JP3894494B2 - 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法 - Google Patents

土砂災害予知システム、地域情報提供システム及び土砂災害予知方法 Download PDF

Info

Publication number
JP3894494B2
JP3894494B2 JP2003194722A JP2003194722A JP3894494B2 JP 3894494 B2 JP3894494 B2 JP 3894494B2 JP 2003194722 A JP2003194722 A JP 2003194722A JP 2003194722 A JP2003194722 A JP 2003194722A JP 3894494 B2 JP3894494 B2 JP 3894494B2
Authority
JP
Japan
Prior art keywords
collapse
moisture content
geophone
data
disaster prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003194722A
Other languages
English (en)
Other versions
JP2005030843A (ja
Inventor
岡田  聡
晃治 陰山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2003194722A priority Critical patent/JP3894494B2/ja
Publication of JP2005030843A publication Critical patent/JP2005030843A/ja
Application granted granted Critical
Publication of JP3894494B2 publication Critical patent/JP3894494B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Description

【0001】
【発明の属する技術分野】
本発明は、崖崩れや地滑りなどの斜面における土砂災害や河川堤防の破壊の可能性を監視し、危険度が高い場合には警報を発する土砂災害予知システム、それを利用した地域情報提供システム及び土砂災害予知方法に関する。
【0002】
【従来の技術】
従来の代表的な土砂災害予知システムには、伸縮計を用いる方法、パイプ歪み計を用いる方法、岩石などの破壊音を計測する方法などがある。近年は、これらに加えて光ファイバを用いる地中歪み計測がある。
このうち、伸縮計を用いる方法は、地表面に間隔をあけて杭と計測器を設置し、杭から計測器までの間に張った紐の長さの変化量を計測することで地表面の変動を観測するものである。
また、パイプ歪み計を用いる方法は、表面に歪みゲージを複数貼り付けたパイプを地中に埋め、地表面又は数メートル地中における地面の変位量を歪みゲージの電気的信号により計測するものである。
また、岩石などの破壊音を検出する方法は、地中の音を検出できるように設置したマイクロホンが捕えた音響に基づいて斜面崩壊の予兆を知らせるものである。地中の音が連続的に生じている場合には装置がアラームを出し、そのアラームを聞いた斜面管理者がその地中の音を拡大して聴き、斜面崩壊の予兆を示す音か否かの判断を行う。
また、光ファイバを用いた地中歪み計測は、地中に光ファイバケーブルを敷設し、地表面の変動を光ファイバの歪みに変換し、反射光の強度や波長変位に基づいて斜面崩壊を検知するものである。
光ファイバセンサは堤防の破壊(以下、「破堤」という)の検知にも提案されている。この場合には、光ファイバケーブルの途中に重しが付けられており、堤防の体積含水率が高くなり土が脆くなると重しが自重で下がり、光ファイバが歪む。この歪み量を反射光の強度や波長変位に基づいて計測し、堤防の状態を監視するものである。
【0003】
文献公知例としては、測温機能を持つ光ファイバセンサと電気ヒータとを接近させて地中に埋めた構造を持ち、電気ヒータで加温した際の温度上昇から地中の水分含有率を求めるものがある(例えば特許文献1参照)。また、電極を櫛歯状にして向かい合わせることで、地中の水分など導電性異物を高精度で計測するセンサが提案されている(例えば特許文献2参照)。そして、河川の堤防の変状を計測する方法として、光ファイバセンサを堤防に埋設して監視・計測を実施するものがある(例えば特許文献3参照)。更に、地中の弾性波を検出して土壌移動状況を検知する方法として、浸透水分量が多くなると堤防内の砂や小石がこすれあって弾性波が発生する現象を利用するものがあり、この弾性波を検出することによって、堤防や土壌の状況を監視することができる(例えば特許文献4参照)。
【0004】
【特許文献1】
特開平8−166365号公報(段落[0014]〜[0018]、図1〜図3)
【特許文献2】
特開平10−19818号公報(段落[0015]、[0016]、図1)
【特許文献3】
特開2002−269656号公報(段落[0011]〜[0013]、図1)
【特許文献4】
特開平9−196899号公報(段落[0014]、[0015]、図1)
【0005】
【発明が解決しようとする課題】
しかしながら、これらの従来の方法では以下の理由により適切な土砂災害予知ができなかった。
まず、伸縮計を用いる方法では、地表で杭から計測器までの間に紐が張られているため、人や動物が通行するような箇所へ設置するとつまずきの原因となるので、設置箇所を選ぶ必要がある。また、紐に木の枝や葉が引っ掛かったりすることにより、誤測定や誤差が発生しやすいので、随時メンテナンスが必要である。また、二点間の距離変化しか計測できないため、ポイント的な計測データしか得られない。
パイプ歪み計は、パイプの表面に複数個の歪みゲージが貼付されており、それぞれの歪みゲージに二本のリード線が付いている。従って、計測装置に接続するために延長するケーブルの本数が多くなり、煩雑となる。また、計測データの転送用ケーブルと電源ケーブルとを敷設する必要があり、そのための土木工事が発生する。
岩石などの破壊音を検出する方法については、斜面管理者が音を聞いても土砂災害の前兆なのか否かを判断することは容易でない。崖崩れや地滑りが発生する音か、それとも発生しない音かを聞き分けるためには多くの経験が必要となるが、土砂災害は頻発する現象でないため経験を積むこと自体が困難である。
【0006】
光ファイバセンサによる地中歪み計測では、大規模な地表面の土木工事が発生する。これは破堤検知のための光ファイバセンサに関しても同様で、土木工事が大規模なため設置コストが高価になる。更に、光ファイバセンシングの計測器も高価であり、全体のコストが高いという欠点がある。これは、特許文献3の場合でも同様である。
特許文献1の含水率計測及び特許文献2の電極を櫛歯状にしたセンサについては、いずれもポイント的な含水率しか計測できないため、崖など斜面全体や河川堤防全体の状態を監視するためには極めて多くのセンサを設置する必要がある。特に、特許文献1に関しては、光ファイバ計測の計測器が高価であること及び電気ヒータを用いるため比較的容量の大きい電源が必要であることも問題となる。特許文献4の弾性波検知による堤防や土壌の含有水分検出方法では、砂や小石の微小な動きで発生する弾性波を利用するため、その弾性波の強度が弱く、所定値以上の距離が離れた点では観測が困難である。更に、河川ではない斜面などの土壌に関しては、砂や小石の動きが活発でなく、弾性波の強度が弱く観測が困難であるといった問題がある。
【0007】
本発明は、前記課題を解消するべくなされたものであり、設置箇所を選ばず、設置時に大規模な土木工事を必要としないような土砂災害予知手段を提供することを主たる目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決する本発明は、地中へ振動を発する起振源と、その起振源から発せられた振動を計測する受振器と、その受振器が計測した振動の強度に基づいて土砂災害の予兆情報を推算し、その推算した予兆情報を出力する各手段とから構成される土砂災害予知システム、それを利用した地域情報提供システム及び土砂災害予知方法である。予兆情報は、土砂災害が発生する可能性を示唆するものであり、具体的には、体積含水率、体積含水率分布、崩壊危険度分布、崩壊警報などがある。ここで、体積含水率分布を推算するためには、斜面などの地中における複数の箇所における体積含水率を求める必要があるが、これは、複数の起振源及び複数の受振器を適切に設置することによって解決することができる。すなわち、起振源と受振器との間における振動の伝播経路を多岐に設けることによって、地中の様々な箇所の振動強度を計測することができ、ひいては、多くの体積含水率のデータを取得することができる。それによって精度の高い体積含水率分布を推算することができる。なお、後記する発明の実施の形態においては、予兆情報を推算し、出力する各手段は、計測結果解析装置の構成要素として記載している。
受振器は地中の振動強度を計測し、その振動強度によって体積含水率が推算される。導電率センサは地中の導電率を計測し、その導電率によって体積含水率が推算される。この体積含水率に基づいて推算される崩壊危険度は「初期」段階であり、この危険度が高いからといって、必ずしも斜面などの崩壊が発生するわけではない。一方、歪みセンサは地中の歪みを計測し、その歪みによって崩壊危険度が推算される。歪みによって推算される崩壊危険度は「緊急」段階であり、この危険度が高まると、斜面などの崩壊の確率が高くなる。
次に、受振器、導電率センサ、歪みセンサを含む地中観測センサの設置には、センサ構造体を利用することができる。このセンサ構造体は、地中観測センサ、無線発信機及びアンテナを含んで構成されており、地中観測センサが計測したデータを、離れた地点に設置された受信機に送信することができる。このセンサ構造体の形状をパイプ状にして、複数の地中観測センサを備えることによって、所望の地中深さに地中観測センサを設置することができる。また、複数のパイプ状のセンサ構造体を設置することによって、三次元のデータの計測を行うことが可能になる。
【0009】
このような土砂災害予知システムを堤防に適用することができる。このとき、振動を計測する受振器を河川側の堤外及び市街地側の堤内にそれぞれ設置することによって、堤防の両側における体積含水率を推算する。そして、後記する破堤のメカニズムに基づいて、その体積含水率から破堤危険度を推算する。
更に、この土砂災害予知システムを地域情報提供システムに利用することもできる。すなわち、土砂災害予知システムが出力する予兆情報を、地域情報提供システムが住民や自治体に提供するコンテンツとする。また、土砂災害予知システムが斜面などの崩壊警報を出力したときには、地域情報提供システムの画面を強制的に崩壊警報の画面に切り替える。これによって、住民や自治体は、土砂災害の予兆情報を居ながらにして入手することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。ここでは、まず、土砂災害予知の原理を説明し、その後、第1乃至第4の実施の形態について順次説明する。
【0011】
≪土砂災害予知の原理≫
地盤調査の分野では、物理探査法の一つとして速度検層(PS検層)と呼ばれる技術がある。これは、地盤内の地質的な情報を得るために起振源から発した音をボーリングした穴などに設置した受振器で計測し、その計測によって求められたP波及びS波の速度を、動的ポアソン比やヤング率、剛性率などの動的弾性係数を算出するための基礎データとして用いるものである。
この計測は、地盤内の水分などの影響を受けるため、前記基礎データを取得するときには、条件に応じて異なる機器を使い分ける、又は、現地における計測ノウハウに基づく、などにより適切な計測ができるようにしている。本発明は、この速度検層の原理を土砂災害予知へ応用したものである。
ここで、土砂災害の発生メカニズムは、以下のような段階で進行するとされている。
(a)降雨により地表面の体積含水率が高くなる。これによって斜面内部の質量が増大する。
(b)浸透した水分により、斜面内部に体積含水率の高い箇所ができる。これは主に砂層の箇所であることが多い。体積含水率が高くなると、土は脆くなる。
(c)質量が増大した地表面の土砂が砂層を滑り面として滑り始める。
(d)徐々に支持力を失った地表面部分が一気に滑り落ちて土砂災害となる。
従って、体積含水率を求めることができれば、このメカニズムの(a)と(b)を検知することが可能となり、土砂災害予知が可能となる。
【0012】
≪第1の実施の形態≫
次に、本発明の第1の実施の形態に係る、体積含水率を利用した土砂災害予知システムについて説明する。
【0013】
<システムの構成と概要>
図1は、体積含水率を利用した土砂災害予知システムの機能ブロック図である。図1に示すように、土砂災害予知システムは、振動(図1では、矢印付きの破線で示す)を発生させる起振源1、振動を計測する受振器2、計測結果を解析して、体積含水率などを出力する計測結果解析装置3から構成されている。
斜面4の上部には起振源1が設置され、斜面4には起振源1から離れた箇所に複数の受振器2が設置されている。また、斜面4の下部には住民5の住宅地がある。ここで、起振源1と受振器2との設置位置関係は重要である。崖崩れなどの土砂災害は、斜面4の表面付近数m程度における体積含水率が災害の発生に大きく影響するため、表面から数mの深さの表土を振動の伝播経路として確保できるような位置関係で、起振源1と受振器2とを設置することが望ましい。また、騒音の問題などから、起振源1はできるだけ住民5から離れた位置に設置するべきである。
複数の受振器2は、それぞれ無線又は有線によって計測結果解析装置3に接続されている。計測結果解析装置3は、体積含水率推算手段31、体積含水率出力手段32、体積含水率分布推算手段33、体積含水率分布出力手段34、崩壊危険度分布推算手段35、崩壊危険度分布出力手段36、しきい値設定手段37、崩壊危険度比較手段38、崩壊警報出力手段39などから構成されている。具体的には、計測結果解析装置3は、PC(Personal Computer)やサーバであり、各推算手段及び崩壊危険度比較手段38は、CPU(Central Processing Unit)が所定のプログラムを実行することによって実現されるものである。また、各出力手段は、ディスプレイなどであり、しきい値設定手段37は、文字入力やクリックなどを行うキーボードやマウスなどのポインティングデバイスである。ただし、崩壊警報出力手段39は、音声や音響の出力機器、又は、ネットワーク通信機器による。以下、各構成要素について説明する。
【0014】
起振源1は、地中へ向けて振動を発生させる機器である。図1では、起振源1として地上設置型の例(例えば板たたき法によるもの)を示しているが、地中の孔井内設置型のものを用いてもよい。また、インパルス型やスイープ型などの種類もあり、いずれを用いてもよいこととする。
受振器2は、起振源1から発せられた振動を計測する機器である。横波及び縦波を計測する受振器2としては、3軸加速度センサが適切である。3軸加速度センサを地中に設置し、以下の手順をとることにより、横波及び縦波を検出することができる。
(1)3軸加速度センサ計測値のリサージュ波形をとる。
(2)主成分分析を実施することで、起振源1の方向を抽出する。
(3)起振源1の方向とリサージュ波形との相関をとることで、縦波強度が求められる。
(4)起振源1の方向との直交面を求める。
(5)直交面とリサージュ波形との相関をとることで、横波強度が求められる。
【0015】
体積含水率推算手段31は、受振器2が計測した振動強度のデータを入力し、以下の原理に基づいて斜面4内部の体積含水率を推算するものである。すなわち、土壌中に水分が増えると、縦波に比べて横波は減衰が大きくなる。図2及び図3にその模式図を示す。図2は、地中の体積含水率が一定と仮定した場合における振動相対強度の距離に対する減衰を示したものである。図3に示すように、地中の一部で体積含水率の高い箇所6が存在すると、横波はその箇所で大きく減衰する。このような特徴があるため、降雨時に地中の一部で体積含水率の高い箇所6が生じた場合、その箇所を通過するような伝播経路を持つ振動の強度を計測すると、平常時に比べて横波が小さく計測される。従って、この横波の振動強度、平常時の横波の振動強度及び地質データを用いることによって体積含水率を推算することができる。
図2では、平常時として横波及び縦波の減衰をそれぞれ1本の線で示しているが、これは常に同じ値を維持しているわけではない。降雨が無い場合においても、季節、湿度、気温などの外乱条件によって縦波及び横波の減衰特性は変動しうる。従って、横波の振動強度のみを用いた判断の際には、観測された変動が地中の体積含水率の変動によるものか、又は、外乱によるものかの判別が困難な場合がありうる。そこで、横波に加えて縦波の振動強度も用いることにより、季節や湿度、気温などの外乱条件を相殺することが可能となる。
体積含水率推算手段31が入力する縦波及び横波の強度信号(データ信号)としては、例えば、次に示すような縦波強度に対する横波強度の比率Pを用いる。
P=横波強度/縦波強度 ・・・式1
この式1は、単純に横波強度を縦波強度で除した値Pを指標としているが、本発明は、式1には限定されず、分子及び分母に係数や加減が加わったもの又は縦波強度と横波強度との差をとったものを含むものとする。この指標P、平常時の指標Pの蓄積データ及び地質データを用いることによって、体積含水率をより精度よく推算することができる。
以上のように、体積含水率推算手段31は、横波のみ、又は、横波及び縦波の振動強度から体積含水率を推算するものである。
体積含水率出力手段32は、体積含水率推算手段31が推算した体積含水率を表示するものである。
【0016】
ここで、体積含水率推算手段31及び体積含水率出力手段32は、いずれも斜面4付近に設置する必要はなく、受振器2で計測したデータをネットワークや電話回線、無線などで転送し、自治体の本庁舎など離れた地点の計算機で体積含水率の推算や出力を実施してもよい。また、体積含水率推算手段31及び体積含水率出力手段32は、必ずしも一体である必要はない。例えば、体積含水率推算手段31で求められた地中の体積含水率を住民5が自由に閲覧できるようにネットワーク経由で公開し、体積含水率出力手段32を住民5側の端末で実現することも有用である。
【0017】
体積含水率分布推算手段33は、体積含水率推算手段31から複数の体積含水率データを入力し、その入力したデータに基づいて体積含水率分布を推算するものである。計測した点と点との間の体積含水率を外挿することにより体積含水率分布を連続的に推算することができる。受振器2の設置数及び設置位置を適切に選定し、詳細な解析を実施することで、体積含水率の分布を最大三次元で推算することもできる。図1では、起振源1が1点で受振器2が複数ある場合を示しているが、起振源1が複数地点あれば振動の伝播経路が増え、より詳細な体積含水率分布を求めることができる。この場合、起振源1を複数台備えたり、又は、その位置を移動できる起振源1を用いたりすることによって、異なる複数地点での起振が可能である。
【0018】
体積含水率分布出力手段34は、体積含水率分布推算手段33から入力した体積含水率分布データを表示するものであり、例えば、モニタ画面が一例として考えられる。図4に示す画面例では、斜面4内の一断面を体積含水率の数値範囲に応じて色分けして表示している。このような画面を見ることで、斜面4の管理者は、経験及び当該地点の土質に関する知識に基づいて斜面4のどの位置が崩壊し易いかを判断し、住民5に避難勧告や注意報、警報を発令する。
【0019】
崩壊危険度分布推算手段35は、体積含水率分布推算手段33から体積含水率分布を入力し、経験データベース、過去の実例データ、地質データなどに基づいて崩壊危険度分布を推算するものである。一般に、斜面4における土砂災害は体積含水率が高くなることにより、質量の増加や滑り面における土砂の脆弱化などの現象の結果として生じることが多い。このような知識データのほか、斜面4の地質情報を併せて、図5に示すような相関関係に基づいて、崩壊危険度を算出する。この算出の際の計算には、理論式や経験式などを用いる。
【0020】
崩壊危険度分布出力手段36は、崩壊危険度分布推算手段35が推算した崩壊危険度分布を表示するものであり、モニタ画面が有効である。図6に示す画面例では、斜面4の表面を崩壊危険度の数値範囲に応じて色分けして表示している。このような画面を見ることで、斜面4の管理者は経験や知識が十分でなくとも斜面4のどの位置が崩壊し易いかを容易に判断でき、住民5に避難勧告や注意報、警報を適切に発令することが可能となる。また、経験に頼る部分を、経験データベースや過去の実例データとしてシステム内に備えているため、判断の個人差を減らすことができる。崩壊危険度分布出力手段36の画面は、ネットワーク経由で住民5が自由に閲覧できるようにしてもよく、これにより防災に対する意識の高い住民5は警報発令前に避難するため、自治体は住民5の安全を確保できる。
【0021】
しきい値設定手段37は、崩壊危険度比較手段38に出力する、崩壊危険度のしきい値を設定するものである。崩壊危険度比較手段38は、崩壊危険度分布推算手段35から入力した崩壊危険度と、しきい値設定手段37から入力したしきい値とを比較して、前記崩壊危険度が前記しきい値より大きいときに、崩壊警報出力手段39に対して崩壊警報出力のトリガを与える。崩壊警報出力手段39は、崩壊危険度比較手段38から崩壊警報出力のトリガを受けたときに、音声、音響又は通信手段によって住民5に警報を発令する。
【0022】
<システムの動作>
続いて、本発明の第1の実施の形態に係る、体積含水率を利用した土砂災害予知システムの動作の流れについて、図7に示すフローチャートに沿って説明する(適宜図1参照)。
起振源1は、振動を地中へ向けて発生させる(ステップS301)。受振器2は、起振源1から発せられた振動を計測する(ステップS302)。受振器2は、その計測した振動のうち、横波のみ、又は、横波及び縦波の振動強度信号を体積含水率推算手段31に送信する。体積含水率推算手段31は、その振動強度信号に基づいて斜面4内の体積含水率を推算し(ステップS303)、その推算した体積含水率を体積含水率出力手段32に送信する。体積含水率出力手段32は、その受信した体積含水率をモニタ画面などに表示する(ステップS304)。ここで、起振源1の動作するタイミングは、平常時と雨天時とで切り換えることも有用である。例えば、降雨感知センサを別途備え、降雨感知時から一定時間のみ起振・計測するスケジューリング機能が考えられる。ただし、起振源1の稼動タイミングに受振器2の計測タイミングを同期させることが必要であり、そのための同期用の信号を起振源1と受振器2との間で通信することや、内部時計を起振源1と受振器2とに備えることが有用である。他には、巡回車などの外部からのトリガによってタイミングを同期させることも考えられる。
【0023】
次に、複数地点に配置された受振器2は、起振源1による異なった伝播経路における地中の振動強度をそれぞれ計測する(ステップS302)。そして、体積含水率推算手段31が、それぞれの振動強度から体積含水率を推算する(ステップS303)。体積含水率分布推算手段33は、その推算した体積含水率に基づいて、計測した地点と地点との間の体積含水率を外挿することにより体積含水率分布を連続的に推算する(ステップS305)。体積含水率分布出力手段34は、その推算した体積含水率分布をモニタ画面などに表示する(ステップS306)。
更に、崩壊危険度分布推算手段35は、体積含水率分布推算手段33が推算した体積含水率分布から崩壊危険度分布を推算する(ステップS307)。そして、崩壊危険度分布出力手段36は、崩壊危険度分布推算手段35が推算した崩壊危険度分布をモニタ画面などに表示する(ステップS308)。
崩壊危険度比較手段38は、崩壊危険度分布推算手段35が推算した崩壊危険度と、予めしきい値設定手段37によって設定されたしきい値とを比較する(ステップS309)。崩壊危険度がしきい値より大きい場合には(ステップS309のYes)、崩壊危険度比較手段38が崩壊警報出力手段39に崩壊警報出力のトリガを与えて、そのトリガを受けた崩壊警報出力手段39が崩壊警報を発令する(ステップS310)。なお、崩壊危険度がしきい値より大きくない場合には(ステップS309のNo)、その時点の処理は終了となる。
ここで、崩壊危険度としきい値との比較計算は瞬時に終了するので、住民5は斜面管理者の判断を待つことなく危険を即時に知ることができ、避難をすばやく開始できる。崩壊危険度分布推算手段35、崩壊危険度分布出力手段36、しきい値設定手段37、崩壊危険度比較手段38及び崩壊警報出力手段39は、自治体の本庁舎など離れた地点にあってもよい。ただし、緊急時にネットワークが切断される可能性もあるので、その可能性を懸念するのであれば、できるだけ斜面4の付近に設置することが望ましい。
【0024】
なお、以上の説明では、体積含水率、体積含水率分布及び崩壊危険度分布をモニタ画面などに表示するように記載したが、いずれか一つ又は二つを表示するようにしてもよい。
また、崩壊警報を発令するために、体積含水率に基づいた崩壊危険度としきい値とを比較するように記載したが、受振器2で計測した振動強度を過去の履歴データと比較し、現時点の計測値が異常領域にあるか否かを判定する方法も考えられる。平常時であっても様々な外的要因によって縦波及び横波の測定値は変動するが、測定値の個数を増やした場合、比率P(式1参照)の分布は図8に示すような正規分布に近付く。この正規分布において、現時点の計測値の比率Pが0付近の異常領域に含まれるときには、崩壊危険度が高いとみなすことができる。
【0025】
以上説明した土砂災害予知システムは、その適用対象とする斜面4に設置する機器が起振源1及び受振器2でよく、地表面全体を掘り起こすような大規模な土木工事は不要となる。更に、伸縮計のような地表面の紐、すなわち、障害物が存在しないため、どこにでも設置することができる。
【0026】
≪第2の実施の形態≫
次に、本発明の第2の実施の形態に係る、複数種類の地中観測センサを利用した土砂災害予知システム及びセンサ構造体について説明する。なお、前記の実施の形態と重複する説明は省略する。
【0027】
<システムの構成と動作>
図9は、複数種類の地中観測センサを利用した土砂災害予知システムの機能ブロック図である。ここで、地中観測センサとは、受振器の他に、歪みセンサや導電率センサなど地中のセンシングに使用されるセンサ一般を指すものとする。この第2の実施の形態においては、受振器2の他に、例えば、歪みセンサ7を同一斜面4に設置し、その歪みセンサ7が計測した歪み信号(データ信号)を、受振器2が計測した縦波及び横波の振動強度信号と同様に計測結果解析装置3に送信する。詳細には、歪み信号は崩壊危険度分布推算手段35に送信され、振動強度信号は体積含水率推算手段31に送信される。崩壊危険度分布推算手段35は、歪み信号と、振動強度信号による体積含水率分布とに基づいて崩壊危険度分布を推算し、崩壊危険度比較手段38にその推算した崩壊危険度分布を送信する。崩壊危険度比較手段38は、その受信した崩壊危険度の値と、予めしきい値設定手段37によって設定されたしきい値とを比較して、崩壊危険度の値がしきい値より大きいとき、崩壊警報出力手段39に崩壊警報出力のトリガを与える。そのトリガを受けた崩壊警報出力手段39は、住民5に対して、音声、音響、通信手段などにより崩壊警報を発令する。
【0028】
受振器2を用いることにより、地中の体積含水率を推算できるため、斜面4が崩壊する初期段階を検出できる。しかし、土砂災害の発生には体積含水率以外の要因も多く関与しており、体積含水率が高くても斜面4が崩壊しない場合もありうる。その場合、崩壊警報による住民5の避難は無駄となってしまう。このような状況が度々あると、住民5は、崩壊警報を信頼しなくなり、崩壊警報が発令されても避難しなくなり、その結果として被害に遭ってしまう可能性も出て来る。
そこで、受振器2のみでなく、歪みセンサ7を併用する。歪みセンサ7は、斜面4の崩壊が開始した状況を検知することができるため、高い崩壊確率を持った警報を出すことができる。この状態は、前記土砂災害予知の原理で説明した土砂災害の発生メカニズムの(c)に相当する。しかし、崖崩れの場合には、歪みセンサ7による検知から斜面4全体の崩落までの時間が非常に短い。従って、歪みセンサ7のみを用いた警報の発令であれば、住民5は、突然の警報に対して素早く避難できず、被害を受ける可能性がある。ところが、受振器2及び歪みセンサ7による警報の発令であれば、
(1)受振器2に基づく「初期」危険度の崩壊警報を受けた段階で、住民5は避難準備を始めることができる。
(2)その後、歪みセンサ7に基づく「緊急」危険度の崩壊警報が発令されたら、住民5は瞬時に避難することができる。
このように複数種類の地中観測センサを併用することで、安全性を確保しながらも無駄な避難を減らすことが可能になる。
【0029】
