を均一にする各ノズルのノズル吐出率を設計するための基本的な考え方を説明する。
 図18は、ノズル列の中央ノズルから両端のそれぞれの端ノズルに向かって、傾きを緩やかな角度から急な角度に変えながら下げるように設計したノズル吐出率と各走査の位置関係を概念的に示す図である。図18には、走査1から走査4の4回の走査により、単位面積を埋めるようにドットの記録を行う走査方法の例が示されている。図18の横方向が副走査方向である。図18では、図示の便宜上、停止した記録媒体に対して、記録ヘッドを副走査方向に移動させたものとして描いている。すなわち、図18は、走査バンドを4回の走査によって記録完成される例を示しており、走査ごとの紙送りによる記録ヘッドと用紙の相対移動によって、記録ヘッドのノズル列の位置が図18の右方向に移動していく様子がノズル吐出率のプロファイル形状の移動によって表現されている。
 図18において、折れ線ABCDEと線分EAとを含む図形500は、記録ヘッドのノズル列における各ノズルのノズル吐出率を模式的に示している。線分EAはノズル列を表す。線分EAに沿って各ノズルが並ぶものと理解される。線分EAの一方の端は、最小ノズル番号としてのノズル番号「0」に対応し、線分EAの他方の端は、最大ノズル番号としてのノズル番号「Nmax」に対応する。例えば、図18において左側(点E側)の端ノズル、つまり、ノズル列において紙送り方向の下流側の端ノズルをノズル番号「0」とし、図18において右側(点A側)の端ノズル、つまり、紙送り方向の上流側の端ノズルをノズル番号「Nmax」とする。
 折れ線ABCDEは、各ノズルのノズル吐出率を表しており、図18の縦方向がノズル吐出率の値を示す軸に相当する。なお、図18においてノズル吐出率の値を示す軸の表示は省略されている。折れ線ABCDEは、各ノズルの位置とノズル吐出率の関係を表すグラフ形状に相当している。点Cは、ノズル列における中央ノズルのノズル吐出率を示している。折れ線ABCDEは、ノズル列におけるノズル吐出率のプロファイルの一例である。
 図18において、中央ノズルから両端のそれぞれの端ノズルに向かってノズル吐出率が低下しており、その傾きは変化している。線分CBの傾きと、線分BAの傾きは異なっている。中央ノズルに近い線分CBの傾きは比較的緩やかであり、端ノズルに近い線分BAの傾きは、線分CBの傾きに比べて急峻である。同様に、中央ノズルに近い線分CDの傾きは比較的緩やかであり、端ノズルに近い線分DEの傾きは、線分CDの傾きに比べて急峻である。
 既に説明したとおり、シリアル式インクジェットプリンタは、副走査方向の紙送りと、主走査方向への記録ヘッドの走査とによって、紙送り量と等しい走査バンドの幅でドットを記録することを繰り返して画像記録を行う。ここで図18において、ある走査バンドに着目すると各走査において記録に使用するノズル群のノズル吐出率が不均一であっても、ある特定の条件を満たせば、1つの走査バンドの記録を完成させるために用いる走査ごとの各ノズル群における対応するノズル同士のノズル吐出率の総和を均一にできることがわかる。各走査バンドについて記録を完成させるために用いる各走査ノズル群の対応するノズル同士のノズル吐出率の総和が均一になれば、吐出率パターンにおける単位面積あたりの平均吐出率を副走査方向に均一化できる。
 各走査バンドについて記録を完成させるために用いる各走査ノズル群の対応するノズル同士のノズル吐出率の総和を均一にすることを、「走査バンド内においてノズル吐出率の総和を均一」にすると簡略記載する。
 《走査バンド内においてノズル吐出率の総和を均一にできる要件》
 図19は、図18に示したノズル吐出率のプロファイルの拡大図である。走査バンド内においてノズル吐出率の総和を均一にできる要件を説明するために、図19に示すように、ノズル列内の各ノズルを走査バンドの幅で区分けし、複数のノズル群に分類する。図19の例では、ノズル列が走査バンドの幅で4つの走査ノズル群に分けられている。図19において、走査バンドを記録する走査順序に従い、走査1ノズル群、走査2ノズル群、走査3ノズル群、及び走査4ノズル群と呼ぶ。
 図18及び図19から理解されるとおり、図19に示した走査1ノズル群~走査4ノズル群の各走査ノズル群を、同じ走査バンドを記録する順序に従い紙送り量だけシフトして重ね合わせた場合のノズル吐出率の総和が走査バンド内で一定であれば、単位面積あたりの平均吐出率を均一にできることが分かる。
 具体的には、走査1ノズル群、走査2ノズル群、走査3ノズル群及び走査4ノズル群のそれぞれにおいて、同じラスタ位置を記録するノズルをそれぞれノズル1、ノズル2、ノズル3、及びノズル4と名付けると、「ノズル1のノズル吐出率」と、「ノズル2のノズル吐出率」と、「ノズル3のノズル吐出率」と、「ノズル4のノズル吐出率」との和が、ラスタ位置に依らず、またはノズル番号に依らず一定であれば、単位面積あたりの平均吐出率を均一にできることが分かる。ノズル1は走査1ノズル群に属するノズル、ノズル2は走査2ノズル群に属するノズル、ノズル3は走査3ノズル群に属するノズル、ノズル4は走査4ノズル群に属するノズルである。
 ここで、当然、各ノズルが記録する画素位置は排他的であり、同じ画素を異なるノズルで記録することはない。ここで言う「同じラスタ位置を記録する」とは、同じ単位領域を記録することを意味する。同じラスタ位置を記録するノズルとは、同じ単位領域に属するラスタ位置を記録するノズルである。ノズル1~ノズル4によって単位領域が記録される。
 上記の要件をより具体化するためノズル列を前半走査ノズル群と後半走査ノズル群に分ける。図19の例では、1つの走査バンドを4回の走査で記録するため、4回の走査のうち前半の2回の走査である走査1と走査2でそれぞれ使用される走査1ノズル群と走査2ノズル群が「前半走査ノズル群」に該当する。
 また、4回の走査のうち後半の2回の走査である走査3と走査4でそれぞれ使用される走査3ノズル群と走査4ノズル群が「後半走査ノズル群」に該当する。
 そして、走査1ノズル群から走査4ノズル群のそれぞれで、同じラスタ位置を記録するノズルをそれぞれ「対応するノズル」と呼ぶ。先に説明したノズル1、ノズル2、ノズル3、及びノズル4は、「対応するノズル」である。
 前半走査ノズル群に属する各走査ノズル群の対応するノズル同士のノズル吐出率の総和をとった値を、「前半走査ノズル群吐出率」と呼ぶ。後半走査ノズル群の各走査ノズル群の対応するノズル同士のノズル吐出率の和をとった値を、「後半走査ノズル群吐出率」と呼ぶ。
 前半走査ノズル群吐出率と後半走査ノズル群吐出率のそれぞれは、一定にはならないが、前半走査ノズル群吐出率と後半走査ノズル群吐出率の和をとった値が一定となる場合、単位面積あたりの平均吐出率の分布を均一にできる。
 異なるノズル群について、対応するノズル同士のノズル吐出率の和をとった場合に一定となる吐出率の関係を、以降「補完関係」と呼ぶ。つまり、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係である場合に、単位面積あたりの平均吐出率の分布を均一にできる。
 図19の場合、前半走査ノズル群に属するそれぞれの走査ノズル群に対して補完関係の走査ノズル群が後半走査ノズル群の対称位置に1つ存在することが分かる。ここでの「対称位置」とは、走査ノズル群の位置について中央ノズルを挟んで対称の位置関係をいう。また、図19に示されたノズル吐出率のプロファイルは、ノズル列における中央ノズルを中心とする対称軸Asに対して線対称(図19において左右対称)の形状を有する。図19の場合、走査1ノズル群に対して対称位置にある走査4ノズル群が走査1ノズル群と補完関係になる。また、走査2ノズル群に対して対称位置にある走査3ノズル群が走査2ノズル群と補完関係になる。
 前半走査ノズル群に属する1つの走査ノズル群と、後半走査ノズル群に属する1つの走査ノズル群とが一対一で補完関係にある場合を「一対一の補完関係」若しくは「補完関係が一対一」であると表現する。また、補完関係にある走査ノズル群同士が中央ノズルを挟んで対称の関係にある場合を「対称の補完関係」若しくは「補完関係が対称」であると表現する。図19は、補完関係が一対一かつ対称である場合の一例である。
 補完関係の成立には、一対一かつ対称であることは要求されない。例えば、一対一の補完関係ではあるが非対称の関係であるケースがあり得る。また、1つの走査ノズル群と複数の走査ノズル群とが補完関係になる一対複数の補完関係や、複数の走査ノズル群と複数の走査ノズル群とが補完関係になる複数対複数の補完関係などもあり得る。
 《走査バンド内においてノズル吐出率の総和を均一にできる要件の一般化》
 図18及び図19では、各走査バンドを4回の走査で記録することを例示した。この議論を拡張し、各走査バンドをN回の走査で記録することを想定する。ここで、Nは偶数とする。Nが奇数の場合については後述する。N回の各走査は、走査1、走査2....走査Nと記載され、各走査に属するノズル群を、それぞれ走査1ノズル群、走査2ノズル群....走査Nノズル群と名付ける。そして、走査1から走査Nの各走査ノズル群のノズルの数は全て同じであり、(n+1)個であるとする。
 各走査ノズル群の(n+1)個のノズルに対して、走査ノズル群内におけるノズルの相対位置を示す相対ノズル番号jを付す。相対ノズル番号jは、各走査ノズル群内において定義される相対的なノズル番号である。jは、0からnまでの範囲の整数の値をとり得る。図19中の「0」と「n」の記載は、走査1~走査4の各走査ノズル群において、相対ノズル番号j=0のノズル位置と、相対ノズル番号j=nのノズル位置をそれぞれ表している。
 N回の走査の走査順番を表す走査番号iと相対ノズル番号jとを用いて、走査iノズル群における相対ノズル番号jのノズル吐出率をt[i,j]と表す。すなわち、走査1ノズル群のノズル吐出率をt[1,0]、t[1,1]、....t[1,n]とする。同様に走査2ノズル群のノズル吐出率をt[2,0]、t[2,1]、....t[2,n]とし、走査3ノズル群のノズル吐出率をt[3,0]、t[3,1]、....t[3,n]、........ 走査Nのノズル群のノズル吐出率をt[N,0]、t[N,1]、....t[N,n]とする。ここで、一番初めの走査を走査1とする一方で、各走査ノズル群内の最初のノズルの番号を「0」としていることに注意を要する。
 前半走査ノズル群の各ノズルの吐出率総和を以下の式[1]で与える。
Figure JPOXMLDOC01-appb-M000001
 式中のiは走査番号、jは相対ノズル番号、t[i,j]は走査i、かつ相対ノズル番号 jのノズル吐出率、Tf[j]は前半走査ノズル群の相対ノズル番号jのノズル吐出率総和を示している。jは0 ~ nの範囲の整数である。
 式[1]は、前半走査に属する各走査iの相対ノズル番号j=0~nのそれぞれ相対ノズル番号jについて吐出率の総和を求めることを意味する。式[1]により求められたTf[j]は、端ノズル(j=0)から中央ノズル(j=n)に向かって吐出率が増える不均一な分布となる。式[1]から求まるTf[j]は、前半走査ノズル群吐出率であり、「前半吐出率総和」に相当する。
 同様にして後半走査ノズル群の各ノズルの吐出率総和を以下の式[2]で与える。
Figure JPOXMLDOC01-appb-M000002
 式[2]は、後半走査に属する各走査の相対ノズル番号0~nのそれぞれの相対ノズル番号jについて吐出率の総和を求めることを意味する。式中のi、j、t[i,j]の意味は、式[1]と同様であり、Tl[j]は後半走査ノズル群の相対ノズル番号jのノズル吐出率総和を示している。式[2]により求められたTl[j]は、後半走査ノズル群の中央ノズル(j=0)から端ノズル(j=n)に向かって吐出率が減る不均一な分布となる。式[2]から求まるTl[j]は、後半走査ノズル群吐出率であり、「後半吐出率総和」に相当する。
 そして、式[1]から求めたTf[j]と式[2]から求めたTl[j]から全走査の吐出率総和を以下の式[3]で与える。
Figure JPOXMLDOC01-appb-M000003
 式[3]によって与えられるT[j]が相対ノズル番号jに依らず、j=0~nの範囲で一定となれば、吐出率パターンにおける単位面積あたりの平均吐出率の副走査方向の分布を均一にすることができる。つまり、式[3]のT[j]が相対ノズル番号jに依らず一定となるようにTf[j]とTl[j]を設計すれば、単位面積あたりの平均吐出率を均一にできる。Tf[j]を設計することは、すなわち、t[1,j]、t[2,j]....t[N/2,j]を設計することである。Tl[j]を設計することは、すなわち、t[(N/2)+1, j]、t[(N/2)+2 ,j] ....t[N,j]を設計することである。
 図19に示した例は、式[1]及び式[2]のNがN=4である場合である。同じ相対ノズル番号jで表されるノズルが「対応するノズル」に相当する。つまり、式[1]と式[2]において総和をとる各ノズルが「対応するノズル」である。また、式[3]のT[j]が相対ノズル番号jに依らず一定になる場合に、式[3]のTf[j]で吐出率が与えられる前半走査ノズル群と、Tl[j]で吐出率が与えられる後半走査ノズル群とが補完関係になる。
 図19に示した例の場合は、走査1ノズル群の吐出率t[1,0]~t[1,n]と走査4ノズル群の吐出率t[4,0]~t[4,n]の和が相対ノズル番号j=0~nの範囲で一定となり、走査1ノズル群の吐出率と走査4ノズル群の吐出率は補完関係である。また同様に、走査2ノズル群の吐出率t[2,0]~t[2,n]と走査3ノズル群の吐出率t[3,0]~t[3,n]の和が相対ノズル番号j=0~nの範囲で一定となり、走査2ノズル群の吐出率と走査3ノズル群の吐出率は補完関係である。
 これを式で表すと以下のようになる。
Figure JPOXMLDOC01-appb-M000004
 式中のT1は、走査1ノズル群の吐出率と走査4ノズル群の吐出率の和であり、定数を表している。T2は、走査2ノズル群の吐出率と走査3ノズル群の吐出率の和であり、定数を表している。
 図19に示した例では、走査1~走査4の各走査ノズル群の分岐でのみ傾きを変えており、各走査ノズル群の内部では傾き一定である。「走査ノズル群の分岐」とは、ノズル列における各走査ノズル群の区画の境界部を意味する。図19において、走査1ノズル群と走査2ノズル群の分岐は、点Bに対応する位置である。走査3ノズル群と走査4ノズル群の分岐は、点Dに対応する位置である。したがって、図19の場合、各走査ノズル群の吐出率を以下の式で表すこともできる。
Figure JPOXMLDOC01-appb-M000005
 式中のA1は、走査1ノズル群の吐出率の傾きを表す。A2は、走査2ノズル群の吐出率の傾きを表す。走査3ノズル群の吐出率の傾きが「-A2」になること、及び走査4ノズル群の吐出率の傾きが「-A1」になることは、式[4]から容易に求められる。
 式[5]においてt[1,0]、t[2,0]、t[3,0]、t[4,0]の値は任意に設計し得るが、バンディング低減のために、t[1,0]はなるべく小さい値(例えばゼロ)であることが望ましく、また各走査バンドの境界での濃度段差を生じないために、t[2,0]はt[1,n]、t[3,0]はt[2,n]、t[4,0]はt[3,n]と近く連続的な値であることが望ましい。
 《ノズル吐出率の他の設計例》
 図20から図30は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の設計例のバリエーションを示している。図19に示したノズル吐出率の設計例に代えて、図20から図30に例示するようなノズル吐出率を採用してもよい。
 〈他の設計例1〉
 図20は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例1を示す。図20に示したノズル吐出率のプロファイルは、前半走査ノズル群と後半走査ノズル群の各走査ノズル群が補完関係であり、かつ、補完関係の走査ノズル群が対称位置にある例である。図20は、前半走査ノズル群と後半走査ノズル群の各々について、中央ノズルから端ノズルに向かって、各走査ノズル群の分岐でのみ傾きを変えている例である。
 図20では、走査2ノズル群の吐出率の傾きがゼロであり、かつ、走査3ノズル群の吐出率の傾きがゼロである例が示されている。
 〈他の設計例2〉
 図21は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例2を示す。図21に示したノズル吐出率のプロファイルは、前半走査ノズル群と後半走査ノズル群の各走査ノズル群が補完関係であり、かつ、補完関係の走査ノズル群が対称位置にある例である。図21は、前半走査ノズル群と後半走査ノズル群の各々について、中央ノズルから端ノズルに向かって、各走査ノズル群の分岐でのみ傾きを変えている例である。
 図21は、図20と比較して中央ノズルのノズル吐出率を若干低い値に設定したものである。中央ノズルのノズル吐出率は、ノズル列の中で必ずしも最大でなくてよい。
 〈他の設計例3〉
 図22は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例3を示す。図22に示したノズル吐出率のプロファイルは、補完関係が一対一であるが非対称である場合の例である。図22の場合は、走査1ノズル群と走査3ノズル群が補完関係になり、走査2ノズル群と走査4ノズル群が補完関係になる。
 すなわち、図22の場合は、走査1ノズル群の吐出率t[1,0]~t[1,n]と走査3ノズル群の吐出率t[3,0]~t[3,n]の和が相対ノズル番号j=0~nの範囲で一定となる補完関係である。
 また同様に、走査2ノズル群の吐出率t[2,0]~t[2,n]と走査4ノズル群の吐出率t[4,0]~t[4,n]の和が相対ノズル番号j=0~nの範囲で一定となる補完関係である。
 このことを式で表すと以下の式[6]のようになる。
Figure JPOXMLDOC01-appb-M000006
 図22において、走査1~走査4の各走査ノズル群の内部で傾き一定であるため、各走査ノズル群の吐出率を以下の式[7]で表すこともできる。
Figure JPOXMLDOC01-appb-M000007
 〈他の設計例4〉
 図23は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例4を示す。図23に示したノズル吐出率のプロファイルは、N=6の場合の一例であり、一対二の補完関係を含む。図23の場合は、走査1ノズル群と走査2ノズル群の吐出率の和の吐出率が、走査6ノズル群の吐出率と補完関係であり、また走査3ノズル群と走査5ノズル群が補完関係である。
 これを式で表すと以下の式[8]のようになる。
Figure JPOXMLDOC01-appb-M000008
 また、各走査ノズル群の吐出率を以下の式[9]で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 式中のA3は、走査3ノズル群の吐出率の傾きを表す。図23において、走査4ノズル群の吐出率の傾きはゼロである。
 〈補完関係が成立する組み合わせの任意性について〉
 図19~図22は、前半走査ノズル群と後半走査ノズル群の各走査ノズル群の補完関係が一対一の例を示し、図23は、一対二の補完関係の例を示した。他にも補完関係が一対三、一対四、....、二対二、二対三、....など、任意の走査ノズル群の組合せで補完関係があり得る。また、前半走査ノズル群と後半走査ノズル群は、補完関係であり式[3]のT[j]が相対ノズル番号jに依らず一定となるものの、前半走査ノズル群に属する各走査ノズル群と後半走査ノズル群に属する各走査ノズル群の何れの組合せでも補完関係にならない例もあり得る。例えば、前半走査ノズル群の吐出率総和と後半走査ノズル群の吐出率総和のみが補完関係となるケースが存在する。
 また、図19~図23に示した例は、各走査ノズル群の分岐でのみ傾きを変えているが、各走査ノズル群の内部で傾きを変えても補完関係が成立する。
 次に、各走査ノズル群の少なくとも1つの走査ノズル群の内部で傾きを変える例を説明する。
 〈他の設計例5〉
 図24は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例5を示す。図24では、走査1ノズル群と走査4ノズル群はそれぞれの走査ノズル群の内部で傾きを変えているが補完関係となっている。補完関係にある吐出率のグラフ形状は、上下対称となることを意味するが、必ずしも左右対称とはならない。
 ここでの上下対称とは、一方のグラフ形状を上下方向に反転させることによって、他方のグラフ形状と一致させることができる関係をいう。図24における上下方向は、吐出率の値を表す縦軸の方向である。また、ここでの左右対称とは、一方のグラフ形状を左右方向に反転させることによって、他方のグラフ形状と一致させることができる関係をいう。図24における左右方向は、ノズルの位置を表す横軸の方向である。「反転させる」という記載には、反転させ、かつ、上下方向及び/又は左右方向にシフトさせることも含まれる。
 図24の場合、走査1ノズル群の吐出率のグラフ形状を上下方向に反転させると、走査4ノズル群の吐出率のグラフ形状と一致するものとなる。
 図24の場合、補完関係が対称であるため、各走査ノズル群の吐出率の関係が、図19と同様に、式[4]で与えられる。また、図24の場合、走査2ノズル群の吐出率t[2,j]が一定、かつ、走査3ノズル群の吐出率t[3,j]が一定である。
 また、各走査ノズル群の吐出率を以下の式[10]で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 式中のF1(j)は、走査1ノズル群の吐出率の相対ノズル番号jによる変化を表す関数である。F2(j)は、走査2ノズル群の吐出率の相対ノズル番号jによる変化を表す関数である。j=0の場合に、F1(0)=F2(0)=0である。
 走査3ノズル群の吐出率の相対ノズル番号jによる変化は、F2(j)を反転した関数「-F2(j)」で表される。走査4ノズル群の吐出率の相対ノズル番号jによる変化はF1(j)を反転した関数「-F1(j)」で表される。
 〈他の設計例6〉
 図25は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズ吐出率の他の設計例6を示す。図25では、走査1ノズル群と走査4ノズル群はそれぞれの走査ノズル群の内部で傾きを変えているが補完関係となっている。図25は、補完関係にある吐出率のグラフ形状が左右対称となっている例を示している。また、図25は、走査1ノズル群と走査ノズル群4のそれぞれの内部の複数個所で傾きを変える例を示している。
 図25の場合、補完関係が対称であるため、各走査ノズル群の吐出率の関係が、図19と同様に、式[4]で与えられる。また、図25の場合、走査2ノズル群の吐出率t[2,j]が一定、かつ、走査3ノズル群の吐出率t[3,j]が一定である。また、各走査ノズル群の吐出率は、式[10]で表すことができる。
 〈他の設計例7〉
 図26は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例7を示す。図26では、走査1ノズル群と走査4ノズル群はそれぞれの走査ノズル群の内部で傾きを変えているが補完関係となっている。図26は、走査1ノズル群と走査ノズル群4のそれぞれの内部において連続的に傾きを変える例を示している。図26は、補完関係にある吐出率のグラフ形状が左右非対称となる例を示している。
 図26の場合、補完関係が対称であるため、各走査ノズル群の吐出率の関係が、図19と同様に、式[4]で与えられる。また、図26の場合、走査2ノズル群の吐出率t[2,j]が一定、かつ、走査3ノズル群の吐出率t[3,j]が一定である。また、各走査ノズル群の吐出率は、式[10]で表すことができる。
 〈他の設計例8〉
 図27は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例8を示す。図27では、走査1ノズル群と走査4ノズル群はそれぞれの走査ノズル群の内部で傾きを変えているが補完関係となっている。図27は、走査1ノズル群と走査ノズル群4のそれぞれの内部において連続的に傾きを変える例を示している。図27は、補完関係にある吐出率のグラフ形状が左右対称となる例を示している。
 図27の場合も、図26の場合と同様に、各走査ノズル群の吐出率の関係が、式[4]で与えられる。図27の場合、走査2ノズル群の吐出率t[2,j]が一定、かつ、走査3ノズル群の吐出率t[3,j]が一定である。また、各走査ノズル群の吐出率は、式[10]で表すことができる。
 〈他の設計例9〉
 図28は、前半走査ノズル群吐出率と後半走査ノズル群吐出率が補完関係にあるノズル吐出率の他の設計例9を示す。図28は、走査1ノズル群~走査4ノズル群のそれぞれの走査ノズル群の内部で傾きを変えている例である。図28は、各走査ノズル群の内部において連続的に傾きを変える例を示している。図28は、走査1ノズル群と走査3ノズル群が補完関係にあり、走査2ノズル群と走査4ノズル群とが補完関係にある。図28は、補完関係の走査ノズル群が対称位置にないものの、ノズル吐出率のグラフ形状が左右対称となる例を示している。
 図28の場合、各走査ノズル群の吐出率の関係が、図22と同様に、式[6]で与えられる。また、図28の場合、各走査ノズル群の吐出率は、式[10]の代わりに、式[10]中のt[4,j]とt[3,j]の「-F1(j)」と「-F2(j)」とが入れ替わった式が適用される。
 〈補完関係が成立する他のバリエーション〉
 図24から図28の例を示して、走査ノズル群の内部で吐出率の傾きを変える例を説明した。図24から図28に示した何れの例も、前半走査ノズル群と後半走査ノズル群の各走査ノズル群の補完関係が一対一である。
 しかし、各走査ノズル群の内部で吐出率の傾きを変える場合でも、補完関係が一対一でなく一対二、一対三、一対四、....、二対二、二対三、....など、任意の走査ノズル群の組み合わせで補完関係があり得る。また、各走査ノズル群の内部で吐出率の傾きを変える場合でも、補完関係の走査が左右対称で無い場合もある。前半走査ノズル群と後半走査ノズル群は補完関係であるものの、前半走査ノズル群に属する各走査ノズル群と後半走査ノズル群に属する各走査ノズル群の何れの組み合わせでも補完関係にならない例もある。
 《Nが奇数の場合の説明》
 ここまでの説明では、各走査バンドをN回の走査で記録する際のNが偶数の場合を説明した。次に、Nが奇数の場合を説明する。
 図29に、Nが3の場合の各走査の位置関係を示す。図29は、図18に代わる図面である。図30は、図29に示したノズル吐出率のプロファイルの拡大図である。図29及び図30の表記ルールは、図19及び図20の表記ルールと同様である。
 N=3の場合、走査2と補完関係の走査がないため、走査2ノズル群については吐出率が一定でなければならないことが把握される。走査1が前半走査に該当し、走査3が後半走査に該当する。走査1及び走査3のそれぞれの走査の走査ノズル群が補完関係であれば、単位面積あたりの平均吐出率の分布を均一にできる。
 Nが奇数の場合、前半走査ノズル群の各ノズルの吐出率総和は、式[1]の代わりに以下の式[11]で与えられる。
Figure JPOXMLDOC01-appb-M000011
 また、後半走査ノズル群の各ノズルの吐出率総和は、式[2]の代わりに以下の式[12]で与えられる。
Figure JPOXMLDOC01-appb-M000012
 式[11]で与えられる前半走査ノズル群の吐出率Tf[j]と、式[12]で与えられる後半走査ノズル群の吐出率Tl[j]から式[3]で求められる全走査の吐出率T[j]が相対ノズル番号jに依らず、相対ノズル番号j=0~nの範囲で一定となれば、単位面積あたりの平均吐出率を均一にできる。
 Nが奇数の場合、走査1~走査Nのうち真ん中の走査INT(N/2)+1のノズル群については吐出率を一定にする必要があるものの、それ以外の考え方はNが偶数の場合と同様である。
 《ノズル吐出率の好ましい設計の例》
 バンディングを低減するためには、図19~図21の例のように、各走査ノズル群における吐出率の傾きを走査ノズル群内において一定とすることが望ましい。
 各走査ノズル群内において吐出率の傾きが一定でない場合、傾きが急峻なノズル群が存在し、その傾きが急峻なノズル群が記録する領域においてバンディングが出やすくなるためである。
 しかしながら、特開2009-184344号公報(段落[0030]など)に説明されているように、インクの滲み及び/又は凝集が発生しやすい場合に、用紙に最初に記録するインク量を極力抑えることで、その滲み及び/又は凝集を抑制できる場合がある。そのために各走査ノズル群における吐出率を非線形に変化させた方が良い場合がある。このような場合には、図24~図28に示した例のように、走査1ノズル群の吐出率、又は、走査1ノズル群の中でも端側のノズル群の吐出率を低く抑えて、吐出率を非線形に変化させることが好ましい。また、各走査ノズル群における吐出率の傾きを一定としてバンディング低減効果を維持しつつ、走査1ノズル群の吐出率を低くしてインクの滲み及び/又は凝集を抑制するために、図22や図23の例のように前半走査ノズル群と後半走査ノズル群の吐出率を非対称にして走査1ノズル群の吐出率を低くする方法も有効である。
 図22や図23の例と比べて、図19~図21の例の方が、走査1ノズル群の吐出率の傾きが急峻であり、その結果、中央ノズル付近でのノズル吐出率が過剰に大きくならずに、中央ノズル付近でのスジや滲みの発生の抑制に有効であり、また、高デューティまで記録することができる。一方で、図22や図23の例の方が、用紙に最初に記録するインク量が抑えられることで、特開2009-184344号公報に説明されているようなインクの滲み及び/又は凝集の抑制には有効である。
 《特開2009-184344号公報に記載のインクの滲み、及び/又は凝集の抑制に効果的なノズル吐出率の設計》
 図22~図24及び図26に示した例は、ノズル吐出率のグラフ形状が非対称であり、前半吐出率総和であるTf[j]が、後半吐出率総和であるTl[j]よりも小さい。
 また、図22~図24及び図26に示した例は、前半走査における最初の走査の記録に用いるノズル群の各ノズルの吐出率を平均化した値が、後半走査における最後の走査の記録に用いるノズル群の各ノズルのノズル吐出率を平均化した値よりも小さい。例えば、図22の場合、走査1ノズル群に属する各ノズルの吐出率の平均値は、走査4ノズル群に属する各ノズルの吐出率の平均値よりも小さい。図23~図24及び図26についても同様である。なお、平均値は、データ値の総和である積算値をデータの個数で割ったものであるため、平均値の大小関係は、積算値の大小関係と同じである。
 図22及び図23に示した例は、複数回の各走査の記録に用いられる走査ごとのノズル群について吐出率の傾きの平均値を比較した場合に、傾きの平均値がゼロとなる走査の走査ノズル群を除き、前半走査における最初の走査の記録に用いる走査1ノズル群の傾きの平均値が最も小さい。
 図24~図30に示した例は、走査1ノズル群の内部において2種類以上の傾きでノズル吐出率が変化している。この傾きの変化について、走査1ノズル群の内部における前端ノズルからの傾きを第一の傾きとし、前端ノズルから前半側中央ノズルの側に向かって吐出率の傾きが第一の傾きから第二の傾きへと変化する部分について、第一の傾きの方が第二の傾きより小さい。
 上記に例示したような条件を満たすように、ノズル吐出率を設計することにより、第1走査ノズル群の吐出率が抑えられ、各走査バンドの記録する最初の走査におけるインク量を抑えることができる。これにより、特開2009-184344号公報に説明されているようなインクの滲み及び/又は凝集を抑制することが可能である。
 《単位面積あたりの平均吐出率の分布を均一にするノズル吐出率の設計の具体例》
 これまで図18から図30を用いて、単位面積あたりの平均吐出率の分布を均一にするノズル吐出率の設計の考え方を概念的に説明した。以下、具体的な例を用いて説明する。
 ここでは記録ヘッドにおけるノズル列のノズル数が30個であるとし、ノズル列のノズルピッチが「2」、紙送り量が「15」、主走査方向のオーバーラップ数が「2」である場合を例に説明する。
 図31は、ノズル数が30個、かつ、ノズルピッチが「2」である記録ヘッドのノズル列を記号化して示した説明図である。図31では、ノズル列が画素単位のセルに区分けされており、セル内にノズル番号を示す数字0~29が記載してある。ノズル番号が付されたセルの位置がノズルの位置を表している。
 図32は、図31に示したノズル列を有する記録ヘッドを用いた記録動作の説明図である。図32では、副走査方向への用紙の搬送に伴い、記録ヘッドが副走査方向に相対的に移動していく様子が描かれている。用紙は図32の下から上に向かって搬送される。図32に示すように、副走査方向の紙送り量は15画素であり、走査1~走査4の4回の走査によって走査バンドの記録が完了する。紙送り量は「副走査動作の1回あたりの相対移動量」に相当する。
 図33は、各走査のノズルとラスタの関係、及びノズルパターンを示す図である。図33の左図は、走査1~走査4の記録動作が繰り返される様子を示している。図33の中央図は、繰り返し最小単位のノズルパターンを示している。図33の右図は、走査バンドごとのノズルパターンを示している。ノズルパターンの各セルに示した数字は、そのセルの位置に対応する画素を記録するノズルのノズル番号を示している。
 図34に、各走査のノズル群を示す。各走査のノズル群とは、各走査の記録に用いる走査ごとのノズル群を意味する。図34では各走査バンドにおいて各単位領域を記録する各走査のノズルを示している。ノズル番号の記載は、そのノズル番号のノズルを表す。走査1ノズル群のノズルは、ノズル番号23~29である。走査2ノズル群のノズルは、ノズル番号15~22である。ここでノズル番号22は、隙間ラスタを記録する隙間ノズルである。図34において、ノズル番号22が隙間ノズルであることを示すために、ノズル番号22のセルの背景をスクリーントーンの塗りつぶしにより差別化表示した。走査3ノズル群のノズルは、ノズル番号8~14である。走査4ノズル群のノズルは、ノズル番号0~7である。ノズル番号7は、隙間ラスタを記録する隙間ノズルであり、図34においてノズル番号7のセルの背景をスクリーントーンの塗りつぶしにより差別化表示した。隙間ノズルのノズル番号を「隙間ノズル番号」という。隙間ノズル番号の記載によってそのノズル番号の隙間ノズルを指す場合がある。
 図34に示した各走査ノズル群の対応するノズル同士の吐出率の総和を単位領域によらず一定にできれば、各走査バンドにおける吐出率分布が均一になることがわかる。
 全てのラスタを一巡して記録するために、ノズルピッチと紙送り量は互いに素の関係であるため、必然的に各走査バンドは単位面積で割りきれず、隙間がある。この隙間は、ノズル番号7及びノズル番号22を用いて記録されるラスタに相当する。このような隙間のラスタを隙間ラスタと呼んでいる。隙間ラスタにおいても、隙間ラスタを記録するノズルの吐出率がその前後のノズルの吐出率と連続的である限り、隙間ラスタを含む単位面積における吐出率の総和もほぼ一定となる。
 〈単位面積あたりの平均吐出率の分布を均一にするノズル吐出率の設計方法の実施例〉
 単位面積あたりの平均吐出率の分布を均一にするノズル吐出率の設計方法について、各走査ノズル群の吐出率の傾きを一定にする場合と、各走査ノズル群の吐出率の傾きを一定にしない場合とに分けて説明する。各走査ノズル群の吐出率の傾きを一定にする場合とは、各走査ノズル群の分岐でのみ傾きを変える場合であることを意味している。
 各走査ノズル群の吐出率の傾きを一定にしない場合とは、走査ノズル群の内部で傾きを変える場合を意味している。
 〈各走査ノズル群の吐出率の傾きを一定にする場合〉
 [ノズル吐出率の設計方法の実施例1]
 図35は、実施例1により最終的に得られる各走査ノズル群の吐出率の例を示している。この例を参考に、ノズル吐出率の設計方法を説明する。まず、前半走査ノズル群の吐出率を設計する。そのために、初めに、各走査ノズル群の端に配置されるノズル及び走査ノズル群の分岐となるノズルを定める。「端に配置されるノズル」には、端ノズルの他に、各走査ノズル群内において端に位置するノズルが含まれる。本実施例1の場合、走査1の端ノズルをノズル番号29に定め、走査2との分岐ノズルをノズル番号23又は22又は21に定め、走査2ノズル群の端に配置されるノズルをノズル番号15に定める。
 ここで、各走査ノズル群の分岐となるノズルは隙間ノズルでもよいし、隙間ノズルの前後「±1ノズル」程度異なるノズルでもよい。図33及び図34に示したとおり、本実施例1では、走査2に隙間ノズルとしてのノズル番号22が存在するが、走査の方法によって、必ずしも隙間ノズルがあるわけではない。隙間ノズルが存在しない場合は、各走査ノズル群の端に配置されるノズルを分岐ノズルに定めればよい。例えば、走査1ノズル群の端のノズル番号23又は走査2ノズル群の端のノズル番号21を分岐ノズルに定めればよい。
 次に、各走査ノズル群の端に配置されるノズル及び分岐ノズルのそれぞれの吐出率を定める。そして、各走査ノズル群の端に配置されるノズル及び分岐ノズルについて定めた吐出率から、それらの間の各ノズルの吐出率を線形補間により求める。つまり、各走査ノズル群の端に配置されるノズル及び分岐ノズルの間のノズルの吐出率を補間により連続的になるように求める。
 図35では、走査1の端ノズルをノズル番号29に定め、走査1と走査2の分岐ノズルをノズル番号21に、走査2の端に配置されるノズルをノズル番号15に定めた。そして、ノズル番号29の吐出率を25%に定め、ノズル番号21の吐出率を100%に、ノズル番号15の吐出率を100%にそれぞれ定めて、それらの間の各ノズルについては線形補間し、各ノズルの吐出率を定めた。
 次に、後半走査ノズル群の各走査ノズル群の吐出率を、前半走査ノズル群の各走査ノズル群の吐出率との和が一定となるように定める。そのためにまず、走査4ノズル群の吐出率を求める。初めに、走査4においてノズル番号0の吐出率をノズル番号29と同じ25%に定める。次に、走査1のノズル番号23の吐出率81.25%と、走査4のノズル番号0の吐出率25%を足して106.25%を求める。この値は、式[4]のT1に相当する。
 次に、T1を106.25%として、式[4]の通り、T1から走査1のノズル番号24~29の吐出率をそれぞれ差し引いて走査4の対となるノズル番号1~6の吐出率を求める。例えば、走査1のノズル番号24に対して走査1の対となるノズルはノズル番号1である。走査4のノズル1の吐出率として、106.25%(T1)から走査1の71.875%(ノズル番号24の吐出率)を差し引いて34.375%を求める。ここで本例では式[4]のjの範囲が0~6であり、t[1,j]のj=0がノズル番号29に相当し、j=6がノズル番号23に相当する。またt[4,j]のj=0がノズル番号6に相当し、j=6がノズル番号0に相当する。
 または、式[5]に従って走査4の各ノズルの吐出率を求めることもできる。つまり式[5]における傾きA1は走査1ノズル群の吐出率の傾き9.375%なので、走査4のノズル番号0の吐出率であるt[4,6]=25%から、傾き9.375%で増やして、各ノズルの吐出率を求めることもできる。
 次に、隙間ノズルであるノズル番号7の吐出率を求める。前半走査ではノズル番号23からノズル番号22に吐出率を9.375%増やして90.625%としているので、後半走査でも同様にノズル番号6の吐出率を9.375%増やして90.625%としてノズル番号7の吐出率とする。
 最後に、走査3ノズル群の吐出率を求める。そのためにまず、走査3のノズル番号8の吐出率を走査2のノズル番号21の吐出率と同じ値(本例では100%)に定める。そして走査2のノズル番号15の吐出率100%と、走査3のノズル番号8の吐出率100%とを足して200%を求める。この値は式[4]のT2に相当する。
 次に、T2を200%として、式[4]の通り、T2から走査2のノズル番号16~21の吐出率をそれぞれ差し引いて走査3の対となるノズル番号9~14の吐出率を求める。本例ではノズル番号9~14の吐出率は全て100%になる。
 本実施例1では式[4]のt[2,j]のj=0がノズル番号21に相当し、j=6がノズル番号15に相当する。またt[3,j]のj=0がノズル番号14に相当し、j=6がノズル番号8に相当する。
 または、式[5]に従って走査3の各ノズルの吐出率を求めることもできる。つまり式[5]における傾きA2は、走査2ノズル群の吐出率の傾き0%であるため、走査3のノズル番号8の吐出率t[3,6]=100%から傾き0%で増やして各ノズルの吐出率を求めることもできる。
 以上の手順に従い、目標とする各ノズルのノズル吐出率を設計することができる。
 なお、最適な分岐ノズルを判定する場合、各ノズルの吐出率とノズルパターンから吐出率パターンに展開し、単位面積あたりの平均吐出率が最も均一になる分岐ノズルを判定する。この場合、それぞれの分岐ノズルで設計した各ノズル吐出率の総和が同じになるよう注意する。
 また、濃度ムラ(バンディング)と共にスジや滲みの発生を防ぐために、前半走査ノズル群の最初の走査のノズル群及び後半走査ノズル群の最後の走査のノズル群の吐出率のみを傾けて他の走査ノズル群の吐出率の傾きをゼロ付近に設計することがさらに望ましい。
 図36は、上述の実施例1に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。図36の横軸はノズル番号を表し、縦軸はノズル吐出率を表す。
 図37は、図36に示されたノズル吐出率に基づく吐出率パターンを示す図である。図38は、図37に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。図38の横軸はラスタ番号を表し、縦軸は単位面積あたりの平均吐出率を表す。図38に示されるように、単位面積あたりの平均吐出率は概ね均一になっている。
 〈各走査ノズル群の分岐でのみ傾きを変える場合の例〉
 [ノズル吐出率の設計方法の実施例2]
 次に、各走査ノズル群の分岐でのみ傾きを変える場合に、補完関係が一対一であるものの左右非対称である例に該当する場合のノズル吐出率の設計方法について具体例を挙げて説明する。
 図39は、実施例2により最終的に得られる各走査ノズル群の吐出率の例を示している。図39の例を参考にノズル吐出率の設計方法を説明する。まず、既に説明したように、前半走査ノズル群において各走査ノズル群の端に配置されるノズル及び分岐ノズルを定め、かつ、各走査ノズル群の端に配置されるノズル及び分岐ノズルのそれぞれの吐出率を定めて、線形補間を行い、前半走査ノズル群の各ノズルの吐出率を求める。本実施例2では走査1の端ノズルをノズル番号29に定め、走査2との分岐ノズルをノズル番号21に、走査2の端に配置されるノズルをノズル番号15に定めた。そして、ノズル番号29の吐出率を0%に定め、ノズル番号21の吐出率を40%に、ノズル番号15の吐出率を100%にそれぞれ定めて、それらの間の各ノズルについては線形補間し、各ノズルの吐出率を定めた。
 次に、後半走査ノズル群の各走査ノズル群の吐出率を、前半走査ノズル群の各走査ノズル群の吐出率との和が一定となるように定める。そのためにまず、走査4ノズル群の吐出率を走査2と補完関係になるように求める。初めに、走査4においてノズル番号0の吐出率を0%に定める。次に、走査2のノズル番号15の吐出率100%と走査4のノズル番号0の吐出率0%を足して100%を求める。この値は、式[6]のT2に相当する。
 次に、T2を100%として、式[6]の通り、T2から走査2のノズル番号16~21の吐出率をそれぞれ差し引いて走査4の対となるノズル番号1~6の吐出率を求める。または、式[7]に従って走査4の各ノズルの吐出率を求めることもできる。すなわち、式[7]における傾きA2は、走査2ノズル群の吐出率の傾き10%であるため、走査4のノズル番号0の吐出率であるt[4,6]=0%から傾き10%で増やして各ノズルの吐出率を求めることもできる。
 次に、隙間ノズルであるノズル番号7の吐出率を求める。前半走査ではノズル番号21からノズル番号22に吐出率を5%減らしているので、後半走査ではノズル番号6の吐出率を5%増やして65%としてノズル番号7の吐出率とする。
 最後に、走査3ノズル群の吐出率を求める。まず走査3のノズル番号8の吐出率を求める。前半走査ではノズル番号22からノズル番号23に吐出率を5%減らしているため、後半走査ではノズル番号7の吐出率を5%増やして70%としてノズル番号8の吐出率とする。そして、走査1のノズル番号23の吐出率30%と走査3のノズル番号8の吐出率70%を足して100%を求める。この値は式[6]のT1に相当する。
 次に、T1を100%として、式[6]の通り、T1から走査1のノズル番号24~29の吐出率をそれぞれ差し引いて走査3の対となるノズル番号9~14の吐出率を求める。
 または、式[7]に従って走査3の各ノズルの吐出率を求めることもできる。つまり式[7]における傾きA1は走査1ノズル群の吐出率の傾き5%なので、走査3のノズル番号8の吐出率であるt[3,6]=70%から、傾き5%で増やして各ノズルの吐出率を求めることもできる。
 以上の手順に従い、目標とする各ノズルのノズル吐出率を設計することができる。
 図40は、上述の実施例2に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。図40の横軸はノズル番号を表し、縦軸はノズル吐出率を表す。
 図41は、図40に示されたノズル吐出率に基づく吐出率パターンを示す図である。図42は、図41に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。図42の横軸はラスタ番号を表し、縦軸は単位面積あたりの平均吐出率を表す。図42に示されるように、単位面積あたりの平均吐出率は均一になっている。
 [ノズル吐出率の設計方法の実施例3]
 次に、各走査ノズル群の分岐でのみ傾きを変える場合に、補完関係が一対一ではない場合のノズル吐出率の設計方法を説明する。ここでは、図23のように、補完関係が一対二の例を用いて具体的に説明する。この実施例3では、ノズル数が28個(ノズル番号0~27)、紙送り量が「14」、ノズルピッチが「3」、かつ、オーバーラップ数が「2」の場合を考える。これは各走査バンドの記録完了に要する主走査動作の回数がN=6の場合の例である。
 図43は、実施例3における各走査のノズルとラスタの関係、及びノズルパターンの一部を示す図である。図43の左図は、走査1~走査6の記録動作が繰り返される様子を示している。図43の中央図は、ノズルパターンの一部を示している。図43の右図は、走査バンドごとのノズルパターンの一部を示している。
 また、図44に、各走査のノズル群を示す。図43及び図44の表記ルールは、図33及び図34の表記ルールに準ずる。
 図43及び図44に示す実施例3の走査方法の場合、前半走査のノズル番号18とノズル番号23、並びに後半走査のノズル番号4とノズル番号9が隙間ノズルに相当する。
 図45は、実施例3により最終的に得られる各走査ノズル群の吐出率の例を示している。この例を参考にノズル吐出率の設計方法を説明する。まず、既に説明したように、前半走査ノズル群における各走査ノズル群の端に配置されるノズル及び分岐ノズルを定め、かつ、各走査ノズル群の端に配置されるノズル及び分岐ノズルのそれぞれの吐出率を定めて、線形補間を行い、前半走査ノズル群の各ノズルの吐出率を求める。本実施例3では走査1の端ノズルをノズル番号27に定め、走査1と走査2との分岐ノズルをノズル番号23に、走査2と走査3の分岐ノズルをノズル番号18に、走査3の端に配置されるノズルをノズル番号14に定める。そして、ノズル番号27の吐出率を0%、ノズル番号23の吐出率を20%、ノズル番号18の吐出率を80%、ノズル番号14の吐出率を100%とそれぞれ定めて、それらの間の各ノズルについては線形補間し、各ノズルの吐出率を定めた。
 次に、後半走査ノズル群の各走査ノズル群の吐出率を、前半走査ノズル群の各走査ノズル群の吐出率との和が一定となるように定める。まず走査6ノズル群の吐出率を走査1と走査2の吐出率の和と補完関係になるように求める。
 最初に、走査6においてノズル番号0の吐出率を0%に定める。次に、走査1のノズル番号24の吐出率15%と走査2のノズル番号19の吐出率68%の和の吐出率83%に走査6のノズル番号0の吐出率0%を足して83%を求める。この値は式[8]のT1に相当する。
 次に、T1を83%として、まず走査1のノズル番号25~27と走査2のノズル番号20~22の対応するノズルの吐出率の和(t[1,j]+t[2,j])である「和の吐出率」をそれぞれ求めた後に、式[8]の通り、T1から和の吐出率をそれぞれ差し引いて走査6の対となるノズル番号1~3の吐出率を求める。
 または、式[9]に従って走査6の各ノズルの吐出率を求めることもできる。つまり、式[9]における傾きA1は走査1ノズル群の吐出率の傾き5%であり、A2は走査2ノズル群の吐出率の傾き12%であるので、その和の傾きは17%となるため、走査6のノズル番号0の吐出率であるt[6,3]=0%から、傾き17%で増やして、ノズル番号1~3の各ノズルの吐出率を求めることができる。
 次に、隙間ノズル番号4の吐出率を求める。前半走査の走査1及び走査2の組み合わせと、後半走査の走査6とを二対一の補完関係とすることから、前半走査の走査1と走査2に含まれる隙間ノズル番号23における吐出率の増分と同じだけ走査6の隙間ノズル番号4でも吐出率を増やす。ノズル番号24からノズル番号23に吐出率を5%増やし、ノズル番号23からノズル番号22に吐出率を12%増やしており、両者を合わせて17%増やしているので、ノズル番号3の吐出率51%から17%増やした68%を隙間ノズル番号4の吐出率とする。
 次に、走査5ノズル群の吐出率を求める。まず走査5のノズル番号5の吐出率を求める。前半走査ではノズル番号19からノズル番号18に吐出率を12%増やしているので、後半走査ではノズル番号4の吐出率を12%増やして80%としてノズル番号5の吐出率とする。
 そして、走査3のノズル番号14の吐出率100%と、走査5のノズル5の吐出率80%を足して180%を求める。この値は式[8]のT3に相当する。
 次に、T3を180%として、式[8]の通り、T3から走査3のノズル番号15~17の吐出率をそれぞれ差し引いて、走査5の対となるノズル番号6~8の吐出率を求める。
 または、式[9]に従って走査5の各ノズルの吐出率を求めることもできる。つまり式[9]における傾きA3は、走査3ノズル群の吐出率の傾き5%なので、走査5のノズル番号5の吐出率t[5,3]=80%から傾き5%で増やしてノズル番号6~8の各ノズルの吐出率を求めることができる。
 そして、走査3において隙間ノズル番号18からノズル番号17に吐出率を5%増やしているので、走査5でもノズル番号8の吐出率95%から5%増やした100%を隙間ノズル番号9の吐出率とする。
 最後に、走査4ノズル群の吐出率を全て100%とする。
 以上の手順に従い、目標とする各ノズルのノズル吐出率を設計することができる。
 図46は、上述の実施例3に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。図46の横軸はノズル番号を表し、縦軸はノズル吐出率を表す。
 図47は、図46に示されたノズル吐出率に基づく吐出率パターンを示す図である。図48は、図47に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。図48の横軸はラスタ番号を表し、縦軸は単位面積あたりの平均吐出率を表す。図48に示されるように、単位面積あたりの平均吐出率は、概ね均一になっている。
 〈各走査ノズル群の吐出率の傾きを一定にしない場合〉
 次に、各走査ノズル群の内部で傾きを変える場合のノズル吐出率の設計方法について具体例を挙げて説明する。
 [ノズル吐出率の設計方法の実施例4]
 ここではまず、図24又は図25のように走査ノズル群の内部の1箇所又は数か所で傾きを変える例を説明する。具体例として、図25のように走査ノズル群の内部の2か所で傾きを変える例を用いて説明する。ただし、図36に示した例や特許文献3の例と比較し易いように、ノズル列における両端のノズルの吐出率を25%とする。この実施例4では、ノズル列のノズル数、紙送り量、ノズルピッチ、主走査方向のオーバーラップ数など、走査方法については、図33及び図34で示した例と同じであるとする。
 図49は、実施例4により最終的に得られる各走査ノズル群の吐出率の例を示している。この例を参考にノズル吐出率の設計方法を説明する。まず、前半走査ノズル群において各走査ノズル群の端に配置されるノズルや分岐ノズル及び傾きの変化点のノズルを定め、端に配置されるノズル、分岐ノズル及び変化点ノズルの各々の吐出率を定める。変化点ノズルとは、傾きの変化点のノズルを指す。
 本実施例4では走査1の端ノズルをノズル番号29、走査2との分岐ノズルをノズル番号21、走査2の端に位置するノズルをノズル番号15に定めている。そして、ノズル番号29の吐出率を25%、ノズル番号21の吐出率を100%、ノズル番号15の吐出率を100%とそれぞれ定めた。また変化点ノズルをノズル番号28及びノズル番号24の2個所に定め、ノズル番号28の吐出率を32.5%、ノズル番号24の吐出率を77.5%と定めている。そして、前半走査ノズル群の各走査ノズル群の端に配置されるノズル、分岐ノズル及び変化点ノズルの間の各ノズル吐出率を線形補間によって求める。
 次に、後半走査ノズル群の各走査ノズル群の吐出率を、前半走査ノズル群の各走査ノズル群の吐出率との和が一定となるように定める。まず、走査4ノズル群の吐出率を走査1と補間関係になるように求める。
 初めに、走査4においてノズル番号0の吐出率を25%に定める。次に、走査1のノズル番号23の吐出率85%と、走査4のノズル番号0の吐出率25%を足して吐出率110%を求める。この値は式[4]のT1に相当する。
 次に、T1を110%として、式[4]の通り、T1から走査1のノズル番号24~29の吐出率をそれぞれ差し引いて走査4の対となるノズル番号1~6の吐出率を求める。
 または、式[10]に従って走査4の各ノズルの吐出率を求めることもできる。まず式[10]におけるF1(j)を求める。走査1においてj=0~6は、それぞれノズル番号29~23に対応している。そして、ノズル番号29の吐出率t[1,0]が25%であり、F1(0)~F1(6)は、それぞれ対応するノズルにおける吐出率とt[1,0](25%)との差分であることから、F1(0)=0%、F1(1)=7.5%、F1(2)=18.75%、F1(3)=30%、F1(4)=41.25%、F1(5)=52.5%、及びF1(6)=60%となる。
 式[10]に基づき、走査4のノズル番号6の吐出率t[4,0]から上記のF1(1)~F1(6)を差し引くことによって、走査4のノズル番号6~0の吐出率をそれぞれ求めることが可能であるが、この時点で、t[4,0]の値が未知であり、走査4のノズル番号0の吐出率t[4,6]が25%と既知であることから、F1(0)~F1(6)の値をt[4,6]を基準とした増加分の値に変換する。
 つまり、F1(6)の値からF1(0)~F1(6)の値をそれぞれ差し引いて、新しくF1S(0)~F1S(6)とする。F1S(0)=60-0=60%、F1S(1)=60-7.5=52.5%、F1S(2)=60-18.75=41.25%、F1S(3)=60-30=30%、F1S(4)=60-41.25=18.75%、F1S(5)=60-52.5=7.5%、及びF1S(6)=60-60=0%となる。
 そして、ノズル番号0の吐出率t[4,6]=25%にF1S(5)=7.5%を足した32.5%をノズル番号1の吐出率とし、t[4,6]=25%にF1S(4)=18.75%を足した43.75%をノズル番号2の吐出率とし、....以下同様にして、走査4の各ノズル番号1~6の吐出率を求める。
 次に、隙間ノズル番号7の吐出率を求める。前半走査ではノズル番号23からノズル番号22に吐出率を7.5%増やしているので、後半走査でもノズル番号6の吐出率を7.5%増やして92.5%としてノズル番号7の吐出率とする。
 最後に、走査3ノズル群の吐出率を求める。まず走査3のノズル番号8の吐出率を求める。前半走査ではノズル番号22からノズル番号21に吐出率を7.5%増やしているので、後半走査でもノズル番号7の吐出率を7.5%増やして100%としてノズル番号8の吐出率とする。そして、走査2のノズル番号15の吐出率100%と走査3のノズル番号8の吐出率100%を足して200%を求める。この値は式[4]のT2に相当する。次に、T2を200%として、式[4]の通り、T2から走査2のノズル番号16~21の吐出率をそれぞれ差し引いて走査3の対となるノズル番号9~14の吐出率を求める。
 または、式[10]に従って走査3の各ノズルの吐出率を求めることもできる。まず式[10]におけるF2(j)を走査2の各ノズルの吐出率から求めて、求めたF2(j)と走査3のノズル番号8の吐出率t[3,6]から走査3の各ノズルの吐出率を求めることができる。式[10]に基づく走査4の各ノズルの吐出率の求め方は既に説明したとおりであり、同様にして求めることができる。
 以上の手順に従い、目標とする各ノズルのノズル吐出率を設計することができる。
 図50は、上述の実施例4に係るノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。図50の横軸はノズル番号を表し、縦軸はノズル吐出率を表す。
 図51は、図50に示されたノズル吐出率に基づく吐出率パターンを示す図である。図52は、図51に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。図52の横軸はラスタ番号を表し、縦軸は単位面積あたりの平均吐出率を表す。図52に示されるように、単位面積あたりの平均吐出率は、概ね均一になっている。
 [ノズル吐出率の設計方法の実施例5]
 次に、各走査ノズル群の内部で傾きを変える場合であって、図26~図28のように連続的に傾きを変える例を説明する。なお、図36の例や特許文献3に示された例と比較しやすいように、ノズル列における両端のノズルの吐出率を25%とする。
 図53は、実施例5により最終的に得られる各走査ノズル群の吐出率の例を示している。まず、前半走査ノズル群において各走査ノズル群の端に配置されるノズルや分岐ノズル及び傾きの変化点のノズルを定め、それら各ノズルの吐出率を定める。本実施例5では、実施例4の図49と全く同じ設定としている。つまり、走査1の端ノズルをノズル番号29、走査2との分岐ノズルをノズル番号21、走査2の端に配置されるノズルをノズル番号15に定め、ノズル番号29の吐出率を25%、ノズル番号21の吐出率を100%、ノズル番号15の吐出率を100%に、それぞれ定めた。また、変化点ノズルをノズル番号28及びノズル番号24の2個所に定め、ノズル番号28の吐出率を32.5%、ノズル番号24の吐出率を77.5%と定めている。
 そして、各走査ノズル群の端に配置されるノズル、分岐ノズル及び変化点ノズルの間の各ノズル吐出率を曲線補間で求める。曲線補間として、例えば、スプライン補間を用いる。
 後半走査ノズル群の吐出率の求め方は、実施例4の場合と同様であるため、説明を省略する。
 以上の手順に従い、目標とする各ノズルのノズル吐出率を設計することができる。
 図54は、実施例5のノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。図54の横軸はノズル番号を表し、縦軸はノズル吐出率を表す。
 図55は、図54に示されたノズル吐出率に基づく吐出率パターンを示す図である。図56は、図55に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。図56の横軸はラスタ番号を表し、縦軸は単位面積あたりの平均吐出率を表す。図56に示されるように、単位面積あたりの平均吐出率は、概ね均一になっている。
 〈好ましいノズル吐出率のプロファイル〉
 既に説明したとおり、バンディングを低減するためには、図36のように各走査ノズル群における吐出率の傾きを一定とすることが望ましい。また、特開2009-184344号公報に説明されているようなインクの滲み及び/又は凝集を抑制するために、各走査バンドについて用紙に最初に記録するインク量を抑えることが有効な場合があり、その場合、図40や図46のように走査1ノズル群の吐出率を低く抑えたり、図50や図54のように走査1ノズル群の中でも特に端側のノズル群の吐出率を低く抑えたりすることが有効な場合がある。
 《オーバーラップ数が「1」の場合の例》
 これまで、オーバーラップ数が「2」の場合について説明したが、発明の実施に際しては、オーバーラップ数が「1」であってもよい。オーバーラップ数が「1」である場合についてもノズル列における各ノズルのノズル吐出率の設計方法自体はオーバーラップ数が「2」の場合と全く同じであり、既に十分に説明したため、詳細な説明を省略する。図57~図62に、オーバーラップ数が「1」の走査方法の例を示す。
 [オーバーラップ数が「1」の走査方法の例1]
 図57は、ノズル列のノズルピッチが「2」、ノズル数が25個、紙送り量が「25」である場合の各走査のノズルとラスタの関係及びノズルパターンの一部を示した図である。
 図58は、走査1及び走査2の各走査のノズル群を示した図である。ノズル番号12は隙間ノズルである。この例では、各走査バンドを2回の走査で記録する。走査1と走査2が補完関係であれば、吐出率パターンにおける単位面積あたりの平均吐出率の分布を均一にできる。
 [オーバーラップ数が「1」の走査方法の例2]
 図59は、ノズル列のノズルピッチが「3」、ノズル数が25個、紙送り量が「25」である場合の各走査のノズルとラスタの関係及びノズルパターンの一部を示した図である。
 図60は、走査1、走査2及び走査3の各走査のノズル群を示した図である。ノズル番号8は隙間ノズルである。この例では、各走査バンドを奇数である3回の走査で記録する。したがって、3回のうち真ん中の走査2のノズル群については、吐出率を一定にする必要がある。そして、走査1と走査3が補完関係であれば、吐出率パターンにおける単位面積あたりの平均吐出率の分布を均一にできる。
 [オーバーラップ数が「1」の走査方法の例3]
 図61は、ノズル列のノズルピッチが「4」、ノズル数が25個、紙送り量が「25」である場合の各走査のノズルとラスタの関係及びノズルパターンの一部を示した図である。
 図62は、走査1~走査4の各走査のノズル群を示した図である。ノズル番号6は隙間ノズルである。この例では、各走査バンドを4回の走査で記録する。前半走査である走査1と走査2の各走査ノズル群の対応するノズルの吐出率の和を前半走査ノズル群吐出率とし、後半走査である走査3と走査4の各走査ノズル群の対応するノズルの吐出率の和を後半走査ノズル群吐出率とした場合に、前半走査と後半走査が補完関係であれば、吐出率パターンにおける単位面積あたりの平均吐出率の分布を均一にできる。
 〈走査ノズル群の分岐において傾きを変えない例〉
 これまで説明した実施例1~5は、どれも走査ノズル群の分岐において傾きを変える例であった。発明の実施に際しては、走査ノズル群の分岐において必ずしも傾きを変える必要なない。走査ノズル群の分岐において傾きを変える形態に限らず、分岐において傾きを変えずに、分岐以外の走査ノズル群の内部において傾きを変える構成であってもよい。この場合も、既に説明した方法と同じ方法によって各ノズルの吐出率を設計することができる。以下、具体例を挙げて説明する。
 [ノズル吐出率の設計方法の実施例6]
 図63は、実施例6によって得られる各走査ノズル群の吐出率の例を示す。実施例6の走査方法は、図32~図34に示した走査方法であるとする。まず、前半走査ノズル群おいて端に配置されるノズルと、傾きの変化点のノズルを定め、端に配置されるノズルと変化点ノズルの各々について吐出率を定めて、それらの間について線形補間をして各ノズルの吐出率を求める。実施例6においては、各走査ノズル群の分岐となるノズルは定めない。実施例6では走査1ノズル群の端ノズルをノズル番号29、走査2ノズル群の端に配置されるノズルをノズル番号15に定め、変化点ノズルをノズル番号19に定めている。そして、ノズル番号29の吐出率を25%、ノズル番号19の吐出率を100%、ノズル番号15の吐出率を100%にそれぞれ定めている。
 次に、後半走査ノズル群の吐出率を求めるが、その求め方は既に説明した通りであるため、説明を省略する。
 図64は、実施例6のノズル吐出率の設計方法に従って設計されたノズル吐出率のグラフである。図64の横軸はノズル番号を表し、縦軸は吐出率を表す。
 図65は、図64に示されたノズル吐出率に基づく吐出率パターンを示す図である。図66は、図65に示された吐出率パターンに基づく単位面積あたりの平均吐出率を示すグラフである。図66の横軸は副走査方向の位置をラスタ番号によって表している、縦軸は単位面積あたりの平均吐出率を表す。図66に示されるように、単位面積あたりの平均吐出率は、概ね均一になっている。
 《ノズル吐出率の設計方法のまとめ》
 以上、実施例1~6を示して種々の設計例を説明したが、ここでもう一度、ノズル吐出率の設計方法をまとめて整理しておく。
 手順1:まず、前半走査ノズル群の吐出率を任意に設計する。ここで、隣接するノズル間の吐出率の差が小さく連続的になるように設計する。
 手順2:次に、前半走査ノズル群と補完関係になるように後半走査ノズル群の吐出率を求める。この手順2は、以下に示す手順21から手順24を含む。
 手順21:まず後半走査の最後の走査の端ノズルの吐出率を、前半走査の最初の走査の端ノズルの吐出率と同じ値に定める。
 図34の例だと、走査4のノズル番号0の吐出率を、走査1のノズル番号29の吐出率と同じ値に定める。
 手順22:そして、後半走査の最後の走査の各ノズル吐出率を前半走査の対となる走査と補完関係となるように求める。
 図35の例の場合、走査4の吐出率を、対となる走査1と補完関係となるよう求める。ここで、図45の例のように前半走査と後半走査の各走査の補完関係が一対一でなく、一対二、一対三....などである場合は、その補完関係に応じて和をとった吐出率と補完関係となるように求める。
 手順23:次に、隙間ノズルがある場合は隙間ノズルの吐出率と次の走査の端となるノズルの吐出率を求め、隙間ノズルがない場合は次の走査の端となるノズルの吐出率を求める。
 図35の例の場合、隙間ノズル番号7があるので、隙間ノズル番号7と次の走査3の端となるノズル番号8の吐出率を求める。この場合の吐出率の求め方は、前半走査において、補完関係となる走査の端から次の補完関係の走査の端へと移る際の吐出率の変化と同じだけ、後半走査における現在の走査の端から次の走査の端へ移る際に吐出率が変化するように求める。なお、後半走査における現在の走査と次の走査の、前半走査における補完関係となる走査との対応関係によっては、変化の正負を逆にする。
 図35の例の場合、前半走査の走査1の端のノズル番号23から隙間ノズル番号22に吐出率が9.375%増えるので、後半走査の走査4の端のノズル番号6から隙間ノズル番号7も9.375%増やして隙間ノズル番号7の吐出率を90.625%とする。また、前半走査の隙間ノズル番号22から走査2の端となるノズル番号21に吐出率が9.375%増えるので、後半走査の走査4の隙間ノズル番号7から走査3の端となるノズル番号8も9.375%増やしてノズル番号8の吐出率を100%とする。
 後半走査の隙間ノズル及び後半走査の各走査の端となるノズルの吐出率を、このように求める目的は、前半走査と後半走査における中央ノズルの吐出率を一致させて段差を生じさせないためである。図34の例の場合、ノズル番号15が前半走査の中央ノズルに相当し、ノズル番号14が後半走査の中央ノズルに相当する。
 後半走査における各隙間ノズル及び各走査の端となるノズルにおける吐出率の変化を、前半走査における各隙間ノズル及び各走査の端となるノズルにおける吐出率の変化と一致させることにより、ノズル列の中央付近で隣接する前半走査の中央ノズルと後半走査の中央ノズルの吐出率を一致させる。後半走査における各走査ノズル群における吐出率の変化については、前半走査の補完関係の各走査ノズル群における吐出率の変化と一致する。
 また、前半走査ノズル群の吐出率は、隣接ノズル間の吐出率の差が小さく連続的になるように設計されているため、後半走査における各隙間ノズル及び各走査の端における吐出率の変化を前半走査における吐出率の変化と一致させることにより、後半走査ノズル群においても、概ね隣接ノズル間の吐出率の差を小さく連続的になるように設計することができる。
 もちろん、前半走査と後半走査の各走査の補完関係が一対一でなく、一対二、一対三....などの場合は、補完関係となる複数の走査の吐出率の和をとった吐出率から次の補完関係の走査の端へと移る際の吐出率の変化と同じだけ、後半走査における現在の走査の端から次の走査の端へ移る際に吐出率が変化するように求める。
 手順24:以上の手順で、後半走査の最後の走査の各ノズル吐出率を求め、また隙間ノズルがある場合は隙間ノズルの吐出率と次の走査の端となるノズルの吐出率、隙間ノズルがない場合は次の走査の端となるノズルの吐出率を求めた後に、次の走査の各ノズル吐出率を前半走査の対となる走査と補完関係となるように求める。図35の例だと、走査3の吐出率を、対となる走査2と補完関係となるよう求める。
 手順24の手順を繰り返して、後半走査ノズル群の吐出率を求めることができる。
 〈後半走査ノズル群の吐出率の求め方〉
 手順21から手順24で説明した後半走査ノズル群の吐出率の求め方を整理すると、以下の手順に従い後半走査ノズル群の吐出率を求めることができる。
 手順31:後半走査の最後の走査の端ノズルの吐出率を定める。
 手順32:前半走査と補完関係になるように最後の走査の各ノズル吐出率を求める。
 手順33:前半走査と同じだけ吐出率が変化するように隙間ノズル及び最後から2番目の走査の端となるノズルの吐出率を求める。
 手順34:前半走査と補完関係になるように、最後から2番目の走査の各ノズル吐出率を求める。
 手順35:前半走査と同じだけ吐出率が変化するように隙間ノズル及び最後から3番目の走査の端となるノズルの吐出率を求める。
 手順36:前半走査と補完関係になるように、最後から3番目の走査の各ノズル吐出率を求める。
 以下、同様の手順を繰り返して、後半走査における最初の走査の走査ノズル群まで、すべての走査ノズル群の吐出率を求めて、後半走査ノズル群の吐出率を得る。
 後半走査ノズル群が1つの走査ノズル群のみで構成される場合は、手順33以降の手順は省略される。後半走査ノズル群が2つの走査ノズル群のみで構成される場合は、手順35以降の手順は省略される。
 〈後半走査ノズル群の吐出率の求め方の変形例〉
 手順31から手順36によって示した手順は、最後の走査の走査ノズル群から、各ノズルの吐出率を求める手順であるが、逆に中央ノズルを含む最初の走査の走査ノズル群から各ノズルの吐出率を求める手順でもよい。この場合は、以下に示す手順となる。
 手順41:後半走査の最初の走査の中央ノズルの吐出率を定める。
 手順42:前半走査と補完関係になるように最初の走査の各ノズルの吐出率を求める。
 手順43:前半走査と同じだけ吐出率が変化するように隙間ノズル及び最初から2番目の走査の端となるノズルの吐出率を求める。
 手順44:前半走査と補完関係になるように最初から2番目の走査の各ノズルの吐出率を求める。
 手順45:前半走査と同じだけ吐出率が変化するように隙間ノズル及び最初から3番目の走査の端となるノズルの吐出率を求める。
 手順46:前半走査と補完関係になるように、最初から3番目の走査の各ノズル吐出率を求める。
 以下、同様の手順を繰り返して、後半走査における最後の走査の走査ノズル群まで、すべての走査ノズル群の吐出率を求めて、後半走査ノズル群の吐出率を得る。
 後半走査ノズル群が1つの走査ノズル群のみで構成される場合は、手順43以降の手順は省略される。後半走査ノズル群が2つの走査ノズル群のみで構成される場合は、手順45以降の手順は省略される。
 手順41から手順46によって示した手順の場合、手順41において、初めに後半走査の最初の走査の中央ノズルの吐出率として、前半走査の中央ノズルの吐出率と同じ値を定めることとなる。例えば図35の例の場合、後半走査の中央ノズルであるノズル番号14の吐出率として、前半走査の中央ノズルであるノズル番号15の吐出率100%と同じ値を定める。手順42以降の求め方は、既に説明した求め方と同様であるため、説明を省略する。
 《ノズル吐出率の設計を支援するノズル吐出率設計支援装置について》
 上述した本開示によるノズル吐出率の設計方法に従い、目標とする特定の条件を満たす各ノズルのノズル吐出率を決定する処理等を行うためのノズル吐出率設計支援装置は、コンピュータのハードウェアとソフトウェアの組み合わせによって実現できる。すなわち、上述した本開示によるノズル吐出率の設計方法の各手順は、コンピュータによって実行することができる。
 手順1、手順2及び手順21~手順24、並びに手順31~手順36の各手順に対応する処理の機能をコンピュータに実現させるプログラムをコンピュータに実行させることにより、吐出率パターンの単位面積あたりの平均吐出率が均一化される各ノズルのノズル吐出率を決定することができる。
 また、手順31~36に代えて、手順41~手順46の各手順に対応する処理の機能をコンピュータに実現させるプログラムをコンピュータに実行させることにより、吐出率パターンの単位面積あたりの平均吐出率が均一化される各ノズルのノズル吐出率を決定することができる。
 ノズル吐出率設計支援装置は、後述するディザマスク生成装置の内部に組み込まれていてもよいし、ディザマスク生成装置とは別体の個別の装置として構成されてもよい。
 《各走査ノズル群及び隙間ノズルについて》
 各走査バンドにおいて各単位領域を記録する各走査のノズル群は、各走査バンドの設定の仕方によって変わる。図33の走査方法の例で説明する。
 図67は、図33に示した初めの走査バンドを抜粋した図である。これまでの説明では、各走査バンドにおいて最後の走査のノズル番号0のラスタを1行目とする走査バンド[1]の範囲を「走査バンド」と見做して説明してきた。
 しかしながら「走査バンド」と見做せる範囲は、走査バンド[1]の他にもある。各走査バンドにおいて最初の走査の最後のノズルと、最後の走査の最初のノズルを含む必要はあるが、走査バンドの範囲の設定の仕方は複数あり得る。例えば、図67の場合、最初の走査の最後のノズルであるノズル番号29と最後の走査の最初のノズルであるノズル番号0を含む走査バンドの範囲の他の設定として、走査バンド[2]の範囲とする設定の仕方がある。この場合のノズルパターンと、各単位領域を記録する各走査のノズルを図68及び図69に示す。
 図68は、走査バンドの範囲について図67に示した走査バンド[2]の設定を採用した場合のノズルパターンである。
 図69は、走査バンドの範囲について図67に示した走査バンド[2]の設定を採用した場合の各単位領域を記録する各走査のノズルを示した図表である。
 図34と図69とを比べると、各単位領域を記録する各走査のノズルの組み合せが異なること、また隙間ノズルも異なることがわかる。このように、走査バンドの範囲の設定の仕方によって各走査ノズル群や隙間ノズルが異なる。
 しかしながら、走査バンドの範囲について何れの設定の仕方を採用しても、既に説明したノズル吐出率の設計方法によって、同じように各ノズル吐出率を設計することができる。
 《インクジェット記録装置の構成例》
 図70は、インクジェット記録装置の構成例を示す外観斜視図である。インクジェット記録装置10は、シリアル式インクジェットプリンタの一例であり、紫外線硬化型インクを用いて記録媒体12にカラー画像を記録するワイドフォーマットプリンタである。本発明の適用に際して、インクジェット記録装置の形態は本例に限定されない。
 インクジェット記録装置10は、装置本体20と、装置本体20を支持する支持脚22とを備えている。装置本体20には、記録ヘッド24と、プラテン26と、ガイド機構28と、キャリッジ30とが設けられている。
 記録ヘッド24は、記録媒体12に向けてインクを吐出するドロップオンデマンド型のインクジェットヘッドである。「記録ヘッド」という用語は、印刷ヘッド、印字ヘッド、プリントヘッド、描画ヘッド、インク吐出ヘッド、液体吐出ヘッド、液滴吐出ヘッド、又は、液滴噴射ヘッドなどの用語と同義である。また、「インクジェット記録装置」という用語は、インクジェット印刷装置、インクジェット印刷機、インクジェットプリンタ、又は、インクジェット式画像形成装置などの用語と同義である。「記録」は、印刷、印字、プリント、描画、又は、画像形成の意味を包括する用語として用いる。
 記録媒体12には、紙、不織布、塩化ビニル、合成化学繊維、ポリエチレン、ポリエステル、又はターポリンなど材質を問わず、様々な媒体を用いることができる。記録媒体12は、浸透性媒体であってもよいし、非浸透性媒体であってもよい。「記録媒体」という用語は、インクが付着される媒体の総称であり、印字媒体、被記録媒体、被画像形成媒体、受像媒体、被吐出媒体、プリントメディア、記録用紙、又は、印刷用紙など様々な用語で呼ばれるものが含まれる。
 プラテン26は、記録媒体12を支持する部材である。ガイド機構28及びキャリッジ30は、記録ヘッド24を移動可能に支持するヘッド移動手段として機能する。ガイド機構28は、プラテン26の上方において、記録媒体12の搬送方向と交差する方向であって、かつプラテン26の媒体支持面と平行な方向であるヘッド走査方向に沿って延在して配置されている。プラテン26の上方とは、重力方向を「下方」として、プラテン26よりも上側の高い位置であることを意味する。記録媒体12の搬送方向を「用紙送り方向」と呼ぶ場合がある。また、用紙送り方向と直交する方向であって、かつ記録媒体12の記録面に平行な方向を「用紙幅方向」と呼ぶ場合がある。
 キャリッジ30は、ガイド機構28に沿って用紙幅方向に往復移動可能に支持されている。キャリッジ30の往復移動方向と平行な方向が「主走査方向」に相当する。また、記録媒体12の搬送方向と平行な方向が「副走査方向」に相当する。つまり、用紙幅方向が主走査方向、用紙送り方向が副走査方向である。図70において、副走査方向をX方向と表記し、主走査方向をY方向と表記している。
 キャリッジ30には、記録ヘッド24と、仮硬化光源32A,32Bと、本硬化光源34A,34Bとが搭載されている。記録ヘッド24と、仮硬化光源32A,32Bと、本硬化光源34A,34Bとは、ガイド機構28に沿ってキャリッジ30と共に一体的に移動する。キャリッジ30をガイド機構28に沿って主走査方向に往復移動させることにより、記録ヘッド24を記録媒体12に対して主走査方向に相対移動可能である。
 仮硬化光源32A,32Bは、記録媒体12上に着弾したインクを仮硬化させるための紫外線を照射する。仮硬化とは、打滴直後のインク滴の移動や変形を阻止する程度に、インクを部分的に硬化させることをいう。仮硬化の工程は、「部分硬化」、「半硬化」、「ピニング(pinning)」或いは「セット(set)」などと呼ばれる場合がある。本明細書では「仮硬化」という用語を用いる。
 一方、仮硬化後に、さらなる紫外線照射を行い、インクを十分に硬化させる工程は「本硬化」或いは「キュアリング(curing)」と呼ばれる。本明細書では、「本硬化」という用語を用いる。本硬化光源34A,34Bは、仮硬化後に追加露光を行い、最終的にインクを本硬化させるための紫外線を照射する光源である。
 装置本体20には、インクカートリッジ36を取り付けるための取り付け部38が設けられている。インクカートリッジ36は、紫外線硬化型インクを貯留する交換自在なインクタンクである。インクカートリッジ36は、インクジェット記録装置10で使用される各色のインクに対応して設けられている。本例のインクジェット記録装置10は、シアン(C)、マゼンタ(M)、イエロー(Y)、及び黒(K)の4色のインクを用いる構成である。色別の各インクカートリッジ36は、それぞれ独立に形成された不図示のインク供給経路によって記録ヘッド24に接続される。各色のインク残量が少なくなった場合にインクカートリッジ36の交換が行われる。
 なお、図示を省略するが、装置本体20の正面に向かって右側には、記録ヘッド24のメンテナンス部が設けられている。メンテナンス部は、非印字時における記録ヘッド24の保湿やノズル吸引のためのキャップと、記録ヘッド24のインク吐出面であるノズル面を清掃するための払拭部材が設けられている。払拭部材には、ブレード及び/又はウエブを用いることができる。
 [記録媒体搬送路の構成]
 図71は、インクジェット記録装置10の記録媒体搬送路を模式的に示す模式図である。図71に示すように、プラテン26は、その上面が記録媒体12の支持面となる。プラテン26の位置に対して、用紙送り方向の上流側にニップローラ40が配設されている。
 本例の記録媒体12は、ロール状に巻かれた連続用紙(巻取紙ともいう。)の形態で供給される。供給側のロール42から送り出された記録媒体12は、ニップローラ40によって搬送される。記録ヘッド24の直下に到達した記録媒体12に対して、記録ヘッド24により画像が記録される。記録ヘッド24の位置よりも用紙送り方向の下流側には、画像記録後の記録媒体12を巻き取る巻取ロール44が設けられている。また、プラテン26と巻取ロール44との間の記録媒体12の搬送路にはガイド46が設けられている。
 本実施形態のインクジェット記録装置10では、供給側のロール42から送り出された記録媒体12がプラテン26を経由して巻取ロール44に巻き取られるロール・ツー・ロール方式の用紙搬送手段が採用されている。ただし、発明の実施に際して、用紙搬送手段の構成はこの例に限らない。例えば、巻取ロール44を省略した形態や、記録媒体12を所望のサイズに切断するカッターを備える形態なども可能である。また、記録媒体12は、連続用紙に限らず、1枚ずつ分離されたカット紙(つまり、枚葉紙)の形態であってもよい。
 プラテン26の裏面側、すなわち、プラテン26における記録媒体12を支持する媒体支持面と反対側には、画像記録中の記録媒体12の温度を調整する温調部50が設けられている。この温調部50による温度調整により、記録媒体12に着弾したインクの粘度や、表面張力等の物性値が所望の値になり、所望のドット径を得ることが可能となる。また、温調部50の用紙送り方向の上流側にプレ温調部52が設けられ、温調部50の用紙送り方向の下流側にアフター温調部54が設けられている。なお、プレ温調部52及び/又はアフター温調部54を省略する構成も可能である。
 [記録ヘッドの構成例]
 図72は、キャリッジ30上に配置される記録ヘッド24と仮硬化光源32A,32Bと本硬化光源34A,34Bとの配置形態の例を示す平面透視図である。図73は、記録ヘッド24の拡大図である。なお、図73において用紙送り方向は図の下から上の向かう方向である。
 図72及び図73に示すように、記録ヘッド24には、シアン(C)、マゼンタ(M)、イエロー(Y)、黒(K)の各色のインクごとに、それぞれ色のインクを吐出するためのノズル62(図4参照)が副走査方向に配列されてなるノズル列61C,61M,61Y,61Kが設けられている。
 図72ではノズル列を点線により示し、ノズルの個別の図示は省略している。図72に示した記録ヘッド24では、図72の左からイエローのノズル列61Y、マゼンタのノズル列61M、シアンのノズル列61C、黒のノズル列61Kの順で各ノズル列が配置されている例を示しているが、インク色の種類(色数)や色の組み合わせについては本実施形態に限定されない。
 例えば、CMYKの4色に加えて、ライトシアンやライトマゼンタなどの淡インクを用いる構成、或いは、淡インクに代えて又はこれと組み合わせて、さらに他の特別色のインクを用いる構成も可能である。使用されるインク色の種類に対応して、該当するインクを吐出するノズル列を追加する形態とすることが可能である。また、色別のノズル列の配置順序については、特に限定はない。ただし、複数のインク種のうち、紫外線に対する硬化感度が相対的に低いインクのノズル列を仮硬化光源32A又は32Bに近い側に配置する構成が好ましい。
 本実施形態では、色別のノズル列61C,61M,61Y,61Kごとにヘッドモジュールを構成し、これらを並べることによって記録ヘッド24を構成している。具体的には、イエローインクを吐出するノズル列61Yを有するヘッドモジュール24Yと、マゼンタインクを吐出するノズル列61Mを有するヘッドモジュール24Mと、シアンインクを吐出するノズル列61Cを有するヘッドモジュール24Cと、黒インクを吐出するノズル列61Kを有するヘッドモジュール24Kと、をキャリッジ30の往復移動方向(つまり主走査方向)に沿って並ぶように等間隔に配置している。
 色別のヘッドモジュール24Y,24M,24C,24Kのモジュール群の全体を「記録ヘッド」と解釈してもよいし、各ヘッドモジュールをそれぞれ「記録ヘッド」と解釈することも可能である。また、色別のヘッドモジュール24Y,24M,24C,24Kを組み合わせる構成に代えて、一つの記録ヘッドの内部で色別にインク流路を分けて形成し、1ヘッドで複数色のインクを吐出するノズル列を備える構成も可能である。
 図73に示したように、ノズル列61C,61M,61Y,61Kのそれぞれは、複数個のノズル62が副走査方向に一定の間隔で並んで配列されたものとなっている。図73では、色別のノズル列61C,61M,61Y,61Kにそれぞれ30個のノズル62が配列されている例が示されている。各ノズル62にはノズル番号0~29が付与されている。
 本例のノズル番号は、ノズル列における副走査方向の一端側から他端側に向かって順番に連続番号により各ノズル62に付与されている。本例では、ノズル番号を0番から開始しているが、ノズル番号の先頭番号は1番でもよい。先頭番号は0以上の任意の整数とすることができる。ノズル番号は、各ノズル62の位置を表す識別番号として用いることができる。
 また、本例では30個のノズル62が副走査方向に沿って一列に並んだノズル列を示したが、ノズル列を構成するノズル数並びにノズルの配置形態はこの例に限らない。例えば、複数列のノズル列を組み合わせた二次元ノズル配列により、副走査方向に等間隔でノズルが並ぶノズル列を形成することが可能である。
 記録ヘッド24のインク吐出方式としては、圧電素子の変形によってインクを飛ばすピエゾジェット方式が採用されている。吐出エネルギー発生素子として、圧電素子に代えて、静電アクチュエータを用いる構成も可能である。また、ヒータなどの発熱体(加熱素子)を用いてインクを加熱して気泡を発生させ、その圧力でインク滴を飛ばすサーマルジェット方式を採用することも可能である。紫外線硬化型インクは、一般に溶剤インクと比べて高粘度であるため、紫外線硬化型インクを使用する場合には、吐出力が比較的大きなピエゾジェット方式を採用することが好ましい。
 記録ヘッド24は、主走査方向に移動しながら記録媒体12に対してインクを吐出して、記録媒体12の副走査方向に一定長さを有する領域に画像記録を行う。そして、この画像記録後に記録媒体12が副走査方向に一定量移動されると、記録ヘッド24は、次の領域に同様の画像記録を行い、以下、記録媒体12が副走査方向に一定量移動されるごとに同様の画像記録を繰り返し行って記録媒体12の記録領域の全面にわたって画像記録を行うことができる。
 このように、記録ヘッド24はシリアル方式の記録ヘッドである。本実施形態のインクジェット記録装置10は、複数回の主走査方向への記録ヘッド24の走査により、所定の記録解像度を実現するマルチパス方式を採用している。
 [インクジェット記録装置の制御系の構成]
 図74は、インクジェット記録装置10の構成を示すブロック図である。図74に示すように、インクジェット記録装置10は制御装置102を備える。制御装置102として、例えば、中央演算処理装置(CPU:central processing unit)を備えたコンピュータを用いることができる。制御装置102は、情報記憶部124から読み出した各種プログラムを実行することにより、インクジェット記録装置10の全体を統括制御する。
 制御装置102には、記録媒体搬送制御部104と、キャリッジ駆動制御部106と、光源制御部108と、画像処理部110と、吐出制御部112と、が含まれる。これらの各部は、ハードウェア又はソフトウェア、若しくはこれらの組み合わせによって実現することができる。「ソフトウェア」は、「プログラム」、又は「アプリケーション」と同義である。
 記録媒体搬送制御部104は、記録媒体12の搬送を行う搬送駆動部114を制御する。搬送駆動部114は、ニップローラ40(図71参照)を駆動する駆動用モータ、及びその駆動回路が含まれる。記録媒体搬送制御部104は、副走査駆動部としての役割を果たす。プラテン26上に搬送された記録媒体12は、記録ヘッド24による主走査方向の走査(印刷パスの動き)に合わせて、スワス幅単位で副走査方向へ間欠送りされる。なお、スワス幅とは、キャリッジ30の往復移動による走査の繰り返し周期によって決められる副走査方向の長さであり、ノズル列の副走査方向における長さであるノズル列長を、走査の繰り返し回数であるパス数で除算して求められる。「スワス」は、走査バンドと同じ意味である。走査の繰り返し回数であるパス数は、設定された記録解像度の描画を完成させるために必要な走査回数であり、作画モードによって定まる。作画モードの詳細は後述する。
 キャリッジ駆動制御部106は、キャリッジ30を主走査方向に移動させる主走査駆動部116を制御する。主走査駆動部116は、キャリッジ30の移動機構に連結される駆動用モータ、及びその制御回路が含まれる。
 前述の主走査駆動部116の駆動用モータ及び搬送駆動部114の駆動用モータには、エンコーダ130が取り付けられている。エンコーダ130は、各駆動モータの回転量及び回転速度に応じたパルス信号を制御装置102に入力する。これにより、制御装置102は、エンコーダ130から入力されるパルス信号に基づいて、キャリッジ30の位置及び記録媒体12の位置を把握することができる。
 光源制御部108は、光源駆動回路118を介して仮硬化光源32A,32Bの発光を制御し、かつ光源駆動回路119を介して本硬化光源34A,34Bの発光を制御する。
 画像処理部110は、画像入力インターフェース126を介して入力された画像データに画像処理を施して、印刷用のドットデータに変換する。図5では表記の簡略化のために、インターフェースという記載に代わる代替表記として、「IF」という簡易表記を用いている。IFは、「interface」の略語表記である。
 画像処理部110は、ディザ法によるハーフトーン処理を実施するハーフトーン処理部として機能する。すなわち、画像処理部110は、入力された画像データである連続調画像に対して、ディザマスクを用いて画素値の量子化処理を行い、印刷用のドットデータに対応するハーフトーン画像を生成する。画像処理部110のハーフトーン処理に用いられるディザマスクは、本開示によるノズル吐出率の設計方法を適用して設計されたノズル吐出率を反映して生成されたものである。ディザマスクの生成方法の例については後述する。
 吐出制御部112は、画像処理部110において生成されたドットデータに基づいて、記録ヘッド24を駆動するヘッド駆動回路128を制御することにより、記録ヘッド24の各ノズル62からのインクの吐出を制御する。制御装置102は、記録制御部の一形態である。画像処理部110がハーフトーン処理を行う工程は、ハーフトーン処理工程の一例に相当する。制御装置102により、画像記録動作を制御する工程が記録制御工程の一例に相当する。インクジェット記録装置10が記録媒体に画像を記録するプロセスが、画像記録方法の一形態に相当する。
 情報記憶部124は、例えば不揮発性メモリが用いられており、制御装置102の制御に必要な各種プログラムや各種データを格納している。例えば、情報記憶部124は、プログラムとして、制御装置102の各部が実行する制御プログラム、及び走査パターンプログラムなどを格納している。走査パターンプログラムは、マルチパス方式の画像記録用のプログラムであり、副走査方向に間欠搬送される記録媒体12に対する記録ヘッド24の主走査方向の往復走査(印刷パスの動き)やパス数(走査の繰り返し回数)を規定する。主走査方向への記録ヘッド24の移動を伴う印刷パスの動きには、ドット形成時の記録ヘッド24の移動方向、インクを吐出させるノズルの選択、及び、吐出タイミングの少なくとも1つが含まれる。印刷パスの動きとパス数の組み合わせによって定まる走査のパターンを「走査パターン」と呼ぶ。
 制御装置102には、入力装置122及び表示装置120が接続されている。入力装置122には、例えば、キーボード、マウス、タッチパネル、又は操作ボタンなど、各種の手段を採用することができ、これらの適宜の組み合わせであってもよい。入力装置122は、ユーザであるオペレータの手動による外部操作信号を制御装置102へ入力する。
 表示装置120には、液晶ディスプレイなどが用いられる。オペレータは、入力装置122を使って各種情報の入力を行うことができる。また、オペレータは、入力内容その他の各種情報やシステムの状態等を表示装置120における表示を通じて確認することができる。
 センサ132は、キャリッジ30に取り付けられている。制御装置102は、センサ132から入力されるセンサ信号に基づいて記録媒体12の幅を把握することができる。
 [マルチパス方式の画像記録方法の説明]
 図75は、マルチパス方式の画像記録方法の一例を説明するための説明図である。ここでは、説明を簡単にするために、記録ヘッド24の構成を単純化し、記録ヘッド24のノズル列は一列のみとし、一列のノズル列61で記録する場合を例に説明する。ノズル列61は、図73で説明したノズル列61C,61M,61Y,61Kのいずれか一列を代表して表したものと理解することができる。
 また、記録媒体を副走査方向へ間欠送りする構成について、図示の便宜上、図75では記録媒体を停止させ、記録ヘッド24を副走査方向に間欠移動させるように図示している。なお、図75では記録媒体の図示を省略し、記録ヘッド24の動きのみを示した。図75における左右方向が主走査方向である。図75における縦方向が副走査方向である。
 図75に示すように、記録ヘッド24が主走査方向に移動している時にノズル62からインクの吐出が行われる。また、既に説明したとおり、主走査方向に沿った記録ヘッド24の往復移動と、副走査方向への記録媒体の間欠送りとの組み合わせによって、記録媒体上に二次元の画像記録が行われる。「画像記録」という用語は、描画、作画、印刷、又は画像形成という用語に置き換えてもよい。
 記録ヘッド24が主走査方向に移動しつつ、ノズル62からインクの吐出を行ってドットの記録を行う主走査動作には、主走査方向の往路パスで行う走査と、復路パスで行う走査とがあり得る。往路及び復路の両方向の走査によって画像を記録してもよいし、往路又は復路のいずれか一方向のみの走査によって画像を記録してもよい。なお、往路及び復路の両方向の走査を行う場合、1往復の走査は、往路走査と復路走査の2回の走査が実施されると数える。
 Nを自然数として、N回の走査によって所望の記録解像度の画像を完成させる場合、(N+1)走査目の記録媒体と記録ヘッド24との相対的な位置関係(ここでは、副走査方向の位置関係)は、図75に示すような関係になる。つまり、N回書きで所望の記録解像度の画像記録を行うために、1回目、2回目、3回目、・・・と副走査方向に記録媒体を間欠送りし、ちょうど(N+1)回目にノズル列の長さ分に対応した位置に繋がるような位置関係とされる。N回書きの動作がシームレスに繋がるためには、1走査目の副走査方向位置から「ノズル列長+1ノズルピッチ」分だけ副走査方向に移動して(N+1)走査目が行われる。「ノズル列長さ」とは、ノズル62が副走査方向に並んで配列されたノズル列61の副走査方向の長さであり、ノズル列の両端に位置するノズルのノズル間距離に相当する。「ノズルピッチ」とはノズル列における副走査方向のノズル間隔である。
 一例として、ノズル配列密度100npiでノズル62が並んだノズル列61を有する記録ヘッド24を用いて、主走査方向2パス×副走査方向4パスの8パス(8回書き)により主走査600dpi×副走査400dpiの記録解像度を実現する場合を考える。npi(nozzle per inch)は、1インチ当りのノズル数を表す単位である。dpi(dot per inch)は、1インチ当りのドット数を表す単位である。1インチは約25.4ミリメートルである。
 ここで、記録解像度から定まる打滴点の間隔を「打滴点間隔」と呼び、記録可能な打滴点の位置を表す格子を「打滴点格子」と呼ぶ。「打滴点」は、ドットの記録又は非記録を制御できる「画素」と同義である。「打滴点間隔」は「画素間隔」と同義であり、記録解像度における最小のドット間隔に相当する。「打滴点格子」は「画素格子」と同義である。「格子」は、行と列で表されるマトリクスのセルと同義である。
 主走査600dpi×副走査400dpiの記録解像度の場合、主走査方向の打滴点間隔は、25.4(ミリメートル)/600≒42.3マイクロメートル、副走査方向の打滴点間隔は、25.4(ミリメートル)/400=63.5マイクロメートルである。これは、打滴点格子の1セル(1画素相当)の大きさ「42.3マイクロメートル×63.5マイクロメートル」を表している。記録媒体12の送り制御や記録ヘッド24からの打滴位置(すなわち、打滴タイミング)の制御については、この記録解像度から定まる打滴点間隔を単位として送り量や位置が制御される。なお、記録解像度から定まる打滴点間隔を「解像度ピッチ」或いは「画素ピッチ」と呼ぶ場合がある。また、ノズルピッチは長さの単位で表すことができるが、これに代えて、副走査方向の打滴点間隔(画素ピッチ)を単位として表すことができる。例えば、副走査400dpiの記録解像度に対して、ノズル配列密度が100npiである場合、ノズルピッチは、副走査方向の画素ピッチの4倍であることから、副走査方向の画素ピッチを単位として、ノズルピッチを「4」と表現することができる。
 主走査方向2パスと副走査方向4パスによるN=8の場合、主走査方向の打滴点ラインを2回の走査で埋め、副走査方向の打滴点ラインを4回の走査で埋めるように、8回の走査(つまり8パス)で2×4個の打滴点格子の記録が行われる。「打滴点ライン」とは、走査線を意味し、ラスタと同義である。
 図76は、このような8回書きの描画動作による各走査の番号(1から8)と、その走査によって記録される打滴位置の関係を模式的に示した模式図である。図76において、1から8の数字が付された各セルは、ノズルによって記録される打滴位置(画素位置)を表し、1~8の数字は、その画素位置が第何回目の走査時に記録されるかという走査の番号を表している。例えば、「1」の数字が付されたセル(画素)は、1走査目で記録する打滴位置を表している。
 図76から明らかなように、各打滴位置を記録する走査順番を表す1から8の数字の配置分布は、主走査方向2×副走査方向4の「2×4」の格子が繰り返しの基本単位となっている。この2×4の格子を「基本単位格子」あるいは「2×4格子」と呼ぶ。「基本単位格子」は、「単位領域」と同じ意味である。2×4格子の埋め方(打滴順序)は、図76に示した例に限らず、種々想定することができる。
 作画モードに応じて、記録解像度と走査パターンが定まり、基本単位格子のセル数、セルの配列形態、並びに、各セルの走査の番号が決定される。走査の番号は、走査順番を表す。
 [作画モードの例]
 既に説明したように、インクジェット記録装置10は、マルチパス方式の描画制御が適用され、印刷パス数の変更によって記録解像度を変更することが可能である。例えば、高生産モード、標準モード、及び高画質モードの3種類のモードが用意され、各モードでそれぞれ記録解像度が異なる。記録解像度は「印字解像度」と同義である。印刷目的や用途に応じて作画モードを選択することができる。「作画モード」という用語は、「印刷モード」に置き換えてもよい。
 簡単な数値例を用いて具体的に説明する。記録ヘッド24におけるノズル列61の副走査方向のノズル配列密度が100npiであるとする。
 高生産モードの場合、主走査600dpi×副走査400dpiの記録解像度で記録が行われ、主走査方向は2パス、つまり2回の走査によって600dpiの記録解像度による記録が実現される。すなわち、1回目の走査では300dpiの解像度でドットが形成される。1回目の走査は、例えば、キャリッジ30の往路によって行われる。2回目の走査では1回目の走査で形成されたドットの中間を300dpiで補完するようにドットが形成され、主走査方向について600dpiの解像度が得られる。2回目の走査は、例えば、キャリッジ30の復路によって行われる。
 一方、副走査方向については、ノズルピッチが100npiであり、1回の主走査により副走査方向に100dpiの解像度でドットが形成される。したがって、4パス印字(4回の走査)により補完印字を行うことで400dpiの記録解像度が実現される。
 標準モードでは、600dpi×800dpiの記録解像度で記録が実行され、主走査方向は2パス印字、副走査は8パス印字により600dpi×800dpiの解像度が得られる。
 高画質モードでは、1200×1200dpiの解像度で印字が実行され、主走査方向は4パス、副走査方向が12パスにより1200dpi×1200dpiの記録解像度が得られる。
 《ハーフトーン処理に用いるディザマスクについて》
 既に説明したノズル吐出率の設計方法に従って生成された各ノズルのノズル吐出率を用いて、そのノズル吐出率を反映したディザマスクが生成される。
 ディザマスクの生成に際しては、制御目標としてのノズル吐出率を定め、デューティの増加と共に、ノズル吐出率を概ね保ったまま、ノズル絶対吐出率を増していくように、ディザマスクの各画素の閾値が設定される。
 〈ディザマスク生成方法の例〉
 図77は、実施形態に係るディザマスク生成方法の手順を示すフローチャートである。本実施形態のディザマスク生成方法は、ディザマスクの初期ドット配置を設定する工程(ステップS1)と、初期ドット配置から降順で閾値を設定する工程(ステップS2)と、初期ドット配置から昇順で閾値を設定する工程(ステップS3)と、を含む。
 図77に示したフローチャートの各工程の処理は、ディザマスク生成装置として機能するコンピュータによって行われる。コンピュータは、プログラムを実行することによりディザマスク生成装置として機能する。
 ここでは、ディザマスク生成方法を簡易にするため、初期ドット配置は、極めて低デューティのドット配置とし、かつ、ノズル吐出率を反映させないものとする。初期ドット配置に対応する「極めて低デューティ」の初期デューティは、例えば、0%よりも大きく、かつ1%以下の値とすることができ、より好ましくは、0.1%以上0.5%以下の値とする。この程度の低デューティであれば、ノズル吐出率の設定の影響が殆んど無視できる。初期ドット配置のデューティ(初期デューティ)については、上記に例示の数値に限らず、ノズル吐出率の設定の影響が無視できる程度に小さい値であればよい。
 ステップS1の初期ドット配置設定工程は、ディザマスクのマスクサイズと同等の画素配列の領域であるマスク領域に、予め定められた初期デューティに対応するドット数のドットを配置する。
 ステップS2に示した降順の閾値設定工程は、公知の閾値設定方法を用い、ノズル吐出率を反映させずに、各階調の閾値を設定する処理を行う工程である。「降順」とは、閾値が大きい値のものから閾値を設定し、順次、小さい値の閾値を設定していく手順である。ステップS2における「降順」は、初期ドット配置に対応する階調の閾値から、順次、小さい値の閾値を設定していく処理を意味する。
 つまり、ステップS2では、初期ドット配置から、次第にドットを取り除きながら、降順で、順次に小さな閾値を閾値未設定画素に設定していく処理を行う。降順における「閾値未設定画素とは、ドット有りの画素である。「ドット有り」とは「ドットオン」と同義である。
 ステップS3に示した昇順の閾値設定工程は、ノズル吐出率を反映させて、昇順で閾値未設定画素に閾値を設定する処理を行う工程である。「昇順」とは、閾値が小さい値のものから閾値を設定し、順次、大きい値の閾値を設定していく手順である。ステップS3における「昇順」は、初期ドット配置に対応する階調の閾値から、順次、大きい値の閾値を設定していく処理を意味する。
 なお、降順による閾値設定工程(ステップS2)と昇順による閾値設定工程(ステップS3)の順番は前後入れ替え可能である。
 図78は、昇順の閾値設定工程(図77のステップS3)に適用される昇順の閾値設定処理の例を示すフローチャートである。
 図78に示す実施形態による昇順の閾値設定処理では、まず、ノズル吐出率の設定の段階Qを初期値である「段階Q=1」に設定する(ステップS12)。本実施形態では、デューティの領域に応じて、ノズルごとのノズル吐出率を段階的に切り替えて設定するため、ノズル吐出率に段階を設けている。段階Qはノズル吐出率の段階を示す変数である。
 本実施形態では、ノズル吐出率を「優先画素設定率」として利用することができ、「ノズル吐出率」という用語は「優先画素設定率」と置き換えて理解することができる。
 図79は、段階数が4段階である場合の各段階のノズル吐出率の例を示している。図79の横軸はノズル番号を表し、縦軸はノズル吐出率を表している。図79においてQ=1のグラフは段階1、Q=2のグラフは段階2、Q=3のグラフは段階3、Q=4のグラフは段落4の各段階のノズル吐出率を示している。ここでは、ノズル数が30個である記録ヘッドを例に説明する。
 段階を示す「Q」は、ノズル吐出率の小さい順に、Q=1から、段階の最大値までの整数の値を取り得る。つまり、kを1以上の整数とする場合に、段階k+1のノズル吐出率は、段階kのノズル吐出率よりも大きい。段階1のノズル吐出率が最も低く、最後の段階のノズル吐出率(図79では段階4のノズル吐出率)は、各ノズルについて全て「100%」とする。
 Q=1、2、3の各ノズル吐出率は、本開示によるノズル吐出率の設計方法を適用して単位面積あたりの平均吐出率で吐出率パターンの分布が均一になるように設計したものである。例えば、図79のQ=2に示したノズル吐出率は、図36に示したノズル吐出率である。なお、図79のQ=1のノズル吐出率については、2種類の傾きをもつものに該当しないが、上述したノズル吐出率の設計方法の実施例と同様の手法により設計し得る。
 段階1のノズル吐出率の設定の下では、各ノズルは段階1のグラフで示されたノズル絶対吐出率の範囲でしかドットを記録することができない。つまり、各ノズルのノズル吐出率を段階1のグラフのように設定すると、その設定の下で記録できるデューティの上限は決まってくる。図79における段階1の場合、記録できるデューティの上限は概ね63%である。したがって、最大デューティ100%まで、ディザマスクの閾値を設定するためには、段階1からさらに吐出率を増加させ、最後の段階で全ノズルのノズル吐出率は全て「100%」にしなければならない。すなわち、ディザマスクの閾値未設定の画素に設定する閾値の値の増加に応じて、ノズル吐出率の設定を少なくとも2段階の複数段階に変更することが必要である。
 図79では、4段階のノズル吐出率(Q=1,2,3,4)の設定形態が例示されているが、最小の段階数は2段階である。2段階以上の任意の段階数とすることができる。
 図80はノズル数が30個の記録ヘッドの模式図である。図80に示すように、記録ヘッド24Aは30個のノズル62が副走査方向に等間隔で一列に並んだノズル列61Aを有する。ノズル列61Aの一方の端である図12の上端のノズル62から、他方の端である図12の下端に向かって、各ノズル62に対して順番に、それぞれ固有のノズル番号0、1、2…30が付与されている。ノズル列61Aのノズル配列密度は、様々な設計が可能であるが、例えば、副走査方向に300npiであるとする。
 図80に示した記録ヘッド24Aのノズル列61Aにおける各ノズル62のノズル吐出率を、例えば、図79に示すように、段階1~4の各段階のノズル吐出率に切り替えて設定することができる。本実施形態では、図79に示すQ=1のノズル吐出率を適用してデューティ50%まで閾値設定する。デューティ50%ならばQ=1のノズル吐出率でも中央ノズルの絶対吐出率が80%に抑えられるので、中央ノズルによるスジや滲みが発生しない。同様にしてQ=2のノズル吐出率を適用してデューティ65%まで閾値設定する。その場合、中央ノズルの絶対吐出率が84%に抑えられので、中央ノズルによるスジや滲みが発生しない。Q=3のノズル吐出率を適用してデューティ80%まで閾値設定する。その場合、中央ノズルの絶対吐出率が86%に抑えられるので、中央ノズルによるスジや滲みが発生しない。
 図78のステップS12において、段階Q=1に設定した後、ステップS14に進む。ステップS14では、記録ヘッド24Aにおける各ノズル62のノズル吐出率を設定する。ここで設定するノズル吐出率は、優先画素設定率の一形態に相当し、ステップS14のノズル吐出率設定工程は、優先画素設定率設定工程の一形態に相当する。段階Q=1に設定されている場合においては、図80に示した記録ヘッド24Aのノズル列61Aにおける各ノズル62のノズル吐出率を、図79の段階Q=1に示したグラフのように設定する。
 次いで、図78のステップS16において、走査パターンに従って各画素に対応するノズル番号(すなわち、ノズルパターン)を設定する。ステップS16の工程は、ディザマスクのマスクサイズと同等の画素数の画素配列を持つ画像領域(つまりマスク領域)について、インクジェット記録装置10による画像記録を行う際の走査パターンに従って、ディザマスクの各画素に対応するノズル番号を設定する処理を行う工程である。
 各画素に対応するノズル番号とは、各画素の記録を担当するノズルのノズル番号を意味する。ステップS16の工程は、ディザマスクの各画素について、それぞれ対応するノズル番号を決定することに相当する。
 mとnがそれぞれ自然数であるとし、生成目標であるディザマスクがm行×n列のマトリクスである場合には、m行×n列の二次元の画素配列からなる画像領域の各画素に対して、それぞれ対応するノズル番号を決定する。ディザマスクの各画素について、対応するノズル番号を定めたノズル番号のパターンを、ディザマスクのノズルパターンと呼ぶ。
 ステップS16の工程は、ディザマスクの各画素とそれぞれの画素位置の記録を担うノズル番号との対応関係を表すノズルパターンを設定する工程に相当し、「ノズルパターン設定工程」の一形態に相当する。
 ディザマスクのノズルパターンは、例えば、図33に示した繰り返し最小単位のノズルパターンが繰り返されるものである。
 図78のステップS16にてディザマスクのノズルパターンを設定した後、次いで、図78のステップS18に進む。ステップS18では、ステップS14で設定した段階Qのノズル吐出率と、ステップS16で設定されたノズルパターンに基づき、ドット優先画素を設定する。ステップS18は「ドット優先画素設定工程」の一形態に相当する。ドット優先画素は、ディザマスクの画素のうち閾値を設定する画素の候補となる画素群である。
 図81は、ドット優先画素の配置の例を示した図である。図81は、図79で説明した段階Q=1のノズル吐出率と、図33で説明したノズルパターンを基に設定されるドット優先画素の配置例を示している。図81に示したノズル番号は、図33の例と同じである。図33に示したノズルパターンは、副走査方向に60画素(紙送り量15画素×4回)で繰り返すが、そのうち、図81では18画素分だけ示した。
 ディザマスクのサイズは、副走査方向のサイズがノズルパターンの繰り返し最小単位の整数倍のサイズであり、かつ、主走査方向のサイズがノズルパターンの繰り返し最小単位の整数倍のサイズであることが好ましい。本例の場合、ノズルパターンが副走査方向に60画素の繰り返しのため、ディザマスクのサイズは、繰り返し最小単位の倍数、例えば、60×60画素であるとする。図81では、60×60画素のディザマスクのうちの一部である20×18画素のドット優先画素を図示している。また、図81において、吐出率の値は、小数第3位で四捨五入して、小数第2位まで表示している。
 図33で説明したノズルパターンから明らかなように、主走査方向のパス数が2である場合、60×60画素のディザマスクに対応するノズルパターンは、奇数列と偶数列とで使用されるノズルが異なる。以下、説明の便宜上、奇数列(図81の左から1列目、3列目、5列目・・・)の記録に用いるノズルを「左ノズル」とよび、偶数列(図81の左から2列目、4列目、6列目・・・)の記録に用いるノズルを「右ノズル」とよぶ。
 図81は、図79に示したノズル吐出率と、図33に示したノズルパターンを基に設定されるドット優先画素の配置の例を示している。
 図81において「左ノズル吐出率」とは、60×60画素のディザマスクに対応するノズルパターンにおける奇数列に属する画素を記録する各ノズルのノズル吐出率を意味する。また、図81において「右ノズル吐出率」とは、60×60画素のディザマスクに対応するノズルパターンにおける偶数列に属する画素を記録する各ノズルのノズル吐出率を意味する。
 「左ノズル優先画素数」とは、60×60画素のディザマスクに対応するノズルパターンにおける奇数列に属する画素からなる主走査方向ラスタ内のドット優先画素数を意味する。「右ノズル優先画素数」とは、60×60画素のディザマスクに対応するノズルパターンにおける偶数列に属する画素からなる主走査方向ラスタ内のドット優先画素数を意味する。
 図81において、ドット優先画素には、数字の「1」のフラグを付し、画素を示すセルをグレートーンで塗りつぶした。また、非ドット優先画素には数字の「0」を付した。つまり、20×18画素のマトリクス領域における「1」を付した画素はドット優先画素オン、「0」を付した画素はドット優先画素オフであることを示している。
 また、図81ではドット優先画素の配置例と共に、各ラスタを記録するノズルのノズル番号と、ノズル吐出率と、各ラスタのドット優先画素数と、を併記した。ここでの「ラスタ」とは、図81の横方向(行方向)である主走査方向に画素が並ぶ主走査方向ラスタである。
 各ラスタのドット優先画素数は、該当するラスタを記録するノズルのノズル吐出率に、「ディザマスクの主走査画素数/主走査方向パス数」を乗算して求められる。ディザマスクの主走査画素数とは、ディザマスクの主走査方向の画素数をいう。図81の例の場合、ディザマスクの主走査画素数は60画素、主走査方向パス数は「2」であるから、「ディザマスクの主走査画素数/主走査方向パス数」は30画素である。図81に示した1行目のラスタは、ノズル番号0とノズル番号15によって主走査方向パス数「2」で記録され、ノズル番号0のノズル吐出率は25%であり、ノズル番号15のノズル吐出率は100%である。したがって、1行目のラスタの左ノズル優先画素数は、25[%]×60/2=7.5と計算される。また、1行目のラスタの右ノズル優先画素数は、100[%]×60/2=30と計算される。
 ディザマスクのマスクサイズにおける全体のドット優先画素数は、各ラスタを記録する各ノズルのノズル吐出率に、ディザマスクの「主走査画素数/主走査方向パス数」を掛けて求まる各ラスタの各ノズルのドット優先画素数の総和である。各ラスタの各ノズルのドット優先画素は、ドット優先画素の発生確率がノズル吐出率に比例するように設定される。
 《ドット優先画素の設定方法の具体例》
 〈ドット優先画素の設定方法の第1例〉
 各ラスタの各ノズルのドット優先画素は、例えば、以下の条件式に従って設定される。
 [条件式1] rand()≦ノズル吐出率
 を満たす場合に限り、ドット優先画素オンとする。
 ただし、条件式1における「rand()」は、範囲が0以上100未満の乱数である。
 各画素位置において、rand()関数によって0以上100未満の範囲の乱数を等確率で発生させ、発生した乱数値であるrand()とノズル吐出率とを比較して、rand()がノズル吐出率以下である場合に、その画素をドット優先画素とする。
 条件式1に従って、ドット優先画素を定めることにより、各ノズルで記録する各ラスタにおいて、「ノズル吐出率×主走査画素数/主走査方向パス数」の数を目標個数にして乱数的に(ランダムに)ドット優先画素が設定される。
 なお、「ノズル吐出率×主走査画素数/主走査方向パス数」によって算出されるドット優先画素数と、条件式1に従って実際に設定されるドット優先画素の個数は必ずしも一致しない。
 つまり、図81に示した各ラスタの左ノズルドット優先画素数は、各ラスタにおける左ノズルのドット優先画素の目標個数であり、上述のように計算によって予め求めることができる。図81に示した各ラスタの右ノズルドット優先画素数は、各ラスタにおける右ノズルのドット優先画素の目標個数であり、上述のように計算によって予め求めることができる。ただし、実際に設定されるドット優先画素の個数は、乱数の値次第で変わりうる。
 〈ドット優先画素の設定方法の第2例〉
 条件式1を用いる以外にも、ドット優先画素を乱数的に設定する方法には種々の方法がある。例えば、まず各ノズルで記録する各ラスタにおいて設定する優先画素数を整数値で求め、次に「rand()RAND_MAX % 記録画素数」で求まる番号の画素に、1番目のドット優先画素を設定する。ここで「記録画素数」とは、各ラスタにおいて各ノズルが記録を担当する画素の数であり「主走査画素数/主走査方向パス数」に等しい。rand()RAND_MAXは、範囲0以上RAND_MAX未満の整数の乱数である。「RAND_MAX」は、少なくとも記録画素数よりも大きい整数である。例えば、RAND_MAX=65536とすることができる。「%」は剰余演算子である。a%bは、aをbで割った余りを表す。つまり、rand()RAND_MAX % 記録画素数は、範囲0以上RAND_MAX未満の整数の乱数を「記録画素数」で割った余りの数である。この演算により、0以上「記録画素数-1」以下の範囲の整数を等確率で得ることができる。図81の例では「記録画素数=30」である。
 0から29の整数を30画素の画素番号に対応付けて、「rand()RAND_MAX % 記録画素数」で求まる整数に対応する画素番号を1番目のドット優先画素とする。
 次に、1番目のドット優先画素を除いて、rand()RAND_MAX %(記録画素数-1)で求まる整数に対応する番号の画素に2番目のドット優先画素を設定する。図81の例では「記録画素数=30」であり、0から28の整数を、1番目のドット優先画素を除いた29画素の画素番号に対応付けて、rand()RAND_MAX %(記録画素数-1)で求まる整数に対応する画素番号を2番目のドット優先画素とする。以下同様にして、1番目と2番目のドット優先画素を除いて、rand()RAND_MAX %(記録画素数-2)で求まる整数に対応する番号の画素に3番目のドット優先画素を設定する。4番目以降も順次、同様の手順でドット優先画素数の個数だけドット優先画素を設定していくことができる。
 ドット優先画素の設定に際して、前の段階までに設定された閾値の画素を、当該段階におけるドット優先画素に含めてもよいし、含めなくてもよい。ドット優先画素の設定において、前の段階までに設定された閾値の画素を考慮する場合、既述した第2例による設定方法では、当該段階におけるドット優先画素の候補となる画素から前の段階までに設定された閾値の画素を除くと共にドット優先画素数から閾値の個数を除いておく。
 ドット優先画素の設定方法に関して、第1例及び第2例では、rand()関数を用いる例を示したが、ドット優先画素を乱数的に設定する方法にも種々の方法があり、rand()関数を用いる形態に限定されない。
 〈ドット優先画素の設定方法の第3例〉
 また、ドット優先画素の設定方法は、乱数的に設定する方法に限らず、規則的な間隔で設定する方法もあり得る。以下に規則的な間隔でドット優先画素を設定する方法の例を説明する。
 例えば、各ラスタにおける各ノズルの吐出画素間隔を1として、「1/ノズル吐出率」を規則的な間隔と定め、「1/ノズル吐出率」の整数倍の値を整数値に丸めた番号の画素にドット優先画素を設定してもよい。吐出画素間隔とは、各ラスタにおける各ノズルの吐出の間隔であり、主走査方向パス数が1ならば1画素、主走査方向パス数が2ならば2画素に相当する。
 図81の例に当てはめて説明する。図81において、例えば2行目のラスタの左ノズルについてはノズル吐出率が67.86%であるため、1/67.86[%]=1.47の整数倍の値を整数値に丸めた番号の画素にドット優先画素を設定することになる。ここで図81では、主走査方向パス数が2であるため、吐出画素間隔の「1」とは2画素に相当する。したがって、整数値の丸め方を四捨五入とした場合、左端画素を1番目として1、5、7、11番目・・・の画素(それぞれ1.47、2.94、4.41、5.88、・・・を整数値に丸めた1、3、4、6・・・に相当する番号の画素)にドット優先画素を設定することとなる。また、2行目のラスタの右ノズルについてはノズル吐出率が57.14%であるため、1/57.14[%]=1.75の整数倍の値を整数値に丸めた番号の画素にドット優先画素を設定することになる。つまり、整数値の丸め方を四捨五入とした場合、4、8、10、14番目・・・の画素(それぞれ1.75、3.5、5.25、7、・・・を整数値に丸めた2、4、5、7・・・に相当する番号の画素)にドット優先画素を設定することになる。
 上述の第1例から第3例で説明した方法などを用いて、図78のステップS18にてドット優先画素を設定した後、ステップS20に進む。
 ステップS20では、ディザマスクの全画素のうち、閾値未設定かつドット優先画素の画素に閾値を仮設定し、粒状性を評価する。粒状性評価の指標は、例えば、RMS(Root Mean Square)粒状度など、公知の指標を用いることができる。RMS粒状度は、VTF(Visual Transfer Function)など人間の視覚特性を考慮したぼかしフィルタをドット配置に掛けた上で算出した標準偏差である。
 ステップS20における粒状性の評価結果はメモリ等に記憶しておき、ステップS22に進む。ステップS22では、閾値を設定する画素の候補である全候補画素についてステップS20の粒状性の評価を完了したか否かの判定を行う。全候補画素とは、ステップS20で閾値を仮設定し得る閾値未設定かつドット優先画素の集合である。
 ステップS22にて、粒状性未評価の候補画素が存在する場合は、ステップS22の判定がNo判定となり、ステップS20に戻る。すなわち、閾値未設定かつドット優先画素である候補画素の範囲で閾値を仮設定する画素を変えて、ステップS20の処理を繰り返す。
 全候補画素についてステップS20の粒状性評価の処理が完了すると、ステップS22の判定がYes判定となり、ステップS24に進む。
 ステップS24では、全候補画素についてそれぞれ粒状性を評価した結果を基に、粒状性が最良の画素に閾値を設定する。ステップS24の工程が「閾値設定工程」の一形態に相当する。
 次いで、ステップS26では所定個数の閾値の設定を完了したか否かの判定を行う。ここでいう「所定個数」は、同じ段階のノズル吐出率の設定の下で設定する閾値の個数として予め定められた規定値である。図78に示したフローチャートにおける「所定個数」は、ステップS18で設定された全ドット優先画素数よりも少ない数、例えば、全トッド優先画素数×0.8とする。仮に、所定個数を全ドット優先画素数に等しく設定すると所定個数付近で粒状性が悪化する懸念がある。所定個数を全ドット優先画素数より少ない数に設定することで、粒状悪化を低減することができる。ただし、所定個数を過剰に少なく設定し過ぎると、ノズル列における端部ノズルの吐出率を抑える性能は低下することとなる。したがって、所定個数の設定に際しては、粒状悪化の低減と、端部ノズルの吐出率を抑える性能との両立の観点から適切な値に設定することが好ましい。例えば、所定個数は全ドット優先画素数の0.6倍以上0.9倍以下の範囲とし、より好ましくは、0.7倍以上0.8倍以下の範囲とする。
 ステップS26にて、所定個数の閾値の設定が未完了である場合には、ステップS20に戻る。一方、ステップS26にて、所定個数の閾値の設定が完了すると、ステップS28に進む。
 ステップS28では、全段階の処理が完了したか否かの判定を行う。ノズル吐出率の段階Qについて、全段階の処理が完了していなければ、段階Qの値に1を加え、段階Qの値を「Q+1」に変更して(ステップS30)、ステップS14に戻る。
 ステップS30にて変更された次の段階のノズル吐出率に設定を変更して、上述の処理ループ(ステップS14からステップS28)を繰り返す。なお、ステップS16で説明したノズルパターンについては、前回と同じ設定を利用できるため、ステップS16の処理は省略することができる。
 ステップS30を経て、前回と異なる段階のノズル吐出率の設定の下で、新たにステップS18でドット優先画素が設定される工程が「ドット優先画素を変更する工程」の一形態に相当する。
 ステップS30を経てステップS14からステップS28のループが繰り返されることにより、ステップS14のノズル吐出率工程により設定されるノズルごとのノズル吐出率は、ステップS26の所定個数の閾値に対応する閾値の個数に相当する閾値領域に応じて(つまり、ステップS24にて設定する閾値の値によって)、少なくとも2段階の複数段階に設定が変更される。
 また、ステップS18で一旦設定されたドット優先画素の全てに閾値が設定される前に、つまり、ドット優先画素数よりも少ない所定個数の閾値の設定が完了した際に、ステップS30を経て新たにステップS18にて別のドット優先画素の設定に変更されている。
 こうして、全ての段階について、同様の処理が行われ、各閾値が設定される。ステップS28にて全段階で処理が完了すると、図78のフローチャートを終了する。
 なお、ステップS28に関して、最後の段階は全ノズルのノズル吐出率が「100%」に設定され、全画素にドット優先画素を設定し、かつステップS26における「所定個数」に全画素数を設定する。
 図78に示したフローチャートに代えて、最後の段階のみ閾値設定を別ループにしドット優先画素の設定及び判断を省いてもよい。つまり、最後の段階において全ノズルのノズル吐出率を全て「100%に設定する場合、敢えて各ノズルのノズル吐出率を「100%」に設定し、全画素をドット優先画素に設定するという処理を実施せずに、単に、ノズル吐出率の設定やドット優先画素の設定を除き、ドット優先画素の判断もしない別の処理ループを実施する構成を採用してもよい。
 このような別の処理ループを採用する場合も、実質的に、全ノズルのノズル吐出率を「100%」に設定し、全画素をドット優先画素に設定して処理を行うことと同等であり、別の処理ループへの移行は、「複数段階」における「最後の段階」の設定の一形態に相当する。
 図78で説明したフローチャートは、ディザマスクに設定する全閾値のうちの一部の閾値の設定に関して適用される。つまり、一旦設定したドット優先画素を変更する処理は、全閾値のうち少なくとも一部の閾値の設定に関して適用される。
 図78のフローチャートによれば、設定される閾値の増加と共に、ノズル吐出率(つまり優先画素設定率)に従って、各ノズルの吐出の相対的な比率を概ね保ちながら、各ノズルのノズル絶対吐出率を増加させることができる。なお、ここでいう「各ノズルの吐出の相対的な比率」は、ノズル吐出率に従うものの、完全に等しくできるわけはない。
 〈ディザマスク生成装置の構成〉
 図82は、実施形態に係るディザマスク生成装置のブロック図である。ディザマスク生成装置150は、ノズル吐出率設定部152と、ノズルパターン設定部154と、ドット優先画素設定部156と、閾値設定部158と、を備える。また、ディザマスク生成装置150は、走査パターン情報取得部160と、段階切替部162と、閾値個数判定部164とを有する。これらの各部は集積回路などのハードウェア回路、又は、コンピュータのハードウェア及びソフトウェア、若しくはこれらの適宜の組み合わせによって実現することができる。また、ディザマスク生成装置150の機能は、図74で説明した制御装置102に搭載してもよい。
 図82に示したノズル吐出率設定部152は、記録ヘッド24(図73参照)におけるノズルごとのノズル吐出率を設定する処理を行う。ノズル吐出率設定部152は、図79で例示したように、予め用意されているノズル吐出率の段階に従って、ノズルごとのノズル吐出率を設定する。ノズル吐出率設定部152は、図78のステップS14で説明した処理を行う。ノズル吐出率設定部152は優先画素設定率設定部の一形態に相当する。
 図82に示した段階切替部162は、ノズル吐出率設定部152で設定するノズル吐出率の段階の指定を行う。段階切替部162は、図78のステップS30で説明した処理を行う。ノズル吐出率設定部152は、段階切替部162により指定された段階のノズル吐出率を設定する。
 ノズルパターン設定部154は、走査パターン情報取得部160から得られる走査パターンの情報に基づき、ディザマスク166の各画素に対応するノズルを特定する処理を行う。すなわち、ノズルパターン設定部154は、ディザマスク166の各画素について、それぞれの画素位置の記録を担当する少なくとも一つのノズルを対応付ける処理を行う。
 走査パターン情報取得部160は、走査パターンプログラムなどから作画モードに応じた走査パターンの情報を取得する。前述の通り、走査パターンプログラムは、副走査方向に間欠搬送される記録媒体12に対する記録ヘッド24の主走査方向の往復走査やパス数を規定しているため、走査パターンプログラムから記録ヘッド24の走査パターンを判別することが可能である。
 ノズルパターン設定部154は、記録媒体12に対して記録ヘッド24を主走査方向及び副走査方向に相対移動させる際の走査パターンを判別する。ノズルパターン設定部154は、走査パターンに基づき、ディザマスク166の各画素を、記録ヘッド24のどのノズル62で記録するのかを決定する処理を行う。ノズルパターン設定部154は、ディザマスク166の各画素と、それぞれの画素の記録を担うノズルとの対応関係を示すノズルパターンのデータであるノズルパターンデータ168を生成する。ノズルパターンデータ168は、例えば、図33で説明したノズルパターンのデータから生成される。ノズルパターン設定部154は、図78のステップS16で説明した処理を行う。
 ノズルパターンデータ168を生成する方法は、走査パターンプログラムに基づき決定する方法に限られず、各種方法を用いることができる。ノズルパターンデータ168は、作画モードとディザマスク166のサイズや並べ方によって決定できるため、予め複数種類の作画モードのそれぞれに対応したノズルパターンデータをメモリ等の情報記憶部に保持しておくことができる。
 ドット優先画素設定部156は、ノズル吐出率データ170とノズルパターンデータ168を基に、ドット優先画素を設定する処理を行う。また、ドット優先画素設定部156は、一旦設定したドット優先画素の全てに閾値が設定される前に、ドット優先画素を変更する処理を行う。一旦設定したドット優先画素の全てに閾値が設定される前に、ドット優先画素を変更するとは、すなわち、一旦設定したドット優先画素のうち少なくとも一部の画素が閾値未設定の画素である状態で、ドット優先画素を変更することを意味する。ドット優先画素設定部156は、図78のステップS18で説明した処理を行う。
 閾値設定部158は、閾値未設定の画素を含むディザマスク166を準備し、かつ、ディザマスク166の閾値未設定の画素に、閾値を設定する処理を行う。閾値設定部158は、図78のステップS20からステップS24で説明した処理を行う。閾値設定部158によって、ディザマスク166の全画素の閾値が設定されることにより、生成目標であるディザマスク166が完成する。
 閾値個数判定部164は、閾値設定部158により設定される閾値の個数を管理し、予め定められている所定個数の閾値設定が完了したか否かの判定を行う。閾値個数判定部164は、図78のステップS26で説明した処理を行う。
 閾値個数判定部164の判定結果は、ドット優先画素設定部156に通知される。ドット優先画素設定部156は、閾値個数判定部164から得られる情報を基に、ドット優先画素を変更する処理を行う。
 また、閾値個数判定部164の判定結果は、段階切替部162に通知される。段階切替部162は、閾値個数判定部164から得られる情報を基に、ノズル吐出率の段階を変更する処理を行う。
 ノズル吐出率設定部152の機能は優先画素設定率設定機能の一形態に相当する。ノズルパターン設定部154の機能はノズルパターン設定機能の一形態に相当する。ドット優先画素設定部156の機能はドット優先画素設定機能とドット優先画素を変更する機能の一形態に相当する。閾値設定部158の機能は閾値設定機能の一形態に相当する。
 〈各処理部及び制御部のハードウェア構成について〉
 図74で説明した制御装置102の記録媒体搬送制御部104、キャリッジ駆動制御部106、光源制御部108、画像処理部110、吐出制御部112、及び情報記憶部124、並びに、図82で説明したディザマスク生成装置150のノズル吐出率設定部152、ノズルパターン設定部154、ドット優先画素設定部156、閾値設定部158、走査パターン情報取得部160、段階切替部162、及び閾値個数判定部164などの各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。
 各種のプロセッサには、プログラムを実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサで構成されてもよい。例えば、1つの処理部は、複数のFPGA、或いは、CPUとFPGAの組み合わせによって構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第一に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第二に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 更に、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。
 〈本開示によるディザマクス生成方法の概要〉
 上記に例示した本開示によるディザマスク生成方法の概要をまとめると、次のとおりである。すなわち、本開示に係るディザマスク生成方法は、ディザマスクの各画素とそれぞれの画素位置の記録を担当するノズルとの対応関係を表すノズルパターンを設定するノズルパターン設定工程と、ディザマスクの画素のうち閾値を設定する画素の候補となるドット優先画素を設定するドット優先画素設定工程と、ドット優先画素に属する画素に閾値を設定する閾値設定工程と、少なくとも一部の閾値に関して、ドット優先画素設定工程により一旦設定されたドット優先画素の全てに閾値が設定される前に、ドット優先画素を変更する工程と、を含むディザマスク生成方法である。
 このディザマスク生成方法によれば、ディザマスクに閾値を設定する際に、ノズルパターンを反映させてドット優先画素を設定し、ドット優先画素に属する画素に閾値を設定する。そして、一旦設定したドット優先画素の全てに閾値を設定する前に、ドット優先画素を変更し、変更後のドット優先画素に属する画素に対して閾値の設定が行われる。このようにドット優先画素を変更して閾値の設定を行うことにより、閾値配置の制約が緩和され、粒状性が良好なディザマスクを生成することができる。
 「一旦設定されたドット優先画素の全てに閾値が設定される前に、ドット優先画素を変更する」とは、すなわち、一旦設定されたドット優先画素のうち少なくとも一部の画素が閾値未設定である状態でドット優先画素を変更することを意味する。
 また、上記のディザマスク生成方法において、ディザマスクの画素のうち複数のノズルのそれぞれが記録を担当する画素としてノズルごとに割り当てられる記録担当画素におけるドット優先画素の割合を表す優先画素設定率を設定する優先画素設定率設定工程を有し、ドット優先画素設定工程は、ノズルパターンとノズルごとの優先画素設定率とに基づき、ドット優先画素を設定する構成とすることができる。
 「優先画素設定率」は、ノズルごとに割り当てられる記録担当画素におけるドット優先画素の割合を表す比率又は個数とすることができる。優先画素設定率を比率で表す場合には、例えば、記録担当画素の個数(つまり、記録担当画素数)を分母とし、ドット優先画素の個数(つまりドット優先画素数)を分子とする割り算の商、すなわち、「ドット優先画素数/記録担当画素数」で定義することができる。もちろん、比率は百分率で定義することもできる。また、優先画素設定率は、ドット優先画素の個数で定義することもできる。ノズルパターンを基に、ディザマスクの画素における各ノズルの記録担当画素の個数は特定できるため、各ノズルのドット優先画素の個数は、記録担当画素におけるドット優先画素の割合を表す情報に相当する。
 優先画素設定率は、目標のとするノズル吐出率を基に定めることができる。既に説明したノズル吐出率の設計方法に従って設計されたノズル吐出率を優先画素設定率として用いることができる。各ノズルの優先画素設定率については、バンディング抑制効果を得る観点から適宜設定することができる。バンディングを抑制する優先画素設定率は、ノズルの配列形態その他の記録ヘッドの特性や作画条件などに応じて定めることができる。
 〈ディザマスク生成方法の他の例〉
 制御目標とするノズル吐出率を基にディザマスクを生成する方法は、上述の方法に限らない。例えば、特開2016-107603号公報に記載されている方法によってディザマスクを生成してもよい。特開2016-107603号公報に記載されている方法は、ディザマスクの閾値を設定する際の評価指標にノズル吐出率を反映させる方法である。
 制御目標とする各ノズルのノズル吐出率が与えられた場合に、そのノズル吐出率を実現し得るドット配置が得られるディザマクスの生成方法については、公知の方法を含め様々な方法を適用することができる。
 《ディザマスクの特性》
 本実施形態に係るディザマスクは、少なくとも一部の記録デューティの範囲について、各走査バンドを記録する前半走査の記録に用いられる各ノズル群の対応するノズル同士のノズル吐出率の総和と、後半走査の記録に用いられる各ノズル群の対応するノズル同士のノズル吐出率の総和の和が、規定の許容範囲に収まる一定の値になる閾値の設定がなされている。
 図79に示した例では、少なくともQ=2に示したノズル吐出率と、Q=3に示したノズル吐出率とを適用して閾値の設定を行った中間調のデューティ範囲において、制御目標である特定の条件を満たすノズル吐出率となるドット配置が得られるように閾値が設定されている。ディザマスクを生成する際の制御目標に用いたノズル吐出率が「予め定められた特定のノズル吐出率」、すなわち、「特定の条件を満たすノズル吐出率」に相当する。
 《本開示の技術による効果及びその検証方法について》
 本開示の技術は、「各ノズル吐出率を不均一に偏らせる一方で、単位面積あたりの平均的な吐出率が均一になるように各ノズル吐出率を設計する」ことを特徴の一つに含んでいる。
 単位面積あたりの平均的な吐出率は、各単位領域の平均的な吐出率を意味する。単位面積あたりの平均的な吐出率が均一になることで、その結果として、ドット配置の密度が均一になる。
 各ノズル吐出率を不均一に偏らせれば、必然的に吐出率パターンも不均一になるが、単位領域で平均化した吐出率を考えると、概ね均一にすることができる、ということである。「概ね均一」という記載の意味は、ノズルピッチと紙送り量は、互いに素の関係であり、各走査バンドには単位面積で割り切れない隙間のラスタがあるため、各単位領域を完全に補完関係のノズルで記録することが出来ないためである。ただし、走査の仕様によって、隙間を含めて完全に均一にできる場合もあり得る。
 本開示の特徴を踏まえ、本開示の技術による効果は、「各ノズル吐出率の不均一さを、どれだけ均一化できたか」を表す指標を用いて測ることができる。例えば、以下の式で表される指標を「均一化比率」と定義し、この均一化比率の値から効果を検証できる。
Figure JPOXMLDOC01-appb-M000013
 
 均一化比率の定義式中の「各ノズル吐出率」は、絶対吐出率であってもよいし、相対吐出率であってもよい。どちらの吐出率でも、均一化比率の値は同じになる。
 式中の「各ノズル吐出率の最大値」は「吐出率パターンの各画素の吐出率の最大値」でもあり、また「各ノズル吐出率の最小値」は「吐出率パターンの各画素の吐出率の最小値」でもある。そして、「単位面積あたりの平均吐出率の最大値」は、吐出率パターンの各画素の吐出率を単位領域ごとに平均化した場合の平均の吐出率の最大値を意味する。「単位面積あたりの平均吐出率の最小値」は、吐出率パターンの各画素の吐出率を単位領域ごとに平均化した場合の平均の吐出率の最小値を意味する。つまり、均一化比率は、「不均一な吐出率をどれだけ均一化できたか」を表す指標となる。
 吐出率パターンにおける単位面積あたりの平均的な吐出率の最大値と最小値の差分を「均一さ」と定義すると、その均一さは各ノズルのノスル吐出率によって変わる。つまり、各ノズルのノズル吐出率が均一であれば、吐出率パターンにおける単位面積あたり平均吐出率も均一になってしまう。
 しかし、[数13]に示した計算式による均一化比率は、各ノズル吐出率の均一さによらず同じ値となり、本開示の方法による均一化の効果を正しく評価することができる。
 また、同様に、単位面積あたりの平均的な吐出率の均一さは、各ノズルの絶対的な吐出率(ノズル絶対吐出率)及びデューティによって変わる。つまり、各ノズルの絶対吐出率が大きい程、またデューティが高いほど、単位面積あたり平均吐出率は不均一になる。
 しかし、[数13]に示した計算式による均一化比率は、各ノズルの絶対吐出率及びデューティによらず同じ値となり、本開示の方法による均一化の効果を正しく評価することができる。
 〈本開示の方法による効果の検証方法〉
 次に、本開示の技術を適用したか使用したか否かを判定する基準について説明する。本開示の技術を適用したか否かの判定に際して、「均一化比率」を用いる。
 本開示に係る「ノズル吐出率の設計方法」では、種々の吐出率の設計例を示したが、それぞれの設計例について、「均一化比率」の値を求めると次の通りである。
 [図36~図38に示した例の均一化比率]
 図36~図38に示した例について均一化比率を求める。図36のノズル吐出率、又は図37の吐出率パターンからノズル吐出率の最大値と最小値がそれぞれ100%と25%であるとわかる。
 そして、図38の単位面積あたりの平均吐出率から、平均吐出率の最大値が78.91%、最小値が76.56%となる。なお、値に関しては、小数点以下第3位を四捨五入した。これらの値を、[数13]の式に代入すると、均一化比率は3.1%となる。なお、[数13]から求まる均一化比率の値を100倍してパーセント表示にし、小数点以下第2位を四捨五入した。つまり、各ノズルのノズル吐出率の変動幅を100%とした場合に、単位面積あたりの平均吐出率の変動幅を3.1%に抑えて均一化できたことを意味する。
 [図40~図42に示した例の均一化比率]
 同様にして、図40~図42に示した例の場合の均一化比率を求めると0.0%となり、つまり完全に均一化できたとわかる。
 [図46~図48に示した例及びその他の例の均一化比率]
 図48~図48に示した例の場合の均一化比率は2%となる。図50~図52に示した例の場合の均一化比率は3.8%となる。図54~図56に示した例の場合の均一化比率は4.0%となる。図64~図66に示した例の場合の均一化比率は2.5%となる。
 [比較例の均一化比率]
 一方で、比較例として、課題の説明において列挙したそれぞれの例の均一化比率を求めると、以下のとおりである。
 図1に示した例(特許文献3の[図8])の均一化比率は25%である。図4に示した例(特許文献3の[図11])の均一化比率は12.5%である。図7に示した例(特許文献3の[図13])の均一化比率は25%である。図10の(a)に示した例(特許文献3の[図14(a)])の均一化比率は25%である。図10の(b)に示した例(特許文献3の[図14(b)])の均一化比率は25%である。これら各比較例の中で図4に示した例の均一化比率が最小であるが、それでも均一化比率は12.5%であり、本開示によるノズル吐出率の設計方法に基づく設定例によって実現される均一化比率より3倍以上大きいことがわかる。
 上記の結果に基づき、本開示の方法を使用したかを判定する基準の1つとして、均一化比率が「0%以上10%以下」であるという判定基準を設けることができる。均一化比率が10%以下となるノズル吐出率は、本開示の方法を使用して設計されたものと推察される。
 均一化比率は、単位面積あたりの平均のノズル吐出率の変動を表す指標として用いることができる。
 〈印刷物を用いた検証方法〉
 次に、印刷物から「各ノズルのノズル吐出率」及び「単位面積あたりの平均吐出率」の情報を取得する方法を説明する。まず、「各ノズルのノズル吐出率」は、最初の主走査(走査1)の記録を実施した後、次の主走査(走査2)を実施せずに、印刷を中断するなどの方法によって、一回の主走査のみで記録された印刷物から容易にわかる。
 一回の主走査のみで記録された印刷物上には、各ノズルで記録されたドットが離れて配置されており、各ノズルで記録されたドットを区別して数えることができる。
 または、紙送り量を調整するなどの方法で各回の主走査を副走査方向に分離して記録させ、各主走査について各ノズルで記録されたドット数を数えることもできる。この場合、各主走査について数えたドット数をノズルごとに平均化することで、精度良く各ノズルで記録されたドット数を求めることもできる。
 各ノズルが一回の主走査で記録を担当する画素の数は、記録解像度、主走査の記録幅、主走査方向のオーバーラップ数から決まる。そして、各ノズルが記録を担当する画素数に対して、実際に各ノズルで記録されたドット数の比率が、各ノズルの吐出率となる。このようにして求まる吐出率は、デューティによって変わる絶対的な吐出率(ノズル絶対吐出率)であるが、ノズル絶対吐出率は相対的な吐出率(ノズル吐出率)に置き換えることができる。
 次に、図33に例示したような「ノズルパターン」に相当する情報を取得する。ノズルパターンは、「各画素をどのノズルで記録するか」を示す情報である。つまり、ノズルパターンの情報は、ノズル列のノズル数、ノズルピッチ、紙送り量、主走査方向のオーバーラップ数、及び記録を開始する走査などを含む走査方法の情報や、特定のノズルのみを記録させる専用のチャートの印刷結果から取得することができる。
 「各ノズルのノズル吐出率」と「ノズルパターン」がわかれば、「各ノズルの吐出率」を「ノズルパターン」に従って「吐出率パターン」に展開し、吐出率パターンから「単位面積あたりの平均吐出率」を求めることができる。
 印刷物の代わりに、ドット配置のデジタルデータがある場合には、対応する「ノズルパターン」を取得して各ノズルが記録を担当する画素の数(すなわち、ノズルパターンにおける各ノズルの対応する画素の数)に対して、各記録担当画素においてドットONの画素の数の比率を求めて「各ノズルのノズル吐出率」とし、また「各ノズルのノズル吐出率」を「ノズルパターン」に従って「吐出率パターン」に展開し、吐出率パターンから「単位面積あたりの平均吐出率」を求めることができる。
 ここで、印刷物、又はドット配置のデジタルデータからノズル吐出率を求める際の画像は、ベタ画像である必要がある。ベタ画像は、所定の階調の均一階調の画像である。そして、画像の階調が低いと記録されるドットの数が少なく、またはドット配置のデジタルデータのドット数が少なく、正確に吐出率や比率を求めることが困難である。また、階調が高すぎる場合は、逆に殆どの記録担当画素にドットが記録され、正確に吐出率や比率を求めることが困難である。デューティが30%~70%の範囲であれば、十分な数でドットが記録され、かつ、未だ記録担当画素に空きがあるため、正確に吐出率や比率を求めることができる。すなわち、デューティが30%~70%の範囲となる所定階調のベタ画像に関する印刷物、又はドット配置のデジタルデータを用いて、ノズル吐出率等の情報を求めることが好ましい。
 また、そもそも各ノズルのノズル吐出率の変動幅が小さいと、均一化比率の定義式における分母が小さく、正確に均一化比率を求めることが困難である。各ノズル吐出率の変動幅が10%以上あれば、正確に均一化比率を求めることができる。
 以上をまとめると、デューティ30~70%の範囲にある所定のデューティの均一な画像の印刷結果(印刷物)、又はドット配置のデジタルデータから、上記の方法によって各ノズルのノズル吐出率及び吐出率パターンにおける単位面積あたりの平均吐出率を取得し、各ノズルのノズル吐出率の変動幅が10%以上あり、かつ、均一化比率が10%以下であるならば、本開示の方法を使用して設計されたものであると判定することができる。
 〈マルチドットサイズについて〉
 最近のインクジェットプリンタは、異なるサイズのドットを記録することができる。2種類以上の異なるサイズのドットが混在して記録される場合、何れかのサイズのドットの配置、又は、各サイズのドットの配置を合わせた配置のデューティが30~70%の範囲にあり、上記の検証方法により「各ノズルのノズル吐出率」及び「単位面積あたりの平均吐出率」の情報を取得し、ノズル吐出率の変動幅が10%以上あり、均一化比率が10%以下ならば、本開示の方法が使用されたものと判定できる。
 例えば、小ドット、中ドット、大ドットの3種類のドットが混在して記録される場合、「小ドットの配置」、「中ドットの配置」、「大ドットの配置」、「大ドットの配置と中ドットの配置を合わせた配置」、「大ドットの配置と中ドットの配置と小ドットの配置を合わせた配置」、「大ドットの配置と小ドットの配置を合わせた配置」、及び「中ドットの配置と小ドットの配置を合わせた配置」のうち何れかが、デューティが30~70%の範囲にあり、各ノズルのノズル吐出率の変動幅が10%以上あり、かつ、均一化比率が10%以下ならば、本開示の方法が使用されたものと判定できる。
 〈変形例〉
 上述の実施形態では、画像記録装置の一例であるインクジェット記録装置として、紫外線硬化型インクを用いるワイドフォーマットプリンタを例に挙げて説明を行ったが、紫外線硬化型インクを用いるものに限らず、様々な種類のインクを用いて記録媒体に画像を記録する各種のインクジェット記録装置に本発明を適用することができる。
 主走査動作及び副走査動作について、主走査方向及び副走査方向のそれぞれの方向について、記録媒体と記録ヘッドの相対移動が行われればよく、記録媒体を主走査方向に移動させて主走査動作を実施してもよいし、また、記録ヘッドを副走査方向に移動させて副走査動作を実施してもよい。
 《他の用語について》
 「画像装置」という用語は、印刷機、プリンタ、印字装置、印刷装置、画像形成装置、画像出力装置、或いは、描画装置などの用語の概念を含む。また、「画像記録装置」という用語は、複数の装置を組み合わせた印刷システムの概念を含む。
 「画像」は広義に解釈するものとし、カラー画像、白黒画像、単一色画像、グラデーション画像、均一濃度(ベタ)画像なども含まれる。「画像」は、写真画像に限らず、図柄、文字、記号、線画、モザイクパターン、色の塗り分け模様、その他の各種パターン、若しくはこれらの適宜の組み合わせを含む包括的な用語として用いる。
 本明細書における「直交」又は「垂直」という用語には、90°未満の角度、又は90°を超える角度をなして交差する態様のうち、実質的に90°の角度をなして交差する場合と同様の作用効果を発生させる態様が含まれる。本明細書における「平行」という用語には、厳密には非平行である態様のうち、平行である場合と概ね同様の作用効果が得られる実質的に平行とみなし得る態様が含まれる。
 《実施形態及び変形例等の組み合わせについて》
 上述の実施形態で説明した構成や変形例で説明した事項は、適宜組み合わせて用いることができ、また、一部の事項を置き換えることもできる。
 以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、又は削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で同等関連分野の通常の知識を有する者により、多くの変形が可能である。
10 インクジェット記録装置
12 記録媒体
20 装置本体
22 支持脚
24 記録ヘッド
24A 記録ヘッド
24C、24M、24Y、24K ヘッドモジュール
26 プラテン
28 ガイド機構
30 キャリッジ
32A、32B 仮硬化光源
34A、34B 本硬化光源
36 インクカートリッジ
40 ニップローラ
42 供給側のロール
44 巻取ロール
46 ガイド
50 温調部
52 プレ温調部
54 アフター温調部
61、61A ノズル列
61C、61K、61M、61Y ノズル列
62 ノズル
102 制御装置
104 記録媒体搬送制御部
106 キャリッジ駆動制御部
108 光源制御部
110 画像処理部
112 吐出制御部
114 搬送駆動部
116 主走査駆動部
118 光源駆動回路
119 光源駆動回路
120 表示装置
122 入力装置
124 情報記憶部
126 画像入力インターフェース
128 ヘッド駆動回路
130 エンコーダ
132 センサ
150 ディザマスク生成装置
152 ノズル吐出率設定部
154 ノズルパターン設定部
156 ドット優先画素設定部
158 閾値設定部
160 走査パターン情報取得部
162 段階切替部
164 閾値個数判定部
166 ディザマスク
168 ノズルパターンデータ
170 ノズル吐出率データ
500 図形
S1~S3 ディザマスク生成方法のステップ
S12~S30 閾値設定処理のステップ

Claims (17)

  1.  インクを吐出する複数のノズルが副走査方向に配列されたノズル列を有する記録ヘッドと、
     画像データに対してディザマスクを用いてハーフトーン処理を行うハーフトーン処理部と、
     前記ハーフトーン処理を経て生成されたドットデータに基づき、前記ノズルからのインクの吐出を制御し、かつ、前記記録ヘッドを記録媒体に対して前記副走査方向と直交する主走査方向に相対移動させながら前記ノズルからインクを吐出して記録を行う主走査動作と、前記記録媒体を前記記録ヘッドに対して前記副走査方向に相対移動させる副走査動作とを繰り返して前記記録媒体に画像を記録させる制御を行う記録制御部と、
     を備え、
     前記記録媒体の前記副走査方向に前記副走査動作の1回あたりの副走査移動量の幅を有する領域である走査バンドの各々に対して、複数回の前記主走査動作を繰り返して前記走査バンドの記録を完了させる記録過程において、
     前記走査バンドの記録の完了に要する前記複数回の走査を走査順に基づき前半走査と後半走査とに分け、前記ノズル列のうち前記前半走査の記録に用いられるノズル群である前半走査ノズル群において最も前記ノズル列の中央の側に配置されたノズルを前半側中央ノズル、前記前半走査ノズル群において最も前記ノズル列の端の側に配置されたノズルを前端ノズル、前記ノズル列のうち前記後半走査の記録に用いられるノズル群である後半走査ノズル群において最も前記ノズル列の中央の側に配置されたノズルを後半側中央ノズル、前記後半走査ノズル群において最も前記ノズル列の端の側に配置されたノズルを後端ノズル、前記主走査方向に形成されるラスタの1本の記録に要する前記主走査動作の回数をオーバーラップ数、前記主走査方向の前記オーバーラップ数と前記副走査方向の前記ノズル列のノズルピッチの積で表される単位面積の領域を単位領域、前記複数回の各走査の記録にそれぞれ用いられる走査ごとのノズル群の間で同じ単位領域を記録するノズルを、対応するノズルという場合に、
     前記ディザマスクは、少なくとも一部の記録デューティの範囲について、前記ノズル列の各ノズルの相対的な使用比率であるノズル吐出率が、予め定められた特定の条件を満たすノズル吐出率になるドット配置を生成する閾値の設定がなされており、
     前記特定の条件を満たすノズル吐出率は、
     前記前半走査ノズル群において前記前半側中央ノズルから前記前端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、
     前記後半走査ノズル群において前記後半側中央ノズルから前記後端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、
     前記前半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた前半吐出率総和が、前記前端ノズルから前記前半側中央ノズルに向かって増加し、かつ、
     前記後半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた後半吐出率総和が、前記後半側中央ノズルから前記後端ノズルに向かって減少し、かつ、
     前記複数回の各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士の前記前半吐出率総和と前記後半吐出率総和の和が、規定の許容範囲内に収まる一定の値となる画像記録装置。
  2.  前記ノズル列における異なるノズル群について、対応するノズル同士のノズル吐出率の和が一定となるノズル群同士のノズル吐出率の関係を、補完関係という場合に、
     前記前半走査に属する各走査の記録に用いられる走査ごとのノズル群のノズル吐出率に対して、
     前記後半走査に属する各走査の記録に用いられる走査ごとのノズル群のいずれか1つのノズル群のノズル吐出率が補完関係である請求項1に記載の画像記録装置。
  3.  前記前半走査に属する各走査の記録に用いられる走査ごとのノズル群とそれぞれ補完関係にある前記後半走査に属する走査のノズル群が、前記ノズル列の中心を挟んで対称の位置関係にある請求項2に記載の画像記録装置。
  4.  前記複数回の各走査の記録に用いられる走査ごとのノズル群内において前記ノズル吐出率の傾きは一定である請求項1から3のいずれか一項に記載の画像記録装置。
  5.  前記複数回の各走査の記録に用いられる走査ごとのノズル群におけるノズル吐出率の傾きのうち、最初の走査及び最後の走査の少なくとも一方の走査の記録に用いられるノズル群のノズル吐出率の傾きが最も大きい請求項4に記載の画像記録装置。
  6.  前記複数回の各走査の記録に用いられる走査ごとのノズル群のうち、少なくとも1つのノズル群の内部においてノズル吐出率の傾きが変化する請求項1から3のいずれか一項に記載の画像記録装置。
  7.  前記前半吐出率総和が、前記前端ノズルから前記前半側中央ノズルに向かうノズル位置の変化に対して非線形に増加し、かつ、
     前記後半吐出率総和が、前記後半側中央ノズルから前記後端ノズルに向かうノズル位置の変化に対して非線形に減少する請求項6に記載の画像記録装置。
  8.  前記前半走査における最初の走査の記録に用いるノズル群の内部において2種類以上の傾きでノズル吐出率が変化しており、
     前記最初の走査の記録に用いるノズル群の内部における前記前端ノズルからの傾きを第一の傾きとし、前記前端ノズルから前記前半側中央ノズルの側に向かってノズル吐出率の傾きが第一の傾きから第二の傾きへと変化する場合に、前記第一の傾きの方が前記第二の傾きより小さい請求項6又は7に記載の画像記録装置。
  9.  前記複数回の走査のうち、中央部の走査の記録に用いられるノズル群のノズル吐出率の傾きはゼロである請求項1から8のいずれか一項に記載の画像記録装置。
  10.  前記ノズル列の各ノズルの位置と各ノズルのノズル吐出率の関係をグラフにより表した場合のグラフ形状について、前記前半走査ノズル群に属する各ノズルのノズル吐出率と、前記後半走査ノズル群に属する各ノズルのノズル吐出率とが対称の形である請求項1から9のいずれか一項に記載の画像記録装置。
  11.  前記ノズル列の各ノズルの位置と各ノズルのノズル吐出率の関係をグラフにより表した場合のグラフ形状について、
     前記前半走査ノズル群に属する各ノズルのノズル吐出率と、前記後半走査ノズル群に属する各ノズルのノズル吐出率とが非対称の形である請求項1から9のいずれか一項に記載の画像記録装置。
  12.  前記前半吐出率総和が、前記後半吐出率総和よりも小さい請求項11に記載の画像記録装置。
  13.  前記前半走査における最初の走査の記録に用いるノズル群の各ノズルのノズル吐出率を平均化した値が、前記後半走査における最後の走査の記録に用いるノズル群の各ノズルのノズル吐出率を平均化した値よりも小さい請求項11又は12に記載の画像記録装置。
  14.  前記複数回の各走査の記録に用いられる走査ごとのノズル群についてノズル吐出率の傾きの平均値を比較した場合に、前記傾きの平均値がゼロとなる走査のノズル群を除き、
     前記前半走査における最初の走査の記録に用いるノズル群のノズル吐出率の傾きの平均値が最も小さい請求項11から13のいずれか一項に記載の画像記録装置。
  15.  前記規定の許容範囲は、前記単位面積あたりの平均のノズル吐出率の変動が0%以上10%以下となる範囲である請求項1から14のいずれか一項に記載の画像記録装置。
  16.  インクを吐出する複数のノズルが副走査方向に配列されたノズル列を有する記録ヘッドを記録媒体に対して前記副走査方向と直交する主走査方向に相対移動させながら前記ノズルからインクを吐出して記録を行う主走査動作と、前記記録媒体を前記記録ヘッドに対して前記副走査方向に相対移動させる副走査動作とを繰り返して前記記録媒体に画像を記録するためのハーフトーン処理に用いるディザマスクであって、
     前記記録媒体の前記副走査方向に前記副走査動作の1回あたりの副走査移動量の幅を有する領域である走査バンドの各々に対して、複数回の前記主走査動作を繰り返して前記走査バンドの記録を完了させる記録過程において、
     前記走査バンドの記録の完了に要する前記複数回の走査を走査順に基づき前半走査と後半走査とに分け、前記ノズル列のうち前記前半走査の記録に用いられるノズル群である前半走査ノズル群において最も前記ノズル列の中央の側に配置されたノズルを前半側中央ノズル、前記前半走査ノズル群において最も前記ノズル列の端の側に配置されたノズルを前端ノズル、前記ノズル列のうち前記後半走査の記録に用いられるノズル群である後半走査ノズル群において最も前記ノズル列の中央の側に配置されたノズルを後半側中央ノズル、前記後半走査ノズル群において最も前記ノズル列の端の側に配置されたノズルを後端ノズル、前記主走査方向に形成されるラスタの1本の記録に要する前記主走査動作の回数をオーバーラップ数、前記主走査方向の前記オーバーラップ数と前記副走査方向の前記ノズル列のノズルピッチの積で表される単位面積の領域を単位領域、前記複数回の各走査の記録にそれぞれ用いられる走査ごとのノズル群の間で同じ単位領域を記録するノズルを、対応するノズルという場合に、
     前記ディザマスクは、少なくとも一部の記録デューティの範囲について、前記ノズル列の各ノズルの相対的な使用比率であるノズル吐出率が、予め定められた特定の条件を満たすノズル吐出率になるドット配置を生成する閾値の設定がなされており、
     前記特定の条件を満たすノズル吐出率は、
     前記前半走査ノズル群において前記前半側中央ノズルから前記前端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、
     前記後半走査ノズル群において前記後半側中央ノズルから前記後端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、
     前記前半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた前半吐出率総和が、前記前端ノズルから前記前半側中央ノズルに向かって増加し、かつ、
     前記後半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた後半吐出率総和が、前記後半側中央ノズルから前記後端ノズルに向かって減少し、かつ、
     前記複数回の各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士の前記前半吐出率総和と前記後半吐出率総和の和が、規定の許容範囲内に収まる一定の値となるディザマスク。
  17.  インクを吐出する複数のノズルが副走査方向に配列されたノズル列を有する記録ヘッドを用いて記録媒体に画像を記録する画像記録方法であって、
     画像データに対してディザマスクを用いてハーフトーン処理を行うハーフトーン処理工程と、
     前記ハーフトーン処理を経て生成されたドットデータに基づき、前記ノズルからのインクの吐出を制御し、かつ、前記記録ヘッドを記録媒体に対して前記副走査方向と直交する主走査方向に相対移動させながら前記ノズルからインクを吐出して記録を行う主走査動作と、前記記録媒体を前記記録ヘッドに対して前記副走査方向に相対移動させる副走査動作とを繰り返して前記記録媒体に画像を記録する記録制御工程と、
     を含み、
     前記記録媒体の前記副走査方向に前記副走査動作の1回あたりの副走査移動量の幅を有する領域である走査バンドの各々に対して、複数回の前記主走査動作を繰り返して前記走査バンドの記録を完了させる記録過程において、
     前記走査バンドの記録の完了に要する前記複数回の走査を走査順に基づき前半走査と後半走査とに分け、前記ノズル列のうち前記前半走査の記録に用いられるノズル群である前半走査ノズル群において最も前記ノズル列の中央の側に配置されたノズルを前半側中央ノズル、前記前半走査ノズル群において最も前記ノズル列の端の側に配置されたノズルを前端ノズル、前記ノズル列のうち前記後半走査の記録に用いられるノズル群である後半走査ノズル群において最も前記ノズル列の中央の側に配置されたノズルを後半側中央ノズル、前記後半走査ノズル群において最も前記ノズル列の端の側に配置されたノズルを後端ノズル、前記主走査方向に形成されるラスタの1本の記録に要する前記主走査動作の回数をオーバーラップ数、前記主走査方向の前記オーバーラップ数と前記副走査方向の前記ノズル列のノズルピッチの積で表される単位面積の領域を単位領域、前記複数回の各走査の記録にそれぞれ用いられる走査ごとのノズル群の間で同じ単位領域を記録するノズルを、対応するノズルという場合に、
     前記ディザマスクは、少なくとも一部の記録デューティの範囲について、前記ノズル列の各ノズルの相対的な使用比率であるノズル吐出率が、予め定められた特定の条件を満たすノズル吐出率になるドット配置を生成する閾値の設定がなされており、
     前記特定の条件を満たすノズル吐出率は、
     前記前半走査ノズル群において前記前半側中央ノズルから前記前端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、
     前記後半走査ノズル群において前記後半側中央ノズルから前記後端ノズルまで、2種類以上の異なる傾きでノズル吐出率が減少し、かつ、
     前記前半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた前半吐出率総和が、前記前端ノズルから前記前半側中央ノズルに向かって増加し、かつ、
     前記後半走査に属する各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士のノズル吐出率を足し合わせた後半吐出率総和が、前記後半側中央ノズルから前記後端ノズルに向かって減少し、かつ、
     前記複数回の各走査の記録に用いられる走査ごとのノズル群について、対応するノズル同士の前記前半吐出率総和と前記後半吐出率総和の和が、規定の許容範囲内に収まる一定の値となる画像記録方法。
PCT/JP2018/012112 2017-03-31 2018-03-26 画像記録装置、ディザマスク及び画像記録方法 WO2018181167A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509795A JP6750099B2 (ja) 2017-03-31 2018-03-26 画像記録装置、ディザマスク及び画像記録方法
US16/563,965 US10744786B2 (en) 2017-03-31 2019-09-09 Image recording apparatus, dither mask, and image recording method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071100 2017-03-31
JP2017-071100 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/563,965 Continuation US10744786B2 (en) 2017-03-31 2019-09-09 Image recording apparatus, dither mask, and image recording method

Publications (1)

Publication Number Publication Date
WO2018181167A1 true WO2018181167A1 (ja) 2018-10-04

Family

ID=63675941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012112 WO2018181167A1 (ja) 2017-03-31 2018-03-26 画像記録装置、ディザマスク及び画像記録方法

Country Status (3)

Country Link
US (1) US10744786B2 (ja)
JP (1) JP6750099B2 (ja)
WO (1) WO2018181167A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152766A1 (en) * 2005-01-07 2006-07-13 Polaroid Corporation Selective dithering
JP2008188805A (ja) * 2007-02-01 2008-08-21 Canon Inc 画像処理装置、画像形成装置およびその制御方法
JP2009184344A (ja) * 2008-01-10 2009-08-20 Seiko Epson Corp 液体噴射制御装置、液体噴射制御方法および液体噴射制御プログラム
JP2014100861A (ja) * 2012-11-21 2014-06-05 Seiko Epson Corp 液体吐出装置および液体吐出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088467A (ja) 2003-09-19 2005-04-07 Ricoh Co Ltd 画像形成装置及び液滴吐出ヘッド
JP2009160876A (ja) 2008-01-09 2009-07-23 Dainippon Screen Mfg Co Ltd 画像記録方法および画像記録装置
US20090179935A1 (en) 2008-01-10 2009-07-16 Seiko Epson Corporation Liquid ejection control device, method, and program
JP5633110B2 (ja) 2009-01-15 2014-12-03 セイコーエプソン株式会社 印刷装置、ディザマスク及び印刷方法
JP6342372B2 (ja) * 2015-09-18 2018-06-13 富士フイルム株式会社 ディザマスク生成方法及び装置、並びにプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152766A1 (en) * 2005-01-07 2006-07-13 Polaroid Corporation Selective dithering
JP2008188805A (ja) * 2007-02-01 2008-08-21 Canon Inc 画像処理装置、画像形成装置およびその制御方法
JP2009184344A (ja) * 2008-01-10 2009-08-20 Seiko Epson Corp 液体噴射制御装置、液体噴射制御方法および液体噴射制御プログラム
JP2014100861A (ja) * 2012-11-21 2014-06-05 Seiko Epson Corp 液体吐出装置および液体吐出方法

Also Published As

Publication number Publication date
US20200001616A1 (en) 2020-01-02
JP6750099B2 (ja) 2020-09-02
US10744786B2 (en) 2020-08-18
JPWO2018181167A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
US9849668B2 (en) Image processing device, image processing method, and ink jet recording apparatus
JP5211838B2 (ja) 補正値算出方法、及び、液体吐出方法
JP6366143B2 (ja) ディザマスク生成方法及び装置、並びにプログラム
JP6095398B2 (ja) 記録装置及び記録方法
JP2009190325A (ja) 補正値取得方法、液体吐出方法、及び、プログラム
JP2021014127A (ja) 記録装置、記録方法およびプログラム
JP2010228227A (ja) 画素データの補正方法、及び、流体噴射装置
JP6320907B2 (ja) ディザマスク生成方法及び装置、並びにプログラム
JP6341573B2 (ja) 画像処理装置及び方法、インクジェット記録装置、並びにプログラム
JP6342372B2 (ja) ディザマスク生成方法及び装置、並びにプログラム
JP2009190324A (ja) 補正値取得方法、液体吐出方法、及び、プログラム
WO2018181167A1 (ja) 画像記録装置、ディザマスク及び画像記録方法
JP6815511B2 (ja) 画像処理装置及び方法、プログラム並びに画像記録装置
JP6815505B2 (ja) 画像処理装置及び方法、ディザマスクのセット、並びに画像記録装置
US20120194614A1 (en) Inkjet printing apparatus and inkjet printing method
JP2010228228A (ja) 流体噴射装置、及び、画素データの補正方法
US9517634B2 (en) Printing control apparatus and printing control method
JP2015174229A (ja) 印刷制御装置および印刷制御方法
JP2009274234A (ja) 補正値算出方法、及び、液体吐出方法
JP2021123033A (ja) 印刷システム
JP6241065B2 (ja) 印刷装置、印刷方法
JP2011051110A (ja) 印刷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776258

Country of ref document: EP

Kind code of ref document: A1