WO2018180563A1 - Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法 - Google Patents

Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法 Download PDF

Info

Publication number
WO2018180563A1
WO2018180563A1 PCT/JP2018/010325 JP2018010325W WO2018180563A1 WO 2018180563 A1 WO2018180563 A1 WO 2018180563A1 JP 2018010325 W JP2018010325 W JP 2018010325W WO 2018180563 A1 WO2018180563 A1 WO 2018180563A1
Authority
WO
WIPO (PCT)
Prior art keywords
afx
porous support
membrane
film
crystal
Prior art date
Application number
PCT/JP2018/010325
Other languages
English (en)
French (fr)
Inventor
健史 萩尾
憲一 野田
宮原 誠
清水 克哉
綾 三浦
遼太郎 吉村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/008312 external-priority patent/WO2018180243A1/ja
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201880014746.4A priority Critical patent/CN110446543B/zh
Priority to JP2019509262A priority patent/JP6740460B2/ja
Priority to DE112018001751.6T priority patent/DE112018001751T5/de
Publication of WO2018180563A1 publication Critical patent/WO2018180563A1/ja
Priority to US16/572,860 priority patent/US10835875B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1218Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds

Definitions

  • the present invention relates to a zeolite membrane having an AFX structure, a membrane structure, and a method for producing the membrane structure.
  • a zeolite membrane for gas separation for example, a zeolite membrane having a DDR structure, a zeolite membrane having an LTA structure, a zeolite membrane having a FAU structure, a zeolite membrane having an MFI structure, a zeolite membrane having a CHA structure, and the like are known ( Patent Document 1).
  • zeolite membranes for liquid separation for example, LTA structure zeolite membranes, MOR structure zeolite membranes, FER structure zeolite membranes, CHA structure zeolite membranes and the like are known (see Patent Document 1).
  • the present invention has been made in view of the above-described situation, and an object thereof is to provide a practical AFX-structured zeolite membrane and a method for producing the same.
  • the peak intensity of the (110) plane is 2.5 times or more of the peak intensity of the (004) plane. is there.
  • FIG. 1 is a cross-sectional view of the membrane structure 1.
  • FIG. 2 is a plan view of a zeolite membrane 10 having an AFX structure.
  • the membrane structure 1 includes a porous support 10 and a zeolite membrane 20 having an AFX structure.
  • the zeolite film 20 having an AFX structure is composed of zeolite crystals 30 having an AFX structure.
  • AFX film 20 the zeolite film 20 having the AFX structure
  • AFX crystal 30 the zeolite crystal 30 having the AFX structure
  • Porous support 10 The porous support 10 supports the AFX film 20.
  • the porous support 10 has chemical stability to such an extent that the AFX film 20 can be formed (crystallized, coated, or deposited) on the surface thereof.
  • the porous support 10 is a ceramic sintered body.
  • alumina, silica, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide, cerbene, cordierite, or the like can be used.
  • the porous support 10 may contain a binder.
  • a glass material containing silicon (Si), aluminum (Al), titanium (Ti), or the like can be used.
  • the content rate of a binder can be 20 volume% or more and 40 volume% or less, it is not restricted to this.
  • the porous support 10 may have any shape that can supply the fluid mixture (gas mixture or liquid mixture) to be separated to the AFX membrane 20.
  • Examples of the shape of the porous support 10 include a monolith shape, a flat plate shape, a tubular shape, a cylindrical shape, a columnar shape, and a prismatic shape.
  • the monolith shape is a shape having a plurality of cells formed in the longitudinal direction, and is a concept including a honeycomb shape.
  • the length in the longitudinal direction can be 150 to 2000 mm
  • the diameter in the radial direction can be 30 to 220 mm, but is not limited thereto.
  • 30 to 2500 cells having a diameter of 1 to 5 mm can be formed on the porous support 10.
  • the porous support 10 is a porous body having a large number of open pores.
  • the average pore diameter of the porous support 10 may be a size that allows a permeated component that has passed through the AFX membrane 20 in the fluid mixture to pass therethrough.
  • the permeation amount of the permeation component can be increased.
  • the strength of the porous support 10 can be increased.
  • the average pore diameter of the porous support 10 is not particularly limited, but can be, for example, 0.01 ⁇ m or more and 5 ⁇ m or less.
  • the average pore diameter of the porous support 10 can be measured by a mercury intrusion method, an air flow method described in ASTM F316, or a palm porometry method according to the size of the pore diameter.
  • the porosity of the porous support 10 is not particularly limited, but can be, for example, 25% to 50%.
  • the average particle diameter of the porous support 10 is not particularly limited, but can be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the average particle diameter of the porous support 10 is an arithmetic average value of the maximum diameters of each of 30 particles measured by cross-sectional observation using SEM (Scanning Electron Microscope). The 30 particles to be measured may be randomly selected on the SEM image.
  • the porous support 10 may have a single layer structure with a uniform pore diameter or a multilayer structure with different pore diameters.
  • the layer closer to the AFX film 20 preferably has a smaller average pore diameter.
  • the average pore diameter of the porous support 10 means the average pore diameter of the outermost layer in contact with the AFX film 20.
  • each layer can be composed of at least one material selected from the materials described above, and the constituent materials of each layer may be different.
  • the AFX film 20 is formed on the surface of the porous support 10.
  • the thickness of the AFX film 20 is not particularly limited, but can be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the AFX film 20 is preferably 0.3 ⁇ m or more and more preferably 0.5 ⁇ m or more in consideration of sufficient bonding of crystals.
  • the thickness of the AFX film 20 is preferably 5 ⁇ m or less and more preferably 3 ⁇ m or less in consideration of suppressing cracks due to thermal expansion.
  • the AFX film 20 is formed in a film shape by connecting a plurality of AFX crystals 30 to each other.
  • Each AFX crystal 30 is a crystal composed of zeolite having an AFX structure.
  • An AFX structure is an IUPAC structure code defined by the Structure Commission of the International Zeolite Association and is an AFX structure.
  • the atom (T atom) located in the center of the oxygen tetrahedron (TO 4 ) composing the zeolite is composed of Si and Al, and the T atom is composed of Al and P (phosphorus).
  • Some of the T atoms may be substituted with other elements.
  • Each AFX crystal 30 has a plurality of oxygen 8-membered ring pores inside.
  • the oxygen 8-membered ring pore is a pore formed of an oxygen 8-membered ring.
  • the oxygen 8-membered ring is also simply called an 8-membered ring, and the number of oxygen atoms constituting the pore skeleton is 8, and the oxygen atoms are bonded to the above-mentioned T atoms to form a cyclic structure. That is.
  • Each AFX crystal 30 may contain a metal or a metal ion for the purpose of imparting adsorptivity to a specific component.
  • metals and metal ions include one or more metals selected from the group consisting of alkali metals, alkaline earth metals, and transition metals.
  • the transition metal include platinum (Pt), palladium (Pd), rhodium (Rh), silver (Ag), iron (Fe), copper (Cu), cobalt (Co), and manganese (Mn). And indium (In), and the like, but are not limited thereto.
  • Each AFX crystal 30 is formed in a plate shape.
  • the planar shape of each AFX crystal 30 is not particularly limited, and can be a polygon or an indefinite shape greater than a triangle, but a hexagon is particularly preferable.
  • a hexagonal plate shape for example, a film having higher crystallinity and superior durability can be obtained as compared with an AFX crystal having an indefinite shape, a spherical shape, or an elliptical spherical shape.
  • the plate-like AFX crystal 30 is erected on the surface of the porous support 10.
  • the AFX crystal 30 is arranged vertically along the thickness direction of the AFX film 20. That is, both main surfaces of the AFX crystal 30 have a predetermined orientation angle with respect to the surface of the porous support 10.
  • the average orientation angle of both main faces of each AFX crystal 30 with respect to the surface of the porous support 10 may be larger than 60 degrees, preferably 70 degrees or more, and more preferably 80 degrees or more.
  • each AFX crystal 30 appears on both main surfaces of each AFX crystal 30, and the a-plane appears on the side surface.
  • the a-plane which is the side surface is exposed on the film surface of the AFX film 20.
  • the peak intensity of the (110) plane is (004) plane.
  • the peak intensity is 2.5 times or more. This means that the proportion of the AFX crystal 30 standing on the surface of the porous support 10 is large. Therefore, by setting the peak intensity of the (110) plane to 2.5 times or more of the peak intensity of the (004) plane, the adjacent AFX crystals 30 can be joined between the c planes that are the main surfaces. The connectivity between the AFX crystals 30 can be improved. Therefore, since it is possible to suppress the generation of a gap between the AFX crystals 30, the separation performance of the AFX film 20 can be improved to a practical level.
  • the peak intensity on the (110) plane is preferably at least 3 times the peak intensity on the (004) plane, more preferably at least 4 times. Thereby, the separation performance of the AFX film 20 can be further improved.
  • the peak intensity means a value obtained by subtracting the background value from the measured value.
  • a molded body is formed by molding a ceramic material into a desired shape using an extrusion molding method, a press molding method, a cast molding method, or the like.
  • a slurry containing a ceramic raw material is applied to the surface of the formed body by using a filtration method or a flow-down method.
  • the porous support 10 is formed by firing the molded body (eg, 900 ° C. to 1450 ° C.).
  • the average pore diameter of the porous support 10 can be 0.01 ⁇ m or more and 5 ⁇ m or less.
  • a raw material mixture is prepared by dissolving and dispersing a T atom source such as a silicon source, an aluminum source and a phosphorus source, and a structure directing agent (SDA) in pure water.
  • a T atom source such as a silicon source, an aluminum source and a phosphorus source, and a structure directing agent (SDA) in pure water.
  • the T atom preferably contains any two or more of Si, Al, and P, and more preferably contains at least Al, P, and O.
  • the silicon source for example, colloidal silica, fumed silica, tetraethoxysilane, sodium silicate, or the like can be used.
  • aluminum source for example, aluminum isopropoxide, aluminum hydroxide, sodium aluminate, alumina sol and the like can be used.
  • phosphorus source for example, phosphoric acid, sodium dihydrogen phosphate, ammonium dihydrogen phosphate and the like can be used.
  • structure directing agents include N, N, N ′, N′-tetramethyldiaminohexane, 1,4-diazabicyclo [2,2,2] octane-C4-diquat dibromide, 1,3-di (1- Adamantyl) imidazolium dibromide and the like can be used.
  • the synthesized DDR crystal After adding a small amount of the synthesized DDR crystal to the raw material mixture, it is put into a pressure vessel and hydrothermally synthesized (180 to 200 ° C., 10 to 100 hours) to synthesize a hexagonal plate-shaped AFX crystal.
  • the length of the straight line connecting the diagonals can be 0.1 ⁇ m to 5 ⁇ m.
  • the size of the AFX crystal is adjusted so that a part of the AFX crystal is locked to the opening of the pore formed on the surface of the porous support 10, and the AFX seed crystal (AFX structure seed crystal) is adjusted.
  • the average particle diameter of the synthesized AFX crystal is larger than 0.5 times and smaller than 5 times the average pore diameter on the coated surface of the porous support 10, it can be used as it is as an AFX seed crystal by dispersing it. .
  • the synthesized AFX crystal is put into pure water and is ball milled so as to be within the above range.
  • a plate-like AFX seed crystal (a plate-like seed crystal having an AFX structure) may be produced by pulverizing and pulverizing with, for example.
  • the size of the AFX seed crystal can be adjusted by changing the grinding time.
  • the average particle size of the plate-like AFX seed crystal can be set to, for example, 100 nm to 400 nm.
  • the DDR crystal may be directly held on the surface of the porous support 10 and may be grown so that the plate-like AFX crystal is erected directly at the time of film formation in the next step.
  • the average particle size of the seed crystal is preferably 0.5 to 5 times, more preferably 0.7 to 3 times the average pore size on the coated surface of the porous support 10.
  • a seed crystal dispersion solution is prepared by dispersing AFX seed crystals in water, alcohol such as ethanol or isopropanol, or a mixed solvent thereof.
  • the AFX seed crystal is attached to the surface of the porous support 10 by filtering the seed crystal dispersion solution on the surface of the porous support 10.
  • a part of the AFX seed crystal is locked to the opening of the pore formed on the surface of the porous support 10, so that the AFX seed crystal is the porous support 10.
  • the speed of filtering the dispersion is preferably 10 ml / m 2 ⁇ s or more, and 15 ml / m 2 ⁇ s. More preferably.
  • a raw material mixture is prepared by dissolving and dispersing a T atom source such as a silicon source, an aluminum source and a phosphorus source, and a structure directing agent (SDA) in pure water.
  • a T atom source such as a silicon source, an aluminum source and a phosphorus source
  • SDA structure directing agent
  • the porous support 10 to which the AFX seed crystals are attached is immersed in the raw material mixed solution and hydrothermally synthesized (150 to 190 ° C., 5 to 60 hours). At this time, since the AFX seed crystal standing on the surface of the porous support 10 grows as it is, the AFX crystals 30 standing on the surface of the porous support 10 as shown in FIG. AFX film 20 is formed by growing and bonding.
  • Example 1 Production of Porous Support A monolith-shaped molded body having a plurality of through holes was formed by sintering using a clay containing an alumina raw material and sintered.
  • the porous support was formed by forming a porous layer mainly composed of alumina on the surface of the through-hole of the fired molded body and firing again.
  • the average pore diameter at the surface of the portion of the porous support forming the membrane was in the range of 65 to 110 nm.
  • DDR crystal was synthesized by hydrothermal synthesis (160 ° C., 16 hours) according to the method described in International Publication No. 2010/90049 described above, and was thoroughly washed. The average particle size of the DDR crystal was 190 nm. The obtained DDR crystal was pulverized with a bead mill for 90 minutes to produce a DDR crystal with reduced crystallinity.
  • pure colloidal silica as a silicon source aluminum isopropoxide as an aluminum source, 85% phosphoric acid as a phosphorus source, and N, N, N ′, N′-tetramethyldiaminohexane as a structure directing agent are purified.
  • the composition is 2.5SDA: 0.75SiO 2: 1Al 2 O 3: 1.25P 2 O 5: 50H 2 O-raw material mixture was prepared.
  • the crystal phase was confirmed by X-ray diffraction measurement, and the outer shape of the crystal was confirmed by SEM.
  • the obtained crystal was a hexagonal plate-shaped AFX crystal.
  • the length of the straight line connecting the diagonals was 1 to 5 ⁇ m.
  • the AFX crystal was put into pure water and pulverized with a ball mill for 7 days to prepare a plate-like AFX seed crystal.
  • the length of the straight line connecting the diagonals was about 200 nm.
  • the AFX seed crystal was adhered to the cell inner surface of the porous support by filtering the seed crystal dispersion solution into the cell of the porous support.
  • the average pore diameter of the porous support is about 100 nm and the diagonal length of the plate-like AFX seed crystal is 200 nm
  • each of the porous supports is filtered at 35 ml / m 2 ⁇ s.
  • the AFX seed crystal was erected by being locked to the opening of the pore of the porous support.
  • a raw material mixture having a composition of 1.7 SDA: 0.75SiO 2 : 1Al 2 O 3 : 1.25P 2 O 5 : 305H 2 O was prepared by dissolving in water.
  • the AFX film was synthesized by immersing the porous support to which the AFX seed crystal was adhered in the raw material mixed solution and performing hydrothermal synthesis (170 ° C., 50 hours).
  • the synthesized AFX film was thoroughly washed with pure water and then completely dried at 90 ° C. After drying, the N 2 permeation amount of the AFX film was measured and found to be 0.6 nmol / m 2 ⁇ s ⁇ Pa or less. As a result, it was confirmed that the AFX film according to Example 1 has a practically fine density.
  • the AFX film was heat-treated at 500 ° C. for 20 hours to burn and remove SDA, thereby penetrating the pores in the AFX film.
  • the peak intensity on the (110) plane was 4.1 times the peak intensity on the (004) plane.
  • Example 2 Production of porous support A porous support was produced in the same steps as in Example 1.
  • the synthesized AFX film was thoroughly washed with pure water and then completely dried at 90 ° C.
  • the N 2 permeation amount of the AFX film was measured after drying, it was 0.06 nmol / m 2 ⁇ s ⁇ Pa or less.
  • the AFX film according to Example 2 has sufficiently practically denseness.
  • the AFX film was heat-treated at 450 ° C. for 50 hours to burn and remove SDA, thereby penetrating the pores in the AFX film.
  • Example 3 Production of porous support A porous support was produced in the same steps as in Example 1.
  • the synthesized AFX film was thoroughly washed with pure water and then completely dried at 90 ° C.
  • the N 2 permeation amount of the AFX film was measured after drying, it was 0.08 nmol / m 2 ⁇ s ⁇ Pa.
  • the AFX film according to Example 3 has sufficiently practically denseness.
  • the AFX film was heat-treated at 450 ° C. for 50 hours to burn and remove SDA, thereby penetrating the pores in the AFX film.
  • AFX structure zeolite membrane AFX membrane
  • AFX structure zeolite crystals AFX crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

AFX膜(20)の膜表面にX線を照射して得られるX線回折パターンにおいて、(110)面のピーク強度が、(004)面のピーク強度の2.5倍以上である。

Description

AFX構造のゼオライト膜、膜構造体、及び膜構造体の製造方法
 本発明は、AFX構造のゼオライト膜、膜構造体、及び膜構造体の製造方法に関する。
 近年、ゼオライト膜を用いて気体混合物または液体混合物から所望成分を分離、濃縮する手法が提案されている。
 具体的に、気体分離用のゼオライト膜としては、例えばDDR構造のゼオライト膜、LTA構造のゼオライト膜、FAU構造のゼオライト膜、MFI構造のゼオライト膜、CHA構造のゼオライト膜などが知られている(特許文献1参照)。
 また、液体分離用のゼオライト膜としては、例えばLTA構造のゼオライト膜、MOR構造のゼオライト膜、FER構造のゼオライト膜、CHA構造のゼオライト膜などが知られている(特許文献1参照)。
国際公開第2013/125660号
 しかしながら、AFX構造のゼオライトの膜化に成功したことを示す報告例はなく、実用可能なAFX構造のゼオライト膜の開発が期待されていた。
 本発明は、上述の状況に鑑みてなされたものであり、実用可能なAFX構造のゼオライト膜、及びその製造方法を提供することを課題とする。
 本発明に係るAFX構造のゼオライト膜の膜表面にX線を照射して得られるX線回折パターンにおいて、(110)面のピーク強度が、(004)面のピーク強度の2.5倍以上である。
 本発明によれば、実用可能なAFX構造のゼオライト膜、膜構造体、及び膜構造体の製造方法を提供することができる。
AFX構造のゼオライト膜の断面図 AFX構造のゼオライト膜の平面図 AFX構造のゼオライト膜の製造方法を説明するための図 AFX構造のゼオライト膜の製造方法を説明するための図
 (膜構造体1)
 図1は、膜構造体1の断面図である。図2は、AFX構造のゼオライト膜10の平面図である。
 膜構造体1は、多孔質支持体10と、AFX構造のゼオライト膜20とを備える。AFX構造のゼオライト膜20は、AFX構造のゼオライト結晶30によって構成される。
 以下の説明では、AFX構造のゼオライト膜20を「AFX膜20」と略称し、AFX構造のゼオライト結晶30を「AFX結晶30」と略称する。
 1.多孔質支持体10
 多孔質支持体10は、AFX膜20を支持する。多孔質支持体10は、その表面にAFX膜20を膜状に形成(結晶化、塗布、或いは析出)できる程度の化学的安定性を有する。
 多孔質支持体10は、セラミックスの焼結体である。多孔質支持体10の骨材には、アルミナ、シリカ、ムライト、ジルコニア、チタニア、イットリア、窒化ケイ素、炭化ケイ素、セルベン、及びコージェライトなどを用いることができる。多孔質支持体10は、結合材を含有していてもよい。結合材としては、ケイ素(Si)、アルミニウム(Al)、チタン(Ti)などを含むガラス材料を用いることができる。結合材の含有率は、20体積%以上40体積%以下とすることができるが、これに限られるものではない。
 多孔質支持体10は、分離対象である流体混合物(気体混合物又は液体混合物)をAFX膜20に供給できる形状であればよい。多孔質支持体10の形状としては、例えば、モノリス状、平板状、管状、円筒状、円柱状、及び角柱状などが挙げられる。モノリス状とは、長手方向に形成された複数のセルを有する形状であり、ハニカム状を含む概念である。多孔質支持体10がモノリス状である場合、長手方向の長さは150~2000mmとすることができ、径方向の直径は30~220mmとすることができるが、これに限られるものではない。多孔質支持体10がモノリス状である場合、多孔質支持体10には、直径1~5mmのセルを30~2500個形成することができる。
 多孔質支持体10は、多数の開気孔を有する多孔質体である。多孔質支持体10の平均細孔径は、流体混合物のうちAFX膜20を透過した透過成分を通過させられる大きさであればよい。多孔質支持体10の平均細孔径を大きくすることによって、透過成分の透過量を増加させることができる。多孔質支持体10の平均細孔径を小さくすることによって、多孔質支持体10の強度を増大させることができる。多孔質支持体10の平均細孔径は特に制限されないが、例えば0.01μm以上5μm以下とすることができる。多孔質支持体10の平均細孔径は、細孔径の大きさに応じて、水銀圧入法、ASTM F316に記載のエアフロー法、パームポロメトリー法によって測定できる。多孔質支持体10の気孔率は特に制限されないが、例えば25%~50%とすることができる。
 多孔質支持体10の平均粒径は特に制限されないが、例えば0.1μm以上100μm以下とすることができる。多孔質支持体10の平均粒径とは、SEM(Scanning Electron Microscope)を用いた断面観察によって測定される30個の粒子それぞれの最大直径の算術平均値である。測定対象である30個の粒子は、SEM画像上において無作為に選出すればよい。
 多孔質支持体10は、細孔径が一様な単層構造であってもよいし、細孔径が異なる複層構造であってもよい。多孔質支持体10が複層構造である場合、AFX膜20に近い層ほど平均細孔径が小さくなっていることが好ましい。多孔質支持体10が複層構造である場合、多孔質支持体10の平均細孔径とは、AFX膜20と接触する最表層の平均細孔径を意味するものとする。多孔質支持体10が複層構造である場合、各層は上述した材料から選択される少なくとも一つの材料によって構成することができ、各層の構成材料は異なっていてもよい。
 2.AFX膜20
 AFX膜20は、多孔質支持体10の表面に形成される。AFX膜20の厚みは特に制限されないが、0.1μm以上10μm以下とすることができる。AFX膜20の厚みは、結晶どうしを十分に結合させることを考慮すると、0.3μm以上が好ましく、0.5μm以上がより好ましい。AFX膜20の厚みは、熱膨張によるクラックを抑制することを考慮すると、5μm以下が好ましく、3μm以下がより好ましい。
 AFX膜20は、複数のAFX結晶30同士が連結することにより膜状に形成されている。各AFX結晶30は、AFX構造のゼオライトによって構成される結晶である。AFX構造とは、国際ゼオライト学会(International ZeoliteAssociation)のStructure Commissionが定めているIUPAC構造コードでAFX型となる構造である。
 各AFX結晶30を構成するゼオライトとしては、ゼオライトを構成する酸素四面体(TO)の中心に位置する原子(T原子)がSiとAlからなるゼオライト、T原子がAlとP(リン)からなるAlPO型のゼオライト、T原子がSiとAlとPからなるSAPO型のゼオライト、T原子がマグネシウム(Mg)とSiとAlとPからなるMAPSO型のゼオライト、T原子が亜鉛(Zn)とSiとAlとPからなるZnAPSO型のゼオライトなどが挙げられる。T原子の一部は、他の元素に置換されていてもよい。
 各AFX結晶30は、複数の酸素8員環細孔を内部に有する。酸素8員環細孔とは、酸素8員環の環からなる細孔である。酸素8員環とは、単に8員環とも称され、細孔の骨格を構成する酸素原子の数が8個であって、酸素原子が前述のT原子と結合して環状構造をなす部分のことである。
 各AFX結晶30は、特定成分に対する吸着性を付与するなどの目的のため、金属や金属イオンを含有していてもよい。このような金属や金属イオンとしては、アルカリ金属、アルカリ土類金属及び遷移金属からなる群から選択される1種以上の金属を挙げることができる。遷移金属としては、具体的には、例えば白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、銀(Ag)、鉄(Fe)、銅(Cu)、コバルト(Co)、マンガン(Mn)及びインジウム(In)などが挙げられるが、これに限られるものではない。
 各AFX結晶30は、板状に形成されている。各AFX結晶30の平面形状は特に制限されず、三角形以上の多角形又は不定形とすることができるが、六角形が特に好ましい。各AFX結晶30が六角板状である場合、例えば不定形状、球状、又は楕円球状のAFX結晶に比べて結晶性が高く、耐久性に優れた膜を得ることができる。
 図1及び図2に示すように、板状のAFX結晶30は、多孔質支持体10の表面に立設されている。AFX結晶30は、AFX膜20の厚み方向に沿って縦に配置されている。すなわち、AFX結晶30の両主面は、多孔質支持体10の表面に対して所定の配向角度を有している。多孔質支持体10の表面に対する各AFX結晶30の両主面の平均配向角度は60度より大きければよいが、70度以上が好ましく、80度以上がより好ましい。
 ここで、各AFX結晶30の両主面にはc面があらわれており、側面にはa面があらわれている。上述のとおり、各AFX結晶30は、多孔質支持体10の表面に立設されているため、AFX膜20の膜表面には、側面であるa面が露出している。
 X線回折(XRD:X-ray diffraction)法を用いて、AFX膜20の膜表面にX線を照射して得られるX線回折パターンにおいて、(110)面のピーク強度が、(004)面のピーク強度の2.5倍以上である。このことは、多孔質支持体10の表面に立設しているAFX結晶30の存在割合が多いことを意味している。そのため、(110)面のピーク強度を(004)面のピーク強度の2.5倍以上とすることによって、隣接するAFX結晶30を主面であるc面どうしで接合させることができるため、隣接するAFX結晶30どうしの接続性を高めることができる。そのため、AFX結晶30間に隙間が生じることを抑制できるため、AFX膜20の分離性能を実用可能な程度にまで向上させることができる。
 X線回折パターンにおいて、(110)面のピーク強度は、(004)面のピーク強度の3倍以上であることが好ましく、4倍以上であることがより好ましい。これによって、AFX膜20の分離性能をより向上させることができる。
 ピーク強度とは、測定値からバックグラウンドの値を引いた値を意味する。X線回折パターンは、X線回折装置(リガク社製、型式MiniFlex600)を用いて、AFX膜20の膜表面にCuKα線を照射することによって得られる。X線出力:600W(管電圧:40kV、管電流:15mA)、走査速度:0.5°/min、走査ステップ:0.02°、CuKβ線フィルタ:0.015mm厚Ni箔とする。(110)面のピークは2θ=13°付近に、(004)面のピークは2θ=18°付近に観察される。
 (膜構造体1の製造方法)
 1.多孔質支持体10の作製
 押出成形法、プレス成形法又は鋳込み成形法などを用いて、セラミックス原料を所望の形状に成形することによって成形体を形成する。
 次に、多孔質支持体10を多層構造とする場合には、ろ過法又は流下法を用いて、セラミックス原料を含むスラリーを成形体の表面に塗布する。
 次に、成形体を焼成(例えば、900℃~1450℃)することによって、多孔質支持体10を形成する。多孔質支持体10の平均細孔径は、0.01μm以上5μm以下とすることができる。
 2.種結晶の作製
 国際公開第2010/90049号に記載の手法に従って、DDR結晶を合成する。
 次に、ケイ素源、アルミニウム源、リン源などのT原子源、及び構造規定剤(SDA)を純水に溶解・分散させることによって原料混合液を調製する。AFXの結晶性を向上させることができることから、T原子としては、Si、Al、Pのうちいずれか2つ以上を含有することが好ましく、少なくともAl、P及びOを含有することがより好ましい。ケイ素源としては、例えばコロイダルシリカ、ヒュームドシリカ、テトラエトキシシラン、ケイ酸ナトリウムなどを用いることができる。アルミニウム源としては、例えばアルミニウムイソプロポキシド、水酸化アルミニウム、アルミン酸ナトリウム、アルミナゾルなどを用いることができる。リン源としては、例えばリン酸、リン酸二水素ナトリウム、リン酸二水素アンモニウムなどを用いることができる。構造規定剤としては、例えばN,N,N’,N’-テトラメチルジアミノヘキサン、1,4-ジアザビシクロ[2,2,2]オクタン-C4-ジクワットジブロミド、1,3-ジ(1-アダマンチル)イミダゾリウムジブロミドなどを用いることができる。
 次に、合成したDDR結晶を原料混合液に少量添加した後、圧力容器に投入して水熱合成(180~200℃、10~100時間)することによって、六角板状のAFX結晶を合成する。六角板状のAFX結晶の平面視において対角を結ぶ直線の長さは0.1μm~5μmとすることができる。
 次に、AFX結晶の一部が多孔質支持体10の表面に形成された細孔の開口部に係止される程度に、AFX結晶のサイズを調整し、AFX種結晶(AFX構造の種結晶)を準備する。合成したAFX結晶の平均粒径が多孔質支持体10の塗布面における平均細孔径に対して、0.5倍より大きく、5倍より小さい場合は、分散させることでそのままAFX種結晶として使用できる。合成したAFX結晶の平均粒径が多孔質支持体10の塗布面における平均細孔径の0.5倍より大きい場合は、合成したAFX結晶を純水に投入し、前述の範囲に収まるようにボールミルなどで解こう・粉砕することによって、板状のAFX種結晶(AFX構造の板状種結晶)を作製してもよい。AFX種結晶のサイズは、粉砕時間の変更によって調整することができる。板状のAFX種結晶の平均粒子径は、例えば100nm~400nmとすることができる。また、この際、DDR結晶をそのまま多孔質支持体10の表面に係止させ、次工程の膜形成の際に、直接板状のAFX結晶を立設するように成長させてもよい。種結晶の平均粒子径は多孔質支持体10の塗布面における平均細孔径に対して0.5~5倍であることが好ましく、0.7~3倍であることがより好ましい。
 3.AFX膜20の形成
 AFX種結晶を水、エタノールやイソプロパノールなどアルコール、あるいはそれらの混合溶媒に分散させた種結晶分散溶液を調製する。
 次に、多孔質支持体10の表面に種結晶分散溶液をろ過することによって、AFX種結晶を多孔質支持体10の表面に付着させる。この際、図3に示すように、AFX種結晶の一部が、多孔質支持体10の表面に形成された細孔の開口部に係止されて、AFX種結晶は多孔質支持体10の表面に立設した状態で支持される。AFX種結晶を多孔質支持体10の表面に立設した状態で支持するためには、分散液をろ過する速さは10ml/m・s以上であることが好ましく、15ml/m・sであることが更に好ましい。
 次に、ケイ素源、アルミニウム源、リン源などのT原子源、及び構造規定剤(SDA)を純水に溶解・分散させることによって原料混合液を調製する。
 次に、AFX種結晶が付着した多孔質支持体10を原料混合液に浸漬して水熱合成(150~190℃、5~60時間)する。この際、多孔質支持体10の表面に立設した状態のAFX種結晶がそのまま結晶成長するため、図4に示すように、多孔質支持体10の表面に対して立設したAFX結晶30どうしが成長し、接合することによってAFX膜20が形成される。
 以下において本発明の実施例について説明する。ただし、本発明は以下に説明する実施例に限定されるものではない。
 (実施例1)
 1.多孔質支持体の作製
 アルミナ原料を含む坏土を用いて、押出成形法により複数の貫通孔をもつモノリス形状の成形体を形成し、焼結した。
 次に、焼成した成形体の、貫通孔の表面にアルミナを主とした多孔質層を形成し、再度焼成することによって、多孔質支持体を形成した。多孔質支持体の膜を形成する部分の表面における平均細孔径は、65~110nmの範囲であった。
 2.種結晶の作製
 上記した国際公開第2010/90049号に記載の手法に従って水熱合成(160℃、16時間)することによってDDR結晶を合成し、それを十分に洗浄した。DDR結晶の平均粒子径は、190nmであった。得られたDDR結晶をビーズミルで90分粉砕することによって、結晶性を低下させたDDR結晶を作製した。
 次に、ケイ素源であるコロイダルシリカ、アルミニウム源であるアルミニウムイソプロポキシド、リン源である85%リン酸、及び構造規定剤であるN,N,N’,N’-テトラメチルジアミノヘキサンを純水に溶解させることによって、組成が2.5SDA:0.75SiO:1Al:1.25P:50HOの原料混合液を調製した。
 次に、原料溶液にDDR結晶を少量添加して圧力容器に投入した後、水熱合成(195℃、30時間)した。
 次に、水熱合成によって得られた結晶を回収して純水で十分に洗浄した後、65℃で完全に乾燥させた。
 その後、X線回折測定によって結晶相を確認するとともに、SEMによって結晶の外形を確認したところ、得られた結晶は六角板状のAFX結晶であった。AFX結晶の平面視において対角を結ぶ直線の長さは1~5μmであった。
 次に、AFX結晶を純水に投入し、ボールミルで7日間粉砕することによって、板状のAFX種結晶を作製した。板状のAFX種結晶の平面視において対角を結ぶ直線の長さはおよそ200nmであった。
 3.AFX膜の形成
 AFX種結晶をエタノールに分散させた種結晶分散溶液を調製した。
 次に、多孔質支持体のセルに種結晶分散溶液をろ過することによって、AFX種結晶を多孔質支持体のセル内表面に付着させた。上述のとおり、多孔質支持体の平均細孔径は約100nmであり、かつ、板状のAFX種結晶の対角長さは200nmであるため、35ml/m・sでろ過することで、各AFX種結晶は、多孔質支持体の細孔の開口部に係止されて立設した。
 次に、ケイ素源であるコロイダルシリカ、アルミニウム源であるアルミニウムイソプロポキシド、リン源である85%リン酸、及び構造規定剤であるN,N,N’,N’-テトラメチルジアミノヘキサンを純水に溶解させることによって、組成が1.7SDA:0.75SiO:1Al:1.25P:305HOの原料混合液を調製した。
 次に、AFX種結晶が付着した多孔質支持体を原料混合液に浸漬して水熱合成(170℃、50時間)することによって、AFX膜を合成した。
 次に、合成したAFX膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AFX膜のN透過量を測定したところ、0.6nmol/m・s・Pa以下であった。これにより、実施例1に係るAFX膜は、実用可能な程度の緻密性を有していることが確認された。
 次に、AFX膜を500℃で20時間加熱処理することによってSDAを燃焼除去して、AFX膜内の細孔を貫通させた。
 次に、多孔質支持体の両端部をシール材で封止した状態で、0.2MPaGでCO/CH(50:50)の混合ガスの分離試験を実施したところ、CO/CHのPerm.比は159であった。同様に、多孔質支持体の両端部をシール材で封止した状態で、0.3MPaGでN/CH(50:50)の混合ガスの分離試験を実施したところ、N/CHのPerm.比は6.3であった。これにより、実施例1に係るAFX膜は、十分に実用可能な分離性能を有していることが確認された。
 そして、AFX膜の膜表面にX線を照射して得たX線回折パターンにおいて、(110)面のピーク強度は、(004)面のピーク強度の4.1倍であった。これにより、実施例1に係るAFX膜では、AFX結晶のa面が膜表面に配向していることが確認された。
 (実施例2)
 1.多孔質支持体の作製
 実施例1と同じ工程で多孔質支持体を作製した。
 2.種結晶の作製
 実施例1と同じ工程でAFX種結晶を作製した。
 3.AFX膜の形成
 原料混合液の組成を1Al:2.1P:2.8SDA:850HOに変更し、かつ、水熱合成条件を170℃×45hに変更した以外は、実施例1と同様の工程にてAFX膜を合成した。
 次に、合成したAFX膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AFX膜のN透過量を測定したところ、0.06nmol/m・s・Pa以下であった。これにより、実施例2に係るAFX膜は、十分に実用可能な緻密性を有していることが確認された。
 次に、AFX膜を450℃で50時間加熱処理することによってSDAを燃焼除去して、AFX膜内の細孔を貫通させた。
 次に、多孔質支持体の両端部をシール材で封止した状態で、0.15MPaGでCO/CH(50:50)の混合ガスの分離試験を実施したところ、CO/CHのPerm.比は94であった。同様に、多孔質支持体の両端部をシール材で封止した状態で、0.3MPaGでN/CH(50:50)の混合ガスの分離試験を実施したところ、N/CHのPerm.比は3.5であった。これにより、実施例2に係るAFX膜は、十分に実用可能な分離性能を有していることが確認された。
 そして、AFX膜の膜表面にX線を照射して得たX線回折パターンにおいて、(110)面のピーク強度は、(004)面のピーク強度の3.3倍であった。これにより、実施例2に係るAFX膜では、AFX結晶のa面が膜表面に配向していることが確認された。
 (実施例3)
 1.多孔質支持体の作製
 実施例1と同じ工程で多孔質支持体を作製した。
 2.種結晶の作製
 実施例1で六角板状のAFX種結晶作製時に使用したDDR結晶をそのままろ過し、多孔質支持体表面に塗布した。
 3.AFX膜の形成
 水熱合成条件を185℃×50hに変更した以外は、実施例2と同様の工程にてAFX膜を合成した。
 次に、合成したAFX膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AFX膜のN透過量を測定したところ、0.08nmol/m・s・Paであった。これにより、実施例3に係るAFX膜は、十分に実用可能な緻密性を有していることが確認された。
 次に、AFX膜を450℃で50時間加熱処理することによってSDAを燃焼除去して、AFX膜内の細孔を貫通させた。
 次に、多孔質支持体の両端部をシール材で封止した状態で、0.15MPaGでCO/CH(50:50)の混合ガスの分離試験を実施したところ、CO/CHのPerm.比は133であった。同様に、多孔質支持体の両端部をシール材で封止した状態で、0.3MPaGでN/CH(50:50)の混合ガスの分離試験を実施したところ、N/CHのPerm.比は4.6であった。これにより、実施例3に係るAFX膜は、十分に実用可能な分離性能を有していることが確認された。
 そして、AFX膜の膜表面にX線を照射して得たX線回折パターンにおいて、(110)面のピーク強度は、(004)面のピーク強度の3.9倍であった。これにより、実施例2に係るAFX膜では、AFX結晶のa面が膜表面に配向していることが確認された。
1   膜構造体
10  多孔質支持体
20  AFX構造のゼオライト膜(AFX膜)
30  AFX構造のゼオライト結晶(AFX結晶)

Claims (7)

  1.  膜表面にX線を照射して得られるX線回折パターンにおいて、(110)面のピーク強度が、(004)面のピーク強度の2.5倍以上である、
    AFX構造のゼオライト膜。
  2.  (110)面のピーク強度が、(004)面のピーク強度の3倍以上である、
    請求項1に記載のAFX構造のゼオライト膜。
  3.  Si、Al、Pのうちいずれか2つ以上を含有する、
    請求項1又は2に記載のAFX構造のゼオライト膜。
  4.  少なくともSi、Al、P、及びOを含有する、
    請求項3に記載のAFX構造のゼオライト膜。
  5.  少なくともSi、Al、及びOを含有する、
    請求項3に記載のAFX構造のゼオライト膜。
  6.  請求項1に記載のAFX構造のゼオライト膜と、
     前記AFX構造のゼオライト膜を支持する多孔質支持体と、
    を備える膜構造体。
  7.  AFX構造の板状種結晶を多孔質支持体の表面に付着させる工程と、
     前記多孔質支持体を原料混合液に浸漬して水熱合成する工程と、
    を備え、
     前記AFX構造の板状種結晶を前記多孔質支持体の表面に付着させる工程では、前記AFX構造の板状種結晶を前記多孔質支持体の表面に立設させる、
    膜構造体の製造方法。
PCT/JP2018/010325 2017-03-31 2018-03-15 Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法 WO2018180563A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880014746.4A CN110446543B (zh) 2017-03-31 2018-03-15 Afx结构的沸石膜、膜结构体以及膜结构体的制造方法
JP2019509262A JP6740460B2 (ja) 2017-03-31 2018-03-15 Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法
DE112018001751.6T DE112018001751T5 (de) 2017-03-31 2018-03-15 Zeolithmembran mit einer afx-struktur, membranstruktur und verfahren zur herstellung einer membranstruktur
US16/572,860 US10835875B2 (en) 2017-03-31 2019-09-17 Zeolite membrane having AFX structure, membrane structure, and method for manufacturing membrane structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-071540 2017-03-31
JP2017071540 2017-03-31
PCT/JP2018/008312 WO2018180243A1 (ja) 2017-03-31 2018-03-05 ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
JPPCT/JP2018/008312 2018-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/572,860 Continuation US10835875B2 (en) 2017-03-31 2019-09-17 Zeolite membrane having AFX structure, membrane structure, and method for manufacturing membrane structure

Publications (1)

Publication Number Publication Date
WO2018180563A1 true WO2018180563A1 (ja) 2018-10-04

Family

ID=63675599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010325 WO2018180563A1 (ja) 2017-03-31 2018-03-15 Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法

Country Status (1)

Country Link
WO (1) WO2018180563A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179432A1 (ja) * 2019-03-04 2020-09-10 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
DE112020002909T5 (de) 2019-06-17 2022-03-31 Ngk Insulators, Ltd. Zeolithmembrankomplex, Verfahren zur Herstellung eines Zeolithmembrankomplexes, Separator, Membranreaktor und Trennverfahren

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160137518A1 (en) * 2014-11-14 2016-05-19 Johnson Matthey Public Limited Company Afx zeolite
WO2016121889A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体及び窒素濃度低減方法
WO2016121888A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
WO2016121887A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
JP2016147801A (ja) * 2015-02-05 2016-08-18 東ソー株式会社 新規ゼオライト
JP2016169139A (ja) * 2015-03-16 2016-09-23 国立大学法人横浜国立大学 Afx型ゼオライトの製法
JP2016204245A (ja) * 2015-04-17 2016-12-08 東ソー株式会社 微結晶afx型ゼオライト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160137518A1 (en) * 2014-11-14 2016-05-19 Johnson Matthey Public Limited Company Afx zeolite
WO2016121889A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体及び窒素濃度低減方法
WO2016121888A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
WO2016121887A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
JP2016147801A (ja) * 2015-02-05 2016-08-18 東ソー株式会社 新規ゼオライト
JP2016169139A (ja) * 2015-03-16 2016-09-23 国立大学法人横浜国立大学 Afx型ゼオライトの製法
JP2016204245A (ja) * 2015-04-17 2016-12-08 東ソー株式会社 微結晶afx型ゼオライト

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179432A1 (ja) * 2019-03-04 2020-09-10 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
JPWO2020179432A1 (ja) * 2019-03-04 2021-11-18 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
JP7230176B2 (ja) 2019-03-04 2023-02-28 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
DE112020002909T5 (de) 2019-06-17 2022-03-31 Ngk Insulators, Ltd. Zeolithmembrankomplex, Verfahren zur Herstellung eines Zeolithmembrankomplexes, Separator, Membranreaktor und Trennverfahren

Similar Documents

Publication Publication Date Title
US9901882B2 (en) DDR zeolite seed crystal, method for producing same, and method for producing DDR zeolite membrane
JP5937569B2 (ja) ハニカム形状セラミック製分離膜構造体
JPWO2013147271A1 (ja) ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
WO2013146956A1 (ja) ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
WO2018180564A1 (ja) Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法
JP6043279B2 (ja) ハニカム形状セラミック製分離膜構造体
WO2018180563A1 (ja) Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法
US10987637B2 (en) DDR-type zeolite seed crystal and method for manufacturing DDR-type zeolite membrane
JP6902661B2 (ja) ガス分離方法
JP6740461B2 (ja) Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法
WO2018180539A1 (ja) Eri構造のゼオライト膜及び膜構造体
US11103834B2 (en) Dehydration method and dehydration apparatus
WO2018225792A1 (ja) 脱水方法、脱水装置及び膜構造体
JP7357529B2 (ja) ゼオライト膜複合体の製造方法、および、ゼオライト膜複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509262

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777276

Country of ref document: EP

Kind code of ref document: A1