WO2016027291A1 - 斜面監視システム、斜面安全性解析装置、方法およびプログラム - Google Patents

斜面監視システム、斜面安全性解析装置、方法およびプログラム Download PDF

Info

Publication number
WO2016027291A1
WO2016027291A1 PCT/JP2014/004303 JP2014004303W WO2016027291A1 WO 2016027291 A1 WO2016027291 A1 WO 2016027291A1 JP 2014004303 W JP2014004303 W JP 2014004303W WO 2016027291 A1 WO2016027291 A1 WO 2016027291A1
Authority
WO
WIPO (PCT)
Prior art keywords
observable
slope
variable
value
test
Prior art date
Application number
PCT/JP2014/004303
Other languages
English (en)
French (fr)
Inventor
梓司 笠原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2014/004303 priority Critical patent/WO2016027291A1/ja
Priority to JP2016543791A priority patent/JP6414222B2/ja
Priority to PCT/JP2015/002534 priority patent/WO2016027390A1/ja
Priority to US15/505,275 priority patent/US10584964B2/en
Priority to TW104119357A priority patent/TWI627611B/zh
Publication of WO2016027291A1 publication Critical patent/WO2016027291A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes

Definitions

  • the present invention relates to a slope monitoring system, a slope safety analysis apparatus, a slope monitoring method, and a slope monitoring program for monitoring slope safety.
  • the safety factor is an index for evaluating the safety of a slope, and is represented by a ratio of a sliding force that tries to slide down the slope and a resistance force that tries to suppress the sliding. When this value is less than 1, that is, when the sliding force becomes larger than the resistance force, it is evaluated that there is a possibility of collapse.
  • the Ferrenius method and the modified Ferrenius method use the mass ratio, pore water pressure, mass adhesion, and internal friction angle as the safety factor, which is the ratio between the sliding force based on gravity and the resistance based on friction and adhesion. It is a method to calculate.
  • Patent Documents 1 to 4 there are methods described in Patent Documents 1 to 4 in relation to the technology for monitoring the safety of slopes.
  • JP 200460311 A JP 2006-195650 A Japanese Patent Laying-Open No. 2005-030843 Japanese Patent Laid-Open No. 2002-070029
  • the problem with the method of evaluating slope safety using the slope stability analysis formula is that it is difficult to directly measure each variable used in the slope stability analysis formula from the monitored slope.
  • the modified Ferrenius method in order to obtain the safety factor, it is necessary to calculate the adhesive strength and the internal friction angle, which are the properties of the clot, in addition to measuring the clot weight and the pore water pressure.
  • In order to calculate the angle it is necessary to measure the shear stress at the time of the collapse of the soil block constituting the monitored slope.
  • the landslide monitoring method described in Patent Document 1 uses only the pore water pressure as a variable among the variables used in the Ferrenius method in order to eliminate the difficulty of measurement as described above. It is intended to monitor or predict the occurrence of landslides by obtaining the safety factor of the slope to be monitored with the adhesive force and the internal friction angle as constants.
  • the soil mass is composed of soil particles themselves, and air and water contained in the gaps between the particles.
  • the air contained in the gaps between the soil particles is pushed out, increasing the moisture occupancy rate.
  • the clod weight increases and the adhesive strength and the internal friction angle, which are the properties of the clod, change.
  • the method described in Patent Document 1 that does not take these fluctuations into account has a problem that the accuracy of the calculated safety factor deteriorates.
  • the method described in Patent Document 2 includes a method of alarming using the values of an extensometer and an inclinometer, and the water in the soil particle gap from the rainfall measured by the rain gauge and the water level measured by the groundwater gauge. Describes the method used to determine the degree of saturation and to analyze the safety factor.
  • extensometers and inclinometers may or may not change depending on the position on the slope, which is inaccurate.
  • these sensors can fluctuate even if they are not a precursor to slope failure, so there is a possibility of false alarms.
  • Patent Document 3 is a method for estimating the volumetric moisture content in the slope to be monitored based on the vibration intensity signal, and estimating the slope collapse risk distribution from the obtained volumetric moisture content distribution.
  • the distribution of volumetric moisture content is estimated, it is necessary to reflect experience, past examples, geological data, etc. in evaluating the collapse risk from the estimated volumetric moisture content. There is a problem that it cannot be realized unless sufficient geological data is obtained.
  • Patent Document 4 is one example of creating a dynamic model based on actual measurement data of soil coefficient measured from a slope to be monitored, as a spatial model of soil saturation (saturated soil).
  • An example of estimating physical property values indicating weight increase and shear strength decrease based on the distribution is described.
  • the model is created with a constant value that fluctuates with the degree of saturation as a constant. Therefore, as the risk of collapse increases, the accuracy of the calculated slope safety decreases. There is a problem.
  • the present invention provides a slope monitoring system, a slope safety analysis apparatus, a slope monitoring method, and a slope monitoring program that can accurately monitor or predict the safety of a slope to be monitored while avoiding measurement difficulty for the slope to be monitored.
  • the purpose is to do.
  • the slope monitoring system includes a test layer having at least a test layer that is a substance layer made of a substance group having the same type, dry density, and compactness as the substance layer constituting the monitored slope.
  • the value of each analytical equation variable which is a variable necessary for the predetermined slope stability analytical equation when the state of the above is changed, and the value of the predetermined first observable amount that changes according to the state of the test layer,
  • An analytical variable measuring means for measuring the actual slope measuring means for measuring a value of a predetermined second observable amount that changes according to the state of the material layer constituting the monitored slope from the monitored slope;
  • the second observable quantity is a predetermined observable quantity that is the same as the first observable quantity or has a known relationship with the first observable quantity
  • the slope safety analysis apparatus comprises: Analytical expression variables obtained by analytical expression variable measurement means Based on each value and the value of the first observable, the relationship between the second observable and a predetermined third variable that can be calculated from the second observable
  • Analytical variable modeling means for constructing the model, model information storage means for storing information of the model constructed by the analytical variable modeling means, the value of the second observable obtained by the actual slope measuring means, and the model Based on the model information stored in the information storage means, the value of each analytical equation variable when the value of the second observable is measured is calculated, and based on the calculated value of each analytical equation variable And a safety factor calculating means for calculating the safety factor of the slope to be monitored using the slope stability analysis formula.
  • the slope safety analysis apparatus includes a test environment having at least a test layer that is a substance layer composed of a substance group having the same type, dry density, and compaction degree as the substance layer constituting the monitored slope.
  • Each value of the analytical expression variable which is a variable required for a predetermined slope stability analytical expression when the state of the test layer is measured, and a predetermined first value that changes according to the state of the test layer
  • the first observable amount is a predetermined second observable amount that changes in accordance with the state of the material layer that constitutes the slope to be monitored for each analytical variable.
  • Analytical expression for constructing a model that defines a relationship with a predetermined second variable that can be calculated from the second observable that is the same as or the same as the first observable, or that can be calculated from the second observable Variable modeling means and analytical expression variable modeling means Based on the model information storage means for storing the information of the constructed model, the value of the second observable amount measured from the monitored slope, and the model information stored in the model information storage means, the second possible A safety factor that calculates the value of each analytical equation variable when the observed value is measured, and calculates the safety factor of the monitored slope using the slope stability analysis equation based on the calculated value of each analytical equation variable And a calculating means.
  • the slope monitoring method is a test in which the computer has at least a test layer which is a substance layer made of a substance group having the same type, dry density and compaction degree as the substance layer constituting the monitored slope.
  • Each value of the analytical variable which is a variable required for a predetermined slope stability analytical expression when the state of the test layer is changed, measured from the environment, and a predetermined value that changes according to the state of the test layer
  • the first observable is a predetermined second observable amount that changes in accordance with the state of the material layer constituting the monitoring target slope for each of the analytical equation variables.
  • the slope monitoring program is a test in which a computer has at least a test layer that is a substance layer made of a substance group having the same type, dry density, and compaction degree as the substance layer constituting the monitored slope.
  • each value of the analytical formula variable which is a variable required for a predetermined slope stability analytical formula, and a predetermined that changes according to the state of the test layer
  • the first observable is a predetermined second observable that changes according to the state of the material layer constituting the monitoring target slope for each of the analytical equation variables based on the value of the first observable of Build a model that prescribes a relationship with a predetermined second observable that is the same as the observed amount or with a known relationship with the first observable, or a predetermined third variable that can be calculated from the second observable Processing and monitoring from the slope to be monitored Based on the value of the second observable, the value of each analytical variable when the value of the second observable
  • the present invention can accurately monitor or predict the safety of the monitored slope while avoiding the measurement difficulty for the monitored slope.
  • the safety of the slope in the Ferrenius method is evaluated by a safety factor Fs calculated using a shear stress acting in the slope direction of each divided piece and a shear resistance force that prevents sliding due to the shear stress.
  • shear strength is defined as the maximum shear resistance force that resists the shear stress, which is a sliding force.
  • Coulomb equation the adhesive strength c of the soil and the shear surface It is represented by the sum of the resistance force ( ⁇ tan ⁇ ) based on the vertical stress ⁇ acting on the top.
  • s is the shear strength
  • tan ⁇ is an effective friction coefficient based on the internal friction angle ⁇ , which is one of the parameters representing the properties of the soil.
  • the relationship between the normal stress ⁇ acting on the shear plane and the shear strength s shown by the equation (2) is called a fracture criterion or a fracture envelope. Based on such a fracture criterion, for example, by determining the shear stress at the time of fracture while changing the vertical load applied to the specimen (such as a lump) by a one-sided shear test, the adhesive strength c of the specimen is determined. The internal friction angle ⁇ can be obtained.
  • the shear stress of each divided piece is represented by the weight W of the divided piece (such as a lump) as gravity applied to the divided piece and the slope angle ⁇ (see the denominator of equation (1)).
  • the shear resistance of each divided piece is based on the above-mentioned Coulomb equation, the adhesive force c of the divided piece (clot), and the resistance force ((Wu) cos ⁇ ⁇ tan ⁇ ) based on the vertical stress. (See the numerator of formula (1)). Note that u is the pore water pressure.
  • the earth lump is composed of soil particles and interstitial air and interstitial water interposed in the gaps between the particles.
  • the change in the risk of slope failure affects the predetermined amount (in the above example, the water content ratio) that changes according to the state of the material layer (soil, etc.) constituting the slope. It is captured by measuring a predetermined observable amount (water content or vibration waveform). Thereby, the safety of the slope to be monitored can be accurately monitored or predicted only by measuring the observable amount.
  • the amount of change in the risk of slope failure is not limited to the water content ratio.
  • the amount may be an amount that changes according to the state of the material layer constituting the slope, and may be, for example, the density of particles contained in the material layer constituting the slope, the degree of compaction, or the like.
  • the observable amount actually measured is not particularly limited as long as the amount can be observed directly or indirectly.
  • the material layer which comprises a slope is not restricted to soil, For example, concrete etc. may be sufficient.
  • FIG. 1 is a block diagram illustrating a configuration example of a slope monitoring system according to the present embodiment.
  • the slope monitoring system 100 shown in FIG. 1 includes various sensors (a stress sensor 101, a stress sensor 102, a moisture meter 103, a moisture meter 104, a vibration sensor 105, a pore water pressure meter 106, a weight meter 107, and a vibration sensor 108), a first sensor.
  • the first test is a test for obtaining data used for model learning in the first modeling means 110, and is a value of the vertical load P applied to each of the test bodies having test layers having different water content ratios.
  • This is a shear test in which a shearing force is applied until fractured while changing and the shear stress ⁇ at that time is measured.
  • the test body only needs to have at least a test layer that is a material layer that is substantially the same as a material layer that is likely to collapse (hereinafter referred to as a slip layer) among the material layers constituting the slope to be monitored.
  • the test body may be a sample having a test layer made of a group of substances having substantially the same type, dry density and compaction as the group of substances such as earth and sand constituting the slip layer of the slope to be monitored. .
  • the second test is a test for obtaining data used for model learning by the second modeling means 120, and a test body having a test layer in which the water content ratio is adjusted to a small value in advance is used for the test layer.
  • a vibration waveform is obtained by appropriately applying vibration, and the weight W and pore water pressure u of the test layer are measured.
  • the stress sensor 101 measures the normal stress ⁇ acting on the test layer in the shear test which is the first test.
  • the stress sensor 101 is, for example, a vertical stress that is a stress that is applied when a vertical load (compressive force) P is applied to the test body in a shear test performed on each of the test bodies having test layers having different water content ratios.
  • the sensor which measures (sigma) and outputs the normal stress data which shows a measurement result may be sufficient.
  • the stress sensor 102 measures the shear stress ⁇ acting on the test layer in the shear test that is the first test. For example, in a shear test performed on each of test specimens having test layers having different water content ratios, the stress sensor 102 applies a pair of shearing forces in opposite directions parallel to the shear surface of the test specimen. It may be a sensor that measures the shear stress ⁇ , which is a stress generated in the sensor, and outputs shear stress data indicating the measurement result.
  • the stress sensor 101 and the stress sensor 102 are, for example, sensors provided in a triaxial compression test apparatus, and measure the normal stress ⁇ and the shear stress ⁇ in a shear test performed using the triaxial compression test apparatus.
  • the normal stress data and the shear stress data indicating the measured normal stress ⁇ and shear stress ⁇ may be output in response to a user operation.
  • the moisture meter 103 measures the amount of moisture m contained in the test layer in the shear test which is the first test.
  • the moisture meter 103 may be, for example, a sensor that measures the amount of moisture m contained in each of the prepared test layers having different moisture content ratios and outputs moisture amount data indicating the measurement result.
  • the moisture meter 103 may be a measuring device that can measure the amount of moisture in the soil.
  • the format of the value of the moisture content to be measured is not particularly limited. For example, it may be volumetric water content or weight water content.
  • the moisture meter 103 When the moisture content contained in the test layer is known, such as when the test layer of the test specimen is adjusted in advance to have a predetermined moisture content, the moisture meter 103 is omitted and the user directly provides moisture content data. It is also possible to input.
  • the water content ratio may be used as the moisture content m at this time.
  • the first modeling means 110 includes values of the adhesive force c and the internal friction angle ⁇ obtained by a shear test using a plurality of test bodies having test layers having different water content ratios, and a moisture content m at that time. Based on the above, an adhesive force-water content model that defines the relationship between the adhesive force c and the water content m and an internal friction angle-water content model that defines the relationship between the internal friction angle ⁇ and the water content m are constructed.
  • the first modeling means 110 includes an adhesive force / internal friction angle calculating means 111 and an adhesive force / internal friction angle modeling means 112.
  • the adhesive force / internal friction angle calculation means 111 performs each shear experiment on the test layers having different water content ratios, and as a result, based on the normal stress data and the shear stress data obtained from the stress sensor 101 and the stress sensor 102, The adhesive strength c and the internal friction angle ⁇ of the test layer are calculated. For example, for each test layer, the adhesive force / internal friction angle calculating means 111 uses the shear stress ⁇ at the time of failure indicated by the normal stress data and the shear stress data as the shear strength s, together with the normal stress ⁇ at that time, The adhesive force c and the internal friction angle ⁇ may be calculated by applying to the Coulomb equation shown in 2).
  • the adhesive force / internal friction angle modeling means 112 includes the water content m of each test layer obtained from the moisture meter 103, the adhesive force c and internal friction of each test layer calculated by the adhesive force / internal friction angle calculation means 111. Based on the angle ⁇ , the adhesive strength-water content model in which the adhesive strength c is modeled as a function of the water content m and the internal friction angle-water content model in which the internal friction angle ⁇ is modeled as a function of the water content m are constructed. To do.
  • the moisture meter 104 measures the amount of moisture contained in the test layer in the water / vibration test as the second test.
  • the moisture meter 104 may be, for example, a sensor that measures the moisture content m of the test layer at all times or at a predetermined interval or according to a user instruction and outputs moisture content data indicating the measurement result.
  • the vibration sensor 105 measures a vibration waveform generated when vibration is applied to the test layer in the water / vibration test as the second test.
  • the vibration sensor 105 may be, for example, a sensor that measures a vibration waveform generated in the test layer constantly, at a predetermined interval, or according to a user instruction, and outputs waveform data indicating a measurement result.
  • the pore water pressure gauge 106 measures the pore water pressure u of the test layer in the water / vibration test that is the second test.
  • the pore water pressure gauge 106 may be, for example, a sensor that measures the pore water pressure u of the test layer at all times or at a predetermined interval or according to a user instruction, and outputs pore water pressure data indicating the measurement result.
  • the weigh scale 107 measures the weight W of the test layer in the water / vibration test as the second test.
  • the weight scale 107 may be, for example, a sensor that measures the weight of the test layer at all times or at predetermined intervals or according to a user operation, and outputs weight data indicating the measurement result.
  • the second modeling means 120 attenuates the vibration waveform based on each value and waveform data of the weight W and the pore water pressure u in the hydration process obtained by the hydration / vibration test as the second test. While calculating the rate ⁇ , a weight-damping rate model that defines the relationship between the weight W and the damping rate ⁇ and a pore water pressure-damping rate model that defines the relationship between the pore water pressure u and the damping rate ⁇ are constructed. Further, the second modeling means 120 is based on the value of the water content m and the waveform data in the hydration process obtained by the water / vibration test as the second test, and the attenuation rate of the water content m and the vibration waveform. A moisture amount-damping rate model that defines the relationship with ⁇ is constructed.
  • the second modeling means 120 includes an attenuation rate calculating means 121, a moisture amount modeling means 122, a pore water pressure modeling means 123, and a weight modeling means 124.
  • the attenuation rate calculating means 121 calculates the attenuation rate ⁇ of the vibration waveform in the hydration process based on the vibration waveform in the hydration process obtained by the vibration sensor 105.
  • the moisture amount modeling means 122 is based on the moisture amount m of the test layer in the hydration process obtained by the moisture meter 104 and the attenuation rate ⁇ of the fluctuation waveform in the same process calculated by the attenuation rate calculation means 121.
  • a moisture amount-damping rate model is constructed by modeling m as a function of the damping rate ⁇ .
  • the moisture meter 104 may be omitted when the water content m of the test layer for each water addition can be calculated from the water content ratio, weight, water content, etc. of the test layer before water addition.
  • the water content modeling means 122 calculates the water content m of the current test layer from the water content ratio, weight, water content, etc. of the test layer before water addition, and then calculates the water content m.
  • the water content ratio may be used as the water content m.
  • the pore water pressure modeling means 123 is based on the pore water pressure u of the test layer in the hydration process obtained by the pore water pressure gauge 106 and the attenuation rate ⁇ of the fluctuation waveform in the same process obtained by the attenuation rate calculation means 121.
  • a pore water pressure-damping rate model is constructed by modeling u as a function of the damping rate ⁇ .
  • the weight modeling unit 124 Based on the weight W of the test layer in the hydration process obtained by the weigh scale 107 and the attenuation rate ⁇ of the fluctuation waveform in the same process obtained by the attenuation rate calculation unit 121, the weight modeling unit 124 converts the weight W into the attenuation rate. Build a weight-damping model modeled as a function of ⁇ .
  • the weight modeling means 124 calculates the weight W of the current test layer from the water content ratio, weight, water content, etc. of the test layer before water addition, and then sets the weight W to the attenuation rate ⁇ . Construct a moisture-damping rate model modeled as a function of
  • the model converting means 130 is based on the moisture amount-damping rate model created by the moisture amount modeling means 122, and the adhesive force-moisture amount model and the internal friction angle-moisture created by the adhesive force / internal friction angle modeling means 112. Each quantity model is converted into a model whose function is the damping rate ⁇ of the vibration waveform. That is, the model converting means 130 converts the modeling input variable of the adhesive force-moisture amount model and the internal friction angle-moisture amount model from the moisture amount m to the damping rate ⁇ of the vibration waveform, Build the internal friction angle-damping rate model.
  • the model information storage means 140 uses the weight-attenuation described above as model information obtained by learning each of the analytical expression variables, which are variables used in the slope stability analysis expression, from an observable quantity measurable on the actual slope that is the analysis target slope. Information on at least a rate model, pore water pressure-damping rate model, adhesive force-damping rate model, and internal friction angle-damping rate model is stored.
  • the model information storage unit 140 for example, for each of the above models, parameters for identifying the function model, the address of the module that implements the process of returning the value of the analytical expression variable using the modeled input variable as an argument, etc. May be stored as
  • the vibration sensor 108 measures a vibration waveform generated in the slip layer on the actual slope.
  • the vibration sensor 108 may be, for example, a sensor that is installed in a slip layer on an actual slope, measures a vibration waveform that is generated by vibration due to falling objects or precipitation in the slip layer, and outputs waveform data indicating the measurement result. .
  • the actual slope monitoring means 150 calculates the safety factor of the actual slope based on the vibration waveform generated in the slip layer of the actual slope obtained by the vibration sensor 108, and outputs an alarm if necessary. More specifically, the actual slope monitoring unit 150 includes a safety factor calculation unit 151, a determination unit 152, and an alarm unit 153.
  • the safety factor calculation means 151 includes the vibration waveform generated in the slip layer of the actual slope obtained from the vibration sensor 108, the weight-damping rate model, the pore water pressure-damping rate model, the adhesive force stored in the model information storage means 140. Based on the information of the damping rate model and the internal friction angle-damping rate model, the safety factor Fs of the actual slope when the vibration waveform is measured is calculated.
  • the safety factor calculation means 151 calculates the attenuation rate ⁇ from the vibration waveform of the actual slope, and based on the calculated value of the attenuation rate ⁇ , the value of each analytical expression variable using each of the above models, That is, the weight W, pore water pressure u, adhesive force c, and internal friction angle ⁇ are calculated, and the obtained values are applied to the above equation (1) to calculate the safety factor Fs.
  • the determination means 152 determines whether or not to issue an alarm based on the safety factor calculated by the safety factor calculation means 151.
  • the alarm unit 153 issues an alarm in response to a request from the determination unit 152.
  • the first modeling means 110, the second modeling means 120, the model conversion means 130, and the actual slope monitoring means 150 are realized by a CPU or the like that operates according to a program.
  • the model information storage unit 140 is realized by a storage device.
  • the slope monitoring system 100 includes sensor data receiving means, and the sensor data receiving means receives sensor data (normal stress data, shear stress data, moisture amount data) from various sensors. , Waveform data, etc.) are received together with the test conditions and output to the first modeling means 110, the second modeling means 120 or the actual slope monitoring means 150 as necessary.
  • the sensor data processing means such as the first modeling means 110, the second modeling means 120, or the actual slope monitoring means 150 may directly accept the sensor data, and these sensor data processing means are the same as the sensors. It may be included in a device (such as a test device or a monitoring device).
  • 2 to 7 are flowcharts showing an example of the operation of the slope monitoring system of this embodiment.
  • the operation of this embodiment can be broadly divided into two phases: a model learning phase and an actual slope monitoring phase.
  • a model learning phase the case where the material layer constituting the monitoring target slope is a soil layer will be described as an example, but the material layer of the monitoring target slope is not limited to the soil layer.
  • FIG. 2 is a flowchart showing an example of the operation of the present embodiment in the model learning phase.
  • a triaxial compression test sinhear test
  • FIG. 3 is a flowchart showing an example of a shear test.
  • a soil block (test body) adjusted to a predetermined water content ratio is prepared (step S111).
  • the soil of the test body is the same as the soil of the actual slope.
  • a plurality of soil blocks made of soil of the same type, dry density and compaction degree as the soil on the actual slope are prepared as test specimens with different water content ratios.
  • step S112 the moisture content of the prepared clot is measured using the moisture meter 103 (step S112).
  • the prepared soil mass is set in a triaxial compression test apparatus equipped with the stress sensor 101 and the stress sensor 102 and compressed, and the vertical stress ⁇ and the shear stress ⁇ at the time of compression are measured (steps S113 to S115). ).
  • step S116 the compression and stress measurement in steps S114 to S115 is repeated (step S116). Usually at least 3 times. Thereby, the normal stress data and the shear stress data at the time of shearing corresponding to at least a plurality of vertical loads are obtained for one soil block.
  • step S117 moisture data, and normal stress data and shear stress data during shearing corresponding to a plurality of vertical loads are obtained for each of the soil blocks having different moisture contents.
  • the adhesive force / internal friction angle modeling means 112 changes the adhesive force c with respect to the change in the water amount m based on the obtained water content data and the calculated adhesive force c and internal friction angle ⁇ . Then, the change of the internal friction angle ⁇ with respect to the change of the water content m is learned, and an adhesive force-water content model and an internal friction angle-water content model are constructed (step S13).
  • step S14 a water / vibration test is carried out using a test body made of soil having the same quality as the soil used in the shear test in step S11, that is, soil of the same type, dry density and compaction degree (step S14).
  • FIG. 4 is a flowchart showing an example of a water addition / vibration test.
  • a soil block made of soil of the same type, dry density and compaction as the soil used in the shear test and having a relatively low water content is used.
  • Prepare step S121.
  • a soil mass adjusted to have a test layer with a lower moisture content than a test sample having a test layer with the minimum water content ratio among the test samples used in the shear test is prepared.
  • the prepared soil mass is set in a testing machine including a moisture meter 104, a vibration sensor 105, a pore water pressure meter 106, and a weight meter 107, and a moisture amount m, a pore water pressure u, and a weight W are measured (steps S122 to S122). Step S124).
  • a moisture amount m, a pore water pressure u, and a weight W are measured (steps S122 to S122).
  • Step S124) As a result, at least water content data, pore water pressure data, and weight data in a state where the water content ratio before water addition is known are obtained.
  • step S125, step S126 vibration is applied to the clot and its vibration waveform is measured.
  • step S125, step S126 At least the waveform data of the soil block in a state where the water content ratio before water addition is known is obtained.
  • step S127, step S128) a certain amount of water is added to the clot until the soil is saturated (step S127, step S128), and the same measurement is performed (return to step S122).
  • moisture content data, pore water pressure data, weight data, and waveform data of the soil blocks in each state (before and after each addition) in the hydration process until the soil is saturated are obtained.
  • saturated of the soil specifically means a state where water does not soak into the soil.
  • FIG. 5 is a flowchart showing an example of a method for calculating the attenuation rate.
  • the attenuation rate calculation means 121 may obtain the attenuation rate ⁇ of the vibration waveform by, for example, the method shown in FIG.
  • the attenuation rate calculation means 121 first filters the frequency domain to be analyzed from the obtained waveform data (step S131), and then obtains the first peak from the time-series waveform data in the obtained frequency domain. A value (maximum amplitude value) is detected (step S132).
  • the attenuation rate calculation means 121 determines a cutout period based on the detected first peak value, and cuts out data for that period from the time-series waveform data in the frequency domain (step S133).
  • the attenuation rate calculation unit 121 detects the second peak value (the second largest value of amplitude) from the cut-out waveform data (step S134).
  • the attenuation rate calculating means 121 calculates the attenuation rate ⁇ from the detected difference between the first peak value and the second peak value, that is, the Peak to Peak value (step S135). At this time, values after the third peak may also be detected, the attenuation rate may be calculated from the difference from the previous peak value, and the average of these may be taken.
  • FIG. 6 is a flowchart showing another example of the attenuation rate calculation method.
  • the attenuation rate calculation means 121 may obtain the attenuation rate ⁇ of the vibration waveform by, for example, the method shown in FIG. In the example illustrated in FIG. 6, the attenuation rate calculation unit 121 first filters a frequency region to be analyzed from the obtained waveform data (step S ⁇ b> 141).
  • the attenuation rate calculation means 121 performs frequency conversion on the time-series waveform data in the frequency domain obtained by filtering to obtain a frequency response (step S142). Then, the peak frequency in the frequency response is acquired (step S143).
  • the attenuation rate calculation means 121 regards the obtained peak frequency as the resonance frequency of the frequency response function that can be derived from the physical model, and generates a frequency response function with the attenuation ratio as a variable (step S144).
  • the attenuation rate calculation means 121 fits (approximates) the generated frequency response function to the frequency response data obtained in step S142, and identifies the optimal attenuation ratio (step S145).
  • the attenuation rate calculating means 121 uses, for example, a technique called curve fitting to set modal parameters such as natural frequency, attenuation ratio, and vibration mode in the analytical expression of the assumed frequency response function to appropriate values. By performing the process of approximating the measured frequency response function and the model frequency response function as much as possible, the attenuation ratio that is one of the optimum modal parameters obtained as a result may be identified as the optimum attenuation ratio. . Based on the obtained attenuation ratio, the attenuation rate ⁇ is calculated (step S146).
  • the attenuation rate calculating means 121 calculates the attenuation rate ⁇ of each state based on the waveform data of each state (before and every addition) in the hydration process obtained by the hydration / vibration test.
  • each waveform data can be identified in which state the waveform data is, for example, by giving acquisition time information or a predetermined identification number.
  • the weight modeling means 124 calculates the weight W based on the calculated attenuation rate ⁇ of each state in the hydration process and the weight data of each state in the hydration process obtained by the hydration / vibration test. Learning as a function of the damping factor ⁇ , a weight-damping factor model is constructed. Further, the pore water pressure modeling means 123 performs the pore water pressure u based on the calculated attenuation rate ⁇ in each state in the hydration process and the pore water pressure data in each state in the hydration process obtained by the hydration / vibration test. Is learned as a function of the damping rate ⁇ , and a pore water pressure-damping rate model is constructed.
  • the water content modeling means 122 calculates the water content m based on the calculated decay rate ⁇ of each state in the hydration process and the water content data of each state in the hydration process obtained by the hydration / vibration test. Is learned as a function of the attenuation rate ⁇ , and a moisture amount-attenuation rate model is constructed (step S17).
  • the model conversion means 130 uses the moisture amount-damping rate model obtained in step S17 to convert the adhesive force-water amount model and the internal friction angle-moisture amount model obtained in step S13, respectively, into the damping rate.
  • the model conversion means 130 uses the moisture amount-damping rate model obtained in step S17 to convert the adhesive force-water amount model and the internal friction angle-moisture amount model obtained in step S13, respectively, into the damping rate.
  • model information obtained in step S16 and step S18 that is, information on the weight-damping rate model, pore water pressure-damping rate model, adhesive force-damping rate model, and internal friction angle-damping rate model is stored as model information. Store in means 140.
  • the model learning phase for constructing the function model with the damping rate ⁇ is completed for all four analytical expression variables.
  • the water / vibration test is performed after the shear test, but the test order is not particularly limited.
  • the adhesive force / internal friction angle modeling means 112 is the same for the analytical expression variables (in this case, the adhesive force c and the internal friction angle ⁇ ) from which values at the time of state change were obtained by the shear test.
  • the model conversion means 130 is based on the water amount-damping rate model constructed by the water amount modeling means 122.
  • the attenuation rate ⁇ which is an observable amount measured on the actual slope, is converted into a model using the modeling input variable.
  • the adhesive force / internal friction angle modeling unit 112 directly calculates the attenuation rate. It is also possible to build a model with modeled input variables.
  • the adhesive force / internal friction angle modeling means 112 may perform the following model construction process at the timing of step S18 instead of the timing of step S13. That is, the adhesive force / internal friction angle modeling unit 112 uses the moisture amount-damping rate model constructed by the moisture amount modeling unit 122 after the two tests are completed and all the data are obtained. The moisture content m of each specimen used in the shear test is converted into a damping rate ⁇ , and then the adhesive force c and the internal friction angle ⁇ are learned as a function of the damping rate ⁇ , respectively. An internal friction angle-damping rate model may be constructed. At this time, the operation in step S18 is omitted.
  • the waveform data under the same conditions as when the normal stress data and the shear stress data used to calculate the adhesive force c and the internal friction angle ⁇ were obtained, that is, each of the shear test used If waveform data is obtained when the moisture content m is the same as the moisture content m of the test specimen, the moisture content m can be converted into the attenuation factor ⁇ without using the moisture content-attenuation rate model. The process of constructing the quantity-attenuation model can also be omitted.
  • FIG. 7 is a flowchart showing an example of the operation of the present embodiment in the actual slope monitoring phase.
  • the vibration waveform generated in the slip layer on the slope to be monitored is measured using the vibration sensor 108 installed on the actual slope (step S21).
  • waveform data indicating a vibration waveform which is an observable amount that affects the water content ratio of the current slip layer, is obtained.
  • the safety factor calculation means 151 calculates the attenuation factor ⁇ of the vibration waveform of the target slope from the obtained waveform data (step S22).
  • the safety factor calculation unit 151 uses the four models stored in the model information storage unit 140 based on the calculated attenuation rate ⁇ , and uses four analytical formula variables when measuring the vibration waveform of the monitored slope. Estimate the value of. Then, each estimated value is applied to the slope stability analysis formula to calculate the safety factor Fs (step S23).
  • the determination means 152 determines whether or not to issue an alarm based on the calculated safety factor Fs (step S24). For example, the determination unit 152 may determine to issue an alarm if the calculated safety factor Fs is below a predetermined threshold (Yes in step S24).
  • the alarm means 153 outputs an alarm when it is determined by the determination means 152 that an alarm is issued (step S25).
  • steps S21 to S25 are repeated, for example, until an instruction to end monitoring is given (step S26).
  • the state of variation of all analytical formula variables using soil of the same quality as the actual slope in advance is determined according to the state of the material layer (sediment etc.) constituting the actual slope.
  • a sensor vibration sensor
  • a predetermined variable that can be calculated from the variable observable amount (here, the attenuation rate of the vibration waveform)
  • the safety factor Fs can be calculated with high accuracy. Therefore, it is possible to accurately monitor the safety of the slope while avoiding the measurement difficulty for the actual slope.
  • the safety of the slope can be accurately monitored by merely providing one type of sensor (vibration sensor) on the actual slope.
  • FIG. 8 is a block diagram showing a configuration example of the slope monitoring system according to the second embodiment of the present invention.
  • the slope monitoring system 200 shown in FIG. 8 includes various sensors (stress sensor 101, stress sensor 102, moisture meter 103, moisture meter 104, pore water pressure meter 106, weight meter 107, and moisture meter 208), and first modeling means. 110, second modeling means 220, model information storage means 240, and actual slope monitoring means 250.
  • the first test is a shear test for obtaining data used for model learning in the first modeling means 110.
  • the second test is a test for obtaining data used for model learning by the second modeling means 220, and water is added to the test layer whose water content ratio is adjusted to a small value, and the water content is gradually increased.
  • the water content m contained in the test layer is acquired, and the weight W and the pore water pressure u are measured.
  • the second modeling means 220 is based on the values of the water content m, the weight W, and the pore water pressure u of the test layer in the hydration process, which are obtained by the water addition test.
  • a weight-water content model that defines the relationship between the pore water pressure, and a pore water pressure-water content model that defines the relationship between the pore water pressure u and the water content m are constructed.
  • the second modeling means 220 includes a pore water pressure modeling means 223 and a weight modeling means 224.
  • the pore water pressure modeling means 223 calculates the pore water pressure u based on the pore water pressure u of the test layer in the hydration process obtained by the pore water pressure meter 106 and the water content m of the test layer in the hydration process obtained by the moisture meter 104. Construct a pore water pressure-water content model modeled as a function of the water content m.
  • the weight modeling means 224 calculates the weight W based on the weight W, which is the gravity applied to the test layer in the hydration process obtained by the weigh scale 107, and the water content m of the test layer in the hydration process obtained by the moisture meter 104. Build a weight-water model modeled as a function of water content m.
  • the model information storage unit 240 uses a weight-water content model, a pore water pressure-water content model, an adhesive force-water content model, and information on models learned from observable quantities that can be measured on real slopes. At least information on the internal friction angle-water content model is stored.
  • the model information storage unit 240 for example, for each of the above models, the parameter information for identifying the function model, the address of the module that implements the process of returning the value of the analytical expression variable using the modeled input variable as an argument, etc. May be stored as
  • the moisture meter 208 measures the amount of moisture m contained in the slip layer on the actual slope.
  • the moisture meter 208 may be, for example, a sensor that is installed in a slip layer on an actual slope, measures the amount of moisture m contained in the slip layer, and outputs moisture amount data indicating the measurement result.
  • the actual slope monitoring means 250 calculates the safety factor of the actual slope based on the moisture amount m of the slip layer on the actual slope obtained by the moisture meter 208, and outputs an alarm as necessary. More specifically, the actual slope monitoring unit 250 includes a safety factor calculation unit 251, a determination unit 152, and an alarm unit 153.
  • the safety factor calculation means 251 includes the moisture content m contained in the slip layer on the actual slope obtained by the moisture meter 208, the weight-moisture model stored in the model information storage module 240, the pore water pressure-moisture model, and the adhesion. Based on the information of the force-moisture amount model and the internal friction angle-moisture amount model, the safety factor Fs of the actual slope at the time of measuring the moisture amount is calculated.
  • the safety factor calculation means 251 uses the above-mentioned models based on the value of the amount of moisture m on the actual slope, that is, the value of each analytical expression variable, that is, the weight W, the pore water pressure u, the adhesive force c, The value of the friction angle ⁇ is calculated, and the obtained value is applied to the above equation (1) to calculate the safety factor Fs.
  • the safety factor calculating means 251 of the present embodiment when predicted rainfall data indicating the predicted rainfall is input, based on the moisture amount data and the predicted rainfall data, The moisture amount m contained in the slip layer on the actual slope may be predicted, and the future safety factor Fs of the actual slope may be calculated using the predicted moisture amount m. Thereby, the danger of a landslide can be detected earlier.
  • the weight modeling means 224 uses the accumulated amount of water indicated by the amount of addition in the hydration test as the accumulated precipitation amount.
  • a moisture amount-cumulative precipitation model in which the amount of moisture m in each state is modeled by the accumulated precipitation amount may be constructed.
  • the safety factor calculation means 251 uses the moisture amount-cumulative precipitation model to obtain the current accumulated precipitation amount from the current moisture amount m indicated by the moisture amount data, and further calculates the predicted rainfall amount data.
  • the future accumulated precipitation may be obtained by using the estimated future accumulated precipitation and the moisture-cumulative precipitation model, and the future moisture m may be estimated.
  • the future safety factor Fs can be obtained using the model of each analytical expression variable.
  • the future safety factor Fs can be predicted by predicting the future observable amount from the current observable amount obtained from the actual slope and the predicted rainfall data using the variation model.
  • 9 and 10 are flowcharts showing an example of the operation of the slope monitoring system of the present embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 9 is a flowchart showing an example of the operation of the present embodiment in the model learning phase.
  • a hydration test is performed instead of the hydration / vibration test (step S31).
  • the operations in steps S125 to S126 of the operation of the water addition / addition test shown in FIG. 4 may be omitted.
  • water content data, pore water pressure data, and weight data in each state (before and after each addition) in the hydration process until the soil is saturated are obtained.
  • step S32 When water content data, pore water pressure data, and weight data in a state where the water content ratio is different are obtained for at least one soil block (test body) by the water addition test, the process proceeds to step S32.
  • step S32 the weight modeling means 224 learns the weight W as a function of the moisture content m based on the moisture content data and the weight data in each state in the hydration process obtained by the hydration test. Build a model. Further, the pore water pressure modeling means 223 learns the pore water pressure u as a function of the moisture amount m based on the moisture amount data and the pore water pressure data in each state in the hydration process obtained by the hydration test. Build a moisture model.
  • the model learning phase for constructing the function model based on the water content m is completed for all four analytical expression variables.
  • the water test is performed after the shear test, but the order of the test is not particularly limited.
  • FIG. 10 is a flowchart showing an example of the operation of the present embodiment in the actual slope monitoring phase.
  • the moisture amount m contained in the slip layer on the monitored slope is first measured using the moisture meter 208 installed on the actual slope (step S41).
  • water content data indicating the water content, which is an observable amount affecting the water content ratio of the current slip layer, is obtained.
  • predicted rainfall data is then input (step S42).
  • the safety factor calculation means 251 measures the vibration waveform of the slope to be monitored using the four models stored in the model information storage means 240 based on the moisture content m indicated by the obtained moisture content data. Estimate the values of the four analytic variables at the time. Then, each estimated value is applied to the slope stability analysis formula to calculate the safety factor Fs (step S43).
  • step S42 the safety factor calculation means 251 further calculates a safety factor Fs of an actual slope at an arbitrary time in the future indicated by the predicted rainfall data based on the moisture data and the predicted rainfall data.
  • the determination means 152 determines whether or not to issue an alarm based on the calculated safety factor Fs (step S24). For example, the determination unit 152 may determine to issue an alarm if any one of the calculated safety factors Fs falls below a predetermined threshold.
  • the state of variation of all analytical formula variables using soil of the same quality as the actual slope in advance is determined according to the state of the material layer (sediment etc.) constituting the actual slope.
  • the safety factor can be accurately obtained simply by providing a sensor (moisture meter) that can measure the observable amount on the actual slope. Fs can be calculated. Therefore, the safety of the slope can be accurately monitored while avoiding the measurement difficulty described above.
  • the safety of the slope can be accurately monitored by simply providing one type of sensor (moisture meter) on the actual slope.
  • the test apparatus since it is not necessary to acquire waveform data during the water addition test, the test apparatus can be simplified.
  • the future safety factor based on the predicted rainfall can be calculated easily and accurately, so that a warning when the slope collapses can be output earlier.
  • predicted rainfall data is input to the actual slope monitoring unit 150, and the predicted rainfall is indicated to the safety factor calculation unit 151 based on the waveform data and the predicted rainfall data.
  • the safety factor Fs of the actual slope at any future time may be calculated.
  • the attenuation rate calculation means 121 may include a cumulative water amount indicated by the water amount in the water addition test. May be regarded as cumulative precipitation, and an attenuation rate-cumulative precipitation model in which the attenuation rate ⁇ in each state is modeled by cumulative precipitation may be constructed.
  • the safety factor calculation means 151 obtains the current accumulated precipitation from the current attenuation rate ⁇ using the attenuation rate-cumulative precipitation model, and further uses the predicted rainfall data to calculate future accumulation.
  • the future attenuation rate ⁇ may be estimated based on the calculated future precipitation amount and the attenuation rate-cumulative water content model. Thus, if the future attenuation rate ⁇ is obtained, the future safety factor Fs can be obtained using the model of each analytical expression variable.
  • observable amount attenuation rate ⁇ in this example
  • water consumption is regarded as precipitation per unit time
  • observable amount for the precipitation A fluctuation model of may be constructed.
  • the future safety factor Fs can be predicted by predicting the future observable amount from the current observable amount obtained from the actual slope and the predicted rainfall data using the variation model.
  • FIG. 11 is a configuration diagram of the slope monitoring system according to the first embodiment.
  • a slope monitoring system 300 shown in FIG. 11 includes a triaxial compression test apparatus 31, a planter 32, a computer 33, an actual slope measuring device 34, and a display device 35.
  • the triaxial compression test apparatus 31 includes a stress sensor 101 and a stress sensor 102.
  • the planter 32 includes a moisture meter 104, a vibration sensor 105, and a pore water pressure meter 106. Further, the actual slope measuring device 34 includes a vibration sensor 108.
  • the computer 33 that collects and processes data is, for example, a general computer including a CPU (not shown) that operates according to a program and a database 336 as a storage device.
  • the computer 33 of this example includes, as program modules, an adhesive force / internal friction angle calculation module 331, an adhesive force / internal friction angle modeling module 332, a moisture amount correspondence module 333, an attenuation rate calculation module 334, a weight / pore water pressure. It is assumed that the slope monitoring program including the modeling module 335 and the actual slope monitoring module 337 is installed in an executable manner. That is, it is assumed that the computer 33 is in a state in which such a slope monitoring program is read by the CPU, and the CPU can execute a predetermined process defined for each module included in the slope monitoring program.
  • the adhesive force / internal friction angle calculation module 331 corresponds to the adhesive force / internal friction angle calculation unit 111 in the first embodiment.
  • the adhesive force / internal friction angle modeling module 332 corresponds to the adhesive force / internal friction angle modeling unit 112 and the model conversion unit 130 in the first embodiment.
  • the moisture amount correspondence module 333 corresponds to a partial function of the moisture amount modeling unit 122 or the sensor data receiving unit in the first embodiment.
  • the attenuation rate calculation module 334 corresponds to the attenuation rate calculation unit 121 in the first embodiment.
  • the weight / pore water pressure modeling module 335 corresponds to the pore water pressure modeling means 123 and the weight modeling means 124 in the first embodiment.
  • the actual slope monitoring module 337 corresponds to the actual slope monitoring means 150, that is, the safety factor calculation means 151, the determination means 152, and the alarm means 153 in the first embodiment.
  • the triaxial compression test apparatus 31 of this example does not include the moisture meter 103. Therefore, the user inputs data indicating the moisture content m (water content ratio) of the test layer of each test specimen, which has been measured in advance as test conditions, to the computer 33. Similarly, the planter 32 does not include the weight scale 107. Therefore, the weight / pore water pressure modeling module 335 calculates the weight W of the test layer for each hydration from the water content ratio, the weight of the test layer before the hydration, and the amount of hydration for each hydration. In addition, what is necessary is just to input these data required for calculation into the computer 33 as a test condition, for example.
  • the adhesive force / internal friction angle calculation module 331 uses the vertical stress ⁇ and the shear stress ⁇ , which are measurement values measured by the stress sensor 101 and the stress sensor 102, to determine the adhesive force c and the internal friction angle of the specimen in the triaxial compression test. Calculate ⁇ .
  • the adhesive force / internal friction angle modeling module 332 includes a water content ratio of each specimen in the triaxial compression test shown as test conditions for the triaxial compression test, and an adhesive strength c of each specimen in the calculated triaxial compression test. And the internal friction angle ⁇ and the damping ratio ⁇ corresponding to the water content ratio of each specimen of the triaxial compression test obtained by the correspondence by the moisture amount correspondence module 333 described later, the adhesive force c and the internal friction angle Each ⁇ is modeled as a function of the damping rate ⁇ of the vibration waveform.
  • the attenuation rate calculation module 334 calculates the attenuation rate ⁇ of the vibration waveform in each state in the hydration process from the vibration waveform that is a measurement value measured by the vibration sensor 105.
  • the moisture content correspondence module 333 associates the moisture content as the moisture content obtained in the triaxial compression test with at least the damping rate ⁇ obtained in the water addition / vibration test.
  • the moisture content correspondence module 333 obtains the water content ratio of the test body in each state in the hydration process from the amount of water added in the planter 32, along with the obtained water content ratio, the sensor data in each state in the hydration process, and By storing the calculated value (including at least the attenuation rate ⁇ ) in the database 336, the water content ratio as the amount of water obtained in the triaxial compression test is associated with at least the attenuation rate ⁇ obtained in the water / vibration test. (See FIG. 14 described later).
  • the water content correspondence module 333 is simply in each state in the water addition process.
  • the sensor data and the calculated value (attenuation rate ⁇ ) may be stored in the database 336.
  • the moisture content correspondence module 333 defines the relationship between the moisture content as the moisture content obtained in the triaxial compression test and the attenuation rate ⁇ .
  • the water content ratio-damping rate model may be constructed.
  • the weight / pore water pressure modeling module 335 includes a pore water pressure u that is a measurement value measured by the pore water pressure meter 106 in each state during the hydration process, a weight W of the specimen obtained from the amount of hydration, and a calculated vibration waveform. From the damping rate ⁇ , the weight W and the pore water pressure u are each modeled as a function of the damping rate ⁇ of the vibration waveform.
  • the database 336 includes a function model (adhesive force-damping rate model) of the adhesive force c modeled by the adhesive force / internal friction angle modeling module 332 and a function model of the internal friction angle ⁇ (internal friction angle-damping rate model). And the function model of the weight W (weight-damping rate model) and the function model of the pore water pressure u (pore water pressure-damping rate model) modeled by the weight / pore water pressure modeling module 335 are stored.
  • a function model adheresive force-damping rate model of the adhesive force c modeled by the adhesive force / internal friction angle modeling module 332
  • internal friction angle-damping rate model
  • the actual slope monitoring module 337 calculates the attenuation rate ⁇ from the vibration waveform that is a measurement value measured by the vibration sensor 108 installed on the actual slope, and calculates the safety factor Fs of the slope based on the calculated attenuation rate ⁇ . Then, the safety of the slope is determined based on the calculated safety factor Fs.
  • the actual slope monitoring module 337 may output the presence / absence of an alarm together with the safety factor Fs, for example, as a safety determination result.
  • the display device 35 displays the determination result of the actual slope monitoring module 337.
  • the slope formed is a monitoring target slope
  • the substance group constituting the slip layer of the slope is constituted by soil, more specifically, sand with a compaction degree of 85%. To do.
  • FIG. 12 is an explanatory diagram showing the values of the adhesive strength c and the internal friction angle ⁇ obtained by the triaxial compression test of this example.
  • FIG. 12 shows an effective friction coefficient tan ⁇ for the 11 specimens whose water content ratio is adjusted to 14 to 24%, together with the adhesive force c and the internal friction angle ⁇ obtained by the triaxial compression test. The value of is shown.
  • the data database 336 may store data as shown in FIG. 12, for example, in addition to the model information described above.
  • FIG. 13 is explanatory drawing which shows the example of the planter used for a water addition / vibration test.
  • a small planter as shown in FIG. 13 may be used.
  • the planter 32 shown in FIG. 13 includes three moisture meters 104 (a soil moisture meter 104A, a soil moisture meter 104B, and a soil moisture meter 104C), two vibration sensors 105 (a vibration sensor 105A and a vibration sensor 105B), and two gaps.
  • a water pressure gauge 106 (a pore water pressure gauge 106A and a pore water pressure gauge 106B) is provided.
  • the plurality of soil moisture meters and vibration sensors are provided at different heights, and the average value is used when used for modeling.
  • the planter 32 shown in FIG. 13 is made of a sample having the same configuration, dry density and compactness as the mountain sand constituting the slip layer of the actual slope, and has a smaller water content than the specimen used in the triaxial compression test.
  • the soil adjusted to the ratio is piled up to form a test body (filling).
  • the values of the soil moisture meter 104A, the soil moisture meter 104B, the soil moisture meter 104C, the pore water pressure meter 106A and the pore water pressure meter 106B are measured as they are, and the values of the vibration sensor 105A and the vibration sensor 105B at that time are measured.
  • the intensity of the shower is equivalent to the precipitation of 100 mm / h, and the precipitation time is about 5 seconds.
  • the showering operation which is also a watering operation, corresponds to the vibration operation.
  • the moisture value m and the pore water pressure u used for model learning calculate the average value of each measured value. Further, the attenuation rate ⁇ is obtained from the obtained waveform data by the method shown in FIG.
  • each waveform data is frequency filtered, and the filtered data is frequency converted to obtain a frequency response.
  • the peak frequency in the frequency response is acquired, and the obtained peak frequency is used as the resonance frequency of the frequency response function that can be derived from the physical model, and a frequency response function using the attenuation ratio as a variable is generated.
  • the generated frequency response function is fitted so as to match the data of each frequency response obtained by the above-described frequency conversion, and the optimum attenuation ratio is identified.
  • the attenuation rate ⁇ is calculated based on the obtained attenuation ratio.
  • FIG. 14 is an explanatory diagram showing various values obtained by the water addition / vibration test of this example.
  • FIG. 14 shows values such as measured values (water content m, damping rate ⁇ and pore water pressure u), water content, water content ratio, weight W, etc. acquired in a total of 6 water addition / measurement cycles.
  • the column of “moisture meter A” of the moisture amount represents a measurement value by the soil moisture meter 104A.
  • the column of “moisture meter B” represents a measured value by the soil moisture meter 104B.
  • the column of “moisture meter C” represents a measurement value by the soil moisture meter 104C.
  • the column “CH1” of the attenuation rate represents the attenuation rate obtained from the waveform data obtained from the vibration sensor 105A.
  • the column “CH2” of the attenuation rate represents the attenuation rate obtained from the waveform data obtained from the vibration sensor 105B.
  • the “CH1” column of the pore water pressure represents a measured value by the pore water pressure gauge 106A.
  • the “CH2” column of the pore water pressure represents a measurement value by the pore water pressure gauge 106B.
  • “[ ⁇ ]” represents no unit.
  • the database 336 may store data as shown in FIG. 14, for example, in addition to the model information described above.
  • the value of the water content ratio and the clot weight was determined from the amount of water added, the initial clot weight, and the initial water content ratio.
  • the adhesive force c with respect to the water content ratio of the soil of dry density and compaction degree, internal friction angle ⁇ , water content m, pore water pressure
  • the adhesive force / internal friction angle modeling module 332 and the weight / pore water pressure modeling module 335 perform damping for each of the analytical equation variables based on the obtained data.
  • a function model for the rate ⁇ is learned.
  • a regression equation with respect to the damping rate ⁇ is learned for the weight W, the pore water pressure u, the adhesive force c, and the internal friction angle ⁇ .
  • the adhesive strength c when the tendency of the adhesive strength c is different between the case where the water content ratio is high and the case where the water content ratio is low, only the adhesive strength c of the portion having a high water content ratio may be used in the regression equation learning. That is, the model may be constructed using only a part of the obtained data.
  • the slope monitoring method of the present invention was evaluated with the slope formed as shown in FIG. 15 as the slope to be monitored (actual slope).
  • 3 ⁇ 2 vibration sensors 108 are embedded in the actual slope.
  • 3 ⁇ 2 soil moisture meters (see circles) and four pore water pressure meters are embedded in the actual slope for evaluation.
  • the vibration sensor 108 is embedded at three different positions on the slope.
  • the soil moisture meter and the pore water pressure meter are arranged in the immediate vicinity of the vibration sensor 108.
  • the pore water pressure gauge was placed only at a shallower depth at a location other than the middle of the three locations on the slope.
  • each value of the vibration sensor 108 is measured about every 20 minutes in the process of adding water to the actual slope using a shower to obtain waveform data of the vibration waveform. Then, the attenuation rate ⁇ is obtained based on the obtained waveform data of each vibration waveform, and the actual slope monitoring module 337 obtains the safety factor Fs based on the obtained attenuation rate ⁇ , thereby evaluating the safety.
  • the attenuation rate may be calculated from each of the vibration sensors measured at a plurality of locations, and an average value may be used. In this example, the above monitoring operation is performed for evaluation until the slope collapses, and the time when the slope collapses is recorded.
  • the actual slope monitoring module 337 calculates the attenuation rate ⁇ according to the flow shown in FIG. 6 based on the waveform data of the vibration waveforms measured by the six vibration sensors 108, and the database 336 from the calculated attenuation rate ⁇ . Is used to predict the value of each analytical equation variable and calculate the safety factor Fs. When the calculated safety factor Fs falls below 1, an alarm is output as a possible slope collapse.
  • the attenuation rate ⁇ may be calculated from the vibration sensors measured at a plurality of locations using the method shown in FIG. 5 and the like, and an average value may be used.
  • FIG. 16 is an explanatory diagram showing examples of various values obtained from the actual slope in this example by the hydration operation.
  • FIG. 16 shows the elapsed time, the attenuation rate ⁇ , the time, and the safety factor Fs when acquiring waveform data in the hydration process on the actual slope in this example.
  • the actual slope failure time was 7 hours 59 minutes after the start of the experiment, whereas the time when the safety factor Fs was less than 1 was 7 hours 06 minutes after the start of the experiment. Since the elapsed time when measured one time before (when the safety factor is greater than 1) is 6 hours 49 minutes, the time difference between the actual collapse and the alarm output is 53 to 70 minutes. It turns out that it is between.
  • Example 2 In the first embodiment, both the water addition / vibration test and the actual slope monitoring were performed using the water pressure from the shower. As a vibration method, a second embodiment using the fall of an iron ball will be described. In the second embodiment, a device for dropping an iron ball is added to the same configuration as the first embodiment from directly above the planter 32 or directly above the vibration sensor provided on the actual slope.
  • an example is a case where the slope formed is a monitoring target slope, and the material group constituting the slip layer of the slope is made of soil, more specifically, mountain sand with a compaction degree of 85%.
  • the planter 32 shown in FIG. 13 is made of a sample having the same configuration, dry density and compaction degree as the mountain sand constituting the slip layer of the actual slope, and is triaxial.
  • a test body (banking) adjusted to a moisture content smaller than that of the test body used in the compression test is created.
  • the iron ball While measuring the values of the soil moisture meter 104A, the soil moisture meter 104B, the soil moisture meter 104C, the pore water pressure meter 106A and the pore water pressure meter 106B in the initial state, the iron ball from directly above toward the specimen in the planter 32 And the values of the vibration sensor 105A and the vibration sensor 105B at that time are measured.
  • the iron ball has a diameter of about 1 cm and is dropped from a height of about 10 cm from the soil surface. In addition, it is preferable to drop an iron ball from right above the position where the vibration sensor 105A and the vibration sensor 105B of the planter 32 are installed.
  • the values of the soil moisture meter 104A, the soil moisture meter 104B, the soil moisture meter 104C, the pore water pressure meter 106A, the pore water pressure meter 106B, the vibration sensor 105A, and the vibration sensor 105B are obtained in the same manner as described above. measure. Such a hydration / measurement cycle is repeated until the soil is saturated.
  • the hydration method in this example is not particularly limited, but a shower was used as in the first example.
  • a plurality of water content data and pore water pressure data are measured per operation.
  • the moisture value m and the pore water pressure u used for model learning calculate the average value of each measured value.
  • the water content and the value of the (clot) weight W are determined from the amount of water added, the initial mass of the clot, and the initial water content.
  • the attenuation rate ⁇ is obtained from the obtained waveform data by the method shown in FIG.
  • data on the water content m, the pore water pressure u, the weight W, and the damping rate ⁇ with respect to a plurality of water content ratios in one specimen are obtained and stored in the database 336.
  • the adhesion / internal friction angle modeling module 332 and the weight / pore water pressure modeling module 335 perform the attenuation of each of the analytical expression variables based on the obtained data.
  • a function model for the rate ⁇ is learned.
  • the model learning method is the same as in the first embodiment.
  • the slope monitoring method of the present invention was evaluated with the slope formed as shown in FIG. 15 as the slope to be monitored (actual slope).
  • the monitoring operation of this example in the process of adding water to the actual slope using a shower, an iron ball is dropped from directly above each of the vibration sensors 108 installed at regular intervals, and the vibration sensor at that time The value from each of 108 is measured, and the waveform data of the vibration waveform is obtained. Then, the attenuation rate ⁇ is obtained based on the obtained waveform data of each vibration waveform, and the actual slope monitoring module 337 obtains the safety factor Fs based on the obtained attenuation rate ⁇ , thereby evaluating the safety.
  • the attenuation rate may be calculated from each of the vibration sensors measured at a plurality of locations, and an average value may be used.
  • waveform data is acquired about every 20 minutes, and the above monitoring operation is performed for evaluation until the slope collapses, and the time when the slope collapses is recorded.
  • the possibility of the slope collapse can be detected as in the first embodiment.
  • FIG. 17 is a configuration diagram of a slope monitoring system according to the third embodiment.
  • a slope monitoring system 400 shown in FIG. 17 includes a triaxial compression test apparatus 41, a planter 42, a computer 43, an actual slope measuring device 44, and a display device 45.
  • the triaxial compression test apparatus 41 is the same as the triaxial compression test apparatus 31 of the first embodiment.
  • the planter 42 is different from the planter 32 of the first embodiment in that the vibration sensor 105 is not provided.
  • the other points are the same as the planter 32 of the first embodiment.
  • the actual slope measuring device 44 includes a moisture meter 208.
  • the computer 43 is also a general computer including a CPU (not shown) that operates according to a program and a database 436 as a storage device, for example.
  • the computer 43 of this example includes, as program modules, an adhesive force / internal friction angle calculation module 431, an adhesive force / internal friction angle modeling module 432, a moisture amount correspondence module 433, a weight / pore water pressure modeling module 435, and an actual module. It is assumed that the slope monitoring program including the slope monitoring module 437 is installed in an executable manner. That is, it is assumed that the computer 43 is in a state where such a slope monitoring program is read by the CPU and that the CPU can execute a predetermined process defined in each module included in the slope monitoring program.
  • the adhesive force / internal friction angle calculation module 431 corresponds to the adhesive force / internal friction angle calculation means 111 in the second embodiment.
  • the adhesive force / internal friction angle modeling module 432 corresponds to the adhesive force / internal friction angle modeling unit 112 in the second embodiment.
  • the weight / pore water pressure modeling module 435 corresponds to the pore water pressure modeling unit 223 and the weight modeling unit 224 in the second embodiment.
  • the actual slope monitoring module 437 corresponds to the actual slope monitoring unit 250, that is, the safety factor calculation unit 251, the determination unit 152, and the alarm unit 153 in the second embodiment.
  • each modeling module enables each analytical expression variable to be modeled by the amount of moisture obtained from the measured value of the moisture meter 208 used for monitoring the actual slope.
  • the moisture content correspondence module 433 obtains the moisture content of the test body in each state in the hydration process from the amount hydrated in the planter 42, and together with the obtained moisture content, sensor data in each state in the hydration process and By storing in the database 436 the calculated value (including at least the average value of the moisture meter measurement value as the amount of moisture that is used as a modeled input variable), the water content ratio as the amount of moisture obtained in the triaxial compression test, At least the average value of the moisture meter measurement value as the amount of water obtained by the water / vibration test is associated (see FIG. 14 described later).
  • the moisture content correspondence module 433 determines the moisture content as the moisture content obtained in the triaxial compression test and the moisture to be used as a modeled input variable.
  • a water content ratio-moisture meter measurement value model that defines the relationship with the average value of the moisture meter measurement value as the amount m may be constructed.
  • the adhesive force / internal friction angle calculation module 431 is the same as the adhesive force / internal friction angle calculation module 331 of the first embodiment.
  • the adhesive force / internal friction angle modeling module 432 corresponds to the moisture content ratio of each test specimen indicated as test conditions, the calculated adhesive strength c and internal friction angle ⁇ of each test specimen, and the moisture content correspondence module 433. Based on the moisture meter measurement value (average value) corresponding to the water content ratio of each specimen in the triaxial compression test obtained by attaching, the adhesive force c and the internal friction angle ⁇ are each more specific than the moisture content m. Is modeled as a function of the moisture meter measurement (average value).
  • the weight / pore water pressure modeling module 435 measures the pore water pressure u, which is a measurement value measured by the pore water pressure meter 106 in each state during the hydration process, the weight W of the specimen obtained from the amount of addition, and the moisture meter 104. Based on the measured moisture content m, the weight W and the pore water pressure u are each modeled as a function of the moisture content m, that is, the moisture meter measurement value (average value thereof).
  • the database 436 includes a function model (adhesive force-water content model) of the adhesive force c modeled by the adhesive force / internal friction angle modeling module 432 and a function model (internal friction angle-water content model) of the internal friction angle ⁇ . And a function model of weight W (weight-water content model) and a function model of pore water pressure u (pore water pressure-water content model) modeled by the weight / pore water pressure modeling module 335 are stored.
  • a function model of weight W weight-water content model
  • a function model of pore water pressure u pore water pressure-water content model
  • the actual slope monitoring module 437 calculates the safety factor Fs of the slope based on the moisture amount m, which is a measurement value measured by the moisture meter 208 installed on the actual slope, and the slope of the slope is calculated based on the calculated safety factor Fs. Determine safety.
  • the actual slope monitoring module 437 may output the presence / absence of an alarm together with the safety factor Fs, for example, as a safety determination result.
  • the display device 45 displays the determination result of the actual slope monitoring module 437.
  • the slope formed is a monitoring target slope
  • the substance group constituting the slip layer of the slope is constituted by soil, more specifically, sand with a compaction degree of 85%. To do.
  • the small planter 42 consists of a sample with the same structure, dry density and compactness as the mountain sand that forms the slip layer on the actual slope, and is adjusted to a moisture content smaller than that of the specimen used in the triaxial compression test. Fill the soil and form a specimen (fill).
  • the values of the soil moisture meter 104A, the soil moisture meter 104B, the soil moisture meter 104C, the pore water pressure meter 106A and the pore water pressure meter 106B are measured as they are.
  • the values of the soil moisture meter 104A, the soil moisture meter 104B, the soil moisture meter 104C, the pore water pressure meter 106A and the pore water pressure meter 106B are measured by the same method as described above. Such a hydration / measurement cycle is repeated until the soil is saturated.
  • a plurality of water content data and pore water pressure data are measured per operation.
  • the moisture value m and the pore water pressure u used for model learning calculate the average value of each measured value. Then, the data shown in FIG. 14 (however, the attenuation rate is excluded) is obtained.
  • the adhesion / internal friction angle modeling module 332 and the weight / pore water pressure modeling module 435 are based on the obtained data for each of the analytical expression variables with respect to the water content m. Learn functional models. In this example, a regression equation with respect to the water content m is learned for the weight W, the pore water pressure u, the adhesive force c, and the internal friction angle ⁇ .
  • the tendency of the adhesive strength c is different between the case where the water content ratio is high and the case where the water content ratio is low, only the adhesive strength c of the portion having a high water content ratio may be used in the learning of the regression equation.
  • the slope monitoring method of the present invention was evaluated with the slope formed as shown in FIG. 15 as the slope to be monitored (actual slope).
  • the 3 ⁇ 2 soil moisture meters (see circles) described for evaluation serve as the moisture meter 208 for monitoring.
  • the water content data is obtained by measuring the value of each moisture meter 208 approximately every 20 minutes in the process of adding water to the actual slope using a shower. Then, based on the obtained water content data, the water content m (here, the average value of the moisture meter measurement values) is obtained, and the actual slope monitoring module 437 obtains the safety factor Fs based on the obtained water content m. To evaluate safety. Also in this example, the above monitoring operation is performed for evaluation until the slope collapses, and the time when the slope collapses is recorded.
  • FIG. 18 and FIG. 19 are explanatory diagrams showing various values obtained from the actual slope of this example by the water addition operation.
  • 18 and 19 show the elapsed time at the time of water content data acquisition in the hydration process on the actual slope in this example, each water meter measurement value, the water content m that is the average value, the time, and the safety factor Fs. Yes.
  • the actual slope failure time was 7 hours and 59 minutes after the start of the experiment, whereas the time when the safety factor was less than 1 was 7 hours and 39 minutes after the start of the experiment. It was.
  • the elapsed time when measured one time before (when the safety factor is greater than 1) is 7 hours 22 minutes, the time difference between the actual collapse and the alarm output is 20 to 37 minutes. It turns out that it is between.
  • Example 4 In the following, a fourth embodiment in which communication means is added to the configuration of the first embodiment will be described.
  • the communication means receives, for example, predicted rainfall data in an area where there is a monitoring slope via an Internet line or a wireless LAN (Local Area Network).
  • LAN Local Area Network
  • the depth of the actual slope is measured and the depth of the soil piled up on the planter 32 is adjusted.
  • the depth of the actual slope for example, the depth of the interface for each material layer constituting the actual slope may be measured.
  • water is added to the planter 32 and waveform data is obtained when the vibration is applied. At this time, the amount of water added is recorded.
  • the attenuation rate calculation module 334 regards the accumulated water amount calculated from the recorded water amount as the accumulated precipitation amount, and learns the calculated attenuation rate ⁇ as a function model based on the accumulated precipitation amount. Based on the above, the attenuation rate-cumulative precipitation model is constructed. The other points are the same as in the first embodiment.
  • the actual slope monitoring module 337 acquires the waveform data indicating the vibration waveform from each vibration sensor 108 and calculates the attenuation rate ⁇ (average value), as in the first embodiment. Then, based on the calculated attenuation rate ⁇ , the value of each analytical expression variable is calculated to calculate the safety factor Fs.
  • the actual slope monitoring module 337 acquires the predicted rainfall data via the communication means in parallel with this operation, and the acquired predicted rainfall data and the above-described attenuation rate-cumulative precipitation model Based on the above, a future attenuation rate ⁇ is predicted. Then, based on the predicted future attenuation rate ⁇ , the value of each analytical expression variable is calculated, and the future safety factor Fs is predicted (calculated).
  • Embodiment 5 FIG.
  • the communication means receives, for example, predicted rainfall data in an area where there is a monitoring slope via an Internet line or a wireless LAN.
  • the depth of the actual slope is measured and the depth of the soil piled up on the planter 32 is adjusted.
  • the depth of the actual slope for example, the depth of the interface for each material layer constituting the actual slope may be measured.
  • water is added to the planter 32 and waveform data is obtained when the vibration is applied. At this time, the amount of water added is recorded.
  • the attenuation rate calculation module 334 considers the amount of water added as precipitation, and constructs a variation model of the attenuation rate with respect to the amount of precipitation according to the characteristics of the soil.
  • the other points are the same as in the first embodiment.
  • the actual slope monitoring module 337 acquires the waveform data indicating the vibration waveform from each vibration sensor 108 and calculates the attenuation rate ⁇ (average value), as in the first embodiment. Then, based on the calculated attenuation rate ⁇ , the value of each analytical expression variable is calculated to calculate the safety factor Fs.
  • the actual slope monitoring module 337 acquires predicted rainfall data via communication means in parallel with this operation, and based on the acquired predicted rainfall data, the attenuation rate with respect to the above rainfall A future attenuation rate ⁇ is predicted using a fluctuation model of Then, based on the predicted future attenuation rate ⁇ , the value of each analytical expression variable is calculated, and the future safety factor Fs is predicted (calculated).
  • Example 6 Hereinafter, a sixth embodiment in which communication means is added to the configuration of the third embodiment will be described.
  • the communication means receives, for example, predicted rainfall data in an area where there is a monitoring slope via an Internet line or a wireless LAN.
  • the depth of the actual slope is measured, and the depth of the soil piled up on the planter 42 is adjusted.
  • the depth of the actual slope for example, the depth of the interface for each material layer constituting the actual slope may be measured.
  • water is added to the planter 42 in the same manner as in the first embodiment, and moisture data in each state is acquired. At this time, the amount of water added is recorded.
  • the moisture meter correspondence module 433 or the weight / pore water pressure modeling module 435 considers the cumulative water amount calculated from the recorded water amount as the cumulative precipitation amount and measures the obtained moisture meter 104.
  • a water amount-cumulative precipitation model is constructed by learning the value of water amount m as a function model based on cumulative precipitation. The other points are the same as in the third embodiment.
  • the actual slope monitoring module 437 obtains moisture amount data indicating the amount of moisture from each moisture meter 208 in the same manner as in the third embodiment, and the moisture amount m (average value of moisture meter measurement values). ) Is calculated. Then, based on the calculated average value of the water content m, the value of each analytical expression variable is calculated to calculate the safety factor Fs.
  • the actual slope monitoring module 437 acquires the predicted rainfall data via the communication means in parallel with this operation, and the acquired predicted rainfall data and the above-described moisture amount-cumulative precipitation model Based on the above, the future water content m is predicted. Then, based on the predicted future moisture amount m, the value of each analytical expression variable is calculated, and the future safety factor Fs is predicted (calculated).
  • Example 7 Hereinafter, a seventh embodiment in which communication means is added to the configuration of the third embodiment will be described.
  • the communication means receives, for example, predicted rainfall data in an area where there is a monitoring slope via an Internet line or a wireless LAN.
  • the depth of the actual slope is measured and the depth of the soil piled up on the planter 42 is adjusted.
  • the depth of the actual slope for example, the depth of the interface for each material layer constituting the actual slope may be measured.
  • water is added to the planter 42 in the same manner as in the first embodiment, and moisture data in each state is acquired. At this time, the amount of water added is recorded.
  • the moisture amount correspondence module 433 or the weight / pore water pressure modeling module 435 regards the recorded amount of water addition as the amount of precipitation and matches the amount of water m with respect to the amount of precipitation according to the characteristics of the soil. Build a fluctuation model for The other points are the same as in the third embodiment.
  • the actual slope monitoring module 437 obtains moisture amount data indicating the amount of moisture from each moisture meter 208 in the same manner as in the third embodiment, and the moisture amount m (average value of moisture meter measurement values). ) Is calculated. Then, based on the calculated water content m, the value of each analytical equation variable is calculated to calculate the safety factor Fs.
  • the actual slope monitoring module 437 acquires the predicted rainfall data via the communication means in parallel with this operation, and based on the acquired predicted rainfall data, the amount of water with respect to the above rainfall The future water content m is predicted using the fluctuation model of. Then, based on the predicted future moisture amount m, the value of each analytical expression variable is calculated, and the future safety factor Fs is predicted (calculated).
  • FIG. 20 is a block diagram showing an outline of the slope monitoring system according to the present invention.
  • the slope monitoring system includes an analytical variable measuring means 51, an actual slope measuring means 52, and a slope safety analyzing device 53.
  • the slope safety analysis device 53 includes analytical variable modeling means 531, model information storage means 532, and safety factor calculation means 533.
  • Analytical variable measuring means 51 (for example, triaxial compressor 31, planter 32, triaxial compressor 41, planter 42, etc.) is the same type, dry density and compaction as the material layer constituting the monitored slope.
  • Each of the analytical expression variables which are variables necessary for a predetermined slope stability analytical expression when the state of the test layer is changed from the test environment having at least the test layer that is a material layer composed of a material group having a degree A value and a value of a predetermined first observable amount that changes in accordance with the state of the test layer are measured.
  • the actual slope measuring means 52 (for example, the actual slope measuring device 33, the actual slope measuring device 43, etc.) has a predetermined second possibility that changes from the monitored slope according to the state of the material layer constituting the monitored slope. Measure the observed value.
  • the second observable amount is a predetermined observable amount that is the same as the first observable amount or has a known relationship with the first observable amount.
  • Analytical variable modeling means 531 (for example, first modeling means 110, second modeling means 120, first modeling means 210, second modeling means 220, adhesive force / internal friction angle modeling) Module 332, moisture amount correspondence module 333, weight / pore water pressure modeling module 335, adhesive force / internal friction angle modeling module 432, moisture amount correspondence module 433, weight / pore water pressure modeling module 435, etc.) Based on each value of the analytical expression variable obtained by the expression variable measuring means 51 and the value of the first observable quantity, the analytical expression variable is calculated from the second observable quantity or the second observable quantity. Build a model that defines the relationship with the possible third variable.
  • the model information storage means 532 (for example, the model information storage means 140, the model information storage means 240, the database 336, the database 436, etc.) stores information on the model constructed by the analytical variable modeling means 531.
  • the safety factor calculating unit 533 (for example, the safety factor calculating unit 151, the safety factor calculating unit 251, the actual slope monitoring module 337, the actual slope monitoring module 437, etc.) is a value of the second observable amount obtained by the actual slope measuring unit 52. And the value of each analytical expression variable when the value of the second observable amount is measured based on the model information stored in the model information storage means, and the calculated value of each analytical expression variable Based on the above, the safety factor of the slope to be monitored is calculated using the slope stability analysis formula.
  • the safety of the slope can be accurately monitored only by providing one type of sensor as the actual slope measuring means 52 on the slope to be monitored.
  • the first observable amount and the second observable amount may be observable amounts that affect the water content ratio of the material layer to be measured.
  • the analytical variable measuring means includes at least a vibration sensor that measures a vibration waveform generated in the test layer as at least one of the first observables, and the actual slope measuring means includes 2 As the observable amount, a vibration sensor that measures a vibration waveform generated in the material layer constituting the monitoring target slope is included, and the analytical expression variable modeling means calculates the second observable amount from each of the analytical expression variables. You may build the model which prescribes
  • the vibration sensor may be a vibration sensor that measures a vibration waveform that is a waveform of vibration generated by falling objects or precipitation in the measurement target material layer.
  • the analytical variable measuring means includes a moisture meter that measures the amount of water contained in the test layer as at least one of the first observable quantities, and the actual slope measuring means is the monitoring target as the second observable quantity. Includes a moisture meter that measures the amount of moisture contained in the material layer that comprises the slope, and the analytical variable modeling means defines the relationship between each analytical variable and the second observable amount of water You may build a model to do.
  • the analytical variable measuring means measures a first observable amount different from the second observable amount together with at least one value of the analytical expression variable in the first test of at least two different tests.
  • the observable amount equal to the first observable amount of the first test together with the value of at least one of the analytical equation variables
  • a second test analysis variable measuring means for measuring two or more kinds of first observable values including the same observable quantity as the two observable quantities, and the analytical expression variable modeling means is a first test analysis variable.
  • First analytical expression variable model for building a model And the second observable for the analytical expression variable based on the value of the analytical expression variable obtained by the means and the second test analytical variable measuring means and the value of the first observable that is the same as the second observable.
  • a first analytical variable modeling means for constructing a model that defines a relationship with a quantity or a third variable, and a first possibility that is the same as the first observable quantity of the first test obtained by the second test analysis variable measuring means.
  • a model in which the first analytical variable modeling means is constructed using the first observable quantity modeling means for constructing a model for defining the model and the model constructed by the first observable quantity modeling means A model that converts two observables or a third variable into a model with a modeled input variable It may have the converting means.
  • the analytical expression variable modeling means includes, for at least one of the analytical expression variables, a partial value satisfying a predetermined condition among values of the analytical expression variable when the state of the test layer is changed, A model that defines the relationship with the second observable or the third variable may be constructed based on the value of the one observable.
  • the analytical expression variable measuring means includes a value of each of the analytical expression variables when the state of the test layer is changed by water, and a predetermined first observable value that changes according to the state of the test layer.
  • the slope safety analysis device is configured so that each of the analytical variable modeling means is based on the value of the first observable amount obtained by the analytical variable measuring means and the amount of water added when the value is measured.
  • a model that defines the relationship between the second observable amount or the third variable, which is the modeling input variable used for modeling the analytical expression variable, with the cumulative rainfall, or a variation model for the predicted rainfall per unit time Based on the modeled input variable modeling means, the model constructed by the modeled input variable modeling means, the value of the second observable obtained by the actual slope measuring means, and the predicted rainfall data, Safety factor predictor to predict rate It may also include a door.
  • test layer measured from a test environment having at least a test layer that is a material layer consisting of a material group having the same type, dry density and compaction as the material layer constituting the monitored slope.
  • each value of an analytical expression variable that is a variable necessary for a predetermined slope stability analytical expression and a predetermined first observable value that changes according to the state of the test layer On the basis of each of the analytical equation variables, a predetermined second observable amount that changes in accordance with the state of the material layer constituting the monitoring target slope, and is the same as the first observable amount or the first observable amount.
  • Analytical expression variable modeling means for constructing a model that defines a predetermined second observable whose relationship with the second observable or a predetermined third variable that can be calculated from the second observable, and an analytical expression Stores model information created by variable modeling means When the value of the second observable amount is measured based on the model information storage means, the value of the second observable amount measured from the monitored slope, and the model information stored in the model information storage means And a safety factor calculation means for calculating the safety factor of the slope to be monitored using the slope stability analysis formula based on the calculated value of each analytic equation variable.
  • a characteristic slope safety analysis device for constructing a model that defines a predetermined second observable whose relationship with the second observable or a predetermined third variable that can be calculated from the second observable
  • an analytical expression Stores model information created by variable modeling means When the value of the second observable amount is measured based on the model information storage means, the value of the second observable amount measured from the monitored slope, and the model information stored
  • the computer is measured from a test environment having at least a test layer which is a material layer made of a material group having the same type, dry density and compaction as the material layer constituting the monitored slope.
  • a test layer which is a material layer made of a material group having the same type, dry density and compaction as the material layer constituting the monitored slope.
  • the value of each analytical equation variable which is a variable required for the predetermined slope stability analytical equation, and the predetermined first observable amount that changes according to the state of the test layer
  • a predetermined second observable amount that changes in accordance with the state of the material layer constituting the monitoring target slope, and is the same as or equal to the first observable amount, based on the value
  • a model that defines a relationship with a predetermined second observable whose relation to the observable is known or a predetermined third variable that can be calculated from the second observable is constructed, and the computer Based on the second observable value measured from Using the constructed model, calculate the value of each analytical equation variable
  • a vibration sensor for measuring a vibration waveform generated in the test layer is installed as at least one of the first observable quantities.
  • a vibration sensor that measures the vibration waveform generated in the material layer that constitutes the slope to be monitored is installed, and the analytical formula when the computer changes the state of the test layer measured from the test environment Based on the value of each variable and the waveform data of the vibration waveform generated in the test layer, the relationship between the decay rate of the vibration waveform generated in the material layer constituting the monitored slope for each analytical expression variable.
  • the second observable is obtained for the same first observable as in the first test.
  • a first observable model that is a model that defines the relationship with the quantity or the third variable is constructed, and the first analytical variable modeling means uses the constructed first observable model, The slope monitoring method according to any one of appendix 2 to appendix 5, wherein the constructed model is converted into a model having the second observable amount or the third variable as a modeling input variable.
  • the present invention is not limited to the Ferrenius method, and can be suitably applied to any system that monitors a slope using a predetermined slope safety analysis formula.

Abstract

監視対象斜面を構成している物質層と同質の試験層を少なくとも有する試験環境から試験層の状態を変化させたときの解析式変数の各々の値および所定の第1可観測量の値を計測する解析式変数計測手段(51)と、監視対象斜面を構成している物質層から第1可観測量と同じまたは第1可観測量との関係が既知である所定の第2可観測量の値を計測する実斜面計測手段(52)と、試験環境から得られる各種値に基づいて、解析式変数の各々について、第2可観測量または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する解析式変数モデル化手段(531)と、構築されたモデルの情報を記憶するモデル情報記憶手段(532)と、監視対象斜面から得られる第2可観測量の値を基に構築されたモデルを用いて各解析式変数の値を算出して、解析対象斜面の安全率を算出する安全率算出手段(533)とを備える斜面監視システム。

Description

斜面監視システム、斜面安全性解析装置、方法およびプログラム
 本発明は、斜面の安全性を監視する斜面監視システム、斜面安全性解析装置、斜面監視方法および斜面監視プログラムに関する。
 斜面の安全性を評価する方法の1つに、フェレニウス法や修正フェレニウス法などの斜面安定解析式を用いて安全率を算出する方法が挙げられる。安全率は、斜面の安全性を評価する指標であって、斜面を滑落しようとする滑落力と、滑落を抑止しようとする抵抗力の比で表わされる。この値が1未満、すなわち滑落力が抵抗力よりも大きくなったときに、崩壊する可能性があると評価される。
 フェレニウス法および修正フェレニウス法は、重力に基づく滑落力と、摩擦力や粘着力等に基づく抵抗力との比である安全率を、土塊重量、間隙水圧、土塊の粘着力および内部摩擦角を用いて算出する方法である。
 斜面の安全性を監視する技術に関連して、例えば、特許文献1~特許文献4に記載されている方法がある。
特開2004-60311号公報 特開2006-195650号公報 特開2005-030843号公報 特開2002-070029号公報
 斜面安定解析式を用いて斜面の安全性を評価する方法の課題は、斜面安定解析式に用いられる各変数を監視対象斜面から直接計測することが困難な点にある。例えば、修正フェレニウス法では、安全率を求めるために、土塊重量と間隙水圧とを計測することに加えて、土塊のもつ性質である粘着力および内部摩擦角を算出する必要がある。これらを監視対象斜面から直接計測するには、監視対象斜面に土塊重量を計測可能な重量計と間隙水圧を計測可能な間隙水圧計とを設置する必要があるだけでなく、粘着力と内部摩擦角とを算出するために監視対象斜面を構成している土塊の崩壊時のせん断応力を計測する必要がある。しかし、これら全てを監視対象斜面から直接計測するのは困難であるとともに、コストも高くついてしまうという問題がある。
 特許文献1に記載されている地すべり監視方法は、上記のような計測の困難さを解消するために、フェレニウス法に用いられる変数のうち、間隙水圧のみを変数とし、残余の変数すなわち土塊重量、粘着力および内部摩擦角を定数として監視対象斜面の安全率を求めて、地すべりの発生を監視または予測しようというものである。
 土塊は、土の粒子そのものと、粒子間の隙間に含まれる空気および水とで構成される。降雨により水分量が増加する過程で土の粒子間の隙間に含まれる空気が押し出され、水分の占有率が大きくなる。このとき、土塊重量が増加するとともに、土塊の性質である粘着力および内部摩擦角が変化する。しかし、これらの変動を考慮しない特許文献1に記載されている方法は算出される安全率の精度が悪くなるという問題がある。
 なお、特許文献2に記載されている方法は、伸縮計や傾斜計の値を用いて警報する方法および、雨量計により計測される雨量や地下水位計により計測される水位から土粒子間隙の水による飽和度を求めて安全率の解析に用いる方法が記載されている。しかし、伸縮計や傾斜計は斜面上の位置によって変化するケースとしないケースがあり、不正確であるという問題がある。また、これらのセンサは斜面崩壊の前兆以外のことでも変動しうるため、誤報の可能性がある。さらに、雨量計、水位計の計測値を元に浸透流解析をする場合、土の種類によって異なる浸透特性を無視することになり精度が低下することが考えられる。また、雨量計、水位計、伸縮計、および傾斜計を設置する構成であり、設置個所における設備コストが高くなるという問題がある。
 また、特許文献3に記載されている方法は、振動強度信号に基づいて監視対象斜面内の体積含水率を推算し、得られた体積含水率分布から斜面の崩壊危険度分布を推算する方法が記載されている。しかし、体積含水率の分布を推算しているが、推算した体積含水率から崩壊危険度を評価するにあたり、経験や過去の実例、地質データなどを反映させる必要があり、過去のデータの蓄積や十分な地質データが得られないと実現不可能であるという問題がある。
 また、特許文献4に記載されている方法は、監視対象斜面より計測される土質係数の実測データに基づいて力学モデルを作成する例の一つとして、土の飽和度(飽水土)の空間的分布に基づいて、重量増加およびせん断強度低下を示す物性値を推定する例が記載されている。しかし、初期データのみから力学モデルを作成する点で、本来飽和度に伴って変動する値を定数としてモデル作成するため、崩壊の危険性が高まるにつれて、算出する斜面の安全性の精度が低くなるという問題がある。
 そこで、本発明は、監視対象斜面に対する計測困難性を回避しつつ、監視対象斜面の安全性を精度よく監視または予測できる斜面監視システム、斜面安全性解析装置、斜面監視方法および斜面監視プログラムを提供することを目的とする。
 本発明による斜面監視システムは、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から、試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とを計測する解析式変数計測手段と、監視対象斜面から、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量の値を計測する実斜面計測手段と、斜面安全性解析装置とを備え、第2可観測量は、第1可観測量と同じまたは第1可観測量との関係が既知である所定の可観測量であり、斜面安全性解析装置は、解析式変数計測手段により得られる、解析式変数の各々の値と、第1可観測量の値とに基づいて、解析式変数の各々について、第2可観測量または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する解析式変数モデル化手段と、解析式変数モデル化手段が構築したモデルの情報を記憶するモデル情報記憶手段と、実斜面計測手段により得られる第2可観測量の値と、モデル情報記憶手段に記憶されているモデルの情報とに基づいて、第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出する安全率算出手段とを含むことを特徴とする。
 また、本発明による斜面安全性解析装置は、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、解析式変数の各々について、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって第1可観測量と同じもしくは第1可観測量との関係が既知である所定の第2可観測量、または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する解析式変数モデル化手段と、解析式変数モデル化手段が構築したモデルの情報を記憶するモデル情報記憶手段と、監視対象斜面から計測される第2可観測量の値と、モデル情報記憶手段に記憶されているモデルの情報とに基づいて、第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出する安全率算出手段とを備えたことを特徴とする。
 また、本発明による斜面監視方法は、コンピュータが、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、解析式変数の各々について、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって第1可観測量と同じもしくは第1可観測量との関係が既知である所定の第2可観測量、または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築し、コンピュータが、監視対象斜面から計測される第2可観測量の値を基に、構築されたモデルを用いて第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出することを特徴とする。
 また、本発明による斜面監視プログラムは、コンピュータに、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、試験質層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、解析式変数の各々について、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって第1可観測量と同じもしくは第1可観測量との関係が既知である所定の第2可観測量、または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する処理、および監視対象斜面から計測される第2可観測量の値を基に、構築されたモデルを用いて第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出する処理を実行させることを特徴とする。
 本発明によれば、本発明は、監視対象斜面に対する計測困難性を回避しつつ、監視対象斜面の安全性を精度よく監視または予測できる。
第1の実施形態の斜面監視システムの構成例を示すブロック図である。 第1の実施形態の斜面監視システムのモデル学習フェーズにおける動作の一例を示すフローチャートである。 第1の実施形態の斜面監視システムにおけるせん断試験の例を示すフローチャートである。 第1の実施形態の斜面監視システムにおける加水・加振試験の例を示すフローチャートである。 第1の実施形態の斜面監視システムの減衰率の算出方法の例を示すフローチャートである。 第1の実施形態の斜面監視システムの減衰率の算出方法の他の例を示すフローチャートである。 第1の実施形態の斜面監視システムの実斜面監視フェーズにおける動作の一例を示すフローチャートである。 第2の実施形態の斜面監視システムの構成例を示すブロック図である。 第2の実施形態の斜面監視システムのモデル学習フェーズにおける動作の一例を示すフローチャートである。 第2の実施形態の斜面監視システムの実斜面監視フェーズにおける動作の一例を示すフローチャートである。 第1の実施例にかかる斜面監視システムの構成図である。 三軸圧縮試験により得られた粘着力cおよび内部摩擦角φの値を示す説明図である。 加水・加振試験に用いるプランターの例を示す説明図である。 加水・加振試験により得られた各種値を示す説明図である。 監視対象斜面および監視対象斜面に設置する実斜面計測機器の例を示す説明図である。 加水動作により第1の実施例の実斜面から得られた各種値を示す説明図である。 第3の実施例にかかる斜面監視システムの構成図である。 加水動作により第3の実施例の実斜面から得られた各種値を示す説明図である。 加水動作により第3の実施例の実斜面から得られた各種値を示す説明図である。 本発明による斜面監視システムの概要を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。以下では、式(1)に示すようなフェレニウス法と呼ばれる斜面安全解析式を用いて斜面の安全性を監視および予測する場合を例に各実施形態を説明するが、本発明で用いられる斜面安全解析式はフェレニウス法に限られない。
Figure JPOXMLDOC01-appb-M000001
 
 まず、フェレニウス法による斜面の安全性の解析方法の原理を説明する。フェレニウス法における斜面の安全性は、各分割片の斜面方向に働くせん断応力と、そのせん断応力による滑落を阻止するせん断抵抗力とを用いて算出される安全率Fsによって評価される。
 ところで、地盤の強度を表す指標の1つにせん断強さがある。せん断強さは、滑落力であるせん断応力に抵抗する最大のせん断抵抗力と定義されており、クーロンの式と呼ばれる以下の式(2)によれば、土壌がもつ粘着力cと、せん断面上に働く垂直応力σにもとづく抵抗力(σtanφ)の和で表わされる。ここで、sはせん断強さであり、tanφは土壌の性質を表すパラメータの1つである内部摩擦角φに基づく有効摩擦係数である。
s=c+σtanφ ・・・(2)
 式(2)により示される、せん断面上に働く垂直応力σとせん断強さsの関係は、破壊基準または破壊包絡線と呼ばれている。このような破壊基準に基づき、例えば、一面せん断試験等により、試験体(土塊等)に加える垂直荷重を変化させながら、破壊時のせん断応力を求めることにより、その試験体のもつ粘着力cと内部摩擦角φとを求めることができる。
 フェレニウス法において、各分割片のせん断応力は、当該分割片(土塊等)の、当該分割片に加わる重力としての重量Wと傾斜勾配角αとで表される(式(1)の分母参照)。一方、各分割片のせん断抵抗力は、上述したクーロンの式に基づいて、当該分割片(土塊)の、粘着力cと、垂直応力に基づく抵抗力((W-u)cosα・tanφ)とで表される(式(1)の分子参照)。なお、uは間隙水圧である。
 土塊は、土の粒子と、粒子間の隙間に介在する間隙空気および間隙水とで構成される。土塊の重量を支える抗力として、土粒子による垂直抗力、間隙空気圧および間隙水圧が作用する。ただし、これらの力のうち、せん断強さに寄与するのは土粒子による垂直抗力のみであるため、せん断強さすなわち最大のせん断抵抗力を算出する際には、間隙水圧と間隙空気圧を土塊に加わる重力である重量から差し引いて得られる見かけの垂直応力を用いなければならない。なお、上記の式(1)では、間隙空気圧は無視できる程度であるとして省略されている。
 ところで、土壌の含水比が大きくなると、この見かけの垂直応力は小さくなる。さらに、この垂直応力に乗算または加算される係数である有効摩擦係数および粘着力は、斜面が滑落するときにせん断応力とせん断強さが釣り合うように設定される係数である。これらの値も、土壌の含水比の上昇とともに減少することがわかっている。このため、土壌の含水比が増加すると、滑落力であるせん断応力が大きくなり、抵抗力であるせん断強さが小さくなるため、斜面崩壊が起こる。
 以下の実施形態では、土壌に含まれる水分量または土壌に振動を加えたときに得られる振動波形を計測することによって、土壌の含水比の増加を検知し、それを基に斜面崩壊の危険性を評価する。土壌に含まれる水分量が増加すれば、当然、含水比が増加する。また、土壌の含水比が増加すると、単位体積当たりの質量が大きくなることにより土壌の共振周波数の値が変化する。これにより、共振周波数に関する共振尖鋭度の値も変化する。共振尖鋭度と振動波形の減衰率は反比例関係にあるため、減衰率も質量の変化に伴い変化する。したがって、土壌に含まれる水分量の変化や土壌において発生した振動波形から算出される減衰率の変化を、含水比の変化ひいては斜面崩壊の危険性の変化としてとらえることができる。
 このように、本発明では、斜面崩壊の危険性の変化を、斜面を構成する物質層(土壌等)の状態に応じて変化する所定の量(上記の例では、含水比)に影響を与える所定の可観測量(水分量や振動波形)を計測することによって捉える。これにより、その可観測量の計測だけで、監視対象斜面の安全性を精度よく監視または予測できる。なお、斜面崩壊の危険性に変化をもたらす量は、含水比に限られない。該量は、斜面を構成する物質層の状態に応じて変化する量であればよく、例えば、斜面を構成する物質層に含まれる粒子の密度や、締固め度などであってもよい。そして、実際に計測する可観測量は、該量を直接または間接的に観測できる量であれば特に限定されない。また、斜面を構成する物質層は土壌に限られず、例えば、コンクリート等であってもよい。
実施形態1.
 図1は、本実施形態の斜面監視システムの構成例を示すブロック図である。図1に示す斜面監視システム100は、各種センサ(応力センサ101、応力センサ102、水分計103、水分計104、振動センサ105、間隙水圧計106、重量計107および振動センサ108)と、第1のモデル化手段110と、第2のモデル化手段120と、モデル変換手段130と、モデル情報記憶手段140と、実斜面監視手段150とを備える。
 なお、本実施形態では、監視の前処理として、2種類の試験を行う。第1の試験は、第1のモデル化手段110におけるモデル学習に用いるデータを得るための試験であって、含水比の異なる試験層を有する試験体の各々に対して、加える垂直荷重Pの値を変化させながら破壊されるまでせん断力を加えてその時のせん断応力τを計測するせん断試験である。試験体は、少なくとも監視対象斜面を構成している物質層のうち崩壊するおそれのある物質層(以下、すべり層という)と略同質の物質層である試験層を有していればよい。例えば、試験体は、監視対象斜面のすべり層を構成している土砂等の物質群と略同一の種類、乾燥密度および締固め度を有する物質群からなる試験層を有する試料であってもよい。
 第2の試験は、第2のモデル化手段120によるモデル学習に用いるデータを得るための試験であって、含水比を予め小さな値に調整した試験層を有する試験体を用いて該試験層に対して加水を行い、段階的に試験層に含まれる水分量を増加させていく過程で、適宜振動を加えて振動波形を取得するとともに、該試験層の重量Wと間隙水圧uを計測する加水・加振試験である。
 応力センサ101は、第1の試験であるせん断試験において、試験層に作用する垂直応力σを計測する。
 応力センサ101は、例えば、異なる含水比の試験層を有する試験体の各々に対して行うせん断試験において、該試験体に垂直荷重(圧縮力)Pを作用させたときに応じる応力である垂直応力σを計測し、計測結果を示す垂直応力データを出力するセンサであってもよい。
 応力センサ102は、第1の試験であるせん断試験において、試験層に作用するせん断応力τを計測する。応力センサ102は、例えば、異なる含水比の試験層を有する試験体の各々に対して行うせん断試験において、該試験体のせん断面に平行に、互いに反対向きの一対のせん断力を作用させたときに生じる応力であるせん断応力τを計測し、計測結果を示すせん断応力データを出力するセンサであってもよい。
 応力センサ101および応力センサ102は、例えば、三軸圧縮試験装置に設けられたセンサであって、該三軸圧縮試験装置を用いて行われるせん断試験において垂直応力σおよびせん断応力τを計測し、計測された垂直応力σおよびせん断応力τを各々示す垂直応力データおよびせん断応力データを、ユーザ操作に応じて出力してもよい。
 水分計103は、第1の試験であるせん断試験において、試験層に含まれる水分量mを計測する。水分計103は、例えば、用意された含水比が異なる試験層の各々に含まれる水分量mを計測し、計測結果を示す水分量データを出力するセンサであってもよい。水分計103は、例えば試験層が土の層である場合には、土中の水分量を計測できる計測機器であってもよい。計測される水分量の値の形式は特に問わない。例えば、体積含水率であってもよいし、重量含水率であってもよい。なお、試験体の試験層が所定の含水比になるよう予め調整されている場合など、試験層に含まれる水分量が既知の場合は、水分計103を省略してユーザが直接水分量データを入力することも可能である。このときの水分量mとして含水比を用いてもよい。
 第1のモデル化手段110は、含水比の異なる試験層を有する複数の試験体を用いたせん断試験により得られる粘着力cおよび内部摩擦角φの各々の値と、そのときの水分量mとに基づいて、粘着力cと水分量mの関係を規定する粘着力-水分量モデルおよび内部摩擦角φと水分量mの関係を規定する内部摩擦角-水分量モデルを構築する。
 第1のモデル化手段110は、より具体的には、粘着力・内部摩擦角算出手段111と、粘着力・内部摩擦角モデル化手段112とを含む。
 粘着力・内部摩擦角算出手段111は、含水比が異なる試験層に対して各々せん断実験を行った結果、応力センサ101および応力センサ102より得られる垂直応力データおよびせん断応力データに基づいて、各試験層の粘着力cおよび内部摩擦角φを算出する。粘着力・内部摩擦角算出手段111は、例えば、各試験層について、垂直応力データおよびせん断応力データにより示される破壊時のせん断応力τをせん断強さsとして、その時の垂直応力σとともに、式(2)に示されるクーロンの式に当てはめることにより、粘着力cおよび内部摩擦角φを算出してもよい。
 粘着力・内部摩擦角モデル化手段112は、水分計103より得られる各試験層の水分量mと、粘着力・内部摩擦角算出手段111によって算出された各試験層の粘着力cおよび内部摩擦角φとに基づいて、粘着力cを水分量mの関数としてモデル化した粘着力-水分量モデルおよび内部摩擦角φを水分量mの関数としてモデル化した内部摩擦角-水分量モデルを構築する。
 水分計104は、第2の試験である加水・加振試験において、試験層に含まれる水分量を計測する。水分計104は、例えば、試験層の水分量mを、常時または所定の間隔でもしくはユーザ指示に応じて計測し、計測結果を示す水分量データを出力するセンサであってもよい。
 振動センサ105は、第2の試験である加水・加振試験において、試験層に対して振動を加えた際に発生する振動波形を計測する。振動センサ105は、例えば、試験層において発生する振動波形を、常時または所定の間隔でもしくはユーザ指示に応じて計測し、計測結果を示す波形データを出力するセンサであってもよい。
 間隙水圧計106は、第2の試験である加水・加振試験において、試験層の間隙水圧uを計測する。間隙水圧計106は、例えば、試験層の間隙水圧uを、常時または所定の間隔でもしくはユーザ指示に応じて計測し、計測結果を示す間隙水圧データを出力するセンサであってもよい。
 重量計107は、第2の試験である加水・加振試験において、試験層の重量Wを計測する。重量計107は、例えば、試験層の重量を、常時または所定の間隔でもしくはユーザの操作に応じて計測し、計測結果を示す重量データを出力するセンサであってもよい。
 また、第2のモデル化手段120は、第2の試験である加水・加振試験により得られる加水過程における、重量Wおよび間隙水圧uの各々の値および波形データに基づいて、振動波形の減衰率δを算出するとともに、重量Wと減衰率δの関係を規定する重量-減衰率モデルおよび間隙水圧uと減衰率δの関係を規定する間隙水圧-減衰率モデルを構築する。また、第2のモデル化手段120は、第2の試験である加水・加振試験により得られる、加水過程における水分量mの値および波形データに基づいて、水分量mと振動波形の減衰率δとの関係を規定する水分量-減衰率モデルを構築する。
 第2のモデル化手段120は、より具体的には、減衰率算出手段121と、水分量モデル化手段122と、間隙水圧モデル化手段123と、重量モデル化手段124とを含む。
 減衰率算出手段121は、振動センサ105により得られる加水過程における振動波形を基に、加水過程における振動波形の減衰率δを算出する。
 水分量モデル化手段122は、水分計104により得られる加水過程における試験層の水分量mと、減衰率算出手段121によって算出された同過程における変動波形の減衰率δとに基づいて、水分量mを減衰率δの関数としてモデル化した水分量-減衰率モデルを構築する。
 なお、加水前の試験層の含水比、重量、加水量等から加水毎の試験層の水分量mが算出できる場合には、水分計104を省略してもよい。そのような場合には、例えば、水分量モデル化手段122が、加水前の試験層の含水比、重量、加水量等から現在の試験層の水分量mを算出した上で、水分量mを減衰率δの関数としてモデル化した水分量-減衰率モデルを構築する。このとき、水分量mとして含水比を用いてもよい。
 間隙水圧モデル化手段123は、間隙水圧計106により得られる加水過程における試験層の間隙水圧uと、減衰率算出手段121により得られる同過程における変動波形の減衰率δとに基づいて、間隙水圧uを減衰率δの関数としてモデル化した間隙水圧-減衰率モデルを構築する。
 重量モデル化手段124は、重量計107により得られる加水過程における試験層の重量Wと、減衰率算出手段121により得られる同過程における変動波形の減衰率δとに基づいて、重量Wを減衰率δの関数としてモデル化した重量-減衰率モデルを構築する。
 なお、加水前の試験層の含水比、重量および加水量から加水毎の試験層の重量Wが算出できる場合には、重量計107を省略してもよい。そのような場合には、例えば、重量モデル化手段124が、加水前の試験層の含水比、重量、加水量等から現在の試験層の重量Wを算出した上で、重量Wを減衰率δの関数としてモデル化した水分量-減衰率モデルを構築する。
 モデル変換手段130は、水分量モデル化手段122が作成した水分量-減衰率モデルに基づいて、粘着力・内部摩擦角モデル化手段112が作成した粘着力-水分量モデルおよび内部摩擦角-水分量モデルをそれぞれ、振動波形の減衰率δを関数とするモデルに変換する。すなわち、モデル変換手段130は、粘着力-水分量モデルおよび内部摩擦角-水分量モデルのモデル化入力変数を水分量mから振動波形の減衰率δに変換して、粘着力-減衰率モデルおよび内部摩擦角-減衰率モデルを構築する。
 モデル情報記憶手段140は、斜面安定解析式に用いられる変数である解析式変数の各々を解析対象斜面である実斜面で計測可能な可観測量により学習したモデルの情報として、上記の重量-減衰率モデル、間隙水圧-減衰率モデル、粘着力-減衰率モデルおよび内部摩擦角-減衰率モデルの情報を少なくとも記憶する。
 モデル情報記憶手段140は、例えば、上記の各モデルについて、関数モデルを同定するパラメータや、モデル化入力変数を引数にして解析式変数の値を返す処理を実装したモジュールのアドレス等をモデルの情報として記憶してもよい。
 振動センサ108は、実斜面のすべり層において発生する振動波形を計測する。振動センサ108は、例えば、実斜面のすべり層に設置され、該すべり層において落下物または降水による加振により生じる振動波形を計測し、計測結果を示す波形データを出力するセンサであってもよい。
 実斜面監視手段150は、振動センサ108により得られる実斜面のすべり層において発生する振動波形に基づいて、実斜面の安全率を算出して、必要に応じて警報を出力する。実斜面監視手段150は、より具体的には、安全率算出手段151と、判定手段152と、警報手段153とを含む。
 安全率算出手段151は、振動センサ108より得られる実斜面のすべり層において発生した振動波形と、モデル情報記憶手段140に記憶されている重量-減衰率モデル、間隙水圧-減衰率モデル、粘着力-減衰率モデルおよび内部摩擦角-減衰率モデルの情報とに基づき、該振動波形計測時の実斜面の安全率Fsを算出する。安全率算出手段151は、具体的には、実斜面の振動波形から減衰率δを算出し、算出された減衰率δの値を基に、上記各モデルを用いて各解析式変数の値、すなわち重量W、間隙水圧u、粘着力cおよび内部摩擦角φの値を算出し、得られた値を上記の式(1)に適用して安全率Fsを算出する。
 判定手段152は、安全率算出手段151によって算出された安全率に基づき、警報を出すか否かを判定する。
 警報手段153は、判定手段152からの要求に応じて、警報を出す。
 本実施形態において、第1のモデル化手段110、第2のモデル化手段120、モデル変換手段130および実斜面監視手段150は、プログラムに従って動作するCPU等によって実現される。また、モデル情報記憶手段140は、記憶装置によって実現される。
 なお、図示省略しているが、本実施形態の斜面監視システム100は、センサデータ受付手段を備え、該センサデータ受付手段が、各種センサからセンサデータ(垂直応力データ、せん断応力データ、水分量データ、波形データ等)を試験条件とともに受け付けて、必要に応じて第1のモデル化手段110、第2のモデル化手段120または実斜面監視手段150に出力する構成としている。なお、第1のモデル化手段110、第2のモデル化手段120または実斜面監視手段150といったセンサデータ処理手段が直接センサデータを受け付けてもよいし、また、これらセンサデータ処理手段がセンサと同じ装置(試験装置や監視装置等)に含まれていてもよい。
 次に、本実施形態の動作を説明する。図2~図7は、本実施形態の斜面監視システムの動作の一例を示すフローチャートである。本実施形態の動作は、大別して、モデル学習フェーズと、実斜面監視フェーズの2つのフェーズに分けることができる。なお、以下では、監視対象斜面を構成している物質層が土の層である場合を例に用いて説明するが、監視対象斜面の物質層は土の層に限られない。
 まず、モデル学習フェーズの動作について説明する。図2は、モデル学習フェーズにおける本実施形態の動作の一例を示すフローチャートである。図2に示す例では、まず三軸圧縮試験(せん断試験)を実施する(ステップS11)。
 図3は、せん断試験の例を示すフローチャートである。図3に示すせん断試験では、初めに、所定の含水比に調整した土塊(試験体)を用意する(ステップS111)。試験体の土は、実斜面の土と同質のものを用いる。ここでは、試験体として、実斜面の土と同一の種類、乾燥密度および締固め度の土からなる土塊を、含水比を変えて複数作成する。
 次に、水分計103を用いて、用意した土塊の水分量を計測する(ステップS112)。
 次に、用意した土塊を、応力センサ101および応力センサ102を備えた三軸圧縮試験装置にセットして圧縮を行い、圧縮時の垂直応力σとせん断応力τを計測する(ステップS113~ステップS115)。
 必要回数に達するまで、ステップS114~S115の圧縮および応力測定を繰り返し実施する(ステップS116)。通常は最低3回実施する。これにより、1つの土塊に対して、少なくとも複数の垂直荷重に対応したせん断時の垂直応力データおよびせん断応力データを得る。
 モデル化必要サンプル数に達するまで、含水比を変えた土塊に対して同様の動作を行う(ステップS117)。これにより、含水比の異なる土塊の各々に対して、水分量データと、複数の垂直荷重に対応したせん断時の垂直応力データおよびせん断応力データとを得る。
 せん断試験により、含水比の異なる土塊の各々に対して、水分量データと、複数の垂直荷重に対応したせん断時の垂直応力データおよびせん断応力データとを得ると、粘着力・内部摩擦角算出手段111は、得られた垂直応力データおよびせん断応力データに基づいて、粘着力cおよび内部摩擦角φを算出する(図2のステップS12)。
 次に、粘着力・内部摩擦角モデル化手段112は、得られた水分量データと、算出された粘着力cおよび内部摩擦角φとに基づいて、水分量mの変化に対する粘着力cの変化および水分量mの変化に対する内部摩擦角φの変化を学習し、粘着力-水分量モデルおよび内部摩擦角-水分量モデルを構築する(ステップS13)。
 次に、ステップS11のせん断試験で用いた土と同質、すなわち同一の種類、乾燥密度および締固め度の土からなる試験体を用いて、加水・加振試験を実施する(ステップS14)。
 図4は、加水・加振試験の例を示すフローチャートである。図4に示す加水・加振試験では、初めに、せん断試験で用いた土と同一の種類、乾燥密度および締固め度の土からなり、かつ含水比が相対的に少ない土塊(試験体)を用意する(ステップS121)。ここでは、試験体として、せん断試験で用いた試験体のうち最小の含水比の試験層を有する試験体よりも少ない含水比の試験層になるように調整された土塊を作成する。
 次に、用意した土塊を、水分計104、振動センサ105、間隙水圧計106および重量計107を備える試験機にセットして、水分量m、間隙水圧uおよび重量Wを計測する(ステップS122~ステップS124)。これにより、少なくとも加水前の含水比が既知の状態における土塊の水分量データ、間隙水圧データおよび重量データを得る。
 次に、土塊に振動を加えて、その振動波形を計測する(ステップS125,ステップS126)。これにより、少なくとも加水前の含水比が既知の状態における土塊の波形データを得る。
 次に、土が飽和するまで土塊に一定量ずつ加水して(ステップS127,ステップS128)、同様の計測を行う(ステップS122に戻る)。これにより、土が飽和するまでの加水過程における各状態(加水前および加水毎)の土塊の水分量データ、間隙水圧データ、重量データおよび波形データを得る。なお、「土が飽和する」とは、具体的には、土に水がしみ込まなくなる状態になることである。なお、土が飽和するまで加水を行う方法以外に、所定回数分加水を行う方法もある。
 加水・加振試験により、少なくとも1つの土塊(試験体)に対して、含水比が異なる状態における水分量データ、間隙水圧データ、重量データおよび波形データを得ると、まず、減衰率算出手段121が、得られた波形データに基づいて、各状態における振動波形の減衰率δを算出する(図2のステップS15)。
 図5は、減衰率の算出方法の例を示すフローチャートである。減衰率算出手段121は、例えば、図5に示す方法により、振動波形の減衰率δを求めてもよい。図5に示す例では、減衰率算出手段121は、まず、得られた波形データから分析対象とする周波数領域をフィルタリングし(ステップS131)、得られた周波数領域の時系列波形データから第1ピーク値(振幅の最大値)を検出する(ステップS132)。
 次に、減衰率算出手段121は、検出した第1ピーク値を基準に切り出し期間を決定し、周波数領域の時系列波形データからその期間のデータを切り出す(ステップS133)。次に、減衰率算出手段121は、切り出した波形データから第2ピーク値(振幅の2番目に大きな値)を検出する(ステップS134)。
 次に、減衰率算出手段121は、検出した第1ピーク値と第2ピーク値の差分すなわちPeaktoPeak値から、減衰率δを算出する(ステップS135)。このとき、第3ピーク以降の値も検出して、その前のピーク値との差分から各々減衰率を算出し、これらの平均をとってもよい。
 また、図6は、減衰率の算出方法の他の例を示すフローチャートである。減衰率算出手段121は、例えば、図6に示す方法により、振動波形の減衰率δを求めてもよい。図6に示す例では、減衰率算出手段121は、まず、得られた波形データから分析対象とする周波数領域をフィルタリングする(ステップS141)。
 減衰率算出手段121は、フィルタリングして得られた周波数領域の時系列波形データに対して周波数変換を施し、周波数応答を得る(ステップS142)。そして、その周波数応答におけるピーク周波数を取得する(ステップS143)。
 次いで、減衰率算出手段121は、得られたピーク周波数を、物理モデルから導出できる周波数応答関数の共振周波数とみなして、減衰比を変数とした周波数応答関数を生成する(ステップS144)。
 次いで、減衰率算出手段121は、ステップS142で得られた周波数応答のデータに対して、生成した周波数応答関数をフィッティング(近似)し、最適な減衰比を同定する(ステップS145)。減衰率算出手段121は、例えば、カーブ・フィッティングと呼ばれる手法を用いて、想定した周波数応答関数の解析式中の固有振動数、減衰比、振動モードなどのモーダル・パラメータを適当な値にすることにより、実測された周波数応答関数とモデルの周波数応答関数をできるだけ近似させる処理を行い、その結果得られる最適なモーダル・パラメータの1つである減衰比を、最適な減衰比として同定してもよい。そして、得られた減衰比に基づいて、減衰率δを算出する(ステップS146)。
 このようにして、減衰率算出手段121は、加水・加振試験によって得られた加水過程における各状態(加水前および加水毎)の波形データに基づいて、各状態の減衰率δを算出する。なお、各波形データには取得の時刻情報や所定の識別番号が付与される等によって、どの状態のときの波形データであるかが識別可能であるとする。
 ステップS16では、重量モデル化手段124が、算出された加水過程における各状態の減衰率δと、加水・加振試験によって得られた加水過程における各状態の重量データとに基づいて、重量Wを減衰率δの関数として学習して、重量-減衰率モデルを構築する。また、間隙水圧モデル化手段123が、算出された加水過程における各状態の減衰率δと、加水・加振試験によって得られた加水過程における各状態の間隙水圧データとに基づいて、間隙水圧uを減衰率δの関数として学習して、間隙水圧-減衰率モデルを構築する。
 さらに、水分量モデル化手段122が、算出された加水過程における各状態の減衰率δと、加水・加振試験によって得られた加水過程における各状態の水分量データとに基づいて、水分量mを減衰率δの関数として学習して、水分量-減衰率モデルを構築する(ステップS17)。
 次に、モデル変換手段130は、ステップS17で得られた水分量-減衰率モデルを用いて、ステップS13で得られた粘着力-水分量モデルおよび内部摩擦角-水分量モデルを、各々減衰率をモデル化入力変数とするモデルである粘着力-減衰率モデルおよび内部摩擦角-減衰率モデルに変換する(ステップS18)。
 最後に、ステップS16およびステップS18で得られたモデルの情報、すなわち重量-減衰率モデル、間隙水圧-減衰率モデル、粘着力-減衰率モデルおよび内部摩擦角-減衰率モデルの情報をモデル情報記憶手段140に記憶する。
 以上の動作により、4つの解析式変数の全てについて、減衰率δによる関数モデルを構築するモデル学習フェーズが完了する。なお、上記の例では、せん断試験を行った後に、加水・加振試験を行っているが、試験の順序は特に問わない。
 また、上記では、粘着力・内部摩擦角モデル化手段112が、せん断試験によって状態変化時の値が得られた解析式変数(本例の場合、粘着力cおよび内部摩擦角φ)について、同せん断試験で得られた可観測量(本例の場合、水分量m)でモデル化した後で、モデル変換手段130が、水分量モデル化手段122により構築された水分量-減衰率モデルに基づいて、実斜面で計測される可観測量である減衰率δをモデル化入力変数とするモデルに変換する例を示したが、粘着力・内部摩擦角モデル化手段112が、直接、減衰率をモデル化入力変数とするモデルを構築することも可能である。
 そのような場合、粘着力・内部摩擦角モデル化手段112は、上記のステップS13のタイミングではなく、上記のステップS18のタイミングで下記のようなモデル構築処理を行えばよい。すなわち、粘着力・内部摩擦角モデル化手段112は、2つの試験が完了して全てのデータが揃った後で、水分量モデル化手段122により構築される水分量-減衰率モデルを利用して、せん断試験に用いた各試験体の水分量mを減衰率δに変換した上で、粘着力cおよび内部摩擦角φを各々、減衰率δの関数として学習して粘着力-減衰率モデルおよび内部摩擦角-減衰率モデルを構築してもよい。このとき、上記のステップS18の動作は省略される。なお、加水・加振試験で、粘着力cおよび内部摩擦角φの算出に用いた垂直応力データおよびせん断応力データを得たときと同じ条件下での波形データ、すなわち、せん断試験に用いた各試験体の水分量mと同じ水分量mのときの波形データが得られる場合には、水分量-減衰率モデルを利用せずとも水分量mを減衰率δに変換できるため、ステップS17の水分量-減衰率モデルの構築処理も省略可能である。
 次に、実斜面監視フェーズの動作について説明する。図7は、実斜面監視フェーズにおける本実施形態の動作の一例を示すフローチャートである。図7に示す例では、まず実斜面に設置された振動センサ108を用いて、監視対象斜面のすべり層において発生する振動波形を計測する(ステップS21)。これにより、現在のすべり層の含水比に影響のある可観測量である振動波形を示す波形データを得る。
 次に、安全率算出手段151は、得られた波形データから対象斜面の振動波形の減衰率δを算出する(ステップS22)。
 次に、安全率算出手段151は、算出した減衰率δに基づいて、モデル情報記憶手段140に記憶されている4つのモデルを用いて、監視対象斜面の振動波形計測時における4つの解析式変数の値を推定する。そして、推定された各値を斜面安定解析式に適用して、安全率Fsを算出する(ステップS23)。
 判定手段152は、算出された安全率Fsに基づいて、警報を出すか否かを判定する(ステップS24)。判定手段152は、例えば、算出された安全率Fsが所定の閾値を下回っていれば、警報を出すと判定してもよい(ステップS24のYes)。
 警報手段153は、判定手段152によって警報を出すと判定された場合に、警報を出力する(ステップS25)。
 ステップS21~S25の動作を、例えば、監視終了の指示があるまで繰り返す(ステップS26)。
 以上のように、本実施形態によれば、予め実斜面と同質の土を用いて解析式変数全てについて、その変動の様子を、実斜面を構成する物質層(土砂等)の状態に応じて変化する可観測量から算出可能な所定の変数(ここでは、振動波形の減衰率)と結び付けて学習しておくことにより、実斜面にはその可観測量を計測可能なセンサ(振動センサ)を設けるだけで、精度よく安全率Fsを算出することができる。したがって、実斜面に対する計測困難性を回避しつつ、斜面の安全性を精度よく監視することができる。
 また、本実施形態によれば、1種類のセンサ(振動センサ)を実斜面に設けるだけで、斜面の安全性を精度よく監視することができる。
実施形態2.
 次に、本発明の第2の実施形態について図面を参照して説明する。以下では、第1の実施形態と同様のものについては同一の符号を付し、説明を省略する。
 図8は、本発明の第2の実施形態の斜面監視システムの構成例を示すブロック図である。図8に示す斜面監視システム200は、各種センサ(応力センサ101、応力センサ102、水分計103、水分計104、間隙水圧計106、重量計107および水分計208)と、第1のモデル化手段110と、第2のモデル化手段220と、モデル情報記憶手段240と、実斜面監視手段250とを備える。
 なお、本実施形態でも、監視の前処理として、2種類の試験を行う。第1の試験は、第1のモデル化手段110におけるモデル学習に用いるデータを得るためのせん断試験である。第2の試験は、第2のモデル化手段220によるモデル学習に用いるデータを得るための試験であって、含水比を小さな値に調整した試験層に対して加水を行い、段階的に水分量を増加させていく過程で、試験層に含まれる水分量mを取得するとともに、重量Wと間隙水圧uを計測する加水試験である。
 本実施形態において、第2のモデル化手段220は、加水試験により得られる、加水過程における試験層の水分量m、重量Wおよび間隙水圧uの各々の値に基づいて、重量Wと水分量mの関係を規定する重量-水分量モデルおよび間隙水圧uと水分量mの関係を規定する間隙水圧-水分量モデルを構築する。
 第2のモデル化手段220は、より具体的には、間隙水圧モデル化手段223と、重量モデル化手段224とを含む。
 間隙水圧モデル化手段223は、間隙水圧計106により得られる加水過程における試験層の間隙水圧uと、水分計104により得られる加水過程における試験層の水分量mとに基づいて、間隙水圧uを水分量mの関数としてモデル化した間隙水圧-水分量モデルを構築する。
 重量モデル化手段224は、重量計107により得られる加水過程における試験層に加わる重力である重量Wと、水分計104により得られる加水過程における試験層の水分量mとに基づいて、重量Wを水分量mの関数としてモデル化した重量-水分量モデルを構築する。
 モデル情報記憶手段240は、解析式変数の各々を実斜面で計測可能な可観測量により学習したモデルの情報として、重量-水分量モデル、間隙水圧-水分量モデル、粘着力-水分量モデルおよび内部摩擦角-水分量モデルの情報を少なくとも記憶する。
 モデル情報記憶手段240は、例えば、上記の各モデルについて、関数モデルを同定するパラメータや、モデル化入力変数を引数にして解析式変数の値を返す処理を実装したモジュールのアドレス等をモデルの情報として記憶してもよい。
 水分計208は、実斜面のすべり層に含まれる水分量mを計測する。水分計208は、例えば、実斜面のすべり層に設置され、該すべり層に含まれる水分量mを計測し、計測結果を示す水分量データを出力するセンサであってもよい。
 実斜面監視手段250は、水分計208により得られる実斜面のすべり層の水分量mに基づいて、実斜面の安全率を算出して、必要に応じて警報を出力する。実斜面監視手段250は、より具体的には、安全率算出手段251と、判定手段152と、警報手段153とを含む。
 安全率算出手段251は、水分計208により得られる実斜面のすべり層に含まれる水分量mと、モデル情報記憶手段240に記憶されている重量-水分量モデル、間隙水圧-水分量モデル、粘着力-水分量モデルおよび内部摩擦角-水分量モデルの情報とに基づき、該水分量計測時の実斜面の安全率Fsを算出する。安全率算出手段251は、具体的には、実斜面の水分量mの値を基に、上記各モデルを用いて各解析式変数の値、すなわち重量W、間隙水圧u、粘着力cおよび内部摩擦角φの値を算出し、得られた値を上記の式(1)に適用して安全率Fsを算出する。
 また、本実施形態の安全率算出手段251は、水分量データに加えて、予測雨量を示す予測雨量データが入力された場合には、該水分量データと該予測雨量データとに基づき、将来の実斜面のすべり層に含まれる水分量mを予測して、その予測した水分量mを用いて、将来の実斜面の安全率Fsを算出してもよい。これにより、地すべりの危険性をより早く検知できる。
 なお、水分量データと予測雨量データとから将来の水分量mの予測を容易にするために、例えば、重量モデル化手段224が、加水試験における加水量より示される累積加水量を累積降水量とみなして、各状態での水分量mを、累積降水量でモデル化した水分量-累積降水量モデルを構築してもよい。
 そのような場合には、安全率算出手段251は、水分量-累積降水量モデルを用いて、水分量データが示す現在の水分量mから現在の累積降水量を求めるとともに、さらに予測雨量データを用いて将来の累積降水量を求め、求めた将来の累積降水量と、水分量-累積降水量モデルとに基づいて、将来の水分量mを推定してもよい。このようにして、将来の水分量mが得られれば、各解析式変数のモデルを用いて、将来の安全率Fsが求まる。
 なお、安全率Fsを予測する方法として、実斜面における可観測量(本例では水分量m)-累積降水量モデルを構築する以外にも、加水量を所定の単位時間あたりの降水量とみなして、該降水量に対する可観測量の変動モデルを構築してもよい。該変動モデルを利用して、実斜面から得られた現在の可観測量と予測雨量データとから将来の可観測量を予測して、将来の安全率Fsを予測できる。
 次に、本実施形態の動作を説明する。図9および図10は、本実施形態の斜面監視システムの動作の一例を示すフローチャートである。動作についても、第1の実施形態と同様のものは同じ符号を付し、説明を省略する。
 図9は、モデル学習フェーズにおける本実施形態の動作の一例を示すフローチャートである。図9に示すように、本実施形態では、加水・加振試験の代わりに、加水試験を行う(ステップS31)。なお、本実施形態の加水試験は、図4に示される加水・加試験の動作のステップS125~ステップS126の動作を省略すればよい。これにより、土が飽和するまでの加水過程における各状態(加水前および加水毎)の水分量データ、間隙水圧データおよび重量データを得る。
 加水試験により、少なくとも1つの土塊(試験体)に対して、含水比が異なる状態における水分量データ、間隙水圧データおよび重量データを得ると、ステップS32に進む。
 ステップS32では、重量モデル化手段224が、加水試験によって得られた加水過程における各状態の水分量データおよび重量データに基づいて、重量Wを水分量mの関数として学習して、重量-水分量モデルを構築する。また、間隙水圧モデル化手段223が、加水試験によって得られた加水過程における各状態の水分量データおよび間隙水圧データに基づいて、間隙水圧uを水分量mの関数として学習して、間隙水圧-水分量モデルを構築する。
 そして、ステップS13およびステップS32で得られたモデルの情報、すなわち粘着力-水分量モデル、内部摩擦角-水分量モデル、重量-水分量モデルおよび間隙水圧-水分量モデルの情報をモデル情報記憶手段240に記憶する。
 以上の動作により、4つの解析式変数の全てについて、水分量mによる関数モデルを構築するモデル学習フェーズが完了する。なお、上記の例では、せん断試験を行った後に、加水試験を行っているが、試験の順序は特に問わない。
 次に、実斜面監視フェーズの動作について説明する。図10は、実斜面監視フェーズにおける本実施形態の動作の一例を示すフローチャートである。図10に示すように、本実施形態では、まず実斜面に設置された水分計208を用いて、監視対象斜面のすべり層に含まれる水分量mを計測する(ステップS41)。これにより、現在のすべり層の含水比に影響のある可観測量である水分量を示す水分量データを得る。
 本例では、次いで、予測雨量データが入力される(ステップS42)。
 次に、安全率算出手段251は、得られた水分量データによって示される水分量mに基づいて、モデル情報記憶手段240に記憶されている4つのモデルを用いて、監視対象斜面の振動波形計測時における4つの解析式変数の値を推定する。そして、推定された各値を斜面安定解析式に適用して、安全率Fsを算出する(ステップS43)。
 ステップS42では、安全率算出手段251は、さらに、水分量データと予測雨量データとに基づき、予測雨量データで予測雨量が示された将来の任意の時間の実斜面の安全率Fsを算出する。
 次に、判定手段152は、算出された安全率Fsに基づいて、警報を出すか否かを判定する(ステップS24)。判定手段152は、例えば、算出された安全率Fsの1つでも所定の閾値を下回るものがあれば、警報を出すと判定してもよい。
 以上のように、本実施形態によれば、予め実斜面と同質の土を用いて解析式変数全てについて、その変動の様子を、実斜面を構成する物質層(土砂等)の状態に応じて変化する可観測量の値(ここでは、水分量)と結び付けて学習しておくことにより、実斜面にはその可観測量を計測可能なセンサ(水分計)を設けるだけで、精度よく安全率Fsを算出することができる。したがって、上述した計測困難性を回避しつつ、斜面の安全性を精度よく監視することができる。
 また、本実施形態においても、1種類のセンサ(水分計)を実斜面に設けるだけで、斜面の安全性を精度よく監視することができる。
 また、本実施形態によれば、加水試験中に波形データを取得する必要がないため、試験装置を簡素化できる。
 また、本実施形態によれば、予測雨量に基づく将来の安全率も簡単かつ精度よく算出できるので、斜面の崩壊に至る際の警報をより早く出力することができる。
 なお、第1の実施形態においても、実斜面監視手段150に予測雨量データを入力させて、安全率算出手段151に、波形データと該予測雨量データとに基づき、予測雨量データで予測雨量が示された将来の任意の時間の実斜面の安全率Fsを算出させてもよい。
 なお、そのような場合において、波形データと予測雨量データとから将来の減衰率δの予測を容易にするために、例えば、減衰率算出手段121が、加水試験における加水量より示される累積加水量を累積降水量とみなして、各状態での減衰率δを、累積降水量でモデル化した減衰率-累積降水量モデルを構築してもよい。そのような場合には、安全率算出手段151は、減衰率-累積降水量モデルを用いて、現在の減衰率δから現在の累積降水量を求めるとともに、さらに予測雨量データを用いて将来の累積降水量を求め、求めた将来の累積降水量と、減衰率-累積加水量モデルとに基づいて、将来の減衰率δを推定してもよい。このようにして、将来の減衰率δが得られれば、各解析式変数のモデルを用いて、将来の安全率Fsが求まる。
 なお、実斜面における可観測量(本例では減衰率δ)-累積降水量モデルを構築する以外にも、加水量を所定の単位時間あたりの降水量とみなして、該降水量に対する可観測量の変動モデルを構築してもよい。該変動モデルを利用して、実斜面から得られた現在の可観測量と予測雨量データとから将来の可観測量を予測して、将来の安全率Fsを予測できる。
 次に、具体的な例を用いて上記各実施形態をより詳細に説明する。
実施例1.
 以下では、第1の実施形態の斜面監視システムの具体的な例である第1の実施例を説明する。図11は、第1の実施例にかかる斜面監視システムの構成図である。図11に示す斜面監視システム300は、三軸圧縮試験装置31と、プランター32と、コンピュータ33と、実斜面計測機器34と、ディスプレイ装置35とを備えている。
 三軸圧縮試験装置31は、応力センサ101と、応力センサ102とを含んでいる。また、プランター32は、水分計104と、振動センサ105と、間隙水圧計106とを含んでいる。また、実斜面計測機器34は、振動センサ108を含んでいる。
 データを収集、処理するコンピュータ33は、例えば、プログラムに従って動作するCPU(図示せず)と、記憶装置としてのデータベース336とを備えた一般的なコンピュータである。
 本例のコンピュータ33には、プログラムモジュールとして、粘着力・内部摩擦角算出モジュール331、粘着力・内部摩擦角モデル化モジュール332、水分量対応化モジュール333、減衰率算出モジュール334、重量・間隙水圧モデル化モジュール335および実斜面監視モジュール337を含む斜面監視プログラムが実行可能な態様でインストールされているものとする。すなわち、コンピュータ33は、そのような斜面監視プログラムがCPUに読み込まれており、該CPUが斜面監視プログラムに含まれる各モジュールに規定されている所定の処理を実行可能な状態であるとする。
 本例において、粘着力・内部摩擦角算出モジュール331は、第1の実施形態における粘着力・内部摩擦角算出手段111に相当する。粘着力・内部摩擦角モデル化モジュール332は、第1の実施形態における粘着力・内部摩擦角モデル化手段112およびモデル変換手段130に相当する。また、水分量対応化モジュール333は、第1の実施形態における水分量モデル化手段122またはセンサデータ受付手段の一部機能に相当する。また、減衰率算出モジュール334は、第1の実施形態における減衰率算出手段121に相当する。また、重量・間隙水圧モデル化モジュール335は、第1の実施形態における間隙水圧モデル化手段123および重量モデル化手段124に相当する。また、実斜面監視モジュール337は、第1の実施形態における実斜面監視手段150すなわち安全率算出手段151、判定手段152および警報手段153に相当する。
 なお、本例の三軸圧縮試験装置31は水分計103を備えていない。したがって、ユーザが、試験条件として予め測っておいた各試験体の試験層の水分量m(含水比)等を示すデータをコンピュータ33に入力する。同様に、プランター32は重量計107を備えていない。したがって、重量・間隙水圧モデル化モジュール335が、加水前の試験層の含水比、重量および加水毎の加水量から加水毎の試験層の重量Wを算出する。なお、算出に必要なこれらのデータは、例えば、試験条件としてユーザがコンピュータ33に入力すればよい。
 粘着力・内部摩擦角算出モジュール331は、応力センサ101および応力センサ102によって計測された計測値である垂直応力τおよびせん断応力σから、三軸圧縮試験の試験体の粘着力cと内部摩擦角φを算出する。
 粘着力・内部摩擦角モデル化モジュール332は、三軸圧縮試験の試験条件として示される三軸圧縮試験の各試験体の含水比と、算出された三軸圧縮試験の各試験体の粘着力cおよび内部摩擦角φと、後述の水分量対応化モジュール333による対応づけにより得られる三軸圧縮試験の各試験体の含水比に対応する減衰率δとに基づいて、粘着力cと内部摩擦角φとを各々、振動波形の減衰率δの関数としてモデル化する。
 減衰率算出モジュール334は、振動センサ105によって計測された計測値である振動波形から、加水過程における各状態での振動波形の減衰率δを算出する。
 水分量対応化モジュール333は、三軸圧縮試験で得られる水分量としての含水比と、少なくとも加水・加振試験で得られる減衰率δとを対応づける。本例では、水分量対応化モジュール333は、プランター32において加水した量から加水過程における各状態での試験体の含水比を求め、求めた含水比とともに、加水過程における各状態でのセンサデータおよび算出した値(少なくとも減衰率δを含む)をデータベース336に記憶することにより三軸圧縮試験で得られる水分量としての含水比と、少なくとも加水・加振試験で得られる減衰率δとを対応づける(後述の図14参照)。なお、三軸圧縮試験で得られる水分量と、加水・加振試験で得られる水分量とが同じデータ形式である場合には、水分量対応化モジュール333は、単に、加水過程における各状態でのセンサデータおよび算出した値(減衰率δ)をデータベース336に記憶するだけでもよい。
 なお、本例では、加水・加振試験で、粘着力cおよび内部摩擦角φの算出に用いた垂直応力データおよびせん断応力データを得たときと同じ条件下での波形データが得られることを前提としているが、もしそのような波形データが得られない場合には、水分量対応化モジュール333は、三軸圧縮試験で得られる水分量としての含水比と、減衰率δとの関係を規定した含水比-減衰率モデルを構築すればよい。
 重量・間隙水圧モデル化モジュール335は、加水過程における各状態での、間隙水圧計106で計測された計測値である間隙水圧u、加水量から求まる試験体の重量Wおよび算出された振動波形の減衰率δから、重量Wと間隙水圧uとを各々、振動波形の減衰率δの関数としてモデル化する。
 データベース336は、粘着力・内部摩擦角モデル化モジュール332によってモデル化された粘着力cの関数モデル(粘着力-減衰率モデル)および内部摩擦角φの関数モデル(内部摩擦角-減衰率モデル)と、重量・間隙水圧モデル化モジュール335によってモデル化された重量Wの関数モデル(重量-減衰率モデル)および間隙水圧uの関数モデル(間隙水圧-減衰率モデル)との情報を記憶する。
 実斜面監視モジュール337は、実斜面に設置された振動センサ108によって計測された計測値である振動波形から減衰率δを算出し、算出された減衰率δを基に斜面の安全率Fsを算出して、算出された安全率Fsに基づき斜面の安全性を判定する。実斜面監視モジュール337は、安全性の判定結果として、例えば警報の有無を安全率Fsとともに出力してもよい。
 ディスプレイ装置35は、実斜面監視モジュール337の判定結果を表示する。
 次に、本実施例の動作を説明する。以下では、造成された斜面を監視対象斜面として、該斜面のすべり層を構成している物質群が土、より具体的には締固め度85%の山砂によって構成されている場合を例とする。
 まず、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の試料を用い、複数の含水比に調整した試験体(土塊)を用意する。
 次に、三軸圧縮試験装置31を用いて、用意した試験体の各々に対して三軸圧縮試験を実施する。
 図12は、本例の三軸圧縮試験により得られた粘着力cおよび内部摩擦角φの値を示す説明図である。なお、図12には、含水比が14~24%に調整された計11個の試験体について、三軸圧縮試験により得られた粘着力cおよび内部摩擦角φとともに、有効摩擦係数であるtanφの値が示されている。データをデータベース336は、上述したモデルの情報以外に、例えば図12に示されるようなデータを記憶してもよい。
 また、図13は、加水・加振試験に用いるプランターの例を示す説明図である。加水・加振試験は、例えば、図13に示すような小型プランターを用いてもよい。図13に示すプランター32は、3つの水分計104(土壌水分計104A、土壌水分計104Bおよび土壌水分計104C)と、2つの振動センサ105(振動センサ105Aおよび振動センサ105B)と、2つの間隙水圧計106(間隙水圧計106Aおよび間隙水圧計106B)とを備えている。なお、複数の土壌水分計および振動センサは高さが異なる位置に設けられており、モデル化に用いる際にはその平均値を利用する。
 本例の加水・加振試験では、図13に示す小型プランターを利用する。まず、図13に示すプランター32に、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の試料からなり、三軸圧縮試験で用いた試験体よりも小さい含水比に調整された土を盛り、試験体(盛土)を形成する。
 そのまま土壌水分計104A,土壌水分計104B,土壌水分計104C、間隙水圧計106Aおよび間隙水圧計106Bの値を計測するとともに、シャワーをかけ、その時の振動センサ105Aおよび振動センサ105Bの値を計測する。シャワーの強度は100mm/hの降水量相当の強さとし、降水時間は5秒程度とする。なお、本例では、加水動作でもあるシャワーをかける動作が加振動作に相当する。
 引き続きシャワーによって所定の量加水した上で、上記と同様の方法で、土壌水分計104A,土壌水分計104B,土壌水分計104C、間隙水圧計106A,間隙水圧計106B,振動センサ105Aおよび振動センサ105Bの値を計測する。このような加水・計測サイクルを、土が飽和するまで繰り返す。
 1回の操作あたり、複数の水分量データ、間隙水圧データおよび波形データを計測する。なお、モデル学習に用いる水分量mおよび間隙水圧uは、各測定値の平均値を算出する。また、減衰率δは、得られた各波形データから図6に示す方法により求める。
 すなわち、図6に示す方法に従って、各波形データを周波数フィルタリングし、フィルタリングしたデータを周波数変換して周波数応答を取得する。そして、その周波数応答におけるピーク周波数を取得し、得られたピーク周波数を物理モデルから導出できる周波数応答関数の共振周波数として、減衰比を変数とした周波数応答関数を生成する。ここで、生成された周波数応答関数を、上記の周波数変換して得られた各周波数応答のデータに合うようにフィッティングして、最適な減衰比を同定する。そして、得られた減衰比に基づいて減衰率δを算出する。
 図14は、本例の加水・加振試験により得られた各種値を示す説明図である。なお、図14には、計6回の加水・計測サイクルにおいて取得された計測値(水分量m、減衰率δおよび間隙水圧u)、加水量、含水比、重量W等の値が示されている。図14において、水分量の”水分計A”の欄は土壌水分計104Aによる計測値を表している。また、”水分計B”の欄は土壌水分計104Bによる計測値を表している。また、”水分計C”の欄は土壌水分計104Cによる計測値を表している。また、減衰率の”CH1”の欄は振動センサ105Aから得られた波形データより求めた減衰率を表している。また、減衰率の”CH2”の欄は振動センサ105Bから得られた波形データより求めた減衰率を表している。また、間隙水圧の”CH1”の欄は間隙水圧計106Aによる計測値を表している。また、間隙水圧の”CH2”の欄は間隙水圧計106Bによる計測値を表している。なお、表中の”[-]”は無単位を表している。
 データベース336は、上述したモデルの情報以外に、例えば図14に示されるようなデータを記憶してもよい。なお、図14において、含水比および土塊重量の値は、加水量、初期の土塊重量および初期の含水比から求めた。
 このようにして、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の土の複数の含水比に対する粘着力c、内部摩擦角φ、水分量m、間隙水圧u、重量Wおよび減衰率δのデータを得ると、粘着力・内部摩擦角モデル化モジュール332および重量・間隙水圧モデル化モジュール335は、得られたデータを基に、解析式変数の各々について減衰率δに対する関数モデルを学習する。本例では、重量W、間隙水圧u、粘着力cおよび内部摩擦角φについて減衰率δに対する回帰式を学習する。なお、含水比が高い場合と低い場合とで粘着力cの傾向が異なる場合には、回帰式の学習においてこの場合は含水比の高い部分の粘着力cのみを用いてもよい。すなわち、得られたデータの一部のみを用いてモデルを構築してもよい。
 次に、監視動作について説明する。本例では、図15に示す造成した斜面を監視対象斜面(実斜面)として、本発明の斜面監視方法を評価した。図15において四角印で示すように、造成した実斜面には3×2個の振動センサ108が埋設されている。この他、当該実斜面には、評価用に、3×2個の土壌水分計(丸印参照)と、4個の間隙水圧計とが埋設されている。なお、振動センサ108は、斜面の3個所に、各々2種類の深さ位置に埋設されている。また、土壌水分計および間隙水圧計は、振動センサ108のすぐ近くに配置されている。ただし、間隙水圧計については、斜面の3個所中の真ん中の位置以外の個所には浅い方の深さ位置にのみ配置した。
 斜面の監視動作としては、造成した実斜面にシャワーを用いて加水していく過程で、約20分毎に振動センサ108の各々の値を計測し、振動波形の波形データを得る。そして、得られた各振動波形の波形データを基に減衰率δを求め、求めた減衰率δを基に、実斜面監視モジュール337が安全率Fsを求めることにより、安全性を評価する。複数個所で計測している振動センサそれぞれから、減衰率を算出し、平均の値を使用してもよい。また、本例では、上記の監視動作を評価のために加水を斜面が崩壊するまで行い、斜面が崩壊した際の時刻を記録する。
 実斜面監視モジュール337は、6個の振動センサ108により計測された振動波形の波形データを基に、図6に示されるフローに従い減衰率δを算出し、算出された減衰率δから、データベース336に記憶されている各モデルの情報を用いて各解析式変数の値を予測し、安全率Fsを算出する。そして、算出された安全率Fsが1を下回った場合に斜面の崩壊の可能性ありとして、警報を出力する。なお、複数個所で計測している振動センサそれぞれから、図5に示す方法等を用いて減衰率δを算出し、平均の値を使用してもよい。
 図16は、加水動作により本例における実斜面から得られた各種値の例を示す説明図である。図16には、本例の実斜面に対する加水過程における波形データ取得時の経過時間、減衰率δ、時刻および安全率Fsが示されている。なお、本例では、実験を開始してから7時間59分後に斜面が崩壊した。
 図16に示す例では、実際の斜面崩壊時間が実験開始から7時間59分後であったのに対し、安全率Fsが1を下回った時間は実験開始から7時間06分後であった。なお、その1つ前に計測したとき(安全率が1よりも大きかったとき)の経過時間は6時間49分であるため、実際の崩壊と警報出力との間の時間差は53~70分の間であることがわかる。
実施例2.
 第1の実施例では、加水・加振試験および実斜面監視時ともに、シャワーによる水の圧力を利用して加振を行ったが、以下では、加水・加振試験および実斜面監視時の加振方法として、鉄球の落下を利用する第2の実施例を説明する。第2の実施例では、第1の実施例と同一の構成に、プランター32の直上または実斜面に設けられた振動センサの直上から、鉄球を落下する装置を追加する。
 本例でも、造成された斜面を監視対象斜面として、該斜面のすべり層を構成している物質群が土、より具体的には締固め度85%の山砂によって構成されている場合を例とする。
 まず、第1の実施例と同様の方法で、図12に示す、複数の含水比に対する粘着力c、内部摩擦角φのデータを得て、データベース336に格納する。
 次に、第1の実施例と同様に、図13に示すプランター32内に、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の試料からなり、三軸圧縮試験で用いた試験体よりも小さい含水比に調整された試験体(盛土)を造成する。
 最初の状態のまま土壌水分計104A,土壌水分計104B,土壌水分計104C、間隙水圧計106Aおよび間隙水圧計106Bの値を計測するとともに、プランター32内の試験体に向けて真上から鉄球を落下させ、その時の振動センサ105Aおよび振動センサ105Bの値を計測する。鉄球は直径1cm程度のものとし、土表面から10cmほどの高さから落下させる。なお、プランター32の振動センサ105Aおよび振動センサ105Bが設置されている位置の真上から、鉄球を落下させるのが好ましい。
 所定の量加水した上で、上記と同様の方法で、土壌水分計104A,土壌水分計104B,土壌水分計104C、間隙水圧計106A,間隙水圧計106B,振動センサ105Aおよび振動センサ105Bの値を計測する。このような加水・計測サイクルを、土が飽和するまで繰り返す。なお、本例の加水方法は特に問わないが、第1の実施例と同様シャワーを用いた。
 本例でも、1回の操作あたり、複数の水分量データおよび間隙水圧データを計測する。なお、モデル学習に用いる水分量mおよび間隙水圧uは、各測定値の平均値を算出する。また、含水比および(土塊)重量Wの値は、加水量、初期の土塊重および初期の含水比から求める。また、減衰率δは、得られた各波形データから図6に示す方法により求める。これにより、1つの試験体における複数の含水比に対する水分量m、間隙水圧u、重量Wおよび減衰率δのデータを得て、データベース336に格納する。
 このようにして、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の土の複数の含水比に対する粘着力c、内部摩擦角φ、水分量m、間隙水圧u、重量Wおよび減衰率δのデータを得ると、粘着力・内部摩擦角モデル化モジュール332および重量・間隙水圧モデル化モジュール335は、得られたデータを基に、解析式変数の各々の減衰率δに対する関数モデルを学習する。モデルの学習方法は第1の実施例と同様である。
 次に、監視動作について説明する。本例でも、図15に示す造成した斜面を監視対象斜面(実斜面)として、本発明の斜面監視方法を評価した。本例の監視動作としては、造成した実斜面にシャワーを用いて加水していく過程で、一定間隔で設置されている振動センサ108の各々の直上から鉄球を落下させ、そのときの振動センサ108の各々からの値を計測し、振動波形の波形データを得る。そして、得られた各振動波形の波形データを基に減衰率δを求め、求めた減衰率δを基に、実斜面監視モジュール337が安全率Fsを求めることにより、安全性を評価する。複数個所で計測している振動センサそれぞれから、減衰率を算出し、平均の値を使用してもよい。本例でも約20分毎に波形データを取得するとともに、上記の監視動作を評価のために加水を斜面が崩壊するまで行い、斜面が崩壊した際の時刻を記録する。
 本実施例によっても、第1の実施例と同様、斜面の崩壊の可能性を検知できる。
実施例3.
 以下では、第2の実施形態の斜面監視システムの具体的な例である第3の実施例を説明する。図17は、第3の実施例にかかる斜面監視システムの構成図である。図17に示す斜面監視システム400は、三軸圧縮試験装置41と、プランター42と、コンピュータ43と、実斜面計測機器44と、ディスプレイ装置45とを備えている。
 三軸圧縮試験装置41は、第1の実施例の三軸圧縮試験装置31と同様である。
 プランター42は、第1の実施例のプランター32と比べて、振動センサ105を備えていない点で異なる。なお、他の点は第1の実施例のプランター32と同様である。
 実斜面計測機器44は、水分計208を含んでいる。
 コンピュータ43も、例えば、プログラムに従って動作するCPU(図示せず)と、記憶装置としてのデータベース436とを備えた一般的なコンピュータである。
 本例のコンピュータ43には、プログラムモジュールとして、粘着力・内部摩擦角算出モジュール431、粘着力・内部摩擦角モデル化モジュール432、水分量対応化モジュール433、重量・間隙水圧モデル化モジュール435および実斜面監視モジュール437を含む斜面監視プログラムが実行可能な態様でインストールされているものとする。すなわち、コンピュータ43は、そのような斜面監視プログラムがCPUに読み込まれており、該CPUが斜面監視プログラムに含まれる各モジュールに規定されている所定の処理を実行可能な状態であるとする。
 本例において、粘着力・内部摩擦角算出モジュール431は、第2の実施形態における粘着力・内部摩擦角算出手段111に相当する。粘着力・内部摩擦角モデル化モジュール432は、第2の実施形態における粘着力・内部摩擦角モデル化手段112に相当する。また、重量・間隙水圧モデル化モジュール435は、第2の実施形態における間隙水圧モデル化手段223および重量モデル化手段224に相当する。また、実斜面監視モジュール437は、第2の実施形態における実斜面監視手段250すなわち安全率算出手段251、判定手段152および警報手段153に相当する。
 なお、水分量対応化モジュール433は、上記の第2の実施形態では明示されていないが、各試験で得られる水分量と、実斜面の監視に用いる水分計208の計測値から得られる水分量とでデータ形式が異なる場合に、これらを対応づける。これにより、各モデル化モジュールが、各解析式変数を、実斜面の監視に用いる水分計208の計測値から得られる水分量でモデル化できるようにする。本例では、水分量対応化モジュール433は、プランター42において加水した量から加水過程における各状態での試験体の含水比を求め、求めた含水比とともに、加水過程における各状態でのセンサデータおよび算出した値(少なくともモデル化入力変数とされる水分量としての水分計計測値の平均値を含む)をデータベース436に記憶することにより、三軸圧縮試験で得られる水分量としての含水比と、少なくとも加水・加振試験で得られる水分量としての水分計計測値の平均値とを対応づける(後述の図14参照)。
 なお、本例でも、加水・加振試験で、粘着力cおよび内部摩擦角φの算出に用いた垂直応力データおよびせん断応力データを得たときと同じ条件下での波形データが得られることを前提としているが、もしそのような波形データが得られない場合には、水分量対応化モジュール433は、三軸圧縮試験で得られる水分量としての含水比と、モデル化入力変数とされる水分量mとしての水分計計測値の平均値との関係を規定した含水比-水分計計測値モデルを構築すればよい。
 粘着力・内部摩擦角算出モジュール431は、第1の実施例の粘着力・内部摩擦角算出モジュール331と同様である。
 粘着力・内部摩擦角モデル化モジュール432は、試験条件として示される各試験体の含水比と、算出された各試験体の粘着力cおよび内部摩擦角φと、水分量対応化モジュール433による対応づけにより得られる三軸圧縮試験の各試験体の含水比に対応する水分計計測値(の平均値)とに基づいて、粘着力cと内部摩擦角φとを各々、水分量mより具体的には水分計計測値(の平均値)の関数としてモデル化する。
 重量・間隙水圧モデル化モジュール435は、加水過程における各状態での、間隙水圧計106で計測された計測値である間隙水圧u、加水量から求まる試験体の重量Wおよび水分計104で計測された計測値である水分量mから、重量Wと間隙水圧uとを各々、水分量mすなわち水分計計測値(の平均値)の関数としてモデル化する。
 データベース436は、粘着力・内部摩擦角モデル化モジュール432によってモデル化された粘着力cの関数モデル(粘着力-水分量モデル)および内部摩擦角φの関数モデル(内部摩擦角-水分量モデル)と、重量・間隙水圧モデル化モジュール335によってモデル化された重量Wの関数モデル(重量-水分量モデル)および間隙水圧uの関数モデル(間隙水圧-水分量モデル)との情報を記憶する。
 実斜面監視モジュール437は、実斜面に設置された水分計208によって計測された計測値である水分量mを基に斜面の安全率Fsを算出して、算出された安全率Fsに基づき斜面の安全性を判定する。実斜面監視モジュール437は、安全性の判定結果として、例えば警報の有無を安全率Fsとともに出力してもよい。
 ディスプレイ装置45は、実斜面監視モジュール437の判定結果を表示する。
 次に、本実施例の動作を説明する。以下では、造成された斜面を監視対象斜面として、該斜面のすべり層を構成している物質群が土、より具体的には締固め度85%の山砂によって構成されている場合を例とする。
 まず、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の試料を用い、複数の含水比に調整した試験体(土塊)を用意する。
 次に、三軸圧縮試験装置41を用いて、第1の実施例と同様の方法により、三軸圧縮試験を実施する。そして、図12に示すデータを得る。
 本例の加水・加振試験では、図13に示すような小型プランターを利用する。ただし、本例のプランター42には振動センサは不要である。小型のプランター42に、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の試料からなり、三軸圧縮試験で用いた試験体よりも小さい含水比に調整された土を盛り、試験体(盛土)を形成する。
 そのまま土壌水分計104A,土壌水分計104B,土壌水分計104C、間隙水圧計106Aおよび間隙水圧計106Bの値を計測する。
 その後、シャワーにより所定の量加水した上で、上記と同様の方法で、土壌水分計104A,土壌水分計104B,土壌水分計104C、間隙水圧計106Aおよび間隙水圧計106Bの値を計測する。このような加水・計測サイクルを、土が飽和するまで繰り返す。
 本例でも、1回の操作あたり、複数の水分量データおよび間隙水圧データを計測する。なお、モデル学習に用いる水分量mおよび間隙水圧uは、各測定値の平均値を算出する。そして、図14に示すデータ(ただし、減衰率は除く)を得る。
 このようにして、実斜面のすべり層を構成している山砂と同じ構成、乾燥密度および締固め度の土の複数の含水比に対する粘着力c、内部摩擦角φ、間隙水圧u、重量Wおよび水分量mのデータを得ると、粘着力・内部摩擦角モデル化モジュール332および重量・間隙水圧モデル化モジュール435は、得られたデータを基に、解析式変数の各々について、水分量mに対する関数モデルを学習する。本例では、重量W、間隙水圧u、粘着力cおよび内部摩擦角φについて水分量mに対する回帰式を学習する。なお、含水比が高い場合と低い場合とで粘着力cの傾向が異なる場合には、回帰式の学習において含水比の高い部分の粘着力cのみを用いてもよい。
 次に、監視動作について説明する。本例でも、図15に示す造成した斜面を監視対象斜面(実斜面)として、本発明の斜面監視方法を評価した。ただし、第1の実施例および第2の実施例では、評価用として説明した3×2個の土壌水分計(丸印参照)が、監視用の水分計208となる。
 斜面の監視動作としては、造成した実斜面にシャワーを用いて加水していく過程で、約20分毎に各水分計208の値を計測し、水分量データを得る。そして、得られた各水分量データを基に、水分量m(ここでは水分計計測値の平均値)を求め、求めた水分量mを基に、実斜面監視モジュール437が安全率Fsを求めることにより、安全性を評価する。本例でも、上記の監視動作を評価のために加水を斜面が崩壊するまで行い、斜面が崩壊した際の時刻を記録する。
 図18および図19は、加水動作により本例の実斜面から得られた各種値を示す説明図である。図18および図19には、本例の実斜面に対する加水過程における水分量データ取得時の経過時間、各水分計計測値、その平均値である水分量m、時刻および安全率Fsが示されている。なお、本例では、実験を開始してから7時間59分後に斜面が崩壊した。
 図18および図19に示すように、実際の斜面崩壊時間が実験開始から7時間59分後であったのに対し、安全率が1を下回った時間は実験開始から7時間39分後であった。なお、その1つ前に計測したとき(安全率が1よりも大きかったとき)の経過時間は7時間22分であるため、実際の崩壊と警報出力との間の時間差は20~37分の間であることがわかる。
実施例4.
 以下では、第1の実施例の構成に通信手段を追加した第4の実施例を説明する。通信手段は、例えば、インターネット回線や無線LAN(Local Area Network)などを介して監視斜面がある地域の予測雨量データを受信する。
 本実施例では、実斜面の深さを計測し、プランター32に盛る土の深さを合わせる。実斜面の深さとして、例えば、実斜面を構成している物質層ごとの界面の深さを計測してもよい。この条件下で第1の実施例と同様の方法で、プランター32に加水し、加振した際の波形データを取得する。このとき、加水した量を記録する。
 また、本実施例では、減衰率算出モジュール334が、記録した加水量より算出される累積加水量を累積降水量とみなして、算出した減衰率δを、累積降水量による関数モデルとして学習することにより、減衰率-累積降水量モデルを構築する。なお、他の点は第1の実施例と同様である。
 実斜面での監視時、実斜面監視モジュール337は、第1の実施例と同様、各振動センサ108から振動波形を示す波形データを各々取得し、減衰率δ(平均値)を算出する。そして、算出した減衰率δを基に、各解析式変数の値を算出して、安全率Fsを算出する。また、本実施例では、実斜面監視モジュール337は、この動作と並行して、通信手段を経由して予測雨量データを取得し、取得した予測雨量データと上記の減衰率-累積降水量モデルとに基づいて、将来の減衰率δを予測する。そして、予測した将来の減衰率δを基に、各解析式変数の値を算出して、将来の安全率Fsを予測(算出)する。
実施例5.
 以下では、第1の実施例の構成に通信手段を追加した第5の実施例を説明する。通信手段は、例えば、インターネット回線や無線LANなどを介して監視斜面がある地域の予測雨量データを受信する。
 本実施例でも、実斜面の深さを計測し、プランター32に盛る土の深さを合わせる。実斜面の深さとして、例えば、実斜面を構成している物質層ごとの界面の深さを計測してもよい。この条件下で第1の実施例と同様の方法で、プランター32に加水し、加振した際の波形データを取得する。このとき、加水した量を記録する。
 本実施例では、減衰率算出モジュール334が、加水量を降水量とみなして、土の特性に合わせて、該降水量に対する減衰率の変動モデルを構築する。なお、他の点は第1の実施例と同様である。
 実斜面での監視時、実斜面監視モジュール337は、第1の実施例と同様、各振動センサ108から振動波形を示す波形データを各々取得し、減衰率δ(平均値)を算出する。そして、算出した減衰率δを基に、各解析式変数の値を算出して、安全率Fsを算出する。また、本実施例では、実斜面監視モジュール337は、この動作と並行して、通信手段を経由して予測雨量データを取得し、取得した予測雨量データを基に、上記の降水量に対する減衰率の変動モデルを用いて、将来の減衰率δを予測する。そして、予測した将来の減衰率δを基に、各解析式変数の値を算出して、将来の安全率Fsを予測(算出)する。
実施例6.
 以下では、第3の実施例の構成に通信手段を追加した第6の実施例を説明する。通信手段は、例えば、インターネット回線や無線LANなどを介して監視斜面がある地域の予測雨量データを受信する。
 本実施例では、実斜面の深さを計測し、プランター42に盛る土の深さを合わせる。実斜面の深さとして、例えば、実斜面を構成している物質層ごとの界面の深さを計測してもよい。この条件下で第1の実施例と同様の方法で、プランター42に加水し、各状態における水分量データを取得する。このとき、加水した量を記録する。
 また、本実施例では、水分量対応化モジュール433または重量・間隙水圧モデル化モジュール435が、記録した加水量より算出される累積加水量を累積降水量とみなして、取得した水分計104の測定値である水分量mを、累積降水量による関数モデルとして学習することにより、水分量-累積降水量モデルを構築する。なお、他の点は第3の実施例と同様である。
 実斜面での監視時、実斜面監視モジュール437は、第3の実施例と同様、各水分計208から水分量を示す水分量データを各々取得し、水分量m(水分計計測値の平均値)を算出する。そして、算出した水分量mの平均値を基に、各解析式変数の値を算出して、安全率Fsを算出する。また、本実施例では、実斜面監視モジュール437は、この動作と並行して、通信手段を経由して予測雨量データを取得し、取得した予測雨量データと上記の水分量-累積降水量モデルとに基づいて、将来の水分量mを予測する。そして、予測した将来の水分量mを基に、各解析式変数の値を算出して、将来の安全率Fsを予測(算出)する。
実施例7.
 以下では、第3の実施例の構成に通信手段を追加した第7の実施例を説明する。通信手段は、例えば、インターネット回線や無線LANなどを介して監視斜面がある地域の予測雨量データを受信する。
 本実施例でも、実斜面の深さを計測し、プランター42に盛る土の深さを合わせる。実斜面の深さとして、例えば、実斜面を構成している物質層ごとの界面の深さを計測してもよい。この条件下で第1の実施例と同様の方法で、プランター42に加水し、各状態における水分量データを取得する。このとき、加水した量を記録する。
 また、本実施例では、水分量対応化モジュール433または重量・間隙水圧モデル化モジュール435が、記録された加水量を降水量とみなして、土の特性に合わせて、該降水量に対する水分量mの変動モデルを構築する。なお、他の点は第3の実施例と同様である。
 実斜面での監視時、実斜面監視モジュール437は、第3の実施例と同様、各水分計208から水分量を示す水分量データを各々取得し、水分量m(水分計計測値の平均値)を算出する。そして、算出した水分量mを基に、各解析式変数の値を算出して、安全率Fsを算出する。また、本実施例では、実斜面監視モジュール437は、この動作と並行して、通信手段を経由して予測雨量データを取得し、取得した予測雨量データを基に、上記の降水量に対する水分量の変動モデルを用いて、将来の水分量mを予測する。そして、予測した将来の水分量mを基に、各解析式変数の値を算出して、将来の安全率Fsを予測(算出)する。
 次に、本発明の概要を説明する。図20は、本発明による斜面監視システムの概要を示すブロック図である。
 図20に示すように、本発明による斜面監視システムは、解析式変数計測手段51と、実斜面計測手段52と、斜面安全性解析装置53とを備えている。
 また、斜面安全性解析装置53は、解析式変数モデル化手段531と、モデル情報記憶手段532と、安全率算出手段533とを含んでいる。
 解析式変数計測手段51(例えば、三軸圧縮装置31、プランター32、三軸圧縮装置41、プランター42等)は、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から、試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とを計測する。
 実斜面計測手段52(例えば、実斜面計測機器33、実斜面計測機器43等)は、監視対象斜面から、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量の値を計測する。ここで、第2可観測量は、第1可観測量と同じまたは第1可観測量との関係が既知である所定の可観測量である。
 解析式変数モデル化手段531(例えば、第1のモデル化手段110、第2のモデル化手段120、第1のモデル化手段210、第2のモデル化手段220、粘着力・内部摩擦角モデル化モジュール332、水分量対応化モジュール333、重量・間隙水圧モデル化モジュール335、粘着力・内部摩擦角モデル化モジュール432、水分量対応化モジュール433、重量・間隙水圧モデル化モジュール435等)は、解析式変数計測手段51により得られる、解析式変数の各々の値と、第1可観測量の値とに基づいて、解析式変数の各々について、第2可観測量または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する。
 モデル情報記憶手段532(例えば、モデル情報記憶手段140、モデル情報記憶手段240、データベース336、データベース436等)は、解析式変数モデル化手段531が構築したモデルの情報を記憶する。
 安全率算出手段533(例えば、安全率算出手段151、安全率算出手段251、実斜面監視モジュール337、実斜面監視モジュール437等)は、実斜面計測手段52により得られる第2可観測量の値と、モデル情報記憶手段に記憶されているモデルの情報とに基づいて、第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出する。
 このような特徴的要素を備えているので、監視対象斜面に対する計測困難性を回避しつつ、該斜面の安全性を精度よく監視することができる。例えば、本発明によれば、例えば、実斜面計測手段52として1種類のセンサを監視対象斜面に設けるだけで、該斜面の安全性を精度よく監視することができる。
 また、第1可観測量および第2可観測量は、計測対象の物質層の含水比に影響する可観測量であってもよい。
 また、解析式変数計測手段は、解析式変数計測手段は、第1可観測量の少なくとも1つとして、試験層において発生する振動波形を計測する振動センサを少なくとも含み、実斜面計測手段は、第2可観測量として、監視対象斜面を構成している物質層において発生する振動波形を計測する振動センサを含み、解析式変数モデル化手段は、解析式変数の各々について、第2可観測量から算出可能な第3変数である減衰率との関係を規定するモデルを構築してもよい。
 また、該振動センサは、計測対象の物質層において落下物または降水により発生する振動の波形である振動波形を計測する振動センサであってもよい。
 また、解析式変数計測手段は、第1可観測量の少なくとも1つとして、試験層に含まれる水分量を計測する水分計を含み、実斜面計測手段は、第2可観測量として、監視対象斜面を構成している物質層に含まれる水分量を計測する水分計を含み、解析式変数モデル化手段は、解析式変数の各々について、第2可観測量である水分量との関係を規定するモデルを構築してもよい。
 また、解析変数計測手段は、少なくとも2つの異なる試験のうちの第1試験において、解析式変数のうちの少なくとも1つの値とともに、第2可観測量とは異なる第1可観測量を測定する第1試験解析変数計測手段と、少なくとも2つの異なる試験のうちの第2試験において、解析式変数のうちの少なくとも1つの値とともに、第1試験の第1可観測量と同じ可観測量と、第2可観測量と同じ可観測量とを含む2種以上の第1可観測量の値を計測する第2試験解析変数計測手段とを含み、解析式変数モデル化手段は、第1試験解析変数計測手段により得られる、解析式変数の値と、第2可観測量とは異なる第1可観測量の値とに基づいて、該解析式変数について、該第1可観測量との関係を規定するモデルを構築する第1解析式変数モデル化手段と、第2試験解析変数計測手段により得られる、解析式変数の値と、第2可観測量と同じ第1可観測量の値とに基づいて、該解析式変数について、第2可観測量または第3変数との関係を規定するモデルを構築する第2解析式変数モデル化手段と、第2試験解析変数計測手段により得られる、第1試験の第1可観測量と同じ第1可観測量の値と、第2可観測量と同じ第1可観測量の値とに基づいて、第1試験と同じ第1可観測量について、第2可観測量または第3の変数との関係を規定するモデルを構築する第1可観測量モデル化手段と、第1可観測量モデル化手段によって構築されたモデルを用いて、第1解析式変数モデル化手段が構築されたモデルを、第2可観測量または第3変数をモデル化入力変数とするモデルに変換するモデル変換手段とを有していてもよい。
 また、解析式変数モデル化手段は、解析式変数の少なくとも1つについて、試験層の状態を変化させたときの、該解析式変数の値のうち所定の条件を満たす一部の値と、第1可観測量の値とに基づいて、第2可観測量または第3変数との関係を規定するモデルを構築してもよい。
 また、解析式変数計測手段は、加水により試験層の状態を変化させたときの、解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とを計測し、斜面安全性解析装置は、解析式変数計測手段により得られる第1可観測量の値と、該値を計測したときの加水量とに基づいて、解析式変数モデル化手段が各解析式変数のモデル化に用いるモデル化入力変数である第2可観測量または第3変数の、累積降水量との関係を規定したモデルまたは所定の単位時間あたりの予測雨量に対する変動モデルを構築するモデル化入力変数モデル化手段と、モデル化入力変数モデル化手段が構築したモデルと、実斜面計測手段により得られた第2可観測量の値と、予測雨量データとに基づいて、将来の安全率を予測する安全率予測手段とを含んでいてもよい。
 また、上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、解析式変数の各々について、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって第1可観測量と同じもしくは第1可観測量との関係が既知である所定の第2可観測量、または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する解析式変数モデル化手段と、解析式変数モデル化手段が構築したモデルの情報を記憶するモデル情報記憶手段と、監視対象斜面から計測される第2可観測量の値と、モデル情報記憶手段に記憶されているモデルの情報とに基づいて、第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出する安全率算出手段とを備えたことを特徴とする斜面安全性解析装置。
 (付記2)コンピュータが、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、解析式変数の各々について、監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって第1可観測量と同じもしくは第1可観測量との関係が既知である所定の第2可観測量、または第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築し、コンピュータが、監視対象斜面から計測される第2可観測量の値を基に、構築されたモデルを用いて第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出することを特徴とする斜面監視方法。
 (付記3)第1可観測量および第2可観測量が、計測対象の物質層の含水比に影響する可観測量である付記2に記載の斜面監視方法。
 (付記4)試験環境には、第1可観測量の少なくとも1つとして、試験層において発生する振動波形を計測する振動センサが設置されており、監視対象斜面には、第2可観測量として、監視対象斜面を構成している物質層において発生する振動波形を計測する振動センサが設置されており、コンピュータが、試験環境から計測される、試験層の状態を変化させたときの、解析式変数の各々の値と、試験層において発生する振動波形の波形データとに基づいて、解析式変数の各々について、監視対象斜面を構成している物質層において発生する振動波形の減衰率との関係を規定するモデルを構築する付記2に記載の斜面監視方法。
 (付記5)試験環境には、第1可観測量の少なくとも1つとして、試験層に含まれる水分量を計測する水分計が設置されており、監視対象斜面には、第2可観測量として、監視対象斜面を構成している物質層に含まれる水分量を計測する水分計が設置されており、コンピュータが、試験環境から計測される、試験層の状態を変化させたときの、解析式変数の各々の値と、試験層に含まれる水分量の値とに基づいて、解析式変数の各々について、監視対象斜面を構成する物質層に含まれる水分量との関係を規定するモデルを構築する付記2に記載の斜面監視方法。
 (付記6)コンピュータが、少なくとも2つの異なる試験のうちの第1試験において、解析式変数のうちの少なくとも1つの値とともに、第2可観測量とは異なる第1可観測量を測定した結果と、少なくとも2つの異なる試験のうちの第2試験において、解析式変数のうちの少なくとも1つの値とともに、第1試験の第1可観測量と同じ可観測量と、第2可観測量と同じ可観測量とを含む2種以上の第1可観測量の値を計測した結果とを入力し、コンピュータが、第1試験の結果得られる、解析式変数の値と、第2可観測量とは異なる第1可観測量の値とに基づいて、該解析式変数について、該第1可観測量との関係を規定するモデルを構築し、コンピュータが、第2試験の結果得られる、解析式変数の値と、第2可観測量と同じ第1可観測量の値とに基づいて、該解析式変数について、第2可観測量または第3変数との関係を規定するモデルを構築し、コンピュータが、第2試験の結果得られる、第1試験の第1可観測量と同じ第1可観測量の値と、第2可観測量と同じ第1可観測量の値とに基づいて、第1試験と同じ第1可観測量について、第2可観測量または第3の変数との関係を規定するモデルである第1可観測量モデルを構築し、コンピュータが、構築された第1可観測量モデルを用いて、第1解析式変数モデル化手段が構築されたモデルを、第2可観測量または第3変数をモデル化入力変数とするモデルに変換する付記2から付記5のうちのいずれかに記載の斜面監視方法。
 (付記7)コンピュータが、解析式変数の少なくとも1つについて、試験層の状態を変化させたときの、該解析式変数の値のうち所定の条件を満たす一部の値と、第1可観測量の値とに基づいて、第2可観測量または第3変数との関係を規定するモデルを構築する付記2から付記6のうちのいずれかに記載の斜面監視方法。
 (付記8)コンピュータが、試験環境から計測される、加水により試験層の状態を変化させたときの、第1可観測量の値と、該値を計測したときの加水量とに基づいて、各解析式変数のモデル化に用いるモデル化入力変数である第2可観測量または第3変数の、累積降水量との関係を規定したモデルまたは所定の単位時間あたりの予測雨量に対する変動モデルを構築し、コンピュータが、構築されたモデル化入力変数である第2可観測量または第3変数のモデルと、監視対象斜面から計測される第2可観測量の値と、予測雨量データとに基づいて、将来の安全率を予測する付記2から付記7のうちのいずれかに記載の斜面監視方法。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明は、フェレニウス法に限らず、所定の斜面安全解析式を用いて斜面を監視するシステムであれば、好適に適用可能である。
 100、200、300、400 斜面監視システム
 101、102 応力センサ
 103、104、208 水分計
 104A、104B、104C 土壌水分計
 105、105A、105B、108 振動センサ
 106、106A、106B 間隙水圧計
 107 重量計
 110 第1のモデル化手段
 111 粘着力・内部摩擦角算出手段
 112 粘着力・内部摩擦角モデル化手段
 120、220 第2のモデル化手段
 121 減衰率算出手段
 122 水分量モデル化手段
 123、223 間隙水圧モデル化手段
 124、224 重量モデル化手段
 130 モデル変換手段
 140、240 モデル情報記憶手段
 150、250 実斜面監視手段
 151、251 安全率算出手段
 152 判定手段
 153 警報手段
 31、41 三軸圧縮試験装置
 32、42 プランター
 33、43 コンピュータ
 34、44 実斜面計測機器
 35、45 ディスプレイ装置
 331、431 粘着力・内部摩擦角算出モジュール
 332、432 粘着力・内部摩擦角モデル化モジュール
 333、433 水分量対応化モジュール
 334 減衰率算出モジュール
 335、435 重量・間隙水圧モデル化モジュール
 336、436 データベース
 337、437 実斜面監視モジュール
 51 解析式変数計測手段
 52 実斜面計測手段
 53 斜面安全性解析装置
 531 解析式変数モデル化手段
 532 モデル情報記憶手段
533 安全率算出手段

Claims (10)

  1.  監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から、前記試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、前記試験層の状態に応じて変化する所定の第1可観測量の値とを計測する解析式変数計測手段と、
     前記監視対象斜面から、前記監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量の値を計測する実斜面計測手段と、
     斜面安全性解析装置とを備え、
     前記第2可観測量は、前記第1可観測量と同じまたは前記第1可観測量との関係が既知である所定の可観測量であり、
     前記斜面安全性解析装置は、
     前記解析式変数計測手段により得られる、前記解析式変数の各々の値と、前記第1可観測量の値とに基づいて、前記解析式変数の各々について、前記第2可観測量または前記第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する解析式変数モデル化手段と、
     前記解析式変数モデル化手段が構築したモデルの情報を記憶するモデル情報記憶手段と、
     前記実斜面計測手段により得られる前記第2可観測量の値と、前記モデル情報記憶手段に記憶されているモデルの情報とに基づいて、前記第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、前記斜面安定解析式を用いて前記監視対象斜面の安全率を算出する安全率算出手段とを含む
     ことを特徴とする斜面監視システム。
  2.  第1可観測量および第2可観測量は、計測対象の物質層の含水比に影響する可観測量である
     請求項1に記載の斜面監視システム。
  3.  解析式変数計測手段は、第1可観測量の少なくとも1つとして、試験層において発生する振動波形を計測する振動センサを少なくとも含み、
     実斜面計測手段は、第2可観測量として、監視対象斜面を構成している物質層において発生する振動波形を計測する振動センサを含み、
     解析式変数モデル化手段は、解析式変数の各々について、前記第2可観測量から算出可能な第3変数である減衰率との関係を規定するモデルを構築する
     請求項1または請求項2に記載の斜面監視システム。
  4.  解析式変数計測手段は、第1可観測量の少なくとも1つとして、試験層に含まれる水分量を計測する水分計を含み、
     実斜面計測手段は、第2可観測量として、監視対象斜面を構成している物質層に含まれる水分量を計測する水分計を含み、
     解析式変数モデル化手段は、解析式変数の各々について、前記第2可観測量である前記水分量との関係を規定するモデルを構築する
     請求項1または請求項2に記載の斜面監視システム。
  5.  解析変数計測手段は、
     少なくとも2つの異なる試験のうちの第1試験において、解析式変数のうちの少なくとも1つの値とともに、第2可観測量とは異なる第1可観測量を測定する第1試験解析変数計測手段と、
     少なくとも2つの異なる試験のうちの第2試験において、解析式変数のうちの少なくとも1つの値とともに、前記第1試験の第1可観測量と同じ可観測量と、前記第2可観測量と同じ可観測量とを含む2種以上の第1可観測量の値を計測する第2試験解析変数計測手段とを含み、
     解析式変数モデル化手段は、
     第1試験解析変数計測手段により得られる、前記解析式変数の値と、前記第2可観測量とは異なる第1可観測量の値とに基づいて、該解析式変数について、該第1可観測量との関係を規定するモデルを構築する第1解析式変数モデル化手段と、
     前記第2試験解析変数計測手段により得られる、前記解析式変数の値と、前記第2可観測量と同じ第1可観測量の値とに基づいて、該解析式変数について、前記第2可観測量または第3変数との関係を規定するモデルを構築する第2解析式変数モデル化手段と、
     前記第2試験解析変数計測手段により得られる、前記第1試験の第1可観測量と同じ第1可観測量の値と、前記第2可観測量と同じ第1可観測量の値とに基づいて、前記第1試験と同じ第1可観測量について、前記第2可観測量または前記第3の変数との関係を規定するモデルを構築する第1可観測量モデル化手段と、
     前記第1可観測量モデル化手段によって構築されたモデルを用いて、前記第1解析式変数モデル化手段が構築されたモデルを、前記第2可観測量または前記第3変数をモデル化入力変数とするモデルに変換するモデル変換手段とを有する
     請求項1から請求項4のうちのいずれか1項に記載の斜面監視システム。
  6.  解析式変数モデル化手段は、解析式変数の少なくとも1つについて、試験層の状態を変化させたときの、該解析式変数の値のうち所定の条件を満たす一部の値と、第1可観測量の値とに基づいて、前記第2可観測量または第3変数との関係を規定するモデルを構築する
     請求項1から請求項5のうちのいずれか1項に記載の斜面監視システム。
  7.  解析式変数計測手段は、加水により試験層の状態を変化させたときの、解析式変数の各々の値と、前記試験層の状態に応じて変化する所定の第1可観測量の値とを計測し、
     斜面安全性解析装置は、
     解析式変数計測手段により得られる第1可観測量の値と、該値を計測したときの加水量とに基づいて、解析式変数モデル化手段が各解析式変数のモデル化に用いるモデル化入力変数である第2可観測量または第3変数の、累積降水量との関係を規定したモデルまたは所定の単位時間あたりの予測雨量に対する変動モデルを構築するモデル化入力変数モデル化手段と、
     前記モデル化入力変数モデル化手段が構築したモデルと、実斜面計測手段により得られた前記第2可観測量の値と、予測雨量データとに基づいて、将来の安全率を予測する安全率予測手段とを含む
     請求項1から請求項6のうちのいずれか1項に記載の斜面監視システム。
  8.  監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、前記試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、前記試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、前記解析式変数の各々について、前記監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって前記第1可観測量と同じもしくは前記第1可観測量との関係が既知である所定の第2可観測量、または前記第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する解析式変数モデル化手段と、
     前記解析式変数モデル化手段が構築したモデルの情報を記憶するモデル情報記憶手段と、
     前記監視対象斜面から計測される前記第2可観測量の値と、前記モデル情報記憶手段に記憶されているモデルの情報とに基づいて、前記第2可観測量の値を計測したときの前記各解析式変数の値を算出し、算出された各解析式変数の値を基に、前記斜面安定解析式を用いて前記監視対象斜面の安全率を算出する安全率算出手段とを備えた
     ことを特徴とする斜面安全性解析装置。
  9.  コンピュータが、監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、前記試験層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、前記試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、前記解析式変数の各々について、前記監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって前記第1可観測量と同じもしくは前記第1可観測量との関係が既知である所定の第2可観測量、または前記第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築し、
     コンピュータが、前記監視対象斜面から計測される前記第2可観測量の値を基に、構築された前記モデルを用いて前記第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、前記斜面安定解析式を用いて前記監視対象斜面の安全率を算出する
     ことを特徴とする斜面監視方法。
  10.  コンピュータに、
     監視対象斜面を構成している物質層と同一の種類、乾燥密度および締固め度を有する物質群からなる物質層である試験層を少なくとも有する試験環境から計測される、前記試験質層の状態を変化させたときの、所定の斜面安定解析式に必要となる変数である解析式変数の各々の値と、前記試験層の状態に応じて変化する所定の第1可観測量の値とに基づいて、前記解析式変数の各々について、前記監視対象斜面を構成している物質層の状態に応じて変化する所定の第2可観測量であって前記第1可観測量と同じもしくは前記第1可観測量との関係が既知である所定の第2可観測量、または前記第2可観測量から算出可能な所定の第3変数との関係を規定するモデルを構築する処理、および
     前記監視対象斜面から計測される前記第2可観測量の値を基に、構築された前記モデルを用いて前記第2可観測量の値を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、前記斜面安定解析式を用いて前記監視対象斜面の安全率を算出する処理
     を実行させるための斜面監視プログラム。
PCT/JP2014/004303 2014-08-21 2014-08-21 斜面監視システム、斜面安全性解析装置、方法およびプログラム WO2016027291A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/004303 WO2016027291A1 (ja) 2014-08-21 2014-08-21 斜面監視システム、斜面安全性解析装置、方法およびプログラム
JP2016543791A JP6414222B2 (ja) 2014-08-21 2015-05-20 斜面監視システム、斜面安全性解析装置、方法およびプログラム
PCT/JP2015/002534 WO2016027390A1 (ja) 2014-08-21 2015-05-20 斜面監視システム、斜面安全性解析装置、方法およびプログラム
US15/505,275 US10584964B2 (en) 2014-08-21 2015-05-20 Slope monitoring system, device for slope stability analysis, method, and program
TW104119357A TWI627611B (zh) 2014-08-21 2015-06-16 斜面監視系統、斜面安全性分析裝置、方法以及記錄了程式之電腦可讀取的記錄媒體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004303 WO2016027291A1 (ja) 2014-08-21 2014-08-21 斜面監視システム、斜面安全性解析装置、方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2016027291A1 true WO2016027291A1 (ja) 2016-02-25

Family

ID=55350273

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/004303 WO2016027291A1 (ja) 2014-08-21 2014-08-21 斜面監視システム、斜面安全性解析装置、方法およびプログラム
PCT/JP2015/002534 WO2016027390A1 (ja) 2014-08-21 2015-05-20 斜面監視システム、斜面安全性解析装置、方法およびプログラム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002534 WO2016027390A1 (ja) 2014-08-21 2015-05-20 斜面監視システム、斜面安全性解析装置、方法およびプログラム

Country Status (4)

Country Link
US (1) US10584964B2 (ja)
JP (1) JP6414222B2 (ja)
TW (1) TWI627611B (ja)
WO (2) WO2016027291A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596897A (zh) * 2017-01-18 2017-04-26 河海大学 测定加筋植物土固坡效果与吸水性能的试验装置及方法
CN107067333A (zh) * 2017-01-16 2017-08-18 长沙矿山研究院有限责任公司 一种高寒高海拔高陡边坡稳定性监控方法
JP2018005693A (ja) * 2016-07-05 2018-01-11 国立大学法人 岡山大学 傾斜地災害予知システム
US11206771B2 (en) 2017-03-31 2021-12-28 Nec Corporation Vegetation effect calculation device, vegetation effect calculation system, and storage medium storing vegetation effect calculation program

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330661B2 (en) 2015-09-14 2019-06-25 Nec Corporation Disaster prediction system, moisture prediction device, disaster prediction method, and program recording medium
CN108491575A (zh) * 2018-02-11 2018-09-04 华北水利水电大学 一种基于数字地形进行水库涉水边坡安全系数的计算方法
JP6965489B2 (ja) * 2018-03-01 2021-11-10 株式会社安藤・間 転圧回数予測システム、及び転圧方法
WO2019176835A1 (ja) * 2018-03-13 2019-09-19 日本電気株式会社 斜面監視システム、斜面監視方法及び記録媒体
CN108665146B (zh) * 2018-04-16 2022-07-29 浙江大学 大型露天矿山边坡稳定性评价精度确定方法
CN108776851B (zh) * 2018-06-11 2022-07-12 广东省科学院广州地理研究所 一种暴雨诱发的浅层滑坡灾害预警阈值确定方法
CN109634801B (zh) * 2018-10-31 2022-04-12 深圳壹账通智能科技有限公司 数据趋势分析方法、系统、计算机装置及可读存储介质
CN109815579B (zh) * 2019-01-18 2023-04-07 石家庄铁道大学 边坡参数的确定方法、计算机可读存储介质及终端设备
CN110008599B (zh) * 2019-04-09 2023-06-06 江西理工大学 一种基于高阶双套双相物质点法的水土耦合滑坡的模拟方法
CN110261573B (zh) * 2019-05-16 2021-09-03 同济大学 一种高位岩质滑坡稳定性动态评价方法
CN110208488A (zh) * 2019-05-31 2019-09-06 贵州大学 一种基于弹性波的浅层滑坡监测系统及其工作方法
WO2021102399A1 (en) * 2019-11-22 2021-05-27 Muon Vision Inc. Systems and methods for monitoring slope stability
CN110967467B (zh) * 2019-12-07 2022-07-15 河北工业大学 一种模拟降雨诱发反序粒堆积体破坏的试验系统
CN111291996A (zh) * 2020-02-17 2020-06-16 绍兴文理学院 一种边坡稳定性评价的三参数强度折减法
CN111397541A (zh) * 2020-04-23 2020-07-10 五邑大学 排土场的边坡角测量方法、装置、终端及介质
CN111877418B (zh) * 2020-08-25 2021-05-14 东北大学 一种深基坑动态施工实时监测预警系统及使用方法
CN112595833B (zh) * 2020-10-16 2023-03-14 北京市地质研究所 一种可移动崩塌试验装置及其系统和试验方法
KR102474677B1 (ko) * 2020-11-04 2022-12-05 김석환 절토면 내부의 토사 유동 센싱을 위한 옹벽 그리드 시스템
CN112922045B (zh) * 2021-01-21 2022-06-24 安康学院 一种岩质高边坡监测系统
CN112729235B (zh) * 2021-01-26 2022-11-29 温州大学 爆破挤淤施工中快速定位抛填石落底深度及长期沉降的无线检测设备及无线检测方法
CN112927480B (zh) * 2021-01-29 2022-11-11 中交华南勘察测绘科技有限公司 基于物联网和大数据协同分析的地质灾害监测方法及预警管理平台
CN113012399B (zh) * 2021-02-25 2022-06-14 中原工学院 一种降雨型滑坡预警方法及系统
CN113139020B (zh) * 2021-04-22 2024-03-26 成都智汇数援科技有限公司 一种滑坡监测预警模型的自适应迁移方法
CN113899673B (zh) * 2021-09-29 2024-04-16 中国地质科学院地质力学研究所 一种顶部加载和降雨入渗耦合测试下边坡模型实验装置
CN114777991B (zh) * 2022-04-19 2023-09-08 重庆大学 一种倾斜倒置的u形压力计及压差检测方法
CN114896548B (zh) * 2022-05-20 2023-04-07 西南交通大学 一种边坡稳定性判断方法、装置、设备及可读存储介质
CN116663106A (zh) * 2023-05-18 2023-08-29 重庆市规划和自然资源调查监测院 使用海量数据分析高速公路的边坡修复实施的工作方法
KR102619016B1 (ko) * 2023-08-13 2023-12-27 고건우 토사 사면 붕괴 사전 예측 방법 및 장치
KR102631470B1 (ko) * 2023-08-13 2024-01-30 고건우 저수지 제방 누수 및 붕괴 사전 예측 시스템
CN117765708A (zh) * 2024-02-22 2024-03-26 城云科技(中国)有限公司 一种基于地图影像分析技术的边坡失稳预测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217054A (ja) * 2002-01-17 2003-07-31 Kokusai Kogyo Co Ltd 防災情報配信サーバ及びこのサーバとともに用いられる防災配信システム
JP2006252128A (ja) * 2005-03-10 2006-09-21 Shimizu Corp 斜面崩壊予測および周辺地域への避難情報伝達システム
JP2008025138A (ja) * 2006-07-19 2008-02-07 Public Works Research Institute 岩盤斜面の安全度評価方法
US20130263681A1 (en) * 2012-04-10 2013-10-10 Korea Institute Of Geoscience And Mineral Resources Hydroplaning debris-flow simulation apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028937A (ja) 1996-07-19 1998-02-03 Mitsubishi Materials Corp 土石混合物の混合割合測定装置及びその分離装置
JP2002070029A (ja) 2000-08-31 2002-03-08 Dai Nippon Construction 斜面の危険判定および対応システム並びに対策工の安全度評価方法
US20030080304A1 (en) 2001-10-31 2003-05-01 Flow-Rite Controls, Inc. Apparatus and method for monitoring soil moisture conditions and for maintaining soil moisture conditions
JP2004060311A (ja) 2002-07-30 2004-02-26 Pasuko:Kk 地すべり監視方法、およびシステム
JP3894494B2 (ja) 2003-07-10 2007-03-22 株式会社日立製作所 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法
CN100593729C (zh) 2004-06-28 2010-03-10 国际航业株式会社 斜坡监视系统
JP2006195650A (ja) 2005-01-12 2006-07-27 Chuo Kaihatsu Kk 斜面崩壊監視予測システム
JP5455717B2 (ja) 2010-03-10 2014-03-26 日鐵住金建材株式会社 斜面安定化システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217054A (ja) * 2002-01-17 2003-07-31 Kokusai Kogyo Co Ltd 防災情報配信サーバ及びこのサーバとともに用いられる防災配信システム
JP2006252128A (ja) * 2005-03-10 2006-09-21 Shimizu Corp 斜面崩壊予測および周辺地域への避難情報伝達システム
JP2008025138A (ja) * 2006-07-19 2008-02-07 Public Works Research Institute 岩盤斜面の安全度評価方法
US20130263681A1 (en) * 2012-04-10 2013-10-10 Korea Institute Of Geoscience And Mineral Resources Hydroplaning debris-flow simulation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005693A (ja) * 2016-07-05 2018-01-11 国立大学法人 岡山大学 傾斜地災害予知システム
CN107067333A (zh) * 2017-01-16 2017-08-18 长沙矿山研究院有限责任公司 一种高寒高海拔高陡边坡稳定性监控方法
CN107067333B (zh) * 2017-01-16 2022-12-20 长沙矿山研究院有限责任公司 一种高寒高海拔高陡边坡稳定性监控方法
CN106596897A (zh) * 2017-01-18 2017-04-26 河海大学 测定加筋植物土固坡效果与吸水性能的试验装置及方法
US11206771B2 (en) 2017-03-31 2021-12-28 Nec Corporation Vegetation effect calculation device, vegetation effect calculation system, and storage medium storing vegetation effect calculation program

Also Published As

Publication number Publication date
TW201621836A (zh) 2016-06-16
TWI627611B (zh) 2018-06-21
US20170268874A1 (en) 2017-09-21
JP6414222B2 (ja) 2018-10-31
US10584964B2 (en) 2020-03-10
WO2016027390A1 (ja) 2016-02-25
JPWO2016027390A1 (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6414222B2 (ja) 斜面監視システム、斜面安全性解析装置、方法およびプログラム
AU2017281204B2 (en) System and method for determining the risk of failure of a structure
JP6763394B2 (ja) 土質判定装置、土質判定方法及びプログラムを記憶する記録媒体
Rainieri et al. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation
US20130338937A1 (en) Method for determining suspended matter loads concentrations in a liquid
JP6547743B2 (ja) 検知システム、検知装置、検知方法及びコンピュータ読み取り可能記録媒体
JP6858375B2 (ja) 斜面監視システムおよび斜面監視方法
WO2016136213A1 (ja) 土質判定装置、土質判定方法及び土質判定プログラムを記憶する記録媒体
CN104048843B (zh) 基于gps位移监测的大跨桥梁钢箱梁损伤预警方法
Zhan et al. A local damage detection approach based on restoring force method
CN103076400A (zh) 一种基于振动频率的新型腐蚀探头及其测量系统
US20170097295A1 (en) Method for determining suspended matter loads concentrations in a liquid
WO2019176835A1 (ja) 斜面監視システム、斜面監視方法及び記録媒体
CA3118143A1 (en) Rain sensor
Croke Representing uncertainty in objective functions: extension to include the influence of serial correlation
Shaban et al. Comparative analyses of granular pavement moduli measured from lightweight deflectometer and miniaturized pressuremeter tests
WO2019176836A1 (ja) 斜面監視システム、斜面監視方法及び記録媒体
Ndong et al. Identifying modal characteristics of reinforced concrete bridges using smartphones
Chen et al. Study on the sensitive factors of structural nonlinear damage based on the innovation series
Shen et al. Instrumented DMT: Review and analysis
Mendes et al. Physical and numerical modelling of infiltration and runoff in unsaturated exposed soil using a rainfall simulator
Chen Improved estimation of uniaxial compressive strength and elastic modulus for carbonate rocks using back propagation neural network and buckingham pi theorem
Satyawali et al. Spatial scales of snow texture as indicator for snow class
Feng et al. Impact of short-duration acceleration records on the ability of signal processing techniques to derive accurate bridge frequencies
Darwish Development of a long-term self-sufficient solution for operational modal analysis of bridges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP