WO2018180642A1 - 合成装置、及び、計量機構 - Google Patents

合成装置、及び、計量機構 Download PDF

Info

Publication number
WO2018180642A1
WO2018180642A1 PCT/JP2018/010612 JP2018010612W WO2018180642A1 WO 2018180642 A1 WO2018180642 A1 WO 2018180642A1 JP 2018010612 W JP2018010612 W JP 2018010612W WO 2018180642 A1 WO2018180642 A1 WO 2018180642A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
solution
measuring
intermediate container
pipes
Prior art date
Application number
PCT/JP2018/010612
Other languages
English (en)
French (fr)
Inventor
千草 井中
主 丹羽
岩出 卓
和徳 中北
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017065475A external-priority patent/JP6863794B2/ja
Priority claimed from JP2017065444A external-priority patent/JP6901302B2/ja
Priority claimed from JP2017065524A external-priority patent/JP6901303B2/ja
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to CN201880021509.0A priority Critical patent/CN110709161A/zh
Priority to US16/498,012 priority patent/US11504686B2/en
Publication of WO2018180642A1 publication Critical patent/WO2018180642A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/004Multifunctional apparatus for automatic manufacturing of various chemical products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0033Optimalisation processes, i.e. processes with adaptive control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00067Liquid level measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00184Controlling or regulating processes controlling the weight of reactants in the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00698Measurement and control of process parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes

Definitions

  • the measuring mechanism has a plurality of pipes aggregated and has a measuring container into which a solution is introduced from each of the pipes, and the solution is measured in the measuring container.
  • a measuring container is shared by a plurality of pipes, a measuring mechanism is not required for each pipe (solution), and the synthesis apparatus can be simplified.
  • a plurality of types of solutions can be mixed and weighed in the measuring container, and the mixing time can be shortened by mixing the solutions at a stage prior to introducing each solution into the reaction container.
  • this synthesizer a solution sent from each of the plurality of storage containers is once introduced into the intermediate container, and a synthesized product is generated from the solution sent from the intermediate container to the reaction container. For this reason, a mechanism for moving the reaction vessel is unnecessary, and it is not necessary to move the reaction vessel every time the solution is sent as in the conventional case, so that the processing operation is simplified. Therefore, the configuration of the apparatus is simplified, the number of places where a problem may occur is reduced, and a highly reliable synthesis apparatus is obtained. In addition, the operation time required for the synthesis can be shortened.
  • the synthesizer further includes a measuring mechanism including the intermediate container and a sensor for measuring the solution introduced into the intermediate container.
  • a measuring mechanism including the intermediate container and a sensor for measuring the solution introduced into the intermediate container.
  • an intermediate container is used as a weighing container. Then, a necessary amount of the solution can be weighed and sent to the reaction vessel, and the use efficiency of the solution can be improved.
  • the third aspect of the present invention is a weighing mechanism that selectively acquires and measures a plurality of types of solutions, the holding unit holding the downstream end side of the pipe through which the solution passes, and the downstream of the pipe
  • a measuring container for receiving the solution flowing out from the side end portion and a weight sensor for measuring the weight in the measuring container are provided, and the holding unit and the measuring container are provided in a non-contact state.
  • the metering mechanism is connected to the metering container, and includes an outlet side pipe for sending out the weighed solution to another region.
  • the outlet side pipe has one end connected to the metering container and the other. It is preferable that the end portion is supported by another member and is formed by an extra length portion that is formed longer than the distance between the one end portion and the other end portion and is deformable as a whole.
  • tension acts on the outlet side pipe as an external force
  • the measurement result by the weight sensor is adversely affected.
  • the influence of the outlet side piping does not easily reach the weight sensor, and highly accurate weighing is possible.
  • a required amount of solution can be weighed and sent to the reaction vessel, and the use efficiency of the solution can be improved as compared with the conventional case.
  • the third aspect of the present invention it is possible to manage the amount of the solution in order to improve the utilization efficiency of the solution, and it is possible to perform measurement with high accuracy.
  • FIG. 1 is a configuration diagram showing an example of a weighing mechanism of the present invention and a synthesizing apparatus of the present invention provided with the weighing mechanism.
  • the synthesizer of the present invention is a device for chemically synthesizing proteins, peptides, nucleic acids, etc., and supplies a plurality of types of solutions (reagents) to the reaction vessel 9 in order, and the chemical synthesis proceeds in the reaction vessel 9.
  • a number of beads are provided in the reaction container 9, and while the solution is sequentially supplied to the reaction container 9, detritylation, coupling, oxidation, and capping processes are repeatedly performed. Such molecular materials are bonded one after another.
  • the synthesizing apparatus 3 is provided with a region in which the same number (19) of containers (reagent bottles) 2-1, 2-2,... ⁇ Each solution is stored in each. In FIG. 1, only two storage containers (2-1 and 2-2) are shown, and the other storage containers (2-3 to 2-19) are not shown.
  • the synthesizer 3 also includes a storage container 2-20 that stores a cleaning liquid. Each of the storage containers 2-1 to 2-20 has the same configuration (although the size may be different). In the following, the reference numeral attached to the container is simply “2”.
  • Each storage container 2 is a sealed container, but an introduction pipe 5 and a lead-out pipe 6 are connected.
  • the synthesizer 3 includes a tank 4 that stores pressurized gas, the introduction pipe 5, the outlet pipe 6, an intermediate container 7, an intermediate pipe 8, a reaction container 9, a metering mechanism 15, and a control device 16.
  • the tank 4 is filled with a gas having a pressure higher than that of the atmosphere.
  • the tank 4 is filled with argon gas as an inert gas.
  • a sterilized gas (air) may be used instead of the inert gas.
  • the same number (20 in this embodiment) of the introduction pipes 5 as the plurality of storage containers 2 are pipes branched from the common upstream pipe 10, and the upstream pipe 10 includes a regulator (electropneumatic regulator) 11 and an open / close state.
  • a valve 12 is provided.
  • the upstream side pipe 10 is connected to the tank 4, pressurized gas is supplied to each storage container 2, and the internal pressure of each storage container 2 is adjusted by the regulator 11.
  • the internal pressure of each storage container 2 is increased by the pressurized gas, and the solution in the storage container 2 is pumped from the outlet pipe 6. That is, the solution in each container 2 is pumped to the intermediate container 7 through the outlet pipe 6 by the differential pressure between each container 2 and the intermediate container 7.
  • the liquid feeding means 24 for sending the solution in the container 2 is of a pressure feeding type, and the liquid feeding means 24 includes the tank 4, the upstream pipe 10, the regulator 11, the opening / closing valve 12, And an introduction tube 5 is included.
  • a valve 14 is provided in each outlet pipe 6 connected to the storage container 2 that stores the solution.
  • the intermediate container 7 is a container for measuring each solution, as will be described later.
  • the intermediate container 7 is a bottomed cylindrical container that can store each solution (see FIG. 2).
  • a plurality of outlet pipes 6 are provided in the inlet region (opening 7a) of the intermediate container 7. Aggregated. For this reason, the solution selectively sent through the outlet pipe 6 is introduced into the intermediate container 7 and is stored in the intermediate container 7.
  • the number of intermediate containers 7 is smaller than the number of storage containers 2, and in the present embodiment, only one intermediate container 7 is provided. That is, the intermediate container 7 is shared for a plurality of types of solutions.
  • the measuring mechanism 15 measures the solution stored in the intermediate container 7.
  • the intermediate container 7 is made to function as a measuring container.
  • the measurement result by the measurement mechanism 15 is transmitted to the control device 16 (see FIG. 1), and the control device 16 controls the opening / closing operation of the pinch valve 14 based on the measurement result, and acquires a prescribed amount of solution in the intermediate container 7. To do. Then, this prescribed amount of solution is sent to the reaction vessel 9 through the intermediate pipe 8.
  • the intermediate pipe 8 is provided with an opening / closing valve 21. When performing the measurement, the opening / closing valve 21 is in a closed state.
  • the solution is supplied from the intermediate container 7 to the reaction container 9 by pressure, and the pressurized gas in the tank 4 is used.
  • the opening / closing valve 21 is opened.
  • the metering mechanism 15 includes a sealed container 29 that houses the intermediate container 7.
  • a pressurized gas pipe 17 is provided between the sealed container 29 and the tank 4.
  • the piping 17 is provided with a second regulator (electropneumatic regulator) 18.
  • the intermediate container 7 is opened in the sealed container 29 (opening 7a), and the pressure of the pressurized gas (internal pressure) in the sealed container 29 is reduced to the solution stored in the intermediate container 7.
  • the solution of the intermediate container 7 is pumped to the reaction container 9 through the intermediate pipe 8 by the differential pressure between the sealed container 29 (intermediate container 7) and the reaction container 9.
  • the operation control of the various valves is performed by the control device 16.
  • the control device 16 also performs operation control of the regulators 11 and 18.
  • the solution sent to the reaction vessel 9 is weighed in the intermediate vessel 7.
  • the reaction container 9 a prescribed amount of solution selectively sent from the plurality of storage containers 2 is placed, and a composite is generated from the materials contained in each solution.
  • the overall flow path 25 includes a flow path on the downstream side (reaction container 9 side) of the storage container 2, and includes an intermediate pipe 8 in addition to the outlet pipe 6.
  • the piping and each device included in the entire flow path 25 have a property (solvent resistance) that can withstand the solvent (solvent) of the solution.
  • the weighing mechanism 15 includes the intermediate container 7 that functions as a weighing container, and a sensor 26.
  • the intermediate container (measuring container) 7 is provided in the middle of the entire flow path 25 and receives the solution that selectively flows out from the plurality of outlet pipes 6.
  • a sensor 26 included in the weighing mechanism 15 shown in FIG. 2 measures the weight in the intermediate container 7.
  • the sensor 26 is a weight sensor, and in the present embodiment, is constituted by a strain type load cell. According to the measuring mechanism 15, the solution can be accurately measured in the intermediate container 7 by measuring the weight of the solution stored in the intermediate container 7.
  • any load cell such as an electromagnetic type, a piezoelectric element type, a capacitance type, a magnetostrictive type, and a gyro type can be used. You may comprise the weight sensor of this invention.
  • the intermediate container 7 is provided in a state of being suspended in the sealed container 29.
  • a support member 28 is provided in the sealed container 29, and the intermediate container 7 is supported by the first arm portion 28 a of the support member 28, and is stored in the intermediate container 7 and the intermediate container 7.
  • the first arm portion 28a receives the weight of the solution.
  • a weight sensor (for example, a load cell) 26 is attached to the base side of the first arm portion 28a, and the weight sensor 26 measures the weight of the intermediate container 7 (including the solution) via the arm portion 28a.
  • the signal from the weight sensor 26 is input to the control device 16 (see FIG. 1).
  • the holding portion 27 (first member 27a) is supported by the second arm portion 28b of the support member 28.
  • the first arm portion 28a and the second arm portion 28b are provided independently, and no force is transmitted between them.
  • the holding portion 27 collects and holds the first member 27a that holds the upstream portion 6b of the plurality of outlet pipes 6 upstream of the downstream ends 6a and the downstream end 6a. It has the 2nd member 27b, and these are mutually connected by the connection part which is not shown in figure.
  • the first member 27a is a plate-like member, and the outlet tube 6 passes therethrough.
  • the second member 27b is a plate-like member, and the downstream end 6a of the outlet pipe 6 passes therethrough.
  • FIG. 5 is an explanatory view of the holding portion 27 (second member 27b) viewed from below. In the second member 27b, all the downstream end portions 6a are arranged apart from each other at an interval narrower than the interval held by the first member 27a.
  • the second member 27b has a function as a spacer, makes one downstream end 6a non-contact with the other downstream end 6a, and from the downstream end 6a of one outlet pipe 6.
  • the solution flowing out is prevented from coming into contact with the downstream end 6a of the other outlet pipe 6 (that is, the solution flowing out from the downstream end 6a of one outlet pipe 6 to be supplied and the other outlet pipe 6). 6 so that it does not mix with the solution adhering to the downstream end portion 6a.
  • a plurality of outlet pipes 6 are collected in the intermediate container 7, and a solution is selectively supplied from the plurality of outlet pipes 6, so that a plurality of types of outlet pipes 6 are provided.
  • the solution can be selectively acquired and weighed. For this reason, it becomes possible to manage the amount of the solution, and a prescribed amount of the solution can be accurately sent to the reaction vessel 9.
  • maintenance part 27 and the intermediate container 7 are provided in the non-contact state. For this reason, tension may act on the outlet pipe 6, but the load due to this tension does not affect the measurement of the weight sensor 26.
  • the lead-out pipe 6 (and the holding part 27) is in contact with the intermediate container 7, when the tension is acting on the lead-out pipe 6, the measurement result by the weight sensor 26 is adversely affected.
  • the influence of the outlet pipe 6 is not exerted on the weight sensor 26, and measurement with high accuracy is possible, and a prescribed amount of solution can be sent to the reaction vessel 9 more accurately. it can.
  • the weighing mechanism 15 has an outlet side pipe 30 connected to the intermediate container 7, and the outlet side pipe 30 is connected to the intermediate pipe 8.
  • the outlet side pipe 30 is a flow path for sending the solution weighed in the intermediate container 7 to the reaction container 9 (another region) through the intermediate pipe 8.
  • the outlet side pipe 30 is arranged in the sealed container 29, one end 30 a of the outlet side pipe 30 is connected to the lower end of the intermediate container 7, and the other end 30 b of the outlet side pipe 30 is connected to the sealed container 29. It is supported by the bottom wall 29b (separate member).
  • the exit side piping 30 is comprised with the elastic tube which is a spiral shape as a whole.
  • the measurement result by the weight sensor 26 is adversely affected.
  • the tension is caused by the elastic deformation of the spiral tube as a whole. Can escape.
  • the influence of the outlet side pipe 30 is less likely to affect the weight sensor 26, and measurement with higher accuracy is possible.
  • the exit side piping 30 of this embodiment demonstrated the case where it had a spiral shape, it should just be a shape which has extra length to such an extent that it does not affect the weight sensor 26 holding the measuring container 7, and is U-shaped. It may be bent into a shape.
  • the outlet side pipe 30 has one end 30a connected to the intermediate container 7 and the other end 30b supported by the sealed container 29, and the distance between the one end 30a and the other end 30b ( It is only necessary to be constituted by an extra length portion that is longer than a straight line distance) and is deformable as a whole. That is, the extra length may be a spiral tube or a tube bent into a U shape.
  • the sealed container 29 accommodates the intermediate container 7, and the upper part of the intermediate container 7 is open in the sealed container 29. For this reason, the gas in the sealed container 29 comes into contact with the solution introduced into the intermediate container 7. Therefore, the sealed container 29 is filled with a gas having a small influence on the solution.
  • a gas having a small influence on the solution As this gas, as described above, an inert gas or a sterilized gas (air) can be employed.
  • the sealed container 29 is filled with argon gas as an inert gas, and this gas is supplied from the tank 4.
  • the gas filled in the sealed container 29 is also used as a medium for pumping the solution (measured) stored in the intermediate container 7 to the reaction container 9.
  • the regulator 18 provided in the pressurized gas pipe 17 (see FIG. 1) connecting the sealed container 29 and the tank 4 adjusts the amount of gas supplied to the sealed container 29.
  • the internal pressure of the sealed container 29 is adjusted, and the pressure of the solution stored in the intermediate container 7 is controlled.
  • a pressure difference is produced between the sealed container 29 (intermediate container 7) and the reaction container 9, and the solution in the intermediate container 7 is pumped to the reaction container 9 by this pressure difference.
  • the measuring mechanism 15 of the present embodiment also has a function for sending the solution stored and measured in the intermediate container 7 to the reaction container 9. That is, the regulator 18 is provided as an adjusting means for adjusting the gas pressure in the sealed container 29. And as above-mentioned, the holding
  • the feeding of the solution from the plurality of storage containers 2 to the intermediate container 7 and the feeding of the solution from the intermediate container 7 to the reaction container 9 are performed by the liquid feeding means 24 including the tank 4. Pumps for feeding liquids (electric pumps and hydraulic pumps) are unnecessary.
  • the synthesizing apparatus 3 can be simplified by feeding the solution from the plurality of storage containers to the intermediate container 7 and feeding the solution from the intermediate container 7 to the reaction container 9 by the pressurized air of the common tank 4. Can be
  • FIG. 3 is a schematic configuration diagram showing a second example of the weighing mechanism 15.
  • the measuring mechanism 15 has an intermediate container 7 that functions as a measuring container.
  • the intermediate container 7 is provided in the middle of the entire flow path 25 (see FIG. 1), similarly to the form (first example) shown in FIG. receive.
  • a plurality of outlet pipes 6 are collected in the holding portion 27, and downstream end portions 6 a of the outlet pipes 6 are introduced into the opening 7 a of the intermediate container 7.
  • the sensor 26-2 included in the weighing mechanism 15 of the second example detects the liquid level 37 of the solution introduced into the intermediate container 7. That is, the sensor 26-2 is installed at a predetermined height position with respect to the intermediate container 7, and when the solution is introduced from the outlet pipe 6 into the intermediate container 7, its liquid level 37 gradually increases, When the liquid level 37 reaches a specified height, this is detected and a signal is transmitted to the control device 16.
  • a non-contact displacement sensor can be adopted, for example, a laser sensor.
  • the intermediate container 7 is preferably an elongated container. This is to increase the resolution during weighing. That is, when the intermediate container 7 is elongated, a minute difference in volume tends to appear as a difference in height.
  • the intermediate container 7 having a circular cross section it is preferable to have an elongated shape having a height 10 times or more the diameter of the cross section.
  • the prescribed amount of solution is measured in the intermediate container 7, and the prescribed amount varies depending on the solution. That is, also in the second example, since a single intermediate container 7 is shared when weighing a plurality of types of solutions (a plurality of storage containers 2), the prescribed amount (required amount) varies depending on the type of solution. And the height of the liquid surface 37 of the intermediate container 7 varies. Therefore, in the second example, the sensor 26-2 is supported by the support member 31 so as to be movable up and down, and the height position of the sensor 26-2 can be changed by the lift actuator 38 in accordance with the solution to be weighed. . This change is based on a signal from the control device 16.
  • tube 6 collectively may not be made non-contact like a 1st example.
  • the outlet side pipe 30 connected to the bottom of the intermediate container 7 may not be a spiral tube.
  • the sealed container 29 is not necessary. That is, as in the third example shown in FIG. 4, the holding unit 27 functions as a lid of the intermediate container 7, the holding unit 27 closes the opening of the intermediate container 7, and the inside of the intermediate container 7 is a sealed space.
  • the intermediate container 7 is a sealed container filled with gas.
  • the first member 27 a of the holding unit 27 closes the upper opening of the intermediate container 7.
  • the plurality of outlet pipes 6 pass through the first member 27a, but airtightness is ensured (that is, sealed) between the outlet pipes 6 and the first member 27a.
  • the upper opening of the intermediate container 7 is narrow, and in order to ensure airtightness between the first member 27a that covers such an upper opening and each of a plurality (20 in this embodiment) of the outlet pipes 6, A septum 39 is used for the first member 27a.
  • the septum 39 is a rubber film member, and the hole due to the penetration is closed by the elastic force in a state where the lead-out pipe 6 is penetrated, so that the inside and outside of the intermediate container 7 can be blocked.
  • the intermediate container 7 is filled with the gas, and even if a plurality of types of solutions used include a solution that changes or deteriorates when it comes into contact with the atmosphere (outside air), It is possible to produce a compound without dropping the value.
  • the metering mechanism 15 aggregates the plurality of outlet pipes 6 in each of the second example shown in FIG. 3 and the third example shown in FIG. 4.
  • the holding part 27 is provided, and the solution is introduced into the intermediate container 7 from each of the plurality of outlet pipes 6 held together by the holding part 27.
  • the second member 27 b included in the holding portion 27 has a plurality of outlet pipes.
  • a plurality of outlet pipes 6 are held in a state in which the downstream end 6 a of one outlet pipe 6 out of 6 is not in contact with the downstream end 6 a of another outlet pipe 6.
  • the intermediate container 7 is provided with the plurality of outlet pipes 6 in a collective manner, so that the intermediate container 7 comes into contact with a plurality of types of solutions. Therefore, it may be necessary to clean the intermediate container 7.
  • the weighing mechanism 15 has the following configuration. In the following, the case of the first example will be described as a representative, but the same applies to the second example and the third example.
  • the synthesizer 3 includes a storage container 2-20 for storing a cleaning liquid.
  • the outlet pipe 6 extending from the storage container 2-20 is gathered together with the other outlet pipes 6 by the holding portion 27. Therefore, the cleaning liquid can be supplied to the intermediate container 7. That is, as shown in FIG. 2, the plurality of outlet pipes 6 collected by the holding unit 27 include outlet pipes 6 for introducing the cleaning liquid into the intermediate container 7.
  • the supply of the cleaning liquid to the intermediate container 7 is also performed by the gas in the tank 4 as in the case of the solution (that is, pressure feeding).
  • the downstream end 6 a of each of the plurality of outlet pipes 6 is open in the intermediate container 7 at a position below the upper end 40 of the intermediate container 7. That is, the solution discharge port (downstream end 6 a) of the outlet pipe 6 is located below the upper end 40 of the intermediate container 7.
  • the sensor 26 can detect not only the state where the solution is introduced up to the upper limit of the first position Y1, but also the state where the cleaning liquid is introduced to the second position Y2.
  • the first position Y1 is a position lower than the position of the opening of the downstream end 6a as shown by the arrow (Y1) in FIG. 2, and the second position Y2 is as shown by the arrow (Y2) in FIG. It is a position higher than the opening of the downstream end 6a.
  • the second position Y2 is a position lower than the upper end 40 of the intermediate container 7.
  • the solution is selectively supplied from the storage containers 2-1 and 2-2 ( ⁇ 2-19) storing the solution shown in FIG.
  • the state where the solution is introduced is detected with Y1 as the upper limit.
  • the closing operation of the pinch valve 14 is started by this detection, which will be described later. That is, when a predetermined amount of solution is introduced with the first position Y1 as the upper limit, supply of the solution is stopped.
  • the sensor 26 detects so as not to exceed the first position Y1. A specific operation will be described.
  • the sensor 26 measures the solution at the first position Y1 or less using the sensor 26, and the sensor 26 detects that the solution exceeds the first position Y1, the detection result of the sensor 26 is displayed.
  • the control device 16 receives and outputs an error signal, for example.
  • the sensor 26 detects the state where the cleaning liquid is introduced to the second position Y2 (filled state). By this detection, the pinch valve 14 of the outlet pipe 6 extending from the storage container 2-20 in which the cleaning liquid is stored is closed. That is, when the cleaning liquid is introduced to the second position Y2, the supply of the cleaning liquid is stopped. Thus, when cleaning the intermediate container 7, the sensor 26 performs detection based on the second position Y2.
  • the solution when measuring the solution, the solution is weighed with the first position Y1 as the upper limit. Since the first position Y1 is a position lower than the position of the opening of the downstream end 6a, the solution supplied to the intermediate container 7 can be prevented from coming into contact with the downstream end 6a of the outlet pipe 6. The purity of the solution supplied from each outlet pipe 6 can be prevented from decreasing.
  • the intermediate container 7 when the intermediate container 7 is cleaned, the intermediate container 7 and the downstream end 6a of the outlet pipe 6 in the intermediate container 7 can be cleaned with the cleaning liquid introduced up to the second position Y2.
  • the cleaning liquid supplied to the intermediate container 7 contacts all the downstream ends 6a, and the respective downstream ends 6a. Can be cleaned.
  • the cleaning liquid is preferably a main solvent (main solvent) used in a plurality of types of solutions, thereby preventing a decrease in the purity of the solution even if the cleaning liquid remains in the intermediate container 7. Can do.
  • the sensor 26-2 that detects the liquid level 37 of the solution in the intermediate container 7
  • the first position Y1 is used as the upper limit when measuring, and the second position is used when cleaning is performed.
  • the cleaning liquid is supplied up to Y.
  • the control device 16 manages the liquid feeding time of each solution by the liquid feeding means 24 including the introduction pipe 5 and the like, and the liquid feeding means 24 feeds each solution for a predetermined liquid feeding time.
  • the solution is introduced with the first position Y1 lower than the opening of the end 6a as the upper limit, and the liquid feeding means 24 feeds the cleaning liquid for a predetermined liquid feeding time, so that the second higher than the opening of the downstream end 6a. It is good also as a state which introduce
  • the liquid feeding means 24 including the introduction pipe 5 and the like is in a state where the solution is introduced with the first position Y1 as an upper limit, and in a state where the cleaning liquid is introduced to the second position Y2. It may be configured to send each solution. In this case, the accuracy of the supply amount for supplying the solution or the cleaning liquid is somewhat lowered, but the same effect as that in the case of using the sensor 26 can be achieved.
  • the synthesizer 3 includes an adjusting means 32 (see FIG. 1) for adjusting the solution feeding speed.
  • the adjusting means 32 may be provided in each outlet pipe 6 and the solution feeding speed (flow rate per unit time) flowing in each outlet pipe 6 may be adjusted.
  • the upstream pipe 10 is provided.
  • the regulator 11 is functioned as the adjusting means 32. With this configuration, it is not necessary to provide the adjusting means 32 for each of the plurality of outlet pipes 6, and the synthesizer 3 can be simplified.
  • the solution is fed from each storage container 2 to the intermediate container 7 where the measurement is performed by a pressure feeding method.
  • the liquid feeding speed when supplying the solution to the intermediate container 7 is increased, and when the internal pressure is decreased, the liquid feeding speed when supplying the solution to the intermediate container 7 is decreased. That is, by adjusting the regulator 11 and increasing the internal pressure of the storage container 2, the liquid feeding speed to the intermediate container 7 can be increased. On the contrary, by adjusting the regulator 11, the liquid feeding speed to the intermediate container 7 can be reduced by lowering the internal pressure of the storage container 2.
  • the solution is pumped to the intermediate container 7 in order to perform the weighing process in the intermediate container 7, but the solution feeding speed of the solution to be measured is adjusted by the regulator 11 (adjusting means 32). .
  • the regulator 11 adjusting means 32.
  • the solution delivery speed of the solution to the intermediate container 7 is lowered by a regulator 11 below a preset threshold value. This suppresses weighing errors.
  • the liquid feeding speed is changed while the solution is being supplied to the intermediate container 7. That is, in the time zone (first half) where the prescribed amount (target amount) is not reached in the measurement, the liquid feeding speed is made relatively high (higher than the threshold) to shorten the liquid feeding time. In the time period (second half) when the specified amount (target amount) is reached, the liquid feeding speed is changed relatively low (changed lower than the threshold value) to suppress the measurement error.
  • the regulator 11 lowers the liquid feeding speed in the liquid feeding end time zone for measurement as compared with the previous time zone (the time zone before the end time zone).
  • the operation control of the regulator 11 is performed based on an operation signal given from the control device 16 to the regulator 11.
  • the solution feeding speed is set to two stages.
  • the working efficiency can be improved by increasing the liquid feeding speed at the beginning, and the measuring error can be suppressed by reducing the liquid feeding speed at the end of the weighing.
  • the timing for changing the liquid feeding speed may be managed by the timer function of the control device 16, but in this embodiment, since the sensor 26 detects the weight every moment as described above, it is less than the specified amount.
  • the control device 16 When a solution is supplied to the intermediate container 7 for a predetermined amount (for example, 70% of the specified amount), the control device 16 outputs a signal to the regulator 11 to control the liquid feeding speed to be lowered.
  • the control device 16 outputs a signal to the regulator 11 and controls so as to reduce the liquid feeding speed.
  • the (second) sensor 26-2 is also installed at the liquid level at which the prescribed amount is reached, and it is only necessary to confirm that the prescribed amount has been reached by this sensor 26-2. .
  • the synthesizing device 3 of the present embodiment further includes the following configuration.
  • a valve (pinch valve 14) provided in each outlet pipe 6 functions as a valve for stopping liquid feeding to the intermediate container 7 for measurement.
  • the opening / closing operation of the pinch valve 14 is based on a command signal from the control device 16. Therefore, the control device 16 outputs a closing operation command signal to the pinch valve 14 before the solution accumulated in the intermediate container 7 reaches a specified amount (target amount).
  • target amount a specified amount
  • the control device 16 determines the solution. Before reaching the amount (target amount), the pinch valve 14 is started to close.
  • the control device 16 in order to perform processing for starting the closing operation early, information on the flow rate of the solution fed during the closing operation of the pinch valve 14 is acquired in advance, and based on this flow rate information Then, the control device 16 causes the pinch valve 14 to start the closing operation before the solution reaches the specified amount (target amount). Furthermore, as another means, the time required for the closing operation of the pinch valve 14 is measured, and information on the flow rate of the solution to be sent during the closing operation is acquired in advance. Based on the information on the flow rate during the closing operation, the control device 16 may cause the pinch valve 14 to start the closing operation before the solution reaches a specified amount (target amount). According to the configuration of each of the embodiments, the prescribed amount (target amount) is obtained with high accuracy by allowing the solution flowing during the closing operation of the pinch valve 14 and starting the closing operation of the pinch valve 14 at an early timing in advance. It becomes possible.
  • the pinch valve 14 can start the closing operation as described above.
  • the solution can be measured in real time. That is, in this configuration, since the target specified amount can be measured while being monitored, mechanical error and the like are avoided and the specified amount is reduced as compared with the case of measuring by the pumping method or the pump method. It becomes possible to obtain a solution with high accuracy.
  • the control device 16 can make the determination.
  • the solution in the intermediate container 7 is sent to the reaction container 9. If it is determined that it is not accurate, a rejection process is performed. As the rejection processing, for example, the solution in the intermediate container 7 is processed as drainage.
  • the synthesizing apparatus 3 of the present embodiment is an apparatus for selectively synthesizing a plurality of types of solutions from a plurality of storage containers 2, and the selectively sent solutions are placed therein.
  • a reaction vessel 9 in which a composite is generated by the material contained in the solution, and a measuring mechanism 15 provided between the container 2 and the reaction vessel 9 for measuring the solution to be sent to the reaction vessel 9 are provided.
  • the synthesizer 3 a required amount of solution can be weighed and sent to the reaction vessel 9 by the measuring mechanism 15, and the use efficiency of the solution can be improved as compared with the conventional case.
  • the synthesis apparatus 3 of the present embodiment is an apparatus for selectively performing chemical synthesis by sending a plurality of types of solutions from the plurality of storage containers 2, from the storage container 2 to the reaction container 9.
  • the intermediate container 7 is provided between the plurality of outlet pipes 6, and a solution is introduced from each of the outlet pipes 6.
  • a solution sent from each of the plurality of storage containers 2 is once introduced into the intermediate container 7, and a synthesized product is generated from the solution sent from the intermediate container 7 to the reaction container 9.
  • a mechanism for moving the reaction vessel 9 is not necessary, and it is not necessary to move the reaction vessel 94 for each process of sending a solution as in the prior art (see FIG. 8), and the processing operation is simplified.
  • the apparatus configuration is simplified, the number of places where a problem may occur is reduced, and the highly reliable synthesis apparatus 3 is obtained.
  • the operation time required for the synthesis can be shortened.
  • these solutions can be mixed in the intermediate container 7 and then sent to the reaction container 9, thereby improving the reaction efficiency. It becomes possible to raise.
  • the synthesizer 3 of this embodiment includes a measuring mechanism 15 provided between the container 2 and the reaction container 9 for measuring the solution to be sent to the reaction container 9, and the measuring mechanism 15 is provided in the intermediate container 7. It includes a sensor 26 (26-2) for measuring the introduced solution. According to the synthesizer 3, a required amount of solution can be weighed and sent to the reaction vessel 9 by the measuring mechanism 15, and the use efficiency of the solution can be improved as compared with the conventional case.
  • the intermediate container 7 is provided with a plurality of outlet pipes 6 in a collective manner, and a solution is introduced from each of the outlet pipes 6, so that there are a plurality of types of required solutions.
  • only one set of the weighing mechanism 15 (the intermediate container 7 and the sensor 26 (26-2)) used for weighing is required. That is, by sharing the intermediate container 7, the measuring mechanism 15 is unnecessary for each outlet pipe 6 (solution), and the configuration of the synthesizing apparatus 3 can be simplified.
  • a plurality of types of solutions can be mixed and measured in the intermediate container 7. In this case, since the solutions are mixed before the introduction of each solution into the reaction vessel 9, the mixing time can be shortened.
  • the measuring mechanism 15 has a sensor 26 for measuring the weight of the intermediate container 7, and the second example (FIG. 3) and the third example. (FIG. 4) includes a sensor 26-2 for measuring the liquid level of the solution stored in the intermediate container 7.
  • FIG. 9 an apparatus (see FIG. 9) that uses a pump 93 to send the solution is conceivable.
  • the total liquid feeding amount can be obtained by calculation based on the liquid feeding amount (rated liquid feeding amount) per unit time by the pump 93 and the operation time of the pump 93. Conceivable. However, it is expected that the total liquid delivery amount by calculation is inaccurate due to loss in the flow path and the like.
  • the pump 93 when the pump 93 is used, the actual liquid delivery amount and the calculated value often deviate from each other. Therefore, even in an apparatus using a pump, it is theoretically necessary for each of a plurality of types of solutions. Since an amount larger than the amount to be used is used and an excess solution is used, the cost increases particularly when the synthetic product is mass-produced. Therefore, in the present embodiment, the solution is temporarily stored in the intermediate container 7 and weighed, so that the target solution is not weighed under the liquid feeding conditions, but the resulting solution is directly weighed. Therefore, since it can measure with high precision and the measured solution is sent to the reaction container 9, it becomes possible to suppress the wasteful use of a solution and to reduce cost. Thus, the point that the metering mechanism 15 as in this embodiment is provided is technically completely different from the flow rate management based on the driving of the pump 93.
  • the solution is fed by the plunger pump 93, and the solution of the solution is accurately measured by controlling the amount of liquid fed per unit time (rated liquid feed amount) of the plunger pump 93. Even if it is possible, a load may be applied to the plunger pump 93 due to crystallization of the solution in the plunger pump 93. As a result, damage to the drive system such as seal breakage may result, and the durability of the entire apparatus will be affected. There is a problem that is easy to fall. On the other hand, in the synthesis apparatus 3 of this embodiment, since the pump is not used for liquid feeding, durability of the whole apparatus can be improved.
  • the weighing mechanism 15 can selectively acquire and measure a plurality of types of solutions. For this reason, the weighing mechanism 15 has a plurality of types.
  • a holding unit 27 that collectively holds a plurality of outlet pipes 6 through which each of the solutions passes, an intermediate container (measuring container) 7 that receives the solution flowing out from the outlet pipes 6, and a weight for measuring the weight in the intermediate container 7 Sensor 26.
  • maintenance part 27 and the intermediate container 7 are provided in the non-contact state. For this reason, it becomes possible to raise the precision of measurement.
  • the measurement result by the weight sensor 26 may be adversely affected. This is because, according to the configuration of the present embodiment, the influence of the outlet pipe 6 is not exerted on the weight sensor 26.
  • the outlet side pipe 30 connected to the downstream side of the intermediate container 7 is constituted by a spiral elastic tube, and therefore, when the tension acts on the outlet side pipe 30 as an external force. Even so, the external force can be released by elastically deforming the tube as a whole. As a result, the measurement result obtained by the weight sensor 26 is hardly affected by the external force, and high-precision measurement is possible.
  • the intermediate container 7 is provided with a plurality of outlet pipes 6 collectively, and a solution is introduced from each of the outlet pipes 6. For this reason, there are a plurality of types of required solutions, but only one set of the weighing mechanism 15 (the intermediate container 7 and the sensor 26) used for weighing is required. That is, by sharing the intermediate container 7, the measuring mechanism 15 is unnecessary for each outlet pipe 6 (solution), and the configuration of the synthesizing apparatus 3 can be simplified.
  • a plurality of types of solutions can be mixed and measured in the intermediate container 7. In this case, since the solutions are mixed before the introduction of each solution into the reaction vessel 9, the mixing time can be shortened.
  • the solution feeding means is a pressure feeding system, and liquid feeding is performed by using a gas filled in the tank 4 due to a pressure difference between the upstream container and the downstream container. It is a configuration. For this reason, it is more advantageous than the case where the pump (electric pump or hydraulic pump) is included in the liquid feeding means in terms of contamination in the entire flow path 25, failure due to clogging of foreign matter, and disposable. In other words, when a pump is used, the movable part of the pump is exposed in the flow path, which is disadvantageous in terms of contamination and clogging of foreign matter due to peeling of sliding members, etc., and generation of wear powder. It is.
  • the solvent contained in the solution may cause a failure of the pump.
  • the synthesizer 3 it is necessary to replace the wetted parts such as pipes and equipment with which the solution comes into contact regularly or at a predetermined timing (at a predetermined frequency).
  • the start and stop of the supply of the solution from each storage container 2 to the intermediate container 7 is performed by the pinch valve 14, and the pinch valve 14 may be configured such that the drive unit contacts the solution. Because there is no, it is not eligible for replacement. In other words, since only the soft tube sandwiched by the pinch valve 14 needs to be replaced, it is advantageous in terms of disposable.
  • the metering mechanism 15 of the embodiment has a single intermediate container 7 that functions as a metering container, and a plurality of outlet pipes 6 are collectively provided in the intermediate container 7.
  • the case where the solution is introduced into the intermediate container 7 from each of the outlet pipes 6 and the solution is measured in the intermediate container 7 has been described.
  • FIG. 6 is a configuration diagram illustrating another example of the synthesis device 3.
  • the same components as those in the synthesizing apparatus 3 shown in FIG. 6 includes intermediate containers 7-1, 7-2, 7-3,...
  • the measuring mechanism 15 has a plurality of intermediate containers 7-1, 7-2, 7-3.
  • the solutions that are selectively fed from the storage containers 2-1, 2-2, 2-3,... And weighed in each of the intermediate containers 7-1, 7-2, 7-3,. It is sent to the reaction vessel 9.
  • the synthesizer 3 includes a storage container 2-1, 2-2, 2-3,... That individually stores a plurality of types of solutions, a reaction container 9 that mixes the solutions, and the reaction container. .., And the chambers 29 are connected to each other by the outlet pipe 6.
  • the downstream ends of the plurality of outlet pipes 6 are provided corresponding to the first position P1, the second position P2, and the third position P3, respectively.
  • the reaction vessel 9 is configured so as to be able to move in the chamber 29 by an actuator (not shown), and can be moved to the first position P1, the second position P2, and the third position P3 and stopped. Yes. For this reason, the reaction vessel 9 is selectively moved to the position of the solution to be mixed (first position P1, second position P2, and third position P3) necessary for the production of the synthesized product. Thus, the solution supplied from the downstream end of the outlet pipe 6 is sequentially received.
  • the reaction container 9 By moving the reaction container 9 in this way, the plurality of storage containers 2-1, 2-2, 2-3,... To the plurality of intermediate containers 7-1, 7-2, 7-3,.
  • the selectively sent solution is put into the reaction vessel 9 in a predetermined order, and a synthesized product is produced in the reaction vessel 9.
  • the synthesizing apparatus 3 shown in FIG. 6 has the intermediate containers 7-1, 7-2, 7-3,. ⁇ Measuring device, and selectively sending a plurality of kinds of measured solutions for chemical synthesis, and a plurality of storage containers 2-1, 2-2, 2 in which a plurality of kinds of solutions are stored. -3...
  • a plurality of outlet pipes 6 extending from each of them, and liquid feeding means for sending the solutions in the storage containers 2-1, 2-2, 2-3. It has.
  • the liquid feeding means can be by pressure feeding.
  • the synthesizer 3 further includes a measuring mechanism 15 and a reaction vessel 9. The measuring mechanism 15 is provided between the storage containers 2-1, 2-2, 2-3...
  • FIG. 7 is a configuration diagram showing still another example of the synthesizing device 3.
  • the measuring mechanism 15 has a plurality of intermediate containers 7-1, 7-2, 7-3. 7 includes intermediate containers 7-1, 7-2, 7-3,... For each of the containers 2-1, 2-2, 2-3,. Each is connected via a lead-out pipe 6. The solutions weighed in the intermediate containers 7-1, 7-2, 7-3... Are sent to one reaction container 9.
  • the intermediate pipe 8 extending from each of the intermediate containers 7-1, 7-2 and 7-3 joins a single common pipe 8 a, and this common pipe 8 a is connected to the reaction vessel 9.
  • the solution selectively sent from the plurality of storage containers 2-1, 2-2, 2-3,... To the plurality of intermediate containers 7-1, 7-2, 7-3,. It puts into the reaction vessel 9 in a predetermined order, and a synthesized product is produced in the reaction vessel 9.
  • the synthesizing apparatus 3 shown in FIG. 7 has independent intermediate containers 7-1, 7-2, 7-3. ⁇ Measuring device, and selectively sending a plurality of kinds of measured solutions for chemical synthesis, and a plurality of storage containers 2-1, 2-2, 2 in which a plurality of kinds of solutions are stored. -3...
  • a plurality of outlet pipes 6 extending from each of them, and liquid feeding means for sending the solutions in the storage containers 2-1, 2-2, 2-3. It has.
  • the liquid feeding means can be by pressure feeding.
  • the synthesizer 3 further includes a measuring mechanism 15 and a reaction vessel 9. The measuring mechanism 15 is provided between the storage containers 2-1, 2-2, 2-3...
  • the sensor for measurement is the sensor 26-2 for detecting the liquid level, but it may be a weight sensor as in the embodiment shown in FIG.
  • each structure demonstrated with the form shown in FIG. 1 is applicable to the synthesizing
  • the synthesizing apparatus of the present invention is not limited to the illustrated form, and may be of another form within the scope of the present invention.
  • the sensor 26 provided in the weighing mechanism 15 has been described as a weight sensor using a strain type load cell, but may be a weight sensor having another configuration.
  • the configuration for attaching the sensor 26 may be other than the illustrated form.
  • all the means for sending the solution are pumped, but some or all of them may be driven by other power.
  • the pinch valve 14 is employed as the valve for stopping the supply of the solution from each container 2 to the intermediate container 7 has been described, but another type of valve may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

複数種類の溶液を選択的に送って化学合成をするための合成装置に関して、溶液の利用効率を改善し、装置構成を簡素化し、信頼性の高い合成装置を提供する。また、溶液の利用効率を改善するために、溶液の計量を正確に行う計量機構を提供する。 具体的には、合成装置3は、溶液が収容される複数の収容容器2それぞれから設けられる複数の導出管6と、導出管6を通じて送る送液手段24と、送液された溶液が入れられ合成物が生成される反応容器9と、収容容器2から反応容器9までの間であって全体流路25の途中に設けられ反応容器9に送る溶液を計量する計量機構15とを備えている。また、計量機構15は、複数種類の溶液を選択的に取得して計量する。計量機構15は、導出管6の下流側端部6a側を保持する保持部27と、下流側端部6aから流出した溶液を受ける計量容器7と、計量容器7における重量を測定する重量センサ26とを備えている。

Description

合成装置、及び、計量機構
 本発明は、タンパク質、ペプチド、核酸等を化学合成するための装置に関する。また、本発明は、タンパク質、ペプチド、核酸等を化学合成するための合成装置等に用いられる計量機構に関する。
 タンパク質、ペプチド、核酸等を化学合成する方法として、反応容器に複数種類の溶液(試薬)を順に供給し、この反応容器内において反応を進める方法がある。例えば、核酸を合成する場合、反応容器内にビーズを多数設け、この反応容器に溶液を順次供給しながら、脱トリチル化、カップリング、酸化、及びキャッピングの処理を繰り返し行い、ビーズから塩基を次々と結合させる。
 用いられる溶液は数十種類(例えば20種類)とされることもあり、これら溶液を選択的に反応容器へ送り、溶液に含まれる分子材料により合成物(核酸)が生成される。このような化学合成を行うための装置として例えば特許文献1に記載の合成装置が知られている。
特表2002-518526号公報
 図8は、従来の合成装置を簡略化して示す説明図である。この合成装置は、複数種類の溶液99a,99b,99cをそれぞれ別々に収容する収容容器90a,90b,90cと、溶液99a,99b,99cを混合させる反応容器94と、この反応容器94を収容するチャンバー95とを備えており、それぞれの収容容器90a,90b,90cと、チャンバー95とが配管91a,91b,91cにより接続されている。図8の例では、配管91a,91b,91cが、それぞれ第一の位置P1、第二の位置P2、第三の位置P3に対応して設けられている。一方、反応容器94は、チャンバー95内を図外のアクチュエータによって移動できるように構成されており、第一の位置P1、第二の位置P2、第三の位置P3に移動し、停止できるようになっている。このため、反応容器94は、合成物(核酸)の生成に必要となる混合すべき溶液99a,99b,99cの位置(第一の位置P1、第二の位置P2、第三の位置P3)に選択的に移動し、各位置で、配管91a,91b,91cの下流側端部から供給される溶液99a,99b,99cを順次受け取るように構成されている。
 そして、反応容器94への溶液99a,99b,99cの供給は、収容容器90a,90b,90c内の溶液99a,99b,99cを加圧することにより行われ、収容容器90a,90b,90c内に不活性ガス等を供給することにより送液されるようになっている。ところが、圧送により溶液99a,99b,99cを供給すると、圧力と時間の設定だけで送液されるため、圧力変動等の影響により送液量にバラツキが生じやすい。そのため、反応容器94への供給量に過不足が生じることにより、予定された薬液の合成が行えない結果になる虞がある。そこで、安全を見て、複数種類の溶液99a,99b,99cそれぞれに関して、理論上必要とされる量よりも数倍を超える量を反応容器94に供給している。このように従来では、過剰の溶液を用いており、特に合成物を量産化する場合、コスト高となってしまう。
 そこで、第1の本発明は、溶液の利用効率を改善することを目的とする。
 また、従来の合成装置では、反応容器94を移動させるための機構が必要であり、また、溶液を送る処理毎に反応容器94を移動させる必要があり、特に溶液の種類が増えると、装置構成及び処理動作が複雑化するという問題点がある。このため、動作に不具合が生じやすく、不具合が生じると化学合成の処理が停止されてしまう。また、反応容器94は、配管91a,91b,91cの下流側端部に対応する各位置まで移動してから溶液の供給を受けることから、合成に要する動作時間が長くなるという問題もある。
 そこで、第2の本発明は、装置構成を簡素化し、信頼性の高い合成装置を提供することを目的とする。
 そこで、第3の本発明は、溶液の利用効率を改善するために、溶液の計量を正確に行う計量機構を提供することを目的とする。
 第1の本発明の合成装置は、複数種類の溶液を選択的に送って化学合成をするための装置であって、複数種類の溶液が収容されている複数の収容容器それぞれから延びて設けられている複数の配管と、前記収容容器の溶液を前記配管を通じて送る送液手段と、前記収容容器から選択的に送られた溶液が入れられ合成物が生成される反応容器と、前記収容容器から前記反応容器までの間であって複数の前記配管を含む全体流路の途中に設けられ当該反応容器に送る溶液を計量する計量機構と、を備えている。
 この合成装置によれば、必要量の溶液を計量して反応容器に送ることができ、溶液の利用効率を従来よりも改善することが可能となる。
 また、前記計量機構は、複数の前記配管が集約して設けられており当該配管それぞれから溶液が導入される計量容器を有し、当該計量容器において当該溶液を計量するのが好ましい。この計量機構によれば、複数の溶液を選択的に計量容器に導入し、この計量容器に導入した溶液の計量を行う構成となる。複数の配管に対して計量容器が共用されるので、配管(溶液)毎に計量機構が不要であり、合成装置を簡素化することができる。また、計量容器において複数種類の溶液を混合して計量することもでき、反応容器に各溶液を導入するよりも前の段階で溶液の混合を行えば、混合時間の短縮化が可能となる。
 また、前記計量機構は、前記全体流路の途中に設けられている計量容器と、前記計量容器における重量を測定する又は前記計量容器に溜められる溶液の液面レベルを検知するセンサと、を有しているのが好ましい。この構成によれば、溶液を計量容器に一旦溜めて計量し、計量した溶液を反応容器に送ることができる。
 また、前記合成装置は、前記計量を行う対象となる溶液の送液速度を調整する調整手段を備えているのが好ましい。送液速度が高い場合、(特に目標量が少ないと)計量において誤差が生じやすいが、調整手段によって送液速度を低下させることで計量誤差を抑制することが可能となる。
 また、計量のために送液速度を終始低下させると時間を要し、作業効率が低下する場合があり、また、計量のために送液速度を終始高くすると計量誤差が生じやすい。そこで、前記計量のための送液の終了時間帯では、それ以前の時間帯よりも、送液速度を低下させる調整手段を備えているのが好ましい。この構成によれば、計量のための送液において、始め送液速度を高めることにより作業効率を向上させることが可能となり、そして、計量の終了の際に送液速度を低下させることで計量誤差を抑制することが可能となる。
 また、前記合成装置は、前記計量のための送液を停止させるバルブと、計量のためのセンサの信号を刻々と取得し当該信号に基づいて前記バルブに閉動作開始の信号を出力する制御装置と、を更に備えているのが好ましい。この構成によれば、リアルタイムに溶液の計量が可能となり、規定量の溶液を精度良く得ることが可能となる。
 また、前記合成装置は、前記計量のための送液を停止させるバルブを更に備え、溶液が規定量に達する前に前記バルブは閉動作を開始するのが好ましい。この構成によれば、バルブの閉動作の間に流れる溶液を見込んで、バルブを予め早いタイミングで閉動作を開始させることにより、精度よく計量することができる。
 また、第2の本発明は、複数種類の溶液を選択的に送って化学合成をするための装置であって、複数種類の溶液が収容されている複数の収容容器それぞれから延びて設けられている複数の配管と、前記収容容器の溶液を前記配管を通じて送る送液手段と、複数の前記配管が集約して設けられており当該配管それぞれから溶液が導入される中間容器と、前記中間容器から送られた溶液が入れられ合成物が生成される反応容器と、を備えている。
 この合成装置によれば、複数の収容容器それぞれから送られる溶液を中間容器に一旦導入し、そして、中間容器から反応容器に送られた溶液により合成物が生成される。このため、反応容器を移動させる機構は不要であり、また、従来のように溶液を送る処理毎に反応容器を移動させる必要がないため、処理動作が単純化される。よって、装置構成が簡素化され、不具合が発生する可能性のある箇所を少なくし、信頼性の高い合成装置となる。
また、合成に要する動作時間を短縮することが可能となる。
 また、複数種類の溶液を混合する必要がある場合、中間容器でこれら溶液を混合してから反応容器に送液することができ、これにより反応効率を高めることが可能となる。
 また、前記合成装置は、更に、前記中間容器を収容すると共にガスが充填される密閉容器を備えている構成とすることができる。この場合、使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とすことなく合成物の生成が可能となる。
 または、前記中間容器は、ガスが充填される密閉容器である構成とすることができる。この場合においても、使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落と落とすことなく合成物の生成が可能となる。
 また、前記合成装置は、更に、前記中間容器、及び当該中間容器に導入された溶液を計量するセンサを含む計量機構を備えているのが好ましい。この場合、中間容器が計量容器として用いられる。そして、必要量の溶液を計量して反応容器に送ることができ、溶液の利用効率を改善することが可能となる。また、必要となる溶液は複数種類存在しているが、複数の配管を集約して中間容器において各溶液を受けるため、計量に用いられる計量機構(中間容器及びセンサ)は1セットで済む。
 また、前記センサは、前記中間容器における重量を測定する重量センサであり、前記計量機構は、更に、複数の前記配管を集約して保持すると共に前記中間容器と非接触の状態で設けられている保持部を有しているのが好ましい。収容容器から延びて設けられている配管が中間容器と接触していると、例えば配管に張力が作用している場合、重量センサによる計量結果に悪影響を及ぼすが、前記構成によれば、配管の影響を重量センサに及ぼすことがなく、精度の高い計量が可能となる。
 また、前記中間容器には複数の配管が集約して設けられていることで、この中間容器は複数種類の溶液と接することから、その洗浄が必要となる場合がある。そこで、複数の前記配管の下流側端部は、前記中間容器の上端よりも下の位置で当該中間容器内において開口しており、複数の前記配管には、洗浄液を前記中間容器に導入する配管が含まれ、前記センサは、前記下流側端部の開口よりも低い第一位置を上限として前記溶液が導入された状態、及び、前記下流側端部の開口よりも高い第二位置まで前記洗浄液が導入された状態を検知可能として構成されているのが好ましい。
 または、別の手段として複数の前記配管の下流側端部は、前記中間容器の上端よりも下の位置で当該中間容器内において開口しており、複数の前記配管には、洗浄液を前記中間容器に導入する配管が含まれ、前記送液手段は、前記下流側端部の開口よりも低い第一位置を上限として前記溶液を導入した状態、及び、前記下流側端部の開口よりも高い第二位置まで前記洗浄液を導入した状態のいずれか一方の状態とするように前記溶液を送るように構成してもよい。
 これらの各構成によれば、前記第二位置まで導入された洗浄液によって中間容器及びこの中間容器内の配管の下流側端部を洗浄することが可能となる。また、計量を行う際には、溶液を前記第一位置まで導入することで、この導入した溶液が、他の配管に接するのを防ぐことができ、溶液の純度が低下するのを防止することが可能となる。
 なお、洗浄液は、複数種類の溶液に用いられている主溶媒とするのが好ましく、これにより、中間容器に洗浄液が残留していても、溶液の純度の低下を防止することができる。
 また、前記合成装置は、更に、複数の前記配管を集約して保持する保持部を備え、前記保持部によって集約して保持されている複数の前記配管それぞれから前記中間容器に溶液が導入され、前記保持部は、複数の前記配管の内の一つの配管の下流側端部が他の配管の下流側端部と非接触となる状態で、複数の当該配管を保持しているのが好ましい。この構成によれば、一つの配管の下流側端部から流出する溶液が、他の配管の下流側端部に接触しないようにすることができ、中間容器に一旦溜める溶液について純度を保つ必要がある場合に好適である。
 また、第3の本発明は、複数種類の溶液を選択的に取得して計量する計量機構であって、前記溶液が通る配管の下流側端部側を保持する保持部と、前記配管の下流側端部から流出した溶液を受ける計量容器と、前記計量容器における重量を測定する重量センサと、を備え、前記保持部と前記計量容器とは非接触の状態で設けられている。
 本発明によれば、溶液の量を管理することが可能となる。そして、溶液が通る配管が計量容器と接触していると、例えば配管に張力が作用している場合、重量センサによる計量結果に悪影響を及ぼすが、前記構成によれば、配管の影響を重量センサに及ぼすことがなく、精度の高い計量が可能となる。
 また、前記保持部は、複数種類の前記溶液それぞれが通る複数の配管を集約して保持し、前記計量容器は、複数の前記配管から流出した溶液を受けるのが好ましい。この場合、必要となる溶液は複数種類存在しているが、計量のために用いられる計量容器及びセンサを共通化することができる。
 また、前記計量機構は、更に、前記計量容器を収容すると共にガスが充填される密閉容器を備えているのが好ましい。この構成によれば、使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とさずに済む。
 また、前記計量機構は、前記計量容器と接続されており計量した溶液を別領域に送り出すための出口側配管を備えており、前記出口側配管は、一端部が前記計量容器に接続されかつ他端部が別部材に支持され当該一端部と当該他端部との間の距離よりも長く形成され全体として変形可能である余長部により構成されているのが好ましい。前記出口側配管に外力として例えば張力が作用している場合、重量センサによる計量結果に悪影響を及ぼすが、前記構成によれば、余長部が全体として弾性変形することにより前記外力を逃がすことができ、出口側配管の影響が重量センサに及び難くなり、精度の高い計量が可能となる。
 また、前記密閉容器を備えている前記計量機構は、更に、前記密閉容器内のガスの圧力を調整する調整手段を備え、前記保持部と前記計量容器とが非接触とされていることで形成されている当該計量容器の開口を通じて、当該計量容器内の溶液に作用する前記ガスの圧力によって、当該計量容器内の溶液を外部へ圧送するのが好ましい。この構成によれば、密閉容器内のガスによって計量容器の溶液を圧送することができる。このため、送液のポンプが不要となる。
 第1の本発明によれば、必要量の溶液を計量して反応容器に送ることができ、溶液の利用効率を従来よりも改善することが可能となる。
 また、第2の本発明によれば、反応容器を移動させる機構は不要であり、また、溶液を送る処理毎に反応容器を移動させる必要がなく、処理動作が単純化される。よって、装置構成が簡素化され、不具合が発生する可能性のある箇所を少なくし、信頼性の高い合成装置となる。
 また、第3の本発明によれば、溶液の利用効率を改善するために、溶液の量を管理することが可能となり、また、精度の高い計量を行うことができる。
本発明の合成装置の一例を示す構成図である。 計量機構の概略構成を示す図である。 計量機構の第二の例を示す概略構成図である。 計量機構の第三の例を示す概略構成図である。 保持部を下から見た説明図である。 合成装置の他の例を示す構成図である。 合成装置の更に別の例を示す構成図である。 従来の合成装置を簡略化して示す説明図である。 ポンプを用いた合成装置の参考図である。
〔合成装置の全体構成について〕
 図1は、本発明の計量機構、及びこの計量機構を備えた本発明の合成装置の一例を示す構成図である。本発明の合成装置は、タンパク質、ペプチド、核酸等を化学合成するための装置であり、反応容器9に複数種類の溶液(試薬)を順に供給し、この反応容器9内において化学合成を進める。核酸を合成する場合、反応容器9内にビーズを多数設け、この反応容器9に溶液を順次供給しながら、脱トリチル化、カップリング、酸化、及びキャッピングの処理を繰り返し行い、ビーズから例えば塩基のような分子材料を次々と結合させる。用いられる溶液は数十種類(例えば20種類)とされ、これら溶液を選択的に反応容器9へ送り、溶液に含まれる分子材料により合成物(核酸)が生成される。
 本実施形態では、用いられる溶液(試薬)は19種類である。なお、この数は化学合成する生成物に応じて変更される。溶液の種類と同数(19個)の収容容器(試薬瓶)2-1、2-2、・・・を設ける領域を合成装置3は備えており、収容容器2-1、2-2・・・それぞれに各溶液が溜められている。なお、図1では、二つの収容容器(2-1と2-2)のみを示しており、その他の収容容器(2-3~2-19)については図示省略している。また、合成装置3は、洗浄液を溜める収容容器2-20も備えている。収容容器2-1~2-20はそれぞれ(大きさ等は異なることがあるが)同様の構成である。以下において、収容容器に付する符号を単に「2」とする。各収容容器2は、密閉容器であるが、導入管5及び導出管6が繋がっている。
 合成装置3は、加圧ガスを溜めているタンク4、前記導入管5、前記導出管6、中間容器7、中間配管8、反応容器9、計量機構15、及び制御装置16を備えている。タンク4には大気よりも高圧のガスが充填されており、本実施形態では、不活性ガスとしてアルゴンガスが充填されている。不活性ガスの代わりに無菌化されたガス(エア)であってもよい。複数の収容容器2と同数(本実施形態では20本)の導入管5は、共通する上流側配管10から分岐した配管であり、この上流側配管10にはレギュレータ(電空レギュレータ)11及び開閉バルブ12が設けられている。上流側配管10は、タンク4と接続されており、加圧ガスが各収容容器2に供給され、レギュレータ11により各収容容器2の内圧が調整される。加圧ガスにより各収容容器2の内圧が高まり、収容容器2の溶液は導出管6から圧送される。つまり、各収容容器2と中間容器7との差圧で各収容容器2の溶液が導出管6を通じて中間容器7へ圧送される。以上より、本実施形態では、収容容器2の溶液を送る送液手段24は圧送方式のものであり、この送液手段24には、タンク4、上流側配管10、レギュレータ11、開閉バルブ12、及び導入管5が含まれる。
 溶液を収容している収容容器2と接続されている導出管6それぞれにはバルブ14が設けられている。本実施形態のバルブ14はピンチバルブである。導出管6は、少なくとも一部が弾性変形可能な配管(チューブ)によって構成されており、ピンチバルブ14は、この導出管6(前記一部)を潰すことにより、導出管6において収容容器2からの溶液の流れを停止させる機能を有すると共に、流れる溶液の流量を調整する機能を有する。開状態とするピンチバルブ14を選択することで、複数の収容容器2の溶液の中から所定の溶液を選択的に導出管6を通じて中間容器7へ送る(圧送する)ことができる。開状態とするピンチバルブ14の選択は制御装置16によって行われる。つまり、制御装置16が、その内部メモリに記憶されているプログラムに従って、開状態とするための信号を所定のピンチバルブ14に送信し、他のピンチバルブ14は閉状態を維持させる。なお、導出管6に設けられるバルブは、ピンチバルブ14以外であってもよい。
 中間容器7は、後にも説明するが、各溶液を計量するための容器となる。この中間容器7は、各溶液を溜めることができる有底筒状の容器であり(図2参照)、本実施形態では、中間容器7の入口領域(開口部7a)に複数の導出管6が集約して設けられている。このため、選択的に導出管6を通じて送られた溶液が中間容器7に導入され、この中間容器7に溜められる。中間容器7は収容容器2の数よりも少なくされており、本実施形態では、中間容器7が一つのみ設けられている。つまり、複数種類の溶液のために中間容器7は共用されている。
 計量機構15は、中間容器7に溜められる溶液を計量するものである。この計量機構15では、中間容器7を計量容器として機能させる。計量機構15による計量結果は、制御装置16(図1参照)に送信され、制御装置16は、計量結果に基づいてピンチバルブ14の開閉動作制御を行い、規定量の溶液を中間容器7において取得する。そして、この規定量の溶液を中間配管8を通じて反応容器9へ送る。中間配管8には、開閉バルブ21が設けられており、計量を行う際、開閉バルブ21は閉状態にある。
 中間容器7から反応容器9への溶液の供給方式は圧送であり、タンク4の加圧ガスを用いる。この圧送の際、開閉バルブ21は開状態となる。この圧送のために、計量機構15は、中間容器7を収容する密閉容器29を備えている。密閉容器29とタンク4との間には加圧ガス用の配管17が設けられている。この配管17には、第二のレギュレータ(電空レギュレータ)18が設けられている。後にも説明するが、中間容器7は、密閉容器29内で開口しており(開口部7a)、密閉容器29内の加圧ガスの圧力(内圧)が中間容器7に溜められている溶液に作用し、密閉容器29(中間容器7)と反応容器9との差圧で中間容器7の溶液が中間配管8を通じて反応容器9へ圧送される。
 以上より、複数の収容容器2の内の少なくとも一つから溶液が選択的に中間容器7へ送られ、この中間容器7で計量が行われると、反応容器9へ送られる。このような反応容器9への溶液の供給が、溶液の種類を変更しながら繰り返し行われ、複数種類の溶液が反応容器9に順に供給され、この反応容器9内において化学合成が進められる。本実施形態では、反応容器9には、多数のビーズが設けられており、ビーズから塩基を次々と結合させ、核酸が合成される。
 反応容器9では、中間配管(一次側流路)8から溶液が供給されると、この溶液を通過させ、排出側の配管19(二次側流路)を通じて排出する。
 前記の各種バルブ(ピンチバルブ14、開閉バルブ12,21)の動作制御は、制御装置16によって行われる。また、レギュレータ11,18の動作制御も制御装置16によって行われる。
 以上のように、この合成装置3は、複数種類の溶液を選択的に反応容器9に送って、この反応容器9において、各溶液に含まれる材料を用いて化学合成をする。本実施形態では、複数種類の溶液が収容されている複数の収容容器2それぞれから、複数の配管として複数の導出管6が延びて設けられており、タンク4、上流側配管10及び導入管5等を含む送液手段24によって、各収容容器2の溶液が導出管6を通じて中間容器7へ送られ、更に反応容器9へ送られる構成である。そして、各収容容器2から反応容器9までの間であって、複数の前記配管(導出管6)を含む全体流路25の途中に、計量機構15が設けられており、この計量機構15によって、反応容器9に送る溶液が中間容器7において計量される。反応容器9では、複数の収容容器2から選択的に送られた規定量の溶液が入れられ、各溶液に含まれる材料により合成物が生成される。なお、前記全体流路25には、収容容器2よりも下流側(反応容器9側)の流路が含まれ、導出管6の他に、中間配管8が含まれる。全体流路25に含まれる配管や各機器は、溶液の溶剤(溶媒)に耐える性質(耐溶剤性)を有している。
〔計量機構15について〕
 計量機構15は、計量容器として機能する前記中間容器7と、センサ26とを有している。中間容器(計量容器)7は、前記のとおり、全体流路25の途中に設けられており、複数の導出管6から選択的に流出した溶液を受ける。図2に示す計量機構15が有するセンサ26は、中間容器7における重量を測定する。具体的構成を説明すると、センサ26は重量センサであり、本実施形態ではひずみ式のロードセルにより構成されている。この計量機構15によれば、中間容器7に溜められる溶液の重量を測定することで、中間容器7において溶液を精度よく計測することができる。なお、本実施形態では、ひずみ式のロードセルを用いる例について説明するが、電磁式、圧電素子式、静電容量型、磁歪式、ジャイロ式などあらゆるロードセルを使用することができ、これらを用いて本発明の重量センサを構成してもよい。
 また、重量センサ26の代わりに、中間容器7に溜められる溶液の液面レベルを検知するセンサ26-2(図3参照)であってもよい。この場合の具体的構成については後に説明する。
 図2に示す計量機構15は、導出管6から流出した溶液を受ける中間容器7、及び、この中間容器7における重量を測定する重量センサ26の他に、保持部27を有している。保持部27は、中間容器7の開口部7aの近傍に設けられており、複数の導出管6を一箇所に集約して保持している。本実施形態では、収容容器2と同数である20本の導出管6が集約されて、保持部27によって保持されている。図2に示すように、密閉容器29の上壁29aに設けられているフランジ部36を、複数の導出管6が貫通しており、これら導出管6の下流側端部6a側を保持部27が集約して保持している。導出管6がフランジ部36を貫通しているが、これらの間は気密性が確保されている(つまり、シールされている)。なお、本実施形態では、導出管6と収容容器2とが同数の場合について説明するが、計量を必要としない溶液の収容容器2がある場合には、その収容容器2から延びる導出管6は、保持部27に保持されることなく、中間容器7よりも下流側に位置する中間配管8に接続させるように構成してもよい。
 中間容器7は、密閉容器29内において吊り下げられた状態で設けられている。このために、密閉容器29内に支持部材28が設けられており、この支持部材28が有する第一アーム部28aに中間容器7が支持されており、中間容器7及びこの中間容器7に溜められる溶液の重量は、第一アーム部28aが受ける構成となっている。第一アーム部28aの基部側に重量センサ(例えばロードセル)26が取り付けられており、重量センサ26はアーム部28aを介して中間容器7(溶液を含む)の重量を測定する。重量センサ26の信号は制御装置16(図1参照)に入力される。また、支持部材28が有する第二アーム部28bに保持部27(第一部材27a)が支持されている。第一アーム部28aと第二アーム部28bとは独立して設けられており、相互間で力の伝達は生じない。
 保持部27は、複数の導出管6の下流側端部6aよりも上流側の部分6bを集約して保持している第一部材27aと、下流側端部6aを集約して保持している第二部材27bとを有しており、これらは互いに図示しない連結部で連結されている。第一部材27aは板状の部材であり、導出管6が貫通している。第二部材27bは板状の部材であり、導出管6の下流側端部6aが貫通している。図5は、保持部27(第二部材27b)を下から見た説明図である。第二部材27bでは、全ての下流側端部6aが第一部材27aが保持する間隔よりも狭い間隔で互いに離れて配置されている。つまり、第二部材27bは、スペーサとしての機能を有し、一つの下流側端部6aを他の下流側端部6aと非接触の状態とし、一つの導出管6の下流側端部6aから流出する溶液が、他の導出管6の下流側端部6aに接触しないようにしている(つまり、供給すべき一つの導出管6の下流側端部6aから流出する溶液と、他の導出管6の下流側端部6aに付着した溶液とが混ざらないようにしている)。
 図2において、第一部材27aは、中間容器7の上方(外側)に位置しており、第二部材27bは、中間容器7の内側に位置しているが、これら第一部材27a及び第二部材27bを含む保持部27、並びにこの保持部27に保持されている複数の導出管6(下流側端部6a)は、中間容器7に非接触の状態にある。このため、中間容器7は、上部において開口した状態となっており、つまり、保持部27によって蓋がされておらず、中間容器7は、密閉容器29内で開口した状態にある。これにより、前記のとおり、密閉容器29内の加圧ガスの圧力(内圧)が中間容器7に溜められる溶液に作用することができ、計量後、密閉容器29と反応容器9との差圧で中間容器7の溶液が反応容器9へ圧送される。
 このように、本実施形態の計量機構15では、複数本の導出管6が中間容器7に集約されており、複数本の導出管6から選択的に溶液が供給されることから、複数種類の溶液を選択的に取得して計量することが可能となる。このため、溶液の量を管理することが可能となり、規定量の溶液を正確に反応容器9へ送ることができる。そして、前記のとおり、保持部27と中間容器7とは非接触の状態で設けられている。このため、導出管6には張力が作用する場合があるが、この張力による荷重が、重量センサ26の測定に影響を与えない。仮に、導出管6(及び保持部27)が中間容器7と接触していると、導出管6に張力が作用している場合、重量センサ26による計量結果に悪影響を及ぼす。しかし、本実施形態の構成によれば、導出管6の影響を重量センサ26に及ぼすことがなく、精度の高い計量が可能となり、規定量の溶液をより一層正確に反応容器9へ送ることができる。
 図2に示すように、計量機構15は、中間容器7と接続されている出口側配管30を有しており、出口側配管30は中間配管8と接続されている。出口側配管30は、中間容器7において計量した溶液を、中間配管8を通じて反応容器9(別領域)に送り出すための流路である。出口側配管30は、密閉容器29内に配置されており、出口側配管30の一端部30aが中間容器7の下端に接続されており、出口側配管30の他端部30bが密閉容器29の底壁29b(別部材)に支持されている。そして、出口側配管30は全体として螺旋形状である弾性チューブにより構成されている。出口側配管30に外力として張力が作用している場合、重量センサ26による計量結果に悪影響を及ぼすが、本実施形態の構成によれば、螺旋形状のチューブが全体として弾性変形することにより前記張力を逃がすことができる。この結果、出口側配管30の影響が重量センサ26に及び難くなり、より一層精度の高い計量が可能となる。なお、本実施形態の出口側配管30は、螺旋形状を有する場合について説明したが、計量容器7を保持する重量センサ26に影響を与えない程度に余長を有する形状であればよく、U字形状に曲げたもの等であってもよい。このように、出口側配管30は、一端部30aが中間容器7に接続されかつ他端部30bが密閉容器29に支持されており、これら一端部30aと他端部30bとの間の距離(直線距離)よりも長く形成され全体として変形可能である余長部により構成されていればよい。つまり、前記余長部を、螺旋形状のチューブや、U字形状に曲げられたチューブとすればよい。
 前記のとおり、密閉容器29は中間容器7を収容しており、中間容器7の上部は密閉容器29内において開口している。このため、密閉容器29内のガスが、中間容器7に導入された溶液に触れることとなる。そこで、密閉容器29には、前記溶液への影響が小さいガスが充填されている。このガスとしては、前記のとおり、不活性ガスや無菌化されたガス(エア)を採用することができる。本実施形態では、密閉容器29には不活性ガスとしてアルゴンガスが充填されており、このガスはタンク4から供給される。このため、合成装置3において使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とすことなく合成物の生成が可能となる。
 密閉容器29に充填されるガスは、更に、中間容器7において溜められた(計量された)溶液を反応容器9へ圧送するための媒体としても用いられる。密閉容器29とタンク4とを繋ぐ加圧ガス用の配管17(図1参照)に設けられているレギュレータ18は、密閉容器29へ供給するガス量を調整する。これにより、密閉容器29の内圧が調整され、中間容器7に溜められている溶液の圧力が制御される。これにより、密閉容器29(中間容器7)と反応容器9との間に圧力差を生じさせ、この圧力差によって中間容器7の溶液を反応容器9へ圧送する。
 以上のように、本実施形態の計量機構15は、中間容器7に溜められ計量された溶液を反応容器9へ送るための機能も備えている。つまり、密閉容器29内のガスの圧力を調整する調整手段としてレギュレータ18を備えている。そして、前記のとおり、複数の導出管6を集約して保持している保持部27と、中間容器7とが非接触とされていることで、密閉容器29内において、中間容器7には開口部7aが形成されている。この開口部7aを通じて、中間容器7内の溶液に作用する前記ガスの圧力によって、この中間容器7内の溶液を外部へ圧送することができる。
 本実施形態では、複数の収容容器2から中間容器7への溶液の送り、及び、中間容器7から反応容器9への溶液の送りは、タンク4を含む送液手段24により行われることから、送液のためのポンプ(電動ポンプや油圧ポンプ)が不要となる。また、複数の収容容器から中間容器7への溶液の送りと、中間容器7から反応容器9への溶液の送りとを、共通するタンク4の加圧エアによって行うことで、合成装置3を簡素化することができる。
〔計量機構15の変形例について〕
 計量機構15が備えているセンサが、中間容器7に溜められる溶液の液面レベルを検知する構成である場合(以下、第二の例という。)について説明する。図3は、計量機構15の第二の例を示す概略構成図である。第二の例においても、計量機構15は、計量容器として機能する中間容器7を有している。中間容器7は、図2に示す形態(第一の例)と同様に、全体流路25(図1参照)の途中に設けられており、複数の導出管6から選択的に流出した溶液を受ける。また、複数の導出管6が保持部27において集約されており、これら導出管6の下流側端部6aが中間容器7の開口部7aに導入されている。
 第二の例の計量機構15が有するセンサ26-2は、第一の例と異なり、中間容器7に導入される溶液の液面37を検知する。つまり、中間容器7に対してセンサ26-2は所定高さ位置に設置されており、導出管6から中間容器7に溶液が導入されることで徐々にその液面37が高くなり、溶液の液面37が規定の高さに到達すると、これを検知し制御装置16へ信号を送信する。センサ26-2としては、非接触式の変位センサを採用することができ、例えばレーザセンサである。
 第二の例の場合、中間容器7を細長い容器とするのが好ましい。これは、計量の際の分解能を高めるためである。つまり、中間容器7を細長くすることで、容積の微細な差が高さの差となって現れやすいためである。例えば、断面が円形となる中間容器7の場合、その断面の直径の10倍以上の高さを有する細長形状とするのが好ましい。
 中間容器7において規定量の溶液を計量するが、その規定量は溶液によって様々である。つまり、第二の例においても、複数種類の溶液(複数の収容容器2)の計量の際に単一の中間容器7が共用されることから、溶液の種類によって規定量(必要量)が異なると中間容器7の液面37の高さが様々となる。そこで、第二の例では、センサ26-2は、支持部材31によって昇降可能として支持されており、計量する溶液に応じて、昇降アクチュエータ38によってセンサ26-2の高さ位置を変更可能としている。この変更は、制御装置16からの信号に基づく。
 第二の例では、センサ26-2は、中間容器7内の溶液の液面レベルを検知することから、導出管6の張力の影響は計量結果と関係がない。このため、複数の導出管6を集約して保持している保持部27と、中間容器7とは、第一の例のように非接触にしなくてもよい。また、中間容器7の底部と繋がる出口側配管30は螺旋形状のチューブでなくてよい。また、保持部27と中間容器7とを接触させる場合、密閉容器29は不要となる。つまり、図4に示す第三の例のように、保持部27が中間容器7の蓋として機能し、保持部27が中間容器7の開口を閉じ、中間容器7内を密閉空間とする。そして、密閉された中間容器7において、各溶液が供給されると共に計量が終わると、タンク4よりこの中間容器7に配管17を通じてガスが供給され、中間容器7の溶液を反応容器9へと圧送することができる。第一の例、第二の例及び第三の例それぞれにおいて同じ構成部材については同じ符号を付しており、同じ構成についてはここでは説明を省略する。
 第三の例では、中間容器7が、ガスが充填される密閉容器となる。第三の例では、保持部27の第一部材27aが中間容器7の上部開口を閉じている。そして、この第一部材27aを複数の導出管6が貫通しているが、これら導出管6と第一部材27aとの間で気密性が確保されている(つまりシールされている)。中間容器7の上部開口は狭く、このような上部開口を蓋する第一部材27aと、複数の(本実施形態では20本の)導出管6それぞれとの間で気密性を確保するために、第一部材27aはセプタム39が用いられている。セプタム39はゴム製の膜部材であり、導出管6を貫通させた状態で弾力により貫通による孔が塞がり、中間容器7の内外を遮断することができる。この結果、中間容器7に前記ガスが充填された構成となり、使用される複数種類の溶液の中に、大気(外気)と接触すると変質したり劣化したりする溶液が含まれていても、品質を落とすことなく合成物の生成が可能となる。
〔各形態の計量機構15について〕
 図2に示す第一の例により説明した形態と同様に、図3に示す第二の例及び図4に示す第三の例それぞれにおいても、計量機構15は、複数の導出管6を集約して保持する保持部27を備えており、この保持部27によって集約して保持されている複数の導出管6それぞれから中間容器7に溶液が導入される構成となっている。そして、第二の例及び第三の例においても、第一の例と同様に、図3、図4及び図5に示すように、保持部27が有する第二部材27bは、複数の導出管6の内の一つの導出管6の下流側端部6aが、他の導出管6の下流側端部6aと非接触となる状態で、複数の導出管6を保持している。このため、一つの導出管6の下流側端部6aから流出する溶液が、他の導出管6の下流側端部6aに接触しないようにすることができ、つまり、溶液が混ざらないようにすることができる。これにより、中間容器7に一旦溜める溶液について純度を確保することが可能となる。
 また、各形態の計量機構15では、前記のとおり、中間容器7には複数の導出管6が集約して設けられていることで、この中間容器7は複数種類の溶液と接することとなる。そこで、中間容器7の洗浄が必要となる場合がある。このために、計量機構15は次の構成を備えている。なお、以下では、第一の例の場合を代表して説明するが、第二の例及び第三の例においても同じである。
 図1に示すように、合成装置3は洗浄液を溜める収容容器2-20を備えており、この収容容器2-20から延びている導出管6も、保持部27によって他の導出管6と共に集約されており、洗浄液を中間容器7に供給することができる。つまり、図2に示すように、保持部27が集約している複数の導出管6には、洗浄液を中間容器7に導入する導出管6が含まれている。なお、中間容器7への洗浄液の供給についても、溶液の場合と同様にタンク4のガスによる(つまり、圧送である)。そして、複数の導出管6それぞれの下流側端部6aは、中間容器7の上端40よりも下の位置で、この中間容器7内において開口している。つまり、導出管6の溶液の吐出口(下流側端部6a)は、中間容器7の上端40よりも下に位置している。
 センサ26は、溶液が第一位置Y1を上限としてまで導入された状態の他に、洗浄液が第二位置Y2まで導入された状態についても検知可能である。第一位置Y1は、図2の矢印(Y1)で示すように下流側端部6aの開口の位置よりも低い位置であり、第二位置Y2は、図2の矢印(Y2)で示すように下流側端部6aの開口よりも高い位置である。なお、第二位置Y2は、中間容器7の上端40よりも低い位置である。
 図1に示す溶液を収容している収容容器2-1、2-2(~2-19)から、選択的に溶液を中間容器7に供給し、計量を行う場合、センサ26は第一位置Y1を上限としてその溶液が導入された状態を検知する。本実施形態では、この検知により、後に説明するがピンチバルブ14の閉動作を開始させる。つまり、第一位置Y1を上限として所定量の溶液が導入されると、溶液の供給を停止する。このように、反応容器9で化学合成を行うための溶液の計量を中間容器7で行う場合、センサ26は、第一位置Y1を超えないように検知を行う。具体的な動作を説明すると、センサ26を用いて溶液を第一位置Y1以下で計量しており、溶液が第一位置Y1を越えたことをセンサ26が検知すると、そのセンサ26の検知結果を制御装置16が受けて例えばエラー信号を出力する。
 これに対して、計量を行わないで中間容器7を洗浄する場合、センサ26は第二位置Y2まで洗浄液が導入された状態(満たされた状態)を検知する。この検知により、洗浄液が収容されている収容容器2-20から延びている導出管6のピンチバルブ14を閉動作させる。つまり、第二位置Y2まで洗浄液が導入されると、洗浄液の供給を停止する。このように、中間容器7の洗浄を行う場合、センサ26は、第二位置Y2を基準とする検知を行う。
 この構成によれば、溶液の計量を行う際には、溶液を第一位置Y1を上限として計量する。第一位置Y1は、下流側端部6aの開口の位置よりも低い位置であるため、中間容器7に供給された溶液が、導出管6の下流側端部6aに接するのを防ぐことができ、各導出管6から供給される溶液の純度が低下するのを防止できるようになっている。一方、中間容器7の洗浄を行う場合、第二位置Y2まで導入された洗浄液によって中間容器7及びこの中間容器7内の導出管6の下流側端部6aを洗浄することが可能となる。すなわち、第二位置Y2は、下流側端部6aの開口よりも高い位置であるため、中間容器7に供給された洗浄液が全ての下流側端部6aに接触し、それぞれの下流側端部6aの洗浄が可能となる。なお、洗浄液は、複数種類の溶液に用いられている主溶媒(主溶剤)とするのが好ましく、これにより、中間容器7に洗浄液が残留していても、溶液の純度の低下を防止することができる。なお、中間容器7の溶液の液面37を検知するセンサ26-2の場合においても、同様に、計量する場合には第一位置Y1を上限として行われ、洗浄を行う場合には第二位置Yまで洗浄液を供給して行われるようになっている。
 以上のように、センサ26を用いて、溶液を第一位置Y1を上限として中間容器7に導入し、また、洗浄液を第二位置Y2まで、中間容器7に導入する場合について説明した。これにより、計量時には溶液が各導出管6の下流側端部6aに接触するのを回避させ、洗浄時には洗浄液が各導出管6の下流側端部6aに接触するように、溶液、及び、洗浄液を精度よく計量して行うことができる。この変形例として、センサ26を用いることなく、溶液が第一位置Y1を上限として中間容器7に導入された状態、及び洗浄液が第二位置Y2まで中間容器7に導入された状態を形成できるようにしてもよい。すなわち、導入管5等を含む送液手段24による各溶液の送液時間等を制御装置16が管理し、規定の送液時間について送液手段24が各溶液を送液することで、下流側端部6aの開口よりも低い第一位置Y1を上限として溶液を導入し、規定の送液時間について送液手段24が洗浄液を送液することで、下流側端部6aの開口よりも高い第二位置Y2まで洗浄液を導入した状態としてもよい。このように、導入管5等を含む送液手段24は、前記第一位置Y1を上限として溶液が導入された状態、及び、前記第二位置Y2まで洗浄液が導入された状態とするように、各溶液を送るように構成されていてもよい。この場合、溶液又は洗浄液を供給する供給量の精度は多少低下するが、センサ26を用いる場合と同様の効果を奏することが可能となる。
〔計量の処理について〕
 以上の構成を備えている合成装置3において、計量機構15が行う溶液の計量処理について説明する。前記第一の例では、センサ26が規定量の溶液を重量により測定するのに対して、前記第二の例(及び前記第三の例)では、センサ26-2が規定量の溶液を液面レベルにより検知する点で異なる。このため、センサ26(26-2)から出力される信号は各例で異なるが、計量処理は共通する。そこで、第一の例の計量機構15が行う計量処理を代表して説明する。
 計量の精度を高めるために合成装置3は、溶液の送液速度を調整する調整手段32(図1参照)を備えている。調整手段32を各導出管6に設け、導出管6それぞれにおいて流れる溶液の送液速度(単位時間あたりの流量)を調整する構成としてもよいが、本実施形態では、上流側配管10に設けられているレギュレータ11を前記調整手段32として機能させている。この構成により、複数の導出管6それぞれに調整手段32を設ける必要がなくなり、合成装置3を簡素化することができる。
 本実施形態では、前記のとおり、各収容容器2から、計量が行われる中間容器7への溶液の送液は圧送方式による。収容容器2の内圧を高くすると中間容器7へ溶液を供給する際の送液速度は高くなり、内圧を低くすると中間容器7へ溶液を供給する際の送液速度は低くなる。つまり、レギュレータ11を調節することによって収容容器2の内圧を高くすることにより、中間容器7への送液速度を高くすることができる。逆に、レギュレータ11を調節することによって収容容器2の内圧を低くすることにより、中間容器7への送液速度を低下させることができる。
 そこで、本実施形態では、中間容器7において計量の処理を行うために中間容器7に溶液を圧送するが、計量を行う対象となる溶液の送液速度をレギュレータ11(調整手段32)によって調整する。これは、送液速度が高い場合、特に計量の目標量が少ないと、計量において誤差が生じやすいためである。例えば、目標量を越えて計量されてしまう可能性が高くなる。そこで、本実施形態では、レギュレータ11によって中間容器7への溶液の送液速度を、予め設定されている閾値よりも低下させる。これにより計量誤差を抑制している。
 しかし、計量のために送液速度を終始低下させると時間を要して作業効率が低下する場合がある。また、計量のために送液速度を終始高くすると計量誤差が生じやすい。そこで、本実施形態では、中間容器7へ溶液を供給している途中で送液速度を変更している。すなわち、計量において規定量(目標量)に到達しない時間帯(前半)では、送液速度を比較的高くし(閾値よりも高くし)、送液の時間短縮を図る。そして、規定量(目標量)に到達する時間帯(後半)では、送液速度を比較的低く変更し(閾値よりも低く変更し)、計量誤差を抑制している。このように、レギュレータ11は、計量のための送液の終了時間帯では、それ以前の時間帯(終了時間帯よりも前の時間帯)よりも、送液速度を低下させる。なお、レギュレータ11の動作制御は、制御装置16からレギュレータ11に与えられる動作信号に基づいて行われる。このように、計量のために中間容器7へ溶液を供給する際に、溶液の送液速度を二段階とする。この結果、始め送液速度を高めることにより作業効率を向上させることが可能となり、そして、計量の終了の際に送液速度を低下させることで計量誤差を抑制することが可能となる。
 送液速度を変更するタイミングは、制御装置16が有するタイマ機能により管理してもよいが、本実施形態では、前記のとおりセンサ26が刻々と重量を検知していることから、規定量未満の所定量(例えば規定量の70%)について溶液が中間容器7に供給されると、制御装置16がレギュレータ11へ信号を出力し、送液速度を低下させるように制御している。
 なお、第二の例(第三の例)のように、中間容器7の溶液の液面37を検知するセンサ26-2の場合、規定量となる液面レベルよりも低い位置に(第一の)センサ26-2を設置し、このセンサ26-2が液面37を検知すると、制御装置16がレギュレータ11へ信号を出力し、送液速度を低下させるように制御すればよい。そして、規定量となる液面レベルにも(第二の)センサ26-2が設置されており、このセンサ26-2によって規定量に到達していることの確認が行われるようにすればよい。
 また、計量誤差を小さくするために、更に、本実施形態の合成装置3は次の構成を備えている。導出管6それぞれに設けられているバルブ(ピンチバルブ14)は、計量のための中間容器7への送液を停止させるバルブとして機能する。このピンチバルブ14の開閉の動作は、制御装置16からの指令信号に基づく。そこで、制御装置16は、中間容器7に溜まっていく溶液が規定量(目標量)に達する前に、ピンチバルブ14に対して閉動作の指令信号を出力する。なお、このように閉動作を早めに開始させる処理を行うために、ピンチバルブ14の閉動作に要する時間が測定されており、この時間についての情報に基づいて、制御装置16は、溶液が規定量(目標量)に達する前にピンチバルブ14に閉動作を開始させる。または、別の手段として、閉動作を早めに開始させる処理を行うために、ピンチバルブ14の閉動作中に送液される溶液の流量の情報が予め取得されており、この流量の情報に基づいて、制御装置16は、溶液が規定量(目標量)に達する前にピンチバルブ14に閉動作を開始させる。更に、別の手段として、ピンチバルブ14の閉動作に要する時間が測定されており、かつ、閉動作中に送液される溶液の流量の情報が予め取得されており、この時間についての情報と、閉動作中の前記流量の情報とに基づいて、制御装置16は、溶液が規定量(目標量)に達する前にピンチバルブ14に閉動作を開始させてもよい。前記各形態の構成によれば、ピンチバルブ14の閉動作の間に流れる溶液を見込んで、ピンチバルブ14を予め早いタイミングで閉動作を開始させることにより、規定量(目標量)を精度良く得ることが可能となる。
 計量のために中間容器7に溶液が供給されている間、センサ26は刻々と測定を行い、制御装置16は、計量のためのセンサ26の信号を刻々と取得し、この信号に基づいてピンチバルブ14に閉動作開始の信号を出力する。これにより、中間容器7に供給された溶液が、規定量(目標量)前に到達すると、前記のとおりピンチバルブ14に閉動作を開始させることができる。この構成により、リアルタイムに溶液の計量が可能になる。すなわち、この構成では、目標とする規定量を監視しつつ計量することができるため、圧送方式やポンプ方式で計量する場合に比べて、機械的な計量誤差等を回避して結果として規定量の溶液を精度良く得ることが可能となる。
 また、センサ26の検知によりピンチバルブ14が閉動作し、中間容器7への溶液の供給が停止されると、中間容器7に溜められている溶液が規定量とおりに正確であるか否かの判定を、制御装置16は行うことができる。正確(規定誤差の範囲内)であると判定した場合、中間容器7の溶液は反応容器9へ送られる。正確で無いと判定されると、不合格処理が行われる。不合格処理としては、例えば、中間容器7の溶液は排液として処理される。
〔合成装置3について〕
 以上のように、本実施形態の合成装置3は、複数の収容容器2から複数種類の溶液を選択的に送って化学合成をするための装置であり、選択的に送られた溶液が入れられこの溶液に含まれる材料により合成物が生成される反応容器9と、収容容器2から反応容器9までの間に設けられ反応容器9に送る溶液を計量する計量機構15とを備えている。この合成装置3によれば、計量機構15により必要量の溶液を計量して反応容器9に送ることができ、溶液の利用効率を従来よりも改善することが可能となる。
 また、以上のように、本実施形態の合成装置3は、複数の収容容器2から複数種類の溶液を選択的に送って化学合成をするための装置であり、収容容器2から反応容器9までの間に設けられている中間容器7を有しており、この中間容器7には、複数の導出管6が集約して設けられており、これら導出管6それぞれから溶液が導入される。この合成装置3によれば、複数の収容容器2それぞれから送られる溶液を中間容器7に一旦導入し、そして、中間容器7から反応容器9に送られた溶液により合成物が生成される。このため、反応容器9を移動させる機構は不要であり、また、従来のように(図8参照)溶液を送る処理毎に反応容器94を移動させる必要がなく、処理動作が単純化される。よって、装置構成が簡素化され、不具合が発生する可能性のある箇所が少なくなり、信頼性の高い合成装置3となる。また、合成に要する動作時間を短縮することが可能となる。更に、本実施形態の構成によれば、複数種類の溶液を混合する必要がある場合、中間容器7でこれら溶液を混合してから反応容器9に送液することができ、これにより反応効率を高めることが可能となる。
 また、本実施形態の合成装置3は、収容容器2から反応容器9までの間に設けられ反応容器9に送る溶液を計量する計量機構15を備えており、計量機構15は、中間容器7に導入された溶液を計量するセンサ26(26-2)を含む。この合成装置3によれば、計量機構15により必要量の溶液を計量して反応容器9に送ることができ、溶液の利用効率を従来よりも改善することが可能となる。
 そして、中間容器7には、複数の導出管6が集約して設けられており、これら導出管6それぞれから溶液が導入される構成となっていることから、必要となる溶液は複数種類存在しているが、計量のために用いられる計量機構15(中間容器7及びセンサ26(26-2))は1セットで済む。つまり、中間容器7を共用することで、導出管6(溶液)毎に計量機構15が不要であり、合成装置3の構成を簡素化することができる。また、中間容器7へ供給する溶液を二種類以上とすることで、中間容器7において複数種類の溶液を混合して計量することもできる。この場合、反応容器9に各溶液を導入するよりも前の段階で、溶液の混合が行われることから、混合時間の短縮化が可能となる。
 前記第一の例(図2参照)では、計量機構15は、中間容器7における重量を測定するセンサ26を有しており、また、前記第二の例(図3)及び前記第三の例(図4)では、中間容器7に溜められる溶液の液面レベルを測定するセンサ26-2を有している。ここで、溶液を送るためにポンプ93を用いる装置(図9参照)が考えられる。この図9に示すポンプ93を用いる装置では、ポンプ93による単位時間あたりの送液量(定格送液量)と、ポンプ93の動作時間とに基づいて、総送液量を演算によって求めることが考えられる。しかし、流路での損失等によって演算による総送液量は不正確であることが予想される。つまり、ポンプ93を用いた場合、実際の送液量と演算による値とが乖離することが多く、そのために、ポンプを用いた装置であっても、複数種類の溶液それぞれに関して、理論上必要とされる量よりも多くの量を供給し、過剰の溶液を用いていることから、特に合成物を量産化する場合、コスト高となる。そこで、本実施形態では、溶液を中間容器7に一旦溜めて計量することにより、対象となる溶液を送液条件で計量するのではなく、送液された結果としての溶液を直接計量しているため高精度に計量でき、計量した溶液を反応容器9に送ることから、溶液の無駄使いを抑えることが可能となり、コスト削減が可能となる。このように、本実施形態のような計量機構15を備えている点は、ポンプ93の駆動に基づく流量管理と、技術的に全く異なる。
 また、図9の例では、溶液の送液をプランジャポンプ93により行っており、このプランジャポンプ93の単位時間あたりの送液量(定格送液量)等の制御によって、仮に精度よく溶液の計量ができたとしても、プランジャポンプ93内で溶液が結晶化することによりプランジャポンプ93に負荷がかかるおそれがあり、このため、シール破損など、駆動系に損傷を与える結果となり、装置全体の耐久性が落ちやすいという問題がある。これに対して、本実施形態の合成装置3では、送液のためにポンプを用いていないため、装置全体の耐久性を高めることができる。
 また、本実施形態(前記第一の例、図2)では、計量機構15は、複数種類の溶液を選択的に取得して計量することができ、このために、計量機構15は、複数種類の溶液それぞれが通る複数の導出管6を集約して保持する保持部27と、これら導出管6から流出した溶液を受ける中間容器(計量容器)7と、この中間容器7における重量を測定する重量センサ26とを備えている。そして、前記のとおり、保持部27と中間容器7とは非接触の状態で設けられている。このため、計量の精度を高くすることが可能となる。これは、前記のとおり、溶液が通る導出管6が、仮に中間容器7と接触していると、例えば導出管6に張力が作用している場合、重量センサ26による計量結果に悪影響を及ぼすが、本実施形態の構成によれば、導出管6の影響を重量センサ26に及ぼすことがないためである。
 また、中間容器7の下流側に接続されている出口側配管30は、前記のとおり、螺旋形状の弾性チューブにより構成されていることから、出口側配管30に外力として張力が作用している場合であっても、このチューブが全体として弾性変形することにより前記外力を逃がすことができる。この結果、重量センサ26による計量結果に前記外力の影響が及び難く、精度の高い計量が可能となる。
 また、本実施形態では、中間容器7には、複数の導出管6が集約して設けられており、これら導出管6それぞれから溶液が導入される構成となっている。このため、必要となる溶液は複数種類存在しているが、計量のために用いられる計量機構15(中間容器7及びセンサ26)は1セットで済む。つまり、中間容器7を共用することで、導出管6(溶液)毎に計量機構15が不要であり、合成装置3の構成を簡素化することができる。また、中間容器7へ供給する溶液を二種類以上とすることで、中間容器7において複数種類の溶液を混合して計量することもできる。この場合、反応容器9に各溶液を導入するよりも前の段階で、溶液の混合が行われることから、混合時間の短縮化が可能となる。
 図1に示す合成装置3では、溶液を送る手段が圧送方式であり、タンク4に充填されているガスを用いて、上流側の容器と下流側の容器との圧力差により送液が行われる構成である。このため、全体流路25におけるコンタミネーション、異物の詰まりによる故障、ディスポーザブルの点で、送液手段にポンプ(電動ポンプや油圧ポンプ)が含まれる場合よりも有利である。つまり、ポンプが用いられる場合、ポンプの可動部が流路中に露出することから、この可動部が有する摺動部材等の剥離や摩耗粉の発生により、コンタミネーション及び異物の詰まりの点で不利である。また、溶液に含まれている溶剤が硬化(結晶化)すると、ポンプの故障の原因となる。更に、合成装置3では、定期的にまたは所定のタイミングで(所定の頻度で)溶液が接する配管や機器等の接液部を交換する必要がある。前記のとおり、本実施形態では、各収容容器2から中間容器7への溶液の供給の開始及び停止は、ピンチバルブ14によって行われるが、このピンチバルブ14は、駆動部が溶液と接することがないため、交換対象とはならない。つまり、ピンチバルブ14によって挟まれる軟性のチューブのみを交換すればよいことから、ディスポーザブルの点で有利である。
〔他の形態の合成装置3(その1)〕
 前記実施形態(図1)の計量機構15は、計量容器として機能する単一の中間容器7を有しており、この中間容器7に対して複数の導出管6が集約して設けられ、これら導出管6それぞれから溶液が中間容器7に導入され、この中間容器7において溶液を計量する場合について説明した。以下、計量容器として機能する中間容器7が複数設けられている形態について説明する。図6は、合成装置3の他の例を示す構成図である。なお、図6に示す合成装置3において、図1に示す合成装置3と同じ構成には、同じ符号を付している。図6に示す合成装置3は、収容容器2-1,2-2,2-3・・・毎に、中間容器7-1,7-2,7-3・・・が設けられており、それぞれが導出管6を介して繋がっている。つまり、計量機構15は、複数の中間容器7-1,7-2,7-3・・・を有している。 収容容器2-1,2-2,2-3・・・から選択的に送液され、中間容器7-1,7-2,7-3・・・それぞれで計量された溶液は、一つの反応容器9に送られる。このために、この合成装置3は、複数種類の溶液をそれぞれ別々に収容する収容容器2-1,2-2,2-3・・・と、溶液を混合させる反応容器9と、この反応容器9を収容するチャンバー29とを備えており、それぞれの収容容器2-1,2-2,2-3・・・と、チャンバー29とが導出管6により接続されている。そして、複数の導出管6の下流側端部が、それぞれ第一の位置P1、第二の位置P2、第三の位置P3に対応して設けられている。反応容器9は、チャンバー29内を図外のアクチュエータによって移動できるように構成されており、第一の位置P1、第二の位置P2、第三の位置P3に移動し、停止できるようになっている。このため、反応容器9は、合成物の生成に必要となる混合すべき溶液の位置(第一の位置P1、第二の位置P2、第三の位置P3)に選択的に移動し、各位置で、導出管6の下流側端部から供給される溶液を順次受け取るように構成されている。このように反応容器9を移動させることで、複数の収容容器2-1,2-2,2-3・・・から複数の中間容器7-1,7-2,7-3・・・へ選択的に送られた溶液が、所定の順番で、反応容器9へ入れられ、この反応容器9において合成物が生成される。
 以上より、図6に示す合成装置3は、複数の収容容器2-1,2-2,2-3・・・毎にそれぞれ独立した中間容器7-1,7-2,7-3・・・で計量し、計量された複数種類の溶液を選択的に送って化学合成をするための装置であり、複数種類の溶液が収容されている複数の収容容器2-1,2-2,2-3・・・それぞれから延びて設けられている複数の導出管6と、これら収容容器2-1,2-2,2-3・・・の溶液をそれぞれ導出管6を通じて送る送液手段とを備えている。送液手段は、図1の場合と同様、圧送によるものとすることができる。合成装置3は、更に、計量機構15と、反応容器9とを備えている。計量機構15は、収容容器2-1,2-2,2-3・・・から反応容器9までの間であって複数の導出管6を含む全体流路25の途中に設けられており、反応容器9に送る溶液を計量する。そして、反応容器9では、収容容器2-1,2-2,2-3・・・から選択的に送られた溶液が、最終的に入れられ合成物が生成される。
〔他の形態の合成装置3(その2)〕
 図7は、合成装置3の更に別の例を示す構成図である。図7に示す合成装置3において、図1に示す合成装置3と同じ構成には、同じ符号を付している。図7に示す合成装置3においても、計量機構15は、複数の中間容器7-1,7-2,7-3・・・を有している。図7に示す合成装置3は、収容容器2-1,2-2,2-3・・・毎に、中間容器7-1,7-2,7-3・・・が設けられており、それぞれが導出管6を介して繋がっている。中間容器7-1,7-2,7-3・・・それぞれで計量された溶液は、一つの反応容器9に送られる。このために、中間容器7-1,7-2,7-3それぞれから延びる中間配管8は、単一の共通配管8aに合流しており、この共通配管8aが反応容器9に繋がっている。これにより、複数の収容容器2-1,2-2,2-3・・・から複数の中間容器7-1,7-2,7-3・・・へ選択的に送られた溶液が、所定の順番で、反応容器9へ入れられ、この反応容器9において合成物が生成される。
 以上より、図7に示す合成装置3は、複数の収容容器2-1,2-2,2-3・・・毎にそれぞれ独立した中間容器7-1,7-2,7-3・・・で計量し、計量された複数種類の溶液を選択的に送って化学合成をするための装置であり、複数種類の溶液が収容されている複数の収容容器2-1,2-2,2-3・・・それぞれから延びて設けられている複数の導出管6と、これら収容容器2-1,2-2,2-3・・・の溶液をそれぞれ導出管6を通じて送る送液手段とを備えている。送液手段は、図1の場合と同様、圧送によるものとすることができる。合成装置3は、更に、計量機構15と、反応容器9とを備えている。計量機構15は、収容容器2-1,2-2,2-3・・・から反応容器9までの間であって複数の導出管6を含む全体流路25の途中に設けられており、反応容器9に送る溶液を計量する。そして、反応容器9では、収容容器2-1,2-2,2-3・・・から選択的に送られた溶液が、最終的に入れられ合成物が生成される。
 図6及び図7では、計量のためのセンサを、液面レベルを検知するセンサ26-2としているが、図1に示す形態と同様に重量センサとしてもよい。また、図1に示す形態で説明した各構成を、図6及び図7に示す合成装置3に適用することができる。図6及び図7それぞれに示す合成装置3においても、必要量の溶液を計量して反応容器9に送ることができ、溶液の利用効率を従来よりも改善することが可能となる。
 以上のとおり開示した実施形態はすべての点で例示であって制限的なものではない。つまり、本発明の合成装置は、図示する形態に限らず本発明の範囲内において他の形態のものであってもよい。例えば、計量機構15が備えているセンサ26をひずみ式のロードセルによる重量センサとして説明したが、他の構成による重量センサとしてもよい。また、このセンサ26を取り付けるための構成を、図示した形態以外とすることもできる。中間容器7への溶液の送液速度を調整する調整手段32を、上流側配管10に設けられているレギュレータ11により構成する場合について説明したが、この構成以外であってもよい。前記実施形態では、溶液を送る手段を全て圧送としたが、一部又は全部において、その他の動力によるものであってもよい。前記実施形態では、各収容容器2から中間容器7への溶液の供給の停止を行うバルブとして、ピンチバルブ14を採用する場合について説明したが、他の形式のバルブであってもよい。
 2:収容容器         3:合成装置   6:導出管(配管)
 6a:下流側端部
 7:中間容器(計量容器)   9:反応容器   11:レギュレータ(調整手段)
 14:ピンチバルブ(バルブ) 15:計量機構  16:制御装置
 18:レギュレータ(調整手段)
 24:送液手段        25:全体流路  26:センサ
 26-2:センサ 27:保持部     29:密閉容器
 30a:一端部  30b:他端部
 40:上端      Y1:第一位置    Y2:第二位置

Claims (20)

  1.  複数種類の溶液を選択的に送って化学合成をするための装置であって、
     複数種類の溶液が収容されている複数の収容容器それぞれから延びて設けられている複数の配管と、
     前記収容容器の溶液を前記配管を通じて送る送液手段と、
     前記収容容器から選択的に送られた溶液が入れられ合成物が生成される反応容器と、
     前記収容容器から前記反応容器までの間であって複数の前記配管を含む全体流路の途中に設けられ当該反応容器に送る溶液を計量する計量機構と、
     を備えている合成装置。
  2.  前記計量機構は、複数の前記配管が集約して設けられており当該配管それぞれから溶液が導入される計量容器を有し、当該計量容器において当該溶液を計量する、請求項1に記載の合成装置。
  3.  前記計量機構は、前記全体流路の途中に設けられている計量容器と、前記計量容器における重量を測定する又は前記計量容器に溜められる溶液の液面レベルを検知するセンサと、を有している請求項1又は2に記載の合成装置。
  4.  前記計量を行う対象となる溶液の送液速度を調整する調整手段を備えている、請求項1~3のいずれか一項に記載の合成装置。
  5.  前記計量のための送液の終了時間帯では、それ以前の時間帯よりも、送液速度を低下させる調整手段を備えている、請求項1~4のいずれか一項に記載の合成装置。
  6.  前記計量のための送液を停止させるバルブと、
     計量のためのセンサの信号を刻々と取得し当該信号に基づいて前記バルブに閉動作開始の信号を出力する制御装置と、を更に備えている、請求項1~5に記載の合成装置。
  7.  前記計量のための送液を停止させるバルブを更に備え、
     溶液が規定量に達する前に前記バルブは閉動作を開始する、請求項1~6のいずれか一項に記載の合成装置。
  8.  複数種類の溶液を選択的に送って化学合成をするための装置であって、
     複数種類の溶液が収容されている複数の収容容器それぞれから延びて設けられている複数の配管と、
     前記収容容器の溶液を前記配管を通じて送る送液手段と、
     複数の前記配管が集約して設けられており当該配管それぞれから溶液が導入される中間容器と、
     前記中間容器から送られた溶液が入れられ合成物が生成される反応容器と、
     を備えている合成装置。
  9.  前記中間容器を収容すると共にガスが充填される密閉容器を備えている、請求項8に記載の合成装置。
  10.  前記中間容器は、ガスが充填される密閉容器である、請求項8に記載の合成装置。
  11.  前記中間容器、及び当該中間容器に導入された溶液を計量するセンサを含む計量機構を備えている、請求項8~10のいずれか一項に記載の合成装置。
  12.  前記センサは、前記中間容器における重量を測定する重量センサであり、
     前記計量機構は、更に、複数の前記配管を集約して保持すると共に前記中間容器と非接触の状態で設けられている保持部を有している、請求項11に記載の合成装置。
  13.  複数の前記配管の下流側端部は、前記中間容器の上端よりも下の位置で当該中間容器内において開口しており、
     複数の前記配管には、洗浄液を前記中間容器に導入する配管が含まれ、
     前記センサは、前記下流側端部の開口よりも低い第一位置を上限として前記溶液が導入された状態、及び、前記下流側端部の開口よりも高い第二位置まで前記洗浄液が導入された状態を検知可能として構成されている、請求項11又は12に記載の合成装置。
  14.  複数の前記配管の下流側端部は、前記中間容器の上端よりも下の位置で当該中間容器内において開口しており、
     複数の前記配管には、洗浄液を前記中間容器に導入する配管が含まれ、
     前記送液手段は、前記下流側端部の開口よりも低い第一位置を上限として前記溶液を導入した状態、及び、前記下流側端部の開口よりも高い第二位置まで前記洗浄液を導入した状態のいずれか一方の状態とするように前記溶液を送る、請求項8~12のいずれか一項に記載の合成装置。
  15.  複数の前記配管を集約して保持する保持部を備え、
     前記保持部によって集約して保持されている複数の前記配管それぞれから前記中間容器に溶液が導入され、
     前記保持部は、複数の前記配管の内の一つの配管の下流側端部が他の配管の下流側端部と非接触となる状態で、複数の当該配管を保持している、請求項8~14のいずれか一項に記載の合成装置。
  16.  複数種類の溶液を選択的に取得して計量する計量機構であって、
     前記溶液が通る配管の下流側端部側を保持する保持部と、前記配管の下流側端部から流出した溶液を受ける計量容器と、前記計量容器における重量を測定する重量センサと、を備え、
     前記保持部と前記計量容器とは非接触の状態で設けられている、計量機構。
  17.  前記保持部は、複数種類の前記溶液それぞれが通る複数の配管を集約して保持し、前記計量容器は、複数の前記配管から流出した溶液を受ける、請求項16に記載の計量機構。
  18.  前記計量容器を収容すると共にガスが充填される密閉容器を備えている、請求項16又は17に記載の計量機構。
  19.  前記計量容器と接続されており計量した溶液を別領域に送り出すための出口側配管を備えており、前記出口側配管は、一端部が前記計量容器に接続されかつ他端部が別部材に支持され当該一端部と当該他端部との間の距離よりも長く形成され全体として変形可能である余長部により構成されている、請求項16~18のいずれか一項に記載の計量機構。
  20.  前記密閉容器内のガスの圧力を調整する調整手段を備え、
     前記保持部と前記計量容器とが非接触とされていることで形成されている当該計量容器の開口を通じて、当該計量容器内の溶液に作用する前記ガスの圧力によって、当該計量容器内の溶液を外部へ圧送する、請求項18に記載の計量機構。
PCT/JP2018/010612 2017-03-29 2018-03-16 合成装置、及び、計量機構 WO2018180642A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880021509.0A CN110709161A (zh) 2017-03-29 2018-03-16 合成装置和计量机构
US16/498,012 US11504686B2 (en) 2017-03-29 2018-03-16 Synthesis device and measuring mechanism

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017065475A JP6863794B2 (ja) 2017-03-29 2017-03-29 計量機構
JP2017-065444 2017-03-29
JP2017065444A JP6901302B2 (ja) 2017-03-29 2017-03-29 合成装置
JP2017-065524 2017-03-29
JP2017065524A JP6901303B2 (ja) 2017-03-29 2017-03-29 合成装置
JP2017-065475 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180642A1 true WO2018180642A1 (ja) 2018-10-04

Family

ID=63675502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010612 WO2018180642A1 (ja) 2017-03-29 2018-03-16 合成装置、及び、計量機構

Country Status (3)

Country Link
US (1) US11504686B2 (ja)
CN (1) CN110709161A (ja)
WO (1) WO2018180642A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632556A (zh) * 2020-05-29 2020-09-08 南京金陵塑胶化工有限公司 一种聚丙烯聚合过程助剂添加管理系统及方法
WO2020188976A1 (ja) * 2019-03-20 2020-09-24 東レエンジニアリング株式会社 計量機構
WO2021079588A1 (ja) * 2019-10-24 2021-04-29 東レエンジニアリング株式会社 薬液合成装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299185A1 (en) * 2022-06-30 2024-01-03 Alfa Laval Corporate AB A separation system for separating a liquid mixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274440A (ja) * 1987-05-07 1988-11-11 Fuji Photo Film Co Ltd 液体.粉体計量混合装置
JPH08272456A (ja) * 1995-03-29 1996-10-18 Dainippon Printing Co Ltd 液体混合装置
JPH0910568A (ja) * 1995-06-28 1997-01-14 Tsukishima Kikai Co Ltd 液体、粉体等の自動調合装置
JP2000051685A (ja) * 1998-08-11 2000-02-22 Shibuya Machinery Kk 計量機能付き無菌タンク装置
JP2003528380A (ja) * 2000-03-21 2003-09-24 バイオケル ユーケイ リミテッド 連続的な液体の流出入システム
JP2009069150A (ja) * 2007-08-20 2009-04-02 Tetsuya Asada 秤量装置及び試料分析前処理装置
JP2015120642A (ja) * 2013-12-20 2015-07-02 株式会社堀場エステック 連続反応装置及びこれを用いる連続合成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557077A (en) * 1967-09-18 1971-01-19 Kay Brunfeldt Reactions system
DE3520657A1 (de) * 1985-06-08 1986-12-11 Azo-Maschinenfabrik Adolf Zimmermann Gmbh, 6960 Osterburken Vorrichtung zum gravimetrischen dosieren fliessfaehiger produkte
EP0289048B1 (en) * 1987-05-01 1995-01-11 Fuji Photo Film Co., Ltd. Measuring mixer for liquids and powders
US5593478A (en) * 1994-09-28 1997-01-14 Sequal Technologies, Inc. Fluid fractionator
US6270730B1 (en) 1998-06-16 2001-08-07 Northwest Engineering Inc. Multi-well rotary synthesizer
JP3824058B2 (ja) * 2001-05-23 2006-09-20 独立行政法人産業技術総合研究所 カルボランスーパークラスターおよびその製造方法
US8926907B2 (en) * 2004-03-23 2015-01-06 W. R. Grace & Co.-Conn System and process for injecting catalyst and/or additives into a fluidized catalytic cracking unit
GB0422787D0 (en) * 2004-10-14 2004-11-17 Ici Plc A tinting machine system
JP2007083147A (ja) * 2005-09-21 2007-04-05 Sangyo Kiden Kk 混合装置
CN201811778U (zh) * 2010-08-30 2011-04-27 杭州高新绝缘材料有限公司 用于pvc电缆料生产的增塑剂自动称重配料系统
FR2978064B1 (fr) * 2011-07-18 2016-02-19 Interlab Procede et dispositif de distribution gravimetrique et en serie de solution.
CN202860499U (zh) * 2012-09-24 2013-04-10 北京立诚石化技术有限公司 一种用于fcc装置的催化剂计量与自动加料系统
JP6579689B2 (ja) * 2015-04-20 2019-09-25 四国化工機株式会社 高濃度過酸化水素水の微少量安定供給装置
CN105289415B (zh) * 2015-10-29 2017-10-24 佛山市优耐高新材料有限公司 聚氨酯的生产系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274440A (ja) * 1987-05-07 1988-11-11 Fuji Photo Film Co Ltd 液体.粉体計量混合装置
JPH08272456A (ja) * 1995-03-29 1996-10-18 Dainippon Printing Co Ltd 液体混合装置
JPH0910568A (ja) * 1995-06-28 1997-01-14 Tsukishima Kikai Co Ltd 液体、粉体等の自動調合装置
JP2000051685A (ja) * 1998-08-11 2000-02-22 Shibuya Machinery Kk 計量機能付き無菌タンク装置
JP2003528380A (ja) * 2000-03-21 2003-09-24 バイオケル ユーケイ リミテッド 連続的な液体の流出入システム
JP2009069150A (ja) * 2007-08-20 2009-04-02 Tetsuya Asada 秤量装置及び試料分析前処理装置
JP2015120642A (ja) * 2013-12-20 2015-07-02 株式会社堀場エステック 連続反応装置及びこれを用いる連続合成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188976A1 (ja) * 2019-03-20 2020-09-24 東レエンジニアリング株式会社 計量機構
WO2021079588A1 (ja) * 2019-10-24 2021-04-29 東レエンジニアリング株式会社 薬液合成装置
JP2021065848A (ja) * 2019-10-24 2021-04-30 東レエンジニアリング株式会社 薬液合成装置
JP7293082B2 (ja) 2019-10-24 2023-06-19 東レエンジニアリング株式会社 薬液合成装置
CN111632556A (zh) * 2020-05-29 2020-09-08 南京金陵塑胶化工有限公司 一种聚丙烯聚合过程助剂添加管理系统及方法

Also Published As

Publication number Publication date
US20200254410A1 (en) 2020-08-13
US11504686B2 (en) 2022-11-22
CN110709161A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2018180642A1 (ja) 合成装置、及び、計量機構
US6098843A (en) Chemical delivery systems and methods of delivery
EP1171376B1 (en) Chemical delivery system and method
EP1879829B1 (en) Liner-based liquid storage and dispensing systems with empty detection capability
US20090294469A1 (en) Mass-Based Powder Dispensing
US11131682B2 (en) Automatic analyzer
JP2005527814A (ja) 化学混合物および搬送システムならびにその方法
JP2018167161A (ja) 合成装置
JP2019034290A (ja) 合成装置
CN211098930U (zh) 一种液体物料定量滴加装置
JP2018167158A (ja) 合成装置
US5335552A (en) Device for accurately measuring mass flow of gases
Meera et al. Automated precise liquid transferring system
JP2018169229A (ja) 計量機構
AU2006241379A1 (en) Method and apparatus for volumetric dosing
CN201705637U (zh) 一种小流量腐蚀性液体的定量输送装置
JP7100473B2 (ja) 合成装置
WO2020134120A1 (zh) 双供料桶连续供料方法
JP2011051624A (ja) 液体の定量充填方法および装置
CN210375291U (zh) 一种液位计量流体输送与计量系统
WO2020188976A1 (ja) 計量機構
JP2008292186A (ja) バッチプラントにおける精密計量システム
US10627278B2 (en) Hydrostatic metering system and method for metering fluids by using such a metering system
JP7342129B2 (ja) 自動分析装置
CN207903906U (zh) 一种桶装液体加液装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774571

Country of ref document: EP

Kind code of ref document: A1