WO2018179553A1 - Segmented sputtering target - Google Patents

Segmented sputtering target Download PDF

Info

Publication number
WO2018179553A1
WO2018179553A1 PCT/JP2017/038946 JP2017038946W WO2018179553A1 WO 2018179553 A1 WO2018179553 A1 WO 2018179553A1 JP 2017038946 W JP2017038946 W JP 2017038946W WO 2018179553 A1 WO2018179553 A1 WO 2018179553A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
base material
flat
sputtering target
interval
Prior art date
Application number
PCT/JP2017/038946
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 三輪
宏衛 佐々木
俊庭 林
信輝 呉
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2019508538A priority Critical patent/JP6960989B2/en
Priority to KR1020197027915A priority patent/KR102402982B1/en
Priority to CN201780088428.8A priority patent/CN110431252A/en
Publication of WO2018179553A1 publication Critical patent/WO2018179553A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape

Definitions

  • the disclosed embodiment relates to a split sputtering target.
  • the bonding material is likely to adhere to the side surface of the target material in the divided portion formed by arranging a plurality of target materials at intervals.
  • a bonding material adheres to the side surface of the target material, it may cause metal particles during sputtering film formation.
  • An object of the present invention is to provide a split sputtering target that can easily remove the bonding material adhering to the substrate.
  • a split sputtering target is a split sputtering target formed by bonding a plurality of target materials to a base material, and is formed by arranging the plurality of target materials at intervals.
  • a flat surface is formed on at least a part of the side surfaces of the pair of target materials arranged in at least a part of the divided parts, and the distance between the flat surfaces facing each other in the divided parts is: The interval of the portion farthest from the substrate is larger than the interval of the portion closest to the substrate, and the surface roughness Ra of the flat surface is 0.3 ⁇ m or less.
  • the embodiment it is possible to easily confirm the adhesion state of the bonding material to the side surfaces of the target material facing each other at the divided portion, and to easily bond the bonding material attached to the side surface of the target material facing at the divided portion.
  • a split sputtering target that can be removed is provided.
  • FIG. 1 is a perspective view of a split sputtering target according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view illustrating a cross-sectional shape of the divided portion according to the first modification of the embodiment.
  • FIG. 4 is an enlarged cross-sectional view illustrating a cross-sectional shape of a divided portion according to Modification 2 of the embodiment.
  • FIG. 5 is an enlarged cross-sectional view illustrating a cross-sectional shape of a divided portion according to Modification 3 of the embodiment.
  • FIG. 1 is a perspective view of a split sputtering target 1 according to the embodiment.
  • the split sputtering target 1 has a plurality of target materials 10, a base material 20, and a bonding material 30. Then, a plurality of target materials 10 are arranged side by side on the base material 20, and the target material 10 and the base material 20 are joined by the joining material 30, thereby forming the split sputtering target 1.
  • the plurality of target materials 10 are formed in a flat plate shape having substantially the same dimensions, for example.
  • the target material 10 is formed, for example, in a rectangular shape in plan view, and is arranged side by side on the base material 20 with a predetermined interval.
  • target materials 10 are arranged in a matrix.
  • the plurality of target materials 10 do not have to be arranged in a matrix, and may be arranged in a line, for example.
  • the material of the target material 10 is, for example, ITO (Indium Tin Oxide).
  • the material of the target material 10 is not limited to ITO, and IGZO (Indium Gallium Zinc Oxide), AZO (Aluminum Zinc Oxide), or the like can be used.
  • the base material 20 has a shape corresponding to a desired dimension of the split sputtering target 1.
  • the material of the base material 20 is, for example, copper, copper phosphate, titanium, aluminum, stainless steel, etc., which are excellent in conductivity and thermal conductivity.
  • the bonding material 30 bonds the target material 10 and the base material 20.
  • a solder material mainly composed of indium, tin, or the like can be used.
  • ITO indium
  • indium may be used for the bonding material 30.
  • the target materials 10 are arranged with a certain space therebetween, so that a split portion 40 is formed between a pair of adjacent target materials 10.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and is an enlarged cross-sectional view in which the divided portion 40 and the vicinity thereof are enlarged. As shown in FIG. 2, in the dividing portion 40, the side surfaces 11 of a pair of adjacent target materials 10 face each other.
  • the flat surface 12 is formed on at least a part of both the side surfaces 11 facing each other.
  • flat surfaces 12 are formed on the entire side surfaces 11 facing each other.
  • interval Lt of the part furthest to the base material 20 is larger than the space
  • the interval Lt is the distance between the upper end portions 12 a farthest from the base material 20 on the flat surface 12
  • the interval Lb is the distance between the lower end portions 12 b closest to the base material 20 on the flat surface 12.
  • the gap formed between the flat surfaces 12 is widened toward the top.
  • the side surface 11 flat surface 12
  • the surface roughness Ra of the flat surface 12 is 0.3 ⁇ m or less.
  • this surface roughness is arithmetic mean roughness Ra, and the following description is also the same.
  • the bonding material 30 attached to the flat surface 12 can be easily removed by processing the flat surface 12 to have a surface roughness Ra of 0.3 ⁇ m or less.
  • the distance Lt of the portion farthest from the base material 20 is made larger than the distance Lb of the portion closest to the base material 20, and the surface roughness Ra of the flat surface 12 is made 0.3 ⁇ m or less.
  • the bonding material 30 it is possible to easily confirm the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing at the dividing portion 40, and the bonding material 30 attached to the side surface 11 of the target material 10 facing at the dividing portion 40. It can be easily removed. Therefore, if the split sputtering target 1 according to the embodiment is used, sputtering film formation can be stably performed for a long period of time.
  • the difference between the distance Lt of the portion farthest from the base material 20 and the distance Lb of the portion closest to the base material 20 is preferably 0.1 mm or more.
  • the gap formed between the flat surfaces 12 is further diverging upward, so that the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing each other at the dividing portion 40 can be more easily confirmed. be able to.
  • the difference between the distance Lt of the portion farthest from the base material 20 and the distance Lb of the portion closest to the base material 20 is more preferably 0.2 mm or more, and further preferably 0.3 mm or more.
  • interval Lt of the part furthest to the base material 20 is good in it being 0.2 mm or more and 0.7 mm or less, and it is further better in it being 0.3 mm or more and 0.6 mm or less.
  • the interval Lb between the portions closest to the base material 20 is preferably 0.1 mm or more and 0.5 mm or less, and more preferably 0.1 mm or more and 0.3 mm or less.
  • the interval Lt and the interval Lb are set to the above-mentioned intervals, the visibility of the side surface 11 (flat surface 12) from above is ensured, and the area of the bonding material 30 exposed upward from the divided portion 40 is reduced. Can do. Therefore, according to the embodiment, when the split sputtering target 1 is formed by sputtering, the bonding material 30 exposed from the split portion 40 can be suppressed from becoming an impurity.
  • the flat surface 12 is processed to have a surface roughness Ra of 0.3 ⁇ m or less, the anchoring effect on the flat surface 12 can be reduced as described above. It can suppress that material 30 adheres.
  • the surface roughness Ra of the flat surface 12 is preferably 0.1 ⁇ m or less, and more preferably 0.001 ⁇ m or more and 0.05 ⁇ m or less.
  • the surface roughness Ra of the flat surface 12 is preferably 0.1 ⁇ m or less, and more preferably 0.001 ⁇ m or more and 0.05 ⁇ m or less.
  • the angle ⁇ formed by the flat surface 12 and the bonding surface 13 of the target material 10 bonded to the base material 20 is smaller than 90 °. Good. That is, both the flat surfaces 12 facing each other may be inclined in a direction that can be visually recognized from above.
  • the corner portion formed at the upper end portion 12a of the flat surface 12 can be made an obtuse angle. Therefore, according to the embodiment, the corner portion formed on the upper end portion 12a can be made difficult to break, so that the reliability of the split sputtering target 1 can be improved.
  • an arcing phenomenon generated from the corner can be suppressed during sputtering film formation. This is because the arcing phenomenon occurs due to the concentration of charges at the corners of the target material 10 during sputtering film formation, but the concentration of charges can be suppressed by making the corners obtuse. It is. Therefore, according to the embodiment, it is possible to stably perform the sputtering film formation using the divided sputtering target 1.
  • the angle ⁇ on one flat surface 12 and the angle ⁇ on the other flat surface 12 may be the same angle or different angles.
  • FIG. 3 is an enlarged cross-sectional view illustrating a cross-sectional shape of the division portion 40 according to Modification 1 of the embodiment.
  • the gap formed by the flat surfaces 12 is formed in a diverging shape obliquely upward, so that the side surface 11 is the same as in the embodiment.
  • the visual recognition of (flat surface 12) can be facilitated.
  • FIG. 4 is an enlarged cross-sectional view showing a cross-sectional shape of the dividing portion 40 according to Modification 2 of the embodiment.
  • a vertical surface 14 that rises perpendicularly from the joint surface 13 is formed on the side surface 11 between the flat surface 12 and the joint surface 13. That is, in Modification 2, the side surface 11 has an upper flat surface 12 and a lower vertical surface 14, and the lower end portion 12 b of the flat surface 12 is disposed between the flat surface 12 and the vertical surface 14. ing.
  • the bonding material 30 adheres to the side surface 11 of the target material 10 facing at the divided portion 40 by increasing the distance Lt between the upper end portions 12a to the distance Lb between the lower end portions 12b of the flat surface 12. The state can be easily confirmed.
  • the ratio of the height Tp of the vertical surface 14 to the thickness Ta of the target material 10 is preferably 0.2 or less. Thereby, the size of the divergent gap formed between the flat surfaces 12 can be sufficiently ensured so that the vertical surface 14 can be visually recognized.
  • the vertical surface 14 and the bonding surface 13 do not necessarily have to be vertical, and the angle between the vertical surface 14 and the bonding surface 13 may be in the range of 90 ° ⁇ 3 °.
  • FIG. 5 is an enlarged cross-sectional view showing a cross-sectional shape of the dividing portion 40 according to Modification 3 of the embodiment.
  • a chamfered portion 16 is formed on the side surface 11 between the flat surface 12 and the sputtering surface 15. That is, in the third modification, the side surface 11 has the lower flat surface 12 and the upper chamfered portion 16, and the upper end portion 12 a of the flat surface 12 is disposed between the flat surface 12 and the chamfered portion 16. ing.
  • the bonding material 30 adheres to the side surface 11 of the target material 10 facing at the divided portion 40 by increasing the distance Lt between the upper end portions 12a to the distance Lb between the lower end portions 12b of the flat surface 12. The state can be easily confirmed.
  • the corner portion formed on the upper end portion 12a of the flat surface 12 can be made more obtuse. Therefore, according to the modification 3, the corner
  • both the vertical surface 14 shown in Modification 2 and the chamfered portion 16 shown in Modification 3 may be formed on the side surface 11 of the target material 10. That is, the side surface 11 may be formed so as to be a chamfered portion 16, a flat surface 12, and a vertical surface 14 in order from the top. In this case, the upper end portion 12 a of the flat surface 12 is disposed between the chamfered portion 16 and the flat surface 12, and the lower end portion 12 b of the flat surface 12 is disposed between the vertical surface 14 and the flat surface 12.
  • the above-described flat surface 12 may be formed on at least a part of the divided portion 40 formed on the target material 10. Thereby, in the division part 40 which formed this flat surface 12, the adhesion state of the bonding
  • the above-described flat surface 12 is formed on all of the divided portions 40 formed on the target material 10.
  • the corner part formed in the upper end part 12a of all the flat surfaces 12 can be made into an obtuse angle, and it makes it difficult to break the corner part formed in the upper end part 12a in all the division parts 40 of the target material 10. Therefore, the reliability of the split sputtering target 1 can be further improved.
  • Example 1 10 mass% of SnO 2 powder having a specific surface area (BET specific surface area) of 5 m 2 / g measured by BET (Brunauer-Emmett-Teller) method, and 90 mass of In 2 O 3 powder having a BET specific surface area of 5 m 2 / g %, And ball mill mixing with zirconia balls in a pot to prepare a raw material powder.
  • BET specific surface area 5 m 2 / g measured by BET (Brunauer-Emmett-Teller) method
  • 90 mass of In 2 O 3 powder having a BET specific surface area of 5 m 2 / g %
  • the molded body was heated to 1600 ° C. at a temperature rising rate of 300 ° C./h from room temperature, held for 12 hours, and then cooled at a temperature lowering rate of 50 ° C./h to sinter the molded body to produce a fired body. . Further, the fired body was cut into a predetermined size.
  • the obtained two target materials 10 were arranged side by side on a copper base material 20 and joined to obtain a divided sputtering target 1.
  • Examples 2 to 33 Two ITO target materials 10 were obtained by the same method as in Example 1. Both target materials 10 were processed so that the angle ⁇ between the flat surface 12 and the bonding surface 13 and the surface roughness Ra of the flat surface 12 were the values shown in Table 1. Further, the two target materials 10 are arranged and joined on the base material 20 so that the distance Lt farthest from the base material 20, the distance Lb of the part closest to the base material 20, and Lt ⁇ Lb are the values shown in Table 1. Then, a split sputtering target 1 was obtained.
  • Example 1 Two ITO target materials 10 were obtained by the same method as in Example 1. Both target materials 10 were processed so that the angle ⁇ between the flat surface 12 and the bonding surface 13 was 90 °, and the surface roughness Ra of the flat surface 12 was 0.02 ⁇ m or less. Further, the distance Lt between the parts farthest from the base material 20 is 0.5 mm and the distance Lb between the parts closest to the base material 20 is 0.5 mm (that is, Lt ⁇ Lb is zero). ) Side by side joining on the substrate 20 to obtain a split sputtering target 1.
  • Example 2 Two ITO target materials 10 were obtained by the same method as in Example 1. Both target materials 10 were processed so that the angle ⁇ between the flat surface 12 and the bonding surface 13 was the value shown in Table 1, and the surface roughness Ra of the flat surface 12 was 0.4 ⁇ m. Further, the two target materials 10 are arranged and joined on the base material 20 so that the distance Lt farthest from the base material 20, the distance Lb of the part closest to the base material 20, and Lt ⁇ Lb are the values shown in Table 1. Then, a split sputtering target 1 was obtained.
  • the indium adhering to the side surface 11 of the divided portion 40 was removed from the divided sputtering targets 1 of Examples 1 to 33 and Comparative Examples 1 and 2. Such a removal operation was performed using a metal spatula on a portion where it was confirmed that indium was adhered while visually confirming the divided portion 40.
  • the thickness Ta of the target material 10 shows the angle ⁇ between the flat surface 12 and the bonding surface 13 of the target 1 and the target 2, the evaluation result of the visibility with respect to the divided portion 40, and the evaluation result of the amount of indium attached to the side surface 11.
  • the divided sputtering target 1 is the divided sputtering target 1 formed by bonding the plurality of target materials 10 to the base material 20, and the plurality of target materials 10 are arranged at intervals.
  • the flat surface 12 is formed in at least one part of the side surface 11 of a pair of target material 10 arrange
  • interval Lt of the part furthest to the base material 20 is larger than the space
  • the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing at the dividing portion 40 can be easily confirmed, and the bonding material 30 adhered to the side surface 11 of the target material 10 facing at the dividing portion 40. Can be easily removed.
  • the distance Lt between the portions farthest from the base material 20 formed by the flat surfaces 12 and the distance Lb between the portions closest to the base material 20 formed by the flat surfaces 12. Is 0.1 mm or more.
  • the side surface 11 further includes a vertical surface 14 that rises substantially vertically from the bonding surface 13 between the flat surface 12 and the bonding surface 13 bonded to the base material 20.
  • the ratio of the height Tp of the vertical surface 14 to the thickness Ta of the target material 10 is 0.2 or less. Thereby, the size of the divergent gap formed between the flat surfaces 12 can be sufficiently ensured so that the vertical surface 14 can be visually recognized.
  • interval Lt of the part furthest to the base material 20 formed with the flat surfaces 12 is 0.2 mm or more and 0.7 mm or less, and is formed with the flat surfaces 12.
  • the distance Lb between the portions closest to the substrate 20 is 0.1 mm or more and 0.5 mm or less.
  • interval Lt of the part furthest to the base material 20 formed with the flat surfaces 12 is 0.3 mm or more and 0.6 mm or less, and is formed with the flat surfaces 12.
  • the distance Lb between the portions closest to the substrate 20 is 0.1 mm or more and 0.3 mm or less.
  • the surface roughness Ra of the flat surface 12 is 0.1 ⁇ m or less. Thereby, it can still suppress that the bonding material 30 adheres to the flat surface 12.
  • the surface roughness Ra of the flat surface 12 is 0.001 ⁇ m or more and 0.05 ⁇ m or less. Thereby, it can further suppress that the bonding material 30 adheres to the flat surface 12.
  • the flat surface 12 is formed on at least a part of the side surface 11 of the target material 10 disposed in all the split portions 40, and the flat surfaces 12 facing each other in the split portions 40.
  • the distance Lt between the portions farthest from the substrate 20 is larger than the interval Lb between the portions closest to the substrate 20, and the surface roughness Ra of the flat surface 12 is 0.3 ⁇ m or less.
  • the flat surface 12 is formed on at least a part of the side surface 11 of the target material 10 disposed in all the divided portions 40, and the flat surface 12 is formed in all the divided portions 40.
  • the difference between the distance Lt of the portion farthest from the base material 20 formed between the two and the distance Lb of the portion closest to the base material 20 formed of the flat surfaces 12 is 0.1 mm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The segmented sputtering target (1) related to one aspect of an embodiment is formed by bonding multiple target materials (10) to a substrate (20), wherein flat surfaces (12) are formed on each of at least some of the side faces (11) of a pair of target materials (10) disposed in at least some of the partitions (40) formed by disposing the multiple target materials (10) with spaces therebetween. Regarding the spacing between the flat surfaces (12) that face each other in a partition (40), the spacing (Lt) of the portion farthest from the substrate (20) is larger than the spacing (Lb) of the portion closest to the substrate (20), and the surface roughness Ra of the flat surfaces (12) is 0.3 µm or less.

Description

分割スパッタリングターゲットSplit sputtering target
 開示の実施形態は、分割スパッタリングターゲットに関する。 The disclosed embodiment relates to a split sputtering target.
 従来、平面状に並べた複数のターゲット材を、接合材を用いて基材に接合し形成される分割スパッタリングターゲットが知られている(たとえば、特許文献1参照)。 Conventionally, a split sputtering target formed by bonding a plurality of target materials arranged in a planar shape to a base material using a bonding material is known (for example, see Patent Document 1).
特開2004-315931号公報JP 2004-315931 A
 しかしながら、従来の分割スパッタリングターゲットにおいて、複数のターゲット材が間隔を空けて配置されることにより形成される分割部では、ターゲット材の側面に接合材が付着しやすい。そして、かかる接合材がターゲット材の側面に付着した場合、スパッタリング成膜の際にメタルパーティクルの原因となる場合がある。 However, in the conventional split sputtering target, the bonding material is likely to adhere to the side surface of the target material in the divided portion formed by arranging a plurality of target materials at intervals. When such a bonding material adheres to the side surface of the target material, it may cause metal particles during sputtering film formation.
 一方で、分割部で向かい合うターゲット材の側面同士の間隔は狭く、さらに、ターゲット材の側面は基材から垂直に立ち上がっていることから、かかる側面を上方から視認することは困難である。したがって、ターゲット材の側面に対する接合材の付着状態を確認することが困難であった。さらに、ターゲット材の側面に強固に付着している接合材は容易に除去することができないことから、側面に付着している接合材に起因して、成膜時にメタルパーティクルが発生する恐れがあった。 On the other hand, since the interval between the side surfaces of the target material facing each other at the dividing portion is narrow, and the side surfaces of the target material rise vertically from the base material, it is difficult to visually recognize the side surfaces from above. Therefore, it is difficult to confirm the adhesion state of the bonding material to the side surface of the target material. Furthermore, since the bonding material firmly adhered to the side surface of the target material cannot be easily removed, metal particles may be generated during film formation due to the bonding material adhered to the side surface. It was.
 実施形態の一態様は、上記に鑑みてなされたものであって、分割部で向かい合うターゲット材の側面に対する接合材の付着状態を容易に確認することができ、かつ分割部で向かい合うターゲット材の側面に付着している接合材を容易に除去することができる分割スパッタリングターゲットを提供することを目的とする。 One aspect of the embodiment is made in view of the above, and it is possible to easily confirm the adhesion state of the bonding material to the side surface of the target material facing at the divided portion, and the side surface of the target material facing at the divided portion. An object of the present invention is to provide a split sputtering target that can easily remove the bonding material adhering to the substrate.
 実施形態の一態様に係る分割スパッタリングターゲットは、複数のターゲット材を基材に接合して形成される分割スパッタリングターゲットであって、前記複数のターゲット材が間隔を空けて配置されることにより形成される分割部のうち、少なくとも一部の前記分割部に配置される一対の前記ターゲット材の側面の少なくとも一部にはそれぞれ平坦面が形成され、前記分割部で向かい合う前記平坦面同士の間隔は、前記基材に最も近い部分の間隔より前記基材に最も遠い部分の間隔のほうが大きく、前記平坦面の表面粗さRaが0.3μm以下である。 A split sputtering target according to an aspect of the embodiment is a split sputtering target formed by bonding a plurality of target materials to a base material, and is formed by arranging the plurality of target materials at intervals. A flat surface is formed on at least a part of the side surfaces of the pair of target materials arranged in at least a part of the divided parts, and the distance between the flat surfaces facing each other in the divided parts is: The interval of the portion farthest from the substrate is larger than the interval of the portion closest to the substrate, and the surface roughness Ra of the flat surface is 0.3 μm or less.
 実施形態の一態様によれば、分割部で向かい合うターゲット材の側面に対する接合材の付着状態を容易に確認することができ、かつ分割部で向かい合うターゲット材の側面に付着している接合材を容易に除去することができる分割スパッタリングターゲットを提供することができる。 According to one aspect of the embodiment, it is possible to easily confirm the adhesion state of the bonding material to the side surfaces of the target material facing each other at the divided portion, and to easily bond the bonding material attached to the side surface of the target material facing at the divided portion. A split sputtering target that can be removed is provided.
図1は、実施形態に係る分割スパッタリングターゲットの斜視図である。FIG. 1 is a perspective view of a split sputtering target according to the embodiment. 図2は、図1に示すA-A線の矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 図3は、実施形態の変形例1に係る分割部の断面形状を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view illustrating a cross-sectional shape of the divided portion according to the first modification of the embodiment. 図4は、実施形態の変形例2に係る分割部の断面形状を示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view illustrating a cross-sectional shape of a divided portion according to Modification 2 of the embodiment. 図5は、実施形態の変形例3に係る分割部の断面形状を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view illustrating a cross-sectional shape of a divided portion according to Modification 3 of the embodiment.
[実施形態]
 以下、添付図面を参照して、本願の開示する分割スパッタリングターゲットの実施形態について説明する。なお、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
[Embodiment]
Hereinafter, an embodiment of a split sputtering target disclosed in the present application will be described with reference to the accompanying drawings. In addition, the relationship of the dimension of each element in a drawing, the ratio of each element, etc. may differ from reality. Also, there are cases in which parts having different dimensional relationships and ratios are included between the drawings.
 まず、図1を参照して実施形態に係る分割スパッタリングターゲット1の概略を説明する。図1は、実施形態に係る分割スパッタリングターゲット1の斜視図である。 First, an outline of the split sputtering target 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a perspective view of a split sputtering target 1 according to the embodiment.
 分割スパッタリングターゲット1は、複数のターゲット材10と、基材20と、接合材30とを有する。そして、基材20上に複数のターゲット材10が並んで配置され、かかるターゲット材10と基材20とが接合材30で接合されて、分割スパッタリングターゲット1が形成される。 The split sputtering target 1 has a plurality of target materials 10, a base material 20, and a bonding material 30. Then, a plurality of target materials 10 are arranged side by side on the base material 20, and the target material 10 and the base material 20 are joined by the joining material 30, thereby forming the split sputtering target 1.
 複数のターゲット材10は、たとえば、それぞれ略同一寸法の平板状に形成される。ターゲット材10は、たとえば、平面視で矩形状に形成され、基材20上に所定の間隔を空けて並んで配置される。 The plurality of target materials 10 are formed in a flat plate shape having substantially the same dimensions, for example. The target material 10 is formed, for example, in a rectangular shape in plan view, and is arranged side by side on the base material 20 with a predetermined interval.
 たとえば、図1では、6枚のターゲット材10がマトリックス状に並んで配置されている。なお、複数のターゲット材10はマトリックス状に配置される必要はなく、たとえば、一列に並んで配置されてもよい。 For example, in FIG. 1, six target materials 10 are arranged in a matrix. The plurality of target materials 10 do not have to be arranged in a matrix, and may be arranged in a line, for example.
 ターゲット材10の材質は、たとえば、ITO(Indium Tin Oxide)である。一方で、ターゲット材10の材質はITOに限られず、IGZO(Indium Gallium Zinc Oxide)やAZO(Aluminum Zinc Oxide)などを用いることができる。 The material of the target material 10 is, for example, ITO (Indium Tin Oxide). On the other hand, the material of the target material 10 is not limited to ITO, and IGZO (Indium Gallium Zinc Oxide), AZO (Aluminum Zinc Oxide), or the like can be used.
 基材20は、所望の分割スパッタリングターゲット1の寸法に対応する形状を有する。基材20の材質は、たとえば、導電性や熱伝導性に優れる銅やリン酸銅、チタン、アルミニウム、ステンレスなどである。 The base material 20 has a shape corresponding to a desired dimension of the split sputtering target 1. The material of the base material 20 is, for example, copper, copper phosphate, titanium, aluminum, stainless steel, etc., which are excellent in conductivity and thermal conductivity.
 接合材30は、ターゲット材10と基材20を接合する。接合材30には、たとえば、インジウムやスズなどを主成分とするはんだ材を用いることができる。たとえば、ターゲット材10にITOを用いる場合、接合材30にはインジウムを用いるとよい。 The bonding material 30 bonds the target material 10 and the base material 20. For the bonding material 30, for example, a solder material mainly composed of indium, tin, or the like can be used. For example, when ITO is used for the target material 10, indium may be used for the bonding material 30.
 ここで、図1に示すように、分割スパッタリングターゲット1には、ターゲット材10同士が一定の間隔を空けて配置されることにより、隣接する一対のターゲット材10の間に分割部40が形成される。つづいて、かかる分割部40の詳細な構成について、図2を参照しながら説明する。 Here, as shown in FIG. 1, in the split sputtering target 1, the target materials 10 are arranged with a certain space therebetween, so that a split portion 40 is formed between a pair of adjacent target materials 10. The Next, a detailed configuration of the dividing unit 40 will be described with reference to FIG.
 図2は、図1に示すA-A線の矢視断面図であり、分割部40およびその近傍について拡大した拡大断面図である。図2に示すように、分割部40では、隣接する一対のターゲット材10の側面11同士が向かい合っている。 FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and is an enlarged cross-sectional view in which the divided portion 40 and the vicinity thereof are enlarged. As shown in FIG. 2, in the dividing portion 40, the side surfaces 11 of a pair of adjacent target materials 10 face each other.
 ここで、実施形態では、かかる向かい合う両方の側面11の少なくとも一部に、それぞれ平坦面12が形成されている。図2では、向かい合う側面11の全体に、それぞれ平坦面12が形成されている。 Here, in the embodiment, the flat surface 12 is formed on at least a part of both the side surfaces 11 facing each other. In FIG. 2, flat surfaces 12 are formed on the entire side surfaces 11 facing each other.
 そして、分割部40で向かい合う平坦面12同士の間隔は、基材20に最も近い部分の間隔Lbより、基材20に最も遠い部分の間隔Ltのほうが大きい。なお、間隔Ltは、平坦面12において基材20から最も遠い上端部12a同士の距離であり、間隔Lbは、平坦面12において基材20から最も近い下端部12b同士の距離である。換言すると、分割部40において、平坦面12同士で形成される間隙は、上方に向かって末広がり状に開いている。 And the space | interval Lt of the part furthest to the base material 20 is larger than the space | interval Lb of the part nearest to the base material 20 between the flat surfaces 12 which face in the division part 40. The interval Lt is the distance between the upper end portions 12 a farthest from the base material 20 on the flat surface 12, and the interval Lb is the distance between the lower end portions 12 b closest to the base material 20 on the flat surface 12. In other words, in the dividing portion 40, the gap formed between the flat surfaces 12 is widened toward the top.
 これにより、上方から視認する際に、側面11(平坦面12)の視認を容易にすることができる。したがって、実施形態によれば、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態を容易に確認することができる。 Thereby, when visually recognizing from above, the side surface 11 (flat surface 12) can be easily visually recognized. Therefore, according to the embodiment, it is possible to easily confirm the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing at the dividing portion 40.
 実施形態では、さらに、平坦面12の表面粗さRaが0.3μm以下である。なお、かかる表面粗さは算術平均粗さRaであり、以下の記載も同様である。このように、平坦面12を、表面粗さRaが0.3μm以下に加工することにより、平坦面12に付着した接合材30を容易に除去することができる。 In the embodiment, the surface roughness Ra of the flat surface 12 is 0.3 μm or less. In addition, this surface roughness is arithmetic mean roughness Ra, and the following description is also the same. Thus, the bonding material 30 attached to the flat surface 12 can be easily removed by processing the flat surface 12 to have a surface roughness Ra of 0.3 μm or less.
 なぜなら、平坦面12の表面粗さRaを0.3μm以下にすることにより、平坦面12表面での投錨効果(アンカー効果)を低減させることができ、平坦面12に対する接合材30の付着力を低減させることができるからである。 This is because by setting the surface roughness Ra of the flat surface 12 to 0.3 μm or less, the anchoring effect (anchor effect) on the surface of the flat surface 12 can be reduced, and the adhesive force of the bonding material 30 to the flat surface 12 can be reduced. This is because it can be reduced.
 すなわち、実施形態では、基材20に最も近い部分の間隔Lbより基材20に最も遠い部分の間隔Ltのほうを大きくするとともに、平坦面12の表面粗さRaを0.3μm以下にすることにより、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態を容易に確認することができ、かつ分割部40で向かい合うターゲット材10の側面11に付着している接合材30を容易に除去することができる。したがって、実施形態による分割スパッタリングターゲット1を用いれば、スパッタリング成膜を長期間安定して実施することができる。 That is, in the embodiment, the distance Lt of the portion farthest from the base material 20 is made larger than the distance Lb of the portion closest to the base material 20, and the surface roughness Ra of the flat surface 12 is made 0.3 μm or less. Thus, it is possible to easily confirm the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing at the dividing portion 40, and the bonding material 30 attached to the side surface 11 of the target material 10 facing at the dividing portion 40. It can be easily removed. Therefore, if the split sputtering target 1 according to the embodiment is used, sputtering film formation can be stably performed for a long period of time.
 なお、分割部40において、基材20に最も遠い部分の間隔Ltと、基材20に最も近い部分の間隔Lbとの差は、0.1mm以上であることが好ましい。これにより、平坦面12同士で形成される間隙は、上方に向かってさらに末広がり状になることから、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態をさらに容易に確認することができる。 In the dividing portion 40, the difference between the distance Lt of the portion farthest from the base material 20 and the distance Lb of the portion closest to the base material 20 is preferably 0.1 mm or more. As a result, the gap formed between the flat surfaces 12 is further diverging upward, so that the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing each other at the dividing portion 40 can be more easily confirmed. be able to.
 なお、基材20に最も遠い部分の間隔Ltと、基材20に最も近い部分の間隔Lbとの差は、0.2mm以上であればより好ましく、0.3mm以上であればさらに好ましい。 It should be noted that the difference between the distance Lt of the portion farthest from the base material 20 and the distance Lb of the portion closest to the base material 20 is more preferably 0.2 mm or more, and further preferably 0.3 mm or more.
 さらに、分割部40において、基材20に最も遠い部分の間隔Ltは、0.2mm以上0.7mm以下であるとよく、0.3mm以上0.6mm以下であるとさらによい。また、基材20に最も近い部分の間隔Lbは、0.1mm以上0.5mm以下であるとよく、0.1mm以上0.3mm以下であるとさらによい。 Furthermore, in the division part 40, the space | interval Lt of the part furthest to the base material 20 is good in it being 0.2 mm or more and 0.7 mm or less, and it is further better in it being 0.3 mm or more and 0.6 mm or less. The interval Lb between the portions closest to the base material 20 is preferably 0.1 mm or more and 0.5 mm or less, and more preferably 0.1 mm or more and 0.3 mm or less.
 間隔Ltおよび間隔Lbを上記の間隔に設定することにより、上方からの側面11(平坦面12)の視認性を確保するとともに、分割部40から上方に露出する接合材30の面積を低減させることができる。したがって、実施形態によれば、分割スパッタリングターゲット1をスパッタリング成膜する際に、分割部40から露出する接合材30が不純物となることを抑制することができる。 By setting the interval Lt and the interval Lb to the above-mentioned intervals, the visibility of the side surface 11 (flat surface 12) from above is ensured, and the area of the bonding material 30 exposed upward from the divided portion 40 is reduced. Can do. Therefore, according to the embodiment, when the split sputtering target 1 is formed by sputtering, the bonding material 30 exposed from the split portion 40 can be suppressed from becoming an impurity.
 また、実施形態では、平坦面12を、表面粗さRaが0.3μm以下に加工することにより、上述のように平坦面12での投錨効果を低減させることができることから、平坦面12に接合材30が付着することを抑制することができる。 In the embodiment, since the flat surface 12 is processed to have a surface roughness Ra of 0.3 μm or less, the anchoring effect on the flat surface 12 can be reduced as described above. It can suppress that material 30 adheres.
 これにより、スパッタリング成膜の際に側面11(平坦面12)に付着した接合材30に起因するメタルパーティクルの発生を抑制することができる。したがって、実施形態によれば、分割スパッタリングターゲット1によるスパッタリング成膜を安定して実施することができる。 Thereby, generation of metal particles due to the bonding material 30 attached to the side surface 11 (flat surface 12) during sputtering film formation can be suppressed. Therefore, according to the embodiment, it is possible to stably perform the sputtering film formation using the divided sputtering target 1.
 なお、平坦面12の表面粗さRaは、0.1μm以下であるとなおよく、0.001μm以上0.05μm以下であるとさらによい。このように、平坦面12の表面粗さRaをより小さくすることにより、平坦面12に接合材30が付着することをさらに抑制することができる。また、表面粗さRaを0.001μm以上に設定することにより、加工コストの上昇を抑制することができることから、分割スパッタリングターゲット1の製造コストの上昇を抑制することができる。 Note that the surface roughness Ra of the flat surface 12 is preferably 0.1 μm or less, and more preferably 0.001 μm or more and 0.05 μm or less. Thus, by making the surface roughness Ra of the flat surface 12 smaller, it is possible to further suppress the bonding material 30 from adhering to the flat surface 12. Moreover, since the raise of processing cost can be suppressed by setting surface roughness Ra to 0.001 micrometer or more, the raise of the manufacturing cost of the division | segmentation sputtering target 1 can be suppressed.
 また、実施形態では、図2に示すように、側面11を断面視した場合、平坦面12と、基材20に接合されるターゲット材10の接合面13とのなす角度θが90°より小さいとよい。すなわち、向かい合う両方の平坦面12を、それぞれ上方から視認可能な向きに傾斜させるとよい。 In the embodiment, as shown in FIG. 2, when the side surface 11 is viewed in cross section, the angle θ formed by the flat surface 12 and the bonding surface 13 of the target material 10 bonded to the base material 20 is smaller than 90 °. Good. That is, both the flat surfaces 12 facing each other may be inclined in a direction that can be visually recognized from above.
 これにより、平坦面12の上端部12aに形成される角部を鈍角にすることができる。したがって、実施形態によれば、上端部12aに形成される角部を割れにくくすることができることから、分割スパッタリングターゲット1の信頼性を向上させることができる。 Thereby, the corner portion formed at the upper end portion 12a of the flat surface 12 can be made an obtuse angle. Therefore, according to the embodiment, the corner portion formed on the upper end portion 12a can be made difficult to break, so that the reliability of the split sputtering target 1 can be improved.
 また、平坦面12の上端部12aに形成される角部を鈍角にすることにより、スパッタリング成膜の際に、かかる角部から発生するアーキング現象を抑制することができる。なぜなら、かかるアーキング現象は、スパッタリング成膜の際、ターゲット材10の角部で電荷が集中することにより発生するが、かかる角部を鈍角にすることにより、電荷の集中を抑制することができるからである。したがって、実施形態によれば、分割スパッタリングターゲット1によるスパッタリング成膜を安定して実施することができる。 Further, by making the corner formed at the upper end portion 12a of the flat surface 12 an obtuse angle, an arcing phenomenon generated from the corner can be suppressed during sputtering film formation. This is because the arcing phenomenon occurs due to the concentration of charges at the corners of the target material 10 during sputtering film formation, but the concentration of charges can be suppressed by making the corners obtuse. It is. Therefore, according to the embodiment, it is possible to stably perform the sputtering film formation using the divided sputtering target 1.
 なお、向かい合う両方の平坦面12において、一方の平坦面12における角度θと、他方の平坦面12における角度θとは、同じ角度でもよいし異なる角度でもよい。 In both of the flat surfaces 12 facing each other, the angle θ on one flat surface 12 and the angle θ on the other flat surface 12 may be the same angle or different angles.
 さらに、必ずしも向かい合う両方の平坦面12をどちらも傾斜させる必要はない。たとえば、図3に示すように、一方(図3における左側)の平坦面12のみを傾斜させるとともに、他方(図3における右側)の平坦面12を接合面13から略垂直に立ち上がるように形成してもよい。図3は、実施形態の変形例1に係る分割部40の断面形状を示す拡大断面図である。 Furthermore, it is not always necessary to incline both the flat surfaces 12 facing each other. For example, as shown in FIG. 3, only one (left side in FIG. 3) flat surface 12 is inclined, and the other (right side in FIG. 3) flat surface 12 is formed to rise substantially vertically from the joint surface 13. May be. FIG. 3 is an enlarged cross-sectional view illustrating a cross-sectional shape of the division portion 40 according to Modification 1 of the embodiment.
 図3に示すような断面形状に分割部40を構成した場合でも、平坦面12同士により形成される間隙は斜め上に向かって末広がり状に形成されていることから、実施形態と同様、側面11(平坦面12)の視認を容易にすることができる。 Even when the dividing portion 40 is configured in a cross-sectional shape as shown in FIG. 3, the gap formed by the flat surfaces 12 is formed in a diverging shape obliquely upward, so that the side surface 11 is the same as in the embodiment. The visual recognition of (flat surface 12) can be facilitated.
 図4は、実施形態の変形例2に係る分割部40の断面形状を示す拡大断面図である。かかる変形例2では、平坦面12と接合面13との間の側面11に、接合面13から垂直に立ち上がる垂直面14が形成されている。すなわち、変形例2では、側面11が上側の平坦面12と下側の垂直面14とを有し、かかる平坦面12と垂直面14との間に、平坦面12の下端部12bが配置されている。 FIG. 4 is an enlarged cross-sectional view showing a cross-sectional shape of the dividing portion 40 according to Modification 2 of the embodiment. In the second modification, a vertical surface 14 that rises perpendicularly from the joint surface 13 is formed on the side surface 11 between the flat surface 12 and the joint surface 13. That is, in Modification 2, the side surface 11 has an upper flat surface 12 and a lower vertical surface 14, and the lower end portion 12 b of the flat surface 12 is disposed between the flat surface 12 and the vertical surface 14. ing.
 かかる変形例2でも、平坦面12の下端部12b同士の間隔Lbより上端部12a同士の間隔Ltのほうを大きくすることによって、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態を容易に確認することができる。 Also in the second modification, the bonding material 30 adheres to the side surface 11 of the target material 10 facing at the divided portion 40 by increasing the distance Lt between the upper end portions 12a to the distance Lb between the lower end portions 12b of the flat surface 12. The state can be easily confirmed.
 さらに、変形例2では、ターゲット材10の厚みTaに対する垂直面14の高さTpの比率を0.2以下にするとよい。これにより、平坦面12同士で形成される末広がり状の間隙の大きさを、垂直面14が視認できる程度に十分に確保することができる。 Furthermore, in Modification 2, the ratio of the height Tp of the vertical surface 14 to the thickness Ta of the target material 10 is preferably 0.2 or less. Thereby, the size of the divergent gap formed between the flat surfaces 12 can be sufficiently ensured so that the vertical surface 14 can be visually recognized.
 なお、変形例2において、垂直面14と接合面13とは必ずしも垂直である必要はなく、垂直面14と接合面13とのなす角度が90°±3°の範囲内であればよい。 In the second modification, the vertical surface 14 and the bonding surface 13 do not necessarily have to be vertical, and the angle between the vertical surface 14 and the bonding surface 13 may be in the range of 90 ° ± 3 °.
 図5は、実施形態の変形例3に係る分割部40の断面形状を示す拡大断面図である。かかる変形例3では、平坦面12とスパッタ面15との間の側面11に、面取り部16が形成されている。すなわち、変形例3では、側面11が下側の平坦面12と上側の面取り部16とを有し、かかる平坦面12と面取り部16との間に、平坦面12の上端部12aが配置されている。 FIG. 5 is an enlarged cross-sectional view showing a cross-sectional shape of the dividing portion 40 according to Modification 3 of the embodiment. In the third modification, a chamfered portion 16 is formed on the side surface 11 between the flat surface 12 and the sputtering surface 15. That is, in the third modification, the side surface 11 has the lower flat surface 12 and the upper chamfered portion 16, and the upper end portion 12 a of the flat surface 12 is disposed between the flat surface 12 and the chamfered portion 16. ing.
 かかる変形例3でも、平坦面12の下端部12b同士の間隔Lbより上端部12a同士の間隔Ltのほうを大きくすることによって、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態を容易に確認することができる。 Also in the third modification, the bonding material 30 adheres to the side surface 11 of the target material 10 facing at the divided portion 40 by increasing the distance Lt between the upper end portions 12a to the distance Lb between the lower end portions 12b of the flat surface 12. The state can be easily confirmed.
 さらに、変形例3では、平坦面12の上側に面取り部16を形成することにより、平坦面12の上端部12aに形成される角部をさらに鈍角にすることができる。したがって、変形例3によれば、上端部12aに形成される角部をさらに割れにくくすることができる。また、スパッタリング成膜の際に、かかる角部から発生するアーキング現象をさらに抑制することができる。 Furthermore, in Modification 3, by forming the chamfered portion 16 on the upper side of the flat surface 12, the corner portion formed on the upper end portion 12a of the flat surface 12 can be made more obtuse. Therefore, according to the modification 3, the corner | angular part formed in the upper end part 12a can be made hard to break further. Moreover, the arcing phenomenon which generate | occur | produces from this corner | angular part in sputtering film-forming can be suppressed further.
 なお、変形例2に示した垂直面14と、変形例3に示した面取り部16とをどちらもターゲット材10の側面11に形成してもよい。すなわち、側面11を上から順に面取り部16、平坦面12、垂直面14となるように形成してもよい。なお、この場合、面取り部16と平坦面12との間に平坦面12の上端部12aが配置され、垂直面14と平坦面12との間に平坦面12の下端部12bが配置される。 Note that both the vertical surface 14 shown in Modification 2 and the chamfered portion 16 shown in Modification 3 may be formed on the side surface 11 of the target material 10. That is, the side surface 11 may be formed so as to be a chamfered portion 16, a flat surface 12, and a vertical surface 14 in order from the top. In this case, the upper end portion 12 a of the flat surface 12 is disposed between the chamfered portion 16 and the flat surface 12, and the lower end portion 12 b of the flat surface 12 is disposed between the vertical surface 14 and the flat surface 12.
 ここまで説明した実施形態および変形例では、ターゲット材10に形成される分割部40の少なくとも一部に、上述の平坦面12を形成するとよい。これにより、かかる平坦面12を形成した分割部40において、側面11に対する接合材30の付着状態を容易に確認することができる。 In the embodiment and the modification described so far, the above-described flat surface 12 may be formed on at least a part of the divided portion 40 formed on the target material 10. Thereby, in the division part 40 which formed this flat surface 12, the adhesion state of the bonding | jointing material 30 with respect to the side surface 11 can be confirmed easily.
 また、ターゲット材10に形成される分割部40のすべてに、上述の平坦面12を形成するとさらによい。これにより、ターゲット材10の分割部40すべてにおいて、側面11に対する接合材30の付着状態を容易に確認することができ、かつ分割部40すべてにおいて、側面11に付着している接合材30を容易に除去することができる。 Further, it is further preferable that the above-described flat surface 12 is formed on all of the divided portions 40 formed on the target material 10. Thereby, in all the division | segmentation parts 40 of the target material 10, the adhesion state of the joining material 30 with respect to the side surface 11 can be confirmed easily, and the joining material 30 adhering to the side surface 11 is easy in all the division | segmentation parts 40. Can be removed.
 さらに、ターゲット材10に形成される分割部40で向かい合う平坦面12のすべてを、それぞれ上方から視認可能な向きに傾斜させるとよい。これにより、すべての平坦面12の上端部12aに形成される角部を鈍角にすることができ、ターゲット材10の分割部40すべてにおいて、上端部12aに形成される角部を割れにくくすることができることから、分割スパッタリングターゲット1の信頼性をさらに向上させることができる。 Furthermore, it is preferable to incline all the flat surfaces 12 facing each other at the dividing portion 40 formed in the target material 10 in a direction that can be visually recognized from above. Thereby, the corner part formed in the upper end part 12a of all the flat surfaces 12 can be made into an obtuse angle, and it makes it difficult to break the corner part formed in the upper end part 12a in all the division parts 40 of the target material 10. Therefore, the reliability of the split sputtering target 1 can be further improved.
 また、スパッタリング成膜の際のアーキング現象をさらに抑制することができることから、分割スパッタリングターゲット1によるスパッタリング成膜をさらに安定して実施することができる。 In addition, since the arcing phenomenon at the time of sputtering film formation can be further suppressed, sputtering film formation by the split sputtering target 1 can be performed more stably.
[実施例1]
 BET(Brunauer-Emmett-Teller)法により測定された比表面積(BET比表面積)が5m/gのSnO粉末10質量%と、BET比表面積が5m/gのIn粉末90質量%とを配合し、ポット中でジルコニアボールによりボールミル混合して、原料粉末を調製した。
[Example 1]
10 mass% of SnO 2 powder having a specific surface area (BET specific surface area) of 5 m 2 / g measured by BET (Brunauer-Emmett-Teller) method, and 90 mass of In 2 O 3 powder having a BET specific surface area of 5 m 2 / g %, And ball mill mixing with zirconia balls in a pot to prepare a raw material powder.
 このポットに、原料粉末100質量%に対して0.3質量%のアクリルエマルジョンバインダーと、0.5質量%のポリカルボン酸アンモニウムと、20質量%の水とをそれぞれ加え、ボールミル混合してスラリーを調製した。次に、調製されたスラリーを、フィルターを挟んだ金属製の型に流し込み、排水して成形体を得た。 In this pot, 0.3% by mass of acrylic emulsion binder, 0.5% by mass of ammonium polycarboxylate, and 20% by mass of water are added to 100% by mass of the raw material powder, respectively, and mixed by ball mill to prepare a slurry. Was prepared. Next, the prepared slurry was poured into a metal mold sandwiching a filter and drained to obtain a molded body.
 この成形体を常温からの昇温速度300℃/hで1600℃まで加熱し、12時間保持した後、降温速度50℃/hで冷却することで成形体の焼成を行い、焼成体を作製した。さらに、かかる焼成体を所定のサイズに切断した。 The molded body was heated to 1600 ° C. at a temperature rising rate of 300 ° C./h from room temperature, held for 12 hours, and then cooled at a temperature lowering rate of 50 ° C./h to sinter the molded body to produce a fired body. . Further, the fired body was cut into a predetermined size.
 得られた焼成体を研削加工し、厚さ8mmのITOターゲット材10を2枚得た。両ターゲット材10の側面を切断し、θ=89.6°の傾斜を持つ側面11を設けた。次に、両ターゲット材10の側面11を三井研削砥石株式会社製の#1000の砥石で研削し、さらに株式会社ノリタケカンパニーリミテッド製ダイヤモンド研磨パッド#5000で表面粗さRaが0.02μm以下になるように研磨して、平坦面12を形成した。表面粗さRaは株式会社ミツトヨ製表面粗さ測定機を使用して測定した。 The obtained fired body was ground to obtain two ITO target materials 10 each having a thickness of 8 mm. Side surfaces of both target materials 10 were cut to provide side surfaces 11 having an inclination of θ = 89.6 °. Next, the side surfaces 11 of both target materials 10 are ground with a # 1000 grindstone manufactured by Mitsui Grinding Wheel Co., Ltd., and the surface roughness Ra is 0.02 μm or less with a diamond polishing pad # 5000 manufactured by Noritake Co., Ltd. Thus, the flat surface 12 was formed. The surface roughness Ra was measured using a surface roughness measuring machine manufactured by Mitutoyo Corporation.
 次に、得られた2枚のターゲット材10を、銅製の基材20に並べて接合し、分割スパッタリングターゲット1を得た。なお、かかる接合材30にはインジウムを用い、基材20に最も遠い部分の間隔Ltが0.2mmとなり、基材20に最も近い部分の間隔Lbが0.1mmとなるように(すなわち、Lt-Lb=0.1mm)基材20上に並べて配置した。 Next, the obtained two target materials 10 were arranged side by side on a copper base material 20 and joined to obtain a divided sputtering target 1. Note that indium is used for the bonding material 30 so that the distance Lt between the portions farthest from the base material 20 is 0.2 mm and the distance Lb between the portions closest to the base material 20 is 0.1 mm (that is, Lt -Lb = 0.1 mm) were arranged side by side on the substrate 20.
[実施例2~33]
 実施例1と同様な方法によりITOターゲット材10を2枚得た。両ターゲット材10の、平坦面12と接合面13との角度θ、および平坦面12の表面粗さRaが表1の数値となるように加工した。さらに、両ターゲット材10を、基材20に最も遠い部分の間隔Ltおよび基材20に最も近い部分の間隔Lb、またLt-Lbが表1の数値となるように基材20上に並べて接合し、分割スパッタリングターゲット1を得た。
[Examples 2 to 33]
Two ITO target materials 10 were obtained by the same method as in Example 1. Both target materials 10 were processed so that the angle θ between the flat surface 12 and the bonding surface 13 and the surface roughness Ra of the flat surface 12 were the values shown in Table 1. Further, the two target materials 10 are arranged and joined on the base material 20 so that the distance Lt farthest from the base material 20, the distance Lb of the part closest to the base material 20, and Lt−Lb are the values shown in Table 1. Then, a split sputtering target 1 was obtained.
[比較例1]
 実施例1と同様な方法によりITOターゲット材10を2枚得た。両ターゲット材10の、平坦面12と接合面13との角度θ=90°、および平坦面12の表面粗さRaが0.02μm以下となるように加工した。さらに、両ターゲット材10を、基材20に最も遠い部分の間隔Ltが0.5mmとなり、基材20に最も近い部分の間隔Lbが0.5mmとなるように(すなわち、Lt-Lbはゼロ)基材20上に並べて接合し、分割スパッタリングターゲット1を得た。
[Comparative Example 1]
Two ITO target materials 10 were obtained by the same method as in Example 1. Both target materials 10 were processed so that the angle θ between the flat surface 12 and the bonding surface 13 was 90 °, and the surface roughness Ra of the flat surface 12 was 0.02 μm or less. Further, the distance Lt between the parts farthest from the base material 20 is 0.5 mm and the distance Lb between the parts closest to the base material 20 is 0.5 mm (that is, Lt−Lb is zero). ) Side by side joining on the substrate 20 to obtain a split sputtering target 1.
[比較例2]
 実施例1と同様な方法によりITOターゲット材10を2枚得た。両ターゲット材10の、平坦面12と接合面13との角度θが表1の数値となるように、また平坦面12の表面粗さRaが0.4μmとなるように加工した。さらに、両ターゲット材10を、基材20に最も遠い部分の間隔Ltおよび基材20に最も近い部分の間隔Lb、またLt-Lbが表1の数値となるように基材20上に並べて接合し、分割スパッタリングターゲット1を得た。
[Comparative Example 2]
Two ITO target materials 10 were obtained by the same method as in Example 1. Both target materials 10 were processed so that the angle θ between the flat surface 12 and the bonding surface 13 was the value shown in Table 1, and the surface roughness Ra of the flat surface 12 was 0.4 μm. Further, the two target materials 10 are arranged and joined on the base material 20 so that the distance Lt farthest from the base material 20, the distance Lb of the part closest to the base material 20, and Lt−Lb are the values shown in Table 1. Then, a split sputtering target 1 was obtained.
 つづいて、上記にて得られた実施例1~33および比較例1、2の分割スパッタリングターゲット1における分割部40の視認性を目視にて評価した。評価基準は次の通りである。
 ◎:視認性が非常によい
 ○:視認性がよい
 △:視認性が若干悪い
 ×:視認性が悪い
Subsequently, the visibility of the divided portions 40 in the divided sputtering targets 1 of Examples 1 to 33 and Comparative Examples 1 and 2 obtained above was visually evaluated. The evaluation criteria are as follows.
◎: Very good visibility ○: Good visibility △: Slightly poor visibility ×: Poor visibility
 つづいて、実施例1~33および比較例1、2の分割スパッタリングターゲット1に対して、分割部40の側面11に付着したインジウムの除去作業を行った。かかる除去作業は、分割部40を目視にて確認しながら、インジウムが付着したと確認された箇所に対して金属製のヘラを用いて行った。 Subsequently, the indium adhering to the side surface 11 of the divided portion 40 was removed from the divided sputtering targets 1 of Examples 1 to 33 and Comparative Examples 1 and 2. Such a removal operation was performed using a metal spatula on a portion where it was confirmed that indium was adhered while visually confirming the divided portion 40.
 つづいて、実施例1~33および比較例1、2の分割スパッタリングターゲット1から、2枚のターゲット材10をはぎ取って、側面11に対してインジウムがどの程度付着しているかを目視にて評価した。評価基準は次の通りである。
 ◎:In付着なし
 ○:わずかにIn付着あり
 △:少量のIn付着あり
 ×:多量のIn付着あり
Subsequently, two target materials 10 were peeled off from the split sputtering targets 1 of Examples 1 to 33 and Comparative Examples 1 and 2, and the degree of indium adhering to the side surface 11 was visually evaluated. . The evaluation criteria are as follows.
◎: No In adhesion ○: Slight In adhesion △: Small amount of In adhesion ×: Large amount of In adhesion
 上述の実施例1~33および比較例1、2における、ターゲット材10の厚みTaと、基材20に最も遠い部分の間隔Ltと、基材20に最も近い部分の間隔Lbと、Lt-Lbと、ターゲット1およびターゲット2における平坦面12と接合面13との角度θと、分割部40に対する視認性の評価結果と、側面11に対するインジウムの付着量の評価結果とを表1に示す。 In the above-described Examples 1 to 33 and Comparative Examples 1 and 2, the thickness Ta of the target material 10, the distance Lt of the part farthest from the base material 20, the distance Lb of the part closest to the base material 20, and Lt−Lb Table 1 shows the angle θ between the flat surface 12 and the bonding surface 13 of the target 1 and the target 2, the evaluation result of the visibility with respect to the divided portion 40, and the evaluation result of the amount of indium attached to the side surface 11.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 分割部40において間隔Lbと間隔Ltとが同じである比較例1と、分割部40において間隔Lbより間隔Ltのほうが大きい実施例1~33との比較より、間隔Lbより間隔Ltのほうを大きくすることによって分割部40の視認性を向上させることができる。 Compared with Comparative Example 1 in which the interval Lb and the interval Lt are the same in the dividing unit 40 and Examples 1 to 33 in which the interval Lt is larger than the interval Lb in the dividing unit 40, the interval Lt is larger than the interval Lb. By doing so, the visibility of the division part 40 can be improved.
 また、平坦面12の表面粗さRaが0.3μmより大きい比較例2と、平坦面12の表面粗さRaが0.3μm以下である実施例1~33との比較より、平坦面12の表面粗さRaを0.3μm以下にすることによって、分割部40で向かい合うターゲット材10の側面11に付着している接合材30(インジウム)を容易に除去することができる。 Further, a comparison between Comparative Example 2 in which the surface roughness Ra of the flat surface 12 is greater than 0.3 μm and Examples 1 to 33 in which the surface roughness Ra of the flat surface 12 is 0.3 μm or less indicates that the flat surface 12 By setting the surface roughness Ra to 0.3 μm or less, it is possible to easily remove the bonding material 30 (indium) adhering to the side surface 11 of the target material 10 facing at the dividing portion 40.
 なお、比較例1は、平坦面12の表面粗さRaは0.3μm以下であったが、分割部40の視認性が悪いことから、側面11に付着した接合材30(インジウム)を確認することが困難であった。これにより、接合材30を容易に除去することができず、側面11に多量の接合材30が付着していた。 In Comparative Example 1, the surface roughness Ra of the flat surface 12 was 0.3 μm or less. However, since the visibility of the divided portion 40 is poor, the bonding material 30 (indium) attached to the side surface 11 is confirmed. It was difficult. As a result, the bonding material 30 could not be easily removed, and a large amount of the bonding material 30 adhered to the side surface 11.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、実施形態では平板状の分割スパッタリングターゲットについて記載したが、円筒状の分割スパッタリングターゲットに対して上述の実施形態の技術を適用してもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, A various change is possible unless it deviates from the meaning. For example, although a flat split sputtering target has been described in the embodiment, the technique of the above-described embodiment may be applied to a cylindrical split sputtering target.
 以上のように、実施形態に係る分割スパッタリングターゲット1は、複数のターゲット材10を基材20に接合して形成される分割スパッタリングターゲット1であって、複数のターゲット材10が間隔を空けて配置されることにより形成される分割部40のうち、少なくとも一部の分割部40に配置される一対のターゲット材10の側面11の少なくとも一部にはそれぞれ平坦面12が形成される。そして、分割部40で向かい合う平坦面12同士の間隔は、基材20に最も近い部分の間隔Lbより基材20に最も遠い部分の間隔Ltのほうが大きく、平坦面12の表面粗さRaが0.3μm以下である。これにより、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態を容易に確認することができ、かつ分割部40で向かい合うターゲット材10の側面11に付着している接合材30を容易に除去することができる。 As described above, the divided sputtering target 1 according to the embodiment is the divided sputtering target 1 formed by bonding the plurality of target materials 10 to the base material 20, and the plurality of target materials 10 are arranged at intervals. The flat surface 12 is formed in at least one part of the side surface 11 of a pair of target material 10 arrange | positioned at at least one part division part 40 among the division parts 40 formed by being done. And the space | interval Lt of the part furthest to the base material 20 is larger than the space | interval Lb of the part nearest to the base material 20, and the surface roughness Ra of the flat surface 12 is 0 between the flat surfaces 12 which face in the division part 40. .3 μm or less. Thereby, the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing at the dividing portion 40 can be easily confirmed, and the bonding material 30 adhered to the side surface 11 of the target material 10 facing at the dividing portion 40. Can be easily removed.
 また、実施形態に係る分割スパッタリングターゲット1において、平坦面12同士で形成される基材20に最も遠い部分の間隔Ltと、平坦面12同士で形成される基材20に最も近い部分の間隔Lbとの差が0.1mm以上である。これにより、分割部40で向かい合うターゲット材10の側面11に対する接合材30の付着状態をさらに容易に確認することができる。 Further, in the divided sputtering target 1 according to the embodiment, the distance Lt between the portions farthest from the base material 20 formed by the flat surfaces 12 and the distance Lb between the portions closest to the base material 20 formed by the flat surfaces 12. Is 0.1 mm or more. Thereby, the adhesion state of the bonding material 30 to the side surface 11 of the target material 10 facing each other at the dividing portion 40 can be more easily confirmed.
 また、実施形態に係る分割スパッタリングターゲット1において、側面11には、平坦面12と基材20に接合される接合面13との間に、接合面13から略垂直に立ち上がる垂直面14がさらに形成され、ターゲット材10の厚みTaに対する垂直面14の高さTpの比率が0.2以下である。これにより、平坦面12同士で形成される末広がり状の間隙の大きさを、垂直面14が視認できる程度に十分に確保することができる。 In the split sputtering target 1 according to the embodiment, the side surface 11 further includes a vertical surface 14 that rises substantially vertically from the bonding surface 13 between the flat surface 12 and the bonding surface 13 bonded to the base material 20. The ratio of the height Tp of the vertical surface 14 to the thickness Ta of the target material 10 is 0.2 or less. Thereby, the size of the divergent gap formed between the flat surfaces 12 can be sufficiently ensured so that the vertical surface 14 can be visually recognized.
 また、実施形態に係る分割スパッタリングターゲット1において、平坦面12同士で形成される基材20に最も遠い部分の間隔Ltが0.2mm以上0.7mm以下であり、平坦面12同士で形成される基材20に最も近い部分の間隔Lbが0.1mm以上0.5mm以下である。これにより、分割スパッタリングターゲット1をスパッタリング成膜する際に、分割部40から露出する接合材30が不純物となることを抑制することができる。 Moreover, in the divided sputtering target 1 which concerns on embodiment, the space | interval Lt of the part furthest to the base material 20 formed with the flat surfaces 12 is 0.2 mm or more and 0.7 mm or less, and is formed with the flat surfaces 12. The distance Lb between the portions closest to the substrate 20 is 0.1 mm or more and 0.5 mm or less. Thereby, when the split sputtering target 1 is formed by sputtering, the bonding material 30 exposed from the split portion 40 can be suppressed from becoming an impurity.
 また、実施形態に係る分割スパッタリングターゲット1において、平坦面12同士で形成される基材20に最も遠い部分の間隔Ltが0.3mm以上0.6mm以下であり、平坦面12同士で形成される基材20に最も近い部分の間隔Lbが0.1mm以上0.3mm以下である。これにより、分割スパッタリングターゲット1をスパッタリング成膜する際に、分割部40から露出する接合材30が不純物となることをさらに抑制することができる。 Moreover, in the divided sputtering target 1 which concerns on embodiment, the space | interval Lt of the part furthest to the base material 20 formed with the flat surfaces 12 is 0.3 mm or more and 0.6 mm or less, and is formed with the flat surfaces 12. The distance Lb between the portions closest to the substrate 20 is 0.1 mm or more and 0.3 mm or less. Thereby, when the split sputtering target 1 is formed by sputtering, the bonding material 30 exposed from the split portion 40 can be further suppressed from becoming an impurity.
 また、実施形態に係る分割スパッタリングターゲット1において、平坦面12の表面粗さRaが0.1μm以下である。これにより、平坦面12に接合材30が付着することをなお抑制することができる。 Further, in the divided sputtering target 1 according to the embodiment, the surface roughness Ra of the flat surface 12 is 0.1 μm or less. Thereby, it can still suppress that the bonding material 30 adheres to the flat surface 12.
 また、実施形態に係る分割スパッタリングターゲット1において、平坦面12の表面粗さRaが0.001μm以上0.05μm以下である。これにより、平坦面12に接合材30が付着することをさらに抑制することができる。 In the split sputtering target 1 according to the embodiment, the surface roughness Ra of the flat surface 12 is 0.001 μm or more and 0.05 μm or less. Thereby, it can further suppress that the bonding material 30 adheres to the flat surface 12.
 また、実施形態に係る分割スパッタリングターゲット1において、すべての分割部40に配置されるターゲット材10の側面11の少なくとも一部には平坦面12が形成され、すべての分割部40で向かい合う平坦面12同士の間隔は、基材20に最も近い部分の間隔Lbより基材20に最も遠い部分の間隔Ltのほうが大きく、平坦面12の表面粗さRaが0.3μm以下である。これにより、ターゲット材10の分割部40すべてにおいて、側面11に対する接合材30の付着状態を容易に確認することができ、かつターゲット材10の側面11に付着している接合材30を容易に除去することができる。 In the split sputtering target 1 according to the embodiment, the flat surface 12 is formed on at least a part of the side surface 11 of the target material 10 disposed in all the split portions 40, and the flat surfaces 12 facing each other in the split portions 40. The distance Lt between the portions farthest from the substrate 20 is larger than the interval Lb between the portions closest to the substrate 20, and the surface roughness Ra of the flat surface 12 is 0.3 μm or less. Thereby, in all the division parts 40 of the target material 10, the adhesion state of the bonding material 30 to the side surface 11 can be easily confirmed, and the bonding material 30 adhering to the side surface 11 of the target material 10 is easily removed. can do.
 また、実施形態に係る分割スパッタリングターゲット1において、すべての分割部40に配置されるターゲット材10の側面11の少なくとも一部には平坦面12が形成され、すべての分割部40において、平坦面12同士で形成される基材20に最も遠い部分の間隔Ltと、平坦面12同士で形成される基材20に最も近い部分の間隔Lbとの差が0.1mm以上である。これにより、ターゲット材10の分割部40すべてにおいて、ターゲット材10の側面11に対する接合材30の付着状態をさらに容易に確認することができる。 Further, in the divided sputtering target 1 according to the embodiment, the flat surface 12 is formed on at least a part of the side surface 11 of the target material 10 disposed in all the divided portions 40, and the flat surface 12 is formed in all the divided portions 40. The difference between the distance Lt of the portion farthest from the base material 20 formed between the two and the distance Lb of the portion closest to the base material 20 formed of the flat surfaces 12 is 0.1 mm or more. Thereby, in all the division parts 40 of the target material 10, the adhesion state of the joining material 30 with respect to the side surface 11 of the target material 10 can be confirmed further easily.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1   分割スパッタリングターゲット
 10  ターゲット材
 11  側面
 12  平坦面
 12a 上端部
 12b 下端部
 13  接合面
 14  垂直面
 15  スパッタ面
 16  面取り部
 20  基材
 30  接合材
 40  分割部
 Lt、Lb 間隔
 Ta  厚み
 Tp  高さ
1 Split sputtering target 10 Target material 11 Side surface 12 Flat surface 12a Upper end portion 12b Lower end portion 13 Bonding surface 14 Vertical surface 15 Sputtered surface 16 Chamfered portion 20 Base material 30 Bonding material 40 Divided portion Lt, Lb interval Ta thickness Tp Height

Claims (9)

  1.  複数のターゲット材を基材に接合して形成される分割スパッタリングターゲットであって、
     前記複数のターゲット材が間隔を空けて配置されることにより形成される分割部のうち、少なくとも一部の前記分割部に配置される一対の前記ターゲット材の側面の少なくとも一部にはそれぞれ平坦面が形成され、
     前記分割部で向かい合う前記平坦面同士の間隔は、前記基材に最も近い部分の間隔より前記基材に最も遠い部分の間隔のほうが大きく、
     前記平坦面の表面粗さRaが0.3μm以下である
     分割スパッタリングターゲット。
    A split sputtering target formed by bonding a plurality of target materials to a substrate,
    At least part of the side surfaces of the pair of target materials arranged in at least some of the divided parts among the divided parts formed by arranging the plurality of target materials at intervals, are flat surfaces. Formed,
    The interval between the flat surfaces facing each other in the divided portion is larger in the interval of the portion farthest from the substrate than the interval of the portion closest to the substrate.
    A split sputtering target in which the flat surface has a surface roughness Ra of 0.3 μm or less.
  2.  前記平坦面同士で形成される前記基材に最も遠い部分の間隔と、前記平坦面同士で形成される前記基材に最も近い部分の間隔との差が0.1mm以上である
     請求項1に記載の分割スパッタリングターゲット。
    The difference between the interval between the portions farthest from the base material formed by the flat surfaces and the interval between the portions closest to the base material formed by the flat surfaces is 0.1 mm or more. The division | segmentation sputtering target of description.
  3.  前記側面には、前記平坦面と前記基材に接合される接合面との間に、前記接合面から略垂直に立ち上がる垂直面がさらに形成され、
     前記ターゲット材の厚みに対する前記垂直面の高さの比率が0.2以下である
     請求項1または2に記載の分割スパッタリングターゲット。
    On the side surface, a vertical surface that rises substantially vertically from the bonding surface is further formed between the flat surface and the bonding surface bonded to the base material.
    The split sputtering target according to claim 1, wherein a ratio of a height of the vertical surface to a thickness of the target material is 0.2 or less.
  4.  前記平坦面同士で形成される前記基材に最も遠い部分の間隔が0.2mm以上0.7mm以下であり、
     前記平坦面同士で形成される前記基材に最も近い部分の間隔が0.1mm以上0.5mm以下である
     請求項1~3のいずれか一つに記載の分割スパッタリングターゲット。
    The distance of the portion farthest from the substrate formed by the flat surfaces is 0.2 mm or more and 0.7 mm or less,
    The split sputtering target according to any one of claims 1 to 3, wherein an interval between portions that are formed by the flat surfaces and closest to the base material is 0.1 mm or more and 0.5 mm or less.
  5.  前記平坦面同士で形成される前記基材に最も遠い部分の間隔が0.3mm以上0.6mm以下であり、
     前記平坦面同士で形成される前記基材に最も近い部分の間隔が0.1mm以上0.3mm以下である
     請求項1~4のいずれか一つに記載の分割スパッタリングターゲット。
    The distance of the portion farthest from the base material formed between the flat surfaces is 0.3 mm or more and 0.6 mm or less,
    The split sputtering target according to any one of claims 1 to 4, wherein an interval between portions that are formed by the flat surfaces and closest to the base material is 0.1 mm or more and 0.3 mm or less.
  6.  前記平坦面の表面粗さRaが0.1μm以下である
     請求項1~5のいずれか一つに記載の分割スパッタリングターゲット。
    6. The split sputtering target according to claim 1, wherein the flat surface has a surface roughness Ra of 0.1 μm or less.
  7.  前記平坦面の表面粗さRaが0.001μm以上0.05μm以下である
     請求項1~6のいずれか一つに記載の分割スパッタリングターゲット。
    7. The split sputtering target according to claim 1, wherein the flat surface has a surface roughness Ra of 0.001 μm or more and 0.05 μm or less.
  8.  すべての前記分割部に配置される前記ターゲット材の前記側面の少なくとも一部には前記平坦面が形成され、
     すべての前記分割部で向かい合う前記平坦面同士の間隔は、前記基材に最も近い部分の間隔より前記基材に最も遠い部分の間隔のほうが大きく、
     前記平坦面の表面粗さRaが0.3μm以下である
     請求項1~7のいずれか一つに記載の分割スパッタリングターゲット。
    The flat surface is formed on at least a part of the side surfaces of the target material arranged in all the divided portions,
    The interval between the flat surfaces facing each other in all the divided portions is larger in the interval of the portion farthest from the substrate than the interval of the portion closest to the substrate.
    The split sputtering target according to claim 1, wherein the flat surface has a surface roughness Ra of 0.3 μm or less.
  9.  すべての前記分割部に配置される前記ターゲット材の前記側面の少なくとも一部には前記平坦面が形成され、
     すべての前記分割部において、前記平坦面同士で形成される前記基材に最も遠い部分の間隔と、前記平坦面同士で形成される前記基材に最も近い部分の間隔との差が0.1mm以上である
     請求項1~8のいずれか一つに記載の分割スパッタリングターゲット。
    The flat surface is formed on at least a part of the side surfaces of the target material arranged in all the divided portions,
    In all the divided portions, the difference between the distance between the portions farthest from the base material formed by the flat surfaces and the distance between the portions closest to the base material formed by the flat surfaces is 0.1 mm. The split sputtering target according to any one of claims 1 to 8.
PCT/JP2017/038946 2017-03-31 2017-10-27 Segmented sputtering target WO2018179553A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019508538A JP6960989B2 (en) 2017-03-31 2017-10-27 Split sputtering target
KR1020197027915A KR102402982B1 (en) 2017-03-31 2017-10-27 split sputtering target
CN201780088428.8A CN110431252A (en) 2017-03-31 2017-10-27 Divide sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072070 2017-03-31
JP2017-072070 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018179553A1 true WO2018179553A1 (en) 2018-10-04

Family

ID=63674634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038946 WO2018179553A1 (en) 2017-03-31 2017-10-27 Segmented sputtering target

Country Status (5)

Country Link
JP (1) JP6960989B2 (en)
KR (1) KR102402982B1 (en)
CN (1) CN110431252A (en)
TW (1) TWI745483B (en)
WO (1) WO2018179553A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144052A (en) * 1994-11-22 1996-06-04 Tosoh Corp Ito sputtering target
JP2000345326A (en) * 1999-06-01 2000-12-12 Tosoh Corp Divided ito sputtering target
WO2012144107A1 (en) * 2011-04-18 2012-10-26 Jx日鉱日石金属株式会社 Sputtering target
WO2016002633A1 (en) * 2014-07-03 2016-01-07 住友金属鉱山株式会社 Target material for sputtering and method for manufacturing same
JP2016148093A (en) * 2015-02-13 2016-08-18 Jx金属株式会社 Sputtering target and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694104B2 (en) 2003-04-18 2011-06-08 大日本印刷株式会社 Sputtering target
JP5228245B2 (en) * 2007-08-31 2013-07-03 株式会社三井金属韓国 Sputtering target
JP2009127125A (en) * 2007-11-28 2009-06-11 Mitsui Mining & Smelting Co Ltd Sputtering target material and sputtering target obtained therefrom
WO2012063525A1 (en) * 2010-11-08 2012-05-18 三井金属鉱業株式会社 Divided sputtering target and method for producing same
JP4961514B1 (en) * 2010-11-08 2012-06-27 三井金属鉱業株式会社 Split sputtering target and manufacturing method thereof
TW201249600A (en) * 2011-06-08 2012-12-16 Thintech Materials Technology Co Ltd Processing method for silicon target surface
CN105908137B (en) * 2015-02-24 2020-12-15 Jx金属株式会社 Sputtering target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144052A (en) * 1994-11-22 1996-06-04 Tosoh Corp Ito sputtering target
JP2000345326A (en) * 1999-06-01 2000-12-12 Tosoh Corp Divided ito sputtering target
WO2012144107A1 (en) * 2011-04-18 2012-10-26 Jx日鉱日石金属株式会社 Sputtering target
WO2016002633A1 (en) * 2014-07-03 2016-01-07 住友金属鉱山株式会社 Target material for sputtering and method for manufacturing same
JP2016148093A (en) * 2015-02-13 2016-08-18 Jx金属株式会社 Sputtering target and method for manufacturing the same

Also Published As

Publication number Publication date
TWI745483B (en) 2021-11-11
TW201837212A (en) 2018-10-16
JPWO2018179553A1 (en) 2020-02-13
CN110431252A (en) 2019-11-08
KR102402982B1 (en) 2022-05-27
KR20190131038A (en) 2019-11-25
JP6960989B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US9969054B2 (en) Grinding tool and method of manufacturing the same
CN102802817B (en) Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
KR101343703B1 (en) Diamond cutting member and method of making the same
TWI383060B (en) Sputtering target
TW200808670A (en) Cutter wheel for cutting glass
JP2010097217A (en) Three-dimensional electronic device
WO2018179553A1 (en) Segmented sputtering target
JP2012071374A (en) Cutting blade and method for manufacturing multilayer ceramic electronic component
JP3076311B2 (en) Oxide sintered body sputtering target assembly
CN108611608A (en) Target material assembly and processing method
JP6110224B2 (en) Target assembly and manufacturing method thereof
JP7311290B2 (en) Segmented sputtering target and manufacturing method thereof
TWI653209B (en) Target, method for producing target and planar target
TW202123410A (en) Metallic plate, metal-resin composite, semiconductor device, and metallic plate production method
JPS63143258A (en) Sputtering target
CN210974858U (en) Bottom plate easy for separating sputtered material
JP6385901B2 (en) Chamfering wheel and chamfering method using the same
EP2696382B1 (en) Laminated piezoelectric body
KR100492640B1 (en) Sputtering target and method of producing the same
JP4242168B2 (en) Square punch and manufacturing method thereof
JP5841823B2 (en) Target assembly and sputtering target
CN207918445U (en) A kind of combination silicon core, combination silicon core unit body and reduction furnace
KR20140138021A (en) Cutter wheel and method of manufacturing the same
WO2021024896A1 (en) Divided sputtering target
TWM286541U (en) Assembled composite circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027915

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903123

Country of ref document: EP

Kind code of ref document: A1