WO2018177386A1 - 极化码编码和译码的方法、发送设备和接收设备 - Google Patents

极化码编码和译码的方法、发送设备和接收设备 Download PDF

Info

Publication number
WO2018177386A1
WO2018177386A1 PCT/CN2018/081189 CN2018081189W WO2018177386A1 WO 2018177386 A1 WO2018177386 A1 WO 2018177386A1 CN 2018081189 W CN2018081189 W CN 2018081189W WO 2018177386 A1 WO2018177386 A1 WO 2018177386A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
length
polarized channel
reliability
sub
Prior art date
Application number
PCT/CN2018/081189
Other languages
English (en)
French (fr)
Inventor
陈莹
张公正
乔云飞
李榕
张华滋
罗禾佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019551274A priority Critical patent/JP7186715B2/ja
Priority to ES18774189T priority patent/ES2913779T3/es
Priority to BR112019020118A priority patent/BR112019020118A2/pt
Priority to KR1020197026286A priority patent/KR102221430B1/ko
Priority to EP18774189.7A priority patent/EP3584936B1/en
Priority to CA3053264A priority patent/CA3053264C/en
Priority to AU2018243118A priority patent/AU2018243118B2/en
Publication of WO2018177386A1 publication Critical patent/WO2018177386A1/zh
Priority to US16/549,735 priority patent/US10673466B2/en
Priority to US16/855,495 priority patent/US11206048B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3944Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes for block codes, especially trellis or lattice decoding thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used

Definitions

  • the present application relates to the field of polarization codes, and more particularly to a method, a transmitting device and a receiving device for polarization code encoding and polarization code decoding.
  • channel coding plays a vital role in ensuring the reliable transmission of data.
  • channel coding is generally performed using a Turbo code, a Low Density Parity Check (LDPC), and a Polar code.
  • Turbo codes cannot support information transmissions that are too low or too high.
  • Turbo code and LDPC code are also difficult to achieve ideal performance under a limited code length due to the characteristics of their own compiled code.
  • the Turbo code and the LDPC code have high computational complexity in the implementation of the compiled code.
  • the Polar code is a code that theoretically proves that the Shannon capacity can be obtained and has a relatively simple coding code complexity, and thus has been widely used.
  • F N Its generator matrix
  • Is a binary line vector with a length of N and N 2 n , where n is a positive integer.
  • a part of the bits are used to carry information, called information bits.
  • the set of indices of information bits is denoted as A.
  • the other part of the bit is set to a fixed value pre-agreed by the receiving end and the transmitting end, which is called a fixed bit.
  • the encoding process of the polarization code mainly depends on the selection process of the set A, which determines the performance of the coded code of the polarization code.
  • the online information calculation or the offline storage method is mostly used to determine the information bit number set. Since the online calculation method does not involve the parameters of the actual channel, the calculation accuracy of the two ends of the transmission and reception is different, and the decoding fails, and the delay and complexity of the online calculation are also large. In order to support the combination of various code lengths and code rates, the offline storage method needs to store a large number of mother code sequences at both ends, so the storage overhead is very large, and at the same time, the flexibility is insufficient.
  • eMBB Enhanced Mobile Broadband
  • mMTC massive Massive Machine Type Communication
  • URLLC Ultra Reliable Low Latency Communication
  • LTE Long Term Evolution
  • the present application provides a method for encoding and decoding a polarization code, which helps to improve the shortcomings in the prior art channel coding techniques in terms of code rate, reliability, delay, flexibility, and complexity.
  • the present application provides a method for encoding a polarization code, the method comprising: a transmitting device pre-storing at least one mother code sequence, each mother code sequence being composed of at least one subsequence and at least one sub-set, each sub-sequence Or the elements in the subset are the serial numbers of the polarized channels, each subsequence or sub-set includes at least one serial number, and the relative positions of the serial numbers in each sub-sequence are arranged in order of the reliability of the polarized channels; a code length of the target polarization code, and determining a set of information bit numbers from the at least one mother code sequence; the transmitting device polarization-encoding the information bits according to the information bit number set.
  • the relative positions of the at least one subsequence and the at least one sub-set are sequentially arranged according to the magnitude of the reliability of the polarized channel, wherein the first sub-sequence in the at least one sub-sequence When the reliability is greater than the reliability of the adjacent first subset, the reliability of the polarization channel corresponding to any one of the first sub-sequences is greater than the reliability of the polarization channel corresponding to any one of the first subsets.
  • the reliability of the polarized channel corresponding to any one of the first subsets A reliability greater than a polarization channel corresponding to any one of the second subsets; or a reliability of the first subset of the at least one subset is greater than a reliability of the first subsequence of the at least one subsequence
  • the reliability of the polarization channel corresponding to any one of the first sub-sets is greater than the reliability of the polarization channel corresponding to any one of the first sub-sequences.
  • the sending device determines, according to the code length of the target polarization code, the information bit sequence set from the at least one mother code sequence, including: the number K of information bits of the transmitting device according to the target polarization code, Or a fixed number of bits F of the target polarization code, and a set of information bit numbers is determined from the at least one mother code sequence.
  • the sending device determines, according to the information bit number K of the target polarization code, the information bit sequence set from the at least one mother code sequence, including: the sending device, according to the information bit number K, from the In the largest mother code sequence of at least one mother code sequence, a sequence number that is not punctured and less than or equal to N is selected as the mother code sequence of the target polarization code according to the order of reliability from the largest to the smallest; the transmitting device according to the target polarization code
  • the mother code sequence determines a set of information bit numbers, where N is the mother code length of the target polarization code.
  • the sending device selects a set of information bit numbers from the largest mother code sequence according to the number K of information bits of the target polarization code, including:
  • the transmitting device sequentially selects K number numbers that are not punctured and less than or equal to N as the information bit number set according to the order of reliability from large to small, wherein N is the mother code of the target polarization code. long.
  • the number K of information bits refers to the number of non-fixed bits.
  • K herein also includes a check bit.
  • the number of serial numbers in at least one subsequence or sub-set from the largest to the smallest, M 1 ⁇ 1, and M 1 is an integer.
  • the sending device determines the information bit number set from the at least one mother code sequence according to the information bit number K of the target polarization code, including: in the case that M 1 ⁇ K ⁇ M 2
  • the transmitting device selects the first M 1 non-punctured serial numbers from the mother code sequence of the target polarization code in the order of reliability from the largest to the smallest, wherein M 1 is the mother code of the target polarization code.
  • the number of serial numbers in at least one subsequence or sub-set of the reliability in the sequence from the largest to the smallest, M 2 >M 1 , and M 1 and M 2 are positive integers; the transmitting device from the M 1 non-punctured In the sub-sequence or sub-sequence or the non-punctured serial number in the sub-collection in which the sub-sequence is located, the (KM 1 ) sequence numbers are selected as the second serial number set in descending order of reliability; the transmitting device will be The sequence numbers in a sequence number set and the second sequence number set are determined as a set of information bit numbers.
  • the sub-sequence or sub-set corresponding to the M 1 non-punctured serial number is adjacent to the third sub-collection, and the transmitting device is from the sub-parameter with the M 1 non-punctured serial number
  • the (KM 1 ) sequence numbers are selected as the second serial number set according to the order of reliability, including: the transmitting device performs online calculation or In the manner of reading the table, (KM 1 ) numbers are selected from the non-punctured serial numbers in the third subset as the second serial number set in descending order of reliability.
  • the second subsequence is adjacent to the subsequence or sub-set where the M 1 non-punctured serial number is located, and the transmitting device is located from the M 1 non-punctured serial number
  • the (KM 1 ) sequence numbers are selected as the second serial number set according to the order of reliability from large to small, including: In the non-punctured serial numbers in the two subsequences, (KM 1 ) numbers are selected as the second serial number set in descending order of reliability.
  • the sending device further pre-stores a first sorting table, where the first sorting table records the sorting of the reliability of the non-punctured serial number in the third subset, and the sending device reads the table.
  • the (KM 1 ) sequence numbers are selected as the second sequence number set according to the order of reliability, including: the sending device is reliable from the first sorting table.
  • the (KM 1 ) non-punctured serial numbers are selected as the second serial number set from the largest to the smallest.
  • the sending device determines the information bit number set from the at least one mother code sequence according to the fixed number F of the target polarization code, including: the sending device according to the fixed number F, From the largest mother code sequence in the at least one mother code sequence, a sequence number that is not punctured and less than or equal to N is selected as the mother code sequence of the target polarization code according to the order of reliability from small to large; the transmitting device according to the target polarization a mother code sequence of the code, determining a fixed bit number set, wherein N is a mother code length of the target polarization code;
  • the transmitting device determines the complement of the set of fixed bit number sets relative to the sequence of the sequence numbers in the mother code sequence of the target polarization code as a set of information bit numbers.
  • the sending device determines the information bit number set from the at least one mother code sequence according to the fixed number F of the target polarization code, including: in the case that M 3 ⁇ F ⁇ M 4
  • the transmitting device selects the first M 3 non-punctured serial numbers from the mother code sequence of the target polarization code as the third sequence number set according to the order of reliability from small to large, wherein M 3 is the mother code sequence of the target polarization code
  • the number of serial numbers in at least one subsequence or sub-set of the medium reliability from small to large, M 4 >M 3 , and M 3 and M 4 are positive integers; the transmitting device from the M 3 non-punctured serial numbers In the sub-sequence or sub-group adjacent to the sub-sequence or sub-set, the (FM 3 ) sequence numbers are selected as the fourth sequence number set according to the order of reliability from small to large; the transmitting device sets the third sequence number set and the The sequence number in the fourth sequence number set is determined as a
  • the (FM 3 ) sequence numbers are selected as the fourth sequence number set in order of reliability from small to large, including: the sending device performs online calculation or reading the table, In the non-punctured serial numbers in the fourth subset, (FM 3 ) numbers are selected as the fourth serial number set in descending order of reliability.
  • the sending device further pre-stores a second sorting table, wherein the second sorting table records the sorting of the reliability of the non-punctured serial number in the fourth subset, and the sending device reads
  • the (FM 3 ) sequence numbers are selected as the fourth sequence number set in descending order of reliability, including:
  • (FM 3 ) non-punctured serial numbers are selected as the fourth serial number set in descending order of reliability.
  • the present application provides a method for decoding a polarization code, the method comprising: a receiving device pre-storing at least one mother code sequence, each mother code sequence being composed of at least one subsequence and at least one sub-set, each sub- The elements in the sequence or the sub-set are the sequence numbers of the polarized channels, and each sub-sequence or sub-set includes at least one sequence number, and the relative positions of the sequence numbers in each sub-sequence are arranged in order of the reliability of the polarization channel; the receiving device Obtaining a sequence to be decoded; the receiving device decodes the sequence to be decoded according to the code length of the target polarization code and the at least one mother code sequence.
  • the relative positions of the at least one subsequence and the at least one sub-set are sequentially arranged according to the magnitude of the reliability of the polarized channel, wherein the first sub-sequence in the at least one sub-sequence When the reliability is greater than the reliability of the adjacent first subset, the reliability of the polarization channel corresponding to any one of the first sub-sequences is greater than the reliability of the polarization channel corresponding to any one of the first subsets.
  • the reliability of the polarized channel corresponding to any one of the first subsets A reliability greater than a polarization channel corresponding to any one of the second subsets; or a reliability of the first subset of the at least one subset is greater than a reliability of the first subsequence of the at least one subsequence
  • the reliability of the polarization channel corresponding to any one of the first sub-sets is greater than the reliability of the polarization channel corresponding to any one of the first sub-sequences.
  • the receiving device decodes the sequence to be decoded according to the code length of the target polarization code and the at least one mother code sequence, including: the number of information bits of the receiving device according to the target polarization code. And the at least one mother code sequence, or the fixed number of bits F of the target polarization code and the at least one mother code sequence, determining a set of information bit numbers; and the receiving device decodes the sequence to be decoded according to the set of information bit numbers.
  • the receiving device determines the information bit number set according to the information bit number K of the target polarization code and the at least one mother code sequence, including: the receiving device according to the information bit number K, In the largest mother code sequence of the at least one mother code sequence, a sequence number that is not punctured and less than or equal to N is selected as the mother code sequence of the target polarization code according to the order of reliability from the largest to the smallest; the receiving device according to the target polarization
  • the mother code sequence of the code determines a set of information bit numbers; the receiving device decodes the sequence to be decoded according to the set of information bit numbers, wherein N is the mother code length of the target polarization code.
  • the sending device selects a fixed bit sequence number set from the largest mother code sequence according to the fixed number F of the target polarization code, including:
  • the transmitting device sequentially selects F numbers that are not punctured and less than or equal to N as the fixed bit number set according to the order of reliability from small to large, where N is the mother code length of the target polarization code. .
  • the receiving device determines the information bit number set according to the mother code sequence of the target polarization code, including: in the case that M 1 ⁇ K ⁇ M 2 , the receiving device is in accordance with reliability from large to small.
  • the order of the first M 1 is selected from the mother code sequence of the target polarization code as the first sequence number, wherein M 1 is the reliability of the mother code sequence of the target polarization code from large to small
  • M 1 is the reliability of the mother code sequence of the target polarization code from large to small
  • M 1 and M 2 are positive integers
  • the receiving device is adjacent to the sub-sequence or sub-set where the M 1 non-punctured serial numbers are located In the non-punctured serial number of the subsequence or sub-collection, the (KM 1 ) serial numbers are selected as the second serial number set according to the order of reliability from large to small; the receiving device sets the first serial number set and the second serial number set. Determined as a set of information bit numbers.
  • the sub-sequence or sub-set corresponding to the M 1 non-punctured serial number is adjacent to the third sub-collection, and the receiving device is from the sub-parameter with the M 1 non-punctured serial number
  • the (KM 1 ) sequence numbers are selected as the second serial number set according to the order of reliability, including: the receiving device performs online calculation or reading.
  • (KM 1 ) numbers are selected as the second sequence number according to the order of reliability; the receiving device sets the first sequence number and the second sequence number.
  • the set is determined as a set of information bit numbers.
  • the second subsequence is adjacent to the subsequence or sub-set where the M 1 non-punctured serial number is located, and the receiving device is located from the M 1 non-punctured serial number
  • the (KM 1 ) sequence numbers are selected as the second serial number set according to the order of reliability from large to small, including: the receiving device from the second sub-s Among the non-punctured serial numbers in the sequence, (KM 1 ) numbers are selected as the second serial number set in descending order of reliability.
  • the receiving device further pre-stores a first sorting table, where the first sorting table records the ordering of the reliability of the non-punctured serial number in the third subset, and the receiving device passes the online calculation or
  • the (KM 1 ) serial numbers are selected as the second serial number set according to the order of reliability, including: the receiving device is from the first sorting table.
  • (KM 1 ) non-punctured serial numbers are selected as the second serial number set according to the order of reliability from large to small.
  • the receiving device decodes the sequence to be decoded according to the fixed number F of the target polarization code and the at least one mother code sequence, including: the receiving device according to the fixed number F, In the largest mother code sequence of the at least one mother code sequence, a sequence number that is not punctured and less than or equal to N is selected as the mother code sequence of the target polarization code according to the order of reliability from small to large; the receiving device according to the target polarization code a mother code sequence determining a fixed bit number set, wherein N is a mother code length of the target polarization code; and the transmitting device sets the fixed bit number set relative to a set of sequence numbers in the mother code sequence of the target polarization code The complement is determined as a set of information bit numbers.
  • the complement of the set is determined as a set of information bit numbers.
  • the receiving device determines the information bit number set from the at least one mother code sequence according to the fixed number F of the target polarization code, including: in the case that M 3 ⁇ F ⁇ M 4
  • the receiving device selects the first M 3 non-punctured serial numbers from the mother code sequence of the target polarization code as the third sequence number set according to the order of reliability from small to large, wherein M 3 is the mother code sequence of the target polarization code
  • M 3 is the mother code sequence of the target polarization code
  • the number of serial numbers in at least one subsequence or sub-set of the medium reliability from small to large, M 4 >M 3 , and M 3 and M 4 are positive integers;
  • the receiving device from the M 3 non-punctured serial numbers In a subsequence or a sub-set adjacent sub-sequences or sub-sets, (FM 3 ) numbers are selected as a fourth sequence number set in order of reliability from small to large;
  • the receiving device sets the third sequence number set and
  • the (FM 3 ) sequence numbers are selected as the fourth sequence number set according to the order of reliability from small to large, including: the receiving device performs online calculation or reading the table, In the non-punctured serial numbers in the fourth subset, (FM 3 ) numbers are selected as the fourth serial number set in descending order of reliability.
  • the receiving device further pre-stores a second sorting table, wherein the second sorting table records the ranking of the reliability of the non-punctured serial number in the fourth subset, and the receiving device reads the table.
  • the (FM 3 ) sequence numbers are selected as the fourth serial number set according to the order of reliability, including: the receiving device is from the second sorting table, according to From the largest to the smallest, the reliability (FM 3 ) non-punctured serial numbers are selected as the fourth serial number set.
  • the present application provides a transmitting device for performing the method of the first aspect or any possible implementation of the first aspect.
  • the transmitting device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a receiving device for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • the receiving device comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a transmitting device that includes one or more processors, one or more memories, and one or more transceivers (each transceiver including a transmitter and a receiver).
  • the transmitter or receiver is coupled to one or more antennas and transmits and receives signals through the antenna.
  • the memory is used to store computer program instructions (or code).
  • the processor is operative to execute instructions stored in the memory, and when the instructions are executed, the processor performs the method of the first aspect or any of the possible implementations of the first aspect.
  • the memory can be standalone or integrated with the processor.
  • the processor When the processor is implemented by hardware, for example, it may be a logic circuit or an integrated circuit, and is connected to other hardware through an interface, and no memory may be needed at this time.
  • the present application provides a receiving device that includes one or more processors, one or more memories, and one or more transceivers (each transceiver including a transmitter and a receiver).
  • the transmitter or receiver is connected to one or more antennas and transmits and receives signals through the antenna.
  • the memory is used to store computer program instructions (or code).
  • the processor is operative to execute instructions stored in the memory, and when the instructions are executed, the processor performs the method of the second aspect or any of the possible implementations of the second aspect.
  • the memory can be standalone or integrated with the processor.
  • the processor When the processor is implemented by hardware, for example, it may be a logic circuit or an integrated circuit, and is connected to other hardware through an interface, and no memory may be needed at this time.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform any of the first aspect or any of the possible implementations of the first aspect The method in the way.
  • the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform any of the first aspect or any possible implementation of the first aspect The method in the way.
  • the technical solution provided by the embodiment of the present application provides a mother code sequence of a polarization code composed of a sequence and a set cross, so that the mother code sequence of the form is used for encoding and decoding the polarization code.
  • the information bits are selected by semi-computing and semi-storage (ie, the information bit number set is determined), and the structure of the polarization code sequence is more flexible.
  • FIG. 1 is a schematic interaction diagram of a method for encoding and decoding a polarization code provided by the present application.
  • FIG. 2 is a schematic structural diagram of a mother code sequence provided by the present application.
  • FIG. 3 is a schematic block diagram of a sending device according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a receiving device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a sending device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a receiving device according to an embodiment of the present application.
  • the addition and multiplication operations involved in the above equations are addition and multiplication operations on the binary Galois field.
  • a part of the bits are used to carry information, called information bits.
  • the set of indices of information bits is denoted as A.
  • the other part of the bit is set to a fixed value pre-agreed by the receiving end and the transmitting end, which is called a fixed bit.
  • the set of fixed bit indices is represented by the complement A c of A.
  • the construction process of the Polar code mainly lies in the selection process of the set A, which determines the performance of the Polar code.
  • FIG. 1 is a schematic interaction diagram of a method 100 of polarization code encoding and decoding provided by the present application. Referring to Figure 1, method 100 primarily includes steps 110-150.
  • the transmitting device and the receiving device pre-store at least one mother code sequence.
  • Each of the mother code sequences is composed of at least one subsequence and at least one sub-set.
  • the elements in each sub-sequence or sub-set are the serial number of the polarized channel, and each sub-sequence or sub-set includes at least one serial number, and each sub-sequence
  • the relative positions of the serial numbers are arranged in order of the reliability of the polarized channels.
  • parameters such as error probability, channel capacity, or polarization weight may be used as parameters for measuring the reliability of the polarized channel, or other parameters capable of measuring the polarization channel may be selected, which is not specifically limited in the embodiment of the present invention.
  • the mother code sequence stored by the sending device and the receiving device is an ordered sequence consisting of sub-sequence and sub-set cross-ordering.
  • the two adjacent ones of the mother code sequences may be sub-sequences and sub-sequences, sub-sequences and sub-sets, and sub-sets and sub-sets.
  • a mother code sequence with a code length of 32 is given as an example.
  • the mother code sequence is [0,1,2,4,8], ⁇ 16,3 ⁇ ,[5,6,9,10], ⁇ 17,12 ⁇ , ⁇ 18,20,7,24,11 , 13 ⁇ , ⁇ 19, 14 ⁇ , [21, 22, 25, 26], ⁇ 28, 15 ⁇ , [23, 27, 29, 30, 31].
  • each subsequence or subcollection may be any number (at least one).
  • the reliability of the polarized channels is ranked from large to small, the reliability of the serial number in the sub-sequence or sub-set corresponding to the polarized channel is higher than that in the sub-sequence or sub-collection after the sorting.
  • the reliability of the polarization channel corresponding to the serial number is higher than that in the sub-sequence or sub-collection after the sorting.
  • the reliability of the polarized channel is sorted from small to large, the reliability of the polarized channel corresponding to the sequence number in the sub-sequence or the sub-set is lower than that of the sub-sequence or sub-set after the sorting.
  • the serial number corresponds to the reliability of the polarized channel.
  • sequence numbers included in the subsequence are arranged in order of the reliability of the polarization channels corresponding to the sequence numbers. That is to say, the serial numbers in the subsequences are in sequential order.
  • the sequence numbers in the mother code sequence are ordered from large to small according to the reliability of the polarization channel, the sequence numbers in any one of the mother code sequences are also the reliability of the polarization channel corresponding to the sequence numbers. Sorted from big to small. Then, the reliability of the polarized channel corresponding to the preceding serial number in the subsequence is higher than the reliability of the polarized channel corresponding to the subsequent serial number in the subsequence.
  • the sequence numbers in the sub-sets do not have a sequential order relationship. In other words, the reliability of the polarization channel corresponding to all sequence numbers in a subset is not divided into small and small.
  • the reliability of one subsequence in the embodiment of the present application is higher than the reliability of another subsequence (denoted as subsequence #B), and refers to any of subsequence #A.
  • the reliability of the polarization channel corresponding to one sequence number is higher than the reliability of the polarization channel corresponding to any one of the sequence numbers #B.
  • the reliability of a subsequence is compared with the reliability of a subset, or the reliability of one subset is similar to the reliability of another subset.
  • the relative positions of the at least one subsequence and the at least one subset are sequentially arranged according to the magnitude of the reliability of the polarized channel
  • the reliability of the first subsequence in the at least one subsequence is greater than the reliability of the adjacent first subsequence, the reliability of the polarized channel corresponding to any one of the first subsequences is greater than The reliability of the polarization channel corresponding to any one of the sub-sets;
  • the reliability of the first subset in the at least one subset is greater than the reliability of the adjacent second subset
  • the reliability of the polarization channel corresponding to any one of the first subsets is greater than the second sub- The reliability of the polarization channel corresponding to any one of the numbers in the set; or
  • the reliability of the first subset in the at least one subset is greater than the reliability of the first subsequence in the at least one subsequence, the reliability of the polarized channel corresponding to any one of the first subsets The reliability of the polarized channel corresponding to any one of the first subsequences.
  • FIG. 2 is a schematic structural diagram of a mother code sequence provided by the present application.
  • the mother code sequence is composed of (I 1 , I 2 , ..., I i , I i+1 , ..., I n ), and I represents a subsequence or a sub-set. If the sequence numbers in the mother code sequence are sorted according to the reliability of the polarization channel from small to large, if the reliability of the polarization channel corresponding to any one of j > i and I j is greater than the pole corresponding to any one of the I i The reliability of the channel.
  • I i and I i+1 include the following possible cases. .
  • I i is a subsequence and I i+1 is a sub-set.
  • I i is a subsequence, and the relative positions of the numbers in I i are arranged in order of magnitude of reliability.
  • I i+1 is a subset, and the polarization channel corresponding to the sequence number in I i+1 has no relative size (or high and low) in reliability.
  • the reliability of any of a number I i corresponding polarization channels is greater than any of a number i I Corresponding polarization channel reliability.
  • I i is a subset and I i+1 is a subset.
  • I i and I i+1 are both subsets, and therefore, the polarization channel corresponding to the internal number of each of I i and I i+1 has no reliability. However, since I i is located before I i+1 , the reliability of the polarization channel corresponding to any one of I i is lower than the reliability of any one of I i+1 .
  • I i is a subset and I i+1 is a subsequence.
  • I i is a subset, and the reliability of the polarization channel corresponding to each internal sequence number has no size, but I i is located before I i+1 , therefore, any of I i
  • the reliability of a polarization channel corresponding to a sequence number is less than the polarization channel with the lowest reliability among I i+1 .
  • a sub-sequence and a sub-set are simultaneously included in one mother code sequence.
  • the number of sub-sequences and the number of sub-sets are not limited, and the two may be equal or unequal.
  • any number (at least one) of serial numbers may be included in each subsequence, and any number (at least one) of serial numbers may also be included in each sub-set.
  • the transmitting device determines, according to a code length of the target polarization code, a set of information bit numbers from the at least one mother code sequence.
  • the most important is the selection of the information bits, that is, the determination of the information bit number set.
  • the following describes the selection process of the information bit number set for the characteristics of the mother code sequence provided by the embodiment of the present application.
  • the sending device determines, according to the code length of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the transmitting device determines the information bit number set from the at least one mother code sequence according to the information bit number K of the target polarization code or the fixed bit number F of the target polarization code.
  • a Polar code includes the following parts: information bits, fixed bits (or frozen bits), and punctured bits.
  • K is the number of information bits
  • F is the number of fixed bits
  • P is the number of bits that may be punctured during rate matching.
  • the number K of information bits refers to the number of non-fixed bits.
  • K herein also includes a check bit.
  • the sending device determines, according to the code length of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the transmitting device determines the information bit number set from the at least one mother code sequence according to the information bit number K of the target polarization code or the fixed bit number F of the target polarization code.
  • the selection of the information bit number set may be determined according to the number K of information bits of the target polarization code or the fixed number of bits of the target polarization code.
  • any sequence number in the mother code sequence shown in the embodiment of the present application is a sequence number that is not punctured in the Polar code encoding process.
  • a set of information bit numbers is determined based on the number K of information bits.
  • the transmitting device determines the information bit sequence set to be different accordingly.
  • the transmitting device and the receiving device are pre-stored with a maximum mother code sequence.
  • the maximum mother code sequence referred to herein refers to a mother code sequence in which the transmitting device and the receiving device constitute the maximum code length that the communication system can support.
  • the code length of the largest mother code sequence is denoted by L.
  • L 32, 128, 1024, and the like.
  • the sending device determines, according to the number K of information bits of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the transmitting device determines the information bit number set according to the mother code sequence of the target polarization code, where N is the mother code length of the target polarization code.
  • serial numbers corresponding to the polarized channels in the mother code sequence are labels starting from 1, then the sequence number less than or equal to N should be selected. If the numbers corresponding to the polarized channels in the mother code sequence are numbered starting from 0, a sequence number smaller than N should be selected.
  • the symbol [] represents a set
  • the ⁇ represents a sequence
  • sequence numbers 13, 11 and 7 are located in the same subset of the largest mother code sequence. Therefore, the reliability of the polarized channels corresponding to the three sequence numbers is not sorted by size.
  • the last sequence number 10 is selected from the subsequences [5, 6, 9, 10] of the largest mother code sequence, and likewise, the respective polarizations of the numbers 5, 6, 9, and 10 in the subsequence are corresponding.
  • the reliability of the channel is also not sorted by size, so in the previous example, the sequence number 10 was chosen.
  • the last serial number can also be selected from any of 5, 6, and 9.
  • the sequence number in the sub-set can be Belongs to this previous subsequence.
  • the subsequent subsequence of the sub-set with the number of ones is 1, the serial number in the sub-set may also be included in the latter sequence.
  • the previous and the last one of the sub-collections are sub-sequences, the sub-series and the sub-sequences before and after can be combined into one sequence.
  • the mother code sequence of the target polarization code selected from the above mother code sequence is ⁇ 15 ⁇ , ⁇ 14 ⁇ , ⁇ 7, 11, 13 ⁇ , ⁇ 12 ⁇ , [5], wherein, after ⁇ 12 ⁇ One is a subsequence [5], and since the order of the reliability between the numbers in the two subsequences is determined, the subsequences ⁇ 12 ⁇ and [5] can be combined into one sequence. Therefore, these subsequences or sub-sets can also be expressed as ⁇ 15 ⁇ , ⁇ 14 ⁇ , ⁇ 7, 11, 13 ⁇ , [12, 5].
  • the two subsets can also be combined into one sequence. For example, in this example, ⁇ 15 ⁇ , ⁇ 14 ⁇ can be combined into one subsequence [15, 14], so that the parent code sequence of the above target polarization code can be further expressed as [15, 14], ⁇ 7,11,13 ⁇ , [12,5].
  • the sending device selects the information bit number set from the largest mother code sequence according to the information bit number K
  • the mother code whose sequence number is smaller than the target polarization code may be directly selected from the largest mother code sequence.
  • the K serial numbers of the length, the set of the K serial numbers is the information bit number set.
  • the transmitting device can directly select seven serial numbers from the largest mother code sequence in descending order of reliability. Instead of first selecting the mother code sequence of the target polarization code from the largest mother code sequence, and selecting the 7 sequence numbers as the information bit number set from the mother code sequence of the target polarization code in order of reliability.
  • the transmitting device directly selects seven serial numbers smaller than 16 from the largest mother code sequence having a code length of 32, in order of reliability, in order of 15, 14, 13, 11, 7, 12, 10. That is, the information bit number set is ⁇ 15, 14, 13, 11, 7, 12, 10 ⁇ .
  • the above mainly introduces how to select the mother code sequence of the target polarization code from a maximum mother code sequence.
  • the information bit number set may be further selected from the mother code sequence of the target polarization code, and the following is how to select the information bit sequence set from the mother code sequence of the target polarization code.
  • the transmitting device and the receiving device pre-store multiple mother code sequences without pre-storing the largest mother code sequence.
  • the sending device determines, according to the number K of information bits of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the transmitting device selects the first M 1 non-punctured serial numbers from the mother code sequence of the target polarization code as the information bit number set according to the order of reliability from large to small, wherein M 1 is the number of serial numbers in the at least one subsequence or sub-set of the mother code sequence of the target polarization code from the largest to the smallest, M 1 ⁇ 1, and M 1 is an integer.
  • its mother code sequence is [0, 1, 2, 4, 8], ⁇ 16, 3 ⁇ , [5, 6, 9, 10], ⁇ 17 , 12 ⁇ , ⁇ 18, 20, 7, 24, 11, 13 ⁇ , ⁇ 19, 14 ⁇ , [21, 22, 25, 26], ⁇ 28, 15 ⁇ , [23, 27, 29, 30, 31 ].
  • K P 9 + P 8 .
  • M 1 P 9 + P 8 .
  • the number of all the serial numbers in the sub-sequences or sub-sets in the mother code sequence is added together, which is exactly equal to K.
  • the number mentioned here may be any number, for example, one, two or n (n ⁇ N and an integer).
  • the sending by the sending device, determining the information bit sequence set from the at least one mother code sequence according to the information bit number K of the target polarization code, including:
  • the transmitting device selects the first M 1 non-punctured serial numbers from the mother code sequence of the target polarization code as the first sequence number set according to the order of reliability from large to small, wherein , M 1 is the number of serial numbers in the at least one subsequence or sub-set of the mother code sequence of the target polarization code from the largest to the smallest, M 2 >M 1 , and M 1 and M 2 are positive integers;
  • the transmitting device selects (KM 1 ) sequence numbers in descending order of reliability from the non-punctured serial numbers of the sub-sequences or sub-sets adjacent to the sub-sequence or sub-set of the M 1 non-punctured serial number.
  • KM 1 sequence numbers in descending order of reliability from the non-punctured serial numbers of the sub-sequences or sub-sets adjacent to the sub-sequence or sub-set of the M 1 non-punctured serial number.
  • the sending device determines the sequence number in the first sequence number set and the second sequence number set as the information bit sequence number set.
  • the number of serial numbers in the first W subsequences or sub-sets in the mother code sequence is smaller than K in order of reliability from large to small, but the first W+1 sub-sequences or The number of serial numbers in the sub-collection is added together larger than K.
  • the sequence number of the first W subsequences or sub-sets in the mother code sequence is first determined as the first sequence number set. Then, from the W+1th sub-sequence or the sub-set, (KM 1 ) numbers are selected as the second serial number set in descending order of reliability. Finally, the first sequence number set and the second sequence number set are combined, and the obtained set is a set of information bit numbers.
  • P 9 + P 8 ⁇ K ⁇ P 9 + P 8 + P 7 the number K of information bits is not the sum of the number of sequence numbers in several subsequences or sub-sets in the mother code sequence.
  • the transmitting device to select P 9 and P 8 corresponding sequences or subsets I 9, I 8 serial numbers of all of the first set number, the first number is ⁇ 23,27,29,30 , 31, 28, 15 ⁇ .
  • the highest reliability (KP 9 -P 8 ) sequence numbers are selected as the second sequence number set from the subsequences or sub-sets adjacent to one of the sub-sequences or sub-sets with the lowest reliability among I 9 and I 8 .
  • the least reliable of I 9 and I 8 is I 8
  • I 8 adjacent to I 8 is I 7 .
  • the transmitting device needs to select (KP 9 - P 8 ) sequence numbers from I 7 as the second sequence number set.
  • the second subsequence is adjacent to the subsequence or subset where the M 1 non-punctured sequence number is located,
  • the sending device selects (KM according to the order of reliability from the largest to the smallest in the non-punctured serial number in the subsequence or sub-set adjacent to the sub-sequence or sub-set in which the M 1 non-punctured serial number is located.
  • a sequence number as a second sequence number set including:
  • the transmitting device selects (KM 1 ) numbers from the non-punctured serial numbers in the second sub-sequence as the second serial number set in descending order of reliability.
  • the (KP 9 -P 8 ) sequence numbers with the highest reliability are directly selected as the second sequence number set.
  • the highest reliability (9-5-2) sequence numbers are directly selected from I 7 as the second sequence number set, and the second sequence number set is ⁇ 25,26 ⁇ .
  • the sub-sequence or sub-set corresponding to the M 1 non-punctured serial number is adjacent to the third sub-set.
  • the sending device selects the non-punctured serial numbers in the subsequences or sub-sets adjacent to the sub-sequence or sub-set in which the M 1 non-punctured serial number is located, in descending order of reliability (KM 1
  • the serial number is used as the second serial number set, including:
  • the sending device selects (KM 1 ) numbers from the non-punctured serial numbers in the third subset according to the online calculation or reading table as the second serial number set according to the order of reliability.
  • the transmitting device needs to select the (9-5-2) sequence numbers with the highest reliability as the second sequence number set from I 7 by means of online calculation or table reading.
  • the sending device further pre-stores a first sorting table, where the first sorting table records the ranking of the reliability of the non-punctured serial number in the third subset.
  • the sending device selects (KM 1 ) non-punctured serial numbers from the third subset by using a table reading manner, in descending order of reliability, as the second serial number set, including:
  • the transmitting device selects (KM 1 ) non-punctured serial numbers as the second serial number set from the first sorting table in order of reliability.
  • the sending device may select by using a construction algorithm.
  • the configuration algorithm used by the sending device may be channel-independent or related to a code rate or a code length, which is not limited herein.
  • the method of online calculation in the prior art can also be adopted.
  • a Gaussian approximation algorithm and a polarization weight construction algorithm in the prior art can be employed.
  • the transmitting device may further store the possible rankings in the subset. For example, different ordering of sequence numbers in the subset is stored correspondingly according to different code lengths. When performing polarization coding, the corresponding ordering is selected according to the actual code length. Alternatively, the table is stored according to other factors (for example, sorting under different algorithms), which is not limited in this embodiment.
  • all the sequence numbers in all the subsets in the mother code sequence can be stored in a manner of storing the table, and the relative positions of the sequence numbers in the subsets are stored.
  • the following describes how to select a set of information bit numbers from the mother code sequence of the target polarization code according to the fixed number F of the target polarization codes.
  • Determining the set of information bit numbers based on the number F of fixed bits is similar to the process of determining the set of information bit numbers based on the number K of information bits. The following is a brief description.
  • the sending device determines, according to the fixed number F of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the transmitting device selects a non-punctured and less than or equal to N sequence number from the largest to largest sequence of the at least one mother code sequence according to the number of fixed bits F as the mother of the target polarization code.
  • the transmitting device determines a fixed bit number set according to the mother code sequence of the target polarization code, where N is a mother code length of the target polarization code;
  • the transmitting device determines the complement of the set of fixed bit number sets relative to the sequence of the sequence numbers in the mother code sequence of the target polarization code as a set of information bit numbers.
  • the transmitting device first selects the non-punctured and the sequence number is less than or equal to N from the largest mother code sequence in the order of reliability from small to large.
  • the sequence number is used as the mother code sequence of the target polarization code.
  • a fixed set of bit numbers is then determined from the mother code sequence of the target polarization code.
  • the complement of the set of fixed bit number sets relative to the sequence number in the mother code sequence of the polarized code is determined as the set of information bit numbers.
  • the sequence number of the non-punctured but less than or equal to N is selected from the largest mother code sequence, and the mother code sequence of the target polarization code obtained is sorted according to the reliability from small to large, that is, [0, 1, 2, 4, 8], ⁇ 3 ⁇ , [5, 6, 9, 10], ⁇ 12 ⁇ , ⁇ 7, 11, 13 ⁇ , ⁇ 14 ⁇ , ⁇ 15 ⁇ .
  • the transmitting device may directly select the largest mother code sequence according to the order of reliability from small to large.
  • the sequence number is smaller than the F number of the mother code length of the target polarization code, and the set of the F number numbers is a fixed bit number set.
  • the transmitting device directly selects seven serial numbers smaller than 16 from the largest mother code sequence having a code length of 32, in order of reliability, from 0 to 1, 2, 4, 8, 3, 5. That is, the fixed bit number set is ⁇ 0, 1, 2, 4, 8, 3, 5 ⁇ .
  • the sending by the transmitting device, determining the information bit sequence set from the at least one mother code sequence according to the fixed number F of the target polarization code, including:
  • the transmitting device selects the first M 3 non-punctured serial numbers from the mother code sequence of the target polarization code in the order of reliability from small to large as the fixed bit number set, where M 3 is The number of serial numbers in the at least one subsequence or sub-set of the mother code sequence of the target polarization code from small to large, M 3 ⁇ 1 and an integer;
  • the transmitting device determines a complement of the set of the fixed bit number set with respect to the set of the sequence numbers in the mother code sequence of the target polarization code as the information bit number set.
  • the information bit number set is selected from the mother code sequence of the target polarization code, that is, the target polarization code is selected from the largest mother code sequence in the above embodiment. After the mother code sequence, the process of selecting the information bit number set from the mother code sequence.
  • the mother code sequence having the above code length of 32 will be described as an example.
  • the number of serial numbers in the subsequence or sub-set included in the mother code sequence of the target polarization code is sequentially referred to as P 1 , P 2 , . . . P n in the order of the reliability of the polarization channel from small to large.
  • the complement of the mother code sequence is the set of information bit numbers.
  • the information bit number set is ⁇ 7, 11, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ⁇ .
  • the sending device determines, according to the fixed number F of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the transmitting device selects the first M 3 non-punctured serial numbers from the mother code sequence of the target polarization code in the order of reliability from the smallest to the largest, wherein M 3 is the number of consecutive numbers in the pre-at least one sub-sequence or sub-set of the mother code sequence of the target polarization code from small to large, M 4 >M 3 , and M 3 and M 4 are positive integers;
  • the transmitting device selects (FM 3 ) sequence numbers as the fourth sequence number set in a sub-sequence or a sub-set adjacent to the sub-sequence or sub-set in which the M 3 non-punctured serial numbers are located, in order of reliability from small to large;
  • the sending device determines the sequence number in the third sequence number set and the fourth sequence number set as a fixed bit sequence number set
  • the transmitting device determines a complement of the set of the fixed bit number set with respect to the set of the sequence numbers in the mother code sequence of the target polarization code as the information bit number set.
  • the transmitting device may have a different selection methods.
  • the transmitting device may first select all non-punctured sequences from I 1 , I 2 ..., I i , and the process is the same as I i+1 is a subsequence. The difference is that when the (FM 3 ) non-punctured sequence number is selected from the subset I i+1 , since the reliability of the polarization channel corresponding to the sequence number in the subset I i+1 is not sorted, the transmission is performed. The device needs to select (FM 3 ) the non-punctured serial number from the subset I i+1 by means of online calculation or reading. Finally, the selected (FM 3 ) non-punctured serial numbers and all non-punctured serial numbers selected from I 1 , I 2 ..., I i form a fixed bit number set.
  • the fourth sub-set adjacent to the sub-sequence or sub-set where the M 3 non-punctured serial numbers are located is located
  • the transmitting device selects (FM 3 ) numbers from the smallest to the largest sub-sequences or sub-sets adjacent to the sub-sequences or sub-sets of the M 3 non-punctured serial numbers as the fourth A collection of serial numbers, including:
  • the sending device selects (FM 3 ) numbers from the non-punctured serial numbers in the fourth subset according to the online calculation or reading table as the fourth serial number set according to the order of reliability.
  • the sending device further pre-stores a second sorting table, where the second sorting table records the ranking of the reliability of the non-punctured serial number in the fourth subset.
  • the sending device selects (FM 3 ) sequence numbers from the non-punctured serial numbers in the fourth subset according to the non-punctured serial numbers in the fourth subset as the fourth serial number set, including:
  • the transmitting device selects (FM 3 ) non-punctured serial numbers as the fourth serial number set from the second sorting table in descending order of reliability.
  • the transmitting device performs polarization coding on the information bits according to the information bit number set.
  • step 130 the transmitting device performs polarization coding on the information bits according to the selected information bit number set to obtain a coded sequence.
  • the step 130 can be the same as the prior art, which is not limited herein.
  • the information bits herein are the bits to be encoded that the transmitting device is to send to the receiving device.
  • the encoded sequence is also the codeword obtained by polarization encoding the coded bits.
  • the transmitting device transmits the encoded sequence to the receiving device.
  • the receiving device performs steps 140-150.
  • the receiving device acquires a sequence to be decoded.
  • the receiving device decodes the sequence to be decoded according to the code length of the target polarization code and the at least one mother code sequence.
  • the transmitting device polar codes the information bits to obtain an encoded sequence.
  • the encoded sequence is sent by the transmitting device, and the sequence received by the receiving device is the sequence to be decoded.
  • step 150 after the receiving device correctly decodes the sequence to be decoded, information bits are obtained.
  • both the transmitting device and the receiving device pre-store the same information of the mother code sequence. Moreover, which mother code sequence and encoding parameters are used by the transmitting device and the receiving device for each code length of the Polar code are pre-agreed. Therefore, after the receiving device acquires the sequence to be decoded (or the codeword to be decoded), it can correctly decode the sending device to send to itself by Cyclical Redundancy Check (CRC) check.
  • CRC Cyclical Redundancy Check
  • the process of decoding the acquired sequence to be decoded by the receiving device is actually a reverse process in which the transmitting device performs polarization encoding on the information bits according to the information bit number set. Since the fixed bits are pre-agreed by the transmitting device and the receiving device, that is, the process of decoding the sequence to be decoded by the receiving device is to determine the set of information bit numbers.
  • the receiving device decodes the sequence to be decoded according to the code length of the target polarization code and the at least one mother code sequence, including: the number of information bits of the receiving device according to the target polarization code. And the at least one mother code sequence, or the fixed number of bits F of the target polarization code and the at least one mother code sequence, determining a set of information bit numbers; and the receiving device decodes the sequence to be decoded according to the set of information bit numbers.
  • the receiving device determines the information bit number set according to the number K of information bits.
  • the receiving device determines, according to the mother code sequence of the target polarization code, a set of information bit numbers, including:
  • the receiving device selects the first M 1 non-punctured serial numbers from the mother code sequence of the target polarization code in the order of reliability from the largest to the smallest, wherein M 1 is the number of serial numbers in the first at least one subsequence or sub-set of the mother code sequence of the target polarization code from small to large, M 1 ⁇ 1, and M 1 is an integer.
  • the receiving device determines, according to the mother code sequence of the target polarization code, a set of information bit numbers, including:
  • the receiving device selects the first M 1 non-punctured serial numbers from the mother code sequence of the target polarization code in the order of reliability from the largest to the smallest, wherein , M 1 is the number of serial numbers in the at least one subsequence or sub-set of the mother code sequence of the target polarization code from the largest to the smallest, M 2 >M 1 , and M 1 and M 2 are positive integers;
  • the receiving device selects (KM 1 ) sequence numbers in descending order of reliability from the non-punctured serial numbers of the sub-sequences or sub-sets adjacent to the sub-sequence or sub-set of the M 1 non-punctured serial number.
  • KM 1 sequence numbers in descending order of reliability from the non-punctured serial numbers of the sub-sequences or sub-sets adjacent to the sub-sequence or sub-set of the M 1 non-punctured serial number.
  • the receiving device determines the sequence number in the first sequence number set and the second sequence number set as the information bit sequence number set.
  • the sub-sequence or sub-set corresponding to the M 1 non-punctured serial number is adjacent to the third sub-set.
  • the receiving device selects (KM 1 ) according to the reliability from the largest to the smallest in the non-punctured serial number of the subsequence or sub-collection adjacent to the sub-sequence or sub-set in which the M 1 non-punctured serial number is located.
  • the serial number is used as the second serial number set, including:
  • the receiving device selects (KM 1 ) sequence numbers as the second sequence number set from the non-punctured serial numbers in the third subset according to the order of reliability from large to small by online calculation or table reading;
  • the receiving device determines the first sequence number set and the second sequence number set as a set of information bit numbers.
  • the second subsequence is adjacent to the subsequence or subset where the M 1 non-punctured sequence number is located,
  • the receiving device selects (KM 1 ) according to the reliability from the largest to the smallest in the non-punctured serial number of the subsequence or sub-collection adjacent to the sub-sequence or sub-set in which the M 1 non-punctured serial number is located.
  • the serial number is used as the second serial number set, including:
  • the receiving device selects (KM 1 ) numbers from the non-punctured serial numbers in the second sub-sequence according to the order of reliability from the largest to the smallest.
  • the receiving device further pre-stores a first sorting table, where the first sorting table records the order of reliability of the non-punctured serial numbers in the third subset.
  • the receiving device selects (KM 1 ) sequence numbers from the non-punctured serial numbers in the third subset according to the online calculation or reading table as the second serial number set according to the order of reliability from large to small.
  • the receiving device selects (KM 1 ) non-punctured serial numbers as the second serial number set from the first sorting table in descending order of reliability.
  • the receiving device determines a process of the information bit number set according to the information bit number K from the pre-stored at least one mother code sequence, and the foregoing sending device determines the information bit sequence number according to the information bit number K.
  • the process of collection is the same. Therefore, reference may be made to the above description, and details are not described herein again.
  • the receiving device determines the information bit number set according to the fixed number of bits F.
  • the receiving device determines, according to the fixed number F of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the receiving device selects the first M 3 non-punctured serial numbers from the mother code sequence of the target polarization code in order of reliability from small to large as the fixed bit number set, where M 3 is The number of serial numbers in the at least one subsequence or sub-set of the mother code sequence of the target polarization code from small to large, M 3 ⁇ 1 and an integer;
  • the receiving device determines a complement of the set of fixed bit number sets with respect to the set of sequence numbers in the mother code sequence of the target polarization code as a set of information bit numbers.
  • the receiving device determines, according to the fixed number F of the target polarization code, the information bit sequence set from the at least one mother code sequence, including:
  • the receiving device selects the first M 3 non-punctured serial numbers from the mother code sequence of the target polarization code as the third serial number set in the order of reliability from small to large, wherein M 3 is the number of consecutive numbers in the pre-at least one sub-sequence or sub-set of the mother code sequence of the target polarization code from small to large, M 4 >M 3 , and M 3 and M 4 are positive integers;
  • the receiving device determines the sequence number in the third sequence number set and the fourth sequence number set as a fixed bit sequence number set
  • the receiving device determines a complement of the set of fixed bit number sets with respect to the set of sequence numbers in the mother code sequence of the target polarization code as a set of information bit numbers.
  • the fourth sub-set adjacent to the sub-sequence or sub-set where the M 3 non-punctured serial numbers are located is located
  • the receiving device selects (FM 3 ) numbers as the fourth serial number in the sub-sequence or sub-set adjacent to the sub-sequence or sub-set in which the M 3 non-punctured serial numbers are located, in order of reliability from small to large. Collections, including:
  • the receiving device selects (FM 3 ) numbers from the non-punctured serial numbers in the fourth subset according to the online calculation or reading table as the fourth serial number set according to the order of reliability.
  • the receiving device further pre-stores a second sorting table, where the second sorting table records the ranking of the reliability of the non-punctured serial number in the fourth subset.
  • the receiving device selects (FM 3 ) sequence numbers from the non-punctured serial numbers in the fourth subset according to the non-punctured serial numbers in the fourth subset as the fourth serial number set, including:
  • the receiving device selects (FM 3 ) non-punctured serial numbers as the fourth serial number set from the second sorting table in descending order of reliability.
  • the process of determining, by the receiving device, the set of information bit numbers according to the fixed number of bits F from the pre-stored at least one mother code sequence is the same as the process of determining the information bit number set according to the fixed number of bits F by the transmitting device. Therefore, the detailed process of the foregoing embodiment may refer to the foregoing description of determining, by the transmitting device, the set of information bit numbers from the pre-stored at least one mother code sequence according to the fixed number of bits F, and details are not described herein again.
  • mother code sequence An example of a mother code sequence is provided in the following embodiment of the present application, and the code length is 1024.
  • the mother code sequence is as follows:
  • ⁇ in the mother code sequence represents a subset
  • [] represents a subsequence
  • the technical solution provided by the embodiment of the present application provides a mother code sequence of a polarization code composed of a sequence and a set cross, so that the mother code sequence of the form is used for encoding and decoding the polarization code.
  • the information bits are selected by semi-computing and semi-storage (ie, the information bit number set is determined), and the structure of the polarization code sequence is more flexible.
  • FIG. 3 is a schematic block diagram of a sending device 500 according to an embodiment of the present application.
  • the transmitting device 500 includes:
  • the storage unit 510 is configured to pre-store at least one mother code sequence, where each mother code sequence is composed of at least one sub-sequence and at least one sub-set, and each element in the sub-sequence or sub-set is a serial number of the polarized channel, and each sub-sequence Or the subset includes at least one sequence number, and the relative positions of the sequence numbers in each of the sub-sequences are arranged in order of the reliability of the polarization channel;
  • the processing unit 520 is configured to determine, according to a code length of the target polarization code, a set of information bit numbers from the at least one mother code sequence;
  • the processing unit 520 is further configured to perform polarization coding on the information bits according to the information bit sequence set.
  • the sending device may further include a sending unit 530, configured to send the encoded sequence to the receiving device.
  • a sending unit 530 configured to send the encoded sequence to the receiving device.
  • FIG. 4 is a schematic block diagram of a receiving device 600 according to an embodiment of the present application.
  • the receiving device 600 includes:
  • the storage unit 610 is configured to pre-store at least one mother code sequence, where each mother code sequence is composed of at least one sub-sequence and at least one sub-set, and each element in the sub-sequence or sub-set is a serial number of the polarized channel, and each sub-sequence Or the subset includes at least one sequence number, and the relative positions of the sequence numbers in each of the sub-sequences are arranged in order of the reliability of the polarization channel;
  • a receiving unit 620 configured to acquire a sequence to be decoded
  • the processing unit 630 is configured to decode the sequence to be decoded according to the code length of the target polarization code and the at least one mother code sequence.
  • the respective units in the receiving device 600 and the other operations or functions provided by the embodiment of the present application are respectively implemented in the method 100 for implementing the polarization code encoding and decoding provided by the embodiment of the present application. For the sake of brevity, it will not be repeated here.
  • FIG. 5 is a schematic structural diagram of a sending device 700 according to an embodiment of the present application.
  • the transmitting device 700 includes one or more processors 701, one or more memories 702, and one or more transceivers (each transceiver including a transmitter 703 and a receiver 704).
  • Transmitter 703 or receiver 704 is coupled to one or more antennas 705 and transmits and receives signals through the antenna.
  • Computer program instructions (or code) are stored in memory 702.
  • the processor 701 executes the computer program instructions stored in the memory 702 to implement the corresponding processes and/or operations performed by the transmitting device in the method 100 of encoding and encoding the polarization code provided by the embodiments of the present application. For the sake of brevity, it will not be repeated here.
  • the transmitting device 500 shown in FIG. 3 can be implemented by the transmitting device 700 shown in FIG. 5.
  • memory unit 510 shown in FIG. 3 can be implemented by memory 702
  • processing unit 520 can be implemented by processor 701.
  • the transmitting unit can be implemented by the transmitter 703.
  • the memory 702 can be separate or integrated with the processor 701.
  • the processor 701 may be a logic circuit or an integrated circuit, and is connected to other hardware through an interface, and the memory 702 may not be needed at this time.
  • FIG. 6 is a schematic structural diagram of a receiving device 800 according to an embodiment of the present application.
  • receiving device 800 includes one or more processors 801, one or more memories 802, and one or more transceivers (each transceiver including transmitter 803 and receiver 804).
  • Transmitter 803 or receiver 804 is coupled to one or more antennas 805 and transmits and receives signals through the antenna.
  • Computer program instructions (or code) are stored in memory 802.
  • the processor 801 executes the computer program instructions stored in the memory 802 to implement the corresponding processes and/or operations performed by the receiving device in the method 100 of encoding and encoding the polarization code provided by the embodiments of the present application. For the sake of brevity, it will not be repeated here.
  • the memory 802 can be separate or integrated with the processor 801.
  • the processor 801 may be a logic circuit or an integrated circuit, and is connected to other hardware through an interface, and the memory 802 may not be needed at this time.
  • the receiving device 600 shown in FIG. 4 can be implemented by the receiving device 800 shown in FIG. 6.
  • memory unit 610 shown in FIG. 4 can be implemented by memory 802
  • receiving unit 620 can be implemented by receiver 804 shown in FIG.
  • Processing unit 630 can be implemented by processor 801.
  • the processor may be a central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the program of the present application.
  • the processor can include a digital signal processor device, a microprocessor device, an analog to digital converter, a digital to analog converter, and the like.
  • the processor can distribute the control and signal processing functions of the mobile device among the devices according to their respective functions.
  • the processor can include functionality to operate one or more software programs, which can be stored in memory.
  • the memory may be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type that can store information and instructions. Dynamic storage device. It can also be an Electrically Erasable Programmable Read Only Memory (EEPROM), a Compact Disc Read Only Memory (CD-ROM) or other optical disc storage, and a disc storage (including a compact disc, a laser disc). , a disc, a digital versatile disc, a Blu-ray disc, etc.), a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store a desired program code in the form of an instruction or data structure and accessible by a computer, But it is not limited to this.
  • the memory can exist independently or it can be integrated with the processor.
  • the transceiver can include, for example, an infrared transceiver, a transceiver, a Universal Serial Bus (USB) transceiver, a Bluetooth transceiver, and the like.
  • the transmitting device and the receiving device can transmit signals (or data) through the transmitter using a corresponding communication technology, and/or receive signals (data) through the receiver.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种极化码译码和编码的方法、发送设备和接收设备,有助于改善现有技术中在中短包、码率、可靠度以及复杂度上存在的不足。该方法包括:发送设备预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;发送设备根据目标极化码的码长,从所述至少一个母码序列中确定信息比特序号集合;发送设备根据信息比特序号集合对信息比特进行极化编码。

Description

极化码编码和译码的方法、发送设备和接收设备 技术领域
本申请涉及极化码领域,并且更具体地,涉及一种极化码编码和极化码译码的方法、发送设备和接收设备。
背景技术
信道编码作为最基本的无线接入技术,在保证数据的可靠性传输方面起到至关重要的作用。在现有的无线通信系统中,一般采用Turbo码、低密度奇偶校验码(Low Density Parity Check,LDPC)和极化(Polar)码进行信道编码。Turbo码不能够支持过低或过高码率的信息传输。而对于中短包传输,Turbo码和LDPC码也由于自身编译码的特点,在有限码长下很难达到理想的性能。在实现方面,Turbo码和LDPC码在编译码实现过程中具有较高的计算复杂度。极化(Polar)码是理论上证明可以取得香农容量,且具有相对简单的编译码复杂度的码,因而得到了广泛的应用。
极化码是一种线性块码。其生成矩阵为F N,其编码过程为
Figure PCTCN2018081189-appb-000001
其中,
Figure PCTCN2018081189-appb-000002
是一个二进制的行矢量,长度为N,且N=2 n,n为正整数。在极化码的编码过程中,
Figure PCTCN2018081189-appb-000003
中的一部分比特用来携带信息,称为信息比特。信息比特的索引的集合记作A。
Figure PCTCN2018081189-appb-000004
中的另外一部分比特置为接收端和发送端预先约定的固定值,称为固定比特。极化码的编码过程主要取决于集合A的选取过程,它决定了极化码编译码的性能。在已有的极化码编码方案中,大多采用在线计算或离线存储的方式来确定信息比特序号集合。在线计算的方式由于不涉及实际信道的参数,容易出现收发两端的计算精度不同而导致译码失败的情况,并且在线计算的时延和复杂度也较大。而离线存储的方式为了支持各种码长和码率的组合,收发两端需要存储大量的母码序列,因而存储开销非常大,同时,灵活性不足。
而随着无线通信系统的快速演进,未来的通信系统(例如,5G)将会出现一些新的特点,例如,最典型的三个通信场景包括增强型移动互联网(Enhance Mobile Broadband,eMBB)、海量机器连接通信(Massive Machine Type Communication,mMTC)和高可靠低延迟通信(Ultra Reliable Low Latency Communication,URLLC)。这些通信场景在数据传输的可靠性、复杂度、灵活性和时延等方面都提出了更高的要求。另外,eMBB和mMTC区别于现有的长期演进(Long Term Evolution,LTE)技术的一个重要特点是中短包传输,这就要求信道编码可以更好的支持这类码长的通信。
因此,为了适应未来无线通信系统对于数据传输在码率、可靠度、时延、灵活性和复杂度等方面的更高要求,亟需一种新的编译码技术,以改善现有技术中的信道编码技术在这些方面存在的不足。
发明内容
本申请提供一种极化码编码和译码的方法,有助于改善现有技术中的信道编码技术在码率、可靠度、时延、灵活性和复杂度等方面存在的不足。
第一方面,本申请提供一种极化码编码的方法,该方法包括:发送设备预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;发送设备根据目标极化码的码长,从该至少一个母码序列中确定信息比特序号集合;发送设备根据信息比特序号集合对信息比特进行极化编码。
在一种可能的实现方式中,该至少一个子序列和至少一个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,其中,在该至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠度的情况下,第一子序列中任意一个序号对应的极化信道的可靠度大于第一子集合中任意一个序号对应的极化信道的可靠度;或者,在该至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,第一子集合中任意一个序号对应的极化信道的可靠度大于第二子集合中的任意一个序号对应的极化信道的可靠度;或者,在该至少一个子集合中的第一子集合的可靠度大于该至少一个子序列中的第一子序列的可靠度的情况下,第一子集合中任意一个序号对应的极化信道的可靠度大于第一子序列中任意一个序号对应的极化信道的可靠度。
在一种可能的实现方式中,发送设备根据目标极化码的码长,从该至少一个母码序列中确定信息比特序号集合,包括:发送设备根据目标极化码的信息比特个数K,或目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合。
在一种可能的实现方式中,发送设备根据目标极化码的信息比特个数K,从该至少一个母码序列中确定信息比特序号集合,包括:发送设备根据信息比特个数K,从该至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为目标极化码的母码序列;发送设备根据目标极化码的母码序列,确定信息比特序号集合,其中,N为目标极化码的母码码长。
在一种可能的实现方式中,发送设备根据目标极化码的信息比特个数K,从最大母码序列中选取信息比特序号集合,包括:
发送设备按照可靠度从大到小的顺序,从最大母码序列中依次选取非打孔且小于或等于N的K个序号作为信息比特序号集合,其中,N为目标极化码的母码码长。
在本申请实施例中,信息比特个数K指的是非固定比特的个数。在存在校验比特的情况下,本文中的K也包括了校验比特。
在一种可能的实现方式中,发送设备根据目标极化码的信息比特个数K,从该至少一个母码序列中确定信息比特序号集合,包括:在K=M 1的情况下,发送设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为信息比特序号集合,其中,M 1为目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
在一种可能的实现方式中,发送设备根据目标极化码的信息比特个数K,从该至少一 个母码序列中确定信息比特序号集合,包括:在M 1<K≤M 2的情况下,发送设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;发送设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;发送设备将第一序号集合和第二序号集合中的序号确定为信息比特序号集合。
在一种可能的实现方式中,与该M 1个非打孔序号所在的子序列或子集合相邻为第三子集合,以及,发送设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:发送设备通过在线计算或读表的方式,从第三子集合中的非打孔序号中按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合。
在一种可能的实现方式中,与该M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,以及,发送设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序,选取(K-M 1)个序号作为第二序号集合,包括:发送设备从第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合。
在一种可能的实现方式中,发送设备还预存储有第一排序表,第一排序表中记录有第三子集合中非打孔序号的可靠性的排序,以及,发送设备通过读表的方式,从第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:发送设备从第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为第二序号集合。
在一种可能的实现方式中,发送设备根据目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合,包括:发送设备根据所述固定比特个数F,从该至少一个母码序列中的最大母码序列中,按照可靠度从小到大的顺序选取非打孔且小于或等于N的序号作为目标极化码的母码序列;发送设备根据目标极化码的母码序列,确定固定比特序号集合,其中,N为目标极化码的母码码长;
发送设备将所述固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
在一种可能的实现方式中,发送设备根据目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合,包括:在F=M 3的情况下,发送设备从目标极化码的母码序列中,按照可靠度从小到大的顺序选取前M 3个非打孔序号作为固定比特序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 3≥1且为整数;发送设备将所述固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
在一种可能的实现方式中,发送设备根据目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合,包括:在M 3<F≤M 4的情况下,发送设备按照可靠度从小到大的顺序,从目标极化码的母码序列中选取前M 3个非打孔序号作为第三序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合 中序号的个数,M 4>M 3,且M 3和M 4为正整数;发送设备从与所述M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合;发送设备将所述第三序号集合和所述第四序号集合中的序号确定为固定比特序号集合;发送设备将所述固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
在一种可能的实现方式中,与该M 3个非打孔序号所在的子序列或子集合相邻的为第四子集合,以及,发送设备从与该M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合,包括:发送设备通过在线计算或读表的方式,从所述第四子集合中的非打孔序号中,按照可靠度的从大到小的顺序选取(F-M 3)个序号作为所述第四序号集合。
在一种可能的实现方式中,发送设备还预存储有第二排序表,第二排序表中记录有所述第四子集合中非打孔序号的可靠性的排序,以及,发送设备通过读表的方式,从所述第四子集合中的非打孔序号中,按照可靠度的从大到小的顺序选取(F-M 3)个序号作为所述第四序号集合,包括:发送设备从第二排序表中,按照可靠度的从大到小的顺序选取(F-M 3)个非打孔序号作为所述第四序号集合。
第二方面,本申请提供一种极化码译码的方法,该方法包括:接收设备预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;接收设备获取待译码序列;接收设备根据目标极化码的码长和该至少一个母码序列,对待译码序列进行译码。
在一种可能的实现方式中,该至少一个子序列和至少一个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,其中,在该至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠度的情况下,第一子序列中任意一个序号对应的极化信道的可靠度大于第一子集合中任意一个序号对应的极化信道的可靠度;或者,在该至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,第一子集合中任意一个序号对应的极化信道的可靠度大于第二子集合中的任意一个序号对应的极化信道的可靠度;或者,在该至少一个子集合中的第一子集合的可靠度大于该至少一个子序列中的第一子序列的可靠度的情况下,第一子集合中任意一个序号对应的极化信道的可靠度大于第一子序列中任意一个序号对应的极化信道的可靠度。
在一种可能的实现方式中,接收设备根据目标极化码的码长和该至少一个母码序列,对待译码序列进行译码,包括:接收设备根据目标极化码的信息比特个数K和该至少一个母码序列,或目标极化码的固定比特个数F和该至少一个母码序列,确定信息比特序号集合;接收设备根据信息比特序号集合,对待译码序列进行译码。
在一种可能的实现方式中,接收设备根据目标极化码的信息比特个数K和该至少一个母码序列,确定信息比特序号集合,包括:接收设备根据所述信息比特个数K,从该至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为目标极化码的母码序列;接收设备根据目标极化码的母码序列,确定信息比特序号集合;接收设备根据信息比特序号集合,对待译码序列进行译码,其中,N为目标极化码的母码码长。
在一种可能的实现方式中,发送设备根据目标极化码的固定比特个数F,从最大母码序列中选取固定比特序号集合,包括:
发送设备按照可靠度从小到大的顺序,从最大母码序列中依次选取非打孔且小于或等于N的F个序号作为固定比特序号集合,其中,N为目标极化码的母码码长。
在一种可能的实现方式中,接收设备根据目标极化码的母码序列,确定信息比特序号集合,包括:在K=M 1的情况下,接收设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为信息比特序号集合,其中,M 1为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
在一种可能的实现方式中,接收设备根据目标极化码的母码序列,确定信息比特序号集合,包括:在M 1<K≤M 2的情况下,接收设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;接收设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;接收设备将第一序号集合和第二序号集合中的序号确定为信息比特序号集合。
在一种可能的实现方式中,与该M 1个非打孔序号所在的子序列或子集合相邻为第三子集合,以及,接收设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:接收设备通过在线计算或读表的方式,从第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;接收设备将第一序号集合和第二序号集合确定为信息比特序号集合。
在一种可能的实现方式中,与该M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,以及,接收设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:接收设备从第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合。
在一种可能的实现方式中,接收设备还预存储有第一排序表,第一排序表中记录有第三子集合中非打孔序号的可靠性的排序,以及,接收设备通过在线计算或读表的方式,从第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:接收设备从第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为第二序号集合。
在一种可能的实现方式中,接收设备根据目标极化码的固定比特个数F和该至少一个母码序列,对待译码序列进行译码,包括:接收设备根据固定比特个数F,从该至少一个母码序列中的最大母码序列中,按照可靠度从小到大的顺序选取非打孔且小于或等于N的序号作为目标极化码的母码序列;接收设备根据目标极化码的母码序列,确定固定比特序号集合,其中,N为目标极化码的母码码长;发送设备将所述固定比特序号集合相对于目标极化码的母码序列中序号组成的集合的补集确定为信息比特序号集合。
在一种可能的实现方式中,接收设备根据目标极化码的固定比特个数F,从该至少一 个母码序列中确定信息比特序号集合,包括:在F=M 3的情况下,接收设备从目标极化码的母码序列中,按照可靠度从小到大的顺序选取前M 3个非打孔序号作为固定比特序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 3≥1且为整数;接收设备将所述固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
在一种可能的实现方式中,接收设备根据目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合,包括:在M 3<F≤M 4的情况下,接收设备按照可靠度从小到大的顺序,从目标极化码的母码序列中选取前M 3个非打孔序号作为第三序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 4>M 3,且M 3和M 4为正整数;接收设备从与该M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合;接收设备将所述第三序号集合和第四序号集合中的序号确定为固定比特序号集合;接收设备将所述固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
在一种可能的实现方式中,与该M 3个非打孔序号所在的子序列或子集合相邻的为第四子集合,以及,接收设备从与该M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合,包括:接收设备通过在线计算或读表的方式,从第四子集合中的非打孔序号中,按照可靠度的从大到小的顺序选取(F-M 3)个序号作为第四序号集合。
在一种可能的实现方式中,接收设备还预存储有第二排序表,第二排序表中记录有第四子集合中非打孔序号的可靠性的排序,以及,接收设备通过读表的方式,从第四子集合中的非打孔序号中,按照可靠度的从大到小的顺序选取(F-M 3)个序号作为第四序号集合,包括:接收设备从第二排序表中,按照可靠度的从大到小的顺序选取(F-M 3)个非打孔序号作为第四序号集合。
第三方面,本申请提供一种发送设备,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该发送设备包括执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请提供了一种接收设备,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该接收设备包括执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,本申请提供一种发送设备,该发送设备包括一个或多个处理器,一个或多个存储器,一个或多个收发器(每个收发器包括发射机和接收机)。发射机或接收机与一个或多个天线连接,并通过天线收发信号。存储器用于存储计算机程序指令(或者说,代码)。处理器用于执行存储器中存储的指令,当指令被执行时,处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
可选地,存储器可以是独立的,也可以跟处理器集成在一起。当处理器由硬件实现时,例如,可以是逻辑电路或者集成电路,通过接口与其他硬件相连,此时可以不需要存储器。
第六方面,本申请提供一种接收设备,该接收设备包括一个或多个处理器,一个或多个存储器,一个或多个收发器(每个收发器包括发射机和接收机)。发射机或接收机与一 个或多个天线连接,并通过天线收发信号。存储器用于存储计算机程序指令(或者说,代码)。处理器用于执行存储器中存储的指令,当指令被执行时,处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
可选地,存储器可以是独立的,也可以跟处理器集成在一起。当处理器由硬件实现时,例如,可以是逻辑电路或者集成电路,通过接口与其他硬件相连,此时可以不需要存储器。
第七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
本申请实施例提供的技术方案,通过提供一种由序列和集合交叉组成的极化码的母码序列,使得采用这种形式的母码序列进行极化码编码和译码的过程中,可以采用半计算半存储的方式选取信息位(即,确定信息比特序号集合),极化码序列的构造更加灵活。另外,对于现有技术中在中短数据包传输、可靠性、复杂度和码率等方面存在的不足也有所改善。
附图说明
图1为本申请提供的极化码编码和译码的方法的示意性交互图
图2为本申请提供的母码序列的结构示意图。
图3为本申请实施例提供的发送设备的示意性框图。
图4为本申请实施例提供的接收设备的示意性框图。
图5为本申请实施例提供的发送设备的示意性结构图。
图6为本申请实施例提供的接收设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先,对本申请涉及的极化(Polar)码的相关技术作简单介绍。
Polar码是一种线性块码。其生成矩阵为F N,其编码过程为
Figure PCTCN2018081189-appb-000005
其中,
Figure PCTCN2018081189-appb-000006
是一个二进制的行矢量,长度为N,且N=2 n,n为正整数。
Figure PCTCN2018081189-appb-000007
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。以上各式中涉及的加法、乘法操作均为二进制伽罗华域上的加法、乘法操作。
在Polar码的编码过程中,
Figure PCTCN2018081189-appb-000008
中的一部分比特用来携带信息,称为信息比特。信息比特的索引的集合记作A。
Figure PCTCN2018081189-appb-000009
中的另外一部分比特置为接收端和发送端预先约定的固定值,称为固定比特。固定比特的索引的集合用A的补集A c表示。Polar码的构造过程主要在于集合A的选取过程,它决定了Polar码的性能。
鉴于未来的通信系统(例如,5G)将会出现几种典型的同通信场景,例如,eMBB、mMTC和URLLC等对数据传输的可靠性、时延、编译码复杂度和灵活性等方面提出的更 高要求,本申请实施例基于极化码的基础,提出一种极化码编码和译码的方法,能够改善现有技术中极化码在码率、可靠度、时延、灵活性和复杂度等方面存在的不足。
下面对本申请实施例提供的极化码编码和译码的方法进行详细说明。
本申请实施例中出现的编号“第一”、“第二”等仅仅为了区分不同的对象,例如,为了区分不同的子序列、子集合等。不应对本申请实施例的保护范围构成限定。
图1为本申请提供的极化码编码和译码的方法100的示意性交互图。参见图1,方法100主要包括步骤110-150。
110、发送设备和接收设备预存储至少一个母码序列。
其中,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的。
计算极化信道的可靠性时,可以采用现有技术中的密度进化、高斯近似或线性拟合等方法。具体计算过程可以与现有技术相同,为了简洁,此处不作赘述。
另外,可以选用错误概率、信道容量或极化权重等参数作为衡量极化信道可靠性的参数,或者,也可以选用能够衡量极化信道的其他参数,本发明实施例对此不作特别限定。
在本申请实施例中,发送设备和接收设备存储的母码序列是由子序列和子集合交叉排序组成的一个有序序列。其中,母码序列中任意两个相邻的可以是子序列和子序列,也可以是子序列和子集合,还可以是子集合和子集合。
为了便于理解,这里给出一个码长为32的母码序列作为示例。例如,母码序列为[0,1,2,4,8],{16,3},[5,6,9,10],{17,12},{18,20,7,24,11,13},{19,14},[21,22,25,26],{28,15},[23,27,29,30,31]。
在这个母码序列中,子序列和子集合交叉排列。每个子序列或子集合中序号的个数可以为任意多个(至少一个)。
例如,如果是按照极化信道的可靠度从大到小排序,排序靠前的子序列或子集合中的序号对应极化信道的可靠度,高于排序靠后的子序列或子集合中的序号对应的极化信道的可靠度。
又例如,如果是按照极化信道的可靠度从小到大排序,排序靠前的子序列或子集合中的序号对应的极化信道的可靠度,低于排序靠后的子序列或子集合中的序号对应的极化信道的可靠度。
需要说明的是,子序列中包括的所有序号是按照这些序号对应的极化信道的可靠度的大小顺序排列的。即是说,子序列中的序号是具有先后顺序的。如上文所述,如果母码序列中的序号按照极化信道的可靠度从大到小排序的,母码序列中的任意一个子序列中的序号也是按照这些序号对应的极化信道的可靠度从大到小排序的。则子序列中靠前的序号对应的极化信道的可靠度高于子序列中靠后的序号对应的极化信道的可靠度。
在本申请实施例中,子集合中的序号不具有先后排序关系。换句话说,一个子集合中的所有序号对应的极化信道的可靠度是没有大小之分的。
另外,本申请实施例中所说的一个子序列(记作子序列#A)的可靠度高于另一个子序列(记作子序列#B)的可靠度,是指子序列#A中任意一个序号对应的极化信道的可靠度,都高于子序列#B中的任意一个序号对应的极化信道的可靠度。一个子序列的可靠度与一 个子集合的可靠度的高低比较,或者一个子集合的可靠度与另一个子集合的可靠度的高低比较也是类似的道理。
可选地,作为一个实施例,该至少一个子序列和至少一个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,
其中,在该至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠度的情况下,第一子序列中任意一个序号对应的极化信道的可靠度大于第一子集合中任意一个序号对应的极化信道的可靠度;或者,
在该至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,第一子集合中任意一个序号对应的极化信道的可靠度大于第二子集合中的任意一个序号对应的极化信道的可靠度;或者
在该至少一个子集合中的第一子集合的可靠度大于该至少一个子序列中的第一子序列的可靠度的情况下,第一子集合中任意一个序号对应的极化信道的可靠度大于第一子序列中任意一个序号对应的极化信道的可靠度。
图2为本申请提供的母码序列的结构示意图。参见图2,母码序列由(I 1、I 2、…,I i、I i+1,…,I n)组成,I表示一个子序列或子集合。若母码序列中的序号按照极化信道的可靠度从小到大排序,则若满足j>i,I j中任意一个序号对应的极化信道的可靠度大于I i中任意一个序号对应的极化信道的可靠度。
以母码序列中任意两个相邻的子序列或子集合(例如,图2中所示的I i和I i+1)为例,I i和I i+1包括如下几种可能的情况。
情况1
I i为子序列,I i+1为子集合。
在情况1中,I i为子序列,I i中序号的相对位置是按照可靠度的大小顺序排列的。I i+1为子集合,I i+1中的序号对应的极化信道在可靠度上没有相对大小(或者说,高低)的区分。但是,由于整个母码序列是按照可靠度从小到大排序的,而I i位于I i+1之前,因此,I i中任意一个序号对应的极化信道的可靠度大于I i中任意一个序号对应的极化信道的可靠度。
情况2
I i为子集合,I i+1为子集合。
在情况2中,I i和I i+1均为子集合,因此,I i和I i+1各自内部的序号对应的极化信道没有可靠度的大小之分。但是,由于I i位于I i+1之前,因此,I i中任意一个序号对应的极化信道的可靠度低于I i+1中任意一个序号对应的可靠度的大小。
情况3
I i为子集合,I i+1为子序列。
与前面的2中情况类似,这里的I i为子集合,其内部的各序号对应的极化信道的可靠度没有大小之分,但是I i位于I i+1之前,因此,I i中任意一个序号对应的极化信道的可靠度小于I i+1中可靠度最低的极化信道。
在本申请实施例中,一个母码序列中同时包括子序列和子集合。其中,子序列的个数与子集合的个数没有任何限定,两者可以相等,也可以不等。并且,每个子序列中可以包括任意多个(至少一个)序号,每个子集合中也可以包括任意多个(至少一个)序号。
需要说明的是,本申请实施例提供的母码序列,对于不同长度的Polar码,不同的算法,或者相同算法的不同参数可能得到子集合中序号的不同排序。但是,即使采用不同的算法,或者采用相同算法的不同参数,子序列中序号的排序是始终保持不变的。
120、发送设备根据目标极化码的码长,从该至少一个母码序列中确定信息比特序号集合。
根据前文对Polar码的介绍可以知道,在Polar码编码过程中,最主要的是信息位的选取,也就是信息比特序号集合的确定。下面,针对本申请实施例提供的母码序列的特点,说明信息比特序号集合的选取过程。
可选地,作为一个实施例,发送设备根据目标极化码的码长,从该至少一个母码序列中确定信息比特序号集合,包括:
发送设备根据目标极化码的信息比特个数K,或目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合。
在Polar码编码的过程中,一个Polar码包括如下部分:信息比特、固定比特(或称为冻结比特)和被打孔的比特。以Polar码的母码码长为N为例,则N=K+F+P。其中,K为信息比特的个数,F为固定比特的个数,P为速率匹配过程中可能被打孔的比特的个数。
在本申请实施例中,信息比特个数K指的是非固定比特的个数。在存在校验比特的情况下,本文中的K也包括了校验比特。
可选地,作为一个实施例,发送设备根据目标极化码的码长,从该至少一个母码序列中确定信息比特序号集合,包括:
发送设备根据目标极化码的信息比特个数K,或目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合。
在本申请实施例中,信息比特序号集合的选取,可以根据目标极化码的信息比特个数K,或者目标极化码的固定比特个数来确定。
需要说明的是,本申请实施例中所示的母码序列中的任意一个序号,均是在Polar码编码过程中不会被打孔的序号。
(1)根据信息比特个数K,确定信息比特序号集合。
具体地,根据发送设备和接收设备预存储的母码序列的不同情况,发送设备在确定信息比特序号集合也相应有所不同。
情况1
发送设备和接收设备预存储有最大母码序列。
应理解,这里所说的最大母码序列是指发送设备和接收设备构成通信系统所能支持的最大码长的母码序列。以下将最大母码序列的码长记作L。例如,L=32、128、1024等。
为了便于说明,以下的各实施例中以L=32作为示例,对本申请提供的极化码编码和极化码译码的详细过程进行说明。
可选地,作为一个实施例,发送设备根据目标极化码的信息比特个数K,从该至少一个母码序列中确定信息比特序号集合,包括:
发送设备根据信息比特个数K,从该至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为目标极化码的母码序列;
发送设备根据目标极化码的母码序列,确定信息比特序号集合,其中,N为目标极化 码的母码码长。
应理解,若母码序列中极化信道对应的各序号是从1开始标号,则应选取小于或等于N的序号。若母码序列中极化信道对应的各序号从0开始标号,则应选取小于N的序号。
为了便于说明,以L=32为例,按照极化信道的可靠度从小到大排序,假定最大母码序列为:
[0,1,2,4,8],{16,3},[5,6,9,10],{17,12},{18,20,7,24,11,13},{19,14},[21,22,25,26],{28,15},[23,27,29,30,31]。
这里,符号[]表示集合,{}表示序列。
若目标极化码的母码码长为N=16,信息比特个数K=7。
则先从最大母码序列中按照可靠度从大到小的顺序,选取非打孔且小于或等于N的序号,得到该N=16的目标极化码的母码序列,即为{15},{14},{7,11,13},{12},[5,6,9,10],{3},[0,1,2,4,8]。再从这些非打孔且小于或等于N的序号中,选取信息比特序号集合。例如,如果按照可靠性从大到小的顺序选取,选取的7个序号后得到的序列应该为{15},{14},{7,11,13},{12},[5]。即,信息比特序号集合={15,14,13,11,7,12,10}。
当然,序号13,11和7位于最大母码序列的同一个子集合中,因此,这3个序号对应的极化信道的可靠度是没有大小排序的。另外,最后一个序号10是从最大母码序列的子序列[5,6,9,10]中选取的,同样地,由于该子序列中的序号5,6,9,10各自对应的极化信道的可靠度也是没有大小排序的,因此,在前面的示例中,选取了序号10。显然,最后一个序号也可以选取5、6和9中的任意一个。这样的话,选取的N=16,信息比特个数K=7的目标极化码的信息比特序号集合也可以为{15,14,13,11,7,12,5}、{15,14,13,11,7,12,6}或{15,14,13,11,7,12,9}。至于如何从一个子集合中选取部分可靠度较高的序号,可以采用在线计算或读表的方式,下文会作详细说明。
可以理解的是,在选取极化码的母码序列的过程中,如果出现了序号个数为1的子集合,且这个子集合的前一个为子序列,则可以将这个子集合中的序号归入到这前一个子序列中。或者,如果序号个数为1的子集合的后一个后子序列,也可以将该子集合中的这个序号归入到这后一个序列中。当然,如果这个子集合的前一个和后一个均为子序列的话,这个子集合和前后的子序列可以合并为一个序列。
例如,从上述母码序列中选取的目标极化码的母码序列为{15},{14},{7,11,13},{12},[5],其中,{12}的后一个为子序列[5],由于两个子序列中的序号之间的可靠度大小的排序是确定的,因此可以将子序列{12}和[5]合并为一个序列。因此,这几个子序列或子集合也可以表示为{15},{14},{7,11,13},[12,5]。类似地,如果两个相邻的子集合中各有一个序号,由于两个子集合的排序对应着不同的可靠度,因此,这两个子集合也可以合并成为一个序列。例如,在这个示例中,{15},{14}可以合并为一个子序列[15,14],这样,上面这个目标极化码的母码序列也可以进一步表示为[15,14],{7,11,13},[12,5]。
在另一种可能的实现方式中,发送设备根据信息比特个数K,从最大母码序列中选取信息比特序号集合时,可以直接从最大母码序列中选取序号小于目标极化码的母码长度的K个序号,这K个序号构成的集合即为信息比特序号集合。
以上述N=32的母码序列为最大母码序列为例。假定目标极化码的母码长度为16,信息比特个数为7。则,发送设备可以按照可靠度从大到小的顺序,从最大母码序列中直接 选择7个序号即可。而不用先从最大母码序列中选取目标极化码的母码序列,再按照可靠度从大到小的顺序,从目标极化码的母码序列中选择7个序号作为信息比特序号集合。
例如,发送设备按照可靠度从大到小的顺序,直接从码长为32的最大母码序列中选择7个小于16的序号,依次为15,14,13,11,7,12,10。即信息比特序号集合为{15,14,13,11,7,12,10}。
上面主要介绍了如何从一个最大母码序列中,选取目标极化码的母码序列。确定了目标极化码的母码序列后,可以进一步从该目标极化码的母码序列中选取信息比特序号集合,下面对如何从目标极化码的母码序列中选取信息比特序号集合作说明。
情况2
发送设备和接收设备预存储有多个母码序列,而不预存最大母码序列。
可选地,作为一个实施例,发送设备根据目标极化码的信息比特个数K,从该至少一个母码序列中确定信息比特序号集合,包括:
在K=M 1的情况下,发送设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为所述信息比特序号集合,其中,M 1为目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
继续以上述码长为32的母码序列为例。这里,我们假定目标极化码的码长N=32,其母码序列为[0,1,2,4,8],{16,3},[5,6,9,10],{17,12},{18,20,7,24,11,13},{19,14},[21,22,25,26],{28,15},[23,27,29,30,31]。
这里,将N=32的极化码的母码序列的子序列或子集合,按照可靠度从小到大的顺序,将每个子序列或子集合中的序号的个数记作P 1,P 2,…,P i。在上面的这种示例中,i=9,其中,P 1=5,P 2=2,P 3=4等。
如果目标极化码的码长N=32,K=7。即,K=P 9+P 8。换句话说,信息比特的个数K恰好等于目标极化码的母码序列中,按照可靠度从大到小的顺序排列的若干个子序列或子集合中序号的个数之和。这里,M 1=P 9+P 8。换句话说,按照可靠度从大到小的顺序,母码序列中排序靠前的若干个子序列或子集合中所有序号的个数加在一起,恰好等于K。当然,这里所说的若干个,可以是任意多个,例如,1个、2个或n(n<N且为整数)个。
在这种情况下,发送设备可以直接将这若干个子序列或子集合中的序号作为信息比特序号集合。则,N=32,K=7的情况下,发送设备确定的信息比特序号集合为{I 9,I 8}={28,15,23,27,29,30,31}。
可选地,作为一个实施例,所述发送设备根据所述目标极化码的信息比特个数K,从所述至少一个母码序列中确定所述信息比特序号集合,包括:
在M 1<K≤M 2的情况下,发送设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;
发送设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
发送设备将第一序号集合和第二序号集合中的序号确定为信息比特序号集合。
这种情况即是说,按照可靠度从大到小的顺序,母码序列中的前W个子序列或子集 合中序号的个数加在一起比K小,但是,前W+1个子序列或子集合中的序号个数加在一起比K大。在这种情况下,先将母码序列中这前W个子序列或子集合中序号确定为第一序号集合。再从第W+1个子序列或子集合中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合。最后,将第一序号集合和第二序号集合合并,得到的集合即为信息比特序号集合。
继续以上述码长为32的母码序列作为示例进行说明。
如果目标极化码的母码码长N=32,K=9。在这种情况下,P 9+P 8<K<P 9+P 8+P 7。换句话说,信息比特的个数K不是母码序列中若干个子序列或子集合中序号的个数之和。
这种情况下,发送设备先选取P 9和P 8对应的子序列或子集合I 9、I 8中的所有序号作为第一序号集合,则第一序号集合为{23,27,29,30,31,28,15}。再从与I 9、I 8中可靠度最低的一个子序列或子集合相邻的子序列或子集合中选取可靠度最高的(K-P 9-P 8)个序号作为第二序号集合。在上述示例中,I 9、I 8中可靠度最低的为I 8,与I 8相邻的为I 7。则,发送设备需要从I 7中选取(K-P 9-P 8)个序号作为第二序号集合。
可选地,作为一个实施例,与该M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,
以及,发送设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序,选取(K-M 1)个序号作为第二序号集合,包括:
发送设备从第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合。
具体地,如果I 7为一个子序列,则直接选取可靠度最高的(K-P 9-P 8)个序号作为第二序号集合。例如,上述N=32的母码序列中,I 7为子序列,则从I 7中直接选取可靠度最高的(9-5-2)个序号作为第二序号集合,则第二序号集合为{25,26}。
可选地,作为一个实施例,与该M 1个非打孔序号所在的子序列或子集合相邻为第三子集合,
以及,发送设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:
发送设备通过在线计算或读表的方式,从第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
具体地,如果上述的I 7为一个子集合,则发送设备需要通过在线计算或读表的方式,从I 7中选取可靠度最高的(9-5-2)个序号作为第二序号集合。
进一步可选地,作为一个实施例,发送设备还预存储有第一排序表,第一排序表中记录有第三子集合中非打孔序号的可靠性的排序,
以及,发送设备通过读表的方式,按照可靠度从大到小的顺序,从第三子集合中选取(K-M 1)个非打孔序号作为第二序号集合,包括:
发送设备从所述第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为所述第二序号集合。
具体地,若采用在线计算的方式从子集合中选取可靠性较高的部分序号,发送设备可 以利用构造算法来选取。发送设备采用的构造算法可以是与信道无关的,也可以是与码率或码长相关的,此处不做限定。当然,也可以采用现有技术中在线计算的方法。例如,可以采用现有技术中的高斯近似算法和极化权重构造算法。
若采用读表的方式从一个子集合中选取可靠性较高的部分序号,发送设备可以进一步将该子集合中可能的排序情况进行存表。例如,按照不同的码长,对应地存储该子集合中序号的不同排序。在进行极化编码时,再根据实际的码长选择对应的排序。或者,根据其他的因素(例如,不同算法下的排序)进行存表,本申请实施例对此不作任何限定。
以上述N=32的母码序列为例,可以将该母码序列中所有的子集合中的所有序号采用存表的方式,将这些子集合中的序号的相对位置的排序进行存储。
确定第二序号集合之后,将第一序号集合和第二序号集合合并得到信息比特序号集合。即,信息比特序号集合为{23,27,29,30,31,28,15}+{25,26}={15,23,25,26,28,27,29,30,31}
下面说明如何根据目标极化码的固定比特个数F,从目标极化码的母码序列中选取信息比特序号集合。
(2)根据固定比特个数F,确定信息比特序号集合。
根据固定比特个数F确定信息比特序号集合,与根据信息比特个数K确定信息比特序号集合的过程是类似的。下面作简单说明。
首先针对前面所述的情况1,即,发送设备和接收设备预存储最大母码序列的情况下,如何根据F选取信息比特序号集合。
可选地,作为一个实施例,发送设备根据目标极化码的固定比特个数F,从该至少一个母码序列中确定信息比特序号集合,包括:
发送设备根据固定比特个数F,从该至少一个母码序列中的最大母码序列中,按照可靠度从小到大的顺序选取非打孔且小于或等于N的序号作为目标极化码的母码序列;
发送设备根据目标极化码的母码序列,确定固定比特序号集合,其中,N为所述目标极化码的母码码长;
发送设备将所述固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
可以理解的是,在发送设备和接收设备存储有最大母码序列的情况下,发送设备先按照可靠度从小到大的顺序,从最大母码序列中选取非打孔且序号小于或等于N的序号作为目标极化码的母码序列。再从目标极化码的母码序列中确定固定比特序号集合。最后,将固定比特序号集合相对于极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
下面举例说明。
继续以最大母码序列的码长L=32作为示例。假定最大母码序列为:
[0,1,2,4,8],{16,3},[5,6,9,10],{17,12},{18,20,7,24,11,13},{19,14},[21,22,25,26],{28,15},[23,27,29,30,31]。
如果,目标极化码的母码码长N=16,固定比特个数F=7。
则先从最大母码序列中选取非打孔却小于或等于N的序号,按照可靠度从小到大排序,得到的目标极化码的母码序列,即为[0,1,2,4,8],{3},[5,6,9,10],{12},{7,11,13},{14}, {15}。之后,再按照可靠度从小到大的顺序,从该母码序列中选取7个序号,得到固定比特集合(记作集合C),即集合C={[0,1,2,4,8],{3},[5,6]}={0,1,2,4,8,3,5,6}。这里将目标极化码的母码序列中所有序号构成的集合记作集合D,集合D={0,1,2,4,8,3,5,6,9,10,12,7,11,13}。最后,将集合C相对于集合D的补集确定为信息比特序号集合。则信息比特序号集合={5,6,9,10,12,7,11,13,14,15}。
在另一种可能的实现方式中,发送设备根据固定比特个数F,从最大母码序列中选取固定比特序号集合时,可以按照可靠度从小到大的顺序,直接从最大母码序列中选取序号小于目标极化码的母码长度的F个序号,这F个序号构成的集合即为固定比特序号集合。而不需要先从最大母码序列中选取目标极化码的母码序列,再按照可靠度从小到小大的顺序,从目标极化码的母码序列中选择F个序号作为固定比特序号集合。
例如,发送设备按照可靠度从小到大的顺序,直接从码长为32的最大母码序列中选择7个小于16的序号,依次为0,1,2,4,8,3,5。即固定比特序号集合为{0,1,2,4,8,3,5}。
下面再针对前面所述的情况2,即,发送设备和接收设备预存储有多个母码序列,而不存储最大母码序列的情况下,如何根据F选取信息比特序号集合。
可选地,作为一个实施例,所述发送设备根据所述目标极化码的固定比特个数F,从所述至少一个母码序列中确定所述信息比特序号集合,包括:
在F=M 3的情况下,发送设备从目标极化码的母码序列中,按照可靠度从小到大的顺序选取前M 3个非打孔序号作为固定比特序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 3≥1且为整数;
发送设备将固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
实际上,根据目标极化码的固定比特个数F,从目标极化码的母码序列中选取信息比特序号集合,即是上述实施例中从最大母码序列中选取出目标极化码的母码序列之后,再从该母码序列中选取信息比特序号集合的过程。
以上述码长为32的母码序列作为示例进行说明。
这里按照极化信道的可靠度从小到大的顺序,将目标极化码的母码序列中包括的子序列或子集合中序号的个数依次记作P 1,P 2,…P n
即,若F=M 3=P 1+P 2+…+P i(i=1,2,…n),则可以判定固定比特集合为{I1,I2,…I i}。固定比特集合相对于母码序列中所有序号构成的集合的补集即为信息比特序号集合。
例如,N=32,F=13。则固定比特集合(记作集合C)为C={[0,1,2,4,8],{16,3},[5,6,9,10],{17,12}}相对于母码序列的补集即为信息比特序号集合。则信息比特序号集合为{7,11,13,14,15,18,19,20,21,22,23,24,25,26,27,28,29,30,31}。
可选地,作为一个实施例,发送设备根据目标极化码的固定比特个数F,从至少一个母码序列中确定信息比特序号集合,包括:
在M 3<F≤M 4的情况下,发送设备按照可靠度从小到大的顺序,从目标极化码的母码序列中选取前M 3个非打孔序号作为第三序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 4>M 3,且M 3和M 4为正整数;
发送设备从与该M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合;
发送设备将第三序号集合和第四序号集合中的序号确定为固定比特序号集合;
发送设备将固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
即,若M 3<F<M 4,并且,M 3=P 1+P 2+…P i,M 4=P 1+P 2+…P i+P i+1
具体地,根据P i+1对应的I i+1为子序列或子集合,发送设备可以有不同的选取方法。
如果I i+1为子序列,发送设备可以从I 1、I 2…,I i中选取所有的非打孔的序号,再从I i+1中选取可靠度最低的(F-P 1-P 2-…P i=F-M 3)个非打孔的序号,将这些序号合并作为固定比特序号集合。最后,将固定比特序号集合相对于母码序列中所有序号构成的集合的补集确定为信息比特序号集合。
如果I i+1为子集合,发送设备可以先从I 1、I 2…,I i中选取所有的非打孔的序号,这个过程与I i+1为子序列是一样的。不同的是,在从子集合I i+1中选取(F-M 3)非打孔的序号时,由于子集合I i+1中的序号对应的极化信道的可靠度没有大小排序,因此,发送设备需要通过在线计算或读表的方式,从子集合I i+1中选取(F-M 3)非打孔的序号。最后,将选取的(F-M 3)个非打孔的序号与从I 1、I 2…,I i中选取所有的非打孔的序号构成固定比特序号集合。
可选地,作为一个实施例,与该M 3个非打孔序号所在的子序列或子集合相邻的为第四子集合,
以及,发送设备从与所述M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合,包括:
发送设备通过在线计算或读表的方式,从第四子集合中的非打孔序号中,按照可靠度的从大到小的顺序选取(F-M 3)个序号作为所述第四序号集合。
这里采用在线计算或读表的方式,可以参考前文根据信息比特个数K确定信息比特序号集合中所作的说明,这里不再赘述。
可选地,作为一个实施例,发送设备还预存储有第二排序表,第二排序表中记录有第四子集合中非打孔序号的可靠性的排序,
以及,发送设备通过读表的方式,从第四子集合中的非打孔序号中,按照可靠度的从小到大的顺序选取(F-M 3)个序号作为所述第四序号集合,包括:
发送设备从所述第二排序表中,按照可靠度的从小到大的顺序选取(F-M 3)个非打孔序号作为第四序号集合。
130、发送设备根据信息比特序号集合对信息比特进行极化编码。
步骤130中,发送设备根据选取的信息比特序号集合,对信息比特进行极化编码,得到编码后的序列。步骤130可以与现有技术相同,这里不作限定。
应理解,这里的信息比特即是发送设备要发送给接收设设备的待编码比特。编码后的序列也就是对待编码比特进行极化编码后得到的码字。
后续,发送设备将编码后的序列发送给接收设备。相对应地,接收设备执行步骤140-150。
140、接收设备获取待译码序列。
150、接收设备根据目标极化码的码长和该至少一个母码序列,对待译码序列进行译码。
应理解,发送设备对信息比特进行极化编码,得到编码后的序列。该编码后的序列经发送设备发送,被接收设备接收到的序列,即为待译码序列。
步骤150中,接收设备对待译码序列正确译码后,得到信息比特。
可以理解的是,发送设备和接收设备都预存了相同的母码序列的信息。并且,发送设备和接收设备对于每种码长的Polar码采用哪种母码序列以及编码参数都是预先约定的。因此,接收设备获取到待译码序列(或者说,待译码的码字)后,通过循环冗余校验(Cyclical Redundancy Check,CRC)校验,可以正确译码出发送设备发送给自己的信息比特。
接收设备对获取到的待译码序列进行译码的过程,实际上正好是发送设备根据信息比特序号集合对信息比特进行极化编码的逆过程。由于固定比特是发送设备和接收设备预先约定的,即是已知的,因此,接收设备对待译码序列进行译码的过程,关键是确定出信息比特序号集合。
可选地,作为一个实施例,接收设备根据目标极化码的码长和该至少一个母码序列,对待译码序列进行译码,包括:接收设备根据目标极化码的信息比特个数K和所述至少一个母码序列,或目标极化码的固定比特个数F和该至少一个母码序列,确定信息比特序号集合;接收设备根据信息比特序号集合,对待译码序列进行译码。
(1)接收设备根据信息比特个数K,确定信息比特序号集合。
可选地,作为一个实施例,所述接收设备根据所述目标极化码的母码序列,确定信息比特序号集合,包括:
在K=M 1的情况下,接收设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为所述信息比特序号集合,其中,M 1为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
可选地,作为一个实施例,所述接收设备根据所述目标极化码的母码序列,确定信息比特序号集合,包括:
在M 1<K≤M 2的情况下,接收设备按照可靠度从大到小的顺序,从目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;
接收设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
接收设备将第一序号集合和第二序号集合中的序号确定为信息比特序号集合。
可选地,作为一个实施例,与该M 1个非打孔序号所在的子序列或子集合相邻为第三子集合,
以及,接收设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:
接收设备通过在线计算或读表的方式,从第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
接收设备将第一序号集合和第二序号集合确定为信息比特序号集合。
可选地,作为一个实施例,与该M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,
以及,接收设备从与该M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:
接收设备从第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合。
可选地,作为一个实施例,接收设备还预存储有第一排序表,第一排序表中记录有第三子集合中非打孔序号的可靠性的排序,
以及,接收设备通过在线计算或读表的方式,从第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合,包括:
接收设备从第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为第二序号集合。
具体地,以上实施例中,接收设备从预存储的至少一个母码序列中,根据信息比特个数K确定信息比特序号集合的过程,与上文发送设备根据信息比特个数K确定信息比特序号集合的过程相同。因此,可以参考上文的说明,这里不再赘述。
(2)接收设备根据固定比特个数F,确定信息比特序号集合。
可选地,作为一个实施例,接收设备根据目标极化码的固定比特个数F,从至少一个母码序列中确定信息比特序号集合,包括:
在F=M 3的情况下,接收设备从目标极化码的母码序列中,按照可靠度从小到大的顺序选取前M 3个非打孔序号作为固定比特序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 3≥1且为整数;
接收设备将固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
可选地,作为一个实施例,接收设备根据目标极化码的固定比特个数F,从至少一个母码序列中确定信息比特序号集合,包括:
在M 3<F≤M 4的情况下,接收设备按照可靠度从小到大的顺序,从目标极化码的母码序列中选取前M 3个非打孔序号作为第三序号集合,其中,M 3为目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 4>M 3,且M 3和M 4为正整数;
接收设备从与该M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合;
接收设备将第三序号集合和第四序号集合中的序号确定为固定比特序号集合;
接收设备将固定比特序号集合相对于目标极化码的母码序列中的序号组成的集合的补集确定为信息比特序号集合。
可选地,作为一个实施例,与该M 3个非打孔序号所在的子序列或子集合相邻的为第四子集合,
以及,接收设备从与该M 3个非打孔序号所在的子序列或子集合相邻的子序列或子集 合中,按照可靠度从小到大的顺序选取(F-M 3)个序号作为第四序号集合,包括:
接收设备通过在线计算或读表的方式,从第四子集合中的非打孔序号中,按照可靠度的从大到小的顺序选取(F-M 3)个序号作为第四序号集合。
可选地,作为一个实施例,接收设备还预存储有第二排序表,第二排序表中记录有第四子集合中非打孔序号的可靠性的排序,
以及,接收设备通过读表的方式,从第四子集合中的非打孔序号中,按照可靠度的从小到大的顺序选取(F-M 3)个序号作为第四序号集合,包括:
接收设备从第二排序表中,按照可靠度的从小到大的顺序选取(F-M 3)个非打孔序号作为第四序号集合。
同样地,接收设备从预存储的至少一个母码序列中,根据固定比特个数F确定信息比特序号集合的过程,与上文发送设备根据固定比特个数F确定信息比特序号集合的过程相同。因此,以上实施例的详细过程可以参考上文发送设备根据固定比特个数F,从预存储的至少一个母码序列中确定信息比特序号集合的说明,这里不再赘述。
下面为本申请实施例提供一种母码序列的示例,码长=1024。该母码序列如下所示:
[0,1,2,4,8,16,3,32,5,6,9,64,10,17,12,18,128,33,20,34,7,24,36,65,11,256,66,40,13,19,68,14,129,48,21,72,130,35,22],{25,512},[132],{37,80},[26],{38,257,67,136},[41,28,258,96,69,42],{15,144,49,260},[70,44,73,131,50],{23,264,74,160,513},[133,52,81],{27,76,514,134,39,272,82},[137,56],{29,516,259,192},[97,138,84,43],{30,145,288,98,261,71,520,140,45,88},[146],{51,262},[100],{46,265,75,161,528,148,53,320},[266,104],{77,162,515,135,54,273,83,152,57,268,78,544,164,517},[274,193,112,139,85,58],{31,518,384,289},[194],{99,276,168,86,521},[141],{60,89,147},[290],{576,263,196,101,522,142,47,280,90,176,529,149,292,102,321,524,267,200,105,92,163,530,150,55,322,153,296,106,269,79,640,545,165,532,275,208,113,154,324,59,270,108,546,166,519,385,304,195,114,277,169,87,536,156,61,328,548,386,291,224,577},[278,197],{170,116,523,143,62,281,91,177,768,578,388,293,198,103,552,336,172,525},[282,201,120],{93,178,531,151},[294],{580,323,526,392,297,202,107,284,94,641,560,180,533,209,352,155,325,298,584,271,204,109,642,547,167,534,400,305,210,115,184,326,537,157,300,110,329,644,549,387,306,225,592,279,212,171,117,538,158,63,330,550,416,769,226,579,389,308,199,648,118,553,337,173,540,283,216,121,332,179,770,608,390,295,228,581,554,338,174,527,393,312,203,122,285,95,656,561,181,772,582,448,353},[556,394,340],{299,232,585,286,205,124,643,562,182,535,401,211,354,185,327,776,586,396,301,206,111,672,344,645,564,402,307,240,593,213,186,356,539,159,302,588,331,646,551,417,784,227,594,404,309,214,649,119,568,188,541,217,360,333,418,771,704,609,391,310,229,650,596},[555],{339,175,542,408,313,218,123,334,657,800,610,420,773,230,583,449,368,652,557,395,341,314,233,600,287,220,125,658,563,183,774,612,450,355,558,424,342,777,234,587,397,316,207,126,673,345,660,565,403,241,832,452,187,357,778,616,398,303,236,589,674,346,647,566,432,785,242,595,405,215,664,358,569,189,780,590,456,361,676,348,419,786,705,624,406,311,244,651,597,570,190,543,409,219,362,335,896,801,706,611,421,788,231,680,598,464,369,653},[572,410],{315,248,601,221,364,659,802,422,775,708},[613,451],{370,654,559,425,343,792,235,602,412,317,222,127,688,661,804,614,480,833,453,426,372,779,712,617,399,318,237,604,675,347,662,567,433,243,834,454,665,359,808,618,428,781,238,591,457,376,677,349,434,787,720,625,407,245,666,836,571,191,782,620,458,363,678,350,897,816,707,626,436,789,246,681,599,465,668,573,411,249,840,460,365,898,803,736,423,790,709,682,628,466,371,655,574,440,793,250,603,413,223,366,689,900,805,710,615,481,848,684},[468],{427,373,794,713,632,414,319,252,605,690,663,8 06,482,835,455,904,374,809,714,619,429,796,239,606,472,377,692,435,721,864,484,667,837,810,430,783,716,621,459,378,679,351,912,817,722,627,437,247,696,838,669,812,622,488,841,461,380,899,818,737,438,791,724},[683,629,467],{670,575,441,251,842,462,367,928,738,901,820,711,630,496,849,685,469,442,795,728,633,415,253,844,691,902,807,740,483,850,686,470,905,375,824,715,634,444,797,254,607,473,693,960,865,485,906,852,811,744,431,798,717,636,474,379,694,913,723,866,486,697,839,908,813,718,623,489,856,476,381,914,819,752,439,725,698,868,671,814,490,843,463,382,929,739,916,821,726,631,497,700,443},[729],{872,492,845,930},[903,822,741],{498,851,687,471,920,825,730,635,445,255,846,932,742,961,880,500,907,853},[826,745],{446,799,732,637,475,695,962,867,487,936,854,746,909,828,719,638,504,857,477,915,753,964,699,869,910,815,748,491,858,478,383,944,754,917,727,870,701,968,873,493,860,931,918,823,756,499,702,921,731,874,494,847,933,743,976,881,501,922,827,760,447},[733],{876,934,963},[882],{502,937,855,747,924},[829],{734,639,505,992},[965,938,884,911,830,749],{506,859,479,945,755,966,871,940,750,969,888,508,861,946},[919,757],{703,970,875,495,862,948,758,977},[923],{761,972},[877],{935,978,883,503,952,762,925,735,878,993},[980,939,885,926],{831,764,507,994},[967,886],{941,751,984,889,509,947,996},[942,971,890],{510,863,949,759,1000},[973,892,950,979,953],{763,974,879,1008},[981,954,927,765,995,982],{887,956,766,985},[997],{943,986},[891],{511,998},[1001,988,893,951,1002,975,894,1009,955,1004,1010,983,957,767,1012,958,987,999,1016,989,1003,990,895,1005,1011,1006,1013,959,1014,1017,1018,991,1020,1007,1015,1019,1021,1022,1023]。
如上面的母码序列所示,母码序列中的{}代表一个子集合,[]代表一个子序列。关于该母码序列的详细说明,可以参见前文。
本申请实施例提供的技术方案,通过提供一种由序列和集合交叉组成的极化码的母码序列,使得采用这种形式的母码序列进行极化码编码和译码的过程中,可以采用半计算半存储的方式选取信息位(即,确定信息比特序号集合),极化码序列的构造更加灵活。另外,对于现有技术中在中短数据包传输、可靠性、复杂度和码率等方面存在的不足也有所改善。
以上结合图1和图2,对本申请实施例提供的极化码编码和译码的方法作了详细说明。下面结合图3至图6,对本申请实施例提供的发送设备和接收设备进行说明。
图3为本申请实施例提供的发送设备500的示意性框图。参见图3,发送设备500包括:
存储单元510,用于预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;
处理单元520,用于根据目标极化码的码长,从所述至少一个母码序列中确定信息比特序号集合;
处理单元520,还用于根据所述信息比特序号集合对信息比特进行极化编码。
本申请实施例提供的发送设备500中的各单元和上述其它操作或功能分别为了实现本申请实施例提供的极化码编码和译码的方法100中由发送设备执行的相应流程。为了简洁,此处不再赘述。
可选地,发送设备还可以包括发送单元530,用于向接收设备发送编码后的序列。
图4为本申请实施例提供的接收设备600的示意性框图。参见图4,接收设备600包括:
存储单元610,用于预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;
接收单元620,用于获取待译码序列;
处理单元630,用于根据目标极化码的码长和所述至少一个母码序列,对待译码序列进行译码。
本申请实施例提供的接收设备600中的各单元和上述其它操作或功能分别为了实现本申请实施例提供的极化码编码和译码的方法100中由接收设备执行的相应流程。为了简洁,此处不再赘述。
图5为本申请实施例提供的发送设备700的示意性结构图。如图5所示,发送设备700包括:一个或多个处理器701,一个或多个存储器702,一个或多个收发器(每个收发器包括发射机703和接收机704)。发射机703或接收机704与一个或多个天线705连接,并通过天线收发信号。存储器702中存储计算机程序指令(或者说,代码)。处理器701执行存储在存储器702中的计算机程序指令,以实现本申请实施例提供的极化码编码和译码的方法100中由发送设备执行的相应流程和/或操作。为了简洁,此处不再赘述。
需要说明的是,图3中所示的发送设备500可以通过图5中所示的发送设备700来实现。例如,图3中所示的存储单元510可以由存储器702实现,处理单元520可以由处理器701实现。发送单元可以由发射机703实现。
可选地,存储器702可以是独立的,也可以跟处理器701集成在一起。当处理器701由硬件实现时,例如,可以是逻辑电路或者集成电路,通过接口与其他硬件相连,此时可以不需要存储器702。
图6为本申请实施例提供的接收设备800的示意性结构图。如图6所示,接收设备800包括:一个或多个处理器801,一个或多个存储器802,一个或多个收发器(每个收发器包括发射机803和接收机804)。发射机803或接收机804与一个或多个天线805连接,并通过天线收发信号。存储器802中存储计算机程序指令(或者说,代码)。处理器801执行存储在存储器802中的计算机程序指令,以实现本申请实施例提供的极化码编码和译码的方法100中由接收设备执行的相应流程和/或操作。为了简洁,此处不再赘述。
可选地,存储器802可以是独立的,也可以跟处理器801集成在一起。当处理器801由硬件实现时,例如,可以是逻辑电路或者集成电路,通过接口与其他硬件相连,此时可以不需要存储器802。
类似地,图4中所示的接收设备600可以通过图6中所示的接收设备800来实现。例如,图4中所示的存储单元610可以由存储器802实现,接收单元620可以由图6中所示的接收机804实现。处理单元630可以由处理器801实现。
以上实施例中,处理器可以为中央处理器(Central Processing Unit,CPU)、微处理器、特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路等。例如,处理器可以包括数字信号处理器设备、 微处理器设备、模数转换器、数模转换器等等。处理器可以根据这些设备各自的功能而在这些设备之间分配移动设备的控制和信号处理的功能。此外,处理器可以包括操作一个或多个软件程序的功能,软件程序可以存储在存储器中。
存储器可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备。也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、只读光盘(Compact Disc Read Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,或者,也可以和处理器集成在一起。
收发器可以包括例如,红外收发机、使用收发机、无线通用串行总线(Universal Serial Bus,USB)收发机、蓝牙收发机等。尽管并未示出,发送设备和接收设备能够使用相应的通信技术通过发射机发送信号(或数据),和/或通过接收机来接收信号(数据)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (66)

  1. 一种极化码编码的方法,其特征在于,所述方法包括:
    发送设备预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;
    所述发送设备根据目标极化码的码长,从所述至少一个母码序列中确定信息比特序号集合;
    所述发送设备根据所述信息比特序号集合对信息比特进行极化编码。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个子序列和至少一个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,
    其中,在所述至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠度的情况下,所述第一子序列中任意一个序号对应的极化信道的可靠度大于所述第一子集合中任意一个序号对应的极化信道的可靠度;或者,
    在所述至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第二子集合中的任意一个序号对应的极化信道的可靠度;或者
    在所述至少一个子集合中的第一子集合的可靠度大于所述至少一个子序列中的第一子序列的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第一子序列中任意一个序号对应的极化信道的可靠度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发送设备根据目标极化码的码长,从所述至少一个母码序列中确定信息比特序号集合,包括:
    所述发送设备根据所述目标极化码的信息比特个数K,或所述目标极化码的固定比特个数F,从所述至少一个母码序列中确定所述信息比特序号集合。
  4. 根据权利要求3所述的方法,其特征在于,所述发送设备根据所述目标极化码的信息比特个数K,从所述至少一个母码序列中确定所述信息比特序号集合,包括:
    所述发送设备根据所述信息比特个数K,从所述至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为所述目标极化码的母码序列;
    所述发送设备根据所述目标极化码的母码序列,确定所述信息比特序号集合,其中,N为所述目标极化码的母码码长。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个母码序列包括长度为1024的序列,其中极化信道的序号从0开始标号时,序号为194的极化信道在所述长度为1024的序列中的位置为第137。
  6. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=512,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为146的极化信道在所述长度为N的序列中的位置为第194;或者
    序号为468的极化信道在所述长度为N的序列中的位置为第427;或者
    序号为505的极化信道在所述长度为N的序列中的位置为第502;或者
    序号为495的极化信道在所述长度为N的序列中的位置为第506;或者
    序号为503的极化信道在所述长度为N的序列中的位置为第507;或者
    序号为507的极化信道在所述长度为N的序列中的位置为第508;或者
    序号为509的极化信道在所述长度为N的序列中的位置为第509;或者
    序号为510的极化信道在所述长度为N的序列中的位置为第510;或者
    序号为511的极化信道在所述长度为N的序列中的位置为第511;或者
    序号子集合{506,479,508}对应的极化信道在所述长度为N的序列中的位置为{503,504,505}。
  7. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=256,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为100的极化信道在所述长度为N的序列中的位置为第87;或者
    序号为255的极化信道在所述长度为N的序列中的位置为第255。
  8. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=128,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为93的极化信道在所述长度为N的序列中在所述目标极化码的母码序列中的位置为第109;或者
    序号为127的极化信道在所述长度为N的序列中位置为第127;或者
    序号子集合{30,98,71,45,88}对应的极化信道在所述长度为N的序列中的位置为{65,66,67,68,69};或者
    序号子集合{123,125,126}对应的极化信道在所述长度为N的序列中的位置为{124,125,126}。
  9. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=64,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为38的极化信道在所述长度为N的序列中的位置为第33;或者
    序号子序列[41,28,42]对应的极化信道在所述长度为N的序列中的位置为第34、35、36;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第46;或者
    序号为43的极化信道在所述长度为N的序列中的位置为第47;或者
    序号为51的极化信道在所述长度为N的序列中的位置为第50;或者
    序号为58的极化信道在所述长度为N的序列中的位置为第55;或者
    序号为62的极化信道在所述长度为N的序列中的位置为第62;或者
    序号为63的极化信道在所述长度为N的序列中的位置为第63;或者
    序号子集合{30,45}对应的极化信道在所述长度为N的序列中的位置为{48,49};或者
    序号子集合{46,53}对应的极化信道在所述长度为N的序列中的位置为{51,52};或者
    序号子集合{54,57}对应的极化信道在所述长度为N的序列中的位置为{53,54};或者
    序号子集合{47,55,59,61}对应的极化信道在所述长度为N的序列中的位置为{58,59,60,61}。
  10. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=32,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为28的极化信道在所述长度为N的序列中的位置为第15;或者
    序号为15的极化信道在所述长度为N的序列中的位置为第26;或者
    序号为23的极化信道在所述长度为N的序列中的位置为第27;或者
    序号为27的极化信道在所述长度为N的序列中的位置为第28;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第29;或者
    序号为30的极化信道在所述长度为N的序列中的位置为第30;或者
    序号为31的极化信道在所述长度为N的序列中的位置为第31。
  11. 根据权利要求3或4所述的方法,其特征在于,所述发送设备根据所述目标极化码的信息比特个数K,从所述至少一个母码序列中确定所述信息比特序号集合,包括:
    在K=M 1的情况下,所述发送设备按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为所述信息比特序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
  12. 根据权利要求3或4所述的方法,其特征在于,所述发送设备根据所述目标极化码的信息比特个数K,从所述至少一个母码序列中确定所述信息比特序号集合,包括:
    在M 1<K≤M 2的情况下,所述发送设备按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;
    所述发送设备从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
    所述发送设备将所述第一序号集合和所述第二序号集合中的序号确定为信息比特序号集合。
  13. 根据权利要求12所述的方法,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻的为第三子集合,
    以及,所述发送设备从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二 序号集合,包括:
    所述发送设备通过在线计算或读表的方式,从所述第三子集合中的非打孔序号中按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
  14. 根据权利要求12所述的方法,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,
    以及,所述发送设备从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序,选取(K-M 1)个序号作为第二序号集合,包括:
    所述发送设备从所述第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
  15. 根据权利要求13所述的方法,其特征在于,所述发送设备还预存储有第一排序表,所述第一排序表中记录有所述第三子集合中非打孔序号的可靠性的排序,
    以及,所述发送设备通过读表的方式,从所述第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合,包括:
    所述发送设备从所述第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为所述第二序号集合。
  16. 一种极化码译码的方法,其特征在于,所述方法包括:
    接收设备预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;
    所述接收设备获取待译码序列;
    所述接收设备根据目标极化码的码长和所述至少一个母码序列,对所述待译码序列进行译码。
  17. 根据权利要求16所述的方法,其特征在于,所述至少一个子序列和至少一个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,
    其中,在所述至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠度的情况下,所述第一子序列中任意一个序号对应的极化信道的可靠度大于所述第一子集合中任意一个序号对应的极化信道的可靠度;或者,
    在所述至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第二子集合中的任意一个序号对应的极化信道的可靠度;
    或者,在所述至少一个子集合中的第一子集合的可靠度大于所述至少一个子序列中的第一子序列的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第一子序列中任意一个序号对应的极化信道的可靠度。
  18. 根据权利要求15或16所述的方法,其特征在于,所述接收设备根据目标极化码的码长和所述至少一个母码序列,对所述待译码序列进行译码,包括:
    所述接收设备根据所述目标极化码的信息比特个数K和所述至少一个母码序列,或所述目标极化码的固定比特个数F和所述至少一个母码序列,确定信息比特序号集合;
    所述接收设备根据所述信息比特序号集合,对所述待译码序列进行译码。
  19. 根据权利要求18所述的方法,其特征在于,所述接收设备根据所述目标极化码的信息比特个数K和所述至少一个母码序列,确定信息比特序号集合,包括:
    所述接收设备根据所述信息比特个数K,从所述至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为所述目标极化码的母码序列,其中,N为所述目标极化码的母码码长;
    所述接收设备根据所述目标极化码的母码序列,确定所述信息比特序号集合。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述至少一个母码序列包括长度为1024的序列,其中极化信道的序号从0开始标号时,序号为194的极化信道在所述长度为1024的序列中的位置为第137。
  21. 根据权利要求16-19中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=512,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为146的极化信道在所述长度为N的序列中的位置为第194;或者
    序号为468的极化信道在所述长度为N的序列中的位置为第427;或者
    序号为505的极化信道在所述长度为N的序列中的位置为第502;或者
    序号为495的极化信道在所述长度为N的序列中的位置为第506;或者
    序号为503的极化信道在所述长度为N的序列中的位置为第507;或者
    序号为507的极化信道在所述长度为N的序列中的位置为第508;或者
    序号为509的极化信道在所述长度为N的序列中的位置为第509;或者
    序号为510的极化信道在所述长度为N的序列中的位置为第510;或者
    序号为511的极化信道在所述长度为N的序列中的位置为第511;或者
    序号子集合{506,479,508}对应的极化信道在所述长度为N的序列中的位置为{503,504,505}。
  22. 根据权利要求16-19中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=256,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为100的极化信道在所述长度为N的序列中的位置为第87;或者
    序号为255的极化信道在所述长度为N的序列中的位置为第255。
  23. 根据权利要求16-19中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=128,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为93的极化信道在所述长度为N的序列中在所述目标极化码的母码序列中的位置为第109;或者
    序号为127的极化信道在所述长度为N的序列中位置为第127;或者
    序号子集合{30,98,71,45,88}对应的极化信道在所述长度为N的序列中的位置为{65,66,67,68,69};或者
    序号子集合{123,125,126}对应的极化信道在所述长度为N的序列中的位置为{124,125,126}。
  24. 根据权利要求16-19中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=64,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为38的极化信道在所述长度为N的序列中的位置为第33;或者
    序号子序列[41,28,42]对应的极化信道在所述长度为N的序列中的位置为第34、35、36;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第46;或者
    序号为43的极化信道在所述长度为N的序列中的位置为第47;或者
    序号为51的极化信道在所述长度为N的序列中的位置为第50;或者
    序号为58的极化信道在所述长度为N的序列中的位置为第55;或者
    序号为62的极化信道在所述长度为N的序列中的位置为第62;或者
    序号为63的极化信道在所述长度为N的序列中的位置为第63;或者
    序号子集合{30,45}对应的极化信道在所述长度为N的序列中的位置为{48,49};或者
    序号子集合{46,53}对应的极化信道在所述长度为N的序列中的位置为{51,52};或者
    序号子集合{54,57}对应的极化信道在所述长度为N的序列中的位置为{53,54};或者
    序号子集合{47,55,59,61}对应的极化信道在所述长度为N的序列中的位置为{58,59,60,61}。
  25. 根据权利要求16-19中任一项所述的方法,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=32,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为28的极化信道在所述长度为N的序列中的位置为第15;或者
    序号为15的极化信道在所述长度为N的序列中的位置为第26;或者
    序号为23的极化信道在所述长度为N的序列中的位置为第27;或者
    序号为27的极化信道在所述长度为N的序列中的位置为第28;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第29;或者
    序号为30的极化信道在所述长度为N的序列中的位置为第30;或者
    序号为31的极化信道在所述长度为N的序列中的位置为第31。
  26. 根据权利要求18或19所述的方法,其特征在于,所述接收设备根据所述目标极化码的母码序列,确定信息比特序号集合,包括:
    在K=M 1的情况下,所述接收设备按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为所述信息比特序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
  27. 根据权利要求18或19所述的方法,其特征在于,所述接收设备根据所述目标极化码的母码序列,确定信息比特序号集合,包括:
    在M 1<K≤M 2的情况下,所述接收设备按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;
    所述接收设备从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
    所述接收设备将所述第一序号集合和所述第二序号集合中的序号确定为所述信息比特序号集合。
  28. 根据权利要求27所述的方法,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻为第三子集合,
    以及,所述接收设备从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:
    所述接收设备通过在线计算或读表的方式,从所述第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合;
    所述接收设备将所述第一序号集合和所述第二序号集合确定为所述信息比特序号集合。
  29. 根据权利要求27所述的方法,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,
    以及,所述接收设备从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:
    所述接收设备从所述第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
  30. 根据权利要求28所述的方法,其特征在于,所述接收设备还预存储有第一排序表,所述第一排序表中记录有所述第三子集合中非打孔序号的可靠性的排序,
    以及,所述接收设备通过在线计算或读表的方式,从所述第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合,包括:
    所述接收设备从所述第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为所述第二序号集合。
  31. 一种发送设备,其特征在于,包括:
    存储单元,用于预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;
    处理单元,根据目标极化码的码长,从所述至少一个母码序列中确定信息比特序号集合;
    所述处理单元,还用于根据所述信息比特序号集合对信息比特进行极化编码。
  32. 根据权利要求31所述的发送设备,其特征在于,所述至少一个子序列和至少一 个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,
    其中,在所述至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠度的情况下,所述第一子序列中任意一个序号对应的极化信道的可靠度大于所述第一子集合中任意一个序号对应的极化信道的可靠度;或者,
    在所述至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第二子集合中的任意一个序号对应的极化信道的可靠度;或者
    在所述至少一个子集合中的第一子集合的可靠度大于所述至少一个子序列中的第一子序列的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第一子序列中任意一个序号对应的极化信道的可靠度。
  33. 根据权利要求31或32所述的发送设备,其特征在于,所述处理单元具体用于根据所述目标极化码的信息比特个数K,或所述目标极化码的固定比特个数F,从所述至少一个母码序列中确定所述信息比特序号集合。
  34. 根据权利要求33所述的发送设备,其特征在于,所述处理单元具体用于:
    根据所述信息比特个数K,从所述至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为所述目标极化码的母码序列;
    根据所述目标极化码的母码序列,确定所述信息比特序号集合,其中,N为所述目标极化码的母码码长。
  35. 根据权利要求31-34中任一项所述的发送设备,其特征在于,所述至少一个母码序列包括长度为1024的序列,其中极化信道的序号从0开始标号时,序号为194的极化信道在所述长度为1024的序列中的位置为第137。
  36. 根据权利要求31-34中任一项所述的发送设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=512,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为146的极化信道在所述长度为N的序列中的位置为第194;或者
    序号为468的极化信道在所述长度为N的序列中的位置为第427;或者
    序号为505的极化信道在所述长度为N的序列中的位置为第502;或者
    序号为495的极化信道在所述长度为N的序列中的位置为第506;或者
    序号为503的极化信道在所述长度为N的序列中的位置为第507;或者
    序号为507的极化信道在所述长度为N的序列中的位置为第508;或者
    序号为509的极化信道在所述长度为N的序列中的位置为第509;或者
    序号为510的极化信道在所述长度为N的序列中的位置为第510;或者
    序号为511的极化信道在所述长度为N的序列中的位置为第511;或者
    序号子集合{506,479,508}对应的极化信道在所述长度为N的序列中的位置为{503,504,505}。
  37. 根据权利要求31-34中任一项所述的发送设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=256, 极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为100的极化信道在所述长度为N的序列中的位置为第87;或者
    序号为255的极化信道在所述长度为N的序列中的位置为第255。
  38. 根据权利要求31-34中任一项所述的发送设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=128,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为93的极化信道在所述长度为N的序列中在所述目标极化码的母码序列中的位置为第109;或者
    序号为127的极化信道在所述长度为N的序列中位置为第127;或者
    序号子集合{30,98,71,45,88}对应的极化信道在所述长度为N的序列中的位置为{65,66,67,68,69};或者
    序号子集合{123,125,126}对应的极化信道在所述长度为N的序列中的位置为{124,125,126}。
  39. 根据权利要求31-34中任一项所述的发送设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=64,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为38的极化信道在所述长度为N的序列中的位置为第33;或者
    序号子序列[41,28,42]对应的极化信道在所述长度为N的序列中的位置为第34、35、36;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第46;或者
    序号为43的极化信道在所述长度为N的序列中的位置为第47;或者
    序号为51的极化信道在所述长度为N的序列中的位置为第50;或者
    序号为58的极化信道在所述长度为N的序列中的位置为第55;或者
    序号为62的极化信道在所述长度为N的序列中的位置为第62;或者
    序号为63的极化信道在所述长度为N的序列中的位置为第63;或者
    序号子集合{30,45}对应的极化信道在所述长度为N的序列中的位置为{48,49};或者
    序号子集合{46,53}对应的极化信道在所述长度为N的序列中的位置为{51,52};或者
    序号子集合{54,57}对应的极化信道在所述长度为N的序列中的位置为{53,54};或者
    序号子集合{47,55,59,61}对应的极化信道在所述长度为N的序列中的位置为{58,59,60,61}。
  40. 根据权利要求31-34中任一项所述的发送设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=32,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为28的极化信道在所述长度为N的序列中的位置为第15;或者
    序号为15的极化信道在所述长度为N的序列中的位置为第26;或者
    序号为23的极化信道在所述长度为N的序列中的位置为第27;或者
    序号为27的极化信道在所述长度为N的序列中的位置为第28;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第29;或者
    序号为30的极化信道在所述长度为N的序列中的位置为第30;或者
    序号为31的极化信道在所述长度为N的序列中的位置为第31。
  41. 根据权利要求33或34所述的发送设备,其特征在于,所述处理单元具体用于在K=M 1的情况下,按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为所述信息比特序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
  42. 根据权利要求33或34所述的发送设备,其特征在于,所述处理单元具体用于:
    在M 1<K≤M 2的情况下,按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;
    从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
    将所述第一序号集合和所述第二序号集合中的序号确定为信息比特序号集合。
  43. 根据权利要求42所述的发送设备,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻的为第三子集合,
    以及,所述处理单元具体用于通过在线计算或读表的方式,从所述第三子集合中的非打孔序号中按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
  44. 根据权利要求42所述的发送设备,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,
    以及,所述处理单元具体用于从所述第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
  45. 根据权利要求43所述的发送设备,其特征在于,所述存储单元还预存储有第一排序表,所述第一排序表中记录有所述第三子集合中非打孔序号的可靠性的排序,
    以及,所述处理单元具体用于从所述第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为所述第二序号集合。
  46. 一种接收设备,其特征在于,包括:
    存储单元,用于预存储至少一个母码序列,每个母码序列由至少一个子序列和至少一个子集合组成,每个子序列或子集合中的元素为极化信道的序号,每个子序列或子集合中包括至少一个序号,每个子序列中序号的相对位置是按照极化信道的可靠度的大小顺序排列的;
    接收单元,用于获取待译码序列;
    处理单元,用于根据目标极化码的码长和所述至少一个母码序列,对所述待译码序列进行译码。
  47. 根据权利要求46所述的接收设备,其特征在于,所述至少一个子序列和至少一个子集合的相对位置是根据极化信道的可靠度的大小顺序排列的,
    其中,在所述至少一个子序列中的第一子序列的可靠度大于相邻的第一子集合的可靠 度的情况下,所述第一子序列中任意一个序号对应的极化信道的可靠度大于所述第一子集合中任意一个序号对应的极化信道的可靠度;或者,
    在所述至少一个子集合中的第一子集合的可靠度大于相邻的第二子集合的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第二子集合中的任意一个序号对应的极化信道的可靠度;
    或者,在所述至少一个子集合中的第一子集合的可靠度大于所述至少一个子序列中的第一子序列的可靠度的情况下,所述第一子集合中任意一个序号对应的极化信道的可靠度大于所述第一子序列中任意一个序号对应的极化信道的可靠度。
  48. 根据权利要求46或47所述的接收设备,其特征在于,所述处理单元具体用于:
    根据所述目标极化码的信息比特个数K和所述至少一个母码序列,或所述目标极化码的固定比特个数F和所述至少一个母码序列,确定信息比特序号集合;
    根据所述信息比特序号集合,对所述待译码序列进行译码。
  49. 根据权利要求48所述的接收设备,其特征在于,所述处理单元具体用于:
    根据所述信息比特个数K,从所述至少一个母码序列中的最大母码序列中,按照可靠度从大到小的顺序选取非打孔且小于或等于N的序号作为所述目标极化码的母码序列,其中,N为所述目标极化码的母码码长;
    根据所述目标极化码的母码序列,确定所述信息比特序号集合。
  50. 根据权利要求46-49中任一项所述的接收设备,其特征在于,所述至少一个母码序列包括长度为1024的序列,其中极化信道的序号从0开始标号时,序号为194的极化信道在所述长度为1024的序列中的位置为第137。
  51. 根据权利要求46-49中任一项所述的接收设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=512,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为146的极化信道在所述长度为N的序列中的位置为第194;或者
    序号为468的极化信道在所述长度为N的序列中的位置为第427;或者
    序号为505的极化信道在所述长度为N的序列中的位置为第502;或者
    序号为495的极化信道在所述长度为N的序列中的位置为第506;或者
    序号为503的极化信道在所述长度为N的序列中的位置为第507;或者
    序号为507的极化信道在所述长度为N的序列中的位置为第508;或者
    序号为509的极化信道在所述长度为N的序列中的位置为第509;或者
    序号为510的极化信道在所述长度为N的序列中的位置为第510;或者
    序号为511的极化信道在所述长度为N的序列中的位置为第511;或者
    序号子集合{506,479,508}对应的极化信道在所述长度为N的序列中的位置为{503,504,505}。
  52. 根据权利要求46-49中任一项所述的接收设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=256,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为100的极化信道在所述长度为N的序列中的位置为第87;或者
    序号为255的极化信道在所述长度为N的序列中的位置为第255。
  53. 根据权利要求46-49中任一项所述的接收设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=128,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为93的极化信道在所述长度为N的序列中在所述目标极化码的母码序列中的位置为第109;或者
    序号为127的极化信道在所述长度为N的序列中位置为第127;或者
    序号子集合{30,98,71,45,88}对应的极化信道在所述长度为N的序列中的位置为{65,66,67,68,69};或者
    序号子集合{123,125,126}对应的极化信道在所述长度为N的序列中的位置为{124,125,126}。
  54. 根据权利要求46-49中任一项所述的接收设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=64,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为38的极化信道在所述长度为N的序列中的位置为第33;或者
    序号子序列[41,28,42]对应的极化信道在所述长度为N的序列中的位置为第34、35、36;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第46;或者
    序号为43的极化信道在所述长度为N的序列中的位置为第47;或者
    序号为51的极化信道在所述长度为N的序列中的位置为第50;或者
    序号为58的极化信道在所述长度为N的序列中的位置为第55;或者
    序号为62的极化信道在所述长度为N的序列中的位置为第62;或者
    序号为63的极化信道在所述长度为N的序列中的位置为第63;或者
    序号子集合{30,45}对应的极化信道在所述长度为N的序列中的位置为{48,49};或者
    序号子集合{46,53}对应的极化信道在所述长度为N的序列中的位置为{51,52};或者
    序号子集合{54,57}对应的极化信道在所述长度为N的序列中的位置为{53,54};或者
    序号子集合{47,55,59,61}对应的极化信道在所述长度为N的序列中的位置为{58,59,60,61}。
  55. 根据权利要求46-49中任一项所述的接收设备,其特征在于,所述至少一个母码序列中包括长度为N的序列,极化信道的序号从0开始标号时,所述长度为N的序列中各极化信道对应的序号为从长为1024的母码序列中选取的小于N的序号,其中N=32,极化信道在所述长度为N的序列中的位置包括以下任意一种或多种:
    序号为28的极化信道在所述长度为N的序列中的位置为第15;或者
    序号为15的极化信道在所述长度为N的序列中的位置为第26;或者
    序号为23的极化信道在所述长度为N的序列中的位置为第27;或者
    序号为27的极化信道在所述长度为N的序列中的位置为第28;或者
    序号为29的极化信道在所述长度为N的序列中的位置为第29;或者
    序号为30的极化信道在所述长度为N的序列中的位置为第30;或者
    序号为31的极化信道在所述长度为N的序列中的位置为第31。
  56. 根据权利要求48或49所述的接收设备,其特征在于,所述处理单元具体用于在K=M 1的情况下,按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为所述信息比特序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从小到大的前至少一个子序列或子集合中序号的个数,M 1≥1,且M 1为整数。
  57. 根据权利要求48或49所述的接收设备,其特征在于,所述处理单元具体用于:
    在M 1<K≤M 2的情况下,按照可靠度从大到小的顺序,从所述目标极化码的母码序列中选取前M 1个非打孔序号作为第一序号集合,其中,M 1为所述目标极化码的母码序列中可靠度从大到小的前至少一个子序列或子集合中序号的个数,M 2>M 1,且M 1和M 2为正整数;
    从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合;
    将所述第一序号集合和所述第二序号集合中的序号确定为所述信息比特序号集合。
  58. 根据权利要求56所述的接收设备,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻为第三子集合,以及,所述处理单元具体用于:
    从与所述M 1个非打孔序号所在的子序列或子集合相邻的子序列或子集合的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为第二序号集合,包括:
    通过在线计算或读表的方式,从所述第三子集合中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合;
    将所述第一序号集合和所述第二序号集合确定为所述信息比特序号集合。
  59. 根据权利要求57所述的接收设备,其特征在于,与所述M 1个非打孔序号所在的子序列或子集合相邻的为第二子序列,
    以及,所述处理单元具体用于从所述第二子序列中的非打孔序号中,按照可靠度从大到小的顺序选取(K-M 1)个序号作为所述第二序号集合。
  60. 根据权利要求58所述的接收设备,其特征在于,所述接收设备还预存储有第一排序表,所述第一排序表中记录有所述第三子集合中非打孔序号的可靠性的排序,
    以及,所述处理单元具体用于从所述第一排序表中,按照可靠度从大到小的顺序选取(K-M 1)个非打孔序号作为所述第二序号集合。
  61. 一种发送设备,其特征在于,所述发送设备包括处理器,所述处理器用于执行如权利要求1-15中任意一项所述的方法。
  62. 根据权利要求61所述的发送设备,其特征在于,所述发送设备还包括存储器,用于存储指令,所述指令被所述处理器运行时,使得所述处理器执行如权利要求1-15中任意一项所述的方法。
  63. 一种接收设备,其特征在于,所述发送设备包括处理器,所述处理器用于执行如权利要求16-30中任意一项所述的方法。
  64. 根据权利要求63所述的接收设备,其特征在于,所述发送设备还包括存储器,用于存储指令,所述指令被所述处理器运行时,使得所述处理器执行如权利要求16-30中 任意一项所述的方法。
  65. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在发送设备中运行时,使得所述发送设备执行如权利要求1-15中任意一项所述的方法。
  66. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在接收设备中运行时,使得所述接收设备执行如权利要求16-30中任意一项所述的方法。
PCT/CN2018/081189 2017-04-01 2018-03-29 极化码编码和译码的方法、发送设备和接收设备 WO2018177386A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019551274A JP7186715B2 (ja) 2017-04-01 2018-03-29 ポーラ符号化および復号方法、送信デバイス、ならびに受信デバイス
ES18774189T ES2913779T3 (es) 2017-04-01 2018-03-29 Método de codificación y decodificación de código polar, dispositivo de envío y dispositivo de recepción
BR112019020118A BR112019020118A2 (pt) 2017-04-01 2018-03-29 método de codificação e decodificação polar, dispositivo de envio e dispositivo de recepção
KR1020197026286A KR102221430B1 (ko) 2017-04-01 2018-03-29 폴라 인코딩 및 디코딩 방법, 전송 기기, 그리고 수신 기기
EP18774189.7A EP3584936B1 (en) 2017-04-01 2018-03-29 Polar code encoding and decoding method, sending device and receiving device
CA3053264A CA3053264C (en) 2017-04-01 2018-03-29 Polar encoding and decoding method, sending device, and receiving device
AU2018243118A AU2018243118B2 (en) 2017-04-01 2018-03-29 Polar code encoding and decoding method, sending device and receiving device
US16/549,735 US10673466B2 (en) 2017-04-01 2019-08-23 Polar encoding and decoding method, sending device, and receiving device
US16/855,495 US11206048B2 (en) 2017-04-01 2020-04-22 Polar encoding and decoding method, sending device, and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710214465.0A CN108667464A (zh) 2017-04-01 2017-04-01 极化码编码和译码的方法、发送设备和接收设备
CN201710214465.0 2017-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/549,735 Continuation US10673466B2 (en) 2017-04-01 2019-08-23 Polar encoding and decoding method, sending device, and receiving device

Publications (1)

Publication Number Publication Date
WO2018177386A1 true WO2018177386A1 (zh) 2018-10-04

Family

ID=63674230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081189 WO2018177386A1 (zh) 2017-04-01 2018-03-29 极化码编码和译码的方法、发送设备和接收设备

Country Status (10)

Country Link
US (2) US10673466B2 (zh)
EP (1) EP3584936B1 (zh)
JP (1) JP7186715B2 (zh)
KR (1) KR102221430B1 (zh)
CN (2) CN108667464A (zh)
AU (1) AU2018243118B2 (zh)
BR (1) BR112019020118A2 (zh)
CA (1) CA3053264C (zh)
ES (1) ES2913779T3 (zh)
WO (1) WO2018177386A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10659194B2 (en) 2017-08-02 2020-05-19 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus in wireless communications
CN111490852B (zh) 2017-08-02 2021-03-23 华为技术有限公司 一种Polar码编码方法及装置
CN110336639B (zh) * 2019-06-23 2021-08-17 西安电子科技大学 一种基于容量分布的极化码多层编码调制方法及应用
CN114070329A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 处理蓝牙数据包的方法和通信装置
CN114513280A (zh) * 2020-11-16 2022-05-17 华为技术有限公司 一种极化编码方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825669A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 数据处理的方法和装置
CN105743621A (zh) * 2016-02-02 2016-07-06 北京邮电大学 基于极化码的harq信号发送、接收方法及装置
US20170047947A1 (en) * 2015-08-12 2017-02-16 Telefonaktiebolaget L M Ericsson (Publ) Rate-compatible polar codes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105158A (en) * 1998-04-03 2000-08-15 Lucent Technologies, Inc. Screening for undetected errors in data transmission systems
FI106416B (fi) * 1999-02-09 2001-01-31 Nokia Mobile Phones Ltd Menetelmä ja laite dekoodatun symbolisarjan luotettavuuden määrittämiseksi
US7403925B2 (en) * 2003-03-17 2008-07-22 Intel Corporation Entitlement security and control
WO2008151061A1 (en) * 2007-05-31 2008-12-11 Interdigital Technology Corporation Channel coding and rate matching for lte control channels
CN101854236B (zh) * 2010-04-05 2015-04-01 中兴通讯股份有限公司 一种信道信息反馈方法和系统
CN106899311B (zh) * 2012-09-24 2023-11-03 华为技术有限公司 混合极性码的生成方法和生成装置
CN108650057B (zh) * 2012-10-17 2023-10-13 华为技术有限公司 一种编译码的方法、装置及系统
CN104079370B (zh) * 2013-03-27 2018-05-04 华为技术有限公司 信道编译码方法及装置
WO2015074192A1 (zh) * 2013-11-20 2015-05-28 华为技术有限公司 极化码的处理方法和设备
CN105874736B (zh) * 2014-03-19 2020-02-14 华为技术有限公司 极性码的速率匹配方法和速率匹配装置
US9742440B2 (en) * 2015-03-25 2017-08-22 Samsung Electronics Co., Ltd HARQ rate-compatible polar codes for wireless channels
CN108540260B (zh) * 2017-03-02 2019-12-24 华为技术有限公司 用于确定Polar码编解码的方法、装置和可存储介质
CN108833050B (zh) * 2017-03-24 2019-07-12 华为技术有限公司 编码方法、译码方法、装置和设备
CN115173991B (zh) * 2017-03-25 2024-04-09 华为技术有限公司 一种速率匹配的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825669A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 数据处理的方法和装置
US20170047947A1 (en) * 2015-08-12 2017-02-16 Telefonaktiebolaget L M Ericsson (Publ) Rate-compatible polar codes
CN105743621A (zh) * 2016-02-02 2016-07-06 北京邮电大学 基于极化码的harq信号发送、接收方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Polar codes - encoding and decoding", 3GPP TSG RAN WG1 MEETING #85 R1-164039, 27 May 2016 (2016-05-27), XP051090110, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/> *
See also references of EP3584936A4 *

Also Published As

Publication number Publication date
KR102221430B1 (ko) 2021-02-26
KR20190112130A (ko) 2019-10-02
AU2018243118B2 (en) 2021-01-21
JP2020516111A (ja) 2020-05-28
CN109347488A (zh) 2019-02-15
CA3053264A1 (en) 2018-10-04
EP3584936A4 (en) 2020-04-01
US20200321984A1 (en) 2020-10-08
CN109347488B (zh) 2019-11-01
AU2018243118A1 (en) 2019-09-05
CN108667464A (zh) 2018-10-16
BR112019020118A2 (pt) 2020-05-05
ES2913779T3 (es) 2022-06-06
US20190379406A1 (en) 2019-12-12
EP3584936B1 (en) 2022-03-02
US10673466B2 (en) 2020-06-02
CA3053264C (en) 2022-03-15
EP3584936A1 (en) 2019-12-25
US11206048B2 (en) 2021-12-21
JP7186715B2 (ja) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2018177386A1 (zh) 极化码编码和译码的方法、发送设备和接收设备
CN108365914B (zh) Polar码编译码方法及装置
JP2019530333A (ja) Polar符号を用いてデータを符号化する方法及び装置
CN107370560B (zh) 一种极化码的编码和速率匹配方法、装置及设备
KR20200017520A (ko) 극성 코드 인코딩 방법 및 디바이스
CN108347301B (zh) 数据的传输方法和装置
US11057054B2 (en) Channel coding method and apparatus in communication system
WO2018210244A1 (zh) 一种Polar码传输方法及装置
US10924210B2 (en) Method, apparatus, and device for determining polar code encoding and decoding
CN109257140B (zh) 一种极化信道可靠度排序的方法、极化码编码方法及装置
CN108494527B (zh) 一种基于LoRa的数据发送和接收方法
KR102289928B1 (ko) 데이터 프로세싱 방법 및 디바이스
WO2019052583A1 (zh) 极化码的速率匹配的方法和装置
CN108574494A (zh) 编译码方法及装置
CN117240409B (zh) 一种用于智能手机与智能穿戴设备的数据处理方法
WO2018228592A1 (zh) 一种极化Polar码的交织处理方法及装置
KR20190013374A (ko) 통신 또는 방송 시스템에서 극부호 부호화/복호화 방법 및 장치
WO2022117061A1 (zh) 一种极化码辅助比特的确定方法和装置
WO2019029748A1 (zh) 极化码编码的方法和装置
CN109088698B (zh) 一种编码方法及通信设备
WO2019242022A1 (zh) 一种极化码译码方法及译码装置
CN111699643A (zh) 一种极化码译码方法及装置
WO2018171789A1 (zh) 极化码的速率匹配方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3053264

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018243118

Country of ref document: AU

Date of ref document: 20180329

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026286

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019551274

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018774189

Country of ref document: EP

Effective date: 20190918

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020118

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019020118

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190926