WO2018180686A1 - 植生影響算出装置、植生影響算出システム及び植生影響算出プログラムを格納した記憶媒体 - Google Patents

植生影響算出装置、植生影響算出システム及び植生影響算出プログラムを格納した記憶媒体 Download PDF

Info

Publication number
WO2018180686A1
WO2018180686A1 PCT/JP2018/010762 JP2018010762W WO2018180686A1 WO 2018180686 A1 WO2018180686 A1 WO 2018180686A1 JP 2018010762 W JP2018010762 W JP 2018010762W WO 2018180686 A1 WO2018180686 A1 WO 2018180686A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
vegetation
moisture content
adhesive strength
correction value
Prior art date
Application number
PCT/JP2018/010762
Other languages
English (en)
French (fr)
Inventor
将 浅野
梓司 笠原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/498,170 priority Critical patent/US11206771B2/en
Priority to JP2019509337A priority patent/JP6753520B2/ja
Publication of WO2018180686A1 publication Critical patent/WO2018180686A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G20/00Cultivation of turf, lawn or the like; Apparatus or methods therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Definitions

  • the present invention relates to slope stability analysis, and more particularly, to a technique for quantifying the vegetation effect in slope failure.
  • slope stability analysis is a technique for investigating the stability of a slope by analyzing the balance between the force with which an object tries to slide on the slope and the force that resists friction.
  • methods such as Ferenius method, Yanbu method, and Bishop method for slope stability analysis.
  • soil parameters are calculated based on soil characteristics (clot weight, internal friction angle, adhesive force) and pore water pressure between soil particles (measured values obtained in advance through experiments). Describes a technique for calculating slope stability by performing slope stability analysis from the above parameters and the amount of moisture in the soil (immediate measurement by a moisture sensor embedded in the soil).
  • Vegetation adhesion is the force by which vegetation holds soil layers together. Vegetation adhesive strength is sometimes called soil binding force or binding force.
  • the vegetation adhesive force is considered to change depending on the amount of moisture. In this case, in order to perform a more accurate slope stability analysis, it becomes necessary to calculate a change in vegetation adhesive force depending on the amount of water.
  • An object of the present invention is to provide an apparatus for calculating a change in the influence of vegetation on slope stability due to the amount of moisture.
  • the vegetation influence calculation device of the present invention includes at least an input / output unit, a correction value calculation unit, and a correction unit, and the input / output unit has a relationship between a moisture content on a slope, a moisture content on the slope, and a soil adhesive force.
  • the vegetation adhesive strength which is the adhesive strength of the vegetation that grows on the slope
  • the vegetation influence calculation unit obtains the water content of the slope and the relational expression between the acquired water content and the soil adhesive strength.
  • the correction unit calculates the corrected vegetative adhesive force using the acquired vegetative adhesive force and the calculated correction value.
  • the vegetation effect calculation system of the present invention includes a vegetation effect calculation device, a storage unit, an acquisition unit, and a slope stability analysis device.
  • storage part memorize
  • An acquisition part acquires the moisture content and vegetation adhesive force of a slope, and records it on a memory
  • the vegetation influence calculation device includes at least an input / output unit, a correction value calculation unit, and a correction unit.
  • the acquisition unit acquires the moisture content of the slope, the relational expression between the moisture content of the slope and the adhesive strength of the soil, and the vegetation adhesive strength that is the adhesive strength of the vegetation that grows on the slope.
  • the vegetation influence calculation unit calculates the correction value using the acquired moisture content of the slope and the relational expression between the moisture content and the adhesive strength of the soil.
  • the correction unit calculates the corrected vegetation adhesive force using the acquired vegetation adhesive force and the calculated correction value.
  • the slope stabilizer calculates a safety factor on the slope using the corrected vegetation adhesive force.
  • the vegetation effect calculation method of the present invention acquires and acquires the moisture content of the slope, the relational expression between the moisture content on the slope and the adhesive strength of the soil, and the vegetation adhesive strength, which is the adhesive strength of the vegetation that grows on the slope.
  • the correction value is calculated using the water amount of the slope and the relational expression between the acquired water amount and the soil adhesive strength, and is corrected using the acquired vegetation adhesive strength and the calculated correction value. Calculate the vegetation adhesive strength.
  • the corrected correction value is used as a means for calculating the corrected vegetative adhesive force.
  • FIG. 1 is a block diagram illustrating a functional configuration of a vegetation influence calculation apparatus 100 according to the first embodiment.
  • the vegetation influence calculation apparatus 100 is a vegetation influence calculation apparatus that calculates the influence of vegetation on slope stability.
  • the vegetation influence calculation apparatus 100 includes at least an input / output unit 110, a correction value calculation unit 120, and a correction unit 130.
  • the input / output unit 110 includes a water content of the slope, a relational expression between the moisture content of the slope and the adhesive strength of the soil, an optimum water content ratio of the slope, and an adhesive strength of vegetation (hereinafter referred to as vegetation) that grows on the slope ( Get vegetation adhesion).
  • Vegetation adhesion is the force by which vegetation holds the soil layer together.
  • Vegetation adhesive strength is sometimes called soil binding force or binding force.
  • Vegetation adhesiveness is one of the parameters indicating the effect of vegetation on slope stability. The greater the vegetation adhesive strength, the harder it is to collapse.
  • the correction value calculation unit 120 calculates the correction value using the water content of the slope acquired from the input / output unit 110 and the relational expression between the water content on the slope and the adhesive strength of the soil.
  • the correction unit 130 calculates the corrected vegetation adhesive force using the vegetation adhesive force acquired from the input / output unit 110 and the correction value calculated by the correction value calculation unit 120.
  • FIG. 2 is a flowchart showing an example of the operation of the vegetation influence calculating apparatus 100 according to the first embodiment.
  • the vegetation influence calculation apparatus 100 may change the execution order of the steps shown in FIG.
  • the input / output unit 110 acquires the moisture content of the slope, the relational expression between the moisture content on the slope and the adhesive strength of the soil, the optimum water content ratio on the slope, and the vegetation adhesive strength (step S101). At this time, the input / output unit 110 may acquire data from a storage medium (not shown) in the vegetation influence calculation apparatus 100, or may acquire data from another apparatus or the like outside the vegetation influence calculation apparatus 100. . Furthermore, the input / output unit 110 sends the acquired moisture content of the slope, the relational expression between the moisture content on the slope and the adhesive force of the soil, and the vegetation adhesive force to the correction value calculating unit 120. Alternatively, the input / output unit 110 temporarily records the acquired water content of the slope, the relational expression between the water content of the slope and the adhesive force of the soil, and the vegetation adhesive force directly instead of the correction value calculating unit 120. Etc.
  • the correction value calculation unit 120 calculates the vegetation adhesive force using the water content of the slope acquired through the input / output unit 110, the relational expression between the water content of the slope and the adhesive strength of the soil, and the optimum water content ratio of the slope.
  • a correction value to be corrected is calculated (step S102).
  • One of the methods for obtaining the correction value is, for example, the soil on the slope in the most tight state including moisture (hereinafter referred to as the optimum water content state) in “Soil adhesive strength of the slope at the time of measurement”.
  • the ratio to “adhesive strength” is calculated.
  • the correction value calculation unit 120 obtains “the soil shear stress of the slope of the moisture amount at the time of measurement” and “the shear stress of the soil of the slope having the optimum water content” through the input / output unit 110. To do.
  • the correction unit 130 calculates the corrected vegetation adhesive force using the vegetation adhesive force acquired from the input / output unit 110 and the correction value calculated by the correction value calculation unit 120 (step S103).
  • One of the simplest methods for obtaining the corrected vegetation adhesive strength is to use, for example, the product of the vegetation adhesive strength and the correction value.
  • the correction unit 130 outputs the calculated corrected vegetative adhesive force to the outside (step S104).
  • the corrected vegetation adhesive force is used for calculation of the safety factor in other devices, for example.
  • FIG. 3 is a block diagram showing a configuration of the vegetation influence calculation system 20 according to the second embodiment.
  • the vegetation influence calculation system 20 is a system that optimizes the influence of vegetation on slope stability.
  • the vegetation effect calculation system 20 includes a vegetation effect calculation device 100, a storage unit 200, an acquisition unit 210, and a slope stability analysis device 220.
  • the vegetation influence calculation apparatus 100 includes at least an input / output unit 110, a correction value calculation unit 120, and a correction unit 130.
  • the storage unit 200 records in advance a relational expression between the moisture content for each slope and the adhesive strength of the soil, the optimum water content for each slope, and the vegetation adhesive strength for each slope.
  • the storage unit 200 is not necessarily a single recording medium, and may be composed of a plurality of separate recording media.
  • the acquisition unit 210 acquires the water content m and vegetation adhesive strength of the slope, and records them in the storage unit 200.
  • the slope stability analysis device 220 calculates the safety factor of the slope in a predetermined area using the corrected vegetation adhesive force.
  • the predetermined area is an area where landslides such as slope failures are likely to occur.
  • FIG. 4 is a flowchart showing an example of the operation of the vegetation influence calculation system 20 according to the second embodiment.
  • the acquisition unit 210 acquires the moisture content m of the slope from a sensor such as a moisture meter installed on the slope, and records it in the storage unit 200 (step S201).
  • the acquisition part 210 acquires vegetation adhesive force, and records it on the memory
  • the correction value calculation unit 120 acquires the moisture content m of the slope recorded in the storage unit 200 through the input / output unit 110. And the correction value calculation part 120 specifies a slope from the moisture content m of a slope (step S203).
  • the correction value calculation unit 120 acquires a relational expression between the moisture content on the identified slope and the adhesive force of the soil recorded in the storage unit 200 through the input / output unit 110. Then, the correction value calculation unit 120 calculates the soil adhesive force Cs (m) of the identified slope from the water content m of the slope and the relational expression between the moisture content of the identified slope and the soil adhesive strength (step) S204).
  • the correction value calculation unit 120 acquires the optimum water content ratio on the identified slope recorded in the storage unit 200 through the input / output unit 110. Then, the correction value calculation unit 120 is configured to determine the optimum water content ratio of the identified slope and the relationship between the moisture content of the identified slope and the adhesive strength of the soil, and the adhesive strength of the soil of the slope in the optimum moisture state of the identified slope. Cs (m opt ) is calculated (step S205).
  • the correction value calculation unit 120 has the soil adhesive force Cs (m) of the identified slope calculated in step S203 and the soil adhesive force Cs (s) of the slope having the optimum water content of the identified slope calculated in step S204. m opt) to calculate a correction value Cs for correcting (m) / Cs (m opt ) vegetation adhesive strength from (step S206).
  • the correction unit 130 acquires the vegetation adhesive force on the specified slope recorded in the storage unit 200 through the input / output unit 110. Then, the correcting unit 130 calculates the corrected vegetative adhesive force from the vegetative adhesive force and the correction value Cs (m) / Cs (m opt ) calculated in Step S206 (Step S207). Further, the correction unit 130 records the corrected vegetation adhesive force calculated through the input / output unit 110 in the storage unit 200.
  • the slope stability analysis apparatus 220 acquires the corrected vegetation adhesive force on the specified slope recorded in the storage unit 200 through the input / output unit 110. And the correction
  • FIG. 5 is a block diagram illustrating an example of a hardware configuration of the computer apparatus 300 according to the embodiment.
  • the computer apparatus 300 is an example of an apparatus that realizes the vegetation influence calculation apparatus 100 and the slope stability analysis apparatus 220 described above.
  • the computer device 300 includes a CPU (Central Processing Unit) 301, a ROM (Read Only Memory) 302, a RAM (Random Access Memory) 303, a storage device 304, a drive device 305, a communication interface 306, and an input / output interface. 307.
  • the CPU 301, ROM 302, RAM 303, storage device 304, drive device 305, communication interface 306, and input / output interface 307 are connected to each other via a bus 308.
  • the vegetation influence calculation device 100 and the slope stability analysis device 220 can be realized by the configuration (or part thereof) shown in FIG.
  • the CPU 301 uses RAM 303 to execute a program.
  • the CPU 301, the RAM 303, and the program can function as a calculation unit.
  • the program may be stored in the ROM 302.
  • the program may be recorded on a recording medium such as a flash memory and read by the drive device 305, or may be transmitted from an external device via a network.
  • a communication interface 306 exchanges data with an external device via a network.
  • the input / output interface 307 exchanges data with peripheral devices (input device, display device, measuring instrument, sensor, etc.).
  • the communication interface 306 and the input / output interface 307 can function as means for acquiring or outputting data.
  • each functional unit such as the input / output unit 110, the correction value calculation unit 120, the correction unit 130, and the acquisition unit 210 may be configured by a single circuit (processor or the like), or by a combination of a plurality of circuits. It may be configured.
  • the circuit here may be either dedicated or general purpose.
  • the input / output unit 110, the correction value calculation unit 120, the correction unit 130, the acquisition unit 210, and the like may be configured by a single circuit.

Abstract

植生が斜面の安定性に与える影響の変化を算出する装置を提供する。本発明の植生影響算出装置は、入出力部と、補正値算出部と、補正部とを少なくとも備える。入出力部は、斜面の水分量と、斜面における水分量と土壌の粘着力との関係式と、斜面における最適含水比と、斜面に繁茂する植生の粘着力である植生粘着力とを取得する。植生影響算出部は、取得された前記斜面の水分量および取得された水分量と土壌の粘着力との関係式とを用いて、補正値を算出し、補正部は、取得された植生粘着力と、算出された補正値とを用いて、補正された植生粘着力を算出する。

Description

植生影響算出装置、植生影響算出システム及び植生影響算出プログラムを格納した記憶媒体
 本発明は斜面の安定解析に関し、特に斜面崩壊における植生影響を定量化する技術に関する。
 道路又は鉄道路線の建設、土地造成、ダム又は堤防の建設においては、切土又は盛土により人工的な斜面がつくられる。また、国土のおよそ7割が山岳地と丘陵地とで占められる我が国では山岳地又は丘陵地の自然斜面付近に建設物が多く存在している。これらの斜面は斜面崩壊(がけ崩れや地すべり)の危険をはらんでいる。
 このような斜面崩壊の危険を回避または軽減するための技術の一つに斜面安定解析がある。斜面安定解析とはある物体が斜面を滑ろうとする力と摩擦で抵抗する力との釣り合いを解析することで斜面の安定性を調べる技術である。斜面安定解析にはフェレニウス法、ヤンブ法、ビショップ法などの手法がある。
 斜面の安定性は土中に含まれる水分の量によって変化することが実験によって確認されている。
 また、自然斜面は一様な土壌ではなく、樹木などの植生が存在している。そして、このような植生によって斜面の安定性は変化する可能性がある。
国際公開第2016/027291号
 特許文献1には、土壌の特徴(土塊重量、内部摩擦角、粘着力)と土粒子間の間隙水圧(実験により予め求めておく計測値)を元に土壌のパラメータを算出し、算出した土壌のパラメータと土中の水分量(土中に埋設する水分センサーによる即時的な測定値)とから斜面安定解析を行うことで斜面の安定性を算出する技術が記載されている。
 特許文献1に記載された技術においては、斜面安定解析するにあたり斜面は一様な土壌であることが想定されている。つまり、特許文献1に記載された技術では、植生が斜面の安定性に与える影響を捉えることはできない。
 このような、植生が斜面の安定性に与える影響を示すパラメータの一つに植生粘着力がある。植生粘着力とは、植生が土壌層をつなぎとめる力のことである。植生粘着力は土壌緊縛力や緊縛力と呼ばれることもある。
 斜面の安定性が土中に含まれる水分の量によって変化することから、植生粘着力も水分量によって変化すると考えられる。この場合、より正確な斜面安定解析を行うためには、水分量による植生粘着力の変化を算出する必要性が生じる。
 本発明の目的は、水分量による、植生が斜面の安定性に与える影響の変化を算出する装置等を提供することにある。
 本発明の植生影響算出装置は、入出力部と、補正値算出部と、補正部とを少なくとも備え、入出力部は、斜面の水分量と、斜面における水分量と土壌の粘着力との関係式と、斜面に繁茂する植生の粘着力である植生粘着力とを取得し、植生影響算出部は、取得された前記斜面の水分量および取得された水分量と土壌の粘着力との関係式とを用いて、補正値を算出し、補正部は、取得された植生粘着力と、算出された補正値とを用いて、補正された植生粘着力を算出する。
 本発明の植生影響算出システムは、植生影響算出装置と、記憶部、取得部、斜面安定解析装置、とを備える。記憶部は、斜面ごとの水分量と土壌の粘着力との関係式と、斜面ごとの植生粘着力とを予め記憶する。取得部は、斜面の水分量および植生粘着力を取得し、記憶部に記録する。植生影響算出装置は、入出力部と、補正値算出部と、補正部とを少なくとも備える。取得部は、斜面の水分量と、斜面における水分量と土壌の粘着力との関係式と、斜面に繁茂する植生の粘着力である植生粘着力とを取得する。植生影響算出部は、取得された斜面の水分量および水分量と土壌の粘着力との関係式とを用いて、補正値を算出する。補正部は、取得された植生粘着力と、算出された補正値とを用いて、補正された植生粘着力を算出する。斜面安定装置は、補正された植生粘着力を用いて前記斜面における安全率を算出する。
 本発明の植生影響算出方法は、斜面の水分量と、斜面における水分量と土壌の粘着力との関係式と、斜面に繁茂する植生の粘着力である植生粘着力とを取得し、取得された斜面の水分量および取得された水分量と土壌の粘着力との関係式とを用いて、補正値を算出し、取得された植生粘着力と、算出された補正値とを用いて補正された植生粘着力を算出する。
 本発明の記憶媒体に格納されたプログラムは、コンピュータを、斜面の水分量と、斜面における水分量と土壌の粘着力との関係式と、斜面に繁茂する植生の粘着力である植生粘着力とを取得する手段と、取得された斜面の水分量および取得された水分量と土壌の粘着力との関係式とを用いて、補正値を算出する手段と、取得された植生粘着力と、算出された補正値とを用いて、補正された植生粘着力を算出する手段として機能させる。
 本発明によれば、水分量による、植生が斜面の安定性に与える影響の変化を算出する装置等を提供することができる。
第1の実施形態に係る植生影響算出装置100の機能構成を示すブロック図である。 第1の実施形態に係る植生影響算出装置100の動作の一例を示すフローチャートである。 第2の実施形態に係る植生影響算出システム20の構成を示すブロック図である。 第2の実施形態に係る植生影響算出システム20の動作の一例を示すフローチャートである。 実施形態に係るコンピュータ装置300のハードウェア構成の一例を示すブロック図である。
