WO2018180628A1 - 電子部品内蔵基板 - Google Patents

電子部品内蔵基板 Download PDF

Info

Publication number
WO2018180628A1
WO2018180628A1 PCT/JP2018/010552 JP2018010552W WO2018180628A1 WO 2018180628 A1 WO2018180628 A1 WO 2018180628A1 JP 2018010552 W JP2018010552 W JP 2018010552W WO 2018180628 A1 WO2018180628 A1 WO 2018180628A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
layer
main surface
conductor layer
substrate
Prior art date
Application number
PCT/JP2018/010552
Other languages
English (en)
French (fr)
Inventor
満広 冨川
吉川 和弘
晃一 角田
吉田 健一
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/499,501 priority Critical patent/US11367626B2/en
Priority to KR1020197031907A priority patent/KR102356125B1/ko
Priority to JP2019509301A priority patent/JP7056646B2/ja
Publication of WO2018180628A1 publication Critical patent/WO2018180628A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • H05K3/4015Surface contacts, e.g. bumps using auxiliary conductive elements, e.g. pieces of metal foil, metallic spheres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4697Manufacturing multilayer circuits having cavities, e.g. for mounting components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances

Definitions

  • the present invention relates to an electronic component built-in substrate.
  • Patent Document 1 discloses a configuration in which a chip capacitor is accommodated as an electronic component in a wiring board.
  • a thin-film electronic component such as a thin-film capacitor is used instead of a chip capacitor in the substrate as described above, the following problems occur. That is, since the thin film capacitor has low rigidity as compared with the chip capacitor, an external force generated when the electronic component built-in substrate is handled acts on the electronic component, and the electronic component may be deformed.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an electronic component built-in substrate capable of suppressing the electronic component from being affected by external force.
  • an electronic component built-in substrate includes a first insulating layer and a conductor layer provided on a first main surface which is a main surface on one side of the first insulating layer. And an electronic component provided on the first main surface of the first insulating layer and having a pair of electrode layers and a dielectric layer laminated thereon, and a second insulating layer laminated on the first insulating layer;
  • the stacking direction of the first insulating layer and the second insulating layer is the same as the stacking direction of the electrode layer and the dielectric layer in the electronic component, and in the stacking direction, the electronic component
  • the height position of the main surface opposite to the first main surface side in the above and the height position of the main surface opposite to the first main surface side in the conductor layer adjacent to the electronic component are: Different from each other.
  • the height position of the main surface on one side of the electronic component has a configuration different from the height position of the main surface in the conductor layer adjacent to the electronic component, so that the external force propagated along the conductor layer It is possible to suppress the electronic component from being affected. Therefore, according to said electronic component built-in board
  • the electronic component may be provided on an adhesive layer provided on the first main surface of the first insulating layer.
  • the electronic component is provided on the adhesive layer on the first main surface of the first insulating layer, when the electronic component built-in substrate receives an external force, the external force received by the electronic component is reduced. It can be relaxed by the adhesive layer. Therefore, according to said electronic component built-in board, it can further suppress that an electronic component receives the influence of external force.
  • the height position of the main surface on the first main surface side in the electronic component, and the height position of the main surface on the first main surface side in the conductor layer adjacent to the electronic component; May be different from each other.
  • the height position of the main surface on the first main surface side in the electronic component is different from the height position of the main surface on the first main surface side in the conductor layer adjacent to the electronic component. Therefore, it can suppress more effectively that an electronic component is influenced by the external force which propagated along the conductor layer.
  • the conductor layer can have a substantially uniform thickness.
  • the electronic component when the thickness of the conductor layer is substantially uniform, dispersion of the external force propagating along the extending direction of the conductor layer is suppressed in other directions, so that the electronic component greatly influences the external force. Although it may receive, it can suppress that an electronic component receives the influence of external force by controlling the height position of a main surface as mentioned above.
  • a part of the electrode layer of the electronic component may be connected to the conductor layer with a conductive paste.
  • the wiring of the wiring can be flexibly changed by providing the conductive paste for connecting the electrode layer and the conductor layer of the electronic component.
  • the wiring can be changed flexibly, for example, the arrangement of via conductors used for the wiring can be changed flexibly.
  • an electronic component built-in substrate capable of suppressing the electronic component from being affected by an external force.
  • FIG. 1 is a cross-sectional view schematically showing an electronic component built-in substrate according to an embodiment of the present invention. It is a top view of the electronic component vicinity of an electronic component built-in board
  • FIG. 1 is a cross-sectional view of a package substrate in which an electronic component built-in substrate and an IC built-in substrate according to an embodiment of the present invention are combined. It is sectional drawing of the modification of a package board
  • FIG. 1 is a cross-sectional view schematically showing an electronic component built-in substrate according to an embodiment of the present invention.
  • An electronic component built-in substrate 1 shown in FIG. 1 is a substrate used for an electronic device such as a communication terminal.
  • the electronic component built-in substrate 1 includes a substrate 10 and an electronic component 30 built in the substrate 10. “Embedded” of the electronic component 20 in the substrate 10 means a state in which the electronic component 20 is not exposed from the main surface of the substrate 10.
  • the electronic component 30 is a component that functions as a capacitor or the like.
  • the substrate 10 has a first insulating layer 11 and a second insulating layer 12.
  • the first insulating layer 11 and the second insulating layer 12 are stacked in the stacking direction (thickness direction).
  • the 1st insulating layer 11 and the 2nd insulating layer 12 are comprised by insulating materials, such as an epoxy resin, a polyimide resin, an acrylic resin, or a phenol resin, for example.
  • the total thickness of the substrate 10 can be, for example, about 40 ⁇ m to 300 ⁇ m.
  • the thicknesses of the first insulating layer 11 and the second insulating layer 12 can be set to about 15 ⁇ m to 100 ⁇ m, respectively.
  • substrate 10, the thickness of the 1st insulating layer 11, and the thickness of the 2nd insulating layer 12 are not specifically limited.
  • the substrate 10 includes a first conductor layer 13 sandwiched between the first insulating layer 11 and the second insulating layer 12, and a second conductor layer 14 and a third conductor layer 15 provided on the main surface of the substrate 10. And have.
  • the first conductor layer 13, the second conductor layer 14, and the third conductor layer 15 are made of a conductive material such as copper (Cu), for example.
  • the first conductor layer 13 is formed on the first main surface 11a of the first insulating layer 11 on the side where the second insulating layer 12 is laminated. Therefore, the first main surface 11a of the first insulating layer 11 is in a flat state, and the first conductor layer 13 is provided thereon.
  • the second conductor layer 14 is provided so that the conductor portion is exposed on the second main surface 11b on the first insulating layer 11 opposite to the first main surface 11a.
  • the surface of the second conductor layer 14 forms a flat surface together with the second main surface 11b, but the second conductor layer 14 protrudes from the second main surface 11b. May be provided.
  • a part of the surface of the second conductor layer 14 may be covered with an insulating material 21 such as a solder resist.
  • the third conductor layer 15 is provided so that the conductor portion is exposed on the main surface of the second insulating layer 12 opposite to the main surface on the first insulating layer 11 side.
  • the surface of the third conductor layer 15 protrudes from the main surface of the second insulating layer 12, but even if a flat surface is formed together with the main surface of the second insulating layer 12. Good.
  • a part of the surface of the third conductor layer 15 may be covered with an insulating material 22 such as a solder resist.
  • the thicknesses of the first conductor layer 13, the second conductor layer 14, and the third conductor layer 15 are substantially uniform. That the thickness of the conductor layer is substantially uniform means that the fluctuation range of the thickness is within 30%.
  • the thicknesses of the first conductor layer 13, the second conductor layer 14, and the third conductor layer 15 are about 5 ⁇ m to 20 ⁇ m.
  • first insulating layer 11 is provided with an opening penetrating in the thickness direction, and a via conductor 16 connecting the first conductor layer 13 and the second conductor layer 14 is provided.
  • second insulating layer 12 is provided with an opening penetrating in the thickness direction and a via conductor 17 connecting the first conductor layer 13 and the third conductor layer 15.
  • the electronic component 30 is provided on the first main surface 11 a of the first insulating layer 11 so as to be embedded in the second insulating layer 12.
  • the electronic component 30 includes a first electrode layer 31 ⁇ / b> A and a second electrode layer 31 ⁇ / b> B that are a pair of electrode layers, and a dielectric layer 32.
  • the electronic component 30 has a laminated structure with a dielectric layer 32 and a pair of electrode layers, and the lamination direction is the same as the lamination direction of the first insulating layer 11 and the second insulating layer 12 in the electronic component built-in substrate 1. The same.
  • the first electrode layer 31A and the second electrode layer 31B which are a pair of electrode layers, are provided on the main surface on one side of the dielectric layer 32 (the side far from the first insulating layer 11). ing. That is, the first electrode layer 31A and the second electrode layer 31B are stacked at different positions on the dielectric layer 32.
  • the first main surface 30a that is the main surface on one side of the electronic component 30 is formed by the main surfaces of the first electrode layer 31A and the second electrode layer 31B, and the second main surface that is the other main surface.
  • the main surface 30b is formed by the main surface on the other side of the dielectric layer 32 (side closer to the first insulating layer 11).
  • the first electrode layer 31A and the second electrode layer 31B of the electronic component 30 may be provided so as to sandwich the dielectric layer 32 therebetween.
  • a multilayer structure in which any one of the electrode layers and the dielectric layer is alternately stacked a plurality of times may be employed.
  • the total thickness of the electronic component 30 is about 1 ⁇ m to 150 ⁇ m. Further, the thickness of the first electrode layer 31A and the second electrode layer 31B can be about 0.5 ⁇ m to 50 ⁇ m, and the thickness of the dielectric layer 32 can be about 0.5 ⁇ m to 100 ⁇ m.
  • the main component is nickel (Ni), copper (Cu), aluminum (Al), platinum (Pt), an alloy containing these metals, or an intermetal A material that is a compound is preferably used.
  • the material of the first electrode layer 31A and the second electrode layer 31B is not particularly limited as long as it is a conductive material.
  • the term “main component” means that the proportion of the component is 50% by mass or more.
  • 31 A of 1st electrode layers and the 2nd electrode layer 31B the case where it is the structure of a laminated body which consists of two or more types besides the case where an alloy and an intermetallic compound are formed is included.
  • the purity of the Ni is preferably 99.99% or higher.
  • metals included as metals other than Ni are platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru), osmium (Os), It is preferable to use at least one selected from the group consisting of rhenium (Re), tungsten (W), chromium (Cr), tantalum (Ta), silver (Ag), and copper (Cu).
  • the first electrode layer 31A and the second electrode layer 31B of the electronic component 30 are electrically connected to other conductor layers and the like via via conductors and the like.
  • the first electrode layer 31A and the second electrode layer 31B are electrically connected to the third conductor layer 15 via via conductors 18A and 18B penetrating the second insulating layer 12, respectively. Has been.
  • the dielectric layer 32 is made of a perovskite dielectric material.
  • the perovskite-based dielectric material in this embodiment BaTiO 3 (barium titanate), (Ba 1-x Sr x ) TiO 3 (barium strontium titanate), (Ba 1-x Cax) TiO 3 , PbTiO 3 , Pb (Zr x Ti 1-x ) O 3 and other (strong) dielectric materials having a perovskite structure, and composites represented by Pb (Mg 1/3 Nb 2/3 ) O 3 Perovskite relaxor type ferroelectric materials are included.
  • the ratio of the A site to the B site is usually an integer ratio, but may be intentionally shifted from the integer ratio in order to improve the characteristics.
  • the dielectric layer 32 may appropriately contain an additive substance as a subcomponent.
  • the electronic component 30 is laminated on the first main surface 11a of the first insulating layer 11 with an adhesive layer 40 interposed therebetween.
  • the adhesive layer 40 is not particularly limited as long as the electronic component 30 can be fixed to the first insulating layer 11.
  • a resin prepreg, filler-containing composite material, etc.
  • An agent a sheet with an adhesive, a paste containing metal powder, or the like
  • the adhesive layer 40 has a configuration that is more elastic than the electronic component 30.
  • the thickness of the adhesive layer 40 can be about 0.5 ⁇ m to 30 ⁇ m.
  • FIG. 2 is a plan view schematically showing the arrangement of the electronic component 30 and the first conductor layer 13 in plan view.
  • the first conductor layer 13 (conductor layers 13 ⁇ / b> A and 13 ⁇ / b> B) is provided surrounding and spaced apart from the first electrode layer 31 ⁇ / b> A, the second electrode layer 31 ⁇ / b> B, and the dielectric layer 32 of the electronic component 30.
  • the second insulating layer 12 is disposed between the electronic component 30 and the first conductor layer 13. Therefore, insulation is ensured between the electronic component 30 and the first conductor layer 13.
  • the first electrode layer 31 ⁇ / b> A includes the first conductor layer on the first electrode layer 31 ⁇ / b> A side via the via conductor 18 ⁇ / b> A, the third conductor layer 15 (conductor layer 15 ⁇ / b> A), and the via conductor 17. 13 (conductor layer 13A).
  • the second electrode layer 31B is connected to the first conductor layer 13 (conductor layer 13B) on the second electrode layer 31B side via the via conductor 18B, the third conductor layer 15 (conductor layer 15B), and the via conductor 17. Is done. As shown in FIG.
  • both the conductor layer 13A as the first conductor layer 13 on the first electrode layer 31A side and the conductor layer 13B as the first conductor layer 13 on the second electrode layer 31B side have a concave shape.
  • the electronic component 30 is in a state of entering the recess of the conductor layer. As described above, when the first conductor layer 13 is disposed so as to surround the electronic component 30, the periphery of the electronic component 30 on the first insulating layer 11 can be effectively used as a conductor layer.
  • the electronic component 30 and the first conductor layer 13 are preferably separated by 3 ⁇ m or more in order to ensure insulation.
  • the via conductors 18A and 18B and the via conductor 17 are indicated by broken lines, but the via conductors 18A and 18B and the via conductor 17 are provided above the electrode layer or conductor layer to which the via conductors 18A and 18B and the via conductor 17 are connected. With this configuration, insulation between adjacent via conductors is also ensured by the second insulating layer 12.
  • the first main surface 30a of the electronic component 30 is higher than the upper surface of the first conductor layer 13 (the main surface on the third conductor layer 15 side). Since the electronic component 30 is laminated on the first main surface 11a of the first insulating layer via the adhesive layer 40, the second main surface 30b is the lower surface of the first conductor layer 13, that is, the first It is higher than the first main surface 11 a of the insulating layer 11. Thus, when the electronic component built-in substrate 1 is viewed in the thickness direction (stacking direction), the height positions of the first main surface 30a and the second main surface 30b of the electronic component 30 are such that the first conductor layer 13 has a height position. It differs from the height position of a pair of main surface.
  • FIG. 3 is an enlarged view of the vicinity of the electronic component on the electronic component built-in substrate.
  • the electronic component 50 of the electronic component built-in substrate shown in FIG. 3 is provided so that the first electrode layer 31A and the second electrode layer 31B sandwich the dielectric layer 32 therebetween. ing. That is, in the electronic component 50 of the electronic component built-in substrate shown in FIG. 3, the second electrode layer 31B is arranged on the first main surface 11a side of the first insulating layer (not shown in FIG. 3, see FIG. 1 and the like). This is different from the electronic component 30.
  • the conductor wiring which connects the 2nd electrode layer 31B and a conductor layer is provided in the area
  • the first main surface 30a of the electronic component 50 is higher than the upper surface of the first conductor layer 13 (the main surface on the third conductor layer 15 side).
  • the second main surface 30b is the lower surface of the first conductor layer 13, that is, the first It is higher than the first main surface 11 a of the insulating layer 11.
  • the electronic component built-in substrate 1 has a height position of the main surface of the electronic component adjacent to the first conductor layer 13 when viewed in the thickness direction. It differs from the height position of the principal surface of each other. As a result, when an external force is applied to the electronic component built-in substrate 1, the electronic component can be prevented from being affected by the external force. This point will be described later.
  • the manufacturing method of the electronic component built-in substrate 1 described in this embodiment is a method of simultaneously manufacturing two electronic component built-in substrates on a pair of main surfaces of a copper foil with a carrier. A component-embedded substrate may be manufactured.
  • a copper foil 60 with a carrier is prepared, and a second conductor layer 14 having a predetermined pattern is formed on the copper foil 60 with a carrier.
  • the copper foil 60 with a carrier is obtained by laminating an ultrathin copper foil 63 on both main surfaces of a substrate 61 with a release layer 62 interposed therebetween.
  • the formation method of the 2nd conductor layer 14 is not specifically limited, For example, after forming a conductor layer on the ultra-thin copper foil 63, it can form by performing a patterning. In the subsequent manufacturing process, the same processing is performed on both surfaces of the carrier-attached copper foil 60, but description of the same processing on both surfaces may be omitted.
  • the first insulating layer 11 is laminated on the second conductor layer 14. Furthermore, an opening is provided by a laser or the like at a predetermined position of the first insulating layer 11, and a via conductor 16 is formed by introducing a conductive material. Further, the first conductor layer 13 having a predetermined wiring pattern is formed on the first main surface 11 a of the first insulating layer 11.
  • the adhesive layer 40 is formed on the first main surface 11 a of the first insulating layer 11, and the electronic component 30 is stacked on the adhesive layer 40.
  • the electronic component 30 is laminated on the adhesive layer 40 in a state where the first electrode layer 31A, the second electrode layer 31B, and the dielectric layer 32 are processed into a desired shape.
  • the second insulating layer 12 is laminated so as to cover all of the first major surface 11a of the first insulating layer 11, the first conductor layer 13, and the electronic component 30.
  • the via conductors 17, 18 ⁇ / b> A, and 18 ⁇ / b> B are formed by providing an opening with a laser or the like at a predetermined position of the second insulating layer 12 and introducing a conductive material.
  • a third conductor layer 15 having a predetermined wiring pattern is formed on the main surface of the second insulating layer 12.
  • an insulating material 22 is provided at predetermined positions on the surfaces of the second insulating layer 12 and the third conductor layer 15.
  • the base 61 and the ultrathin copper foil 63 of the copper foil with carrier 60 are separated from each other in the peeling layer 62 of the copper foil with carrier 60.
  • the first insulating layer 11 and the second insulating layer 12 are stacked, and the stacked body in which the electronic component 30 is built is separated from the base material 61.
  • the ultrathin copper foil 63 attached to the surfaces of the first insulating layer 11 and the second conductor layer 14 is removed by polishing or the like.
  • the first insulating layer 11 and the second conductor layer 14 are exposed on the lower surface side.
  • an insulating material 21 is provided at predetermined positions on the surfaces of the first insulating layer 11 and the second conductor layer 14, the electronic component built-in substrate 1 shown in FIG. 1 is obtained.
  • the electronic component built-in substrate 1 has the first main surface 30a and the second main surface of the electronic component 30 when viewed in the thickness direction (stacking direction).
  • the height position of 30b is different from the height position of a pair of main surfaces of the adjacent first conductor layers 13. More specifically, the first main surface 30a of the electronic component 30 is higher than the main surface above the first conductor layer 13 (on the third conductor layer 15 side), and the second main surface 30b of the electronic component 30 is It is higher than the main surface below the first conductor layer 13 (on the second conductor layer 14 side) (that is, corresponding to the first main surface 11a of the first insulating layer 11). As a result, even when the electronic component built-in substrate 1 receives an external force, the electronic component 30 can be prevented from being damaged due to the external force.
  • the electronic component built-in substrate 1 according to the present embodiment has been reduced in height in response to the recent demand for lowering the height of electronic devices. That is, the thickness of the electronic component built-in substrate 1 is very small as compared with the conventional electronic component built-in substrate. Therefore, the electronic component built-in substrate 1 is easily affected by external force.
  • the influence which the electronic component built-in substrate 1 receives changes with the position where the electronic component built-in substrate 1 receives external force, the direction of the external force, and the magnitude thereof. However, the region in which the electronic component 30 is built and its periphery are places where the influence of external force tends to concentrate.
  • the first insulating layer 11 and the second insulating layer 12 are laminated and the first conductor layer 13 is formed in the vicinity of the interface as in the electronic component built-in substrate 1, the first insulating layer 11
  • the electronic component 30 disposed at the interface between the first insulating layer 11 and the second insulating layer 12 is easily affected. More specifically, when an external force that causes a positional shift between the main surface on one side and the main surface on the other side along the main surface direction of the electronic component built-in substrate 1 is received, the electronic component built-in substrate 1.
  • the first main surface 11a of the first insulating layer 11 and the main surface of the second insulating layer 12 facing the first main surface 11a are most easily affected, and their relative positions change. Receive external force.
  • the first conductor layer 13 provided on the first main surface 11a of the first insulating layer 11 receives an external force. And it is thought that an external force is propagated along the 1st main surface 11a via the 1st conductor layer 13, and the electronic component 30 is also influenced by it.
  • the first conductor layer 13 often has higher rigidity than the surrounding first insulating layer 11 and second insulating layer 12, and in this case, it is considered that the ability to propagate external force is particularly high.
  • the electronic component 30 and the adjacent first conductor layer 13 are at the same height when viewed in the stacking direction, the external force propagated by the first conductor layer 13 is also propagated to the electronic component 30.
  • the electronic component 30 has a structure having the dielectric layer 32, the rigidity is lower than that of the first conductor layer 13, and there is a high possibility that the electronic component 30 is damaged when affected by an external force.
  • the stacking direction of the first electrode layer 31A and the second electrode layer 31B and the dielectric layer 32 is such that the first insulating layer 11 and the second insulating layer 12 If the stacking directions are the same, there is a possibility that the electronic component 30 is greatly affected by the external force.
  • both the height positions of the first main surface 30a and the second main surface 30b of the electronic component 30 are a pair of adjacent first conductor layers 13. It is different from the height position of the main surface.
  • the height position of a pair of main surface (the 1st main surface 11a and the 2nd main surface 11b) of the electronic component 30 and a pair of main surface of the adjacent 1st conductor layer 13 are the same.
  • the propagation direction of the external force by the first conductor layer 13 and the extending direction of the pair of main surfaces of the electronic component 30 can be made different. Therefore, the influence of the external force propagated by the first conductor layer 13 received by the electronic component 30 can be reduced. Therefore, it is possible to suppress the electronic component from being affected by an external force.
  • the electronic component 30 is laminated on the first main surface 11 a of the first insulating layer 11 via the adhesive layer 40. And by having such a structure, the height position of the lower surface of the 1st conductor layer 13 and the height position of the 2nd main surface 30b of the electronic component 30 mutually differ. As described above, the electronic component 30 is provided on the adhesive layer 40 on the first main surface 11a of the first insulating layer 11, so that the first main surface 11a of the first insulating layer 11 and the first The adhesive layer 40 can relieve a force that causes a positional deviation between the main surface of the second insulating layer 12 facing the main surface 11a.
  • the adhesive layer 40 can alleviate this. Therefore, it is possible to further suppress the electronic component 30 from being affected by an external force.
  • the effect of being able to suppress the influence of external force in the electronic component 30 is significant when the thickness of the first conductor layer 13 is substantially uniform as in the electronic component built-in substrate 1.
  • distribution to the other direction of the external force which propagates along the extension direction of the 1st conductor layer 13 is suppressed. Therefore, the first conductor layer 13 may be propagated to the electronic component 30 in a state where the magnitude of the external force is maintained. Therefore, when the thickness of the first conductor layer 13 is substantially uniform, the height position of the main surface of the electronic component 30 is different from the height position of the pair of main surfaces of the adjacent first conductor layer 13. Thus, the effect of reducing the influence of the external force propagated by the first conductor layer 13 received by the electronic component 30 becomes significant.
  • the first main surface 11a of the electronic component 30 is higher (on the third conductor layer 15 side) than the upper surface of the first conductor layer 13, and the first conductor layer 13
  • the example in which the 2nd main surface 11b of the electronic component 30 is higher than the lower surface (1st main surface 11a of a 1st insulating layer) is shown.
  • the height position of the main surface of the electronic component 30 and the height position of the pair of main surfaces of the adjacent first conductor layer 13 are different from each other, the effect of suppressing the influence of the external force applied to the electronic component 30 is reduced. can get.
  • the effect of suppressing the influence of the external force applied to the electronic component 30 Is obtained. That is, even if the height position of the second main surface 11b of the electronic component 30 is the same as the height position of the lower surface of the adjacent first conductor layer 13, the height of the first main surface 11a of the electronic component 30 is the same. Since the position and the height position of the upper surface of the adjacent first conductor layer 13 are different, the influence of the external force applied to the electronic component 30 can be suppressed.
  • the difference between the height position of the first main surface 30a of the electronic component 30 and the height position of the main surface (upper surface) of the first conductor layer is preferably 10 ⁇ m or less.
  • the height position of the first main surface 11a of the electronic component 30 and the main surface (upper surface) of the first conductor layer is very thin.
  • the stress derived from the external force may concentrate on the electronic component 30.
  • the thickness of the second insulating layer 12 is greatly different between the upper portion of the electronic component 30 and the periphery thereof, and stress may be concentrated on the electronic component 30.
  • the stress concentration on the electronic component 30 can be reduced by setting the difference between the height position of the first main surface 11a of the electronic component 30 and the height position of the main surface (upper surface) of the first conductor layer to 10 ⁇ m or less. Can be suppressed.
  • the difference is preferably 10 ⁇ m or less. Even when the height position of the second main surface 30b of the electronic component 30 and the height position of the main surface (lower surface) of the first conductor layer are greatly different, the electronic component 30 is derived from an external force. Stress can be concentrated. Therefore, concentration of stress on the electronic component 30 can be suppressed by setting the difference in height position to 10 ⁇ m or less.
  • FIGS. 6A to 6C show examples in which the connection between the electronic component of the electronic component built-in substrate and other conductor layers is changed.
  • FIG. 7 is a modification regarding arrangement
  • the electrode layer of the electronic component 30 and the first conductor layer 13 are connected by a conductive paste. More specifically, the first electrode layer 31A of the electronic component 30 and the conductor layer 13A adjacent to the first electrode layer 31A of the electronic component 30 in the first conductor layer 13 are connected to each other. Is filled with conductive paste 45A. In addition, the conductive paste 45B is connected between the second electrode layer 31B of the electronic component 30 and the conductor layer 13B adjacent to the second electrode layer 31B of the electronic component 30 in the first conductor layer 13. Is filled.
  • the conductive pastes 45 ⁇ / b> A and 45 ⁇ / b> B are not particularly limited as long as they are conductive materials.
  • a material mainly composed of Sn (tin) can be used.
  • the conductive pastes 45 ⁇ / b> A and 45 ⁇ / b> B form the first conductor layer 13 (conductor) after the first conductor layer 13 is formed on the first main surface 11 a of the first insulating layer 11 and the electronic component 30 is disposed via the adhesive layer 40.
  • Layer 13A or conductor layer 13B) and the electrode layer of electronic component 30 (first electrode layer 31A or second electrode layer 21B) are introduced.
  • the first conductor layer 13 (conductor layer 13A or conductor layer 13B) and the electrode layer (first electrode layer 31A or second electrode layer 21B) of the electronic component 30 are electrically conductive pastes 45A and 45B. If the configuration is such that the conductor layer 15A is electrically connected to the first electrode layer 31A in the third conductor layer 15, the via conductor connecting the conductor layer 13A can be omitted. That is, in the case of the electronic component built-in substrate 1 shown in FIG. 1, the via conductor 17 that connects the conductor layer 13A and the conductor layer 15A is provided, but in the electronic component built-in substrate 1A, the first electrode layer is formed by the conductive paste 45A.
  • the via conductor 17 can be omitted.
  • the wiring of the wiring can be simplified by using the conductive pastes 45A and 45B for connecting the electrode layer of the electronic component 30 and the first conductor layer 13.
  • the wiring is simplified, but the wiring can be flexibly changed even when the wiring is not simplified.
  • the electrode layer of the electronic component 30 and the first conductor layer 13 are formed by the conductive pastes 45A and 45B in the same manner as the electronic component built-in substrate 1A shown in FIG. Electrically connected. Furthermore, in the electronic component built-in substrate 1B, the via conductor 18A that connects the first electrode layer 31A of the electronic component 30 and the conductor layer 15A of the third conductor layer 15, the second electrode layer 31B, and the third conductor layer The via conductor 18B that connects the 15 conductor layers 15B is not provided.
  • a via conductor 17 that connects the conductor layer 13A and the conductor layer 15A and a via conductor 17 that connects the conductor layer 13B and the conductor layer 15B are provided. ing.
  • the conductor layers 13A and 13B are connected to the first electrode layer 31A and the second electrode layer 31B by the conductive pastes 45A and 45B, respectively, by connecting the conductor layers 13A and 13B and the conductor layers 15A and 15B, the first The first electrode layer 31A, the conductor layer 13A, and the conductor layer 15A can have the same potential, and the second electrode layer 31B, the conductor layer 13B, and the conductor layer 15B can have the same potential. Therefore, also in the electronic component built-in substrate 1B, by using the conductive pastes 45A and 45B for connecting the electrode layer of the electronic component 30 and the first conductor layer 13, the wiring can be simplified.
  • the via conductors 18A and 18B that are electrically connected to the main surfaces of the first electrode layer 31A and the second electrode layer 31B of the electronic component 30 are not provided.
  • the force in the stacking direction of the electronic component 30 (the stacking direction of the electronic component built-in substrate 1) is prevented from being applied to the electronic component 30 via the via conductors 18A and 18B. can do. Therefore, the influence of the external force that the electronic component 30 receives can be further suppressed.
  • the vertical direction of the electronic component 30 is reversed as compared with the electronic component built-in substrate 1B shown in FIG. 6B. That is, the first electrode layer 31 ⁇ / b> A and the second electrode layer 31 ⁇ / b> B of the electronic component 30 are disposed on the first insulating layer 11 side with respect to the dielectric layer 32. However, the first main surface 11a of the first insulating layer 11 is separated from the first electrode layer 31A and the second electrode layer 31B of the electronic component 30, and the first main surface 11a of the first insulating layer 11 and the first electrode layer 31B are separated from each other. Between the electrode layer 31A, the conductive paste 45A and the second insulating layer 12 are interposed.
  • the conductive paste 45B and the second insulating layer 12 are interposed between the first major surface 11a of the first insulating layer 11 and the second electrode layer 31B.
  • An adhesive layer 40 is provided above the dielectric layer 32 (on the third conductor layer 15 side). However, the adhesive layer 40 may not be provided.
  • the first conductor layer 13 is formed on the first main surface 11a of the first insulating layer 11, and the conductive pastes 45A and 45B are disposed at predetermined positions. Thereafter, the electronic component 30 is disposed on the conductive pastes 45A and 45B. Further, the adhesive layer 40 is disposed on the electronic component 30 as necessary.
  • the electrode layers of the electronic component 30 and the first conductor layer 13 are electrically connected by the conductive pastes 45A and 45B.
  • the first electrode layer 31A, the conductor layer 13A, and the conductor layer 15A are connected by the via conductor 17 that connects the conductor layer 13A and the conductor layer 15A and the via conductor 17 that connects the conductor layer 13B and the conductor layer 15B.
  • the second electrode layer 31B, the conductor layer 13B, and the conductor layer 15B have the same potential.
  • the conductive pastes 45A and 45B function as adhesive layers, and the electronic components 30 are separated from the first insulating layer 11 by the conductive pastes 45A and 45B. Therefore, similarly to the electronic component built-in substrates 1, 1A, 1B, the electronic component 30 is laminated on the first main surface 11a of the first insulating layer 11 via the adhesive layer, and the electronic component 30 is affected by the external force. Can be further suppressed.
  • FIG. 7 is a diagram showing an example of the arrangement of the first conductor layer 13 when a plurality of electronic components 30 are provided, and is a plan view corresponding to FIG.
  • the two electronic components 30 are arranged on the first main surface 11 a of the first insulating layer 11, similarly to the first conductor layer 13.
  • the two electronic components 30 are both arranged away from the first conductor layer 13.
  • the first conductor layer 13 (conductor layers 13A and 13B) surrounds the first electrode layer 31A, the second electrode layer 31B, and the dielectric layer 32 of the two electronic components 30, respectively. They are spaced apart.
  • the second insulating layer 12 is disposed between the electronic component 30 and the first conductor layer 13, insulation is ensured between the electronic component 30 and the first conductor layer 13.
  • the first conductor layer 13 (conductor layers 13A and 13B) shown in FIG. 7 has a protruding portion 13C protruding between the adjacent electronic components 30.
  • the first conductor layer 13 is provided around each of the two electronic components 30, so that when the electronic component built-in substrate receives a large external force, the two electronic components 30 are provided. It can prevent that mutually contact
  • the shape of the 1st conductor layer 13 can be utilized as a standard of arrangement
  • the shape and arrangement of the electronic component 30, the via conductors 16, 17, 18A, 18B, etc. included in the electronic component built-in substrate 1 can be changed as appropriate.
  • the shapes of the first conductor layer 13, the second conductor layer 14, and the third conductor layer 15 can be changed as appropriate.
  • the second conductor layer 14 and the third conductor layer 15 may not be provided, and only one of them may be provided.
  • the shapes of the insulating materials 21 and 22 can be changed as appropriate, and need not be provided.
  • the insulating layer is the first insulating layer 11 and the second insulating layer 12 has been described.
  • the insulating layer may be three or more layers. Even if the number of insulating layers is three or more, the configuration described in the present embodiment, that is, the main surface of the conductor layer and the electronic component and the conductor layer, as long as the configuration is provided between the two insulating layers, By having a configuration in which the height position of the electronic component is different from that of the main surface, the electronic component can be prevented from receiving an external force.
  • FIGS. 8 to 11 show an embodiment of a package substrate in which the electronic component built-in substrate of the present invention is combined with an IC built-in substrate.
  • FIG. 8 schematically shows a package substrate 2A in which an IC built-in substrate 56 in which an IC 54 is built in an insulating layer 55 and an electronic component built-in substrate 1D according to an embodiment of the present invention are connected via a third insulating layer 51.
  • FIG. 8 schematically shows a package substrate 2A in which an IC built-in substrate 56 in which an IC 54 is built in an insulating layer 55 and an electronic component built-in substrate 1D according to an embodiment of the present invention are connected via a third insulating layer 51.
  • the electronic component built-in substrate 1D has the same general structure as the electronic component built-in substrate 1 and the like, but the structure of the electronic component 30 is provided such that the first electrode layer 31A and the second electrode layer 31B sandwich the dielectric layer 32 therebetween. ing. Further, the insulating materials 21 and 22 are removed. Furthermore, the electronic component built-in substrate 1D is in an upside down state. That is, the third insulating layer 51 and the IC built-in substrate 56 are stacked on the second conductor layer 14 side.
  • the electronic component built-in substrate 1D and the IC built-in substrate 56 can be electrically connected via a via conductor 52 and a connecting conductor layer 53 provided in the third insulating layer 51.
  • a via conductor 52 and a connecting conductor layer 53 provided in the third insulating layer 51.
  • the shape and arrangement of the via conductor and the conductor layer that electrically connect the conductor layer and the IC 54 in the electronic component built-in substrate 1D can be changed as appropriate. Therefore, a wiring layer or the like other than the conductor layer 53 may be provided.
  • the package substrate 2A shown in FIG. 8 can be manufactured, for example, by the following method.
  • the IC built-in substrate 56 is manufactured by embedding the IC 54 in the insulating layer 55.
  • the IC 54 is exposed on the surface of the insulating layer 55 and the surface (the surface corresponding to the lower surface side of the IC-embedded substrate 56) is flattened.
  • the third insulating layer 51 is provided, and the via conductor 52 is formed inside.
  • the package substrate 2A can be obtained by forming each part of the electronic component built-in substrate 1D.
  • the IC-embedded substrate 56 may be manufactured by a procedure in which a rewiring conductor layer 53 is previously formed on the surface of the IC 54 by a semiconductor process or the like and then embedded in the insulating layer 55.
  • the package substrate 2A When the package substrate 2A is combined with the IC built-in substrate as shown in FIG. 8, it is possible to more effectively suppress the electronic component 30 from being affected by an external force.
  • FIG. 9 shows a package substrate 2B in which an electronic component 58 is added to the package substrate 2A.
  • an electronic component 58 that is directly connected to the IC 54 is provided in the third insulating layer 51.
  • the electronic component 58 may have the same structure as the electronic component 30 in which the pair of electrode layers sandwich the dielectric layer, but is not particularly limited.
  • the electronic component 58 may be electrically connected to the IC 54 through the conductive material 57.
  • the third insulating layer 51 provided between the IC-embedded substrate 56 and the electronic component-embedded substrate 1D has an electronic component different from the electronic component 30 in the electronic component-embedded substrate 1D.
  • a part 58 can be provided. As described above, by combining the electronic component 30 and the electronic component 58, a secondary effect that the power supply to the IC 23 becomes more stable can be obtained.
  • FIG. 10 shows a package substrate 2C in which an electronic component 58 is added to the package substrate 2A.
  • the package substrate 2 ⁇ / b> C an example is shown in which the electronic component 58 is electrically connected to the third conductor layer 15 outside in an externally attached state.
  • a conductive material 57 may be provided as necessary.
  • an electronic component 58 different from the electronic component 30 in the electronic component built-in substrate 1D may be externally attached.
  • FIG. 11 shows a package substrate 2D in which the package substrate 2B shown in FIG. 9 and the package substrate 2C shown in FIG. 10 are combined. That is, the electronic component 58 different from the electronic component 30 in the electronic component built-in substrate 1 ⁇ / b> D is provided both in the third insulating layer 51 and on the outside of the third conductor layer 15. Thus, the number and arrangement of electronic components included in the package substrate 2D can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Ceramic Capacitors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

第1絶縁層(11)と、第1絶縁層(11)の一方側の主面である第1主面(11a)上に設けられた導体層としての第1導体層(13)と、第1絶縁層(11)の第1主面(11a)上に設けられ、一対の電極層と誘電体層(32)とが積層された電子部品(30)と、第1絶縁層(11)上に積層される第2絶縁層(12)と、を有し、第1絶縁層(11)及び第2絶縁層(12)の積層方向と、電子部品(30)における第1電極層(31A)及び第2電極層(31B)と誘電体層(32)との積層方向が同じであり、積層方向において、電子部品(30)における第1主面(11a)側とは逆側の主面の高さ位置と、電子部品(30)に隣接する第1導体層(13)における第1主面(11a)側とは逆側の主面の高さ位置と、が互いに異なる。

Description

電子部品内蔵基板
 本発明は、電子部品内蔵基板に関する。
 電子製品の小型化に伴い、電子部品内蔵基板についても低背化を含む小型化が求められている。例えば、特許文献1では、配線基板内に電子部品としてチップキャパシタが収容された構成が示されている。
特開2016-207957号公報
 しかしながら、チップキャパシタではなく、薄膜キャパシタ等の薄膜の電子部品を上記のように基板内に内蔵しようとすると、以下の問題が生じる。すなわち、薄膜キャパシタは、チップキャパシタと比較して剛性が低いため、電子部品内蔵基板をハンドリングした際などに生じる外力が電子部品に働き、電子部品が変形するおそれがある。
 本発明は上記を鑑みてなされたものであり、電子部品が外力の影響を受けることを抑制可能な電子部品内蔵基板を提供することを目的とする。
 上記目的を達成するため、本発明の一形態に係る電子部品内蔵基板は、第1絶縁層と、前記第1絶縁層の一方側の主面である第1主面上に設けられた導体層と、前記第1絶縁層の前記第1主面上に設けられ、一対の電極層と誘電体層とが積層された電子部品と、前記第1絶縁層上に積層される第2絶縁層と、を有し、前記第1絶縁層及び前記第2絶縁層の積層方向と、前記電子部品における前記電極層と前記誘電体層との積層方向が同じであり、前記積層方向において、前記電子部品における前記第1主面側とは逆側の主面の高さ位置と、前記電子部品に隣接する前記導体層における前記第1主面側とは逆側の主面の高さ位置と、が互いに異なる。
 上記の電子部品内蔵基板では、外力を受けたとき、特に、電子部品内蔵基板の主面方向に沿って、一方側の主面と他方側の主面との間で位置ズレが起きるような外力を受けたときに、第1絶縁層上の導体層に沿って外力が伝搬する場合がある。これに対して、電子部品の一方側の主面の高さ位置が、電子部品に隣接する導体層における主面の高さ位置と異なる構成を有することにより、導体層に沿って伝搬した外力により電子部品が影響を受けることを抑制することができる。したがって、上記の電子部品内蔵基板によれば、電子部品が外力の影響を受けることを抑制できる。
 ここで、前記電子部品は、前記第1絶縁層の前記第1主面上に設けられた接着層の上に設けられる態様とすることができる。
 上記のように、電子部品が、第1絶縁層の第1主面上の接着層の上に設けられていることで、電子部品内蔵基板が外力を受けた場合に、電子部品が受ける外力を接着層により緩和させることができる。したがって、上記の電子部品内蔵基板によれば、電子部品が外力の影響を受けることをさらに抑制できる。
 また、前記積層方向において、前記電子部品における前記第1主面側の主面の高さ位置と、前記電子部品に隣接する前記導体層における前記第1主面側の主面の高さ位置と、が互いに異なる態様とすることができる。
 上記のように、電子部品における第1主面側の主面の高さ位置と、電子部品に隣接する導体層における第1主面側の主面の高さ位置と、が互いに異なる構成を有することで、導体層に沿って伝搬した外力により電子部品が影響を受けることをより効果的に抑制することができる。
 また、前記導体層の厚さが略均一である態様とすることができる。
 上記のように、導体層の厚さが略均一であると、導体層の延在方向に沿って伝搬する外力の他の方向への分散が抑制されるため、電子部品が外力の影響を大きく受ける可能性があるが、上記のように主面の高さ位置を制御することで、電子部品が外力の影響を受けることを抑制できる。
 また、前記電子部品の前記電極層の一部は、導電ペーストにより前記導体層と接続されている態様とすることができる。
 上記のように、電子部品の電極層と導体層とを接続する導電ペーストが設けられることで、配線の取り回しを柔軟に変更することができる。また、配線の取り回しの変更を柔軟に行うことができることで、例えば、配線に用いられるビア導体等の配置等も柔軟に変更することができる。
 本発明によれば、電子部品が外力の影響を受けることを抑制可能な電子部品内蔵基板が提供される。
本発明の一実施形態に係る電子部品内蔵基板を概略的に示す断面図である。 電子部品内蔵基板の電子部品近傍の平面図である。 電子部品内蔵基板の電子部品近傍の拡大図である。 電子部品内蔵基板の製造方法を説明する図である。 電子部品内蔵基板の製造方法を説明する図である。 変形例に係る電子部品内蔵基板について説明する断面図である。 変形例に係る電子部品内蔵基板について説明する電子部品近傍の平面図である。 本発明の一実施形態に係る電子部品内蔵基板とIC内蔵基板との組み合わせたパッケージ基板の断面図である。 パッケージ基板の変形例の断面図である。 パッケージ基板の変形例の断面図である。 パッケージ基板の変形例の断面図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
 図1は、本発明の一実施形態に係る電子部品内蔵基板を概略的に示す断面図である。図1に示す電子部品内蔵基板1は、例えば、通信端末などの電子機器に使用される基板である。図1に示すように、電子部品内蔵基板1は、基板10と、基板10に内蔵された電子部品30と、を有している。電子部品20が基板10に「内蔵されている」とは、電子部品20が基板10の主面から露出していない状態をいう。電子部品30は、キャパシタ等として機能する部品である。
 基板10は、第1絶縁層11と、第2絶縁層12と、を有している。第1絶縁層11及び第2絶縁層12は積層方向(厚さ方向)に積層されている。第1絶縁層11及び第2絶縁層12は、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂、またはフェノール樹脂などの絶縁性材料によって構成さる。基板10の全体の厚みは、例えば40μm~300μm程度とすることができる。また、第1絶縁層11及び第2絶縁層12の厚みをそれぞれ15μm~100μm程度とすることができる。なお、基板10の全体の厚み、第1絶縁層11の厚み、及び、第2絶縁層12の厚みは特に限定されない。
 また、基板10には、第1絶縁層11と第2絶縁層12とに挟み込まれた第1導体層13と、基板10の主面に設けられた第2導体層14及び第3導体層15と、を有している。第1導体層13、第2導体層14及び第3導体層15は、例えば銅(Cu)などの導電性材料により構成されている。
 第1導体層13は、第1絶縁層11において第2絶縁層12が積層される側の第1主面11a上に形成される。したがって、第1絶縁層11の第1主面11aは、平坦な状態であって、その上に、第1導体層13が設けられる。
 第2導体層14は、第1絶縁層11において第1主面11aとは逆側の第2主面11bにおいて導体部分が露出するように設けられる。図1に示す電子部品内蔵基板1では、第2導体層14の表面が第2主面11bと共に平坦面を形成しているが、第2導体層14は、第2主面11bから突出するように設けられていてもよい。第2導体層14の表面の一部は、ソルダーレジスト等の絶縁材料21により覆われていてもよい。
 第3導体層15は、第2絶縁層12において第1絶縁層11側の主面とは逆側の主面において導体部分が露出するように設けられる。図1に示す電子部品内蔵基板1では、第3導体層15の表面が第2絶縁層12の主面から突出しているが、第2絶縁層12の主面と共に平坦面を形成していてもよい。第3導体層15の表面の一部は、ソルダーレジスト等の絶縁材料22により覆われていてもよい。
 第1導体層13、第2導体層14及び第3導体層15は、それぞれ厚さが略均一となっている。導体層の厚さが略均一であるとは、厚さの変動幅が30%以内であることをいう。第1導体層13、第2導体層14及び第3導体層15の厚さは、5μm~20μm程度とされる。
 また、第1絶縁層11には、厚さ方向に貫通する開口が設けられ、第1導体層13と第2導体層14との間を接続するビア導体16が設けられる。同様に、第2絶縁層12には、厚さ方向に貫通する開口が設けられ、第1導体層13と第3導体層15との間を接続するビア導体17が設けられる。
 電子部品30は、第1絶縁層11の第1主面11a上において、第2絶縁層12に埋め込まれるように設けられる。電子部品30は、一対の電極層である第1電極層31A及び第2電極層31Bと、誘電体層32を有する。電子部品30は、誘電体層32と一対の電極層と積層構造を有しているが、その積層方向は、電子部品内蔵基板1における第1絶縁層11及び第2絶縁層12の積層方向と同じである。
 本実施形態では、一対の電極層である第1電極層31A及び第2電極層31Bは、誘電体層32の一方側(第1絶縁層11に対して遠い側)の主面上に設けられている。すなわち、誘電体層32上の互いに異なる位置に、第1電極層31A及び第2電極層31Bが積層されている構造となっている。この結果、電子部品30の一方側の主面である第1主面30aは、第1電極層31A及び第2電極層31Bの主面により形成されると共に、他方側の主面である第2主面30bは、誘電体層32の他方側(第1絶縁層11に対して近い側)の主面により形成されている。なお、電子部品30の第1電極層31A及び第2電極層31Bは、誘電体層32を挟み込むように設けられていてもよい。また、いずれかの電極層と誘電体層とが交互に複数回積層された多層構造としてもよい。
 電子部品30は、合計の厚みが1μm~150μm程度である。また、第1電極層31A及び第2電極層31Bの厚みを0.5μm~50μm程度とし、誘電体層32の厚みを0.5μm~100μm程度とすることができる。
 第1電極層31A及び第2電極層31Bの材料としては、主成分がニッケル(Ni)、銅(Cu)、アルミニウム(Al)、白金(Pt)、これらの金属を含有する合金、又は金属間化合物である材料が好適に用いられる。ただし、第1電極層31A及び第2電極層31Bの材料は、導電性材料であれば特に限定されない。なお、「主成分」であるとは、当該成分の占める割合が50質量%以上であることをいう。また、第1電極層31A及び第2電極層31Bの態様としては、合金や金属間化合物を形成する場合のほか、二種類以上からなる積層体の構造体である場合も含む。なお、第1電極層31A及び/又は第2電極層31Bとして純Niを使用する場合、そのNiの純度は99.99%以上が好ましい。更に、Niを含有する合金の場合、Ni以外の金属として含まれる金属は、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、レニウム(Re)、タングステン(W)、クロム(Cr)、タンタル(Ta)、銀(Ag)、銅(Cu)からなる群より選ばれる少なくとも一種とすれば好適である。
 なお、電子部品30の第1電極層31A及び第2電極層31Bは、ビア導体等を介して他の導体層等と電気的に接続される。電子部品内蔵基板1の場合は、第1電極層31A及び第2電極層31Bは、それぞれ第2絶縁層12を貫通するビア導体18A,18Bを介して、第3導体層15と電気的に接続されている。
 誘電体層32は、ペロブスカイト系の誘電体材料から構成される。ここで、本実施形態におけるペロブスカイト系の誘電体材料としては、BaTiO(チタン酸バリウム)、(Ba1-xSr)TiO(チタン酸バリウムストロンチウム)、(Ba1-xCax)TiO、PbTiO、Pb(ZrTi1-x)O、などのペロブスカイト構造を持った(強)誘電体材料や、Pb(Mg1/3Nb2/3)Oなどに代表される複合ペロブスカイトリラクサー型強誘電体材などが含まれる。ここで、上記のペロブスカイト構造、ペロブスカイトリラクサー型誘電体材料において、AサイトとBサイトとの比は、通常整数比であるが、特性向上のために意図的に整数比からずらしてもよい。なお、誘電体層32の特性制御のため、誘電体層32に適宜、副成分として添加物質が含有されていてもよい。
 上記の電子部品30は、第1絶縁層11の第1主面11a上に接着層40を介して積層されている。接着層40は、第1絶縁層11に対して電子部品30を固定することが可能な構成であれば特に限定されないが、例えば、熱硬化前の樹脂(プリプレグ、フィラー含有複合材等)、粘着剤(接着剤付シート、金属粉入りペースト等)等を用いることができる。上記の材料を接着層40として用いた場合、接着層40は、電子部品30よりも弾性を有する構成となる。接着層40の厚みは0.5μm~30μm程度とすることができる。
 電子部品30は、第1導体層13と同様に、第1絶縁層11の第1主面11a上に配置されるが、第1導体層13とは離間して配置される。図2は、平面視における電子部品30及び第1導体層13の配置を模式的に示した平面図である。図2に示すように、第1導体層13(導体層13A,13B)は、電子部品30の第1電極層31A、第2電極層31B及び誘電体層32を取り囲み且つ離間して設けられる。電子部品内蔵基板1においては、電子部品30と第1導体層13との間には第2絶縁層12が配置される。したがって、電子部品30と第1導体層13との間は絶縁が確保される。
 電子部品内蔵基板1の場合には、第1電極層31Aは、ビア導体18A、第3導体層15(導体層15A)及びビア導体17を介して、第1電極層31A側の第1導体層13(導体層13A)と接続される。また、第2電極層31Bは、ビア導体18B、第3導体層15(導体層15B)及びビア導体17を介して、第2電極層31B側の第1導体層13(導体層13B)と接続される。図2に示すように、第1電極層31A側の第1導体層13である導体層13A及び第2電極層31B側の第1導体層13である導体層13Bのいずれも、凹型状を呈し、電子部品30が導体層の凹部に入り込んだ状態となっている。このように、第1導体層13は、電子部品30を取り囲むように配置されていると、第1絶縁層11上の電子部品30の周囲を導体層として有効利用できる。なお、電子部品30と第1導体層13とは、絶縁性を確保するために3μm以上離間していることが好ましい。
 また、図2では、ビア導体18A,18B及びビア導体17を破線で示しているが、ビア導体18A,18B及びビア導体17は、それぞれが接続する電極層又は導体層の上方に設けられる。このような構成とすることで、隣接するビア導体間の絶縁も第2絶縁層12により確保される。
 図1に戻り、電子部品30の第1主面30aは、第1導体層13の上面(第3導体層15側の主面)よりも高くなっている。また、電子部品30は、第1絶縁層の第1主面11a上に接着層40を介して積層されているため、第2主面30bは、第1導体層13の下面、すなわち、第1絶縁層11の第1主面11aよりも高くなっている。このように、電子部品内蔵基板1は、厚さ方向(積層方向)に見たときに、電子部品30の第1主面30a及び第2主面30bの高さ位置が、第1導体層13の一対の主面の高さ位置と異なっている。
 図3は、電子部品内蔵基板の電子部品近傍の拡大図である。ただし、図3に示す電子部品内蔵基板の電子部品50は、図1等で示す電子部品30とは異なり、第1電極層31A及び第2電極層31Bが誘電体層32を挟み込むように設けられている。すなわち、図3に示す電子部品内蔵基板の電子部品50では、第2電極層31Bが第1絶縁層(図3では図示せず、図1等参照)の第1主面11a側に配置されている点が電子部品30と相違する。この場合には、第2絶縁層12を貫通するビア導体18Aのみが設けられ、ビア導体18Aを介して第1電極層31Aと第3導体層15とが電気的に接続される。なお、第2電極層31Bについては、図示しない領域において、第2電極層31Bと導体層とを接続する導体配線が設けられる。
 図3においても、電子部品50の第1主面30aは、第1導体層13の上面(第3導体層15側の主面)よりも高くなっている。また、電子部品50は、第1絶縁層の第1主面11a上に接着層40を介して積層されているため、第2主面30bは、第1導体層13の下面、すなわち、第1絶縁層11の第1主面11aよりも高くなっている。
 本実施形態に係る電子部品内蔵基板1は、図1、図3等に示すように、厚さ方向で見たときに、電子部品の主面の高さ位置が、隣接する第1導体層13の主面の高さ位置と互いに異なることを特徴とする。この結果、電子部品内蔵基板1に対して外力が加わった場合に、電子部品が外力の影響を受けることを防ぐことができる。この点については後述する。
 次に、電子部品内蔵基板1の製造方法について、図4及び図5を参照しながら説明する。本実施形態で説明する電子部品内蔵基板1の製造方法は、キャリア付き銅箔の一対の主面上において2つの電子部品内蔵基板を同時に製造する方法であるが、一方の主面上においてのみ電子部品内蔵基板を製造してもよい。
 まず、図4(A)に示すように、キャリア付き銅箔60を準備し、キャリア付き銅箔60上に所定のパターンを有する第2導体層14を形成する。キャリア付き銅箔60とは、基材61の両方の主面に剥離層62を介して極薄銅箔63が積層されたものである。第2導体層14の形成方法は特に限定されないが、例えば、極薄銅箔63上に導体層を形成した後にパターニングを行うことで形成することができる。なお、以降の製造工程においても、キャリア付き銅箔60の両面において同様の処理を行うが、両面において同様の処理を行う点については説明を省略する場合がある。
 次に、図4(B)に示すように、第2導体層14上に、第1絶縁層11を積層する。さらに、第1絶縁層11の所定の位置にレーザ等により開口を設けて、導体材料を導入することでビア導体16を形成する。さらに、第1絶縁層11の第1主面11a上に、所定の配線パターンを有する第1導体層13を形成する。
 その後、図4(C)に示すように、第1絶縁層11の第1主面11a上に、接着層40を形成すると共に、接着層40上に電子部品30を積層する。電子部品30は、第1電極層31A、第2電極層31B及び誘電体層32が所望の形状に加工された状態で、接着層40上に積層される。
 次に、第1絶縁層11の第1主面11a、第1導体層13、及び電子部品30を全て覆うように、第2絶縁層12を積層する。そして、第2絶縁層12の所定の位置にレーザ等により開口を設けて、導体材料を導入することで、ビア導体17,18A,18Bを形成する。また、第2絶縁層12の主面上に所定の配線パターンを有する第3導体層15を形成する。さらに、第2絶縁層12及び第3導体層15の表面の所定位置に絶縁材料22を設ける。その結果、図5(A)に示すように、キャリア付き銅箔60の両面に、第1絶縁層11、第2絶縁層12が積層されて、その内部に電子部品30が内蔵された積層体が得られる。
 次に、キャリア付き銅箔60の剥離層62においてキャリア付き銅箔60の基材61と極薄銅箔63とを分離する。その結果、第1絶縁層11、第2絶縁層12が積層されて、その内部に電子部品30が内蔵された積層体が基材61から分離される。その後、研磨等により第1絶縁層11及び第2導体層14の表面に付着する極薄銅箔63を除去する。その結果、図5(B)に示すように、下面側において第1絶縁層11及び第2導体層14が露出した状態となる。その後、第1絶縁層11及び第2導体層14の表面の所定位置に絶縁材料21を設けると、図1に示す電子部品内蔵基板1が得られる。
 本実施形態に係る電子部品内蔵基板1は、上述の通り、電子部品内蔵基板1は、厚さ方向(積層方向)に見たときに、電子部品30の第1主面30a及び第2主面30bの高さ位置が、隣接する第1導体層13の一対の主面の高さ位置と異なっている。より具体的には、電子部品30の第1主面30aは、第1導体層13の上方(第3導体層15側)の主面よりも高く、電子部品30の第2主面30bは、第1導体層13の下方(第2導体層14側)の主面(すなわち第1絶縁層11の第1主面11aに対応する)よりも高くなっている。この結果、電子部品内蔵基板1が外力を受けた場合も、電子部品30が外力の影響を受けて破損することを防ぐことができる。
 本実施形態に係る電子部品内蔵基板1は、近年の電子機器の低背化の要求等に伴って低背化されたものである。すなわち、電子部品内蔵基板1としての厚みが、従来の電子部品内蔵基板と比較して非常に小さい。そのため、電子部品内蔵基板1は、外力の影響を受けやすい。電子部品内蔵基板1が外力を受ける位置、外力の方向、及びその大きさによって、電子部品内蔵基板1が受ける影響は変化する。しかしながら、電子部品30が内蔵されている領域及びその周辺は、外力の影響が集中しがちな場所である。特に電子部品内蔵基板1のように、第1絶縁層11及び第2絶縁層12が積層されていて、その界面近傍に第1導体層13が形成されている場合には、第1絶縁層11と第2絶縁層12との界面をずらす力を受けると、第1絶縁層11と第2絶縁層12との界面に配置される電子部品30はその影響を受けやすい。より具体的には、電子部品内蔵基板1の主面方向に沿った、一方側の主面と他方側の主面との間で位置ズレが起きるような外力を受けると、電子部品内蔵基板1では、第1絶縁層11の第1主面11aと、第1主面11aに対向する第2絶縁層12の主面との間が最も影響を受けやすく、これらの相対位置が変化するように外力を受ける。この結果、第1絶縁層11の第1主面11a上に設けられている第1導体層13が外力を受けることになる。そして、第1導体層13を介して外力が第1主面11aに沿って伝搬され、電子部品30もその影響を受けると考えられる。第1導体層13は、周辺の第1絶縁層11及び第2絶縁層12より剛性が高い場合が多く、その場合は特に外力の伝搬能力が高くなると考えられる。ここで、電子部品30と隣接する第1導体層13とが積層方向で見たときに同一の高さ位置にあると、第1導体層13により伝搬された外力が電子部品30にも伝搬される。電子部品30は、誘電体層32を有する構造であるため、第1導体層13と比較して剛性が低く、外力の影響を受けると破損する可能性が高い。特に、本実施形態に係る電子部品30のように、第1電極層31A及び第2電極層31Bと、誘電体層32と、の積層方向が、第1絶縁層11と第2絶縁層12との積層方向が同じであると、電子部品30が外力の影響を大きく受ける可能性が考えられる。
 これに対して、本実施形態に係る電子部品内蔵基板1では、電子部品30の第1主面30a及び第2主面30bの高さ位置の両方が、隣接する第1導体層13の一対の主面の高さ位置と異なっている。このような構成を有していることで、電子部品内蔵基板1の主面方向に沿った、一方側の主面と他方側の主面との間で位置ズレが起きるような外力を受けた場合に、上記のように第1導体層13により外力が伝搬されたとしても、高さ位置の違いによって電子部品30が受ける外力を低減することができる。すなわち、電子部品30の一対の主面(第1主面11a及び第2主面11b)の高さ位置と、隣接する第1導体層13の一対の主面と、が同じ場合と比較して、第1導体層13による外力の伝搬方向と電子部品30の一対の主面の延在方向とを異ならせることができる。したがって、電子部品30が受ける第1導体層13により伝搬された外力の影響を低減することができる。したがって、電子部品が外力の影響を受けることを抑制することができる。
 また、本実施形態に係る電子部品内蔵基板1において、電子部品30は、第1絶縁層11の第1主面11a上に接着層40を介して積層されている。そして、このような構成を有することで、第1導体層13の下面の高さ位置と、電子部品30の第2主面30bの高さ位置とが互いに異なっている。このように、電子部品30が、第1絶縁層11の第1主面11a上の接着層40の上に設けられていることで、第1絶縁層11の第1主面11aと、第1主面11aに対向する第2絶縁層12の主面との間に位置ズレを生じさせるような力を接着層40により緩和させることができる。また、外力に由来して、電子部品30の積層方向(電子部品内蔵基板1の積層方向)の力が電子部品30にかかった場合でも、接着層40によりこれを緩和させることができる。したがって、電子部品30が外力の影響を受けることをさらに抑制することができる。
 また、上記の電子部品30において外力の影響を抑制することができるという効果は、電子部品内蔵基板1のように、第1導体層13の厚さが略均一である場合に顕著となる。第1導体層13の厚さが略均一である場合、第1導体層13の延在方向に沿って伝搬する外力の他の方向への分散が抑制される。したがって、第1導体層13により外力の大きさが維持された状態で電子部品30まで伝搬される可能性がある。そのため、第1導体層13の厚さが略均一である場合に、電子部品30の主面の高さ位置を隣接する第1導体層13の一対の主面の高さ位置とは異ならせることで、電子部品30が受ける第1導体層13により伝搬された外力の影響を低減する効果が顕著となる。
 本実施形態の電子部品内蔵基板1では、第1導体層13の上面よりも電子部品30の第1主面11aが高く(第3導体層15側である)、且つ、第1導体層13の下面(第1絶縁層の第1主面11a)よりも電子部品30の第2主面11bが高い例を示している。しかしながら、電子部品30の主面の高さ位置と隣接する第1導体層13の一対の主面の高さ位置とが互いに異なっていれば、電子部品30が受ける外力の影響を抑制する効果は得られる。したがって、例えば、第1導体層13の主面の上面よりも電子部品30の第1主面11aが低い(第2導体層14側である)場合であっても、電子部品30が受ける外力の影響を抑制する効果は得られる。
 また、少なくとも電子部品30の第1主面11aの高さ位置と隣接する第1導体層13の上面の高さ位置とが互いに異なっていれば、電子部品30が受ける外力の影響を抑制する効果は得られる。すなわち、電子部品30の第2主面11bの高さ位置と隣接する第1導体層13の下面の高さ位置とが同じであったとしても、電子部品30の第1主面11aの高さ位置と隣接する第1導体層13の上面の高さ位置とが異なることで、電子部品30が受ける外力の影響を抑制することができる。
 電子部品30の第1主面30aの高さ位置と、第1導体層の主面(上面)の高さ位置との差は、10μm以下であることが好ましい。上述のように、電子部品内蔵基板1及び内蔵される電子部品30はどちらも非常に薄いため、電子部品30の第1主面11aの高さ位置と、第1導体層の主面(上面)の高さ位置との差が大きくなると、電子部品30に対して外力に由来する応力が集中する可能性がある。また、電子部品内蔵基板1を製造する際にも、第2絶縁層12の厚さが電子部品30上部とその周囲で大きく異なることとなり、電子部品30に応力が集中する可能性がある。したがって、電子部品30の第1主面11aの高さ位置と、第1導体層の主面(上面)の高さ位置との差を10μm以下とすることで、電子部品30に対する応力の集中を抑制することができる。
 また、電子部品30の第2主面30bの高さ位置と、第1導体層の主面(下面)の高さ位置とが互いに異なる場合も、その差は10μm以下であることが好ましい。電子部品30の第2主面30bの高さ位置と、第1導体層の主面(下面)の高さ位置を大きく異ならせる構成とした場合にも、電子部品30に対して外力に由来する応力が集中する可能性がある。したがって、高さ位置の差を10μm以下とすることで、電子部品30に対する応力の集中を抑制することができる。
(変形例)
 次に、図6及び図7を参照しながら、変形例に係る電子部品内蔵基板について説明する。図6(A)~図6(C)は、電子部品内蔵基板の電子部品と他の導体層等の接続を変更した例である。また、図7は、電子部品及び第1導体層の配置に関する変形例である。
 図6(A)に示す電子部品内蔵基板1Aは、電子部品30の電極層と第1導体層13とが導電ペーストによって接続されている。より具体的には、電子部品30の第1電極層31Aと、第1導体層13のうち電子部品30の第1電極層31A側で隣接する導体層13Aとの間に、これらを接続するように導電ペースト45Aが充填されている。また、電子部品30の第2電極層31Bと、第1導体層13のうち電子部品30の第2電極層31B側で隣接する導体層13Bとの間に、これらを接続するように導電ペースト45Bが充填されている。導電ペースト45A,45Bは、導電性を有する材料であれば特に限定されず、例えば、Sn(スズ)を主成分とする材料等を用いることができる。導電ペースト45A,45Bは、第1絶縁層11の第1主面11a上に第1導体層13を形成すると共に接着層40を介して電子部品30を配置した後に、第1導体層13(導体層13A又は導体層13B)と電子部品30の電極層(第1電極層31A又は第2電極層21B)とを接続するように導入される。
 電子部品内蔵基板1Aのように、第1導体層13(導体層13A又は導体層13B)と電子部品30の電極層(第1電極層31A又は第2電極層21B)とが導電ペースト45A,45Bにより接続される構成であると、第3導体層15のうち第1電極層31Aと電気的に接続される導体層15Aと、導体層13Aとを接続するビア導体を省略することができる。すなわち、図1に示す電子部品内蔵基板1の場合、導体層13Aと導体層15Aとを接続するビア導体17が設けられていたが、電子部品内蔵基板1Aでは、導電ペースト45Aにより第1電極層31Aと導体層13Aとが電気的に接続されているため、上記のビア導体17を省略できる。同様に、電子部品内蔵基板1Aでは、導電ペースト45Bにより第2電極層31Bと導体層13Bとが電気的に接続されているため、導体層13Bと導体層15Bとを接続するビア導体17を省略することができる。このように、電子部品内蔵基板1Aでは、電子部品30の電極層と第1導体層13とを接続する導電ペースト45A,45Bを用いることで、配線の取り回しを簡略化することができる。なお、電子部品内蔵基板1Aでは、配線の取り回しが簡略化されているが、簡略化されていない場合でも、配線の取り回しを柔軟に変更することができる。
 図6(B)に示す電子部品内蔵基板1Bは、図6(A)に示す電子部品内蔵基板1Aと同様に導電ペースト45A,45Bにより、電子部品30の電極層と第1導体層13とが電気的に接続されている。さらに、電子部品内蔵基板1Bでは、電子部品30の第1電極層31Aと、第3導体層15の導体層15Aとを接続するビア導体18A、及び、第2電極層31Bと、第3導体層15の導体層15Bとを接続するビア導体18Bが設けられていない。電子部品内蔵基板1Bでは、ビア導体18A,18Bに代えて、導体層13Aと導体層15Aとを接続するビア導体17、及び、導体層13Bと導体層15Bとを接続するビア導体17が設けられている。導体層13A,13Bが導電ペースト45A,45Bによって第1電極層31A及び第2電極層31Bとそれぞれ接続されているため、導体層13A,13Bと導体層15A,15Bとを接続することで、第1電極層31A,導体層13A及び導体層15Aを同電位とすることができると共に、第2電極層31B,導体層13B及び導体層15Bを同電位とすることができる。したがって、電子部品内蔵基板1Bにおいても、電子部品30の電極層と第1導体層13とを接続する導電ペースト45A,45Bを用いることで、配線の取り回しを簡略化することができる。
 また、電子部品内蔵基板1Bのように、電子部品30の第1電極層31A及び第2電極層31Bの主面に対して電気的に接続するビア導体18A,18Bが設けられていない構成とすることで、電子部品内蔵基板1Bが外力を受けた場合に、電子部品30の積層方向(電子部品内蔵基板1の積層方向)の力がビア導体18A,18Bを経て電子部品30にかかることを抑制することができる。したがって、電子部品30が受ける外力の影響をさらに抑制することができる。
 図6(C)に示す電子部品内蔵基板1Cは、図6(B)に示す電子部品内蔵基板1Bと比較して、電子部品30の上下方向が逆転している。すなわち、電子部品30の第1電極層31A及び第2電極層31Bが誘電体層32よりも第1絶縁層11側に配置されている。ただし、第1絶縁層11の第1主面11aと電子部品30の第1電極層31A及び第2電極層31Bとは離間していて、第1絶縁層11の第1主面11aと第1電極層31Aとの間には、導電ペースト45A及び第2絶縁層12が介在している。また、第1絶縁層11の第1主面11aと第2電極層31Bとの間には、導電ペースト45B及び第2絶縁層12が介在している。また、誘電体層32の上方(第3導体層15側)には、接着層40が設けられている。ただし、接着層40は設けられていなくてもよい。
 電子部品内蔵基板1Cを製造する場合には、第1絶縁層11の第1主面11a上に第1導体層13を形成すると共に所定の位置に導電ペースト45A,45Bを配置する。その後、導電ペースト45A,45B上に電子部品30を配置する。また、必要に応じて接着層40を電子部品30上に配置する。
 電子部品内蔵基板1Cのように、電子部品30の天地が逆転している場合であっても、導電ペースト45A,45Bにより、電子部品30の電極層と第1導体層13とが電気的に接続されている。また、導体層13Aと導体層15Aとを接続するビア導体17、及び、導体層13Bと導体層15Bとを接続するビア導体17により、第1電極層31A,導体層13A及び導体層15Aを同電位とすると共に、第2電極層31B,導体層13B及び導体層15Bを同電位としている。
 また、電子部品内蔵基板1Cでは、導電ペースト45A,45Bが接着層として機能し、導電ペースト45A,45Bにより電子部品30が第1絶縁層11に対して離間した状態とされている。したがって、電子部品内蔵基板1,1A,1Bと同様に、電子部品30が第1絶縁層11の第1主面11a上に接着層を介して積層された状態となり、電子部品30が外力の影響を受けることをさらに抑制することができる。
 図7は、電子部品30が複数設けられている場合の第1導体層13の配置の例を示す図であり、図2に対応する平面図である。図7に示す例では、2つの電子部品30が、第1導体層13と同様に、第1絶縁層11の第1主面11a上に配置される。このとき、2つの電子部品30は、いずれも第1導体層13とは離間して配置される。このとき、図2に示すように、第1導体層13(導体層13A,13B)は、2つの電子部品30それぞれの第1電極層31A、第2電極層31B及び誘電体層32を取り囲み且つ離間して設けられる。電子部品内蔵基板では、電子部品30と第1導体層13との間には第2絶縁層12が配置されるため、電子部品30と第1導体層13との間は絶縁が確保される。
 また、図7に示す第1導体層13(導体層13A,13B)は、それぞれ隣接する電子部品30の間に突出する突出部13Cを有している。このような形状を呈している場合、第1導体層13が2つの電子部品30それぞれの周囲に設けられていることで、電子部品内蔵基板が大きな外力を受けた場合に、2つの電子部品30同士が当接することを防ぐことができる。また、電子部品内蔵基板の製造時には、第1導体層13の形状を電子部品30の配置の目安として利用することができるため、製造効率の向上にも寄与すると考えられる。
 以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に限定されず、種々の変更を行うことができる。
 例えば、電子部品内蔵基板1に含まれる電子部品30、ビア導体16,17,18A,18B等の形状及び配置は適宜変更することができる。また、第1導体層13、第2導体層14、及び第3導体層15の形状についても適宜変更することができる。また、第2導体層14及び第3導体層15は設けられなくてもよく、いずれか一方のみが設けられていてもよい。また、絶縁材料21,22についても、形状を適宜変更することができるし、設けられていなくてもよい。
 また、上記実施形態では、絶縁層が第1絶縁層11及び第2絶縁層12の2層である場合について説明したが、絶縁層は3層以上であってもよい。絶縁層が3層以上であっても、電子部品及び導体層が2層の絶縁層の間が設けられている構成であれば、本実施形態で説明した構成、すなわち、導体層の主面と電子部品の主面との高さ位置が異なる構成を有することで、電子部品が外力を受けることを抑制することができる。
 図8から図11に、本発明の電子部品内蔵基板をIC内蔵基板と組み合わせたパッケージ基板に係る実施形態を示す。
 図8は、IC54が絶縁層55に内蔵されたIC内蔵基板56と、本発明の実施形態に係る電子部品内蔵基板1Dとを、第3絶縁層51を介して接続したパッケージ基板2Aを概略的に示す断面図である。
 電子部品内蔵基板1Dは、電子部品内蔵基板1等と概略構造は同じであるが、電子部品30の構造が第1電極層31A及び第2電極層31Bが誘電体層32を挟み込むように設けられている。また、絶縁材料21,22は除去された状態となっている。さらに、電子部品内蔵基板1Dは、上下を逆転した状態となっている。すなわち、第2導体層14側に第3絶縁層51及びIC内蔵基板56が積層されている。
 電子部品内蔵基板1Dと、IC内蔵基板56とは、第3絶縁層51に設けられたビア導体52及び接続用の導体層53を介して電気的に接続することができる。ただし、電子部品内蔵基板1Dにおける導体層とIC54とを電気的に接続するビア導体及び導体層の形状及び配置等は適宜変更することができる。したがって、導体層53とは別の配線層等が設けられていてもよい。
 図8に示すパッケージ基板2Aは、例えば以下の方法で製造することができる。まず、絶縁層55内にIC54を埋め込むことでIC内蔵基板56を製造する。このとき、IC54を絶縁層55の表面に露出させた上で当該表面(IC内蔵基板56の下面側に対応する面)を平坦にする。その後、IC54が露出する表面上に導体層53を形成した後に、第3絶縁層51を設けて、内部にビア導体52を形成する。その後、電子部品内蔵基板1Dの各部を形成することで、パッケージ基板2Aを得ることができる。なお、IC内蔵基板56の製造は、IC54表面に予め半導体プロセス等により再配線の導体層53を形成した後、絶縁層55内に埋め込む手順で行われてもよい。
 図8のようにIC内蔵基板と組み合わせたパッケージ基板2Aの構造とした場合、外力により電子部品30が影響を受けることをさらに効果的に抑制することができる。
 図9は、パッケージ基板2Aに対して電子部品58を追加したパッケージ基板2Bを示している。パッケージ基板2Bでは、第3絶縁層51内にIC54に対して直接接続される電子部品58が設けられている。電子部品58は、一対の電極層が誘電体層を挟み込む電子部品30と同様の構造を有していてもよいが特に限定されない。電子部品58は、導電性材料57を介してIC54と電気的に接続されていてもよい。図9に示すパッケージ基板2Bのように、IC内蔵基板56と電子部品内蔵基板1Dとの間に設けられる第3絶縁層51には、電子部品内蔵基板1D内の電子部品30とは別の電子部品58を設けることができる。このように、電子部品30と、電子部品58とを組み合わせることにより、IC23への電源供給がより安定するという副次的な効果が得られる。
 図10は、パッケージ基板2Aに対して電子部品58を追加したパッケージ基板2Cを示している。パッケージ基板2Cでは、電子部品58が第3導体層15に対して外側に、外付けの状態で電気的に接続された例を示している。電子部品58を取り付ける際には必要に応じて導電性材料57が設けられていてもよい。図10に示すパッケージ基板2Cのように、電子部品内蔵基板1D内の電子部品30とは別の電子部品58を外付けする構造としてもよい。
 図11は、図9に示すパッケージ基板2Bと図10に示すパッケージ基板2Cとを組み合わせたパッケージ基板2Dを示している。すなわち、電子部品内蔵基板1D内の電子部品30とは別の電子部品58が、第3絶縁層51内と、第3導体層15の外側と、の両方に設けられている。このように、パッケージ基板2Dに含まれる電子部品の数や配置等は適宜変更することができる。
 1,1A~1C…電子部品内蔵基板、2A~2D…パッケージ基板、10…基板、11…第1絶縁層、12…第2絶縁層、13…第1導体層、14…第2導体層、15…第3導体層、16,17,18A,18B…ビア導体、21,22…絶縁材料、30,50…電子部品、31A…第1電極層、31B…第2電極層、40…接着層、51…第3絶縁層、54…IC、56…IC内蔵基板、58…電子部品。

Claims (5)

  1.  第1絶縁層と、
     前記第1絶縁層の一方側の主面である第1主面上に設けられた導体層と、
     前記第1絶縁層の前記第1主面上に設けられ、一対の電極層と誘電体層とが積層された電子部品と、
     前記第1絶縁層上に積層される第2絶縁層と、を有し、
     前記第1絶縁層及び前記第2絶縁層の積層方向と、前記電子部品における前記電極層と前記誘電体層との積層方向が同じであり、
     前記積層方向において、前記電子部品における前記第1主面側とは逆側の主面の高さ位置と、前記電子部品に隣接する前記導体層における前記第1主面側とは逆側の主面の高さ位置と、が互いに異なる、電子部品内蔵基板。
  2.  前記電子部品は、前記第1絶縁層の前記第1主面上に設けられた接着層の上に設けられる、請求項1に記載の電子部品内蔵基板。
  3.  前記積層方向において、前記電子部品における前記第1主面側の主面の高さ位置と、前記電子部品に隣接する前記導体層における前記第1主面側の主面の高さ位置と、が互いに異なる、請求項1又は2に記載の電子部品内蔵基板。
  4.  前記導体層の厚さが略均一である、請求項1~3のいずれか一項に記載の電子部品内蔵基板。
  5.  前記電子部品の前記電極層の一部は、導電ペーストにより前記導体層と接続されている、請求項1~4のいずれか一項に記載の電子部品内蔵基板。
PCT/JP2018/010552 2017-03-31 2018-03-16 電子部品内蔵基板 WO2018180628A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/499,501 US11367626B2 (en) 2017-03-31 2018-03-16 Electronic component-incorporating substrate
KR1020197031907A KR102356125B1 (ko) 2017-03-31 2018-03-16 전자 부품 내장 기판
JP2019509301A JP7056646B2 (ja) 2017-03-31 2018-03-16 電子部品内蔵基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070578 2017-03-31
JP2017070578 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180628A1 true WO2018180628A1 (ja) 2018-10-04

Family

ID=63677428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010552 WO2018180628A1 (ja) 2017-03-31 2018-03-16 電子部品内蔵基板

Country Status (4)

Country Link
US (1) US11367626B2 (ja)
JP (1) JP7056646B2 (ja)
KR (1) KR102356125B1 (ja)
WO (1) WO2018180628A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950551B2 (en) 2019-04-29 2021-03-16 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof
US11277917B2 (en) 2019-03-12 2022-03-15 Advanced Semiconductor Engineering, Inc. Embedded component package structure, embedded type panel substrate and manufacturing method thereof
US11296030B2 (en) 2019-04-29 2022-04-05 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof
JP2022525725A (ja) * 2019-02-27 2022-05-19 ケプラー コンピューティング インコーポレイテッド 一方向のプレートライン及びビットライン並びにピラーキャパシタを有する高密度低電圧nvm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251530A (ja) * 2009-04-16 2010-11-04 Cmk Corp キャパシタ内蔵型多層プリント配線板及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792129B2 (ja) 2001-03-01 2006-07-05 新光電気工業株式会社 キャパシタ、キャパシタ内蔵回路基板及びそれらの製造方法
JP2003101222A (ja) 2001-09-21 2003-04-04 Sony Corp 薄膜回路基板装置及びその製造方法
JP3817463B2 (ja) 2001-11-12 2006-09-06 新光電気工業株式会社 多層配線基板の製造方法
US7056800B2 (en) 2003-12-15 2006-06-06 Motorola, Inc. Printed circuit embedded capacitors
TW200810043A (en) 2006-08-04 2008-02-16 Phoenix Prec Technology Corp Circuit board structure with capacitor embedded therein and method for fabricating the same
JP2008159820A (ja) 2006-12-22 2008-07-10 Tdk Corp 電子部品の一括実装方法、及び電子部品内蔵基板の製造方法
JP2014045092A (ja) 2012-08-27 2014-03-13 Fujikura Ltd 部品内蔵基板
KR102186146B1 (ko) 2014-01-03 2020-12-03 삼성전기주식회사 패키지 기판, 패키지 기판 제조 방법 및 이를 이용한 반도체 패키지
KR102235811B1 (ko) 2014-02-27 2021-04-02 가부시키가이샤 앰코테크놀로지재팬 반도체 장치, 반도체 적층모듈구조, 적층모듈구조 및 이들의 제조방법
JP6462480B2 (ja) 2015-04-28 2019-01-30 新光電気工業株式会社 配線基板及び配線基板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251530A (ja) * 2009-04-16 2010-11-04 Cmk Corp キャパシタ内蔵型多層プリント配線板及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525725A (ja) * 2019-02-27 2022-05-19 ケプラー コンピューティング インコーポレイテッド 一方向のプレートライン及びビットライン並びにピラーキャパシタを有する高密度低電圧nvm
JP7420822B2 (ja) 2019-02-27 2024-01-23 ケプラー コンピューティング インコーポレイテッド 一方向のプレートライン及びビットライン並びにピラーキャパシタを有する高密度低電圧nvm
US11277917B2 (en) 2019-03-12 2022-03-15 Advanced Semiconductor Engineering, Inc. Embedded component package structure, embedded type panel substrate and manufacturing method thereof
US10950551B2 (en) 2019-04-29 2021-03-16 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof
US11296030B2 (en) 2019-04-29 2022-04-05 Advanced Semiconductor Engineering, Inc. Embedded component package structure and manufacturing method thereof

Also Published As

Publication number Publication date
US11367626B2 (en) 2022-06-21
US20200043751A1 (en) 2020-02-06
KR102356125B1 (ko) 2022-01-28
JP7056646B2 (ja) 2022-04-19
KR20190133037A (ko) 2019-11-29
JPWO2018180628A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2018180628A1 (ja) 電子部品内蔵基板
DK2768291T3 (en) Built-in component board and method for making same as well as mounting body
JP6380726B1 (ja) 貫通電極基板、半導体装置及び貫通電極基板の製造方法
US10483345B2 (en) Electronic component embedded substrate
JP5924461B1 (ja) 複合電子部品
JP2018074116A (ja) 薄膜コンデンサ及び電子部品内蔵基板
US11276531B2 (en) Thin-film capacitor and method for manufacturing thin-film capacitor
JP4574383B2 (ja) 薄膜コンデンサおよび配線基板
KR20180026932A (ko) 커패시터 부품
US10813220B2 (en) Electronic component embedded substrate
US10278290B2 (en) Electronic component embedded substrate
WO2012124421A1 (ja) フレキシブル多層基板
JP6897139B2 (ja) 電子部品内蔵基板及び基板実装構造体
US10658200B2 (en) Thin film component sheet, board with built-in electronic component, and method of manufacturing the thin film component sheet
TWI677071B (zh) 電子零件搭載封裝體
WO2024150493A1 (ja) 薄膜キャパシタ及びこれを備える回路基板
WO2024150492A1 (ja) 薄膜キャパシタ及びこれを備える回路基板
JP6904085B2 (ja) 電子部品内蔵基板
JP2006344631A (ja) 部品内蔵基板
JP2006040995A (ja) 配線板及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031907

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18775318

Country of ref document: EP

Kind code of ref document: A1