ここでは、歪みセンサ7と受振器2とを用いた実施の形態について述べたが、本発明は、これらのセンサの使用に限られるものではない。例えば、導電率センサは、地中の導電率を計測するものであり、その導電率は、体積含水率と相関関係を持つ。従って、導電率センサを、受振器2の代用として、又は、受振器2との併用で利用することが考えられる。このとき、導電率センサが計測した導電率のデータは体積含水率推算手段31に送信され、その体積含水率推算手段31において、その導電率のデータに基づいて体積含水率が推算される。
【0030】
<センサ構造体>
図10は、複数種類の地中観測センサを利用した土砂災害予知システムにおいて使用されるセンサ構造体を示す。センサ構造体は、受振器を含む地中観測センサを地中に設置するものであるが、その様々な実施の形態について説明する。
図10(a)に示すように、センサ構造体54には、地中観測センサ51の他に無線発信機52とアンテナ53とが備えられており、地中観測センサ51で計測したデータを電波55により送信する。このように電波55によって計測データを送信することにより、データ転送用ケーブルを敷設する土木工事が不要となる。更に、センサ構造体54の位置変更や新規追加などを行うときに、その設置に関わる手間を減らすことができる。電波55で計測データを送るには、その計測データを受ける受信機が必要となるが、その受信機は、センサネット構造体54の付近に設置した固定受信機でもよいし、防災センタの巡回車や斜面管理者が携帯する移動式の受信機でもよい。また、計測データを無線発信機52内部のメモリなどに蓄えておき、決められた指令電波を受け取ったときに計測データをまとめて受信機へ送信するようにしてもよい。
【0031】
図10(b)に示すセンサ構造体54は、図10(a)の構成に加えて、太陽電池61と蓄電池62とを備える。蓄電池62は、太陽電池61が昼間に発電した電力の一部を蓄える目的で備えられる。このような構成によって、センサ構造体54を設置するときに、データ転送用ケーブル及び電源ケーブルが不要になり、土木工事を大幅に低減できる。更に、センサ構造体54の位置変更や新規追加を容易に実施できる。また、必要な電力は、昼間は太陽電池62で、夜間は蓄電池61で賄うことができるため、電池交換が不要である。
図10(c)に示すセンサ構造体54は、図10(a)の構成に加えて、振動発電素子71を備える。振動発電素子71は、環境中に存在する微小振動を用いて電力を得ることができる素子であり、常に電力を発生する。電池ではないので、交換の必要はない。このような発電素子を備えた構成によって、センサ構造体54を設置するときに、データ転送用ケーブル及び電源ケーブルが不要になり、土木工事を大幅に低減できる。更に、センサ構造体54の位置変更や新規追加を容易に実施できる。振動発電素子71が発電する電力は微小であるため、発電した電力を一旦蓄電池に充電し、所定の時間間隔ごとにその充電した電力を用いて、データの計測及びその計測データの送信を実施することも可能である。このような振動発電素子71を用いると、太陽電池61と違って受光面が必要なく、センサ構造体54の小型化が可能となる。そのほか、受光面の清掃などのメンテナンスが不要である、常に電力を得ることができるため蓄電池は不要又は小容量化できる、などのメリットもある。
なお、図10(a)、(b)及び(c)では、地中観測センサ51、無線発信機52、アンテナ53などを一体化して描いているが、本発明は、これらを一体化することに限定されるわけではない。
【0032】
図10(d)は、その形状をパイプ状にしたセンサ構造体81を示しており、その長さ方向の異なる部分に複数の地中観測センサ51を設けている。その形状をパイプ状にすることにより、所望の地中深さに容易に地中観測センサ51を設置することができる。また、深さ方向に複数の地中観測センサ51が備えられているため、一度の工事で複数個の地中観測センサ51を同時に設置でき、工事量が少なくて済む。更に、深さ方向の異なる位置に地中観測センサ51があるため、このセンサ構造体81を複数箇所に設置することによって三次元の地中観測データを得ることが可能となる。また、パイプ状であるため、歪みゲージを添付することでパイプ歪み計としての機能も果たすことができる。このとき、センサ構造体81の本体内に電源と計測部とを備えることで、それらと歪みゲージとの間を接続する配線ケーブルを別途地中に設置する工事が不要になり、かつ、ケーブル長が短くなるため、ノイズなどの外乱の影響を抑制することができる。
パイプの地表面側には、例えば、図10(e)に示すような樹脂製キャップ91を備えることが望ましい。実際にセンサ構造体81を地中に設置するときには、まず地中に細長い穴をボーリングなどによって掘り、そこにパイプ状のセンサ構造体81を打ち込む。アンテナ53は電波を空中に出す必要があるためセンサ構造体81の地表面側に設ける必要があるが、センサ構造体81を打ち込むときには障害となる。また、センサ構造体81の地中打ち込みが完了したときには、地表面側にアンテナ53が立つ状態となり、人や自転車などが踏みつけて破損する危険性がある。更に、アンテナ53に直接雨水などがかかると故障や腐食の原因となる。そこで、センサ構造体81の地表面側にアンテナ53をカバーするような樹脂製キャップ91を設ける。この樹脂製キャップ91は、センサ構造体81を打ち込むときに叩いても問題のない強度を持つものとする。また、電波の減衰ができるだけ少ない材質及び形状とする。例えば、ハニカム状にすることによって、これらの要求を満足することできる。
【0033】
≪第3の実施の形態≫
続いて、本発明の第3の実施の形態に係る、堤防に適用した土砂災害予知システムについて説明する。なお、前記の実施の形態と重複する説明は省略する。
【0034】
<破堤の発生メカニズム>
この土砂災害予知システムは、以下の破堤の発生メカニズムに基づく。すなわち、豪雨時には、河川の水位が上昇し、破堤することがある。破堤には二つのタイプがあり、一つは堤防又は基礎地盤のパイピングによって破壊するものであり、もう一つは降雨と河川水とが堤防に浸透し法すべりによって破壊するものである。このうち、前者のパイピングによるものは、地中の局所的な水のトンネルが原因であり、その検出は困難である。これに対して、後者の浸透による破堤は、前者のパイピングより広範囲な現象であり、土砂災害予知システムによって予兆を観測することが可能である。
図11に浸透による破堤の発生メカニズムを示す。降雨が開始した(ステップS1)後、しばらくすると、堤防9下部の体積含水率が高くなり、湿潤線が上昇する(ステップS2)。その後、河川8の水位が上昇すると、堤外側の湿潤線が上昇する(ステップS3)。その結果、堤外側及び堤内側における堤防内部の湿潤線に勾配が生じ、堤内側で裏法すべりが発生する(ステップS4)。河川8の水位が更に高くなると、この裏法すべりは拡大し(ステップS5)、やがては破堤に至る(ステップS6)。従って、堤外側及び堤内側の堤防内部の体積含水率を観測することによって、破堤危険度を推算することが可能となる。
【0035】
<システムの構成と動作>
図12は、本発明の第3の実施の形態に係る土砂災害予知システムの機能ブロック図である。この土砂災害予知システムは、その適用対象を河川8の堤防9としている。堤防9の上側には起振源1が設置されており、堤防9より河川8側の堤外と、市街地側の堤内との双方の堤防地中に受振器2が設置されている。計測結果解析装置3は、体積含水率推算手段31、破堤危険度推算手段40及び破堤危険度出力手段41から構成されている。
【0036】
次に、堤防に適用した土砂災害予知システムの動作について説明する。
まず、起振源1が振動を発生させる。それぞれの受振器2は、起振源1からの縦波及び横波の振動強度を計測し、その計測した振動強度信号(データ信号)を計測結果解析装置3に送信する。計測結果解析装置3においては、体積含水率推算手段31が、それぞれの受振器2から受信した振動強度信号から体積含水率を推算し、その推算した体積含水率を破堤危険度推算手段40に送信する。破堤危険度推算手段40は、図11のメカニズムに基づいて、その受信した体積含水率から破堤危険度を推算し、その推算した破堤危険度を破堤危険度出力手段41に送信する。破堤危険度推算手段40による破堤危険度の推算においては、過去の経験則や堤防9の構造、土質を考慮に入れたアルゴリズムを適用することが望ましい。
破堤危険度出力手段41は、破堤危険度推算手段40から受信した破堤危険度を、例えば、モニタ画面に色分けされた図として表示する。これは、自治体や河川8の管理者が破堤危険度を監視するために用いてもよいし、ネットワーク経由で住民5に開放してもよい。また、破堤危険度出力手段41が破堤警報を出力する機能を備えていてもよく、これによって住民5がネットワークに接続できなくても危険時にすばやく避難することが可能になる。
このような土砂災害予知システムを適用すれば、堤防9に起振源1及び受振器2を設置すればよいので、大規模な土木工事が不要になる。また、堤防9は人が入り易い箇所であるが、起振源1及び受振器2を用いれば、地表面に紐などの障害物が出ないため、設置箇所の制限を受けなくて済む。
【0037】
≪第4の実施の形態≫
本発明の第4の実施の形態は、前記土砂災害予知システムの出力内容を、地域情報提供システムのコンテンツの一つとして、住民5又は自治体に提供するものである。地域情報提供システムは、地域の住民5又は自治体向けの各種コンテンツを備えたシステムであり、そのベースとしてGIS(Geographical Information System、地理情報システム)を使用することが有用とされている。このGISの上に土砂災害予知システムで計算した崩壊警報や地中の体積含水率の情報を載せることで、他の地図データベースと連携して防災対策をとることができる。また、日常使用しているコンテンツと同じGISとすることで、豪雨時などのように災害発生が予測される事態においても、慌てたり、間違ったりすることなく適切に対処することが可能となる。図13は、本発明の第4の実施の形態に係る地域情報提供システムにおける崩壊警報の画面例である。図13に示すように、斜面などの崩壊危険度が高い地域の住民5に対しては、少なくとも崩壊警報及び地図、避難先を明示した画面を提供することが必要である。
ここで、地域情報提供システムの中に画面強制切替手段や画面電源投入手段を設けたものが考えられる。地域情報提供システムは複数のコンテンツを提供しており、他のコンテンツを使用している場合に崩壊警報が住民5に伝わらない可能性がある。そこで、画面強制切替手段を設けることにより、崩壊警報が発令されている地区の住民5は警報の発令を知ることができる。具体的には、土砂災害予知システムの崩壊警報出力手段39が崩壊情報を出力したときに、その画面強制切替手段が、地域情報提供システムの画面を、強制的に崩壊情報の画面に切り替える。実際に画面を切り替える方法としては、まず、地域情報提供システムの画面に対応するビットマップメモリを2面持っていて、通常のコンテンツを一方のビットマップメモリに格納し、その内容を画面に表示しておく。そして、崩壊情報が出力されたときに、その崩壊情報を他方のビットマップメモリに格納し、その内容を画面に表示する。すなわち、画面に対応するビットマップメモリを切り替えることによって、画面の切替を実現することができる。
また、地域情報提供システムの表示画面の電源がオフになっているため、崩壊警報が住民5に伝わらない可能性もある。そこで、画面電源投入手段を設けることによって、表示画面の電源を自動的に投入し、住民5が崩壊警報の発令を知ることができるようにする。具体的には、土砂災害予知システムの崩壊警報出力手段39が崩壊情報を出力したときに、その画面電源投入手段が、表示画面の電源投入信号に本来接続されている信号線(例えば、電源ボタンに連動する信号線)に対してOR接続された別の信号線をオンする。本来の信号線がオフになっていても、別の信号線をオンにすることによって、電源投入信号をオンにし、表示画面に電源を投入することができる。なお、地域情報提供システム自身について、同様の電源投入手段を設けてもよい。
【0038】
以上本発明について好適な実施の形態について一例を示したが、本発明は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
【0039】
【発明の効果】
以上説明した本発明によれば、設置箇所を選ばず、設置時に大規模な土木工事を必要としないような土砂災害予知システムを実現することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る土砂災害予知システムの機能ブロック図である。
【図2】 本発明の第1の実施の形態に係る地中の体積含水率が一定と仮定した場合における振動相対強度の距離に対する減衰を示した模式図である。
【図3】 本発明の第1の実施の形態に係る地中の一部に体積含水率の高い箇所がある場合における振動相対強度の距離に対する減衰を示した模式図である。
【図4】 本発明の第1の実施の形態に係る体積含水率分布を出力した画面例である。
【図5】 本発明の第1の実施の形態に係る体積含水率と崩壊危険度との関係を示す図である。
【図6】 本発明の第1の実施の形態に係る崩壊危険度分布を出力した画面例である。
【図7】 本発明の第1の実施の形態に係る土砂災害予知システムの動作の流れを示すフローチャートである。
【図8】 本発明の第1の実施の形態に係る縦波強度に対する横波強度の比率の分布を示す図である。
【図9】 本発明の第2の実施の形態に係る土砂災害予知システムの機能ブロック図である。
【図10】 本発明の第2の実施の形態に係る土砂災害予知システムにおいて使用されるセンサ構造体を示す図である。
【図11】 本発明の第3の実施の形態に係る浸透による破堤の発生メカニズムを示す図である。
【図12】 本発明の第3の実施の形態に係る土砂災害予知システムの機能ブロック図である。。
【図13】 本発明の第4の実施の形態に係る地域情報提供システムにおける崩壊警報の画面例である。
【符号の説明】
1…起振源
2…受振器
3…計測結果解析装置
4…斜面
5…住民
6…体積含水率の高い箇所
7…歪みセンサ
8…河川
9…堤防
31…体積含水率推算手段
32…体積含水率出力手段
33…体積含水率分布推算手段
34…体積含水率分布出力手段
35…崩壊危険度分布推算手段
36…崩壊危険度分布出力手段
37…しきい値設定手段
38…崩壊危険度比較手段
39…崩壊警報出力手段
40…破堤危険度推算手段
41…破堤危険度出力手段
51…地中観測センサ
52…無線発信機
53…アンテナ
54…センサ構造体
55…電波
61…太陽電池
62…蓄電池
71…振動発電素子
81…パイプ形状のセンサ構造体
91…樹脂製キャップ

Claims (17)

  1. 土砂内部の所定のデータを計測し、その計測したデータに基づいて土砂災害の予兆情報を出力する土砂災害予知システムであって、
    地中へ振動を発する起振源と、
    前記起振源から発せられた振動を計測する受振器と、
    少なくとも前記受振器が計測した振動の横波成分データを入力して、前記起振源から前記受振器までの間の地中の体積含水率を推算する体積含水率推算手段と、
    前記推算した地中の体積含水率を出力する体積含水率出力手段と、
    を備えたことを特徴とする土砂災害予知システム。
  2. 前記体積含水率推算手段は、
    少なくとも振動の縦波成分及び横波成分を算出式に含む指標を入力して、前記起振源から前記受振器までの間の地中の体積含水率を推算することを特徴とする請求項1に記載の土砂災害予知システム。
  3. 前記受振器を複数個備え、
    前記体積含水率推算手段が、前記複数の受振器からの入力データに基づいて、複数の体積含水率を推算すると共に、
    前記推算した複数の体積含水率データを入力して、地中の体積含水率の分布を推算する体積含水率分布推算手段と、
    前記推算した体積含水率の分布データを出力する体積含水率分布出力手段と、
    を備えたことを特徴とする請求項1又は請求項2に記載の土砂災害予知システム。
  4. 前記体積含水率分布推算手段が推算した体積含水率の分布データを入力して、崩壊危険度分布を推算する崩壊危険度分布推算手段と、
    前記推算した崩壊危険度分布データを出力する崩壊危険度分布出力手段と、
    を備えたことを特徴とする請求項3に記載の土砂災害予知システム。
  5. 崩壊警報を出力する崩壊危険度のしきい値を設定するしきい値設定手段と、
    前記推算した崩壊危険度分布における崩壊危険度の値と、前記設定したしきい値とを比較して、前記崩壊危険度の値が前記しきい値より大きいときに、崩壊警報のトリガを出力する崩壊危険度比較手段と、
    前記出力した崩壊警報のトリガを受けて、音声、音響又は通信手段によって崩壊警報を出力する崩壊警報出力手段と、
    を備えたことを特徴とする請求項4に記載の土砂災害予知システム。
  6. 地中の歪みを計測する歪みセンサを備えると共に、
    前記崩壊危険度分布推算手段が、前記歪みセンサが計測した歪みデータを入力して崩壊危険度分布を推算することを特徴とする請求項5に記載の土砂災害予知システム。
  7. 地中の導電率を計測する導電率センサを備えると共に、
    前記体積含水率推算手段が、前記導電率センサが計測した導電率データを入力して体積含水率を推算することを特徴とする請求項5又は請求項6に記載の土砂災害予知システム。
  8. 前記受振器、歪みセンサ又は導電率センサを地中に設置するためのセンサ構造体と、
    前記受振器、歪みセンサ又は導電率センサが計測したデータを送信する無線発信機と、
    実際に前記データを含む電波を発信するアンテナと、
    を備えたことを特徴とする請求項1乃至請求項7のいずれか一項に記載の土砂災害予知システム。
  9. 太陽電池及び蓄電池を、前記受振器、歪みセンサ、導電率センサ又は無線発信機の電源として備えたことを特徴とする請求項8に記載の土砂災害予知システム。
  10. 振動発電素子を、前記受振器、歪みセンサ、導電率センサ又は無線発信機の電源として備えたことを特徴とする請求項8に記載の土砂災害予知システム。
  11. 前記受振器、歪みセンサ又は導電率センサを、パイプ形状のセンサ構造体内の異なる位置に複数個備えたことを特徴とする請求項8乃至請求項10のいずれか一項に記載の土砂災害予知システム。
  12. 堤防内部の所定のデータを計測し、その計測したデータに基づいて堤防破壊の予兆情報を出力する土砂災害予知システムであって、
    堤防の上部に設置され、地中へ振動を発する起振源と、
    堤防の堤内側及び堤外側に設置され、前記起振源から発せられた振動を計測する受振器と、
    少なくとも前記受振器が計測した振動の横波成分データを入力して、前記起振源から前記受振器までの間の地中の体積含水率を推算する体積含水率推算手段と、
    前記推算した体積含水率データを入力して、破堤危険度を推算する破堤危険度推算手段と、
    前記推算した破堤危険度データを出力する破堤危険度出力手段と、
    を備えたことを特徴とする土砂災害予知システム。
  13. 請求項1乃至請求項12のいずれか一項に記載の土砂災害予知システムが出力する内容をコンテンツとして備えたことを特徴とする地域情報提供システム。
  14. 請求項5乃至請求項7のいずれか一項に記載の土砂災害予知システムの崩壊警報出力手段が出力する内容をコンテンツとして備えると共に、
    前記崩壊警報出力手段が崩壊警報を出力したときに、表示画面を強制的にその出力した崩壊警報の画面に切り替える画面強制切替手段、及び、表示画面の電源を自動的に投入する画面電源投入手段の少なくとも一方を備えたことを特徴とする地域情報提供システム。
  15. 土砂内部の所定のデータを計測し、その計測したデータに基づいて土砂災害の予兆情報を出力する土砂災害予知システムにおける土砂災害予知方法であって、
    起振源が地中へ振動を発し、
    受振器は前記起振源から発せられた動を計測し、
    少なくとも前記受振器が計測した振動の横波成分データを入力して、前記起振源から前記受振器までの間の地中の体積含水率を推算し、
    前記推算した地中の体積含水率を出力すること、
    特徴とする土砂災害予知方法。
  16. 請求項15に記載の土砂災害予知方法において、
    少なくとも振動の縦波成分及び横波成分を算出式に含む指標を入力して、前記起振源から前記受振器までの間の地中の体積含水率を推算すること
    特徴とする土砂災害予知方法。
  17. 請求項16に記載の土砂災害予知方法において、
    前記受振器を複数個備え、前記複数の受振器からの入力データに基づいて、複数の体積含水率を推算すると共に、前記推算した複数の体積含水率データを入力して、地中の体積含水率分布を推算
    前記推算した体積含水率分布データを入力して、崩壊危険度分布を推算
    前記推算した崩壊危険度分布における崩壊危険度の値と、予め設定され、崩壊警報のトリガを出力する崩壊危険度のしきい値とを比較して、前記崩壊危険度の値が前記しきい値より大きいときに、前記崩壊警報のトリガを出力し、
    前記出力した崩壊警報のトリガを受けて、音声、音響又は通信手段によって崩壊警報を出力すると、
    特徴とする土砂災害予知方法。
JP2003194722A 2003-07-10 2003-07-10 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法 Expired - Fee Related JP3894494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194722A JP3894494B2 (ja) 2003-07-10 2003-07-10 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194722A JP3894494B2 (ja) 2003-07-10 2003-07-10 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法

Publications (2)

Publication Number Publication Date
JP2005030843A JP2005030843A (ja) 2005-02-03
JP3894494B2 true JP3894494B2 (ja) 2007-03-22

Family

ID=34205782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194722A Expired - Fee Related JP3894494B2 (ja) 2003-07-10 2003-07-10 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法

Country Status (1)

Country Link
JP (1) JP3894494B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101887532B1 (ko) * 2017-05-18 2018-08-10 홍익대학교 산학협력단 점성토의 이방적 구조 추적을 이용한 점성토 지반의 대변형 사전경고 시스템 및 그 방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818010B2 (ja) * 2006-06-23 2011-11-16 常生 山内 地震時の建造物変形量に基づく地震マグニチュードの早期予測方法及び地震マグニチュードの早期予測プログラム
JP2008171260A (ja) * 2007-01-12 2008-07-24 Nagoya Institute Of Technology 遠隔ひずみセンサーシステム
JP2008249345A (ja) * 2007-03-29 2008-10-16 Toshiba Corp 地震観測待機システム、方法およびプログラム
JP2008292319A (ja) * 2007-05-24 2008-12-04 Kobe Steel Ltd 振動センサシステム
JP5680476B2 (ja) * 2011-04-28 2015-03-04 公益財団法人鉄道総合技術研究所 構造物の振動及び寸法の非接触計測による測定方法及びその測定装置
KR101103697B1 (ko) 2011-09-30 2012-01-11 주식회사 디케이이앤씨 강우강도와 토양함수율을 이용한 경사지 경보시스템
JP5941857B2 (ja) * 2013-02-28 2016-06-29 公益財団法人鉄道総合技術研究所 安全性評価装置、安全性評価方法、プログラム
JP6498660B2 (ja) 2013-03-26 2019-04-10 ルソスペース, プロジェクトス エンゲンハリア エリデーアー 表示装置
JP6107967B2 (ja) 2013-11-12 2017-04-05 日本電気株式会社 分析装置、分析方法および分析プログラム
JP5636585B1 (ja) * 2013-11-22 2014-12-10 独立行政法人農業・食品産業技術総合研究機構 地震計を用いた堤体の診断方法
US10719778B2 (en) 2014-05-14 2020-07-21 Nec Corporation Anomaly detection based on relational expression between vibration strengths at various frequencies
WO2015182079A1 (ja) * 2014-05-29 2015-12-03 日本電気株式会社 検知システム、検知装置、検知方法及びコンピュータ読み取り可能記録媒体
CA2952887C (en) 2014-07-10 2019-09-03 Lusospace, Projectos Engenharia Lda Display device
WO2016027291A1 (ja) 2014-08-21 2016-02-25 日本電気株式会社 斜面監視システム、斜面安全性解析装置、方法およびプログラム
TW201740088A (zh) * 2015-11-02 2017-11-16 Nec Corp 振動偵測器、觀測裝置、觀測系統
KR101654640B1 (ko) * 2016-03-07 2016-09-22 셀파이엔씨 주식회사 전류 트리거 방식의 탄성파 탐사장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101887532B1 (ko) * 2017-05-18 2018-08-10 홍익대학교 산학협력단 점성토의 이방적 구조 추적을 이용한 점성토 지반의 대변형 사전경고 시스템 및 그 방법

Also Published As

Publication number Publication date
JP2005030843A (ja) 2005-02-03

Similar Documents

Publication Publication Date Title
Tang et al. Geohazards in the three Gorges Reservoir Area, China–Lessons learned from decades of research
Crosta et al. Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide
Prendergast et al. A review of bridge scour monitoring techniques
Zeni et al. Brillouin optical time-domain analysis for geotechnical monitoring
Webb et al. Categories of SHM deployments: technologies and capabilities
Schenato et al. Distributed optical fibre sensing for early detection of shallow landslides triggering
CN103743441B (zh) 一种边坡安全的多元耦合在线监测系统及方法
Brownjohn Structural health monitoring of civil infrastructure
Chen et al. Structural health monitoring of large civil engineering structures
US6975942B2 (en) Underground utility detection system and method
CN104316108B (zh) 山地环境500kV输电塔在线监测系统构建及分析方法
US6647161B1 (en) Structural monitoring sensor system
Zhu et al. FBG-based monitoring of geohazards: current status and trends
Angeli et al. A critical review of landslide monitoring experiences
US4128011A (en) Investigation of the soundness of structures
Cheung et al. Field monitoring and research on performance of the Confederation Bridge
Terzis et al. Slip surface localization in wireless sensor networks for landslide prediction
Huang et al. Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements
Rajeev et al. Distributed optical fibre sensors and their applications in pipeline monitoring
Dixon et al. Quantification of reactivated landslide behaviour using acoustic emission monitoring
JP4859454B2 (ja) 侵食測定装置及びその施工方法並びにリアルタイムモニタリングシステム
Uchimura et al. Precaution and early warning of surface failure of slopes using tilt sensors
JP3153131U (ja) 情報発信杭
Yin et al. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China
TWI375020B (en) Method and device for the determination of damage or states of a mechanical structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees