WO2018180986A1 - Al系めっき鋼板 - Google Patents

Al系めっき鋼板 Download PDF

Info

Publication number
WO2018180986A1
WO2018180986A1 PCT/JP2018/011701 JP2018011701W WO2018180986A1 WO 2018180986 A1 WO2018180986 A1 WO 2018180986A1 JP 2018011701 W JP2018011701 W JP 2018011701W WO 2018180986 A1 WO2018180986 A1 WO 2018180986A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
base material
content
zno
Prior art date
Application number
PCT/JP2018/011701
Other languages
English (en)
French (fr)
Inventor
山口 伸一
山中 晋太郎
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP18774246.5A priority Critical patent/EP3608442A4/en
Priority to CA3053102A priority patent/CA3053102A1/en
Priority to JP2018533842A priority patent/JP6424989B1/ja
Priority to US16/485,703 priority patent/US20200002818A1/en
Priority to BR112019013298A priority patent/BR112019013298A2/pt
Priority to KR1020197023608A priority patent/KR102269829B1/ko
Priority to CN201880011583.4A priority patent/CN110291226A/zh
Priority to RU2019125494A priority patent/RU2019125494A/ru
Priority to MX2019009703A priority patent/MX2019009703A/es
Publication of WO2018180986A1 publication Critical patent/WO2018180986A1/ja
Priority to ZA2019/05518A priority patent/ZA201905518B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present invention relates to an Al-based plated steel sheet suitable for hot pressing, which can sufficiently exhibit the workability (lubricity) and corrosion resistance (corrosion resistance after coating) during hot pressing.
  • a material having excellent mechanical strength tends to have a low formability and a shape freezing property in a forming process such as a bending process, and the process itself becomes difficult when processing into a complicated shape.
  • One of the means for solving this problem regarding formability is a so-called “hot pressing method (also called hot stamping method, hot pressing method, die quench method, press hardening)”.
  • hot pressing method a material to be formed is once heated to a high temperature (austenite region), pressed and formed on a steel sheet softened by heating, and then cooled.
  • the material is once heated to a high temperature and softened, so that the material can be easily pressed, and further, the mechanical strength of the material is increased by the quenching effect by cooling after molding. Can be increased. Therefore, by this hot pressing, a molded product having both good shape freezing property and high mechanical strength can be obtained.
  • An example of suppressing such a decrease in productivity is a method of forming a film on a steel sheet.
  • various materials such as organic materials and inorganic materials are used as the coating on the steel plate.
  • zinc-based plated steel sheets that have a sacrificial anticorrosive action on steel sheets are widely used for automobile steel sheets and the like from the viewpoint of corrosion protection performance and steel sheet production technology (Patent Document 1).
  • the heating temperature (700 ° C. or more and 1000 ° C. or less) in the hot press is higher than the decomposition temperature of the organic material, the boiling point of Zn (zinc), and the like. For this reason, when a steel plate is heated for hot pressing, the plating layer on the surface of the steel plate is oxidized or evaporated, so that the surface properties are remarkably deteriorated, and the slidability during hot pressing may be deteriorated. . In order to prevent this, it is necessary to take measures such as containing aluminum in a predetermined range in the galvanized layer and forming a film that melts at the press temperature on the galvanized layer (Patent Document 2).
  • an Al (aluminum) metal film having a higher boiling point than that of an organic material film or a Zn metal film is formed. It is desirable to use a steel plate.
  • an Al-based metal film By forming an Al-based metal film, it is possible to prevent the scale from adhering to the surface of the steel sheet, and the productivity is improved because steps such as a descaling step are not necessary.
  • the Al-based metal film also has a rust prevention effect, the corrosion resistance after painting is also improved.
  • Patent Document 3 A method has been proposed in which an Al-based plated steel sheet in which an Al-based metal film is formed on steel having a predetermined steel component is used for hot pressing (for example, see Patent Document 3).
  • One of the problems with the aluminum-based plated material for hot pressing as disclosed in Patent Document 3 is improvement of workability during hot pressing.
  • the Fe-Al-Si plating layer generated during heating is hard, so it bites into the mold, or because it has a high friction coefficient, it accumulates on the mold.
  • Patent Document 4 a method of attaching a coating layer containing zinc oxide (ZnO) to the plating surface has been proposed (for example, see Patent Document 4).
  • the method disclosed in Patent Document 4 is such that a coating layer containing a resin component, a silane coupling agent, or the like as a binder is attached to the steel sheet surface to suppress the removal of ZnO, and is 300 ° C. or higher during hot pressing,
  • the organic solvent component of the binder is volatilized at 500 ° C. or lower to leave only ZnO.
  • ZnO and the metal mold are brought into point contact by voids generated by burning and evaporation of an organic solvent, thereby improving lubricity.
  • Patent Documents 4 to 8 by forming a surface film layer containing ZnO on an Al-based plating, the slidability during hot pressing is improved.
  • the ZnO film on the overlapping portion in contact with the conveyor disappears. It has been found that there is a problem that the hot slidability of the part is lowered and sufficient workability (lubricity) cannot be obtained as a whole.
  • the present invention has been made in view of the above circumstances, and suppresses the disappearance of ZnO at the contact portion with the conveyor during heating, and the workability (lubricity) and corrosion resistance (corrosion resistance after painting) during hot pressing. It is an object of the present invention to provide an Al-based plated steel sheet suitable for hot pressing that can sufficiently develop the above.
  • the present inventors first examined the reason why the ZnO film in the overlapping portion in contact with the conveyor disappeared. Normally, during continuous heating in an atmospheric furnace, the organic resin component and Al present on the plating surface are combined with oxygen in the atmosphere and oxidized. However, in the overlapping portion where the plated steel plate and the conveyor are in contact with each other, the amount of oxygen supplied becomes poor, and Al is oxidized by reducing ZnO. That is, it was found that ZnO is reduced to metal Zn as a counter reaction of oxidation of Al present on the organic resin component and the plating surface, and further disappears by vaporizing metal Zn.
  • the present inventors further added ZnO particles, an organic resin used as a binder, and an oxidizing agent for Al that suppresses the disappearance of ZnO on the surface of the Al-based plating layer formed on the surface of the steel sheet.
  • Supply of oxygen to Al the disappearance of ZnO in the contact area with the conveyor is suppressed during heating, and the workability and corrosion resistance during hot pressing are fully expressed. The knowledge that it can be made was acquired.
  • a base material An Al-based plating layer formed on at least one side of the base material; A surface coating layer formed on the Al-based plating layer, comprising ZnO particles, an organic resin, and acetylacetonate of 10% by mass to 30% by mass with respect to the total mass of the surface coating layer.
  • a surface coating layer that is: An Al-based plated steel sheet for hot pressing, comprising: [2] The Al-based plated steel sheet according to the present invention, wherein the Al-based plated layer and the surface coating layer are formed on both surfaces of the base material, respectively.
  • the constituent elements of the surface coating layer formed as the outermost layer and the amount of ZnO particles that are one of the elements are improved.
  • workability lubricity
  • corrosion resistance corrosion resistance after painting
  • the cross-sectional conceptual diagram of the Al type plating steel plate of this invention which provided the Al type plating layer and the surface film layer in the single side
  • the cross-sectional conceptual diagram of the Al type plating steel plate of this invention which provided the Al type plating layer and the surface film layer on both surfaces, respectively.
  • an embodiment of an Al-based plated steel sheet (hereinafter sometimes simply referred to as “steel sheet”) according to the present invention suitable for hot pressing will be described in detail.
  • the following embodiments do not limit the present invention.
  • the constituent elements of the above embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same.
  • various forms included in the above-described embodiments can be arbitrarily combined within a range obvious to those skilled in the art.
  • FIG. 1 shows an example of an Al-based plated steel sheet according to the present invention.
  • the Al-based plated steel sheet 100 of the present invention is configured by forming an Al-based plating layer 103 on the surface of a base material 101 and forming a surface film layer 107 on the surface of the Al-based plating layer 103.
  • the surface film layer 107 is made of ZnO particles 109 containing acetylacetonate and bonded by an organic resin 111.
  • the Al-based plating layer 103 and the surface coating layer 107 may be formed on both surfaces of the base material 101 (see FIG. 2). Each layer will be described in detail below.
  • Base material 101 member for forming the Al-based plating layer 103 used for the Al-based plated steel sheet 100 of the present embodiment, excellent mechanical strength (tensile) is achieved even if hot pressing is performed after the plating layer is formed.
  • a member having a property such as strength, yield point, elongation, drawing, hardness, impact value, fatigue strength, creep strength, and other mechanical deformation and fracture properties is used.
  • a member whose hardenability is enhanced by adding C (carbon) or an alloy element is used.
  • a known material can be used as the base material 101 for the Al-based plated steel sheet 100 of the present embodiment as long as it has excellent mechanical strength.
  • a material having the following components can be used as the base material 101, but the components of the base material 101 are not limited to this.
  • the base material 101 of the present embodiment is, for example, mass%, C: 0.01% or more, 0.5% or less, Si: 2.0% or less, Mn: 0.01% or more, 3.5% or less.
  • each component added to the base material 101 will be described in detail. In the following description, all unit% of each component means mass%.
  • Carbon (C: 0.01% or more, 0.5% or less) is inevitably contained in the steel, and is contained in order to ensure the intended mechanical strength of the base material 101. To reduce the C content excessively increases the smelting cost, so it is preferable to contain 0.01% or more. Furthermore, if the C content is 0.1% or more, it is not necessary to add a large amount of other alloy elements in order to improve the mechanical strength, so the effect of improving the strength by adding C is great. . On the other hand, if the C content is more than 0.5%, the base material 101 can be further cured, but melt cracking is likely to occur.
  • C is preferably contained in an amount of 0.01% or more and 0.5% or less, and is added at a content of 0.1% or more and 0.4% or less from the viewpoint of strength improvement and prevention of melt cracking. More preferably.
  • the C content is more preferably 0.15% or more and 0.35% or less.
  • Si Silicon (Si: 2.0% or less) is an element inevitably included in the steel refining process, such as being added as a deoxidizer. However, excessive addition of Si deteriorates the ductility in the hot rolling process at the time of manufacturing the steel sheet and as a result impairs the surface properties. Further, Si is one of the strengthening elements that improve the mechanical strength of the base material 101, and may be added in order to ensure the target mechanical strength, as with C. When the content of Si is less than 0.01%, it is difficult to exert an effect of improving the strength and it is difficult to obtain a sufficient improvement in mechanical strength.
  • Si is also an easily oxidizable element, if the Si content exceeds 0.6%, wettability may be reduced and non-plating may occur when performing hot-dip Al-based plating. . Therefore, Si is more preferably added with a content of 0.01% or more and 0.6% or less. The Si content is more preferably 0.05% or more and 0.5% or less.
  • Manganese (Mn: 0.01% or more, 3.5% or less) is an element inevitably contained in the steel refining process, such as being added as a deoxidizer. However, excessive addition of Mn impairs quality uniformity due to segregation of Mn at the time of casting, and the steel sheet is excessively hardened, resulting in a decrease in ductility during hot and cold working, and therefore 3.5% or less. It is preferable that On the other hand, when the content of Mn is reduced to less than 0.01%, the process and cost increase. Therefore, the content of Mn is preferably 0.01% or more. Therefore, Mn is preferably 0.01% or more and 3.5% or less.
  • Mn is one of the strengthening elements of the base material 101 and also one of the elements that enhances the hardenability. Furthermore, Mn is also effective in suppressing hot brittleness due to S (sulfur), which is one of inevitable impurities. Therefore, the effect of improving hardenability and suppressing hot brittleness can be obtained by setting the Mn content to 0.5% or more. On the other hand, if the Mn content is more than 3%, the residual ⁇ phase is excessively increased and the strength may be lowered. Therefore, it is more preferable that Mn is added at a content of 0.5% or more and 3% or less. The Mn content is more preferably 1% or more and 2% or less.
  • Phosphorus (P) is an element that is inevitably contained, but is also a solid solution strengthening element, and is an element that improves the strength of the base material 101 relatively inexpensively.
  • the lower limit of the content is preferably 0.001% from the economical refining limit.
  • the P content is preferably 0.001% or more and 0.1% or less.
  • the P content is more preferably 0.01% or more and 0.08% or less.
  • S Sulfur
  • MnS base material 101
  • the content of S is preferably as low as possible, and the upper limit of the content is preferably 0.05%.
  • the lower limit of the content is preferably 0.001%.
  • the S content is more preferably 0.01% or more and 0.02% or less.
  • Aluminum (Al: 0.001% or more, 0.1% or less) is a component contained in the base material 101 as a deoxidizer, but is also a plating-inhibiting element. For this reason, the upper limit of the Al content is preferably 0.1%. On the other hand, the lower limit of the Al content is not particularly specified, but is preferably 0.001% from the economical refining limit. The Al content is more preferably 0.01% or more and 0.08% or less.
  • Titanium (Ti) is one of the strengthening elements of the base material 101 and is an element that improves the heat resistance of the Al-based plating layer 103 formed on the surface of the base material 101. If the Ti content is less than 0.005%, the strength improvement effect and heat resistance cannot be sufficiently obtained.
  • Ti is added too much, for example, carbide or nitride may be formed, and the base material 101 may be softened.
  • Ti is preferably added at a content of 0.005% or more and 0.1% or less.
  • the Ti content is more preferably 0.03% or more and 0.08% or less.
  • B Boron (B: 0.0003% or more and 0.01% or less) Boron (B) is an element that acts during quenching to improve the strength of the base material 101.
  • B content is less than 0.0003%, such an effect of improving the strength cannot be obtained sufficiently.
  • B is preferably added at a content of 0.0003% or more and 0.01% or less.
  • the B content is more preferably 0.001% or more and 0.008% or less.
  • Chromium (Cr) forms the Al-based plating layer 103 at the interface with the base material 101 when the Al-based plating layer 103 is alloyed to form an Al-Fe alloy layer.
  • Cr is one of the elements that improves the wear resistance, and is also one of the elements that improves the hardenability. When the content of Cr is less than 0.01%, the above effect cannot be obtained sufficiently. On the other hand, if the Cr content is more than 1.0%, not only the above effect is saturated, but also the manufacturing cost of the steel sheet increases. Therefore, Cr is preferably added at a content of 0.01% or more and 1.0% or less. The Cr content is more preferably 0.5% or more and 1.0% or less.
  • Nickel (Ni: 0.01% or more, 5.0% or less) has the effect of improving the hardenability during hot pressing. Ni also has the effect of increasing the corrosion resistance of the base material 101. However, if the Ni content is less than 0.01%, the above effects cannot be obtained sufficiently. On the other hand, if the Ni content is more than 5.0%, not only the above effects are saturated, but also the manufacturing cost of the steel sheet increases. Therefore, Ni is preferably added at a content of 0.01% or more and 5.0% or less.
  • Molybdenum (Mo) has the effect of improving the hardenability during hot pressing. Mo also has the effect of increasing the corrosion resistance of the base material 101. However, if the Mo content is less than 0.005%, the above effects cannot be obtained sufficiently. On the other hand, if the content of Mo exceeds 2.0%, not only the above effects are saturated, but also the manufacturing cost of the steel sheet increases. Therefore, Mo is preferably added at a content of 0.005% to 2.0%.
  • Copper (Cu: 0.005% or more, 1.0% or less) has the effect of improving the hardenability during hot pressing. Cu also has the effect of increasing the corrosion resistance of the base material 101. If the Cu content is less than 0.005%, the above effects cannot be obtained sufficiently. On the other hand, if the Cu content is more than 1.0%, not only the above effect is saturated, but also the manufacturing cost of the steel sheet increases. Therefore, Cu is preferably added at a content of 0.005% or more and 1.0% or less.
  • the base material 101 of this embodiment may be selectively added with an element such as tungsten (W), vanadium (V), niobium (Nb), antimony (Sb), in addition to the plurality of elements described above. Good. As long as the addition amount about these elements is a well-known range, it can employ
  • the balance of the base material 101 is only iron (Fe) and inevitable impurities.
  • An inevitable impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not a component intentionally included in the base material 101.
  • the base material 101 formed of such components can have a mechanical strength of about 1500 MPa or more by quenching by heating with a hot press or the like. Although it is a steel plate having excellent mechanical strength in this way, if it is processed by hot pressing, it can be formed easily because it can be pressed in a softened state by heating. In addition, the base material 101 cooled from a high temperature after pressing can achieve high mechanical strength, and as a result, even if the base material 101 is thinned for weight reduction, the mechanical strength can be maintained or improved.
  • Al-based plating layer 103 is formed on at least one side of the base material 101.
  • the Al-based plating layer 103 can be formed by, for example, a hot dipping method, but the forming method is not limited to this.
  • the Al-based plating layer 103 only needs to contain Al as a main component.
  • “main component” means containing 50 mass% or more of Al.
  • the preferred main component amount is 70 mass% or more of Al
  • the Al-based plating layer 103 preferably contains 70 mass% or more of Al.
  • Components other than Al are not particularly limited, but may contain Si at any concentration.
  • the Al-based plating layer 103 prevents corrosion of the base material 101.
  • the Al-based plating layer 103 prevents scale (iron oxide) from being generated on the surface of the steel sheet during heating before hot pressing.
  • the presence of the Al-based plating layer 103 on at least one surface of the base material 101 makes it possible to omit the scale removal process, the surface cleaning process, the surface treatment process, and the like, thereby improving the productivity of automobile parts and the like. Can be made.
  • the Al-based plating layer 103 has a higher melting point than a film made of an organic material or a film made of another metal material (for example, a Zn-based material), it can be processed at a high temperature during hot pressing. Become.
  • the Al-based plating layer 103 may be alloyed with Fe in the base material 101 at the time of hot dipping or hot pressing. Therefore, the Al-based plating layer 103 is not necessarily formed of a single layer having a constant component, but is a partially alloyed layer (alloy layer) or steel whose concentration gradient changes from the surface. - May contain an aluminum gradient alloy layer.
  • the surface film layer 107 is formed on the Al-based plating layer 103.
  • the surface coating layer 107 contains ZnO particles 109 having an average particle diameter of 0.10 ⁇ m or more and 5.00 ⁇ m or less and an organic resin 111, and the amount of the ZnO particles 109 attached is 0.5 g / m 2 in terms of metallic Zn. As described above, it is necessary to be 10.0 g / m 2 or less.
  • the surface film layer 107 can be formed on at least one Al-based plating layer 103 on one side.
  • the surface film layer 107 can be formed using, for example, a liquid obtained by mixing each of the above components in various solvents such as water and an organic solvent.
  • ZnO particles 109 In order to obtain good workability and corrosion resistance by hot pressing, ZnO particles 109 having an average particle diameter of 0.10 ⁇ m or more and 5.00 ⁇ m or less are 0.5 g / m in terms of metallic Zn on the Al-based plating layer 103. 2 above, it is necessary that it is formed at a coverage of 10.0 g / m 2 or less.
  • the ZnO particles 109 are in point contact with the mold and reduce the dynamic friction coefficient to improve workability. However, if the average particle diameter of the ZnO particles 109 is less than 0.10 ⁇ m, the number of contact points between the ZnO particles 109 and the mold during press working is too large, and the workability is not sufficiently improved.
  • the weldability deteriorates.
  • ZnO is insulative, but when the particle size is small, a sufficient energization point can be secured by crushing when welding pressure is applied.
  • the average particle diameter of the ZnO particles 109 is increased and exceeds 5 ⁇ m, the ZnO particles 109 are not easily crushed when welding pressure is applied. As a result, a sufficient energization point cannot be secured, and the weldability deteriorates because dust tends to be generated.
  • the method for measuring the average particle diameter of the ZnO particles 109 is not particularly limited. For example, with a scanning electron microscope (SEM, Scanning Electron Microscope) or the like, any 10 or more ZnO particles 109 are observed at 2000 times, the maximum particle diameter of each particle is measured, and an average value is calculated and obtained. Good. Or you may obtain
  • SEM scanning electron microscope
  • the amount of all ZnO particles 109 on the surface coating layer 107 is less than 0.5 g / m 2 in terms of metal Zn, sufficient workability cannot be obtained during hot pressing.
  • the adhesion amount of the ZnO particles 109 increases, the workability and corrosion resistance of the steel sheet increase, but the film electrical resistance of the surface film layer 107 increases, so that the resistance weldability of the steel sheet (for example, spot weldability). Decreases. That is, if the adhesion amount of all the ZnO particles 109 on the surface coating layer 107 exceeds 10.0 g / m 2 in terms of metal Zn, it is difficult to sufficiently obtain the resistance weldability of the steel sheet.
  • the adhesion amount of the ZnO particles 109 on the Al-based plating layer 103 can be measured by a calibration curve method using XRF (fluorescence X-ray, X-ray Fluorescence).
  • the amount of adhesion here is the amount of adhesion before heating on a conveyor at the time of hot pressing.
  • the organic resin 111 that is a constituent element of the surface coating layer 107 is not particularly limited as long as it functions as a binder that holds the ZnO particles 109 in the coating. This is because the organic resin 111 burns and disappears at the time of heating before hot pressing and does not affect the subsequent processing such as pressing or welding.
  • the organic resin 111 is an aqueous chemical, it is preferable to use a weakly alkaline and stable cationic resin as in the case of ZnO.
  • a cationic urethane resin or a cationic acrylic resin can be used.
  • the concentration (g / kg) ratio of the organic resin in the drug is not particularly defined.
  • Resins that can be used as the organic resin 111 of the present invention include cationic urethane resins (Daiichi Kogyo Seiyaku Co., Ltd., product name Superflex 650).
  • the content of the organic resin 111 with respect to the entire surface coating layer 107 is preferably 10% or more and 60% or less in mass%.
  • the content is less than 10%, the effect as a binder is not sufficiently exhibited, and the coating film before heating is easily peeled off.
  • the said content of the organic resin 111 shall be 15% or more.
  • the content of the organic resin 111 is more than 60%, generation of unpleasant odor during heating becomes significant.
  • acetylacetonate contained as an oxidizing agent for oxidizing Al in the surface coating layer 107, particularly the surface coating layer 107, is extremely important.
  • the organic resin 111 and Al on the plating surface are oxidized, and as a result, ZnO is reduced to metal Zn and thus metal Zn is vaporized.
  • the surface coating layer 107 contains acetylacetonate that is more reducible (not easily oxidized) than ZnO, the above behavior of ZnO is suppressed, and as a result, disappearance of ZnO can be suppressed. That is, by adding acetylacetonate to the surface coating layer 107, disappearance of ZnO contributing to lubricity is suppressed, and workability and corrosion resistance during hot pressing can be stably obtained.
  • the acetylacetonate may be added by itself or may be added in the form of an acetylacetonate complex (acetylacetonate metal salt).
  • acetylacetonate complex examples include a copper complex, a manganese complex, a nickel complex, a zinc complex, a titanium complex, and a vanadyl complex.
  • acetylacetonate zinc (zinc complex) is more preferable because it itself acts as a ZnO supply source for generating ZnO.
  • acetylacetonate when the addition amount of acetylacetonate is less than 10% by mass in terms of acetylacetonate with respect to the entire surface film layer 107 including ZnO and acetylacetonate, the reduction and disappearance of ZnO are sufficiently suppressed. I can't. As a result, hot lubricity deteriorates. Furthermore, if the content of acetylacetonate is small, zinc oxide is reduced, and thus the corrosion resistance after coating is also lowered. On the other hand, if it exceeds 30% by mass, since acetylacetonate is soluble, paint adhesion is deteriorated, and corrosion resistance after coating is lowered.
  • the amount converted to acetylacetonate is determined as follows. First, the surface coating layer 107 having a certain area is peeled off with fuming nitric acid, and the weight before and after peeling is measured to calculate the coating amount. The film after peeling is sufficiently stirred in a known amount aqueous solution at 30 ° C. to elute acetylacetonate in the film, and the concentration of acetylacetonate in the solution is measured by a calibration curve method of liquid chromatography to obtain an aqueous solution. From the amount, the acetylacetonate ratio is calculated from the amount of acetylacetonate in the film and the amount of film attached.
  • a method for forming the surface coating layer 107 on the Al-based plating layer 103 is not particularly limited, but an aqueous solution in which the above-described main components, the ZnO particles 109, the organic resin 111, and acetylacetonate are dissolved,
  • the solvent can be formed by applying the solvent on the Al-based plating layer 103 by a known method such as a roll coater or spraying and drying.
  • the drying method after coating is not particularly limited, and various methods such as hot air, IH (induction heating), NIR (near infrared), and electric heating can be used.
  • IH induction heating
  • NIR near infrared
  • electric heating it is preferable to appropriately set the temperature elevation temperature at the time of drying in consideration of the glass transition temperature (Tg) of the organic resin 111 as a binder.
  • the outermost surface film layer 107 has excellent lubricity in hot press without disappearance of the ZnO film at the contact portion with the conveyor. Therefore, it is possible to realize excellent workability during hot pressing, excellent corrosion resistance after hot pressing, and the like. Further, according to the Al-plated steel sheet 100 of the present embodiment, adhesion to the mold can be suppressed due to the presence of the surface coating layer 107 having excellent lubricity. Even if the Al-based plating layer 103 is powdered by heating, the presence of the surface film layer 107 having excellent lubricity causes powder (Al—Fe powder, etc.) to be used in the subsequent press. Adhesion is suppressed. Therefore, when the Al-based plated steel sheet 100 of the present embodiment is hot-pressed, there is no need for a step of removing the Al—Fe powder adhered to the mold, and excellent productivity can be realized. .
  • a cationic urethane resin (Daiichi Kogyo Seiyaku Co., Ltd., product name Superflex 650) and acetylacetonate were used as a dispersant for ZnO particles 109 (product name DIF-3ST4S, manufactured by Sakai Chemical Industry Co., Ltd.) and organic resin 111.
  • the solution prepared by mixing was applied onto the Al-based plating layer 103 with a roll coater and dried at a reaching plate temperature of 80 ° C. to form a surface film layer 107.
  • Sample No. 17 was dried at 80 ° C. after applying cyclopentasiloxane in which ZnO particles 109 were dispersed without using the organic resin 111.
  • the said solution for forming the surface film layer 107 shown in Table 2 was prepared by using a commercially available reagent and mixing with distilled water.
  • the “Zn adhesion amount” in Table 2 is a value (unit: “g / m 2 ”) obtained by converting the total adhesion amount of ZnO particles 109 per square meter to the mass of metal Zn. , And was measured by a calibration curve method using XRF. [Measurement condition]
  • the addition amount of acetylacetonate, the particle diameter of the ZnO particle 109, and the ZnO adhesion amount were specified as follows. 1.
  • the surface film layer 107 was peeled off with fuming nitric acid, and the peeled acetylacetonate concentration was measured by the calibration curve method of liquid chromatography.
  • Particle size of ZnO particles 109 Using a scanning electron microscope (product name: JSM-7800F) manufactured by JEOL Ltd., the ZnO particles 109 were observed at a magnification of 2000 times, and the maximum particle size of 20 ZnO particles 109 was measured. The average value was calculated as the particle size of the ZnO particles 109.
  • ZnO adhesion amount Using a Rigaku fluorescent X-ray analyzer (product name: ZSX Primus), the ZnO adhesion amount was measured under the following conditions.
  • Hot lubricity (lubricity) The hot lubricity was evaluated by performing a hot mold pull-out test on the steel sheets of each test example. More specifically, a steel plate of each test example of 30 mm ⁇ 350 mm is inserted into the furnace, sandwiched between two SiC plates having a width of 60 mm ⁇ length of 200 mm ⁇ thickness of 30 mm, heated at 900 ° C. for 6 minutes, After taking out, the flat metal mold
  • the post-painting corrosion resistance evaluation was performed by the method prescribed in JASO M609 established by the Automotive Engineering Association. That is, a crosscut was previously put into the coating film with a cutter, and the width of the film swelling from the crosscut after 180 cycles (60 days) of corrosion test (maximum value on one side) was measured. The smaller the value of the width of the film swelling, the better the corrosion resistance. In the evaluation shown in Table 3, 5 mm or less was accepted.
  • the surface coating layer 107 contains the organic resin 111, the average particle diameter of the ZnO particles 109 is 0.10 ⁇ m or more and 5.00 ⁇ m or less, and the amount of the ZnO particles 109 attached is Including 0.5 g / m 2 or more and 10.0 g / m 2 or less in terms of metal Zn, acetylacetonate is added in an amount of 10% or more and 30% or less with respect to the surface film layer 107 in terms of acetylacetonate.
  • test numbers 1 to 10 within the scope of the present application, good results were obtained for all of the above four evaluations (various characteristics and ZnO disappearance test). I know that.
  • the organic resin 111 is not included, the content range of acetylacetonate, the average particle diameter of the ZnO particles 109, the adhesion amount of the ZnO particles 109 or the like is out of the predetermined range of the present application. (Test Nos. 11 to 18) Regarding the hot-pressed Al-based plated steel sheet outside the scope of the present application, all have good results for at least one of the above four evaluations (various characteristics and ZnO disappearance test). It turns out that is not obtained.

Abstract

母材(101)と、母材(101)の少なくとも片面に形成されたAl系めっき層(103)と、Al系めっき層(103)上に形成された表面皮膜層(107)であって、平均粒径0.10μm以上、5.00μm以下のZnO粒子(109)と、有機樹脂(111)と、表面皮膜層全質量に対して10質量%以上、30質量%以下のアセチルアセトナートと、を含有するとともに、前記ZnO粒子(109)の付着量が金属Zn換算で0.5g/m2以上、10.0g/m2以下である、表面皮膜層(10)とを備えるAl系めっき鋼板(100)。

Description

Al系めっき鋼板
 本発明は、熱間プレス時の加工性(潤滑性)及び耐食性(塗装後耐食性)等を十分に発現することができる、熱間プレス用として好適なAl系めっき鋼板に関する。
 近年、環境保護及び地球温暖化の抑制のために、化石燃料の消費を抑制する要請が高まっており、この要請は、様々な製造業に対して影響を与えている。日々の生活等に欠かせない移動手段を製造する自動車産業についても例外ではなく、車体の軽量化などによって燃料の消費を抑制することが求められている。自動車部品の多くは、鉄、特に鋼板により形成されているため、使用される鋼板の総重量を低減することが、車体の軽量化、ひいては燃料の消費の抑制にとって重要である。
 しかしながら、自動車には安全性の確保が必要であるため、単に鋼板の板厚を低減することは許されず、鋼板の機械的強度の維持が求められる。このような鋼板に対する要請は、自動車産業のみならず、様々な製造業でも同様に高まっている。従って、鋼板の機械的強度を高めることにより、従来使用されていた鋼板より薄くしても、機械的強度の維持又は向上が可能な鋼板について、研究開発が行われている。
 一般に、優れた機械的強度を有する材料は、曲げ加工等の成形加工において、成形性、形状凍結性が低下する傾向にあり、複雑な形状に加工する場合、加工そのものが困難となる。この成形性についての問題を解決する手段の一つとして、いわゆる「熱間プレス方法(ホットスタンプ法、ホットプレス法、ダイクエンチ法、プレスハードニングとも呼ばれる。)」が挙げられる。この熱間プレス方法では、成形対象である材料を一旦高温(オーステナイト域)に加熱して、加熱により軟化した鋼板に対してプレス加工を行って成形した後に、冷却する。
 この熱間プレス方法によれば、材料を一旦高温に加熱して軟化させるので、その材料を容易にプレス加工することができ、さらに、成形後の冷却による焼入れ効果により、材料の機械的強度を高めることができる。従って、この熱間プレスにより、良好な形状凍結性と高い機械的強度とを両立した成形品を得ることができる。
 しかしながら、鋼板を熱間プレスする場合、例えば、800℃以上の高温に加熱すると、表面の鉄が酸化してスケール(酸化物)が生成する。このため、熱間プレスの後に、スケールを除去する工程(デスケーリング工程)が必要となり、生産性が低下する。さらに、耐食性が求められる成形品の場合には、熱間プレスの後に成形品表面へ防錆処理を施し、或いは金属皮膜を形成するため、表面清浄化工程や表面処理工程が必要となり、さらに一層生産性が低下する。
 このような生産性の低下を抑制する例として、鋼板に皮膜を形成する方法が挙げられる。一般に、鋼板上の皮膜としては、有機系材料や無機系材料など様々な材料が使用される。なかでも鋼板に対して犠牲防食作用のある亜鉛系めっき鋼板が、その防食性能と鋼板生産技術の観点から、自動車用鋼板等に広く使われている(特許文献1)。
 しかしながら、熱間プレスにおける加熱温度(700℃以上、1000℃以下)は、有機系材料の分解温度やZn(亜鉛)の沸点などよりも高い。このため、熱間プレスのために鋼板を加熱すると、鋼板表面のめっき層が酸化したり蒸発したりするため、表面性状が著しく劣化し、熱間プレス時の摺動性も悪化するおそれがある。これを防ぐためには亜鉛めっき層にアルミニウムを所定の範囲で含有させ、さらに亜鉛めっき層上にプレス温度で溶融する皮膜を形成する等の対策が必要となる(特許文献2)。
 そのため、熱間プレスに際して高温に加熱する鋼板に対しては、例えば、有機系材料皮膜やZn系の金属皮膜に比べて沸点が高いAl(アルミニウム)系の金属皮膜を形成し、いわゆるAl系めっき鋼板とすることが望ましい。Al系の金属皮膜を形成することにより、鋼板表面へのスケールの付着を防止することができ、デスケーリング工程などの工程が不要となるため生産性が向上する。また、Al系の金属皮膜には防錆効果もあるため、塗装後の耐食性も向上する。
 このような、Al系の金属皮膜を所定の鋼成分を有する鋼に形成したAl系めっき鋼板を熱間プレスに用いる方法が提案されている(例えば、特許文献3参照)。特許文献3に開示されているような熱間プレス用アルミニウム系めっき材の課題の一つに、熱間プレス時の加工性の改善がある。熱間プレス時の加工性については、加熱時に生成するFe-Al-Siめっき層が硬質であるために金型に噛みこんだり、摩擦係数が大きいために金型に堆積したりする、などの懸念事項がある。これらの懸念事項により、製品表面に傷が付き、外観品位を低下させるおそれがある。
 上記の課題を解決する手段の一つとして、酸化亜鉛(ZnO)を含有する皮膜層をめっき表面に付着させる方法が提案されている(例えば、特許文献4参照)。特許文献4に開示の方法は、具体的には、ZnOの脱落抑制のために樹脂成分やシランカップリング剤等をバインダとして含む皮膜層を鋼板表面に付着させ、熱間プレス時に300℃以上、500℃以下でバインダの有機溶剤成分を揮発させてZnOのみを残存させる方法である。かかる方法により、有機溶剤が燃焼、蒸発して生成した空隙によりZnOと金型金属とが点接触となり、潤滑性が向上するとされている。
 また、熱間プレス時の潤滑性に加えて、加熱炉内での加熱や赤外線による加熱を行う際の、昇温特性や、熱間プレス後の化成処理性、塗装後の耐食性を向上させるために、ZnO等の酸化物を利用する方法が提案されている(例えば、特許文献5乃至8参照)。
特開2010-242188号公報 特開2011-32498号公報 特開2000-38640号公報 国際公開第2009/131233号 特開2012-92365号公報 特開2013-227620号公報 特開2013-221202号公報 国際公開第2014/181653号
 特許文献4乃至8に開示されているように、ZnOを含有する表面皮膜層をAl系めっきの上に形成することにより、熱間プレス時の摺動性は向上する。しかしながら、本発明者らが検討した結果、Al系めっき鋼板を熱間プレス前に予熱、搬送のためにコンベアに載せて加熱すると、コンベアと接触した重ね合わせ部のZnO皮膜が消失するため、その部位の熱間摺動性が低下し、全体として十分な加工性(潤滑性)を得ることができないという問題があることが判明した。
 本発明は、上記事情に鑑みてなされたものであって、加熱中にコンベアとの接触部におけるZnOの消失を抑制し、熱間プレス時の加工性(潤滑性)及び耐食性(塗装後耐食性)等を十分に発現させることが可能な、熱間プレス用として好適なAl系めっき鋼板を提供することを目的とする。
 上記課題を解決するために、本発明者らは、まず、コンベアと接触した重ね合わせ部のZnO皮膜が消失する理由について検討した。通常、大気炉連続加熱中では有機樹脂成分やめっき表面に存在するAlは大気中酸素と結合して酸化する。しかしながら、めっき鋼板とコンベアとが接触した重ね合わせ部では酸素の供給量が乏しくなり、AlはZnOを還元させて酸化する。すなわち、有機樹脂成分やめっき表面に存在するAlの酸化の対反応として、ZnOが金属Znへ還元され、さらには金属Znが気化することで消失することが判明した。
 このような状況下において、本発明者らは、さらに、鋼板表面に形成されたAl系めっき層表面に、ZnO粒子と、バインダとして用いる有機樹脂と、ZnOの消失を抑制するAlに対する酸化剤(Alに酸素を供給する)と、を含有する表面皮膜を形成すれば、加熱中にコンベアとの接触部におけるZnOの消失が抑制され、ひいては熱間プレス時の加工性及び耐食性等を十分に発現させることができる、との知見を得た。
 以上の知見に基づき、本発明者らは発明を完成した。その要旨は以下のとおりである。
 [1]母材と、
 前記母材の少なくとも片面に形成されたAl系めっき層と、
 前記Al系めっき層上に形成された表面皮膜層であって、ZnO粒子と、有機樹脂と、前記表面皮膜層全質量に対して10質量%以上、30質量%以下のアセチルアセトナートと、を含有するとともに、前記ZnO粒子の平均粒径が、0.10μm以上、5.00μm以下であり、前記ZnO粒子の付着量が金属Zn換算で0.5g/m以上、10.0g/m以下である、表面皮膜層と、
 を備えることを特徴とする、熱間プレス用Al系めっき鋼板。
[2]前記母材の両面にそれぞれ、前記Al系めっき層及び前記表面皮膜層が形成されたことを特徴とする本発明のAl系めっき鋼板。
 本発明に係るAl系めっき鋼板では、最表層として形成する表面皮膜層の構成要素と、当該要素の1つであるZnO粒子の付着量と、について改良を行っている。その結果、本発明に係るAl系めっき鋼板によれば、熱間プレス時の加工性(潤滑性)及び耐食性(塗装後耐食性)等を十分に発現することができる。
片面にAl系めっき層及び表面皮膜層を設けた本発明のAl系めっき鋼板の断面概念図。 両面にそれぞれ、Al系めっき層及び表面皮膜層を設けた本発明のAl系めっき鋼板の断面概念図。
 以下に、熱間プレス用として好適な、本発明に係るAl系めっき鋼板(以下、単に「鋼板」と称する場合がある)の実施形態を詳細に説明する。なお、以下の実施形態は、本発明を限定するものではない。また、上記実施形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施形態に含まれる各種形態は、当業者が自明の範囲内で任意に組み合わせることができる。
 図1に本発明のAl系めっき鋼板の一例を示した。本発明のAl系めっき鋼板100は、母材101の表面にAl系めっき層103を形成し、Al系めっき層103の表面に表面皮膜層107を形成することにより、構成される。そして、表面皮膜層107は、アセチルアセトナートを含み、有機樹脂111により接合したZnO粒子109からなる。Al系めっき層103、表面皮膜層107は、それぞれ、母材101の両面に形成してもよい(図2参照)。各層について、以下に詳細に説明する。
 <Al系めっき鋼板100>
[母材101]
 本実施形態のAl系めっき鋼板100、に用いる母材101(Al系めっき層103を形成するための部材)としては、めっき層形成後に熱間プレスを行っても、優れた機械的強度(引張強さ、降伏点、伸び、絞り、硬さ、衝撃値、疲れ強さ、クリープ強さ等の機械的な変形及び破壊に関する諸性質を意味する)を有するような部材を使用する。例えば、C(炭素)や合金元素の添加によって焼入れ性を高めた部材を用いる。これにより、後述するような、Al系めっき層103及び表面皮膜層107を形成して得たAl系めっき鋼板100に対して、熱間プレスを施して得られた自動車部品においては、優れた機械的強度が発現される。
 即ち、本実施形態のAl系めっき鋼板100用の母材101は、優れた機械的強度を有するものであれば公知のものを利用することができる。例えば、以下の成分を有するものを母材101として利用することができるが、母材101の成分はこれに限られない。
 本実施形態の母材101は、例えば、質量%で、C:0.01%以上、0.5%以下、Si:2.0%以下、Mn:0.01%以上、3.5%以下、P:0.1%以下、S:0.05%以下、Al:0.001%以上、0.1%以下、N:0.01%以下を含有し、Ti:0.005%以上、0.1%以下、B:0.0003%以上、0.01%以下、Cr:0.01%以上、1.0%以下、Ni:0.01%以上、5.0%以下、Mo:0.005%以上、2.0%以下、Cu:0.005%以上、1.0%以下の1種又は2種以上を任意選択的に含有することができ、さらにW、V、Nb、Sb等の元素を含有でき、残部は、Fe及び不可避的不純物からなる。以下、母材101中に添加される各成分について、詳述する。以下の記載において各成分の単位%は全て質量%を意味する。
 (C:0.01%以上、0.5%以下)
 炭素(C)は、鋼に不可避的に含まれ、また、母材101の目的とする機械的強度を確保するために含有させる。Cの含有量を過剰に低減させることは、製錬コストを増大させるため、0.01%以上含有させることが好ましい。さらに、Cの含有量が0.1%以上であると、機械的強度を向上するために多量に他の合金元素を添加する必要がなくなるため、Cを添加することによる強度向上の効果が大きい。一方、Cの含有量が0.5%超であると、母材101をさらに硬化させることができるものの、溶融割れが生じ易くなる。従って、Cは、0.01%以上、0.5%以下で含有させることが好ましく、強度向上と溶融割れ防止の観点からは、0.1%以上、0.4%以下の含有量で添加することがより好ましい。なお、Cの含有量は0.15%以上、0.35%以下とすることがさらに好ましい。
 (Si:2.0%以下)
 珪素(Si)は、脱酸剤として添加されるなど、鋼の精錬過程において不可避的に含まれる元素である。しかしながら、Siの過度な添加は鋼板製造時の熱延工程での延性低下やその結果として表面性状などを損ねるため、2.0%以下とすることが好ましい。
 また、Siは、母材101の機械的強度を向上させる強化元素の一つであり、Cと同様に、目的とする機械的強度を確保するために添加してもよい。Siの含有量が0.01%未満であると、強度向上効果を発揮しにくく、十分な機械的強度の向上が得られにくい。一方、Siは、易酸化性元素でもあるため、Siの含有量が0.6%超であると、溶融Al系めっきを行う際に、濡れ性が低下し、不めっきが生じる可能性がある。従って、Siは、0.01%以上、0.6%以下の含有量で添加することがより好ましい。なお、Siの含有量は0.05%以上、0.5%以下とすることがさらに好ましい。
 (Mn:0.01%以上、3.5%以下)
 マンガン(Mn)は、脱酸剤として添加されるなど、鋼の精錬過程において不可避的に含まれる元素である。しかしながら、Mnの過度な添加は、鋳造時のMnの偏析による品質の均一性を損ない、鋼板が過剰に硬化し、熱間、冷間加工時の延性の低下を招くため、3.5%以下とすることが好ましい。一方、Mnの含有量を0.01%未満に低下させると、工程やコストが増加するため、Mnの含有量は0.01%以上が好ましい。よって、Mnは、0.01%以上、3.5%以下とすることが好ましい。
 加えて、Mnは、母材101の強化元素の1つであり、焼入れ性を高める元素の1つでもある。さらに、Mnは、不可避的不純物の1つであるS(硫黄)による熱間脆性を低く抑えるのにも有効である。そのため、Mnの含有量を0.5%以上とすることにより、焼入れ性向上や、熱間脆性抑制の効果を得ることができる。一方、Mnの含有量が3%超であると、残留γ相が多くなり過ぎて強度が低下するおそれがある。従って、Mnは、0.5%以上、3%以下の含有量で添加されることがより好ましい。なお、Mnの含有量は1%以上、2%以下とすることがさらに好ましい。
 (P:0.1%以下)
 りん(P)は、不可避的に含有される元素である一方で固溶強化元素でもあり、比較的安価に母材101の強度を向上させる元素である。しかしながら、経済的な精錬限界から含有量の下限を0.001%とすることが好ましい。一方、Pの含有量が0.1%超であると、母材101の靭性が低下するおそれがある。従って、Pの含有量は、0.001%以上、0.1%以下であることが好ましい。なお、Pの含有量は0.01%以上、0.08%以下とすることがさらに好ましい。
 (S:0.05%以下)
 硫黄(S)は、不可避的に含有される元素であり、MnSとして母材101中の介在物となって破壊の起点となり、延性や靭性を阻害して加工性劣化の要因となる。このため、Sの含有量は低いほど好ましく、含有量の上限を0.05%とすることが好ましい。一方、Sの含有量を低下させるためには製造コストの上昇が見込まれるため、含有量の下限は0.001%とすることが好ましい。なお、Sの含有量は0.01%以上、0.02%以下とすることがさらに好ましい。
 (Al:0.001%以上、0.1%以下)
 アルミニウム(Al)は、脱酸剤として母材101中に含有される成分であるが、めっき性阻害元素でもある。このため、Alの含有量の上限は0.1%とすることが好ましい。一方、Alの含有量の下限は特に規定するものではないが、経済的な精錬限界から、例えば、0.001%とすることが好ましい。なお、Alの含有量は0.01%以上、0.08%以下とすることがさらに好ましい。
 (N:0.01%以下)
 窒素(N)は、不可避的に含有される元素であって、母材101の各種の特性を安定化させる観点からは、その含有量を固定することが好ましく、具体的には、Ti、Al等の元素の含有量に基づいて固定することが可能である。一方、Nの含有量が多過ぎると、Ti、Al等の含有量が多くなり、母材101の製造コストの増加が見込まれるため、Nの含有量の上限は0.01%とすることが好ましい。
 (Ti:0.005%以上、0.1%以下、B:0.0003%以上、0.01%以下、Cr:0.01%以上、1.0%以下、Ni:0.01%以上、5.0%以下、Mo:0.005%以上、2.0%以下、Cu:0.005%以上、1.0%以下の1種又は2種以上)
 (Ti:0.005%以上、0.1%以下)
 チタン(Ti)は、母材101の強化元素の1つであり、母材101表面に形成されるAl系めっき層103の耐熱性を向上させる元素でもある。Tiの含有量が0.005%未満であると、強度向上効果や耐熱性を十分に得ることができない。一方、Tiは、添加し過ぎると、例えば、炭化物や窒化物を形成して、母材101を軟質化させるおそれがある。特に、Tiの含有量が0.1%超であると、目的とする機械的強度を得られない可能性が高い。従って、Tiは、0.005%以上、0.1%以下の含有量で添加されることが好ましい。なお、Tiの含有量は0.03%以上、0.08%以下とすることがさらに好ましい。
 (B:0.0003%以上、0.01%以下)
 ホウ素(B)は、焼入れ時に作用して母材101の強度を向上させる効果を有する元素である。
 Bの含有量が0.0003%未満であると、このような強度向上効果が十分に得られない。一方、Bの含有量が0.01%超であると、母材101中に介在物(例えば、BN、炭硼化物、など)が形成されて脆化し、疲労強度を低下させるおそれがある。従って、Bは、0.0003%以上、0.01%以下の含有量で添加されることが好ましい。なお、Bの含有量は0.001%以上、0.008%以下とすることがさらに好ましい。
 (Cr:0.01%以上、1.0%以下)
 クロム(Cr)は、Al系めっき層103を合金化してAl-Fe合金層を形成する際に、Al系めっき層103を母材101との界面に生成することで、Al系めっき層103が剥離する原因となるAlNの生成を抑制する効果がある。また、Crは、耐摩耗性を向上させる元素の一つであり、焼入れ性を高める元素の一つでもある。Crの含有量が0.01%未満であると、上記の効果を十分に得ることができない。一方、Crの含有量が1.0%超であると、上記の効果が飽和するだけでなく鋼板の製造コストも上昇する。従って、Crは、0.01%以上、1.0%以下の含有量で添加されることが好ましい。なお、Crの含有量は0.5%以上、1.0%以下とすることがさらに好ましい。
 (Ni:0.01%以上、5.0%以下)
 ニッケル(Ni)は、熱間プレス時の焼き入れ性を向上させる効果がある。また、Niには母材101の耐食性を高める効果もある。ただし、Niの含有量が0.01%未満であると、上記の効果を十分に得ることができない。一方、Niの含有量が5.0%超であると、上記の効果が飽和するだけでなく鋼板の製造コストも上昇する。従って、Niは、0.01%以上、5.0%以下の含有量で添加されることが好ましい。
 (Mo:0.005%以上、2.0%以下)
 モリブデン(Mo)は、熱間プレス時の焼き入れ性を向上させる効果がある。また、Moには母材101の耐食性を高める効果もある。ただし、Moの含有量が0.005%未満であると、上記の効果を十分に得ることができない。一方、Moの含有量が2.0%超であると、上記の効果が飽和するだけでなく鋼板の製造コストも上昇する。従って、Moは、0.005%以上2.0%以下の含有量で添加されることが好ましい。
 (Cu:0.005%以上、1.0%以下)
 銅(Cu)は、熱間プレス時の焼き入れ性を向上させる効果がある。また、Cuには母材101の耐食性を高める効果もある。Cuの含有量が0.005%未満であると、上記の効果を十分に得ることができない。一方、Cuの含有量が1.0%超であると、上記の効果が飽和するだけでなく鋼板の製造コストも上昇する。従って、Cuは、0.005%以上、1.0%以下の含有量で添加されることが好ましい。
 (W、V、Nb、Sb)
 なお、本実施形態の母材101は、上記の複数の元素に加えて、タングステン(W)、バナジウム(V)、ニオブ(Nb)、アンチモン(Sb)等の元素を選択的に添加してもよい。これらの元素についての添加量は、公知の範囲であれば、いずれの添加量についても採用することができる。
 (残部)
 母材101の残部は、鉄(Fe)と不可避的不純物のみである。不可避的不純物とは、原材料に含まれる成分、或いは製造の過程で混入される成分であって、母材101に意図的に含有させた成分ではない成分をいう。
 このような成分で形成される母材101は、熱間プレスなどによる加熱により焼入れすることで、約1500MPa以上の機械的強度を有することができる。このように優れた機械的強度を有する鋼板ではあるが、熱間プレスによって加工すれば、加熱により軟化した状態でプレスを行うことができるので、容易に成形することができる。また、プレス後、高温から冷却された母材101は、高い機械的強度を実現でき、ひいては軽量化のために薄くしたとしても機械的強度を維持又は向上させることができる。
 [Al系めっき層103]
 Al系めっき層103は、母材101の少なくとも片面に形成される。Al系めっき層103は、例えば、溶融めっき法により形成することができるが、当該形成方法はこれに限定されない。Al系めっき層103は、主成分としてAlを含有していればよい。ここでいう、「主成分」とは、Alを50質量%以上含むことをいう。好ましい主成分量は、Alが70質量%以上であり、Al系めっき層103はAlを70質量%以上含むものが好ましい。Al以外の成分は、特に限定しないが、任意の濃度でSiを含んでもよい。
 Al系めっき層103は、母材101の腐食を防止する。また、Al系めっき層103は、熱間プレス前の加熱の際に、鋼板表面にスケール(鉄の酸化物)が生成することを防止する。このため、母材101の少なくとも片面にAl系めっき層103が存在することで、スケール除去工程、表面清浄化工程及び表面処理工程などを省略することができ、ひいては自動車部品等の生産性を向上させることができる。さらに、Al系めっき層103は、有機系材料による皮膜や、他の金属系材料(例えば、Zn系材料)による皮膜よりも融点が高いので、熱間プレスの際、高温での加工が可能となる。
 なお、Al系めっき層103に含まれるAlの一部又は全部は、溶融めっき時や、熱間プレス時に、母材101中のFeと合金化することがある。よって、Al系めっき層103は、必ずしも成分が一定である単一の層で形成されるとは限らず、部分的に合金化した層(合金層)、あるいは、表面より濃度勾配が変化する鋼-アルミニウム傾斜合金層を含むものとなる場合がある。
 [表面皮膜層107]
 表面皮膜層107は、Al系めっき層103上に形成される。表面皮膜層107は、平均粒径0.10μm以上、5.00μm以下のZnO粒子109と、有機樹脂111を含有するとともに、上記ZnO粒子109の付着量が金属Zn換算で0.5g/m以上、10.0g/m以下であることが必要である。なお、母材101の両面にAl系めっき層103が形成されている場合には、少なくとも片側の当該Al系めっき層103上に表面皮膜層107を形成することができる。
 表面皮膜層107は、例えば、水や有機溶剤などの各種溶剤中に上記の各成分を混合させた液を用いて形成することができる。
 (ZnO粒子109)
 熱間プレスで良好な加工性及び耐食性を得るためには、Al系めっき層103上に、平均粒径0.10μm以上、5.00μm以下のZnO粒子109が金属Zn換算で0.5g/m以上、10.0g/m以下の付着量で形成されていることが必要である。ZnO粒子109は金型と点接触し、動摩擦係数を低下させて加工性を向上させる。しかしながら、ZnO粒子109の平均粒径が0.10μm未満では、プレス加工時にZnO粒子109と金型との接触点が多過ぎるため、加工性が十分に向上しない。
 一方、ZnO粒子109の平均粒径が5.00μmを超えると、溶接性が悪化する。ZnOは絶縁性であるが、粒径が小さいときには溶接圧加時につぶれることで通電点を十分確保することができる。しかしながら、ZnO粒子109の平均粒径が大きくなり5μmを超えると溶接圧加時にZnO粒子109がつぶれにくくなる。その結果、通電点を十分確保することができず、チリが出やすくなるため溶接性が悪化する。
 なお、ZnO粒子109の平均粒径の測定方法は、特に限定されない。例えば、走査型電子顕微鏡(SEM、Scanning Electron Microscope)等によって、任意の10個以上のZnO粒子109を2000倍で観察して各粒子の最大粒径を測定し、平均値を算出して求めればよい。或いは、粒度分布測定装置を用いて、ZnO粒子109の平均粒径を求めても良い。
 また、表面皮膜層107の全てのZnO粒子109の付着量が金属Zn換算で0.5g/m未満では、熱間プレス時に十分な加工性を得ることができない。また、ZnO粒子109の付着量が増大するほど、鋼板の加工性や耐食性は増加するものの、表面皮膜層107の皮膜電気抵抗が上昇することから、鋼板の抵抗溶接性(例えば、スポット溶接性)が低下する。即ち、表面皮膜層107の全てのZnO粒子109の付着量が金属Zn換算で10.0g/mを超えると、鋼板の抵抗溶接性を十分に得ることが難しい。
 なお、Al系めっき層103上へのZnO粒子109の付着量は、XRF(蛍光X線、X-ray Fluorescence)を用いた検量線法によって測定することができる。
 なお、ここでいう付着量とは、熱間プレス時に、コンベアに載せて加熱する前の付着量である。
 (有機樹脂111)
 本実施形態の鋼板において、表面皮膜層107の構成要素である有機樹脂111は、ZnO粒子109を当該皮膜中に保持するバインダとして機能するものであれば、特に限定されない。有機樹脂111は、熱間プレス前の加熱時に燃焼して消失し、その後の処理であるプレス加工や溶接等に影響しないためである。有機樹脂111を水系の薬剤とする場合には、ZnOと同様に弱アルカリ性で安定なカチオン樹脂を用いることが好ましく、例えば、カチオン系ウレタン樹脂やカチオン系アクリル樹脂を用いることができる。なお、本実施形態においては、薬剤中の有機樹脂の濃度(g/kg)比率については、特に規定しない。また、本発明の有機樹脂111として使用できる樹脂は、カチオン系ウレタン樹脂(第一工業製薬社製、製品名スーパーフレックス650)などである。
 有機樹脂111にバインダとしての作用を十分に発現させるためには、表面皮膜層107全体に対する有機樹脂111の含有量を、質量%で、10%以上、60%以下とすることが好ましい。上記含有量が10%未満であると、バインダとしての作用が十分に発現されず、加熱前の塗膜が剥離し易くなる。なお、バインダとしての作用を安定して得るためには、有機樹脂111の上記含有量を、15%以上とすることがより好ましい。一方、有機樹脂111の含有量が60%超であると、加熱時の不快臭の発生が顕著になる。
 (アセチルアセトナート)
 本実施形態の鋼板において、表面皮膜層107、中でも表面皮膜層107にAlを酸化する酸化剤として含まれるアセチルアセトナートは極めて重要である。連続加熱中のAl系めっき鋼板100とコンベアとの接触部においては、上記有機樹脂111やめっき表面のAlが酸化され、これに伴い、ZnOが金属Znへ還元され、ひいては金属Znが気化する。しかしながら、表面皮膜層107にZnOより還元性の高い(酸化され難い)アセチルアセトナートを含ませることで、ZnOの上記挙動が抑制され、その結果ZnOの消失を抑制することができる。即ち、表面皮膜層107へのアセチルアセトナートの添加により、潤滑性に寄与するZnOの消失が抑制され、熱間プレス時の加工性及び耐食性を安定的に得ることができる。
 アセチルアセトナートは、そのもので添加されていてもよく、アセチルアセトナート錯体(アセチルアセトナート金属塩)の形で添加されていてもよい。アセチルアセトナート錯体としては、銅錯体、マンガン錯体、ニッケル錯体、亜鉛錯体、チタン錯体、バナジル錯体等が挙げられ。その中でもアセチルアセトナート亜鉛(亜鉛錯体)がそれ自身でもZnOを生成させるZnO供給源として作用するため、より好ましい。
 また、ZnO、アセチルアセトナートを含めた全表面皮膜層107中に対し、アセチルアセトナートの添加量が、アセチルアセトナート換算で10質量%未満であると、ZnOの還元、消失を十分に抑制することができない。その結果、熱間潤滑性が悪化する。さらに、アセチルアセトナートの含有量が少ないと酸化亜鉛が減少するため、塗装後耐食性も低下する。一方、30質量%を超えると、アセチルアセトナートは溶解性なので塗料密着性が悪くなり、塗装後耐食性が低下する。
 なお、アセチルアセトナート換算量は、以下のように決定する。最初に、一定面積の表面皮膜層107を発煙硝酸にて剥離し、剥離前後の重量を測定して皮膜付着量を算出する。そして、該剥離後皮膜を30℃の既知量水溶液中で十分撹拌して皮膜中のアセチルアセトナートを溶出させ、該溶液のアセチルアセトナート濃度を液体クロマトグラフィーの検量線法により測定して、水溶液量より皮膜中のアセチルアセトナート量及び皮膜付着量よりアセチルアセトナート比率を算出する。
 次に、Al系めっき層103上への表面皮膜層107の形成方法は、特に限定されないが、上記の各主成分である、ZnO粒子109、有機樹脂111及びアセチルアセトナートを溶解させた水溶液や溶剤を、Al系めっき層103上に、ロールコーターやスプレー等の公知の手法で塗布し、乾燥させることにより形成することができる。また、塗布後の乾燥方法についても特に限定されないが、熱風、IH(誘導加熱)、NIR(近赤外)、通電加熱等の、各方式を用いることができる。さらに、乾燥の際の昇温温度については、バインダである有機樹脂111のガラス転移温度(Tg)を考慮して、適宜設定することが好ましい。
 以上説明したように、本実施形態のAl系めっき鋼板100によれば、最表層の表面皮膜層107について、コンベアとの接触部でZnO皮膜が消失することなく熱間プレスでの優れた潤滑性を発現するため、熱間プレス時の優れた加工性や熱間プレス後の優れた耐食性等を実現することができる。また、本実施形態のAl系めっき鋼板100によれば、潤滑性に優れる表面皮膜層107の存在により、金型への凝着を抑制することができる。仮に、Al系めっき層103が加熱によってパウダリングした場合であっても、潤滑性に優れる表面皮膜層107の存在により、後続のプレスに使用される金型にパウダ(Al-Fe粉など)が凝着することが抑制される。従って、本実施形態のAl系めっき鋼板100を熱間プレスする場合には、金型に凝着したAl-Fe粉を除去する工程などが不要であり、優れた生産性を実現することができる。
 以下、本発明の効果を発明例により具体的に説明する。なお、本発明は、以下の発明例に用いた条件に限定されるものではない。
 表1に示す化学成分の冷延鋼板(残部はFe及び不可避的不純物、板厚1.4mm)を使用し、冷延鋼板の両面にゼンジマー法でAl系めっき層103を形成した。Al系めっき層103形成時の焼鈍温度は、約800℃であった。Al系めっき浴は、通常のAl系めっき浴を使用した。
 なお、母材101に付着しているAl系めっき層103の量を、ガスワイピング法で、片面160g/mに調整した。
Figure JPOXMLDOC01-appb-T000001
 その後、ZnO粒子109の分散剤(堺化学工業社製、製品名DIF-3ST4S)及び有機樹脂111として、カチオン系ウレタン樹脂(第一工業製薬社製、製品名スーパーフレックス650)及びアセチルアセトナートを混合して調整した溶液を、ロールコーターでAl系めっき層103上に塗布し、到達板温度80℃で乾燥させ、表面皮膜層107を形成した。また、試料番号17については、有機樹脂111を用いず、ZnO粒子109を分散させたシクロペンタシロキサンを塗布した後に80℃で乾燥させた。
 このようにして、各試験例のAl系めっき鋼板を得た。なお、表2に示す表面皮膜層107を形成するための上記溶液は、市販の試薬を使用し、蒸留水と混合することで調整し
 た。なお、表2における「Zn付着量」とは、1平方メートル当たりのZnO粒子109の全付着量を金属Znの質量に換算して得られた値(単位は、「g/m」)であり、XRFを用いた検量線法によって測定した。
[測定条件]
 また、アセチルアセトナートの添加量、ZnO粒子109の粒径、ZnO付着量は以下のように特定した。
1.アセチルアセトナートの添加量
 前述のように、表面皮膜層107を発煙硝酸にて剥離し、剥離したアセチルアセトナート濃度を液体クロマトグラフィーの検量線法によって測定した。
2.ZnO粒子109の粒径
 日本電子社製走査型電子顕微鏡(製品名:JSM-7800F)を用い、ZnO粒子109を倍率2000倍で観察し、20個のZnO粒子109の最大粒径を測定し、平均値を算出してZnO粒子109の粒径とした。
3.ZnO付着量
 Rigaku社製蛍光X線分析装置(製品名:ZSX Primus)を用い、以下の条件でZnO付着量を測定した。測定にあたっては、予め、金属Zn量換算で蛍光X線強度との関係を表す検量線を作成しておき、この検量線に基づき、付着量を決定した。
 測定径:30mm
 測定雰囲気:真空
 スペクトル:Zn-Kα
 上記条件により測定した蛍光X線分析のZn-Kαのピークカウント数を用いた。
Figure JPOXMLDOC01-appb-T000002
 次に、このようにして製造した各試験例の鋼板の各種特性等を、以下の方法で評価した。結果を表3に示した。
 (1)熱間潤滑性(潤滑性)
 各試験例の鋼板に対して、熱間で金型引き抜き試験を行うことで、熱間潤滑性を評価した。より詳細には、30mm×350mmの各試験例の鋼板を炉内に挿入して、2枚の幅60mm×長200mm×厚30mmのSiC製板で挟み込み、900℃で6分加熱し、炉から取り出した後、約700℃でSKD11製の平金型(幅50mm×長40mm)を鋼板の両側から押し付け、引き抜き加工をした。SiC製板によって鋼板の両面を挟むことにより、表面からの酸素の供給を十分に防止し、コンベアと接触した重ね合わせ部のZnO皮膜が消失する状況をより過酷な条件で模擬している。押し付け荷重と引き抜き荷重とを測定し、引き抜き荷重/(2×押し付け荷重)で得られる値を熱間摩擦係数とした。なお、動摩擦係数の値は小さいほど熱間潤滑性が優れていることを意味し、表3に示す評価では、0.52未満を合格とした。
 (2)塗装後耐食性
 120mm×200mmの各試験例の鋼板を炉内に挿入して、SiC製の炉内台座上に評価面を接触させる向きで設置し、900℃に加熱した50mm×50mm×70mmのSUS304ブロックを載せた状態で、900℃で在炉6分加熱し、炉から取り出した後、直ちにステンレス製金型に挟んで急冷した。このときの冷却速度は、約150℃/秒であった。次に、冷却後の各鋼板の中央部より70mm×150mmに剪断し、日本パーカライジング(株)社製化成処理液(PB-SX35)で化成処理後、日本ペイント(株)社製電着塗料(パワーニクス110)を膜厚が20μmとなるように塗装し、170℃で焼き付けた。なお、900℃に設定した大気炉内に熱電対を溶接した70mm×150mmの各鋼板を挿入し、900℃になるまでの温度を計測し、平均昇温速度を算出したところ、5℃/秒であった。
 塗装後耐食性評価は、自動車技術会制定のJASO M609に規定する方法で行った。即ち、塗膜に予めカッターでクロスカットを入れ、腐食試験180サイクル(60日)後のクロスカットからの塗膜膨れの幅(片側最大値)を計測した。塗膜膨れの幅の値は小さいほど耐食性が優れていることを意味し、表3に示す評価では、5mm以下を合格とした。
 (3)スポット溶接性
 スポット溶接性は、次のように評価した。
 作製した各試験例の鋼板を加熱炉内に入れ、900℃で在炉6分加熱し、取り出した後直ちにステンレス製の金型で挟んで急冷した。このときの冷却速度は、約150℃/秒であった。次に、冷却後の各鋼板を30×50mmに剪断し、スポット溶接適正電流範囲(上限電流-下限電流)を測定した。測定条件は、以下に示す通りである。下限電流は、ナゲット径3×(t)0.5となったときの電流値とし、上限電流は、散り発生電流とした。
 電流:直流
 電極:クロム銅製、DR(先端6mmφが40R)
 加圧:400kgf(1kgfは、9.8Nである。)
 通電時間:240マイクロ秒
 上記の値は大きいほどスポット溶接性が優れていることを意味し、表3に示す評価では、1.0kA以上を合格とした。
 (4)ZnO消失試験
 各試験例の鋼板を30mmφに打ち抜き、70mm×70mmのSiC製炉内台座に重ね合わせて、900℃に加熱した50mm×50mm×70mmのSUS304ブロックを載せた状態で、900℃で在炉6分加熱し、取り出した後、直ちにステンレス製金型に挟んで急冷した。加熱前後でのZn付着量をXRFにより測定してZn換算のZn付着量を測定し、Zn換算のZnO残存率を算出した。
 表3に示す評価では、Zn残存率で75%以上、Zn残存量で0.40g/m以上を合格とした。
Figure JPOXMLDOC01-appb-T000003
 表2、3から明らかなように、表面皮膜層107が、有機樹脂111を含み、ZnO粒子109の平均粒径が0.10μm以上、5.00μm以下であり、上記ZnO粒子109の付着量が金属Zn換算で0.5g/m以上、10.0g/m以下で含み、アセチルアセトナートが、アセチルアセトナート換算で表面皮膜層107に対し10%以上、30%以下添加されている、本願の範囲内の熱間プレス用Al系めっき鋼板(試験番号1乃至10)については、いずれも、上記の4つの評価(各種特性及びZnO消失試験)の全てについて、良好な結果が得られていることが判る。
 これに対し、有機樹脂111が含まれないか、アセチルアセトナートの含有範囲か、ZnO粒子109の平均粒径、ZnO粒子109の付着量等のうちのいずれかが本願所定の範囲から外れている(試験番号11乃至18)、本願の範囲外の熱間プレス用Al系めっき鋼板については、いずれも、上記の4つの評価(各種特性及びZnO消失試験)のうちの少なくとも1について、良好な結果が得られていないことが判る。
   100…Al系めっき鋼板
   101…母材
   103…Al系めっき層
   107…表面皮膜層
   109…ZnO粒子
   111…有機樹脂
 

Claims (2)

  1.  母材と、
     前記母材の少なくとも片面に形成されたAl系めっき層と、
     前記Al系めっき層上に形成された表面皮膜層であって、ZnO粒子と、有機樹脂と、前記表面皮膜層全質量に対して10質量%以上、30質量%以下のアセチルアセトナートと、を含有するとともに、前記ZnO粒子の平均粒径が、0.10μm以上、5.00μm以下であり、前記ZnO粒子の付着量が金属Zn換算で0.5g/m以上、10.0g/m以下である、表面皮膜層と、
     を備えることを特徴とする、熱間プレス用Al系めっき鋼板。
  2.  前記母材の両面にそれぞれ、前記Al系めっき層及び前記表面皮膜層が形成されたことを特徴とする請求項1に記載のAl系めっき鋼板。
PCT/JP2018/011701 2017-03-27 2018-03-23 Al系めっき鋼板 WO2018180986A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP18774246.5A EP3608442A4 (en) 2017-03-27 2018-03-23 AL-BASED STEEL PLATE
CA3053102A CA3053102A1 (en) 2017-03-27 2018-03-23 Al-based plated steel sheet
JP2018533842A JP6424989B1 (ja) 2017-03-27 2018-03-23 Al系めっき鋼板
US16/485,703 US20200002818A1 (en) 2017-03-27 2018-03-23 Al-based plated steel sheet
BR112019013298A BR112019013298A2 (pt) 2017-03-27 2018-03-23 chapa de aço revestida com alumínio
KR1020197023608A KR102269829B1 (ko) 2017-03-27 2018-03-23 Al계 도금 강판
CN201880011583.4A CN110291226A (zh) 2017-03-27 2018-03-23 Al系镀覆钢板
RU2019125494A RU2019125494A (ru) 2017-03-27 2018-03-23 Алюминированный стальной лист
MX2019009703A MX2019009703A (es) 2017-03-27 2018-03-23 Lamina de acero con revestimiento a base de aluminio.
ZA2019/05518A ZA201905518B (en) 2017-03-27 2019-08-21 Al-based plated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061796 2017-03-27
JP2017-061796 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180986A1 true WO2018180986A1 (ja) 2018-10-04

Family

ID=63675756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011701 WO2018180986A1 (ja) 2017-03-27 2018-03-23 Al系めっき鋼板

Country Status (12)

Country Link
US (1) US20200002818A1 (ja)
EP (1) EP3608442A4 (ja)
JP (1) JP6424989B1 (ja)
KR (1) KR102269829B1 (ja)
CN (1) CN110291226A (ja)
BR (1) BR112019013298A2 (ja)
CA (1) CA3053102A1 (ja)
MX (1) MX2019009703A (ja)
RU (1) RU2019125494A (ja)
TW (1) TWI664299B (ja)
WO (1) WO2018180986A1 (ja)
ZA (1) ZA201905518B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234790A1 (ja) * 2020-05-18 2021-11-25 日本製鉄株式会社 ホットスタンプ成形体及びその製造方法並びにAlめっき鋼板
KR102661640B1 (ko) * 2019-11-05 2024-04-29 에누오케 가부시키가이샤 수계 표면처리제

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240091842A1 (en) * 2019-11-29 2024-03-21 Nippon Steel Corporation Plated steel sheet for hot stamping and hot-stamped member

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038640A (ja) 1998-07-09 2000-02-08 Sollac 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板
WO2009131233A1 (ja) 2008-04-22 2009-10-29 新日本製鐵株式会社 めっき鋼板及びめっき鋼板の熱間プレス方法
JP2010242188A (ja) 2009-04-08 2010-10-28 Jfe Steel Corp 亜鉛系めっき鋼板
JP2011032498A (ja) 2009-07-30 2011-02-17 Jfe Steel Corp 熱間プレス用表面処理鋼板およびそれを用いた熱間プレス部材の製造方法
JP2012092365A (ja) 2010-10-25 2012-05-17 Nippon Steel Corp 高強度自動車部品の製造方法および高強度部品
WO2013157522A1 (ja) * 2012-04-18 2013-10-24 新日鐵住金株式会社 Al系めっき鋼板、Al系めっき鋼板の熱間プレス方法及び自動車部品
JP2013221202A (ja) 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp 熱間プレス用Al系めっき鋼板及びその熱間プレス方法
JP2013227620A (ja) 2012-04-25 2013-11-07 Nippon Steel & Sumitomo Metal Corp 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品
WO2014181653A1 (ja) 2013-05-07 2014-11-13 新日鐵住金株式会社 塗装後耐食性に優れるAl系合金めっき鋼材
WO2016195101A1 (ja) * 2015-06-04 2016-12-08 新日鐵住金株式会社 熱間プレス用めっき鋼板の表面処理液

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555498B2 (ja) * 2000-04-11 2010-09-29 新日本製鐵株式会社 スポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板とその製造方法
TW200502432A (en) 2003-07-08 2005-01-16 Nippon Paint Co Ltd Inorganic-organic composite-treated zinc-plated steel sheet
BRPI0621828B1 (pt) * 2006-06-15 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Coated steel sheet
JP5499773B2 (ja) * 2010-02-26 2014-05-21 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法
WO2011155635A1 (ja) * 2010-06-08 2011-12-15 住友金属鉱山株式会社 金属酸化物膜の製造方法及び金属酸化物膜、それを用いた素子、金属酸化物膜付き基板並びにそれを用いたデバイス
JP5273316B2 (ja) * 2011-03-29 2013-08-28 新日鐵住金株式会社 表面処理鋼板
CA2864392C (en) * 2012-02-14 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Plated steel plate for hot pressing and hot pressing method of plated steel plate
JP6030344B2 (ja) * 2012-05-28 2016-11-24 Jfeスチール株式会社 塗装鋼板およびその製造方法、ならびに加工品および薄型テレビ用パネル
BR112016012467B1 (pt) * 2013-12-12 2020-12-29 Nippon Steel Corporation chapa de aço chapeada de alumínio usada para prensagem a quente e método para fabricação da mesma

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038640A (ja) 1998-07-09 2000-02-08 Sollac 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板
WO2009131233A1 (ja) 2008-04-22 2009-10-29 新日本製鐵株式会社 めっき鋼板及びめっき鋼板の熱間プレス方法
JP2010242188A (ja) 2009-04-08 2010-10-28 Jfe Steel Corp 亜鉛系めっき鋼板
JP2011032498A (ja) 2009-07-30 2011-02-17 Jfe Steel Corp 熱間プレス用表面処理鋼板およびそれを用いた熱間プレス部材の製造方法
JP2012092365A (ja) 2010-10-25 2012-05-17 Nippon Steel Corp 高強度自動車部品の製造方法および高強度部品
WO2013157522A1 (ja) * 2012-04-18 2013-10-24 新日鐵住金株式会社 Al系めっき鋼板、Al系めっき鋼板の熱間プレス方法及び自動車部品
JP2013221202A (ja) 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp 熱間プレス用Al系めっき鋼板及びその熱間プレス方法
JP2013227620A (ja) 2012-04-25 2013-11-07 Nippon Steel & Sumitomo Metal Corp 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品
WO2014181653A1 (ja) 2013-05-07 2014-11-13 新日鐵住金株式会社 塗装後耐食性に優れるAl系合金めっき鋼材
WO2016195101A1 (ja) * 2015-06-04 2016-12-08 新日鐵住金株式会社 熱間プレス用めっき鋼板の表面処理液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608442A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102661640B1 (ko) * 2019-11-05 2024-04-29 에누오케 가부시키가이샤 수계 표면처리제
WO2021234790A1 (ja) * 2020-05-18 2021-11-25 日本製鉄株式会社 ホットスタンプ成形体及びその製造方法並びにAlめっき鋼板
JPWO2021234790A1 (ja) * 2020-05-18 2021-11-25
JP7288228B2 (ja) 2020-05-18 2023-06-07 日本製鉄株式会社 ホットスタンプ成形体及びその製造方法並びにAlめっき鋼板

Also Published As

Publication number Publication date
BR112019013298A2 (pt) 2019-12-10
KR20190105063A (ko) 2019-09-11
CN110291226A (zh) 2019-09-27
US20200002818A1 (en) 2020-01-02
TWI664299B (zh) 2019-07-01
EP3608442A4 (en) 2020-09-09
JP6424989B1 (ja) 2018-11-21
TW201903165A (zh) 2019-01-16
RU2019125494A (ru) 2021-04-28
MX2019009703A (es) 2019-10-02
KR102269829B1 (ko) 2021-06-29
CA3053102A1 (en) 2018-10-04
RU2019125494A3 (ja) 2021-04-28
ZA201905518B (en) 2020-05-27
JPWO2018180986A1 (ja) 2019-04-04
EP3608442A1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6048525B2 (ja) 熱間プレス成形品
CA2908885C (en) Plated steel sheet for hot pressing, hot pressing method for plated steel sheet, and automobile part
JP6819771B2 (ja) ホットスタンプ成形体
JP5692148B2 (ja) 熱間プレス用Al系めっき鋼板及びその熱間プレス方法
JP6011732B2 (ja) 熱間プレス用Alめっき鋼板及び熱間プレス用Alめっき鋼板の製造方法
JP6897757B2 (ja) 表面処理鋼板
JP6125313B2 (ja) めっき鋼板の熱間プレス方法
WO2018180986A1 (ja) Al系めっき鋼板
JP6432717B1 (ja) Al系めっき鋼板及びその製造方法
JP6708310B2 (ja) めっき鋼板、めっき鋼板コイル、熱間プレス成形品の製造方法、及び自動車部品
TWI676508B (zh) Al系鍍敷鋼板及其製造方法
JPWO2020213201A1 (ja) 熱間プレス用鋼板および熱間プレス部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533842

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774246

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013298

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3053102

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197023608

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018774246

Country of ref document: EP

Effective date: 20191028

ENP Entry into the national phase

Ref document number: 112019013298

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190626