 以下に、図面を参照しながら、実施形態について詳細に説明する。なお、以下の説明では、同じ機能を有するものには同じ符号をつけ、その説明を省略する場合がある。
[第1の実施形態]
 図1は、第1の実施形態に係る植生影響算出装置100の機能構成を示すブロック図である。植生影響算出装置100は、植生が斜面の安定性に与える影響を算出する植生影響算出装置である。植生影響算出装置100は、入出力部110と、補正値算出部120と、補正部130とを少なくとも備える。
 入出力部110は、斜面の水分量と、当該斜面における水分量と土壌の粘着力との関係式と、当該斜面における最適含水比と、当該斜面に繁茂する植生(以下植生)の粘着力(植生粘着力)とを取得する。植生粘着力は、植生が土壌層をつなぎとめる力のことである。植生粘着力は土壌緊縛力や緊縛力と呼ばれることもある。植生粘着力は、植生が斜面の安定性に与える影響を示すパラメータの一つである。植生粘着力が大きいほど斜面は崩れにくくなる。
 補正値算出部120は、入出力部110より取得された斜面の水分量および当該斜面における水分量と土壌の粘着力との関係式とを用いて、補正値を算出する。
 補正部130は、入出力部110より取得された植生粘着力と、補正値算出部120により算出された補正値とを用いて、補正された植生粘着力を算出する。
 図2は、第1の実施形態に係る植生影響算出装置100の動作の一例を示すフローチャートである。なお、植生影響算出装置100は、図2に示すステップの実行順序を、作用や効果に齟齬が生じない範囲で異ならせてもよい。
 入出力部110は、斜面の水分量と、当該斜面における水分量と土壌の粘着力との関係式と、当該斜面における最適含水比と、植生粘着力とを取得する(ステップS101)。
このとき、入出力部110は、植生影響算出装置100内の図示しない記憶媒体からデータを取得してもよいし、または植生影響算出装置100外の他の装置等からデータを取得してもよい。さらに、入出力部110は、取得した斜面の水分量と、当該斜面における水分量と土壌の粘着力との関係式と、植生粘着力とを補正値算出部120へ送る。あるいは、入出力部110は、取得した斜面の水分量と、当該斜面における水分量と土壌の粘着力との関係式と、植生粘着力とを補正値算出部120へ直接送る代わりに一旦記録媒体等を経由してもよい。
 補正値算出部120は、入出力部110を通じて取得された斜面の水分量および当該斜面における水分量と土壌の粘着力との関係式と当該斜面における最適含水比とを用いて、植生粘着力を補正する補正値を算出する(ステップS102)。補正値を求める方法の1つとしては、例えば「測定時点の水分量の斜面の土壌の粘着力」の「水分を含んで最も締まっている状態(以降、最適含水状態と呼ぶ)の斜面の土壌の粘着力」に対する割合を求める、というものがある。また、補正値を求める他の方法として、「測定時点の水分量の斜面の土壌のせん断応力」の「最適含水状態の斜面の土壌のせん断応力」に対する割合を求める、というものがある。この方法で補正値を求める場合、補正値算出部120は、入出力部110を通じて「測定時点の水分量の斜面の土壌のせん断応力」および「最適含水状態の斜面の土壌のせん断応力」を取得する。
 補正部130は、入出力部110より取得された植生粘着力と、補正値算出部120により算出された補正値とを用いて、補正された植生粘着力を算出する(ステップS103)。
補正された植生粘着力を求める最も簡易な方法の1つとしては、例えば、植生粘着力と補正値の積を用いる、というものがある。
 補正部130は、算出した、補正された植生粘着力を外部へ出力する(ステップS104)。補正された植生粘着力は、例えば、他の装置において安全率の算出に用いられる。
 以上が、第1実施形態に係る植生影響算出装置100の動作の一例である。本実施形態によれば、水分量による、植生が斜面の安定性に与える影響の変化を算出することができる。
[第2の実施形態]
 図3は、第2の実施形態に係る植生影響算出システム20の構成を示すブロック図である。植生影響算出システム20は、植生が斜面の安定性に与える影響を最適化するシステムである。植生影響算出システム20は植生影響算出装置100と、記憶部200、取得部210、斜面安定解析装置220、を備える。植生影響算出装置100は、入出力部110と、補正値算出部120と、補正部130とを少なくとも備える。
 記憶部200は、斜面ごとの水分量と土壌の粘着力との関係式と、斜面ごとの最適含水比と、斜面ごとの植生粘着力とを予め記録している。記憶部200は必ずしも単一の記録媒体ではなく、複数の別個の記録媒体によって構成されていてもよい。
 取得部210は、斜面の水分量mおよび植生粘着力を取得し、記憶部200に記録する。
 斜面安定解析装置220は、補正された植生粘着力を用いて所定の地域における斜面の安全率を算出する。所定の地域とは、例えば、斜面崩壊などの土砂災害が発生しやすい地域である。
 図4は、第2の実施形態に係る植生影響算出システム20の動作の一例を示すフローチャートである。
 取得部210は、斜面に設置された水分計等のセンサーから斜面の水分量mを取得し、記憶部200に記録する(ステップS201)。
 また、取得部210は、植生粘着力を取得し、記憶部200に記録する(ステップS202)。このとき、取得部210は、植生影響算出システム20内の図示しない記憶媒体からデータを取得してもよいし、または植生影響算出システム20外の他の装置等からデータを取得してもよい。
 補正値算出部120は、入出力部110を通じて記憶部200に記録された斜面の水分量mを取得する。そして補正値算出部120は、斜面の水分量mから斜面を特定する(ステップS203)。
 補正値算出部120は、入出力部110を通じて記憶部200に記録された特定された斜面における水分量と土壌の粘着力との関係式を取得する。そして補正値算出部120は、斜面の水分量mおよび特定された斜面における水分量と土壌の粘着力との関係式とから特定された斜面の土壌の粘着力Cs(m)を算出する(ステップS204)。
 補正値算出部120は、入出力部110を通じて記憶部200に記録された特定された斜面における最適含水比を取得する。そして補正値算出部120は、特定された斜面における最適含水比および特定された斜面における水分量と土壌の粘着力との関係式とから特定された斜面の最適含水状態の斜面の土壌の粘着力Cs(mopt)を算出する(ステップS205)。
 補正値算出部120は、ステップS203にて算出した特定された斜面の土壌の粘着力Cs(m)およびステップS204にて算出した特定された斜面の最適含水状態の斜面の土壌の粘着力Cs(mopt)から植生粘着力を補正する補正値Cs(m)/Cs(mopt)を算出する(ステップS206)。
 補正部130は、入出力部110を通じて記憶部200に記録された特定された斜面における植生粘着力を取得する。そして補正部130は、植生粘着力とステップS206にて算出された補正値Cs(m)/Cs(mopt)とから補正された植生粘着力を算出する(ステップS207)。さらに、補正部130は、入出力部110を通じて算出した補正された植生粘着力を記憶部200に記録する。
 斜面安定解析装置220は、入出力部110を通じて記憶部200に記録された特定された斜面における補正された植生粘着力を取得する。そして補正部130は、補正された植生粘着力を用いて特定された斜面における安全率を算出する(ステップS208)。
 以上が、第2の実施形態に係る植生影響算出システム20の動作の一例である。本実施形態によれば、水分量による、植生が斜面の安定性に与える影響の変化を算出することができる。さらに、本実施形態によれば、より正確な斜面安定解析を行うことができる。
(ハードウェア構成)
 図5は、実施形態に係るコンピュータ装置300のハードウェア構成の一例を示すブロック図である。コンピュータ装置300は、上述した植生影響算出装置100、斜面安定解析装置220を実現する装置の一例である。コンピュータ装置300は、CPU(Central Processing Unit)301と、ROM(Read Only Memory)302と、RAM(Random Access Memory)303と、記憶装置304と、ドライブ装置305と、通信インタフェース306と、入出力インタフェース307とを備える。CPU301と、ROM302と、RAM303と、記憶装置304と、ドライブ装置305と、通信インタフェース306と、入出力インタフェース307とは、バス308を介して互いに接続される。植生影響算出装置100、斜面安定解析装置220は、図5に示される構成(又はその一部)によって実現され得る。
 CPU301は、RAM303を用いてプログラムを実行する。CPU301、RAM303及びプログラムは、算出する手段として機能することができる。プログラムは、ROM302に記憶されていてもよい。また、プログラムは、フラッシュメモリなどの記録媒体に記録され、ドライブ装置305によって読み出されてもよいし、外部装置からネットワークを介して送信されてもよい。通信インタフェース306は、ネットワークを介して外部装置とデータをやり取りする。入出力インタフェース307は、周辺機器(入力装置、表示装置、測定器、センサーなど)とデータをやり取りする。通信インタフェース306及び入出力インタフェース307は、データを取得又は出力する手段として機能することができる。
 なお、入出力部110、補正値算出部120、補正部130、取得部210等のそれぞれの機能部は、単一の回路(プロセッサ等)によって構成されてもよいし、複数の回路の組み合わせによって構成されてもよい。ここでいう回路(circuitry)は、専用又は汎用のいずれであってもよい。また、入出力部110、補正値算出部120、補正部130、取得部210等は、これらが単一の回路によって構成されてもよい。
 本発明は上記実施形態に限定されることなく、請求の範囲に記載の発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2017年3月31日に出願された日本出願特願2017-071073を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100  植生影響算出装置
 110  入出力部
 120  補正値算出部
 130  補正部
 20  植生影響算出システム
 200  記憶部
 210  取得部
 220  斜面安定解析装置
 300  コンピュータ装置
 301  CPU(Central Processing Unit)
 302  ROM(Read Only Memory)
 303  RAM(Random Access Memory)
 304  記憶装置
 305  ドライブ装置
 306  通信インタフェース
 307  入出力インタフェース
 308  バス

Claims (5)

  1.  斜面の水分量と、前記斜面における水分量と土壌の粘着力との関係式と、前記斜面に繁茂する植生の粘着力である植生粘着力とを取得する入出力部と、
     取得された前記斜面の水分量および取得された前記水分量と土壌の粘着力との関係式とを用いて、補正値を算出する補正値算出部と、
     取得された前記植生粘着力と、算出された前記補正値とを用いて、補正された植生粘着力を算出する補正部と、を備える、
    植生影響算出装置。
  2.  前記入出力部は、前記斜面における最適含水比をさらに取得し、
     前記補正値算出部は、取得された前記斜面の水分量および取得された前記水分量と土壌の粘着力との関係式と前記最適含水比とを用いて、前記補正値を算出する、
    請求項1に記載した植生影響算出装置。
  3.  斜面ごとの水分量と土壌の粘着力との関係式と、斜面ごとの最適含水比と、斜面ごとの植生粘着力とを予め記憶する記憶部と、
     斜面の水分量および植生粘着力を取得して、前記記憶部に記録する取得部と、
     入出力部、補正値算出部、及び、補正部を有する植生影響算出装置と、
     斜面安定解析装置と、を備え、
     前記取得部は、前記斜面の水分量と、前記斜面における水分量と土壌の粘着力との関係式と、前記斜面に繁茂する植生の粘着力である植生粘着力とを取得し、
     前記補正算出部は、取得された前記斜面の水分量および前記水分量と土壌の粘着力との関係式とを用いて、補正値を算出し、
     前記補正部は、取得された前記植生粘着力と、算出された前記補正値とを用いて、補正された植生粘着力を算出し、
     前記斜面安定解析装置は、前記補正された植生粘着力を用いて前記斜面における安全率を算出する、
    植生影響算出システム。
  4.  斜面の水分量と、前記斜面における水分量と土壌の粘着力との関係式と、前記斜面に繁茂する植生の粘着力である植生粘着力とを取得し、
     取得された前記斜面の水分量および取得された前記水分量と土壌の粘着力との関係式とを用いて、補正値を算出し、
     取得された前記植生粘着力と、算出された前記補正値とを用いて、補正された植生粘着力を算出する、
    植生影響算出方法。
  5.  コンピュータを、
     斜面の水分量と、前記斜面における水分量と土壌の粘着力との関係式と、前記斜面に繁茂する植生の粘着力である植生粘着力とを取得する手段と、
     取得された前記斜面の水分量および取得された前記水分量と土壌の粘着力との関係式とを用いて、補正値を算出する手段と、
     取得された前記植生粘着力と、算出された前記補正値とを用いて、補正された植生粘着力を算出する手段、
    として機能させるプログラムを格納した記憶媒体。
PCT/JP2018/010762 2017-03-31 2018-03-19 植生影響算出装置、植生影響算出システム及び植生影響算出プログラムを格納した記憶媒体 WO2018180686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/498,170 US11206771B2 (en) 2017-03-31 2018-03-19 Vegetation effect calculation device, vegetation effect calculation system, and storage medium storing vegetation effect calculation program
JP2019509337A JP6753520B2 (ja) 2017-03-31 2018-03-19 植生影響算出装置、植生影響算出システム及び植生影響算出プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071073 2017-03-31
JP2017071073 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180686A1 true WO2018180686A1 (ja) 2018-10-04

Family

ID=63675857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010762 WO2018180686A1 (ja) 2017-03-31 2018-03-19 植生影響算出装置、植生影響算出システム及び植生影響算出プログラムを格納した記憶媒体

Country Status (4)

Country Link
US (1) US11206771B2 (ja)
JP (1) JP6753520B2 (ja)
TW (1) TW201903253A (ja)
WO (1) WO2018180686A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216989A (ja) * 2015-05-19 2016-12-22 株式会社東芝 災害監視システムおよび災害監視装置
WO2017047061A1 (ja) * 2015-09-14 2017-03-23 日本電気株式会社 災害予測システム、水分量予測装置、災害予測方法およびプログラム記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201247085Y (zh) 2008-08-20 2009-05-27 中国科学院沈阳应用生态研究所 一种坡面对比水文径流场
CN103679202B (zh) * 2013-12-17 2017-04-12 中国测绘科学研究院 一种适用于光学遥感卫星影像植被分类方法及装置
CN104217103B (zh) 2014-08-13 2017-03-29 中国农业科学院植物保护研究所 一种草地植被亚型的建立及数字化表示方法
WO2016027291A1 (ja) 2014-08-21 2016-02-25 日本電気株式会社 斜面監視システム、斜面安全性解析装置、方法およびプログラム
CN104376216A (zh) 2014-11-20 2015-02-25 尚可政 一种包含人为因素和自然因素的土壤风蚀模型
CN105052438A (zh) 2015-07-10 2015-11-18 南通新华建筑集团有限公司 一种植被护坡方法
CN105352893B (zh) 2015-07-15 2018-02-06 电子科技大学 一种适用于植被稀疏区的叶绿素反演方法
WO2018028191A1 (zh) * 2016-08-10 2018-02-15 福州大学 一种基于波段比模型和太阳高度角的tavi计算方法
CN113552320A (zh) * 2017-03-20 2021-10-26 北京师范大学 一种基于Chan方法的土壤水分遥感反演方法
CN108151719B (zh) * 2017-12-07 2019-07-19 福州大学 一种验证地形阴影校正效果的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216989A (ja) * 2015-05-19 2016-12-22 株式会社東芝 災害監視システムおよび災害監視装置
WO2017047061A1 (ja) * 2015-09-14 2017-03-23 日本電気株式会社 災害予測システム、水分量予測装置、災害予測方法およびプログラム記録媒体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IMAI, HISASHI: "Study on Potential of Tree Roots for Prevention of Shallow Slope Failure", TECHNICAL RESEARCH REPORT OF HAZAMA CORPORATION, 26 December 2008 (2008-12-26), pages 34 - 52, ISSN: 1880-2370 *
INAGAKI, HIDEKI: "Geotechnical study of slope stability effect by vegetation", RESEARCH PRESENTATION PROCEEDINGS OF CHISAN, CHISAN STUDIES, vol. 50, 1 July 2011 (2011-07-01), pages 87 - 110 *
KOMAMURA, FUJIYA: "Effects of vegetation on preventing slope erosion and collapse", THE JAPANESE ASSOCIATION OF THE REVEGETAION TECHNOLOGY, vol. 5, no. 2, 1978, pages 9 - 13, XP055559272, ISSN: 1884-3662, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/jjsrt1973/5/2/5_2_9/_pdf/-char/en> *
KUROKAWA, USHIO ET AL.: "Review of simulation technique for development and collapse of topograhpy, soil, and vegetation", THE JAPAN SOCIETY OF EROSION CONTROL ENGINEERING, May 2013 (2013-05-01), ISSN: 2433-0477, Retrieved from the Internet <URL:http://www.jsece.or.jp/archive/event/conf/abstract/2013/pdf/Pb-63.pdf> *
SHUIN, YASUHIRO: "On the influence of vegetation on surface collapse occurrence", JOURNAL OF THE JAPAN SOCIETY OF EROSION CONTROL ENGINEERING, vol. 55, no. 1, May 2002 (2002-05-01), pages 71 - 78, XP055559284, ISSN: 2187-4654, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/sabo1973/55/1/55_1_71/_pdf/-char/en> *

Also Published As

Publication number Publication date
US20200029512A1 (en) 2020-01-30
JP6753520B2 (ja) 2020-09-09
TW201903253A (zh) 2019-01-16
JPWO2018180686A1 (ja) 2019-12-26
US11206771B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
Cullen et al. Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris
JPWO2018131479A1 (ja) リスク判定装置、リスク判定システム、リスク判定方法及びコンピュータ読み取り可能記録媒体
JP2018205006A (ja) 地盤変動観測装置及び地盤変動観測プログラム
Temple et al. Low-cost pressure gauges for measuring water waves
JP6583529B2 (ja) 情報処理装置、パラメータ補正方法及びプログラム
Stiros et al. Rapid decay of a timber footbridge and changes in its modal frequencies derived from multiannual lateral deflection measurements
WO2018180686A1 (ja) 植生影響算出装置、植生影響算出システム及び植生影響算出プログラムを格納した記憶媒体
CN102323198A (zh) 岩心岩电实验参数m、n的校正方法及系统
JP6406488B1 (ja) 植生影響定量化装置、定量化システム及びプログラム
CN102323049A (zh) 数据不完备下基于一致性数据替换的结构异常检测方法
JP4433769B2 (ja) 非線形有限要素解析装置及び方法、コンピュータプログラム、記録媒体
CN103617332A (zh) 一种测量卫星导航算法性能的仿真平台和方法
JP5852935B2 (ja) 伝達関数推定装置、伝達関数推定方法、および、伝達関数推定プログラム
CN115809599A (zh) 坝体渗透系数的反演方法、装置、电子设备和存储介质
CN114781035A (zh) 地基固结度计算方法、计算机设备及计算机可读存储介质
JP6707749B1 (ja) ため池決壊予測システム、ため池決壊予測方法、およびプログラム
JP5146226B2 (ja) 有義波高算出装置、プログラム、及び有義波高算出方法
CN110472309B (zh) 一种二维渗流计算模型中考虑三维绕渗效应的方法、装置
WO2010039243A3 (en) Methods and apparatus for analyzing locate and marking operations with respect to facilities maps
JP6714265B2 (ja) 杭データ推定装置及びその方法
JP5763870B1 (ja) フィルダム管理支援装置、フィルダム管理支援方法およびプログラム
CN115840984B (zh) 隧道结构损伤性能计算方法、装置和终端设备
Pittau Testing and improving the numerical accuracy of the NLO predictions
Varga An alternative method for the determination of inelastic displacements using pushover analysis and directly generated inelastic spectra
JP2005273218A (ja) 岩盤掘削時の地下水挙動評価装置及び方法、コンピュータプログラム、記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777689

Country of ref document: EP

Kind code of ref document: A1