WO2018179051A1 - 熱分解装置 - Google Patents

熱分解装置 Download PDF

Info

Publication number
WO2018179051A1
WO2018179051A1 PCT/JP2017/012388 JP2017012388W WO2018179051A1 WO 2018179051 A1 WO2018179051 A1 WO 2018179051A1 JP 2017012388 W JP2017012388 W JP 2017012388W WO 2018179051 A1 WO2018179051 A1 WO 2018179051A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal decomposition
drying
water
exhaust
shelves
Prior art date
Application number
PCT/JP2017/012388
Other languages
English (en)
French (fr)
Inventor
中 西村
利光 加来野
文仁 廣
Original Assignee
株式会社加来野製作所
合同会社Task Force Japan
中 西村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社加来野製作所, 合同会社Task Force Japan, 中 西村 filed Critical 株式会社加来野製作所
Priority to PCT/JP2017/012388 priority Critical patent/WO2018179051A1/ja
Publication of WO2018179051A1 publication Critical patent/WO2018179051A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Definitions

  • the present invention relates to a thermal decomposition apparatus for thermally decomposing an object to be treated such as organic waste such as garbage, waste wood and waste plastic.
  • Patent Document 1 discloses a ceramic ash manufacturing apparatus that heats an object to be processed such as waste wood and waste plastic into ceramic ash.
  • the ceramic ash manufacturing apparatus 100 includes a cylindrical heating furnace 119 having a heat insulating structure, and a lid 120 disposed on the heating furnace 119 via a first opening / closing door 112. And a drying chamber 121.
  • the heating furnace 119 has an inlet 113 for receiving an object to be processed in the ceiling 111, and an inlet 115, 115 a for taking in air that has passed a magnetic field in the side wall 114 below the central position in the height direction.
  • the side wall 114 between the ports 115 and 115a is provided with an exhaust port 116, and the lower portion is provided with an exhaust port 118 for discharging the ceramic ash of the heat-treated object.
  • a plurality of cone members 122 having an opening in the center and a reduced diameter side directed downward are provided in the center portion in the heating furnace 119 with a gap in the vertical direction through the support member 123, and the side wall 114.
  • the inner peripheral surface is disposed with a gap and guides the workpiece to the center in the heating furnace 119.
  • the air intakes 115 and 115a are respectively disposed at a distance from the side wall 114 in the horizontal oblique direction, and a swirling flow of air that has passed a magnetic field between the workpiece in the heating furnace 119 and the side wall 114 is provided.
  • the air to be processed is supplied and air that has passed the magnetic field is supplied to the object to be processed, and the object to be processed is heated.
  • the object to be processed put into the heating furnace 119 through the first opening / closing door 112 of the drying chamber 121 is arranged in the heating furnace 119 with a gap in the vertical direction.
  • the swirling flow of air that is guided by the plurality of cone members 122 and passes through the magnetic field generated between the object to be processed and the side wall 114 of the heating furnace 119 passes through the gap between the upper and lower cone members 122, While flowing along the surface layer portion of the workpiece to be guided, a part can also enter the inside of the workpiece to be guided from the opening of the cone member 122 disposed above the gap, The guided workpiece can be heat-treated uniformly and efficiently.
  • the object to be processed that has been dried in advance is placed in the drying chamber 121.
  • the heat treatment of the object to be processed it occurs when the object to be processed is heated in the heating furnace 119.
  • it is put in the chamber 121 it is possible to simultaneously dry the workpiece in the drying chamber 121 while performing the heat treatment of the workpiece in the heating furnace 119.
  • the workpiece can be heat-treated. Since the heat treatment is performed while drying the object, the heat treatment requires a lot of time. Therefore, when starting the heat treatment of the workpieces, it is preferable to dry the workpieces in advance, but it takes time and effort to dry all the workpieces in advance. Is bad.
  • an object of the present invention is to provide a thermal decomposition apparatus that does not require drying of an object to be processed in advance and can efficiently perform thermal decomposition.
  • the thermal decomposition apparatus of the present invention has a drying unit that dries the object to be processed in the upper part, and a thermal decomposition part that decomposes the object to be processed that has been dried in the drying part in the lower part. And a plurality of shelves that are disposed in the drying unit at intervals in the vertical direction, and are formed radially from the center of each shelf to the outside. A plurality of shelves having a plurality of gaps, and a plurality of shelves that drop on the plurality of shelves from the plurality of radially formed gaps by rotating around the center of the plurality of shelves at the top of each of the plurality of shelves. And a first arm group consisting of arms.
  • the processing object when the processing object is dried in the drying unit by the heat rising from the thermal decomposition unit, the processing object is disposed in the drying unit at a plurality of intervals in the vertical direction.
  • Each of the shelves is rotated by the first arm group on the shelves and falls from a plurality of gaps formed radially on each shelf while being sequentially dried on the shelves.
  • a to-be-processed object is efficiently dried in a drying part in a short time.
  • the to-be-processed object dried in the drying part is thermally decomposed continuously in the lower thermal decomposition part.
  • the thermal decomposition apparatus of this invention has a rooster which divides the inside of a thermal decomposition part into an up-down direction, and the 2nd arm group which consists of a several arm each rotated around the center part of a thermal decomposition part up and down the rooster. Is desirable.
  • the dried object to be processed is stirred by the arm at the upper part of the rooster to promote the thermal decomposition process, and the object to be processed that has dropped from the gap of the rooster to the lower part of the rooster is stirred by the arm, and further the thermal decomposition process is further promoted can do.
  • first arm group and the second arm group are fixed around a rotating shaft extending in the vertical direction from the drying section to the thermal decomposition section in the processing furnace and rotate together with the rotating shaft. Accordingly, the first arm group and the second arm group can be caused to function only by rotating the rotating shaft extending in the vertical direction from the drying unit to the thermal decomposition unit in the processing furnace.
  • the thermal decomposition apparatus of the present invention has a fan that stirs the air in each space in the thermal decomposition section divided by the rooster.
  • segmented by the rooster can be stirred, and it becomes possible to further promote the thermal decomposition in the upper and lower portions of the rooster.
  • the processing furnace is provided with an exhaust passage for exhausting the inside of the processing furnace, and the exhaust passage preferably has a water fog treatment section that sprays water on the exhaust.
  • the exhaust passage preferably has a water fog treatment section that sprays water on the exhaust.
  • the water fog treatment unit sprays water from the upper side to the lower side for the flow path that alternately turns the flow direction of the exhaust gas downward and upward, and the flow path that makes the flow direction of the exhaust gas upward,
  • a spray device that sprays water from below to above, and the smoke in the exhaust gas is entangled in the lower part of the flow channel that makes the flow direction of the exhaust gas downward
  • the exhaust flow direction is alternately made downward and upward alternately and repeatedly brought into contact with water fog, and the smoke in the exhaust is entangled with the water flow to further remove soot, harmful components and odorous components contained in the exhaust. can do.
  • an enzyme water mist treatment unit for spraying enzyme water downstream of the water mist treatment unit is provided.
  • the odor is further decomposed by passing through the enzyme water fog to ensure deodorization. It becomes possible.
  • the upper part has a drying part for drying the object to be processed
  • the lower part has a thermal decomposition part for thermally decomposing the object to be processed which has been dried in the drying part.
  • a processing furnace for drying an article and a plurality of shelves arranged at intervals in the vertical direction in the drying unit, and a shelf having a plurality of gaps formed radially outward from the center of each shelf
  • a first arm comprising a plurality of arms for dropping the workpieces on the plurality of shelves from the plurality of radially formed gaps by rotating around the central portions of the plurality of shelves at respective upper portions of the plurality of shelves According to the thermal decomposition apparatus having the group, it is not necessary to dry the object to be processed in advance, and the thermal decomposition process can be efficiently performed.
  • the first arm group and the second arm group are fixed around a rotating shaft extending in the vertical direction from the drying section to the thermal decomposition section in the processing furnace, and rotate together with the rotating shaft.
  • the structure allows the first arm group and the second arm group to function, and enables efficient thermal decomposition treatment.
  • the treatment furnace is provided with an exhaust passage for exhausting the inside of the treatment furnace, and the exhaust passage has a water fog treatment section for spraying water on the exhaust, so that it is sprayed on the exhaust.
  • Smoke and deodorization are performed by the water mist, and the exhaust can be made colorless and odorless.
  • the water fog treatment unit sprays water downward from above to a flow path that alternately turns the flow direction of the exhaust downward and upward, and a flow path that turns the flow direction of the exhaust upward,
  • a spray device that sprays water from below to above, and the smoke in the exhaust gas is entangled in the lower part of the flow channel that makes the flow direction of the exhaust gas downward
  • the enzyme water mist processing unit that sprays the enzyme water downstream from the water mist processing unit, the odor can be further decomposed and deodorized surely.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 2 is a schematic sectional drawing which shows the structure of the smoke removal deodorizing apparatus connected to the exhaust path of the thermal decomposition apparatus of FIG.
  • It is a side view which shows the shape of a fin.
  • It is a figure which shows the cross section of a fin.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a thermal decomposition apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • a thermal decomposition apparatus 1 includes a material tank 2 in which an object to be processed M0 is accommodated, and a processing furnace 3 for processing the object to be processed M0 supplied from the material tank 2.
  • the processing furnace 3 has a cylindrical shape, and a drying unit 3A for drying the processing object M0 (M1) supplied from the material tank 2 is provided at the upper part, and a processing object M1 (M2) dried in the drying part 3A is provided at the lower part. It has a thermal decomposition part 3B for thermal decomposition.
  • a heat insulating material 11 is filled in the wall 10 of the processing furnace 3.
  • the to-be-processed object M0 which the thermal decomposition apparatus 1 in this embodiment processes is organic wastes, such as garbage, waste wood, and a waste plastic.
  • the drying unit 3A has a plurality of shelves 30 arranged in the cylindrical body 12 at intervals in the vertical direction, and dries the workpiece M1 on the shelves 30 by the heat rising from the thermal decomposition unit 3B. is there. In the present embodiment, carbonization is performed in the drying unit 3A, but there are cases where carbonization is not performed.
  • Each shelf 30 is formed by covering the upper surface of the high-temperature heat-resistant stainless steel plate with fire-resistant cement. As shown in FIG. 2, the shelf 30 has a plurality of gaps 30 ⁇ / b> A that are radially formed from the respective central portions toward the outside. The gaps 30A of the shelves 30 in each stage are arranged so as not to overlap in plan view.
  • the interval between the upper and lower shelves 30 is about 20 cm to 30 cm, and the gap 30A between the shelves 30 is smaller than the area of the shelves 30 to increase the heat storage effect between the upper and lower shelves 30. . Further, the heat is reflected by the high-temperature heat-resistant stainless steel plate exposed on the lower surfaces of the shelves 30 to accelerate the dry carbonization of the workpiece M1 on the shelves 30.
  • the drying unit 3A includes a first arm group including a plurality of arms 31 that rotate around the central portions of the plurality of shelves 30 at the upper portions of the plurality of shelves 30, respectively.
  • each arm 31 is rotated on each shelf 30 to sequentially drop the workpiece M1 on the shelf 30 from the plurality of gaps 30A to the lower shelf 30 while drying and carbonizing. It is.
  • an exhaust passage 6 that exhausts the inside of the processing furnace 3 through the wall 10 is provided in the upper part of the drying unit 3A.
  • a steam generation pipe 4 for generating steam by using the heat raised from the thermal decomposition unit 3B is provided in a spiral shape.
  • a steam generator (not shown) is connected to the inlet 4A and the outlet 4B of the steam generating pipe 4.
  • the thermal decomposition unit 3B has a second arm group including a rooster 32 that divides the interior of the thermal decomposition unit 3B in the vertical direction and a plurality of arms 33 that rotate around the center of the thermal decomposition unit 3B above and below the rooster 32, respectively. .
  • the second arm group promotes the thermal decomposition by stirring the workpiece M2 in the thermal decomposition unit 3B by the rotation of each arm 33.
  • the to-be-processed object M2 thermally decomposed on the rooster 32 falls from the lattice of the rooster 32 to the lower part of the pyrolyzing part 3B.
  • the pyrolysis unit 3B agitates the air inlet 34 with a cock for taking in air above and below the rooster 32, an ignition burner 35 for igniting the workpiece M2, and high-temperature air in the furnace. Fan 36 is provided.
  • the ignition burner 35 is used to ignite the workpiece M2 for about 15 minutes in the initial stage of operation.
  • the workpiece M2 in the thermal decomposition unit 3B is continuously pyrolyzed.
  • the cocked air inlet 34 is used to maintain a low oxygen state so that the workpiece M2 in the thermal decomposition unit 3B is thermally decomposed continuously. In the low oxygen state, the object to be processed M2 undergoes thermal decomposition without shifting to oxidation (combustion).
  • the processing furnace 3 has a rotating shaft 5 extending in the vertical direction from the drying unit 3A to the thermal decomposition unit 3B.
  • the rotating shaft 5 is rotationally driven by a motor 50 provided in the material tank 2 above the processing furnace 3.
  • the first arm group and the second arm group described above are fixed around the rotating shaft 5 and rotate together with the rotating shaft 5.
  • an object to be processed M0 such as organic waste such as garbage, waste wood and waste plastic is supplied from the material tank 2 into the processing furnace 3 and rises from the thermal decomposition unit 3B. Dry carbonization is performed in the drying unit 3A by heat.
  • the object to be processed M1 is rotated by the arms 31 of the first arm group on the plurality of shelves 30 arranged at intervals in the vertical direction in the drying unit 3A, and sequentially dried on the plurality of shelves 30. While being carbonized, it falls from a plurality of gaps 30 ⁇ / b> A formed radially on each shelf 30. Thereby, the to-be-processed object M1 is dry carbonized efficiently in the drying part 3A in a short time.
  • the to-be-processed object M1 dry-carbonized in the drying part 3A is thermally decomposed in the lower thermal decomposition part 3B continuously.
  • air is sucked so that the low oxygen state is maintained by the air inlet 34 with a cock, so that the object M2 in the pyrolysis section 3B does not shift to oxidation (combustion).
  • Thermal decomposition proceeds. That is, in a state where the oxygen concentration is low, most of the air becomes nitrogen, and combustion in the pyrolysis portion 3B is suppressed in a low oxygen state, and thermal decomposition (steamed state) proceeds.
  • oxygen molecules in the low oxygen state do not combine with carbon molecules by combustion (oxidation), and collide with the molecular structure of the object to be processed M2 (organic matter) that started combustion by ignition in a translational state.
  • M2 organic matter
  • the potential energy at the time of collision is converted into thermal energy, and thermal ion decomposition (molecular dynamics with chemical reaction) starts near the critical temperature peculiar to each organic substance (low temperature plasma state).
  • the oxygen molecules that were not involved in the thermal ion decomposition the organic matter is gradually converted into ceramics (ash) such as carbon (C) and nitrogen (N) by the thermal ion decomposition, van der Waals force of oxygen molecules
  • ash such as carbon (C) and nitrogen (N)
  • van der Waals force of oxygen molecules By attracting each other with the potential energy possessed by the wall of the substance, oxygen molecules are confined in a lattice (ladder) state in an electromagnetic field generated in a plasma state.
  • lattice ladder
  • the high temperature air is stirred by the fan 36, while the workpiece M2 dried and carbonized in the drying part 3A is stirred by the arm 33 and the thermal decomposition process is promoted. Ashing proceeds and changes to ceramic ash.
  • the components contained in the workpiece M2 remain in the ceramic ash as it is, and only moisture evaporates.
  • the volume is reduced, so that the object to be processed M2 above the object to be processed M2 changed to ceramic ash sequentially moves downward.
  • the produced ceramic ash is in a powder form, it falls from the void of the rooster 32 to the lower portion of the rooster 32.
  • the dropped workpiece M ⁇ b> 2 is stirred by the arm 33 below the rooster 32, the thermal decomposition process is further promoted, and the further magnetized ceramic ash Become.
  • the heat generated in the thermal decomposition unit 3B rises to the drying unit 3A and is used for dry carbonization of the workpiece M1 in the drying unit 3A as described above. It becomes unnecessary to dry the object in advance, and it becomes possible to efficiently perform the thermal decomposition treatment.
  • steam is generated by utilizing the exhaust heat of heat used for dry carbonization of the workpiece M1 by the steam generation pipe 4 provided spirally around the drying unit 3A. Can be generated, for example, by a steam generator. Furthermore, it is also possible to use the remaining heat of the generated steam for hot water supply.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a smoke removal deodorizer 60 connected to the exhaust passage 6 of the thermal decomposition apparatus 1 of FIG.
  • the smoke removal deodorizer 60 includes a water fog treatment unit 60A that sprays water on the exhaust gas, and an enzyme water fog treatment unit 60B that sprays enzyme water on the exhaust gas that has passed through the water fog treatment unit 60A.
  • the water fog treatment unit 60A has a flow path 61 that alternately turns downward and upward the flow direction of the exhaust gas from the inside of the processing furnace 3, and a plurality of water sprays that are opposed to the flow direction of the smoke in the flow path 61. And a spray nozzle 62 as a spraying device.
  • the spray nozzle 62 sprays water from the upper side to the lower side with respect to the flow path 61 that makes the flow direction of the exhaust gas upward, and from the lower side to the upper side with respect to the flow path 61 that makes the flow direction of the exhaust gas downward. The water is sprayed toward it.
  • the flow path 61 has a fan 64 for sending exhaust gas toward the water mist sprayed from the spray nozzle 62.
  • a circulation tank 65 for collecting the waste liquid sprayed from the spray nozzle 62 and reusing it at the spray nozzle 62 is provided below the flow path 61.
  • a waste liquid purifying apparatus using a photosynthetic enzyme and HHO gas (Brown gas) micro-nano bubbles is provided in the circulation tank 65.
  • fins 63A and 63B are provided at the lower part of the flow path 61 that faces the exhaust flow direction downward, as means for entanglement of smoke in the exhaust gas with water flow.
  • 4 is a side view showing the shape of the fins 63A and 63B
  • FIG. 5 is a view showing a cross section of the fins 63A and 63B.
  • the fins 63 ⁇ / b> A and 63 ⁇ / b> B are attached by twisting a plate having a width A as shown in FIG.
  • the fin 63A and the fin 63B are attached to a position shifted by a half circumference in the flow path 61 and shifted by a height C.
  • the width A, height B, C and angle D are adjusted according to the inner diameter of the channel 61.
  • the enzyme water mist processing unit 60B includes a spray nozzle 66 for spraying enzyme water in the flow path 61 and an enzyme water tank 67 for storing enzyme water supplied to the spray nozzle 66.
  • the spray nozzle 66 sprays enzyme water in a tornado shape, and efficiently contacts exhaust gas and enzyme water to decompose odors in the exhaust gas.
  • a fan 68 that exhausts air from the flow path 61 is provided at a downstream position of the enzyme water fog treatment unit 60B.
  • the exhaust (smoke) exhausted from the exhaust passage 6 of the thermal decomposition apparatus 1 in the present embodiment contains soot, harmful components, and malodorous components.
  • the exhaust discharged from the exhaust passage 6 of the thermal decomposition apparatus 1 is sent to the water fog treatment unit 60A by the fan 64, and the inside of the water fog sprayed from the spray nozzle 62 of the water fog treatment unit 60A. Break through and remove soot, harmful components and odorous components contained in the exhaust.
  • the exhaust gas that has broken through the water mist collides with fins 63A and 63B provided in the flow path 61 to form a swirling water flow, and the soot in the exhaust is entangled by this water flow and falls.
  • Such a process is repeatedly performed by the flow path 61 that alternately turns the exhaust flow direction downward and upward.
  • the exhaust gas passes through the enzyme water mist, whereby the odor is decomposed, deodorized, and discharged by the fan 68.
  • the thermal decomposition apparatus of the present invention is useful as an apparatus for thermally decomposing an object to be treated such as organic waste such as garbage, waste wood and waste plastic.
  • the present invention is suitable as a thermal decomposition apparatus that does not require drying of an object to be processed in advance and can efficiently perform thermal decomposition.

Abstract

被処理物を事前に乾燥することを不要とし、効率良く熱分解処理することが可能な熱分解装置を提供する。 本発明の熱分解装置1は、上部に被処理物M1を乾燥する乾燥部3Aを、下部に乾燥部3Aにおいて乾燥された被処理物M1を熱分解する熱分解部3Bを有し、熱分解部3Bから上昇した熱により乾燥部3Aにおいて被処理物を乾燥する処理炉3と、乾燥部3A内に上下方向に間隔を設けて配置された複数の棚30であり、それぞれの棚30の中央部から外側に向かって放射状に形成された複数の間隙を有する棚30と、複数の棚30のそれぞれの上部で複数の棚30の中央部周りに回転することにより複数の棚30の上にある被処理物M1を放射状に形成された複数の間隙から落とす複数のアーム31からなる第1アーム群とを有する。

Description

熱分解装置
 本発明は、生ごみ、廃木材や廃プラスチック等の有機性廃棄物等の被処理物を熱分解する熱分解装置に関する。
 例えば、特許文献1には、廃木材や廃プラスチック等の被処理物を加熱処理してセラミック灰にするセラミック灰の製造装置が開示されている。図6に示すように、このセラミック灰の製造装置100は、円筒型で断熱構造の加熱炉119と、加熱炉119の上位置に第1の開閉扉112を介して配置された蓋120付きの乾燥室121とを有している。加熱炉119は、天井部111に被処理物の投入口113を、高さ方向中央位置より下側の側壁114には磁界を通過した空気を取り入れる吸気口115,115aを、天井部111と吸気口115,115aとの間の側壁114には排気口116を、下部には加熱処理した被処理物のセラミック灰を排出する排出口118をそれぞれ備える。
 また、加熱炉119内の中央部には、中央に開口を有し縮径側を下方に向けた複数のコーン部材122が、支持部材123を介して上下方向に隙間を有し、かつ側壁114の内周面とは隙間を設けて配置されており、被処理物を加熱炉119内の中央にガイドしている。吸気口115,115aは、それぞれ側壁114に水平斜め方向を向いて間隔を設けて配置されており、加熱炉119内の被処理物と側壁114との間に磁界を通過した空気の旋回流を発生させ、被処理物に磁界を通過した空気を供給して被処理物の加熱処理を行う。
 このセラミック灰の製造装置100では、乾燥室121の第1の開閉扉112を介して加熱炉119内に投入された被処理物は、加熱炉119内で上下方向に隙間を有して配置された複数のコーン部材122によりガイドされ、被処理物と加熱炉119の側壁114との間に発生した磁界を通過した空気の旋回流は、上下のコーン部材122間の隙間を通過する際に、ガイドされている被処理物の表層部に沿うように流れるとともに、一部は隙間の上側に配置されたコーン部材122の開口からガイドされている被処理物の内部へも進入することができ、ガイドされている被処理物を均一かつ効率的に加熱処理することができる。
 また、乾燥室121内には予め乾燥させておいた被処理物を投入するが、被処理物の加熱処理が一旦開始されると加熱炉119内で被処理物が加熱処理されるときに発生する熱が、第1の開閉扉112の仕切り板の先端に形成される隙間を介して乾燥室121内に流入してくるので、続いて処理する被処理物が乾燥状態でなくても、乾燥室121内に投入しておくと、加熱炉119内で被処理物の加熱処理を行いながら、乾燥室121内で被処理物の乾燥を同時に行うことが可能となっている。
国際公開第2011/92847号
 上記のように従来のセラミック灰の製造装置100では、乾燥状態でない被処理物を加熱炉119内に直接投入しても、被処理物の加熱処理は可能であるが、その場合には被処理物の乾燥を行いながら加熱処理が行われるので、加熱処理に多くの時間を要することになる。そのため、被処理物の加熱処理を開始する際には、被処理物は事前に乾燥しておくことが好ましいが、すべての被処理物を事前に乾燥するには手間も時間も掛かり、処理効率が悪い。
 そこで、本発明においては、被処理物を事前に乾燥することを不要とし、効率良く熱分解処理することが可能な熱分解装置を提供することを目的とする。
 本発明の熱分解装置は、上部に被処理物を乾燥する乾燥部を、下部に前記乾燥部において乾燥された被処理物を熱分解する熱分解部を有し、熱分解部から上昇した熱により乾燥部において被処理物を乾燥する処理炉と、乾燥部内に上下方向に間隔を設けて配置された複数の棚であり、それぞれの棚の中央部から外側に向かって放射状に形成された複数の間隙を有する棚と、複数の棚のそれぞれの上部で複数の棚の中央部周りに回転することにより複数の棚の上にある被処理物を放射状に形成された複数の間隙から落とす複数のアームからなる第1アーム群とを有するものである。
 本発明の熱分解装置によれば、熱分解部から上昇した熱により乾燥部において被処理物を乾燥処理する際、被処理物は、乾燥部内に上下方向に間隔を設けて配置された複数の棚上でそれぞれ第1アーム群により回転され、複数の棚上で順次乾燥されつつ、各棚に放射状に形成された複数の間隙から落下する。これにより、被処理物は乾燥部において短時間で効率良く乾燥される。そして、乾燥部において乾燥された被処理物は、続けて下部の熱分解部において熱分解される。
 また、本発明の熱分解装置は、熱分解部内を上下方向に分割するロストルと、ロストルの上下で熱分解部の中央部周りにそれぞれ回転する複数のアームからなる第2アーム群とを有することが望ましい。これにより、乾燥された被処理物をロストル上部でアームにより攪拌して熱分解処理を促進するとともに、ロストルの空隙からロストル下部に落下した被処理物をアームにより攪拌し、さらに熱分解処理を促進することができる。
 ここで、第1アーム群および第2アーム群は、処理炉内の乾燥部から熱分解部まで鉛直方向に延びる回転軸の周りに固定され、回転軸とともに回転するものであることが望ましい。これにより、処理炉内の乾燥部から熱分解部まで鉛直方向に延びる回転軸を回転させるだけで第1アーム群および第2アーム群を機能させることが可能となる。
 さらに、本発明の熱分解装置は、ロストルにより分割された熱分解部内にそれぞれの空間内の空気を攪拌するファンを有することが望ましい。これにより、ロストルにより分割された熱分解部内のそれぞれの空間内の空気を攪拌して、ロストル上下での熱分解をさらに促進することが可能となる。
 また、処理炉は、当該処理炉内の排気を行う排気路を備えたものであり、排気路は、排気に対して水を噴霧する水霧処理部を有するものであることが望ましい。これにより、排気に噴霧された水霧により排気内に含まれる煤、有害成分や悪臭成分が除去され、脱煙脱臭が行われる。
 ここで、水霧処理部は、排気の流れ方向を交互に下向きおよび上向きにする流路と、排気の流れ方向を上向きにする流路に対しては上方から下方へ向かって水を噴霧し、排気の流れ方向を下向きにする流路に対しては下方から上方へ向かって水を噴霧する噴霧装置と、排気の流れ方向を下向きにする流路の下部に排気中の煙を水流で絡め取る手段とを有するものであることが望ましい。これにより、排気の流れ方向を交互に下向きおよび上向きとしながら繰り返し水霧と接触させるとともに、排気中の煙を水流で絡め取ることで、排気内に含まれる煤、有害成分や悪臭成分をさらに除去することができる。
 また、水霧処理部よりも上流側に水霧処理部に向かって排気を送出するファンを有することが望ましい。これにより、排気を水霧処理部に向かってファンにより送り込み、水霧内を突破させることで、排気内に含まれる煤、有害成分や悪臭成分を効率的に除去することができる。
 また、水霧処理部よりも下流側に酵素水を噴霧する酵素水霧処理部を備えたものであることが望ましい。これにより、水霧と接触させることにより、排気内に含まれる煤、有害成分や悪臭成分を除去したうえで、酵素水霧内を通過させることで、臭気をさらに分解し、確実に消臭することが可能となる。
(1)上部に被処理物を乾燥する乾燥部を、下部に乾燥部において乾燥された被処理物を熱分解する熱分解部を有し、熱分解部から上昇した熱により乾燥部において被処理物を乾燥する処理炉と、乾燥部内に上下方向に間隔を設けて配置された複数の棚であり、それぞれの棚の中央部から外側に向かって放射状に形成された複数の間隙を有する棚と、複数の棚のそれぞれの上部で複数の棚の中央部周りに回転することにより複数の棚の上にある被処理物を放射状に形成された複数の間隙から落とす複数のアームからなる第1アーム群とを有する熱分解装置によれば、被処理物を事前に乾燥することが不要となり、効率良く熱分解処理することが可能となる。
(2)熱分解部内を上下方向に分割するロストルと、ロストルの上下で熱分解部の中央部周りにそれぞれ回転する複数のアームからなる第2アーム群とを有することにより、さらに熱分解処理を促進することができるので、より効率良く熱分解処理を行うことが可能となる。
(3)第1アーム群および第2アーム群が、処理炉内の乾燥部から熱分解部まで鉛直方向に延びる回転軸の周りに固定され、回転軸とともに回転するものであることにより、簡単な構造で第1アーム群および第2アーム群を機能させ、効率良く熱分解処理することが可能となる。
(4)ロストルにより分割された熱分解部内にそれぞれの空間内の空気を攪拌するファンを有することにより、ロストル上下での熱分解をさらに促進し、効率良く熱分解処理を行うことが可能となる。
(5)処理炉が当該処理炉内の排気を行う排気路を備えたものであり、排気路が排気に対して水を噴霧する水霧処理部を有するものであることにより、排気に噴霧された水霧により脱煙脱臭が行われ、排気を無色無臭にすることが可能となる。
(6)水霧処理部が、排気の流れ方向を交互に下向きおよび上向きにする流路と、排気の流れ方向を上向きにする流路に対しては上方から下方へ向かって水を噴霧し、排気の流れ方向を下向きにする流路に対しては下方から上方へ向かって水を噴霧する噴霧装置と、排気の流れ方向を下向きにする流路の下部に排気中の煙を水流で絡め取る手段とを有する構成により、排気内に含まれる煤、有害成分や悪臭成分をさらに除去することができる。
(7)水霧処理部よりも上流側に水霧処理部に向かって排気を送出するファンを有する構成により、排気内に含まれる煤、有害成分や悪臭成分を効率的に除去することができる。
(8)水霧処理部よりも下流側に酵素水を噴霧する酵素水霧処理部を備えたものであることにより、臭気をさらに分解し、確実に消臭することが可能となる。
本発明の実施の形態における熱分解装置の構成を示す概略断面図である。 図1のII-II線断面図である。 図1の熱分解装置の排気路に接続される脱煙脱臭装置の構成を示す概略断面図である。 フィンの形状を示す側面図である。 フィンの断面を示す図である。 従来のセラミック灰の製造装置を示す断面図である。
 1 熱分解装置
 2 材料タンク
 3 処理炉
 3A 乾燥部
 3B 熱分解部
 4 蒸気発生パイプ
 5 回転軸
 6 排気路
 10 壁
 11 断熱材
 12 円筒体
 30 棚
 31,33 アーム
 32 ロストル
 34 コック付き空気吸入口
 35 点火用バーナ
 36 ファン
 50 モータ
 60 脱煙脱臭装置
 61 流路
 62 スプレーノズル
 63A,63B フィン
 64 ファン
 65 循環式タンク
 66 スプレーノズル
 67 酵素水タンク
 68 ファン
 図1は本発明の実施の形態における熱分解装置の構成を示す概略断面図、図2は図1のII-II線断面図である。
 図1において、本発明の実施の形態における熱分解装置1は、被処理物M0が収容される材料タンク2と、材料タンク2から供給される被処理物M0を処理する処理炉3とを有する。処理炉3は円筒状であり、上部に材料タンク2から供給される被処理物M0(M1)を乾燥する乾燥部3Aを、下部に乾燥部3Aにおいて乾燥された被処理物M1(M2)を熱分解する熱分解部3Bを有する。処理炉3の壁10内には断熱材11が充填されている。なお、本実施形態における熱分解装置1が処理する被処理物M0は、生ごみ、廃木材や廃プラスチック等の有機性廃棄物等である。
 乾燥部3Aは、円筒体12内に上下方向に間隔を設けて配置された複数の棚30を有し、熱分解部3Bから上昇した熱により棚30上の被処理物M1を乾燥するものである。なお、本実施形態においては、乾燥部3Aにおいて炭化まで行うが、炭化まで行わない場合もある。各棚30は高温耐熱ステンレス板の上面を耐火セメントによって覆うことにより形成されている。棚30は、図2に示すように、それぞれの中央部から外側に向かって放射状に形成された複数の間隙30Aを有する。各段の棚30の間隙30Aは平面視で重ならない位置となるように配設されている。
 また、本実施形態においては、上下の棚30の間隔は20cm~30cm程度とし、各棚30の間隙30Aは棚30の面積よりも小さくして、上下の棚30間の蓄熱効果を上げている。また、相互の棚30の下面に露出された高温耐熱ステンレス板により熱を反射させることで、棚30上の被処理物M1の乾燥炭化を早めている。
 また、乾燥部3Aは、複数の棚30のそれぞれの上部で複数の棚30の中央部回りに回転する複数のアーム31からなる第1アーム群を有する。第1アーム群は、各アーム31が各棚30上でそれぞれ回転することで、棚30上の被処理物M1を乾燥炭化しながら、複数の間隙30Aから下段の棚30へ順次落としていくものである。また、乾燥部3Aの上部には壁10を貫通して処理炉3内の排気を行う排気路6が設けられている。
 さらに、乾燥部3Aの円筒体12の周囲には、熱分解部3Bから上昇した熱を利用して蒸気を発生させるための蒸気発生パイプ4が螺旋状に設けられている。この蒸気発生パイプ4の入口4Aおよび出口4Bには、例えば蒸気発電機(図示せず。)が接続される。
 熱分解部3Bは、熱分解部3B内を上下方向に分割するロストル32と、ロストル32の上下で熱分解部3Bの中央部周りにそれぞれ回転する複数のアーム33からなる第2アーム群を有する。第2アーム群は、各アーム33の回転により熱分解部3B内の被処理物M2を攪拌して、その熱分解を促進する。また、ロストル32上で熱分解された被処理物M2はロストル32の格子の目から熱分解部3Bの下部へ落下する。
 また、熱分解部3Bには、ロストル32の上下に、それぞれ空気を取り入れるコック付き空気吸入口34と、被処理物M2に点火するための点火用バーナ35と、炉内の高温空気を攪拌するためのファン36とを備えている。点火用バーナ35は運転初期に約15分程度被処理物M2の点火に使用され、点火後は熱分解部3B内の被処理物M2が継続的に熱分解する。コック付き空気吸入口34は、熱分解部3B内の被処理物M2が継続的に熱分解するように低酸素状態を維持するために使用される。低酸素状態では、被処理物M2は酸化(燃焼)に移行することなく、熱分解が進行する。
 また、処理炉3内には、乾燥部3Aから熱分解部3Bまで鉛直方向に延びる回転軸5を有する。回転軸5は処理炉3の上方の材料タンク2内に設けられたモータ50により回転駆動される。上述の第1アーム群および第2アーム群は、この回転軸5の周りに固定され、回転軸5とともに回転する。
 上記構成の熱分解装置1では、生ごみ、廃木材や廃プラスチック等の有機性廃棄物等の被処理物M0は、材料タンク2から処理炉3内へ供給され、熱分解部3Bから上昇した熱により乾燥部3Aにおいて乾燥炭化処理される。このとき、被処理物M1は、乾燥部3A内に上下方向に間隔を設けて配置された複数の棚30上でそれぞれ第1アーム群のアーム31により回転され、複数の棚30上で順次乾燥炭化されつつ、各棚30に放射状に形成された複数の間隙30Aから落下する。これにより、被処理物M1は乾燥部3Aにおいて短時間で効率良く乾燥炭化される。
 そして、乾燥部3Aにおいて乾燥炭化された被処理物M1は、続けて下部の熱分解部3Bにおいて熱分解される。熱分解部3Bでは、コック付き空気吸入口34により低酸素状態が維持されるように空気が吸入されることで、熱分解部3B内の被処理物M2は酸化(燃焼)に移行することなく、熱分解が進行する。すなわち、酸素濃度の薄い状態では空気の大部分が窒素となり、熱分解部3B内は低酸素状態で燃焼が抑制され、熱分解(蒸し焼き状態)が進行する。
 このとき、低酸素状態中の酸素分子は、燃焼(酸化)で炭素分子と化合することなく、着火により燃焼を始めた被処理物M2(有機物)の分子構造体に並進状態で衝突することにより、衝突時のポテンシャルエネルギが熱エネルギに変換され、それぞれの有機物特有の臨界温度付近(低温プラズマ状態)で熱イオン分解(化学反応を伴う分子動力学)を始める。一方、この熱イオン分解に関わらなかった酸素分子は、有機物が熱イオン分解で徐々に炭素(C)や窒素(N)などのセラミックス(灰)化される過程で、酸素分子のファンデルワールス力とその物質の壁が持っているポテンシャルエネルギで互いに引き合うことにより、また、プラズマ状態で生起する電磁界中で酸素分子が格子状(梯子状)に整列した状態で内部に閉じ込められる。これにより、強磁性を持つ磁性セラミックスが生成される。
 熱分解部3Bのロストル32上部では、ファン36により高温空気が攪拌されながら、乾燥部3Aにおいて乾燥炭化された被処理物M2がアーム33により攪拌されて熱分解処理が促進され、炭化状態から磁性灰化が進行し、セラミック灰へ変化する。この熱分解処理では、被処理物M2の含有成分はそのままセラミック灰に残り、水分のみが蒸発する。被処理物M2がセラミック灰に変わると、容積が減少するため、セラミック灰に変わった被処理物M2の上方の被処理物M2は順次下方に移動する。
 こうして生成されたセラミック灰は粉末状であるため、ロストル32の空隙からロストル32下部に落下する。ロストル32下部では、ファン36により高温空気が攪拌されながら、落下した被処理物M2がロストル32下部のアーム33により攪拌され、さらに熱分解処理が促進されて、さらに磁性化が進んだセラミック灰となる。
 本実施形態における熱分解装置1では、この熱分解部3Bにおいて発生した熱が乾燥部3Aに上昇し、乾燥部3Aにおいて前述のように被処理物M1の乾燥炭化に利用されるので、被処理物を事前に乾燥することが不要となり、効率良く熱分解処理することが可能となる。また、本実施形態における熱分解装置1では、乾燥部3Aの周囲に螺旋状に設けられた蒸気発生パイプ4によりこの被処理物M1の乾燥炭化に利用される熱の排熱を利用して蒸気を発生させ、例えば蒸気発電機により発電を行うことが可能である。さらに、おの発生させた蒸気の余熱を給湯に利用することも可能である。
 また、本実施形態における熱分解装置1の排気路6には、図3に示す脱煙脱臭装置60が接続されている。図3は図1の熱分解装置1の排気路6に接続される脱煙脱臭装置60の構成を示す概略断面図である。脱煙脱臭装置60は、排気に対して水を噴霧する水霧処理部60Aと、水霧処理部60Aを通過した排気に対して酵素水を噴霧する酵素水霧処理部60Bとを有する。
 水霧処理部60Aは、処理炉3内からの排気の流れ方向を交互に下向きおよび上向きにする流路61と、流路61内で排煙の流れる方向に対向して水を噴霧する複数の噴霧装置としてのスプレーノズル62とを有する。スプレーノズル62は、排気の流れ方向を上向きにする流路61に対しては上方から下方へ向かって水を噴霧し、排気の流れ方向を下向きにする流路61に対しては下方から上方へ向かって水を噴霧するものである。
 また、流路61内には、スプレーノズル62から噴霧された水霧に向かって排気を送り込むためのファン64を有する。流路61の下部には、スプレーノズル62から噴霧された廃液を回収し、スプレーノズル62で再利用するための循環式タンク65を備えている。循環式タンク65内には、光合成系酵素とHHOガス(ブラウンガス)マイクロナノバブルによる廃液浄化装置が設けられている。
 また、排気の流れ方向を下向きする流路61の下部には排気中の煙を水流で絡め取る手段としてのフィン63A,63Bを備えている。図4はフィン63A,63Bの形状を示す側面図、図5はフィン63A,63Bの断面を示す図である。フィン63A,63Bは図5に示すような幅Aの板を角度Dで流路61内面に沿って高さBで半周捻って取り付けたものである。また、フィン63Aとフィン63Bとは流路61内で半周ずらした位置に、かつ高さCだけずらして取り付けている。なお、幅A、高さB,Cおよび角度Dは流路61の内径に応じて寸法調整を行う。
 また、酵素水霧処理部60Bは、流路61内に酵素水を噴霧するスプレーノズル66と、スプレーノズル66に供給する酵素水を貯留する酵素水タンク67とを備えている。スプレーノズル66は、竜巻状に酵素水を噴霧するものであり、排気と酵素水とを効率良く接触させて排気内の臭気を分解する。また、酵素水霧処理部60Bの下流位置には、流路61内から排気するファン68が設けられている。
 本実施形態における熱分解装置1の排気路6から排出される排気(排煙)には、煤、有害成分や悪臭成分が含まれており、上記構成の脱煙脱臭装置60により脱煙脱臭を行う。この脱煙脱臭装置60では、熱分解装置1の排気路6から排出される排気をファン64により水霧処理部60Aに送り込み、水霧処理部60Aのスプレーノズル62から噴霧された水霧内を突破させ、排気に含まれる煤、有害成分や悪臭成分を除去する。水霧内を突破した排気は、流路61内に設けられたフィン63A,63Bに衝突することで旋回水流となり、排気内の煤はこの水流によって絡め取られ、落下する。このような過程が、排気の流れ方向を交互に下向きおよび上向きにする流路61によって繰り返し行われる。そして、酵素水霧処理部60Bでは、排気が酵素水霧内を通過することで、臭気が分解され、消臭されて、ファン68により排出される。
 本発明の熱分解装置は、生ごみ、廃木材や廃プラスチック等の有機性廃棄物等の被処理物を熱分解する装置として有用である。特に、本発明は、被処理物を事前に乾燥することを不要とし、効率良く熱分解処理することが可能な熱分解装置として好適である。

Claims (8)

  1.  上部に被処理物を乾燥する乾燥部を、下部に前記乾燥部において乾燥された被処理物を熱分解する熱分解部を有し、前記熱分解部から上昇した熱により前記乾燥部において前記被処理物を乾燥する処理炉と、
     前記乾燥部内に上下方向に間隔を設けて配置された複数の棚であり、それぞれの棚の中央部から外側に向かって放射状に形成された複数の間隙を有する棚と、
     前記複数の棚のそれぞれの上部で前記複数の棚の中央部周りに回転することにより前記複数の棚の上にある前記被処理物を前記放射状に形成された複数の間隙から落とす複数のアームからなる第1アーム群と
    を有する熱分解装置。
  2.  前記熱分解部内を上下方向に分割するロストルと、
     前記ロストルの上下で前記熱分解部の中央部周りにそれぞれ回転する複数のアームからなる第2アーム群と
    を有する請求項1記載の熱分解装置。
  3.  前記第1アーム群および第2アーム群は、前記処理炉内の前記乾燥部から前記熱分解部まで鉛直方向に延びる回転軸の周りに固定され、前記回転軸とともに回転するものである請求項2記載の熱分解装置。
  4.  前記ロストルにより分割された前記熱分解部内にそれぞれの空間内の空気を攪拌するファンを有する請求項2または3に記載の熱分解装置。
  5.  前記処理炉は、当該処理炉内の排気を行う排気路を備えたものであり、
     前記排気路は、前記排気に対して水を噴霧する水霧処理部を有するものである
    請求項1記載の熱分解装置。
  6.  前記水霧処理部は、
     前記排気の流れ方向を交互に下向きおよび上向きにする流路と、
     前記排気の流れ方向を上向きにする流路に対しては上方から下方へ向かって水を噴霧し、前記排気の流れ方向を下向きにする流路に対しては下方から上方へ向かって水を噴霧する噴霧装置と、
     前記排気の流れ方向を下向きにする流路の下部に前記排気中の煙を水流で絡め取る手段とを有する
    請求項5記載の熱分解装置。
  7.  前記水霧処理部よりも上流側に前記水霧処理部に向かって前記排気を送出するファンを有する請求項5記載の熱分解装置。
  8.  前記水霧処理部よりも下流側に酵素水を噴霧する酵素水霧処理部を備えたものである請求項5記載の熱分解装置。
PCT/JP2017/012388 2017-03-27 2017-03-27 熱分解装置 WO2018179051A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012388 WO2018179051A1 (ja) 2017-03-27 2017-03-27 熱分解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012388 WO2018179051A1 (ja) 2017-03-27 2017-03-27 熱分解装置

Publications (1)

Publication Number Publication Date
WO2018179051A1 true WO2018179051A1 (ja) 2018-10-04

Family

ID=63674626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012388 WO2018179051A1 (ja) 2017-03-27 2017-03-27 熱分解装置

Country Status (1)

Country Link
WO (1) WO2018179051A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519109B1 (ja) * 1967-10-24 1970-06-30
JPS5024733U (ja) * 1973-07-04 1975-03-20
JPS54161744A (en) * 1978-06-05 1979-12-21 Sakurada Iron Works Reuse method by thermally disposing mixed dehydrated cake of excess sludge of activated sludge and used powder activated carbon* by pyrolyzing excess sludge and by regenerating powder activated carbon
JPS61217619A (ja) * 1984-12-19 1986-09-27 エドワ−ド コツプルマン 多段炉床反応装置と炭素質材料の熱処理法
JPS62156334U (ja) * 1986-03-24 1987-10-05
JPH06100390A (ja) * 1992-09-16 1994-04-12 Sosuukai:Kk 生ごみ処理装置
JPH07159034A (ja) * 1993-12-02 1995-06-20 Tokyo Seiko Co Ltd 湿潤食品類の乾燥装置
JPH11263979A (ja) * 1998-01-14 1999-09-28 Tokyo Yogyo Co Ltd 積層型加熱処理装置
JP2003275706A (ja) * 2002-03-20 2003-09-30 Toda Kogyo Corp 燃焼灰の加熱処理装置
US20150139889A1 (en) * 2009-10-14 2015-05-21 Reklaim Llc Pyrolysis Process and Products

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519109B1 (ja) * 1967-10-24 1970-06-30
JPS5024733U (ja) * 1973-07-04 1975-03-20
JPS54161744A (en) * 1978-06-05 1979-12-21 Sakurada Iron Works Reuse method by thermally disposing mixed dehydrated cake of excess sludge of activated sludge and used powder activated carbon* by pyrolyzing excess sludge and by regenerating powder activated carbon
JPS61217619A (ja) * 1984-12-19 1986-09-27 エドワ−ド コツプルマン 多段炉床反応装置と炭素質材料の熱処理法
JPS62156334U (ja) * 1986-03-24 1987-10-05
JPH06100390A (ja) * 1992-09-16 1994-04-12 Sosuukai:Kk 生ごみ処理装置
JPH07159034A (ja) * 1993-12-02 1995-06-20 Tokyo Seiko Co Ltd 湿潤食品類の乾燥装置
JPH11263979A (ja) * 1998-01-14 1999-09-28 Tokyo Yogyo Co Ltd 積層型加熱処理装置
JP2003275706A (ja) * 2002-03-20 2003-09-30 Toda Kogyo Corp 燃焼灰の加熱処理装置
US20150139889A1 (en) * 2009-10-14 2015-05-21 Reklaim Llc Pyrolysis Process and Products

Similar Documents

Publication Publication Date Title
JP2009522081A (ja) 有機材料を熱処理するための装置とそのための方法
JP2009172546A (ja) 有機廃棄物の処理装置
JPWO2005063923A1 (ja) 活性炭製造用炭化装置
JP7176720B2 (ja) 熱分解装置
WO2000052113A1 (fr) Procede de traitement de dechets
TWI648318B (zh) 遠紅外線輻射熱碳化設備
TW200918839A (en) Heat treatment apparatus
WO2018179051A1 (ja) 熱分解装置
JP2013180228A (ja) 有機廃棄物処理装置及び有機廃棄物処理方法
WO2018179052A1 (ja) 脱煙脱臭装置
EP3289050B1 (en) Pyrolysis furnace
JP2015182041A (ja) 固形有機物磁気分解処理装置
JP2012013369A (ja) 廃棄物処理機
JP2010005581A (ja) 有機系被処理物分解処理装置及びそれを使用した有機物の分解処理方法
JP2007322098A (ja) 燃焼廃熱利用設備
KR101443903B1 (ko) 톨루엔 연소 및 분해장치
WO2016174247A1 (en) Pyrolysis furnace
CN113874658A (zh) 锅炉装置及具备该锅炉装置的有机性废弃物的处理装置
KR200339904Y1 (ko) 폐기물 탄화처리 장치
KR20050038309A (ko) 폐기물 탄화처리 장치
KR102254637B1 (ko) 유기성 잔재 폐자원의 혼합 연소 처리장치
JPH11277030A (ja) 廃棄物用乾留炉及び廃棄物乾留方法
RU2201552C2 (ru) Установка обезвреживания и уничтожения твердых отходов
JP2018176139A (ja) 廃棄物処理装置
WO2014168003A1 (ja) 固形有機物磁気分解処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP