WO2018028191A1 - 一种基于波段比模型和太阳高度角的tavi计算方法 - Google Patents

一种基于波段比模型和太阳高度角的tavi计算方法 Download PDF

Info

Publication number
WO2018028191A1
WO2018028191A1 PCT/CN2017/076022 CN2017076022W WO2018028191A1 WO 2018028191 A1 WO2018028191 A1 WO 2018028191A1 CN 2017076022 W CN2017076022 W CN 2017076022W WO 2018028191 A1 WO2018028191 A1 WO 2018028191A1
Authority
WO
WIPO (PCT)
Prior art keywords
tavi
remote sensing
sensing image
elevation angle
data
Prior art date
Application number
PCT/CN2017/076022
Other languages
English (en)
French (fr)
Other versions
WO2018028191A8 (zh
Inventor
江洪
汪小钦
陈崇成
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610648417.8A external-priority patent/CN106324614B/zh
Priority claimed from CN201611127461.0A external-priority patent/CN106600586B/zh
Application filed by 福州大学 filed Critical 福州大学
Priority to US15/740,011 priority Critical patent/US10527542B2/en
Publication of WO2018028191A1 publication Critical patent/WO2018028191A1/zh
Publication of WO2018028191A8 publication Critical patent/WO2018028191A8/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • G01N2021/1797Remote sensing in landscape, e.g. crops

Definitions

  • the invention relates to a TAVI calculation method based on a band ratio model and a solar elevation angle.
  • Empirical statistical model Such models mainly include cosine model, C correction model, SCS model, SCS+C model, Proy model, Minnaert model and so on.
  • DEM digital elevation model
  • These methods mainly use the digital elevation model (DEM) data to correct the direct solar radiation in the remote sensing image band, and reduce the difference in radiance between the shady slope and the sunny slope of the mountain, with good results.
  • DEM digital elevation model
  • these methods do not consider the effects of atmospheric scattered radiation and reflected radiation from surrounding terrain, and there may be correction problems.
  • DEM and remote sensing Problems such as the accuracy of registration between images restrict the wide application of such methods.
  • This type of model mainly generates vegetation index information that is not affected by or affected by terrain by calculating the wavelength division of remote sensing images. This type of model does not require additional input data, and is a special vegetation index to some extent, but the application effect is unstable, and the large-area promotion and application needs to further improve the stability and effect.
  • TAVI The Terrain Regulated Vegetation Index
  • the proposed algorithm includes two important components: the combination algorithm and the adjustment factor f( ⁇ ).
  • the TAVI combination algorithm is as in formula (2-1):
  • CVI vegetation index as a normalized difference vegetation index (NDVI), Key Index (the RVI) and the like;
  • the SVI shaded vegetation index where B r denotes the red band remote sensing data, M r represents the red band The maximum value of the data; f( ⁇ ) is the adjustment factor.
  • f( ⁇ ) About the adjustment factor.
  • the calculation steps of the "optimal matching" algorithm are as follows: (1) image classification, dividing the shady and sunny slopes of the mountain in the remote sensing image, selecting typical sample areas; (2) target identification, using ground survey data, field survey data, and aerial data Or GoogleEarth's high-resolution image data to verify the homogeneity of the vegetation on the shady slope and the sunny slope, and identify the part of the typical plot where the shady slope is consistent with or close to the sunny slope vegetation; (3) Optimize the match so that f( ⁇ ) is from 0 At the beginning, increase in order, and investigate the change of vegetation index value of TAVI in the same part of the typical plot of the shady slope and the sunny slope vegetation.
  • the optimal result of f( ⁇ ) can be determined.
  • the calculation steps of the "extreme value optimization" algorithm are as follows: (1) image classification, dividing the shady slope and the sunny slope of the mountain in the remote sensing image; (2) calculating the extremum, calculating the maximum value of the TAVI part of the shady slope M TAVI yin and sun slope portion The maximum value of TAVI is M TAVI ⁇ ; (3) Iterative optimization, let f( ⁇ ) start from 0 and increase sequentially, and when the condition of formula (2-3) is satisfied, the f( ⁇ ) optimal value is obtained.
  • the above two f( ⁇ ) calculation methods can effectively reduce the influence of terrain on mountain vegetation information without the support of data such as DEM; however, the two optimization algorithms are highly empirical and have weak physical meanings, and both require remote sensing images. sort. Among them, the "optimal matching" algorithm also needs the support of ground data, and the “extreme value optimization” algorithm is easy to fall into the local optimum rather than the global optimal, which limits the level of automation application of TAVI, which is not conducive to the widespread promotion of TAVI. application.
  • the method builds a new and more stable SVI index based on the basic principle of the band ratio model, and optimizes the RVI and the new SVI to calculate the TAVI algorithm more accurately and easily.
  • a new algorithm based on solar height angle adjustment factor f( ⁇ ) is proposed, which does not require DEM data and remote sensing image classification. It does not depend on ground survey data and has practical physical meaning. It is accurate for TAVI in complex terrain mountain vegetation information.
  • the wide-scale application and promotion of inversion has important scientific significance and economic value.
  • a TAVI calculation method based on a band ratio model and a solar elevation angle which includes the following steps: Step S1: pre-processing a remote sensing image, and performing radiation correction on the remote sensing image, Generating image apparent reflectance data; step S2: counting the apparent reflectance data of the red light band and the near infrared band of the remote sensing image; It is reasonable to determine whether the reflectivity of mountain vegetation in these two bands is reasonable and whether the image is normally available.
  • Step S3 Calculate the shadow vegetation index SVI, the formula is as follows:
  • SVI is the shadow vegetation index
  • B r is the apparent reflectance data of the red light band of the remote sensing image
  • Step S4 Construct a TAVI combination algorithm, as follows:
  • TAVI is the topographically adjusted vegetation index
  • f( ⁇ ) is the adjustment factor
  • B ir is the apparent reflectance data of the near-infrared band of the remote sensing image
  • B r is the apparent reflectance data of the red light band of the remote sensing image
  • Step S5 When reading the solar elevation angle of the satellite transit from the remote sensing image header file, calculate f( ⁇ ) according to the following formula:
  • Step S6 Substituting the calculation result of f( ⁇ ) calculated by the formula (3-3) into the formula (3-2), and obtaining the vegetation index information of the mountainous terrain resistance effect.
  • the invention has the following beneficial effects:
  • the new TAVI combination algorithm consists of two sub-models, RVI and SVI. Both sub-models meet the requirements of the band ratio model, and the forms are concise and similar, and the denominator is the red-light band data of the remote sensing image. , with a stronger band than the physical basis.
  • using the solar elevation angle to calculate the adjustment factor f( ⁇ ) has a clear physical meaning.
  • the overall calculation process of the new TAVI calculation method is simpler, which greatly improves the automation level of TAVI application.
  • the TAVI calculation method determined by the present invention ensures that TAVI can effectively eliminate the interference of terrain influence on vegetation information; and the application of Landsat multi-spectral remote sensing image data of different time phases in the study area (including Landsat5 TM) And Landsat8 OLI image data), indicating that the present invention can ensure that the absolute value of the correlation coefficient between the TAVI of the Landsat5TM and Landsat8OLI images and the cosine of the incident angle of the sun is less than 0.1 (Table 1), which is superior to other commonly used. Vegetation index is better than NDVI calculated based on DEM-based C-corrected images ( Figure 1).
  • the study area in Figure 1 ranges from 119°25′7′′-119°31′27′′ east longitude, 26°6′35′′-26°12′15′′ north latitude; RVI, NDVI, NDVI (C correction), TAVI and sun
  • the correlation coefficients of the cosine of the incident angle (cosi) are 0.561, 0.524, 0.119, and 0.049, respectively.
  • the data demand is low and the cost is low: the invention only needs the band data and the solar altitude angle data carried by the remote sensing image itself, and does not need the support of DEM data, ground survey data or field research data, and the data cost and time cost are minimized.
  • both atmospheric correction effect Since the SVI is an inverse transformation of the red band data, the area of the remote sensing image that is affected by the terrain and the atmospheric influence will be compensated to different degrees (similar to the dark pixel method), so the new TAVI combination algorithm has a certain degree. Atmospheric correction effect.
  • the new TAVI combination algorithm can be applied to apparent reflectance data, and can also be applied to radiance value data and DN value data. This provides a solution for some sensors lacking ground calibration parameters for accurate monitoring of mountain vegetation information. A new and important technical means.
  • FIG. 2 is a schematic diagram of the technical flow of the present invention.
  • Step S2 Image quality analysis: statistically calculate the apparent reflectance data of the red-light band and the near-infrared band of the remote sensing image (calculate the mean, median, and variance indicators of the two bands), and analyze whether the reflectivity of the mountainous vegetation in these two bands is reasonable. , to determine if the image is normal and available.
  • Step S3 Calculate the shadow vegetation index SVI, and the formula is as follows:
  • SVI is the shadow vegetation index
  • B r is the apparent reflectance data of the red light band of the remote sensing image.
  • TAVI is the topographically adjusted vegetation index
  • f( ⁇ ) is the adjustment factor
  • B ir is the apparent reflectance data of the near-infrared band of the remote sensing image
  • B r is the apparent reflectance data of the red light band of the remote sensing image.
  • s is a sensor parameter.
  • the default value is 1, and the values of different sensors are slightly fine-tuned, wherein the Landsat 5 TM data value is 0.9, and the Landsat 8 OLI data value is 1.2; For the sun's elevation angle.
  • Step S6 Calculate TAVI vegetation information. Substituting the calculation result of f( ⁇ ) calculated by formula (4-3) into formula (4-2), the vegetation index information of mountainous terrain resistance is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于波段比模型和太阳高度角的TAVI计算方法,包括以下步骤:影像预处理得到遥感影像表观反射率数据,分析影像质量与数值分布,计算阴影植被指数SVI,构建TAVI组合算法:TAVI=Bir/Br+f(Δ)⋅1/Br,用太阳高度角计算调节因子f(Δ),最后得到抗地形影响的TAVI植被信息;TAVI由RVI和SVI两个波段比子模型构成,分母都为遥感影像红光波段数据,调节因子f(Δ)以太阳高度角作为计算参数,并引入传感器因子,具有较强的物理意义;该TAVI计算方法无需DEM数据和遥感影像分类,同时不依赖于地面调查数据,并确保TAVI能有效消除地形影响对植被信息的干扰,避免了由于遥感影像与DEM数据配准精度差异导致的地物植被信息反演精度下降的问题。

Description

一种基于波段比模型和太阳高度角的TAVI计算方法 技术领域
本发明涉及一种基于波段比模型和太阳高度角的TAVI计算方法。
背景技术
在复杂地形山区,受地形影响,太阳辐射在山区地表的分布发生变化,在遥感影像山体阴坡部分辐射亮度值变小,而阳坡部分辐射亮度值变大,导致严重的“同物异谱”和“同谱异物”等问题。采用常规遥感植被指数方法反演山区植被有关生物物理参数的精度相应降低。因此,削减地形影响成为复杂地形山区植被遥感面临的重要问题。目前主要的纠正思路和模型有:
(一)经验统计模型。此类模型主要有余弦模型、C校正模型、SCS模型、SCS+C模型、Proy模型、Minnaert模型等。这些方法主要利用数字高程模型(DEM)数据校正遥感影像波段的太阳直射辐射,缩小山体阴坡、阳坡的辐射亮度差异,效果良好。但这些方法未考虑大气散射辐射和周围地形反射辐射的影响,会出现过校正问题;同时,由于高精度DEM数据的精度和可获取性(如保密限制、数据更新周期长等),DEM和遥感影像之间配准精度等问题,制约了这类方法大范围推广应用。
(二)山地辐射传输模型。这类模型是基于辐射传输理论的物理模型,通过研究光与地表作用的物理过程,结合DEM数据进行地形校正。这种方法理论上可以消除因复杂地形导致的遥感影像中太阳直射辐射、大气散射辐射和周围地形反射辐射的影响。但模型参数复杂,所需参数数据的获取难度大,制约了该模型大范围推广应用。
(三)波段比模型。这类模型主要通过对遥感影像的波段进行相除等计算,直接生成不受或少受地形影响的植被指数信息。这类模型不要求额外的输入数据,在某种程度上是一种特殊的植被指数,但应用效果不稳定,大面积推广应用需进一步提升稳定性和效果。
地形调节植被指数(TAVI)是一类特殊的波段比模型,现已提出的算法中包括组合算法和调节因子f(Δ)两个重要组成部分。其中,TAVI组合算法如公式(2-1):
TAVI=CVI+f(Δ)·SVI             (2-1)
Figure PCTCN2017076022-appb-000001
式中,CVI为常规植被指数,如归一化植被指数(NDVI)、比值植被指数(RVI)等;SVI为阴影植被指数,其中Br表示遥感影像红光波段数据,Mr表示红光波段数据的最大值;f(Δ)为调节因子。
关于组合算法。由于CVI数量较多,在实际应用时选择何种具体植被指数没有统一标准,容易造成混淆;而SVI算法的分子是个变量,导致SVI计算结果不稳定。因此,现有RVI和SVI的组合形式存在较大不确定性,影响到TAVI的大范围推广应用。
关于调节因子。现有f(Δ)计算方法主要有2种:“寻优匹配法”和“极值优化法”。“寻优匹配”算法计算步骤为:(1)影像分类,划分遥感影像中山体的阴坡和阳坡,选取典型样区;(2)目标识别,借助地面调查资料、实地考察数据、航拍资料或者GoogleEarth的高分辨率影像数据等核实阴坡与阳坡植被的均质性,识别典型样区阴坡与阳坡植被一致或接近的部分;(3)优化匹配,令f(Δ)从0开始,依次递增,考察TAVI在典型样区阴坡与阳坡植被一致部分的植被指数值变化,当二者相等时,即可确定f(Δ)的最优结果。“极值优化”算法计算步骤为:(1)影像分类,划分遥感影像中山体的阴坡和阳坡;(2)计算极值,计算阴坡部分TAVI的最大值MTAVI 与阳坡部分TAVI的最大值MTAVI阳;(3)迭代寻优,令f(Δ)从0开始,依次递增,当满足公式(2-3)的条件时,得到f(Δ)最优值。
|MTAVI阴-MTAVI阳|≤ε,ε→0,f(Δ)=0~∞      (2-3)
上述2种f(Δ)计算方法都无需DEM等数据的支持,就能有效削减地形对山区植被信息的影响;但这2种优化算法经验性强而物理意义偏弱,并都需要对遥感影像进行分类。其中,“寻优匹配”算法还需要地面数据等的支持,而“极值优化”算法容易陷入局部最优而非全局最优,这都限制了TAVI的自动化应用水平,不利于TAVI大范围推广应用。
发明内容
有鉴于此,本发明的目的在于提供一种基于波段比模型和太阳高度角的TAVI计算方法。该方法基于波段比模型基本原理构建了新的更具稳定性的SVI指数,并优选了RVI与新的SVI进行组合计算,使TAVI算法更精确、应用更简便。同时,提出一种基于太阳高度角的调节因子f(Δ)新算法,无需DEM数据和遥感影像分类,同时不依赖于地面调查数据,并具有实际物理意义,对TAVI在复杂地形山区植被信息准确反演的大范围应用推广具有重要的科学意义与经济价值。
为实现上述目的,本发明采用如下技术方案:一种基于波段比模型和太阳高度角的TAVI计算方法,其包括以下步骤:步骤S1:对遥感影像进行预处理,通过对遥感影像进行辐射校正,生成影像表观反射率数据;步骤S2:统计遥感影像红光波段和近红外波段表观反射率数据;分 析山区植被在这两个波段反射率是否合理,决定影像是否正常可用;步骤S3:计算阴影植被指数SVI,公式如下:
Figure PCTCN2017076022-appb-000002
其中:SVI为阴影植被指数;Br为遥感影像红光波段表观反射率数据;
步骤S4:构建TAVI组合算法,具体如下:
Figure PCTCN2017076022-appb-000003
其中:TAVI为地形调节植被指数;f(Δ)为调节因子;Bir为遥感影像近红外波段表观反射率数据;Br为遥感影像红光波段表观反射率数据;
步骤S5:从遥感影像头文件读取卫星过境时太阳高度角,按以下公式计算f(Δ):
f(Δ)=s-sin(α)                 (3-3)
其中:s为传感器参数,α为太阳高度角;步骤S6:将公式(3-3)计算的f(Δ)计算结果代入公式(3-2),得出山区抗地形影响的植被指数信息。
本发明与现有技术相比具有以下有益效果:
1、物理意义更明确、计算更简单:新的TAVI组合算法由RVI和SVI两个子模型组成,这两个子模型都满足波段比模型要求,形式简洁相近,而且分母都为遥感影像红光波段数据,具有更强的波段比物理意义基础。同时,采用太阳高度角计算调节因子f(Δ),具有明确的物理意义。此外,新的TAVI计算方法整体计算流程更简单,大大提升了TAVI应用自动化水平。
2、地形校正效果明显:本发明确定的TAVI计算方法,保证TAVI能有效消除地形影响对植被信息的干扰;通过对研究区图1中不同时相Landsat多光谱遥感影像数据的应用(包括Landsat5 TM和Landsat8 OLI影像数据),表明本发明能保证不同时相Landsat5 TM和Landsat8OLI影像的TAVI与太阳入射角余弦值(cosi)的相关系数绝对值平均值低于0.1(表1),优于其它常用植被指数,比基于DEM的C校正影像计算的NDVI效果还好(图1)。
图1中研究区范围在东经119°25′7″-119°31′27″,北纬26°6′35″-26°12′15″;RVI、NDVI、NDVI(C校正)、TAVI与太阳入射角余弦值(cosi)的相关系数分别为0.561、0.524、0.119、0.049。
表1 不同时相Landsat数据f(Δ)调节因子计算结果与TAVI抗地形影响效果比较
Figure PCTCN2017076022-appb-000004
3、数据需求少,成本低:本发明只需要遥感影像自身携带的波段数据和太阳高度角数据,无需DEM数据、地面调查数据或实地考察数据等的支持,数据成本与时间成本实现最小化。
4、兼具大气校正效果。由于SVI是对红光波段数据的逆变换,遥感影像中受地形影响和大气影响导致植被信息减弱的区域将得到不同程度的补偿(类似暗像元法),因此新的TAVI组合算法具有一定程度的大气校正效果。
5、适用性广。新的TAVI组合算法可以适用于表观反射率数据,也可以修改应用于辐射亮度值数据与DN值数据,这为一些缺乏地面定标参数的传感器在山区植被信息准确监测中的应用提供了一种新的重要技术手段。
附图说明
图1为本发明研究区中影像对比示意图。
图2是本发明技术流程示意图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图2,本发明提供一种基于波段比模型和太阳高度角的TAVI计算方法,其特征在于包括以下步骤:
步骤S1:影像预处理:对多光谱遥感影像进行辐射校正,生成影像表观反射率数据。
步骤S2:影像质量分析:统计遥感影像红光波段和近红外波段表观反射率数据(计算这两个波段均值、中值、方差等指标),分析山区植被在这两个波段反射率是否合理,决定影像是否正常可用。
步骤S3:计算阴影植被指数SVI,公式如下:
Figure PCTCN2017076022-appb-000005
其中:SVI为阴影植被指数;Br为遥感影像红光波段表观反射率数据。
步骤S4:构建TAVI组合算法,具体如下:
Figure PCTCN2017076022-appb-000006
其中:TAVI为地形调节植被指数;f(Δ)为调节因子;Bir为遥感影像近红外波段表观反射率数据;Br为遥感影像红光波段表观反射率数据。
步骤S5:计算调节因子f(Δ)。从遥感影像头文件读取卫星过境时太阳高度角,按以下公式计算f(Δ):
f(Δ)=s-sin(α)                 (4-3)
式中,s为传感器参数,在本发明一实施例中,默认取值为1,不同传感器取值略做微调,其中Landsat 5 TM数据取值为0.9,Landsat 8 OLI数据取值为1.2;α为太阳高度角。
步骤S6:计算TAVI植被信息。将公式(4-3)计算的f(Δ)计算结果代入公式(4-2),得出山区抗地形影响的植被指数信息。
其中遥感影像包括光学遥感影像数据。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

  1. 一种基于波段比模型和太阳高度角的TAVI计算方法,其特征在于,包括以下步骤:
    步骤S1:对遥感影像进行预处理,通过对遥感影像进行辐射校正,生成影像表观反射率数据;
    步骤S2:统计遥感影像红光波段和近红外波段表观反射率数据;分析山区植被在这两个波段反射率是否合理,决定影像是否正常可用;
    步骤S3:计算阴影植被指数SVI,公式如下:
    Figure PCTCN2017076022-appb-100001
    其中:SVI为阴影植被指数;Br为遥感影像红光波段表观反射率数据;
    步骤S4:构建TAVI组合算法,具体如下:
    Figure PCTCN2017076022-appb-100002
    其中:TAVI为地形调节植被指数;f(Δ)为调节因子;Bir为遥感影像近红外波段表观反射率数据;Br为遥感影像红光波段表观反射率数据;
    步骤S5:从遥感影像头文件读取卫星过境时太阳高度角,按以下公式计算f(Δ):
    f(Δ)=s-sin(α)                 (1-3)
    其中:s为传感器参数,α为太阳高度角;
    步骤S6:将公式(1-3)计算的f(Δ)计算结果代入公式(1-2),得出山区抗地形影响的植被指数信息。
  2. 根据权利要求1所述的基于波段比模型和太阳高度角的TAVI计算方法,其特征在于:所述遥感影像包括光学遥感影像数据。
  3. 根据权利要求1所述的基于波段比模型和太阳高度角的TAVI计算方法,其特征在于:s为传感器参数,默认取值为1,依不同传感器而定。
  4. 根据权利要求1所述的基于波段比模型和太阳高度角的TAVI计算方法,其特征在于:所述步骤S2中还包括:计算红光波段和近红外波段的均值、中值、方差及其他指标。
PCT/CN2017/076022 2016-08-10 2017-03-09 一种基于波段比模型和太阳高度角的tavi计算方法 WO2018028191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/740,011 US10527542B2 (en) 2016-08-10 2017-03-19 Method of calculating TAVI based on a band ratio model and solar altitude angle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610648417.8 2016-08-10
CN201610648417.8A CN106324614B (zh) 2016-08-10 2016-08-10 一种新的tavi组合算法
CN201611127461.0 2016-12-09
CN201611127461.0A CN106600586B (zh) 2016-12-09 2016-12-09 一种基于太阳高度角的tavi调节因子算法

Publications (2)

Publication Number Publication Date
WO2018028191A1 true WO2018028191A1 (zh) 2018-02-15
WO2018028191A8 WO2018028191A8 (zh) 2023-03-30

Family

ID=61162611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076022 WO2018028191A1 (zh) 2016-08-10 2017-03-09 一种基于波段比模型和太阳高度角的tavi计算方法

Country Status (2)

Country Link
US (1) US10527542B2 (zh)
WO (1) WO2018028191A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110502994A (zh) * 2019-07-19 2019-11-26 河南大学 一种基于OpenACC的归一化植被指数并行提取方法
CN110929423A (zh) * 2019-12-17 2020-03-27 山东科技大学 一种综合干旱模型的土壤含水量反演方法
CN111354054A (zh) * 2020-03-13 2020-06-30 中山大学 一种极地可见光遥感自适应制图方法
CN111666918A (zh) * 2020-06-22 2020-09-15 大连海洋大学 一种基于多因素的海岸线变化识别方法
CN111931648A (zh) * 2020-08-10 2020-11-13 成都思晗科技股份有限公司 一种基于Himawari8波段数据的山火实时监测方法
CN112666121A (zh) * 2020-12-17 2021-04-16 淮阴师范学院 基于红外光谱的植被与非植被识别方法
CN112924401A (zh) * 2019-12-06 2021-06-08 中国科学院光电研究院 一种植被冠层叶绿素含量半经验反演方法
CN112964643A (zh) * 2021-02-03 2021-06-15 福州大学 一种遥感影像可见光波段地形落影校正方法
CN113672847A (zh) * 2021-08-18 2021-11-19 滁州学院 一种基于卫星遥感数据的积雪多角度二向反射率反演方法
CN113837078A (zh) * 2021-09-24 2021-12-24 大连海洋大学 水体卤虫分布的确定方法
CN113960625A (zh) * 2021-10-22 2022-01-21 自然资源部第二海洋研究所 一种基于星载单光子激光主被动遥感融合的水深反演方法
CN116701819A (zh) * 2023-06-13 2023-09-05 昆明理工大学 一种植被总初级生产力的遥感反演方法
CN116935222A (zh) * 2023-07-25 2023-10-24 珠江水利委员会珠江水利科学研究院 一种遥感影像蓝波段模拟方法、系统及可读存储介质

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753520B2 (ja) * 2017-03-31 2020-09-09 日本電気株式会社 植生影響算出装置、植生影響算出システム及び植生影響算出プログラム
CN109345611A (zh) * 2018-10-31 2019-02-15 龙源(北京)风电工程设计咨询有限公司 一种基于遥感影像的地表粗糙度图的制图方法
CN109635765B (zh) * 2018-12-19 2023-08-29 海南空天信息研究院 一种浅海珊瑚礁遥感信息自动提取方法
CN109740220B (zh) * 2018-12-25 2023-08-18 核工业北京地质研究院 一种山区邻近地表反射辐射的计算方法
CN109948175B (zh) * 2019-01-14 2020-11-03 广州地理研究所 基于气象数据的卫星遥感反照率缺失值反演方法
CN109886962B (zh) * 2019-03-27 2022-08-09 南京林业大学 基于lai和多角度数据的植被覆盖与管理措施因子的遥感反演方法
US11270112B2 (en) * 2019-04-16 2022-03-08 Precision Silver, LLC Systems and methods for rating vegetation health and biomass from remotely sensed morphological and radiometric data
CN110347499B (zh) * 2019-06-13 2021-04-16 武汉大学 一种遥感影像瓦片生成及实时部署的方法
CN112446256A (zh) * 2019-09-02 2021-03-05 中国林业科学研究院资源信息研究所 一种基于深度isa数据融合的植被类型识别方法
CN111222453B (zh) * 2020-01-03 2022-06-14 武汉大学 基于密集连接和几何结构约束的遥感影像变化检测方法
CN111157524B (zh) * 2020-01-09 2022-09-27 北京观澜智图科技有限公司 基于高分影像的道路材质识别方法及装置和电子设备
CN111650129B (zh) * 2020-03-05 2022-07-01 广东省科学院广州地理研究所 一种荔枝叶片钙含量预测方法及预测装置
CN111612685B (zh) * 2020-04-07 2023-05-16 河南大学 面向遥感影像的gpu动态自适应加速方法
CN111487200A (zh) * 2020-04-27 2020-08-04 中国科学院空天信息创新研究院 一种植被指数产品的计算方法及装置
CN111598961B (zh) * 2020-05-22 2022-02-01 中国科学院西北生态环境资源研究院 地物信息提取方法、装置、电子设备及存储介质
CN111833446A (zh) * 2020-06-24 2020-10-27 浙江省测绘科学技术研究院 一种基于特征线提取的架空地物快速纠正方法
CN112364691B (zh) * 2020-10-10 2024-02-09 广东省科学院生态环境与土壤研究所 一种烟草病虫害识别方法
CN112666120B (zh) * 2020-12-17 2024-04-05 淮阴师范学院 基于近红外光谱的植被与非植被识别指数构建方法
CN112835115B (zh) * 2021-01-07 2022-04-19 中铁工程设计咨询集团有限公司 一种活动断裂解译方法及装置
CN113125351B (zh) * 2021-03-25 2022-11-29 国家卫星气象中心(国家空间天气监测预警中心) 一种多时次遥感影像优化合成方法及系统
CN113870147A (zh) * 2021-10-19 2021-12-31 北京航空航天大学 一种考虑阴影区域的遥感图像brdf校正方法
CN113989664A (zh) * 2021-10-21 2022-01-28 中铁第四勘察设计院集团有限公司 一种遥感影像的分类方法、装置、设备和存储介质
CN114841231B (zh) * 2022-03-21 2024-04-09 赛思倍斯(绍兴)智能科技有限公司 一种农作物遥感分类方法及系统
CN115824972B (zh) * 2022-11-29 2023-07-25 中国科学院空天信息创新研究院 一种内陆水体半解析透明度反演方法和系统
CN117935082A (zh) * 2024-03-22 2024-04-26 青岛星科瑞升信息科技有限公司 基于机器学习的夜间图像处理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068816B1 (en) * 2002-01-15 2006-06-27 Digitalglobe, Inc. Method for using remotely sensed data to provide agricultural information
CN101561502A (zh) * 2009-05-07 2009-10-21 福州大学 地形校正植被指数的构造方法
CN101825702A (zh) * 2010-05-24 2010-09-08 福州大学 地形调节植被指数的地形调节优化方法
CN104142142A (zh) * 2014-07-01 2014-11-12 北京师范大学 全球植被覆盖度估算方法
CN105487066A (zh) * 2015-11-20 2016-04-13 福州大学 一种新型tavi地形调节因子优化算法
CN106324614A (zh) * 2016-08-10 2017-01-11 福州大学 一种新的tavi组合算法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764819A (en) * 1991-10-18 1998-06-09 Dekalb Genetics Corporation Methods for classifying plants for evaluation and breeding programs by use of remote sensing and image analysis technology
BRPI0915065B1 (pt) * 2008-06-06 2019-12-03 Monsanto Technology Llc geração de produtos de informação agrícola utilizando sensoriamento remoto
US9684673B2 (en) * 2013-12-04 2017-06-20 Urthecast Corp. Systems and methods for processing and distributing earth observation images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068816B1 (en) * 2002-01-15 2006-06-27 Digitalglobe, Inc. Method for using remotely sensed data to provide agricultural information
CN101561502A (zh) * 2009-05-07 2009-10-21 福州大学 地形校正植被指数的构造方法
CN101825702A (zh) * 2010-05-24 2010-09-08 福州大学 地形调节植被指数的地形调节优化方法
CN104142142A (zh) * 2014-07-01 2014-11-12 北京师范大学 全球植被覆盖度估算方法
CN105487066A (zh) * 2015-11-20 2016-04-13 福州大学 一种新型tavi地形调节因子优化算法
CN106324614A (zh) * 2016-08-10 2017-01-11 福州大学 一种新的tavi组合算法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110502994A (zh) * 2019-07-19 2019-11-26 河南大学 一种基于OpenACC的归一化植被指数并行提取方法
CN110502994B (zh) * 2019-07-19 2022-10-04 河南大学 一种基于OpenACC的归一化植被指数并行提取方法
CN112924401B (zh) * 2019-12-06 2022-09-16 中国科学院光电研究院 一种植被冠层叶绿素含量半经验反演方法
CN112924401A (zh) * 2019-12-06 2021-06-08 中国科学院光电研究院 一种植被冠层叶绿素含量半经验反演方法
CN110929423A (zh) * 2019-12-17 2020-03-27 山东科技大学 一种综合干旱模型的土壤含水量反演方法
CN110929423B (zh) * 2019-12-17 2023-04-14 山东科技大学 一种综合干旱模型的土壤含水量反演方法
CN111354054A (zh) * 2020-03-13 2020-06-30 中山大学 一种极地可见光遥感自适应制图方法
CN111354054B (zh) * 2020-03-13 2023-03-31 中山大学 一种极地可见光遥感自适应制图方法
CN111666918A (zh) * 2020-06-22 2020-09-15 大连海洋大学 一种基于多因素的海岸线变化识别方法
CN111666918B (zh) * 2020-06-22 2023-08-15 大连海洋大学 一种基于多因素的海岸线变化识别方法
CN111931648A (zh) * 2020-08-10 2020-11-13 成都思晗科技股份有限公司 一种基于Himawari8波段数据的山火实时监测方法
CN111931648B (zh) * 2020-08-10 2023-08-01 成都思晗科技股份有限公司 一种基于Himawari8波段数据的山火实时监测方法
CN112666121A (zh) * 2020-12-17 2021-04-16 淮阴师范学院 基于红外光谱的植被与非植被识别方法
CN112666121B (zh) * 2020-12-17 2024-04-05 淮阴师范学院 基于红外光谱的植被与非植被识别方法
CN112964643B (zh) * 2021-02-03 2022-04-19 福州大学 一种遥感影像可见光波段地形落影校正方法
CN112964643A (zh) * 2021-02-03 2021-06-15 福州大学 一种遥感影像可见光波段地形落影校正方法
CN113672847A (zh) * 2021-08-18 2021-11-19 滁州学院 一种基于卫星遥感数据的积雪多角度二向反射率反演方法
CN113837078A (zh) * 2021-09-24 2021-12-24 大连海洋大学 水体卤虫分布的确定方法
CN113837078B (zh) * 2021-09-24 2024-02-02 大连海洋大学 水体卤虫分布的确定方法
CN113960625A (zh) * 2021-10-22 2022-01-21 自然资源部第二海洋研究所 一种基于星载单光子激光主被动遥感融合的水深反演方法
CN116701819A (zh) * 2023-06-13 2023-09-05 昆明理工大学 一种植被总初级生产力的遥感反演方法
CN116935222A (zh) * 2023-07-25 2023-10-24 珠江水利委员会珠江水利科学研究院 一种遥感影像蓝波段模拟方法、系统及可读存储介质
CN116935222B (zh) * 2023-07-25 2024-02-13 珠江水利委员会珠江水利科学研究院 一种遥感影像蓝波段模拟方法、系统及可读存储介质

Also Published As

Publication number Publication date
US20180356339A1 (en) 2018-12-13
WO2018028191A8 (zh) 2023-03-30
US10527542B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2018028191A1 (zh) 一种基于波段比模型和太阳高度角的tavi计算方法
CN108662991B (zh) 基于遥感卫星数据的地块尺度冬小麦叶面积指数估算方法
Campagnolo et al. Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS
Zou et al. Photographic measurement of leaf angles in field crops
Guo et al. Atmospheric correction comparison of SPOT-5 image based on model FLAASH and model QUAC
CN103500325B (zh) 基于光学和热红外遥感影像的表碛覆盖型冰川识别方法
CN102901516A (zh) 一种基于绝对辐射定标的多光谱影像辐射校正方法
CN103018736A (zh) 一种基于大气参数遥感反演的星载遥感器辐射定标方法
CN108982369B (zh) 融合gf-1wfv和modis数据的地块尺度作物长势监测方法
CN109344536A (zh) 一种耦合多源数据的多层次被动微波土壤水分验证方法
CN105160631A (zh) 一种求辐射校正系数的方法
CN110987821A (zh) 一种高光谱快速大气校正参数化方法
CN106324614B (zh) 一种新的tavi组合算法
CN113252583B (zh) 一种基于枯草植被指数计算高寒枯草覆盖度的方法
CN102901563B (zh) 一种同时确定地表窄波段和宽波段比辐射率的方法及装置
CN107688003A (zh) 一种消除植被冠层结构和地表背景影响的叶片反射率卫星遥感提取方法
CN110009584B (zh) 基于参考光谱匹配的多光谱遥感影像大气校正系统及方法
CN115187481A (zh) 一种机载推扫式高光谱影像辐射扰动校正方法
Li et al. An Operational Split-Window Algorithm for Generating Long-Term Land Surface Temperature Products from Chinese Fengyun-3 Series Satellite Data
CN106600586B (zh) 一种基于太阳高度角的tavi调节因子算法
CN108827880A (zh) 基于多光谱影像和ndvi时间序列的地表覆盖变化检测方法
CN110702228B (zh) 一种航空高光谱影像的边缘辐射校正方法
Markelin et al. Validation of the radiometric processing chain of the Leica ADS40 airborne photogrammetric sensor
Zheng et al. Ice/snow surface temperature retrieval from chinese FY-3d MERSI-II data: algorithm and preliminary validation
CN110411565B (zh) 一种由多光谱地表反射率推演高光谱地表反射率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838326

Country of ref document: EP

Kind code of ref document: A1