WO2018210244A1 - 一种Polar码传输方法及装置 - Google Patents
一种Polar码传输方法及装置 Download PDFInfo
- Publication number
- WO2018210244A1 WO2018210244A1 PCT/CN2018/086922 CN2018086922W WO2018210244A1 WO 2018210244 A1 WO2018210244 A1 WO 2018210244A1 CN 2018086922 W CN2018086922 W CN 2018086922W WO 2018210244 A1 WO2018210244 A1 WO 2018210244A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- sequence
- bit
- unit
- polar code
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 120
- 230000009466 transformation Effects 0.000 claims abstract description 19
- 125000004122 cyclic group Chemical group 0.000 claims description 39
- 238000012545 processing Methods 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 16
- 238000012163 sequencing technique Methods 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000008707 rearrangement Effects 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 44
- 230000008569 process Effects 0.000 description 36
- 238000004891 communication Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 21
- 238000013461 design Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 19
- 230000006399 behavior Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 102100040255 Tubulin-specific chaperone C Human genes 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 108010093459 tubulin-specific chaperone C Proteins 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/27—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
- H04L1/0042—Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0046—Code rate detection or code type detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
Definitions
- the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a Polar code.
- channel coding plays a vital role in ensuring the reliable transmission of data.
- channel coding is generally performed using a Turbo code, a Low Density Parity Check (LDPC), and a Polar code.
- Turbo codes cannot support information transmissions that are too low or too high.
- Turbo code and LDPC code are also difficult to achieve ideal performance under a limited code length due to the characteristics of their own compiled code.
- the Turbo code and the LDPC code have high computational complexity in the implementation of the compiled code.
- the Polar code is a good code that theoretically proves that the Shannon capacity can be obtained and has a relatively simple coding code complexity, and thus has been widely used.
- Enhanced Mobile Broadband eMBB
- Massive Machine Type Communication mMTC
- Ultra Reliable Low Latency Communication URLLC
- the embodiment of the present application provides a method and a device for transmitting a Polar code, which are used to improve performance of a Polar code.
- a method for transmitting a Polar code wherein a sequence encoded by a Polar code is subjected to at least two levels of conversion, and the transformed sequence is transmitted on a discontinuous time unit, so that the receiving end can implement the decoded information.
- Soft combining improves the reliability of information transmission and ensures the communication quality, which helps the Polar code coding method to be better applied to the PBCH.
- the first bit sequence to be encoded by the transmitting end is subjected to Polar code encoding to generate a coded sequence, and the transmitting end performs a transform operation on the encoded sequence to obtain a second bit sequence. Transmitting the second bit sequence on consecutive time units; wherein, at least two of the M consecutive time units have unequal time intervals between the time units, the transform operation including scrambling, interleaving And at least one of rearrangements. This helps the receiving end to obtain the transform amount of the solution transform according to different time intervals, and correctly implement soft combining.
- the transmitting end performs a transform operation on the encoded sequence, where the sending end performs at least two levels of grouping on the encoded sequence, and the sending end is configured for each level.
- the sequence of packets is transformed, wherein the transform used by the sequence of the primary packet is used to indicate the timing index value of the primary timing transmission.
- the sequence of the first-level packets of the at least two-level packets adopts M transform quantities, and the M transform quantities are used to indicate timing index values of the M discontinuous time units.
- one of the M transform amounts is used to indicate a timing index value of one of the M time units.
- the time interval between two of the time units is used to indicate the manner in which the receiving end soft-combines the signals received on the two of the time units.
- the soft combining mode is the amount of solution transform used by soft combining.
- the time interval between two of the time units is used to indicate the respective timing index of the two of the time units.
- the time interval is different, which can help the receiving end determine the amount of transformation adopted by the signals received on the two time units, thereby determining the amount of the solution transformation, correctly implementing the solution transformation, and further implementing soft combining.
- a transform quantity represents a timing index.
- the transform operation is a cyclic shift.
- the amount of transformation is a cyclic shift value.
- a method for transmitting a Polar code is provided.
- the receiving end acquires information to be decoded, and performs a first de-conversion operation and a Polar code on the information to be decoded according to a time interval between M discontinuous time units. Decoding, wherein at least two of the M consecutive time units have unequal time intervals between the time units, the de-conversion operation including at least one of descrambling, de-interleaving, and de-sequencing And the receiving end performs a second de-conversion operation on the decoded sequence.
- This enables the receiving end to implement soft combining of the decoded information, improve information transmission reliability, ensure communication quality, and facilitate the application of the Polar code encoding method to the PBCH.
- the receiving end determines the timing index value of the signals transmitted on the two of the time units by the time interval between the two time units.
- the receiving end performs a second de-transformation on the decoded sequence, where the receiving end performs at least two levels of grouping on the decoded sequence, and the receiving end pairs A sequence of each level of the packet other than the i-th level packet is subjected to a second de-transformation, the sequence of the i-th level packet adopting M de-transformed quantities, and the M de-transformed quantities are used to indicate the M discontinuities
- the timing index value of the time unit where the receiving end performs at least two levels of grouping on the decoded sequence, and the receiving end pairs A sequence of each level of the packet other than the i-th level packet is subjected to a second de-transformation, the sequence of the i-th level packet adopting M de-transformed quantities, and the M de-transformed quantities are used to indicate the M discontinuities
- the timing index value of the time unit is a second de-transformation on the decoded sequence, where the receiving end performs at least two levels of grouping on the decoded sequence,
- the receiving end performs a first de-conversion operation and a Polar code decoding on the information to be decoded according to a time interval between M discontinuous time units, by implementing the following manner: Determining, by the receiving end, a first de-transformed quantity used by the transmitting sequence on each time unit according to a time interval between the M discontinuous time units; the receiving end performing the information to be decoded by using the first de-transformed quantity The first solution transform performs soft combining on the first de-transformed sequence; the receiving end performs Polar code decoding on the soft-combined sequence.
- the solution transform operation is a cyclic shift.
- a Polar code transmission device having the function of implementing the behavior of the sender in any of the possible aspects of the first aspect and the first aspect described above.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the Polar code transmission device when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring a first bit sequence to be encoded; and a logic circuit for performing the above The behavior of the transmitting end in any of the possible designs of the first aspect and the first aspect; the output interface circuit for outputting the second bit sequence.
- the Polar code transmission device may be a chip or an integrated circuit.
- the Polar code transmission device when part or all of the function is implemented by software, the Polar code transmission device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the Polar code transmission device may implement the method described in any of the possible aspects of the first aspect and the first aspect described above.
- the above memory may be a physically separate unit or may be integrated with the processor.
- the Polar code transmission device when some or all of the functions are implemented by software, includes a processor.
- a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
- a Polar code transmission apparatus having a function of implementing the behavior of the receiving end in any of the possible aspects of the second aspect and the second aspect described above.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the Polar code transmission device when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring information to be decoded; and a logic circuit for performing the second aspect described above And the behavior of the receiving end in any of the possible designs of the second aspect; the output interface circuit for outputting the bit sequence after the Polar code decoding.
- the Polar code transmission device may be a chip or an integrated circuit.
- the Polar code transmission device when part or all of the function is implemented by software, the Polar code transmission device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the Polar code transmission device may implement the method described in any of the possible aspects of the second aspect and the second aspect described above.
- the above memory may be a physically separate unit or may be integrated with the processor.
- the Polar code transmission device when some or all of the functions are implemented by software, includes a processor.
- a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
- a wireless communication system comprising the apparatus of the third aspect, and the apparatus of the fourth aspect.
- a sixth aspect a computer storage medium for storing a computer program, the computer program comprising any of the first aspect, the second aspect, any of the possible implementations of the first aspect, or the second aspect The instructions of the method in a possible implementation.
- a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
- FIG. 1 is a schematic diagram of a processing procedure of a transmitting end PBCH in the prior art
- FIG. 2 is a schematic diagram of a processing procedure of a receiving end PBCH in the prior art
- FIG. 3 is a schematic diagram of a wireless communication system in an embodiment of the present application.
- FIG. 4 is a schematic diagram showing algebraic characteristics of a Polar code in an embodiment of the present application.
- 5a and 5b are schematic diagrams showing a process flow of a physical layer in a wireless communication system according to an embodiment of the present application
- FIG. 6 is a schematic diagram of cyclic shift corresponding to different timings in the embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a PBCH in an embodiment of the present application.
- FIGS. 8a to 8d are schematic diagrams of a hierarchical interleaving process in an embodiment of the present application.
- FIG. 9 is a schematic flowchart of a method for transmitting a Polar code according to an embodiment of the present application.
- FIG. 11, FIG. 12, and FIG. 14 are schematic diagrams showing hierarchical timing transmission using hierarchical transformation in the embodiment of the present application.
- FIG. 13a and 13b are schematic diagrams 2 of the hierarchical interleaving process in the embodiment of the present application.
- FIG. 15 to FIG. 22 are schematic structural diagrams of a Polar code transmission apparatus according to an embodiment of the present application.
- the physical broadcast channel (English: Physical Broadcast Channel, PBCH) carries the master information block (English: Master Information Block, MIB for short).
- the length of the MIB is 24 bits.
- the MIB includes the downlink system bandwidth, the physical hybrid automatic repeat request indication channel (English: Physical Hybrid ARQ Indicator Channel, PHICH), and the system frame number. Number, referred to as: SFN), the high eight and so on.
- the processing procedure of the transmitting end PBCH is as shown in FIG. 1.
- the base station first performs a Cyclic Redundancy Check (CRC) encoding on the MIB to be transmitted to obtain a 16-bit CRC sequence, and then the base station will have a 40-bit long sequence (including a 24-bit MIB and a 16-bit CRC).
- CRC Cyclic Redundancy Check
- the coded sequence is obtained, and the coded sequence is copied to obtain four equal-sized PBCH independent units, each PBCH independent unit carries the same data, and four PBCH independent units adopt four scrambling code sequences respectively.
- the scrambling is performed.
- the base station performs the scrambling subsequent modulation, mapping, and transmission procedures.
- the channel coding of PBCH adopts Tailing bit convolution coding (abbreviation: TBCC), and the four scrambling code sequences adopt different phases.
- the four PBCH independent units carry the same coded bits, and the four PBCH independent units perform the processes of scrambling, modulation, and mapping, and then transmit in a time interval of 40 ms (the transmission time of four radio frames, each radio frame is 10 ms).
- the processing procedure of the receiving end PBCH is as shown in FIG. 2.
- the four PBCH independent units carry the same coded bits. Therefore, if the channel quality is good enough, the receiver only receives a PBCH independent unit within 40 ms and successfully completes the descrambling, decoding, and CRC check. operating. Since the receiving end transmits the MIB in the first few radio frames within 40 ms by the descrambling successful scrambling code sequence, the lower 2 bits of the SFN are known.
- the receiving end For the case of poor channel quality, if the receiving end only receives one PBCH independent unit and cannot successfully descramble the decoding, it will perform soft combining with the next PBCH independent unit transmitted in the next 10ms and then decode it until successful decoding.
- the embodiment of the present application can be applied to a 5G communication system, and can be applied to a scenario in which the information is subjected to Polar encoding and decoding, and can be applied to, for example, a scenario in which the eMBB uplink control information and the downlink control information are Polar encoded and decoded.
- the channel coding (Channel Coding), the uplink control information, the downlink control information, and the channel coding part of the Sidelink channel, which are applied to the communication standard TS 36.212, are not limited in this embodiment. More specifically, the embodiment of the present application can be applied to an application scenario that needs to transmit hidden information.
- scenario 1 and PBCH timing implicit transmission can simultaneously support soft combining of multiple transmissions and blind detection of timing.
- Scenario 2 Implicit information transmission in Ultra-reliable and Low Latency Communications (URLLC) can support multi-point concurrent transmission and blind detection of certain information.
- Scene 3 a general single transmission, supports blind detection of certain information.
- the wireless communication system 300 to which the embodiment of the present application is applied includes a transmitting end 301 and a receiving end 302.
- the sending end 301 can be a network device, and the receiving end 302 is a terminal; or the sending end 301 is a terminal, and the receiving end 302 is a network device.
- the network device may be a base station, or may be a device integrated with a base station controller, or may be another device having similar communication functions.
- the transmitting end 301 is an encoding side
- the receiving end 302 is a decoding side
- the transmitting end 301 and the receiving end 302 are also other devices having a encoding and decoding function.
- the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrowband Internet of Things system (English: Narrow Band-Internet of Things, referred to as NB-IoT), and a global mobile communication system (English: Global System) For Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (English: Code Division Multiple Access, CDMA2000 for short), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution ( English: Long Term Evolution (LTE), the three major application scenarios of next-generation 5G mobile communication systems, eMBB, URLLC and eMTC, or new communication systems that will appear in the future.
- GSM Global System
- EDGE Enhanced Data Rate for GSM Evolution
- WCDMA Wideband Code Division Multiple Access
- CDMA2000 Code Division Multiple Access
- TD-SCDMA Time Division-Synchronization Code Division Multiple Access
- LTE Long Term Evolution
- the terminals involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
- the terminal may be an MS (English: Mobile Station), a subscriber unit (English: subscriber unit), a cellular phone (English: cellular phone), a smart phone (English: smart phone), a wireless data card, a personal digital assistant (English: Personal Digital Assistant, referred to as: PDA) computer, tablet computer, wireless modem (English: modem), handheld device (English: handset), laptop (English: laptop computer), machine type communication (English: Machine Type Communication , referred to as: MTC) terminal.
- MS International: Mobile Station
- PDA Personal Digital Assistant
- PDA Personal Digital Assistant
- tablet computer tablet computer
- wireless modem English: modem
- handheld device English: handset
- laptop English: laptop computer
- machine type communication English: Machine Type Communication
- the encoding strategy of the Polar code utilizes a noise-free channel to transmit useful information of the user, and the full-noise channel transmits the agreed information or does not transmit information.
- the Polar code is also a linear block code whose encoding matrix is G N and the encoding process is among them Is a binary line vector of length N (ie code length); G N is an N ⁇ N matrix, and Defined as the Kronecker product of log 2 N matrices F 2 . Above matrix
- G N (A) is the set of G N The sub-matrices obtained from those rows corresponding to the index
- G N (AC) is the set of G N The sub-matrices obtained from those rows corresponding to the index.
- the encoded output of the Polar code can be simplified to:
- indicates the number of elements in the collection, and K is the size of the information block.
- the construction process of the Polar code is a collection
- the selection process determines the performance of the Polar code.
- the construction process of the Polar code is generally: determining that there are N polarized channels in total according to the length N of the mother code, respectively corresponding to N rows of the coding matrix, calculating the reliability of the polarized channel, and the first K polarizations with higher reliability.
- Channel index as a collection Element
- the index corresponding to the remaining (NK) polarized channels as the index set of fixed bits Elements. set Determine the location of the information bits, the collection The position of the fixed bit is determined.
- F is a fixed bit set in the vector u to be encoded of the Polar code to be encoded, including (NK) elements.
- I is the information to be encoded in the vector to be encoded U to be encoded of the Polar code, including K elements, including information bits and parity bits.
- the verification method uses CRC as an example, and the check bit is the CRC bit.
- U is the information vector to be encoded of the Polar code or the bit sequence to be encoded, which is a vector of 1 ⁇ N.
- P x is a matrix of NxN, which represents multiplying the input bit vector by the Px operation.
- P x is a permutation matrix, that is, a row-column transformation matrix, and each row has only one element per column.
- Multiplying the input bit vector by Px since Px is a row-column transformation matrix, is equivalent to interleaving the input bit vector. More generally, Px can be referred to as an interleaving matrix.
- T u can be called a transformation matrix
- Px can be called an interlace matrix.
- the fixed bit set F and the information bit set I constitute an information vector U to be encoded, U is multiplied by the transform matrix T u , and the multiplied vector is encoded by the encoding matrix G N and output.
- the encoded bit sequence In the lower half of Fig. 4, the fixed bit set F and the information bit set I constitute the information vector U to be encoded, U is encoded by the coding matrix G N , the encoded vector is multiplied by the interleaving matrix P x , and the multiplied bits are output. sequence.
- the transform matrix T has a special form, which is a Toeplitz matrix of the upper triangle.
- the effective interleaving operation needs to satisfy the following conditions: the transform operation of the pre-encoding bit does not affect the value of the frozen bit, that is, the value of the frozen bit before and after the transform does not change, and the frozen bit needs to be guaranteed to be frozen before and after the transform. It is just a function that freezes bits, independent of the information bits. This is because the Polar code needs to know the value of the frozen bit in advance when decoding, otherwise it cannot be decoded normally.
- implicit information can be transmitted by interleaving and/or scrambling, for example, timing information can be transmitted.
- 5a and 5b are schematic diagrams showing a process flow of a physical layer in a wireless communication system.
- the source is encoded by the source code and then subjected to channel coding, or rate matching, digitally modulated, and transmitted to the receiving end via the channel.
- the signal received through the channel is digitally demodulated, de-rate matched, channel decoded, and source decoded to arrive at the sink.
- hierarchical interleaving and/or scrambling transmission according to the hierarchical timing information is adopted, and more timing information may be implicitly carried.
- the process of hierarchical interleaving and/or scrambling is performed after channel coding, before the rate matching, the bit sequence length of the hierarchical interleaving and/or scrambling is the length of the Polar code mother code; the process of hierarchical interleaving or scrambling can also be matched at the rate. Thereafter, the length of the bit sequence subjected to hierarchical interleaving or scrambling is the target length after rate matching.
- FIG. 5a the process of hierarchical interleaving or scrambling is performed after channel coding, before rate matching, corresponding to FIG. 5a, corresponding to hierarchical deinterleaving or descrambling at the receiving end after de-rate matching, before channel decoding; referring to FIG. 5b, the hierarchical interleaving or The scrambling process performs an equivalent transformation before channel coding, and inversely transforms the channel after decoding at the receiving end.
- timing information is implicitly carried by progressive interleaving of the encoded bit sequence during PBCH transmission.
- a fixed-length cyclic shift of the codeword transmitted the previous time may be performed every transmission in the PBCH period.
- 6 is a schematic diagram of cyclic shift corresponding to different timings.
- the Polar encoded bit sequence is divided into four segments of equal length, denoted as C1, C2, C3, and C4, respectively, during each timing transmission.
- the coded codeword of the previous transmission is cyclically shifted, and the size of each shift is N/4, where N is the length of the bit sequence after Polar encoding.
- shifting 0 for the first time shifting N/4 on the basis of the first time, and so on.
- Different cyclic shift values can characterize different timing information.
- the receiving end When receiving the signal transmitted multiple times, the receiving end first performs reverse cyclic shift according to the relative cyclic shift of the transmitting end, then performs soft combining and decoding, and finally blindly checks the absolute length of the cyclic shift through the CRC check. Finally, the corresponding timing information is obtained.
- the available version of the effective cyclic shift operation is limited. For example, the cyclic shift size N/4 can only produce 4 versions, and at most only implicitly carry 4 different timing information.
- FIG. 7 is a schematic structural diagram of a PBCH. As shown in FIG. 7, a 5G PBCH is carried in a synchronization block (SS block), and a plurality of synchronization signal blocks form a synchronization signal group (SS burst), and a plurality of synchronization signal groups form a SS burst set.
- SS block synchronization block
- SS burst synchronization signal group
- SS burst synchronization signal groups
- the need for soft combining of sync signal blocks may be: merging within one sync signal group, merging between different sync signal groups, or merging between different sets of sync signal groups, therefore, 5G PBCH transmission has hierarchical timing transmission
- the structure accordingly, requires an indication of multiple levels of timing information.
- the embodiment of the present application implicitly carries the hierarchical timing information by hierarchically interleaving the encoded bit sequence during PBCH transmission.
- the method of using the two-stage interleaving process in the embodiment of the present application is shown in FIG. 8a, FIG. 8b, FIG. 8c, and FIG.
- the transmitting end divides the encoded bit sequence into four groups of sequences of equal length (C1, C2, C3, C4), and divides each group of sequences into four groups of subsequences, such as dividing C1.
- C1, C2, C3, C4 the transmitting end divides the encoded bit sequence into four groups of sequences of equal length
- each group of sequences into four groups of subsequences such as dividing C1.
- C11, C12, C13, C14, C2 is divided into C21, C22, C23, C24, and the sequence of the first level and the second level are respectively subjected to 4 cyclic shifts in the following order:
- each bracket Represents a timing
- the first level element in parentheses represents the first level of timing information
- the second element serves as the second level of timing information
- FIG. 8a is a schematic diagram of four timings obtained by cyclically shifting four sets of sequences of the second stage when the first stage has no cyclic shift (the cyclic shift value is 0), and FIG. 8b is a first-stage cyclic shift once (loop) The four timing diagrams obtained by cyclically shifting the four sets of sequences of the second stage when the shift value is N/4).
- Fig. 8c is a schematic diagram showing four kinds of timings obtained by cyclically shifting the four sets of sequences of the second stage when the first stage is cyclically shifted twice (the cyclic shift value is 2N/4).
- 8d is a schematic diagram showing four kinds of timings obtained by cyclically shifting the four sets of sequences of the second stage when the first stage is cyclically shifted three times (the cyclic shift value is 3N/4). It can be seen that the first stage is cyclically shifted by 0, 1, 2, 3 times, and 4 kinds of timings can be obtained by cyclically shifting the 4 sets of sequences of the second stage. Then, when the cyclic shift size is N/4, 16 versions can be obtained by using two-level interleaving, and different versions in the timing transmission of each level can represent different timing information.
- the Polar code coding mode is applied to the PBCH, and the sequence encoded by the Polar code is transformed into at least two levels, and the transformed sequence is sent on the discontinuous time unit, so that the receiving end can decode the sequence.
- the information is soft-combined, the reliability of information transmission is improved, the communication quality is guaranteed, and the Polar code coding method is better applied to the PBCH.
- the transform operation may include, but is not limited to, at least one of scrambling, interleaving, and rearranging;
- the de-transforming operation may include, but is not limited to, at least one of descrambling, de-interleaving, and de-sequencing.
- Step 901 The first bit sequence to be encoded by the transmitting end is subjected to Polar code encoding to generate a coded sequence.
- Step 902 The transmitting end performs a transform operation on the encoded sequence to obtain a second bit sequence.
- the transform operation may include at least one of scrambling, interleaving, and rearranging.
- Step 903 The transmitting end sends a second bit sequence on the M discontinuous time units, where the time intervals between at least two time units in the M discontinuous time units are not equal.
- Step 904 The receiving end acquires information to be decoded.
- Step 905 The receiving end performs a first de-conversion operation and a Polar code decoding on the information to be decoded according to a time interval between the M discontinuous time units.
- the time interval between at least two time units in the M discontinuous time units is not equal, and the solution transform includes at least one of descrambling, deinterleaving, and de-duplication.
- the receiving end determines the first de-transformed quantity used by the transmitting sequence on each time unit according to the time interval between the M discontinuous time units, and the receiving end performs the first de-transformation by using the first de-transformed amount of the information to be decoded, and The first de-transformed sequence is soft-combined, and the receiving end performs a Polar code decoding on the soft-combined sequence.
- Step 906 The receiving end performs a second solution transform operation on the decoded sequence.
- the receiving end performs at least two levels of grouping on the decoded sequence; the receiving end performs second de-transformation on the sequence of each level of the packet other than the i-th level packet, and the sequence of the i-th level packet adopts M solution transformations.
- the quantity, M solution transformation quantities are timing index values for indicating M discontinuous time units.
- the transform operation described in step 902 may be a hierarchical transform operation, and the hierarchical transform operation may be hierarchical interleaving.
- the transmitting end determines the number of levels of hierarchical interleaving according to the number of levels of the hierarchical timing indicated by the need.
- the process of performing at least two levels of interleaving on the encoded sequence by the transmitting end is: the transmitting end performs at least two levels of grouping on the encoded sequence, and transforms the sequence of each level of the grouping, wherein one of the sequences of the first level grouping is used.
- the quantity is used to indicate the timing index value of the primary timing transmission.
- the transmitting end divides the encoded sequence into L parts in the first level grouping, and divides each part into P sub-parts in the second level grouping.
- the transmitting end interleaves the sequence of each level of the packet, the L parts adopt the first level interleaving, and the P parts in each part adopt the second level interleaving. L and P may or may not be equal.
- one of the transform amounts used by the sequence of the primary packet is used to indicate the timing index value of the primary timing transmission.
- the first level interleaving manner can be used to characterize the first level timing information, that is, the timing index value of the first stage timing transmission;
- the second level interleaving mode can be used to characterize the second level timing information, that is, the timing index value of the second level timing transmission.
- Figures 8a-8d are an example of a two-level grouping.
- the M discontinuous time units are one of the timing transmissions, and the sequence number of one of the M time units is a timing index value.
- the sequence of the first-level packets of the at least two-stage packets adopts M types of transforms, and the M types of transforms are used to indicate timing index values of M discontinuous time units. Wherein, one of the M types of transforms may indicate a timing index value of the M discontinuous time units. If the transformation is a cyclic shift, the amount of transformation is the cyclic shift value.
- the transform quantity refers to a specific transform value used by each transform, for example, a cyclic shift value adopted by the cyclic shift mode, and an interleaving frequency m used by the progressive interleaving method.
- the amount of transformation is different, and it can be considered that the interleaving method is different. Therefore, the amount of up-conversion in the salutation can be regarded as an interleaving method. This description applies to the entire application.
- the transmission time interval (TTI) of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time Can be decoded by itself.
- Each transport block has a length of 20ms, and one transport block includes four sync bursts (SS burst); each SS burst has a length of 3.75ms, including 30 sync signal portions (SS segments); wherein the sync signal portion has a sequence index (
- Each of the four SS segments of index, 1, 3, 7, and 15 includes four synchronization signal blocks (SS blocks), and the four SS blocks are distributed in two slots, Only the 4 SS blocks included in the SS segment numbered 1 are shown in 10.
- the transmitting end uses two levels of interleaving to represent the two levels of timing information for the overall bit sequence of the sync signal block.
- the transmitting end splits the whole bit sequence of the synchronization signal block into four parts of equal length, and adopts the first-level interleaving manner as shown in FIG. 8a to FIG. 8d between the four parts, that is, the cyclic shift values are respectively 0. N/4, 2N/4, and 3N/4, a total of four different interleaving modes, each of which can implicitly carry a first-level timing information.
- the first level timing information is the sequence number of the SS segment.
- the transmitting end splits each part into four sub-portions, and the four sub-parts adopt the second-level interleaving mode as shown in FIG.
- each second-level interleaving manner can implicitly carry a second-level timing information.
- the second-level timing information is the sequence number of the SS block.
- the four SS blocks sent on the SS segment numbered 1 can adopt the four interleaving sequences shown in FIG. 8a; the four SS blocks sent on the SS segment with the sequence number of three.
- the four interleaving sequences shown in Figure 8b can be used separately; the four SS blocks transmitted on the SS segment numbered 7 can use the four interleaving sequences shown in Figure 8c; on the SS segment numbered 15
- the four SS blocks transmitted may use the four interleaving sequences shown in Figure 8d, respectively.
- the four timings 1a, 1b, 1c, and 1d shown in FIG. 8a represent the serial numbers of the four SS blocks transmitted on the SS segment numbered 1, respectively; the four timings 2a, 2b, 2c, and 2d shown in FIG. 8b are respectively Represents the sequence numbers of the four SS blocks transmitted on the SS segment numbered 3; the four timings 3a, 3b, 3c, and 3d shown in FIG.
- FIG. 8c represent the four SS blocks transmitted on the SS segment numbered 7, respectively.
- the four types of timings 4a, 4b, 4c, and 4d shown in FIG. 8d represent the serial numbers of the four SS blocks transmitted on the SS segment numbered 15, respectively.
- the signals received by the different first-stage timings may be reverse-processed according to the first-level interleaving manner, that is, the de-interleaving processing may be performed according to the first-level de-interleaving manner corresponding to the first-level interleaving manner.
- the reverse cyclic shift values of the receiving end are 0, N/4, 2N/4, and 3N/4, respectively.
- the signals are inversely interleaved using the relative distance of the interleaving.
- the deinterleaving method used in the reverse interleaving depends on the relative distance between the interleaving mode and the reference interleaving mode. For example, the cyclic interpolation value is 0 as the reference interleaving mode, and the receiving end needs to receive the SS segment on the sequence number 3.
- the signal is cyclically shifted by N/4, and the signal received on the SS segment numbered 7 is cyclically shifted by 2N/4, and the signal received on the SS segment of sequence number 15 is cyclically shifted. Bit 3N/4.
- the relative distances of the interleaving modes used by the signals on the two adjacent first-stage timings may be the same, when the receiving end receives the signals of two adjacent first-order timings, the relative manner according to the interleaving manner is adopted. The distance cannot judge the relative distance between the two interleaving methods and the reference interleaving method, and it is impossible to judge which deinterleaving method is adopted, that is, the reverse cyclic shift value used cannot be judged.
- the time sequence of the time unit of the at least two transmission signals is not equal, and the bit sequence after the transformation operation is sent on the discontinuous time unit, so that the receiving end receives the two time units.
- the relative distance between the interleaving mode and the reference interleaving mode adopted by the signals on the two timings can be judged by the time interval, and the two deinterleaving modes are accurately obtained, and the signals on the two timings are correctly deinterleaved.
- the subsequent operations of soft combining, decoding, and the like are performed on the deinterleaved sequence.
- the number of bits of the implicitly carried information can be obtained according to the number of transmission versions obtained by the hierarchical interleaving manner.
- the two-level interleaving shown in FIG. 8a to FIG. 8d can obtain 16 transmission versions, and can carry up to 4 bits of implicit information, for example, 16 transmission versions respectively represent 0000, 0001, 0010, 0011, 0100, 0101, 0110. , 0111, 1000, 1001, 1010, 1011, 1100, 1110, 1101, 1111.
- more levels of interleaving can get more transmission versions and can carry more bits of implicit information.
- the design of the time interval between every two time units may conform to the following rules.
- the M discontinuous time units include a first time unit, a second time unit, and a third time unit sorted according to a timing index value; the first time unit and the second time unit are A time interval, and a second time interval between the second time unit and the third time unit, satisfies: the second time interval is greater than or equal to the sum of the first time interval, the first time unit, and the second time unit.
- the discontinuous time units of M are the transmission timing of the SS segment
- the first time unit is the SS segment with the sequence number 1
- the second time unit is the SS segment with the sequence number 3, and the third.
- the time unit is an SS segment with sequence number 7. Since each SS segment includes 4 SS blocks, the length of the first time unit is 4; the length of the second time unit is also 4; the first time interval is 1 time unit.
- Polar code transmission method provided by the embodiment of the present application is further described in detail below in conjunction with the timing structure of several PBCHs.
- the transmission period TTI of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time it can be decoded by itself.
- Each transport block has a length of 20 ms, including 16 SS bursts; each SS burst has a length of 1.25 ms, including 10 SS segments; wherein the SS segment with sequence number 1 includes 4 SS blocks, which are distributed in two slots.
- the interleaving process shown in FIG. 6 can be used to perform interleaving, and four versions of the SS block, that is, the above four SS blocks are obtained. Among them, 4 versions can implicitly carry 2 bits of information.
- the system frame number SFN is 10 bits in length, and 1 bit is obtained by the parity frame number. That is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number is 0, and if it is the first 8 bursts, The highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- the system frame number 7 bits are explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the 2-bit bit of the frame number of the implicit transmission system can be implemented by the scrambling method in LTE.
- the system frame number SFN is 10 bits in length, wherein 1 bit is obtained by the parity frame number, that is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number highest bit is 0, if the first 8 bursts , the highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- One bit is determined by the auxiliary synchronization signal (SSS), the 6-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the transmitting end interleaves the SSS signal, for example, cyclically shifting, and the size of the cyclic shift is half of the length of the SSS signal.
- the SSS signal is divided into two sub-sequences of equal length.
- each 5 ms the sequence of the two equal-length sub-sequences is exchanged, so that two versions of the SSS signals can be generated, and the two versions can carry 1 bit of implicit information. It can also be said that the 1-bit information is implicitly carried by the sequence of the two sub-sequences constituting the SSS signal.
- system frame number of the 8-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted, which is not limited in the embodiment of the present application.
- the length of the SS Index is 6 bits, of which 4 bits are explicitly transmitted by PBCH and 2 bits are implicitly transmitted.
- the 2 bits of the implicit transmission are characterized by the interleaving method shown in FIG.
- the receiving end if decoding is performed based on the SS block in the same SS burst, the receiving end performs 4 blind detections, detects the sequence scrambled on the 20 ms transmission block, and acquires 2 bits of implicitly transmitted SFN.
- the blind detection needs to perform a polar decoding, and the decoding result is subjected to 4 CRC detections to obtain the two-bit SS index of the implicit transmission.
- the 4-bit explicitly transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the receiving end if decoding is performed based on SS blocks from different SS bursts, 4 blind detections are performed, and the sequence scrambled on the 20 ms transmission block is detected to obtain 2-bit implicitly transmitted SFN.
- Each time blind detection requires 16 times of polar blind detection decoding, and 4 times of CRC detection is performed for each decoding result, and the two-bit SS index of the implicit transmission is obtained.
- the 4-bit explicit transmitted SS index and 7 are explicitly transmitted SFN, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the transmission period TTI of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time it can be decoded by itself.
- Each transport block has a length of 20ms, including 8 SS bursts; each SS burst has a length of 2.5ms, including 20 SS segments; wherein the SS segments with sequence numbers 1 and 3 include 4 SS blocks, and each 4 SS blocks Distributed in two time slots.
- the transmitting end can perform interleaving by using the two-stage interleaving process shown in Figs. 13a and 13b.
- the transmitting end divides the encoded sequence into two parts of equal length, and the two parts perform the first-level interleaving by using the first-level interleaving process shown in FIG. 13a and FIG. 13b, and each of the first-level interleaving modes can represent the first-level timing.
- a specific value such as a sequence number that characterizes an SS segment.
- the transmitting end divides each part into 4 sub-sections of equal length, and the 4 sub-sections perform second-level interleaving by using the second-level interleaving process shown in FIG. 13a and FIG. 13b, and each second-level interleaving manner can represent the second level.
- a specific value of the timing for example. Represents the sequence number of the SS block in the SS segment. In this way, eight versions of the SS block can be generated, that is, the eight SS blocks shown in FIG. The 8 versions can implicitly carry 3 bits of information.
- the system frame number SFN is 10 bits in length, and 1 bit is obtained by the parity frame number. That is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number is 0, and if it is the first 8 bursts, The highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- the system frame number 7 bits are explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the 2-bit bit of the frame number of the implicit transmission system can be implemented by the scrambling method in LTE.
- the system frame number of the 8-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted, which is not limited in the embodiment of the present application.
- the SS Index is 6 bits in length, of which 3 bits are explicitly transmitted by PBCH and 3 bits are implicitly transmitted; 3 bits of implicit transmission are characterized by the interleaving manner shown in Figs. 13a and 13b.
- the receiving end if decoding is performed based on SS blocks of different SS segments in the same SS burst, the receiving end performs 4 blind detections, detects the sequence scrambled on the 20 ms transmission block, and acquires 2 bits of implicitly transmitted SFN. Each time the blind detection requires a polar decoding, and the decoding result is subjected to 4 CRC detections to obtain an implicitly transmitted 3-bit SS index. According to the PBCH decoding result, the 3-bit explicit transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- decoding is performed based on SS blocks from different SS bursts and different SS segments, 4 blind detections are performed, and the sequence scrambled on the 20 ms transport block is detected to obtain 2-bit implicitly transmitted SFN.
- Each blind detection requires 8 blind detections of polar decoding, and 4 times of CRC detection is performed for each decoding result to obtain an implicitly transmitted 3-bit SS index.
- the 3-bit explicit transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the transmission period TTI of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time it can be decoded by itself.
- Each transport block has a length of 20ms, including 4 SS bursts; the length of the SS burst includes 3.75ms, including 30 SS segments; wherein the four SS segments with sequence numbers 1, 3, 7, and 15 include 4 SS blocks.
- Each 4 SS blocks are distributed in two time slots.
- the transmitting end performs interleaving by using a two-stage interleaving process as shown in FIGS. 8a to 8d.
- the transmitting end divides the encoded sequence into four parts of equal length, and the four parts perform first-level interleaving by using the first-level interleaving process shown in FIG. 8a to FIG. 8d, and each first-level interleaving manner can represent the first-level timing.
- a specific value such as a sequence number that characterizes an SS segment.
- the transmitting end divides each part into four sub-sections of equal length, and the four sub-sections perform second-level interleaving by using the second-level interleaving process shown in FIG. 8a to FIG. 8d, and each second-level interleaving manner can represent the second level.
- a specific value of the timing for example. Represents the sequence number of the SS block in the SS segment. In this way, 16 versions of the SS block can be generated, that is, the 16 SS blocks shown in FIG. The 16 versions can implicitly carry 4 bits of information.
- the system frame number SFN is 10 bits in length, and 1 bit is obtained by the parity frame number. That is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number is 0, and if it is the first 8 bursts, The highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- the system frame number 7 bits are explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the 2-bit bit of the frame number of the implicit transmission system can be implemented by the scrambling method in LTE.
- the system frame number of the 8-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted, which is not limited in the embodiment of the present application.
- the SS Index is 6 bits in length, of which 2 bits are explicitly transmitted by PBCH and 4 bits are implicitly transmitted; 4 bits of implicit transmission are characterized by the interleaving manner shown in FIGS. 8a to 8d.
- the receiving end if decoding is performed based on the SS block of the same SS segment in the same SS burst, the receiving end performs 4 blind detections, detects a sequence scrambled on the 20 ms transmission block, and acquires 2 bits of implicitly transmitted SFN.
- the 4-bit SS index of the implicit transmission is obtained.
- the 2-bit explicitly transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- decoding is performed based on SS blocks from different SS segments in the same SS burst
- 4 blind detections are performed, and the sequence on the 20 ms transmission block is detected and scrambled to obtain 2-bit implicitly transmitted SFN.
- the blind detection requires a polar decoding, and the decoding result is subjected to 4 CRC detections to obtain an implicitly transmitted 4-bit SS index.
- the 2-bit explicit transmitted SS index and 7 are explicitly transmitted SFN, and the 1-bit implicitly transmitted SFN is obtained according to the SS index.
- the receiving end if decoding is performed based on SS blocks from different SS bursts and different SS segments, 4 blind detections are performed, and the sequence scrambled on the 20 ms transport block is detected to obtain 2-bit implicitly transmitted SFN. Each time the blind detection requires 4 times of polar decoding, and 4 times of CRC detection is performed for each decoding result, the 4-bit SS index of the implicit transmission is obtained.
- the 2-bit explicitly transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the transmission period TTI of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time it can be decoded by itself.
- Each transport block has a length of 20 ms, including 4 SS sub burst sets; each SS sub burst set includes 30 SS segments; wherein the four SS segments with sequence numbers 1, 3, 7, and 15 each include 4 SS blocks.
- Each 4 SS blocks are distributed among two time slots.
- the transmitting end can perform interleaving by using a three-level interleaving process.
- the transmitting end divides the encoded sequence into four parts of equal length, and the four parts perform first-level interleaving by using a first-level interleaving process, and each first-level interleaving manner can represent a specific value of the first-level timing, for example, characterizing one The serial number of the SS sub burst set.
- the transmitting end divides each part into four first sub-sections of equal length, and the four first sub-sections perform second-level interleaving by using a second-level interleaving process, and each second-level interleaving manner can represent the second-level timing.
- a specific value for example. Represents the sequence number of the SS segment in the SS sub burst set.
- the transmitting end divides each first sub-portion into four second sub-sections of equal length, and the four second sub-sections perform third-level interleaving by using a third-level interleaving process, and each third-level interleaving manner can represent the third sub-intersection A specific value of the level timing, for example.
- the system frame number SFN is 10 bits in length, and 1 bit is obtained by the parity frame number. That is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number is 0, and if it is the first 8 bursts, The highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- the system frame number 7 bits are explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the 2-bit bit of the frame number of the implicit transmission system can be implemented by the scrambling method in LTE.
- the system frame number of the 8-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted, which is not limited in the embodiment of the present application.
- the SS Index is 6 bits in length, and 6 bits can be implicitly transmitted.
- decoding is performed based on the SS block of the same SS sub burst set, the same SS burst, and the same SS segment, performing 4 blind detections, detecting a sequence scrambled on the 20 ms transmission block, and acquiring 2 bits of implicit transmission.
- SFN Each time the blind detection needs to perform one-time polar decoding, and 64 times of CRC detection is performed for each decoding result, and the 6-bit SS index of the implicit transmission is obtained.
- the 7-bit explicitly transmitted SFN is obtained according to the PBCH decoding result, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the transmission period TTI of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time it can be decoded by itself.
- Each transport block is 20ms long and includes 20 SS bursts.
- Each SS burst has a length of 1 ms and includes 6 SS segments.
- the SS segments with sequence numbers 1 and 3 each include 4 SS blocks, and each 4 SS blocks are distributed in two slots.
- the transmitting end can perform interleaving by using the two-stage interleaving process shown in Figs. 13a and 13b.
- the transmitting end divides the encoded sequence into two parts of equal length, and the two parts perform the first-level interleaving by using the first-level interleaving process shown in FIG. 13a and FIG. 13b, and each of the first-level interleaving modes can represent the first-level timing.
- a specific value such as a sequence number that characterizes an SS segment.
- the transmitting end divides each part into 4 sub-sections of equal length, and the 4 sub-sections perform second-level interleaving by using the second-level interleaving process shown in FIG. 13a and FIG. 13b, and each second-level interleaving manner can represent the second level.
- a specific value of the timing for example. Represents the sequence number of the SS block in the SS segment. In this way, 8 versions of the SS block can be generated, and the 8 versions can implicitly carry 3 bits of information.
- the sender needs to send 64 SS blocks, the 64 SS blocks will be transmitted within the first 8 ms.
- the system frame number SFN is 10 bits in length, and 1 bit is obtained by the parity frame number. That is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number is 0, and if it is the first 8 bursts, The highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- the system frame number 7 bits are explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the 2-bit bit of the frame number of the implicit transmission system can be implemented by the scrambling method in LTE.
- the system frame number of the 8-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted, which is not limited in the embodiment of the present application.
- the SS Index is 6 bits in length, of which 3 bits are explicitly transmitted by PBCH and 3 bits are implicitly transmitted; 3 bits of implicit transmission are characterized by the interleaving manner shown in Figs. 13a and 13b.
- the receiving end if decoding is performed based on SS blocks from different SS segments in the same SS burst, the receiving end performs 4 blind detections, detects a sequence scrambled on the 20 ms transmission block, and acquires 2 bits of implicitly transmitted SFN. .
- the blind detection requires a polar decoding, and the decoding result is subjected to 4 CRC detections to obtain an implicitly transmitted 3-bit SS index.
- the PBCH decoding result the 3-bit explicit transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the receiving end if decoding is performed based on SS blocks from different SS bursts and different SS segments, the receiving end performs 4 blind detections, detects a sequence scrambled on the 20 ms transmission block, and acquires 2 bits of implicitly transmitted SFN. .
- the blind detection needs to perform 8 times of polar decoding, and 4 times of CRC detection is performed for each decoding result, the 3-bit SS index of the implicit transmission is obtained.
- the 3-bit explicit transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the transmission period TTI of the PBCH is 80 ms, and the broadcast information is repeated 4 times in the period, that is, each time it can be decoded by itself.
- Each transport block has a length of 20ms, including 4 SS bursts; the length of the SS burst includes 3.75ms, including 30 SS segments; wherein the four SS segments with sequence numbers 1, 3, 7, and 15 include 4 SS blocks.
- Each 4 SS blocks are distributed in two time slots.
- the transmitting end performs interleaving by using a two-stage interleaving process as shown in FIGS. 8a to 8d.
- the transmitting end uses two-level interleaving to indicate the timing information of the SS burst and the timing information of the SS block.
- the timing information of the SS segment is transmitted through the PBCH display.
- the transmitting end divides the encoded sequence into four parts of equal length, and the four parts perform first-level interleaving by using the first-level interleaving process shown in FIG. 8a to FIG. 8d, and each first-level interleaving manner can represent the first-level timing.
- a specific value such as a sequence number that characterizes an SS burst.
- the transmitting end divides each part into four sub-sections of equal length, and the four sub-sections perform second-level interleaving by using the second-level interleaving process shown in FIG. 8a to FIG. 8d, and each second-level interleaving manner can represent the second level.
- a specific value of the timing for example. Represents the sequence number of the SS block in the SS segment. In this way, 16 versions of the SS block can be generated, that is, the 16 SS blocks shown in FIG. The 16 versions can implicitly carry 4 bits of information.
- the system frame number SFN is 10 bits in length, and 1 bit is obtained by the parity frame number. That is, in the subsequent SS burst acquisition, if the first 8 bursts, the system frame number is 0, and if it is the first 8 bursts, The highest bit of the system frame number is 1. 0 and 1 respectively correspond to the parity frame number.
- the system frame number 7 bits are explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted.
- the 2-bit bit of the frame number of the implicit transmission system can be implemented by the scrambling method in LTE.
- the system frame number of the 8-bit bit is explicitly transmitted by the broadcast information, and the 2-bit bit is implicitly transmitted, which is not limited in the embodiment of the present application.
- the SS Index is 6 bits in length, of which 2 bits are explicitly transmitted by PBCH and 4 bits are implicitly transmitted; 4 bits of implicit transmission are characterized by the interleaving manner shown in FIGS. 8a to 8d.
- the receiving end if decoding is performed based on the SS block of the same SS segment in the same SS burst, the receiving end performs 4 blind detections, detects a sequence scrambled on the 20 ms transmission block, and acquires 2 bits of implicitly transmitted SFN.
- the 4-bit SS index of the implicit transmission is obtained.
- the 2-bit explicitly transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- decoding is performed based on SS blocks from different SS segments in the same SS burst
- 4 blind detections are performed, and the sequence on the 20 ms transmission block is detected and scrambled to obtain 2-bit implicitly transmitted SFN.
- the blind detection requires a polar decoding, and the decoding result is subjected to 4 CRC detections to obtain an implicitly transmitted 4-bit SS index.
- the 2-bit explicit transmitted SS index and 7 are explicitly transmitted SFN, and the 1-bit implicitly transmitted SFN is obtained according to the SS index.
- the receiving end if decoding is performed based on SS blocks from different SS bursts and different SS segments, 4 blind detections are performed, and the sequence scrambled on the 20 ms transport block is detected to obtain 2-bit implicitly transmitted SFN. Each time the blind detection requires 4 times of polar decoding, and 4 times of CRC detection is performed for each decoding result, the 4-bit SS index of the implicit transmission is obtained.
- the 2-bit explicit transmitted SS index and the 7-bit explicitly transmitted SFN are obtained, and the 1-bit implicitly transmitted SFN number is obtained according to the SS index.
- the embodiment of the present application further provides a Polar code transmission device 1500, which is used to execute the Polar shown in FIG. Code transmission method.
- the Polar code transmission device 1500 includes:
- the receiving unit 1501 is configured to acquire a first bit sequence to be encoded.
- the processing unit 1502 is configured to perform Polar code encoding on the first bit sequence to be encoded to generate a coded sequence.
- the processing unit 1502 is configured to perform a transform operation on the encoded sequence to obtain a second bit sequence, where the transform operation includes at least one of scrambling, interleaving, and rearranging;
- the processing unit 1502 is configured to send the second bit sequence on the M discontinuous time units; wherein, the time intervals between the at least two time units in the M discontinuous time units are not equal.
- the M consecutive time units include a first time unit, a second time unit, and a third time unit sorted according to a timing index value from small to large;
- the first time interval between the first time unit and the second time unit, and the second time interval between the second time unit and the third time unit are satisfied: the second time interval is greater than or equal to, the first time interval, the first time interval The sum of a time unit and a second time unit.
- the processing unit 1502 is configured to: perform at least two levels of grouping on the encoded sequence;
- the sequence of each level of the packet is transformed, wherein the amount of transformation used by the sequence of the primary packet is used to indicate the timing index value of the primary timing transmission.
- the sequence of the first level packets in the at least two level packets adopts M transform quantities, and the M transform quantities are used to indicate timing index values of the M discontinuous time units.
- the time interval between the two time units is used to indicate the manner in which the receiving end soft-combines the signals received on the two time units.
- the time interval between the two time units is used to indicate the respective timing index on the two time units.
- the transform operation is a cyclic shift.
- the embodiment of the present application further provides a Polar code transmission device 1600, which is used to execute the Polar shown in FIG. Code transmission method.
- the Polar code transmission device 1600 includes:
- the receiving unit 1601 is configured to acquire information to be decoded.
- the processing unit 1602 is configured to perform a first de-conversion operation and a Polar code decoding on the information to be coded according to a time interval between the M discontinuous time units, where at least two of the M discontinuous time units exist.
- the time intervals between the time units are not equal, and the de-transform operation includes at least one of descrambling, de-interleaving, and de-sequencing;
- the processing unit 1602 is configured to perform a second de-conversion operation on the decoded sequence.
- the M consecutive time units include a first time unit, a second time unit, and a third time unit sorted according to a timing index value from small to large;
- the first time interval between the first time unit and the second time unit, and the second time interval between the second time unit and the third time unit are satisfied: the second time interval is greater than or equal to, the first time interval, the first time interval The sum of a time unit and a second time unit.
- processing unit 1602 is configured to:
- the sequence of the i-th level packet adopting M de-transformed quantities, and the M de-transformed quantities are used to indicate M discontinuous time units Timing index value.
- processing unit 1602 is configured to:
- Polar code decoding is performed on the soft combined sequence.
- the solution transform operation is a cyclic shift.
- the Polar code transmission device 1700 is further configured to perform the method shown in FIG. The method of coding side in the Polar code transmission method. Some or all of the Polar code transmission methods of the foregoing embodiments may be implemented by hardware or by software.
- the Polar code transmission apparatus 1700 includes: an input interface circuit 1701, which is used to acquire the to-be-coded a bit sequence; a logic circuit 1702, which is used to perform the Polar code transmission method shown in FIG. 9 above.
- the output interface circuit 1703 is configured to output a second bit. sequence.
- the Polar code transmission device 1700 may be a chip or an integrated circuit when implemented.
- the Polar code transmission apparatus 1700 includes: a memory 1801 for storing a program; and a processor 1802 The program stored in the memory 1801 is executed, and when the program is executed, the Polar code transmission device 1700 can implement the Polar code transmission method provided by the above embodiment.
- the foregoing memory 1801 may be a physically independent unit, or as shown in FIG. 19, the memory 1801 is integrated with the processor 1802.
- the Polar code transmission apparatus 1700 may also include only the processor 1802.
- the memory 1801 for storing programs is located outside the Polar code transmission device 1700, and the processor 1802 is connected to the memory 1801 through circuits/wires for reading and executing programs stored in the memory 1801.
- the Polar code transmission device 2000 is further configured to perform the method shown in FIG. A method of decoding side in the Polar code transmission method.
- Some or all of the Polar code transmission methods of the foregoing embodiments may be implemented by using hardware or by software.
- the Polar code transmission apparatus 2000 includes: an input interface circuit 2001, configured to acquire information to be decoded.
- the logic circuit 2002 is used to execute the method of the decoding side in the Polar code transmission method shown in FIG. 9 .
- the output interface circuit 2003 is used for output. The bit sequence after the Polar code is decoded.
- the Polar code transmission device 2000 may be a chip or an integrated circuit in a specific implementation.
- the Polar code transmission apparatus 2000 includes: a memory 2101 for storing a program; and a processor 2102, The program stored in the memory 2101 is executed, and when the program is executed, the Polar code transmission device 2000 can implement the Polar code transmission method provided by the above embodiment.
- the foregoing memory 2101 may be a physically independent unit, or as shown in FIG. 22, the memory 2101 is integrated with the processor 2102.
- the Polar code transmission device 2000 may also include only the processor 2102.
- the memory 2101 for storing programs is located outside the Polar code transmission device 2000, and the processor 2102 is connected to the memory 2101 through circuits/wires for reading and executing programs stored in the memory 2101.
- the embodiment of the present application provides a computer storage medium for storing a computer program, the computer program comprising a method for performing the Polar code transmission shown in FIG.
- the embodiment of the present application provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the Polar code transmission method shown in FIG.
- embodiments of the present application can be provided as a method, system, or computer program product.
- the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
- the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Error Detection And Correction (AREA)
Abstract
一种Polar码传输方法及装置,用以将Polar码编码方式更好的应用到PBCH中。该方法为:发送端对待编码的第一比特序列进行Polar码编码,生成编码后序列;所述发送端对所述编码后序列进行变换操作,获得第二比特序列,所述变换操作包括加扰、交织和重排中的至少一种;所述发送端在M个不连续的时间单元上发送所述第二比特序列;其中,M个不连续的时间单元中至少存在两个时间单元之间的时间间隔不相等。
Description
本申请要求在2017年5月15日提交中国专利局、申请号为201710340275.3、发明名称为“一种Polar码传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信技术领域,尤其涉及一种Polar码传输方法及装置。
信道编码作为最基本的无线接入技术,在保证数据的可靠性传输方面起到至关重要的作用。在现有的无线通信系统中,一般采用Turbo码、低密度奇偶校验码(Low Density Parity Check,LDPC)和极化(Polar)码进行信道编码。Turbo码不能够支持过低或过高码率的信息传输。而对于中短包传输,Turbo码和LDPC码也由于自身编译码的特点,在有限码长下很难达到理想的性能。在实现方面,Turbo码和LDPC码在编译码实现过程中具有较高的计算复杂度。极化(Polar)码是理论上证明可以取得香农容量,且具有相对简单的编译码复杂度的好码,因而得到了越来越广泛的应用。
但是,随着无线通信系统的快速演进,未来的通信系统(例如,5G)将会出现一些新的特点。例如,最典型的三个通信场景包括增强型移动互联网(Enhance Mobile Broadband,eMBB)、海量机器连接通信(Massive Machine Type Communication,mMTC)和高可靠低延迟通信(Ultra Reliable Low Latency Communication,URLLC)。这些通信场景对于极化码的编译码性能提出了更高的要求。
而现阶段,极化码在应用过程中的编译码性能还并不理想,需要进一步提高。
发明内容
本申请实施例提供一种Polar码传输方法及装置,用以提高Polar码编译码性能。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种Polar码传输方法,将Polar码编码后的序列进行至少两级变换,并在不连续的时间单元上发送变换后的序列,这样能够使接收端能够对译码信息实现软合并,提高信息传输可靠性,保证通信质量,有助于Polar码编码方式更好的应用到PBCH中。
在一个可能的设计中,发送端对待编码的第一比特序列进行Polar码编码,生成编码后序列,所述发送端对所述编码后序列进行变换操作,获得第二比特序列,在M个不连续的时间单元上发送所述第二比特序列;其中,所述M个不连续的时间单元中至少存在两个所述时间单元之间的时间间隔不相等,所述变换操作包括加扰、交织和重排中的至少一种。这样有助于接收端根据不同的时间间隔获取到解变换的变换量,正确实现软合并。
在一个可能的设计中,所述发送端对所述编码后序列进行变换操作,通过以下方式实现:所述发送端对所述编码后序列进行至少两级分组,所述发送端对每一级分组的序列进行变换,其中,一级分组的序列进行变换所采用的变换量用于指示一级时序传输的时序索 引值。
在一个可能的设计中,所述至少两级分组中的其中一级分组的序列采用M个变换量,所述M个变换量用于指示所述M个不连续的时间单元的时序索引值。可选的,M个变换量中的一种变换量用于指示M个时间单元中的一个时间单元的时序索引值。
在一个可能的设计中,两个所述时间单元之间的时间间隔用于指示接收端对在两个所述时间单元上接收到的信号进行软合并的方式。所述软合并的方式即软合并采用的解变换量。
在一个可能的设计中,两个所述时间单元之间的时间间隔用于指示两个所述时间单元各自的时序索引。具体地,时间间隔不同,可以有助于接收端判断在两个时间单元上接收到的信号采用的变换量,从而确定解变换量,正确实现解变换,进一步实现软合并。一种变换量代表一种时序索引。
在一个可能的设计中,所述变换操作为循环移位。变换量为循环移位值。
第二方面,提供一种Polar码传输方法,接收端获取待译码信息,根据M个不连续的时间单元之间的时间间隔,对所述待译码信息进行第一解变换操作和Polar码译码,其中,所述M个不连续的时间单元中至少存在两个所述时间单元之间的时间间隔不相等,所述解变换操作包括解扰、解交织和解重排中的至少一种,所述接收端对译码后的序列进行第二解变换操作。这样能够使接收端能够对译码信息实现软合并,提高信息传输可靠性,保证通信质量,有助于Polar码编码方式更好的应用到PBCH中。
在一个可能的设计中,接收端通过两个所述时间单元之间的时间间隔,确定在两个所述时间单元上发送的信号的时序索引值。
在一个可能的设计中,所述接收端对译码后的序列进行第二解变换,通过以下方式实现:所述接收端对译码后的序列进行至少两级分组,所述接收端对除第i级分组之外的每一级分组的序列进行第二解变换,所述第i级分组的序列采用M个解变换量,所述M个解变换量用于指示所述M个不连续的时间单元的时序索引值。
在一个可能的设计中,所述接收端根据M个不连续的时间单元之间的时间间隔,对所述待译码信息进行第一解变换操作和Polar码译码,通过以下方式实现:所述接收端根据M个不连续的时间单元之间的时间间隔,确定各时间单元上发送序列采用的第一解变换量;所述接收端利用第一解变换量对所述待译码信息进行第一解变换,并对第一解变换后的序列进行软合并;所述接收端对软合并后的序列进行Polar码译码。
在一个可能的实现方式中,所述解变换操作为循环移位。
第三方面,提供一种Polar码传输装置,该装置具有实现上述第一方面和第一方面的任一种可能的设计中发送端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述Polar码传输装置包括:输入接口电路,用于获取待编码的第一比特序列;逻辑电路,用于执行上述第一方面和第一方面的任一种可能的设计中发送端的行为;输出接口电路,用于输出第二比特序列。
可选的,所述Polar码传输装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述Polar码传输装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所 述程序被执行时,所述Polar码传输装置可以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述Polar码传输装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第四方面,提供一种Polar码传输装置,该装置具有实现上述第二方面和第二方面的任一种可能的设计中接收端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述Polar码传输装置包括:输入接口电路,用于获取待译码信息;逻辑电路,用于执行上述第二方面和第二方面的任一种可能的设计中接收端的行为;输出接口电路,用于输出Polar码译码后的比特序列。
可选的,所述Polar码传输装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述Polar码传输装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述Polar码传输装置可以实现如上述第二方面和第二方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述Polar码传输装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第五方面,提供了一种无线通信系统,该系统包括第三方面所述的装置,和第四方面所述的装置。
第六方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第一方面的任一可能的实施方式或第二方面的任一可能的实施方式中的方法的指令。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
图1为现有技术中发送端PBCH的处理过程示意图;
图2为现有技术中接收端PBCH的处理过程示意图;
图3为本申请实施例中无线通信系统示意图;
图4为本申请实施例中Polar码的代数特性示意图;
图5a和图5b为本申请实施例中无线通信系统中物理层的处理流程过程示意图;
图6为本申请实施例中不同时序对应的循环移位示意图;
图7为本申请实施例中PBCH的结构示意图;
图8a~图8d为本申请实施例中分级交织过程的示意图之一;
图9为本申请实施例中Polar码传输方法流程示意图;
图10、图11、图12和图14为本申请实施例中采用分级变换传输分级时序的示意图;
图13a和图13b为本申请实施例中分级交织过程的示意图之二;
图15~图22为本申请实施例中Polar码传输装置结构示意图。
下面将结合附图,对本申请实施例进行详细描述。
在长期演进(英文:Long Term Evolution,简称:LTE)系统中,物理广播信道(英文:Physical Broadcast Channel,简称:PBCH)承载主信息块(英文:Master Information Block,简称:MIB)。其中,MIB的长度为24比特(bit),MIB包含下行链路系统带宽、物理混合自动重传请求指示信道(英文:Physical Hybrid ARQ Indicator Channel,PHICH)大小、以及系统帧号(英文:System Frequency Number,简称:SFN)的高八位等内容。发送端PBCH的处理过程如图1所示。基站首先对要发送的MIB进行循环冗余校验(英文:Cyclical Redundancy Check,简称:CRC)编码,得到16位CRC序列,然后基站将40比特长的序列(包含24bits的MIB和16bits的CRC)进行信道编码以及速率匹配后得到编码后序列,将该编码后序列复制得到4个大小相等的PBCH独立单元,每个PBCH独立单元携带相同数据,将4个PBCH独立单元采用4个扰码序列分别进行加扰,最后,基站完成加扰后续的调制、映射和发送流程。
其中,PBCH的信道编码采用咬尾卷积编码(英文:Tailing bit convolution coding,简称:TBCC),4个扰码序列采用不同的相位。4个PBCH独立单元携带相同的编码比特,4个PBCH独立单元执行加扰、调制以及映射等流程后,在40ms(4个无线帧的传输时间,每个无线帧10ms)的时间间隔内发送。
接收端PBCH的处理过程如图2所示。由发送端描述可知,4个PBCH独立单元携带相同的编码比特,因此信道质量足够好的情况下,接收端只接收40ms内的一个PBCH独立单元就成功完成解扰、译码以及CRC校验的操作。由于接收端通过解扰成功的扰码序列,得到发送端是在40ms内的第几个无线帧发送MIB,即知道了SFN的低2位。对于信道质量较差的情况,接收端如果只接收一个PBCH独立单元不能成功解扰译码,就与下一个10ms发送的PBCH独立单元进行软合并再进行译码,直到成功解码。
由于第五代(英文:5th Generation,简称:5G)5G或之后的通信技术与4G通信技术存在很大差异,因此,LTE中对PBCH的编译码方式在已经不能沿用,需要有新解决方案。
本申请实施例可以应用于5G通信系统,可以应用于对信息进行Polar编码和译码的场景,例如可以应用于对eMBB上行控制信息和下行控制信息进行Polar编码和译码的场景,也可应用于其他场景,例如应用于通信标准TS 36.212的5.1.3的信道编码(Channel Coding)、上行控制信息、下行控制信息以及Sidelink信道的信道编码部分,本申请实施例不做限定。更具体地,本申请实施例可以应用于需要传输隐世信息的应用场景,举例来说,场景一、PBCH的时序隐式传输,可以同时支持多次传输的软合并和时序的盲检测。场景二、超高可靠低时延通信(英文:Ultra-reliable and Low Latency Communications,URLLC)中隐式信息传输,可以同时支持多分并发传输和某种信息的盲检测。场景三、一般的单次传输,支持某种信息的盲检测。
如图3所示,本申请实施例应用的无线通信系统300中包括发送端301和接收端302。其中,发送端301可以为网络设备,接收端302为终端;或者,发送端301为终端,接收 端302为网络设备。该网络设备可以是基站,也可以是基站与基站控制器集成后的设备,还可以是具有类似通信功能的其它设备。发送端301为编码侧,接收端302为译码侧,发送端301和接收端302也可以是其他具有编译码功能的设备。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(英文:Narrow Band-Internet of Things,简称:NB-IoT)、全球移动通信系统(英文:Global System for Mobile Communications,简称:GSM)、增强型数据速率GSM演进系统(英文:Enhanced Data rate for GSM Evolution,简称:EDGE)、宽带码分多址系统(英文:Wideband Code Division Multiple Access,简称:WCDMA)、码分多址2000系统(英文:Code Division Multiple Access,简称:CDMA2000)、时分同步码分多址系统(英文:Time Division-Synchronization Code Division Multiple Access,简称:TD-SCDMA),长期演进系统(英文:Long Term Evolution,简称:LTE)、下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC或者将来出现的新的通信系统。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端可以是MS(英文:Mobile Station)、用户单元(英文:subscriber unit)、蜂窝电话(英文:cellular phone)、智能电话(英文:smart phone)、无线数据卡、个人数字助理(英文:Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(英文:modem)、手持设备(英文:handset)、膝上型电脑(英文:laptop computer)、机器类型通信(英文:Machine Type Communication,简称:MTC)终端等。
为方便对本申请实施例的理解,下面对Polar码作简单介绍。
Polar码的编码策略利用无噪信道传输用户有用的信息,全噪信道传输约定的信息或者不传信息。Polar码也是一种线性块码,其编码矩阵为G
N,编码过程为
其中
是一个二进制的行矢量,长度为N(即码长);G
N是一个N×N的矩阵,且
定义为log
2 N个矩阵F
2的克罗内克(Kronecker)乘积。上述矩阵
Polar码的编码过程中,
中的一部分比特用来携带信息,称为信息比特集合,这些比特的索引的集合记作
另外的一部分比特设置为接收端和发送端预先约定的固定值,称之为固定比特集合或冻结比特集合(frozen bits),其索引的集合用
的补集
表示。Polar码的编码过程相当于:
这里,G
N(A)是G
N中由集合
中的索引对应的那些行得到的子矩阵,G
N(AC)是G
N中由集合
中的索引对应的那些行得到的子矩阵。
为
中的信息比特集合,数量为K;
为
中的固定比特集合,其数量为(N-K),是已知比特。这些固定比特通常被设置为0,但是只要接收端和发送端预先约定,固定比特可以被任意设置。从而,Polar码的编码输出可简化为:
这里
为
中的信息比特集合,
为长度K的行矢量,即
|·|表示集合中元素的个数,K为信息块大小,
是矩阵G
N中由集合
中的索引对应的那些行得到的子矩阵,
是一个K×N的矩阵。
Polar码的构造过程即集合
的选取过程,决定了Polar码的性能。Polar码的构造过程通常是,根据母码码长N确定共存在N个极化信道,分别对应编码矩阵的N个行,计算极化信道可靠度,将可靠度较高的前K个极化信道的索引作为集合
的元素,剩余(N-K)个极化信道对应的索引作为固定比特的索引集合
的元素。集合
决定了信息比特的位置,集合
决定了固定比特的位置。
如图4所示,F为Polar码的待编码待编码向量u中的固定比特集合,包括(N-K)个元素。I为Polar码的待编码待编码向量U中的待编码信息,包括K个元素,其中包括信息比特和校验比特。校验方式均以CRC为例,校验比特即为CRC比特。U为Polar码的待编码信息向量或待编码的比特序列,为1xN的向量。P
x为NxN的矩阵,表示对输入比特向量乘以Px操作,可选的,P
x为置换矩阵,即行列变换矩阵,每行每列均只有一个元素1。对输入比特向量乘以Px,由于Px是行列变换矩阵,相当于对输入比特向量做交织操作。更一般的,Px可以称为交织矩阵。Tu为NxN的矩阵,表示对输入bit向量乘以Tu操作。若T
u=G
N·P
x·G
N,则图4中上半部分和下半部分操作流程实现的结果是等价的,所输出的比特序列是相同的。T
u可称为变换矩阵,Px可以称为交织矩阵。
具体地,图4上半部分中,固定比特集合F和信息比特集合I组成待编码的信息向量U,U与变换矩阵T
u相乘,相乘后输出的向量经过编码矩阵G
N编码,输出编码后的比特序列。图4下半部分中,固定比特集合F和信息比特集合I组成待编码的信息向量U,U经过编码矩阵G
N编码,编码后的向量与交织矩阵P
x相乘,输出相乘后的比特序列。
若P
x为循环移位矩阵,变换矩阵T具有特殊形式,为上三角的Toeplitz矩阵。有效的交织操作需要满足如下条件:编码前比特的变换操作不影响冻结比特的值,即变换前后冻结比特的值不变,在冻结比特设定为全0的条件下,需要保证变换前后冻结比特只是冻结比特的函数,不受信息比特的影响。这是因为Polar码在译码时需要预先知道冻结比特的值,否则无法正常译码。
在Polar码编码过程中,通过交织和/或加扰的方式能够传输隐式信息,例如可以传输时序信息。图5a以及图5b为一种无线通信系统中物理层的处理流程过程示意图。在发送端,信源通过信源编码再经过信道编码,或者速率匹配,经过数字调制,经过信道发送到接收端。在接收端,通过信道接收的信号经过数字解调,解速率匹配,信道解码,信源解码,从而到达信宿。本申请实施例中,采用了根据分级的时序信息进行分级交织和/或加扰传输,可以隐式携带更多的时序信息。该分级交织和/或加扰的过程在信道编码后,速率匹配前,进行分级交织和/或加扰的比特序列长度为Polar码母码长度;分级交织或加扰的过程也可以在速率匹配之后进行,进行分级交织或加扰的比特序列长度为速率匹配后的目标长度。参考图5a该分级交织或加扰的过程在信道编码后,速率匹配前,参考图5a相应在接收端分级解交织或解扰在解速率匹配之后,信道解码之前;参考图5b该分级交织或加扰的过程在信道编码之前进行等效的变换,相应在接收端信道解码后进行反变换。
为了实现隐式传输时序信息,一种可能的实现方式中,通过在PBCH传输时对编码后的比特序列进行累进交织隐式携带时序信息。例如通过循环移位,在PBCH周期内每次传输时对前一次传输的码字进行固定长度的循环移位即可。图6为不同时序对应的循环移位示意图,如图6所示,将Polar编码后的比特序列分为等长的4段,分别记作C1、C2、C3、C4,在每个时序传输时对前一次传输的编码码字进行循环移位,每次移位的大小为N/4,N为Polar编码后的比特序列的长度。如第一次移位0,第二次在第一次的基础上移位N/4, 依次类推。不同的循环移位值可以表征不同的时序信息。接收端在接收到多次传输的信号时,首先根据发送端相对的循环移位进行逆向循环移位,然后进行软合并和译码,最后通过CRC校验来盲检循环移位的绝对长度,最终得到对应的时序信息。但是,有效的循环移位操作产生的可用版本是有限的,例如循环移位大小N/4,就只能产生4个版本,最多只能隐式携带4个不同的时序信息。
在5G中,由于高频的引入,5G的PBCH结构相对于LTE显著的变化是PBCH发送频率的增大,随着PBCH发送频率的增大,PBCH的时序传输包括多个层级。图7为PBCH的结构示意图,如图7所示,5G的PBCH承载于同步信号块(SS block)中,多个同步信号块组成一个同步信号组(SS burst),多个同步信号组组成一个同步信号组集合(SS burst set)。同步信号块软合并的需求可能有:在一个同步信号组之内合并、在不同同步信号组之间合并或者在不同的同步信号组集合之间合并,因此,5G PBCH的发送具有分级的时序传输结构,相应地需要多级时序信息的指示。
为满足5G PBCH多级时序传输的需求,本申请实施例通过在PBCH传输时对编码后的比特序列进行分级交织来隐式携带分级的时序信息。基于图6所示的循环移位指示不同时序的方法,图8a、图8b、图8c和图8d为本申请实施例中采用分两级交织过程的示意图。如图8a~图8d所示,发送端将编码后的比特序列分成等长的4组序列(C1、C2、C3、C4),将每一组序列分为4组子序列,如将C1分为C11、C12、C13、C14,C2分为C21、C22、C23、C24,按照如下顺序对第一级和第二级的序列分别进行4次循环移位:
(1,1)→(1,2)→(1,3)→(1,4)→(2,1)→(2,2)→(2,3)→(2,4)→(3,1)→(3,2)→(3,3)→(3,4)→(4,1)→(4,2)→(4,3)→(4,4),这里每个括号代表一个时序,括号中的第一级元素表示第一级时序信息,第二个元素作为第二级时序信息。
图8a为第一级没有循环移位(循环移位值为0)时对第二级的4组序列进行循环移位得到的4种时序示意图,图8b为第一级循环移位一次(循环移位值为N/4)时对第二级的4组序列进行循环移位得到的4种时序示意图。图8c为第一级循环移位两次(循环移位值为2N/4)时对第二级的4组序列进行循环移位得到的4种时序示意图。图8d为第一级循环移位三次(循环移位值为3N/4)时对第二级的4组序列进行循环移位得到的4种时序示意图。可以看出,第一级循环移位0、1、2、3次时对第二级的4组序列进行循环移位均可得到的4种时序。那么,当循环移位大小为N/4,采用两级交织能够获得16个版本,每一层级的时序传输中不同的版本可以表征不同的时序信息。
本申请实施例将Polar码编码方式应用到PBCH中,将Polar码编码后的序列进行至少两级变换,并在不连续的时间单元上发送变换后的序列,这样能够使接收端能够对译码信息实现软合并,提高信息传输可靠性,保证通信质量,有助于Polar码编码方式更好的应用到PBCH中。
本申请实施例中,变换操作可以包括但不限于加扰、交织和重排中的至少一种;解变换操作可以包括但不限于解扰、解交织和解重排中的至少一种。
下面对本申请实施例提供的Polar码编码方法进行详细说明。
如图9所示,本申请实施例提供的Polar码编码方法的具体流程如下所述。
步骤901、发送端对待编码的第一比特序列进行Polar码编码,生成编码后序列。
步骤902、发送端对编码后序列进行变换操作,获得第二比特序列。
该变换操作可以包括加扰、交织和重排中的至少一种。
步骤903、发送端在M个不连续的时间单元上发送第二比特序列,其中,M个不连续的时间单元中至少存在两个时间单元之间的时间间隔不相等。
步骤904、接收端获取待译码信息。
步骤905、接收端根据M个不连续的时间单元之间的时间间隔,对待译码信息进行第一解变换操作和Polar码译码。
其中,M个不连续的时间单元中至少存在两个时间单元之间的时间间隔不相等,解变换包括解扰、解交织和解重排中的至少一种。
接收端根据M个不连续的时间单元之间的时间间隔,确定各时间单元上发送序列采用的第一解变换量,接收端利用第一解变换量对待译码信息进行第一解变换,并对第一解变换后的序列进行软合并,接收端对软合并后的序列进行Polar码译码。
步骤906、接收端对译码后的序列进行第二解变换操作。
其中,接收端对译码后的序列进行至少两级分组;接收端对除第i级分组之外的每一级分组的序列进行第二解变换,第i级分组的序列采用M个解变换量,M个解变换量是用于指示M个不连续的时间单元的时序索引值。
以下叙述以变换操作为交织为例。具体地,步骤902中所述的变换操作可以是分级变换操作,分级变换操作可以是分级交织。发送端根据需要指示的分级时序的级数确定分级交织的级数。
发送端对编码后序列进行至少两级交织的过程为:发送端对编码后序列进行至少两级分组,对每一级分组的序列进行变换,其中,一级分组的序列采用的其中一种变换量用于指示一级时序传输的时序索引值。
以交织级数为两级为例。发送端在第一级分组时将编码后序列分为L个部分,在第二级分组时将每一个部分分成P个子部分。发送端对每一级分组的序列进行交织,L个部分采用第一级交织,每个部分中的P个部分采用第二级交织。L和P可以相等,也可以不相等。其中,一级分组的序列采用的其中一种变换量用于指示一级时序传输的时序索引值。第一级交织方式可用于表征第一级时序信息,即第一级时序传输的时序索引值;第二级交织方式可用于表征第二级时序信息,即第二级时序传输的时序索引值。图8a~8d是两级分组的一种示例。
M个不连续的时间单元为其中一种时序传输,M个时间单元中的一个时间单元的序号为一个时序索引值。上述至少两级分组中的其中一级分组的序列采用M种变换量,M种变换量用于指示M个不连续的时间单元的时序索引值。其中,M种变换量中的一种变换量可以指示M个不连续的时间单元的一个时序索引值。若变换为循环移位,则变换量即循环移位值。
需要说明的是,本申请实施例叙述中,变换量是指每一种变换所采用的具体变换值,例如循环移位方式采用的循环移位值,累进交织方式采用的交织次数m,采用的变换量不同,可以认为采用的交织方式不同,因此在称呼上变换量可以等同认为交织方式。该说明适用于整个申请文件中。
举例来说,如图10所示,以一种典型的PBCH传输设计为例,PBCH的传输周期(Transmission Time Interval,TTI)为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,一个传输块包括4个同步信号组(SS burst);每个SS burst长度为3.75ms,包括30个同步信号部分(SS segment);其中同步信号部分 的序号索引(index)为1、3、7、15的四个SS segment中的每个SS segment均包括4个同步信号块(SS block),该4个SS block分布于两个时隙(slot)中,图10中只示意出了序号为1的SS segment中包括的4个SS block。
发送端对同步信号块的整体比特序列采用两级交织来表征两级时序信息。发送端将同步信号块的整体比特序列拆分成等长的4个部分,4个部分之间采用如图8a~图8d所示的第一级交织方式,即循环移位值分别为0、N/4、2N/4和3N/4,共4种不同的交织方式,每一种第一级交织方式可以隐式携带一种第一级时序信息。例如,第一级时序信息为SS segment的序号。发送端将每一个部分拆分成4个子部分,4个子部分之间采用如图8a~图8d所示的第二级交织方式,即循环移位值分别为0、N/4、2N/4和3N/4,共4种不同的第二级交织方式。每一种第二级交织方式可以隐式携带一种第二级时序信息。例如,第二级时序信息为SS block的序号。一种可能的实现方式中,在序号为1的SS segment上发送的4个SS block可以分别采用图8a中所示的4种交织序列;在序号为3的SS segment上发送的4个SS block可以分别采用图8b中所示的4种交织序列;在序号为7的SS segment上发送的4个SS block可以分别采用图8c中所示的4种交织序列;在序号为15的SS segment上发送的4个SS block可以分别采用图8d中所示的4种交织序列。图8a所示的4种时序1a、1b、1c和1d分别代表在序号为1的SS segment上发送的4个SS block的序号;图8b所示的4种时序2a、2b、2c和2d分别代表在序号为3的SS segment上发送的4个SS block的序号;图8c所示的4种时序3a、3b、3c和3d分别代表在序号为7的SS segment上发送的4个SS block的序号;图8d所示的4种时序4a、4b、4c和4d分别代表在序号为15的SS segment上发送的4个SS block的序号。
在接收端,对不同的第一级时序接收的信号,按照第一级交织方式进行反向处理即可,即按照第一级交织方式对应的第一级解交织方式进行解交织处理即可。例如,接收端反向循环移位值分别为0、N/4、2N/4和3N/4。
4种第一级交织方式中每两个第一级交织方式之间存在相对距离,例如,每两个循环移位值之间存在差值,接收端可以根据4个第一级时序上接收到的信号采用交织方式的相对距离进行反向交织。反向交织采用的解交织方式取决于交织方式与基准交织方式之间的相对距离,例如,以循环移位值为0为基准交织方式,接收端需要对在序号为3的SS segment上接收到的信号反向循环移位N/4,对在序号为7的SS segment上接收到的信号反向循环移位2N/4,对在序号为15的SS segment上接收到的信号反向循环移位3N/4。然而,由于两个相邻第一级时序上的信号采用的交织方式的相对距离可能相同,因此,接收端在接收到两个相邻的第一级时序上的信号时,根据交织方式的相对距离并无法判断这两种交织方式与基准交织方式之间的相对距离,也就无法判断采用哪种解交织方式,即无法判断采用的反向循环移位值。
本申请实施例中,通过设计至少两个发送信号的时间单元的时间间隔不相等,将变换操作后的比特序列在不连续的时间单元上发送,这样,接收端在接收到两个时间单元上发送的信号时,通过时间间隔可以判断这两个时序上信号采用的交织方式与基准交织方式之间的相对距离,准确获取两种解交织方式,正确对这两个时序上信号进行解交织,实现对解交织后的序列进行软合并,译码等后续操作。
本申请实施例中,根据分级交织方式获得的传输版本数目,可以获得隐式携带信息的比特数。例如,图8a~图8d所示的两级交织可以获得16个传输版本,最多可以携带4比 特的隐式信息,例如16个传输版本分别表征0000、0001、0010、0011、0100、0101、0110、0111、1000、1001、1010、1011、1100、1110、1101、1111。当然,更多层级的交织可以获得更多的传输版本,可以携带更多比特的隐式信息。
本申请实施例中,对于每两个时间单元之间的时间间隔的设计可以符合以下规则。
可选的,M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;第一时间单元和第二时间单元之间的第一时间间隔、以及第二时间单元和第三时间单元之间的第二时间间隔满足:第二时间间隔大于或等于,第一时间间隔、第一时间单元和第二时间单元之和。
例如,图10中,假设M各不连续的时间单元为SS segment这一层级的传输时序,第一时间单元为序号为1的SS segment,第二时间单元为序号为3的SS segment,第三时间单元为序号为7的SS segment,由于各个SS segment均包括4个SS block,则第一时间单元的长度为4;第二时间单元的长度也为4;第一时间间隔为1个时间单元的长度,也为4;第二时间间隔的取值需要大于等于4+4+4=12,即第二时间间隔的取值需要大于等于3个时间单元的长度,图10中,第二时间间隔取值为12。当然也可以取大于12的值。
下面结合几种PBCH的时序结构,对本申请实施例提供的Polar码传输方法做进一步详细说明。
实施方式一、
如图11所示,PBCH的传输周期TTI为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,包括16个SS burst;每个SS burst的长度为1.25ms,包括10个SS segment;其中序号为1的SS segment包括4份SS block,分布于两个slot中。可以利用图6所示的交织过程进行交织,获得4种版本的SS block,即上述4份SS block。其中,4种版本可以隐式携带2比特的信息。
系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。系统帧号7位bit由广播信息显式传输,2位bit隐式传输,隐式传输系统帧号的2位bit可以通过LTE中的加扰方式实现。
或者,系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。1位由辅助同步信号(SSS)确定,6位bit由广播信息显式传输,2位bit隐式传输。具体地,发送端对SSS信号进行交织,例如进行循环移位,循环移位的大小为SSS信号长度的一半。SSS信号分成两个等长的子序列,每5ms,这两个等长的子序列的先后顺序做交换,这样,可以生成两个版本的SSS信号,两个版本可以携带1bit的隐式信息。也可以说通过构成SSS信号的两个子序列的先后顺序,隐式携带1bit信息。
当然,也可以系统帧号8位bit由广播信息显式传输,2位bit隐式传输,本申请实施例中不作限定。
SS Index的长度为6位,其中4位由PBCH显式传输,2位隐式传输。隐式传输的2比特通过图6所示的交织方式来表征。
在接收端,若基于同一SS burst中的SS block进行译码,则接收端执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次 polar译码,并对译码结果进行4次CRC检测,获取隐式传输的两位SS index。根据PBCH译码结果获取4位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
在接收端,若基于来自不同SS burst中的SS block进行译码,则执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行16次polar盲检测译码,并对每次译码结果进行4次CRC检测,获取隐式传输的两位SS index。根据PBCH译码结果获取4位显式传输的SS index和7为显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
实施方式二、
如图12所示,PBCH的传输周期TTI为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,包括8个SS burst;每个SS burst的长度2.5ms,包括20个SS segment;其中序号为1和3的SS segment均包括4份SS block,每4份SS block分布于两个时隙当中。发送端可以利用图13a和图13b所示的两级交织过程进行交织。发送端将编码后序列分成等长的2部分,该2部分采用图13a和图13b所示的第一级交织过程进行第一级交织,每一种第一级交织方式可以表征第一级时序的一个具体值,例如表征一个SS segment的序号。发送端将每一个部分分成等长的4个子部分,4个子部分采用图13a和图13b所示的第二级交织过程进行第二级交织,每一种第二级交织方式可以表征第二级时序的一个具体值,例如。表征SS block在SS segment中的序号。这样,可以生成8个版本的SS block,即图12中所示的8个SS block。8种版本可以隐式携带3比特的信息。
系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。系统帧号7位bit由广播信息显式传输,2位bit隐式传输,隐式传输系统帧号的2位bit可以通过LTE中的加扰方式实现。当然,也可以系统帧号8位bit由广播信息显式传输,2位bit隐式传输,本申请实施例中不作限定。
SS Index为长度为6位,其中3位由PBCH显式传输,3位隐式传输;隐式传输的3比特通过图13a和图13b所示的交织方式来表征。
在接收端,若基于同一SS burst中、不同SS segment的SS block进行译码,则接收端执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次polar译码,并对译码结果进行4次CRC检测,获取隐式传输的3位SS index。根据PBCH译码结果获取3位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
在接收端,若基于来自不同SS burst中、不同SS segment的SS block进行译码,则执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行8次盲检测polar译码,并对每次译码结果进行4次CRC检测,获取隐式传输的3位SS index。根据PBCH译码结果获取3位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
实施方式三、
如图10所示,PBCH的传输周期TTI为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,包括4个SS burst;SS burst的长度 中包括3.75ms,包括30个SS segment;其中序号为1、3、7、15的四个SS segment均包括4份SS block,每4份SS block分布于两个时隙当中。发送端采用如图8a~8d的两级交织过程进行交织。发送端将编码后序列分成等长的4部分,该4部分采用图8a~图8d所示的第一级交织过程进行第一级交织,每一种第一级交织方式可以表征第一级时序的一个具体值,例如表征一个SS segment的序号。发送端将每一个部分分成等长的4个子部分,4个子部分采用图8a~图8d所示的第二级交织过程进行第二级交织,每一种第二级交织方式可以表征第二级时序的一个具体值,例如。表征SS block在SS segment中的序号。这样,可以生成16个版本的SS block,即图10中所示的16个SS block。16种版本可以隐式携带4比特的信息。
系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。系统帧号7位bit由广播信息显式传输,2位bit隐式传输,隐式传输系统帧号的2位bit可以通过LTE中的加扰方式实现。当然,也可以系统帧号8位bit由广播信息显式传输,2位bit隐式传输,本申请实施例中不作限定。
SS Index为长度为6位,其中2位由PBCH显式传输,4位隐式传输;隐式传输的4比特通过图8a~图8d所示的交织方式来表征。
在接收端,若基于同一SS burst中、同一SS segment的SS block进行译码,则接收端执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次polar译码,并对译码结果进行16次CRC检测,获取隐式传输的4位SS index。根据PBCH译码结果获取2位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
在接收端,若基于来自同一SS burst中、不同SS segment的SS block进行译码,则执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次polar译码,并对译码结果进行4次CRC检测,获取隐式传输的4位SS index。
根据PBCH译码结果获取2位显式传输的SS index和7为显式传输的SFN,并根据SS index获取1位隐式传输的SFN。
在接收端,若基于来自不同SS burst中、不同SS segment的SS block进行译码,则执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行4次polar译码,并对每次译码结果进行4次CRC检测,获取隐式传输的4位SS index。
根据PBCH译码结果获取2位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
实施方式四、
如图14所示,PBCH的传输周期TTI为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,包括4个SS sub burst set;每个SS sub burst set包括30个SS segment;其中序号为1、3、7、15的4个SS segment均包括4份SS block,每4份SS block分布于两个时隙当中。发送端可以采用三级交织过程进行交织。发送端将编码后序列分成等长的4部分,该4部分采用第一级交织过程进行第一级交织,每一种第一级交织方式可以表征第一级时序的一个具体值,例如表征一个SS sub burst set的序号。发送端将每一个部分分成等长的4个第一子部分,4个第一子部分采用第二级交 织过程进行第二级交织,每一种第二级交织方式可以表征第二级时序的一个具体值,例如。表征SS segment在SS sub burst set中的序号。发送端将每一个第一子部分分成等长的4个第二子部分,4个第二子部分采用第三级交织过程进行第三级交织,每一种第三级交织方式可以表征第三级时序的一个具体值,例如。表征SS block在SS segment中的序号。这样,可以生成64个版本的SS block。64种版本可以隐式携带6比特的信息。
系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。系统帧号7位bit由广播信息显式传输,2位bit隐式传输,隐式传输系统帧号的2位bit可以通过LTE中的加扰方式实现。当然,也可以系统帧号8位bit由广播信息显式传输,2位bit隐式传输,本申请实施例中不作限定。
SS Index为长度为6位,6位比特可以全部隐式传输。
在接收端,基于同一SS sub burst set、同一SS burst中、同一SS segment的SS block进行译码,执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行1次polar译码,并对每次译码结果进行64次CRC检测,获取隐式传输的6位SS index。根据PBCH译码结果获取7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
实施方式五、
如图15所示,PBCH的传输周期TTI为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,包括20个SS burst。每个SS burst的长度为1ms,包括6个SS segment;其中序号为1和3的SS segment均包括4份SS block,每4份SS block分布于两个时隙当中。发送端可以利用图13a和图13b所示的两级交织过程进行交织。发送端将编码后序列分成等长的2部分,该2部分采用图13a和图13b所示的第一级交织过程进行第一级交织,每一种第一级交织方式可以表征第一级时序的一个具体值,例如表征一个SS segment的序号。发送端将每一个部分分成等长的4个子部分,4个子部分采用图13a和图13b所示的第二级交织过程进行第二级交织,每一种第二级交织方式可以表征第二级时序的一个具体值,例如。表征SS block在SS segment中的序号。这样,可以生成8个版本的SS block,8种版本可以隐式携带3比特的信息。
若发送端需要发送64个SS block,则将64个SS block在前8ms内完成传输。
系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。系统帧号7位bit由广播信息显式传输,2位bit隐式传输,隐式传输系统帧号的2位bit可以通过LTE中的加扰方式实现。当然,也可以系统帧号8位bit由广播信息显式传输,2位bit隐式传输,本申请实施例中不作限定。
SS Index为长度为6位,其中3位由PBCH显式传输,3位隐式传输;隐式传输的3比特通过图13a和图13b所示的交织方式来表征。
在接收端,若基于来自同一SS burst中、不同SS segment的SS block进行译码,则接收端执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次polar译码,并对译码结果进行4次CRC检测,获取隐式传输的3位SS index。根据PBCH译码结果获取3位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
在接收端,若基于来自不同SS burst中、不同SS segment的SS block进行译码,则接收端执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行8次polar译码,并对每次译码结果进行4次CRC检测,获取隐式传输的3位SS index。根据PBCH译码结果获取3位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
实施方式六、
如图10所示,PBCH的传输周期TTI为80ms,广播信息在该周期内重复4次,即每一次都是可以独自解码的。每个传输块长度为20ms,包括4个SS burst;SS burst的长度中包括3.75ms,包括30个SS segment;其中序号为1、3、7、15的四个SS segment均包括4份SS block,每4份SS block分布于两个时隙当中。发送端采用如图8a~8d的两级交织过程进行交织。发送端采用两级交织的方式指示SS burst的时序信息和SS block的时序信息。SS segment的时序信息通过PBCH显示传输。发送端将编码后序列分成等长的4部分,该4部分采用图8a~图8d所示的第一级交织过程进行第一级交织,每一种第一级交织方式可以表征第一级时序的一个具体值,例如表征一个SS burst的序号。发送端将每一个部分分成等长的4个子部分,4个子部分采用图8a~图8d所示的第二级交织过程进行第二级交织,每一种第二级交织方式可以表征第二级时序的一个具体值,例如。表征SS block在SS segment中的序号。这样,可以生成16个版本的SS block,即图10中所示的16个SS block。16种版本可以隐式携带4比特的信息。
系统帧号SFN长度为10bit,其中1位由奇偶帧号区分获取,即在后续SS burst获取时,若为前8个burst,则系统帧号最高位为0,若为前8个burst,则系统帧号最高位为1。0和1分别对应奇偶帧号。系统帧号7位bit由广播信息显式传输,2位bit隐式传输,隐式传输系统帧号的2位bit可以通过LTE中的加扰方式实现。当然,也可以系统帧号8位bit由广播信息显式传输,2位bit隐式传输,本申请实施例中不作限定。
SS Index为长度为6位,其中2位由PBCH显式传输,4位隐式传输;隐式传输的4比特通过图8a~图8d所示的交织方式来表征。
在接收端,若基于同一SS burst中、同一SS segment的SS block进行译码,则接收端执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次polar译码,并对译码结果进行16次CRC检测,获取隐式传输的4位SS index。根据PBCH译码结果获取2位显式传输的SS index和7位显式传输的SFN,并根据SS index获取1位隐式传输的SFN号。
在接收端,若基于来自同一SS burst中、不同SS segment的SS block进行译码,则执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行一次polar译码,并对译码结果进行4次CRC检测,获取隐式传输的4位SS index。
根据PBCH译码结果获取2位显式传输的SS index和7为显式传输的SFN,并根据SS index获取1位隐式传输的SFN。
在接收端,若基于来自不同SS burst中、不同SS segment的SS block进行译码,则执行4次盲检测,检测加扰于20ms传输块上的序列,获取2位隐式传输的SFN。每次盲检测需要进行4次polar译码,并对每次译码结果进行4次CRC检测,获取隐式传输的4位SS index。
根据PBCH译码结果获取2位显式传输的SS index和7位显式传输的SFN,并根据 SS index获取1位隐式传输的SFN号。
基于图9所示的Polar码传输方法的同一发明构思,如图15所示,本申请实施例还提供一种Polar码传输装置1500,该Polar码传输装置1500用于执行图9所示的Polar码传输方法。Polar码传输装置1500包括:
接收单元1501,用于获取待编码的第一比特序列。
处理单元1502,用于对待编码的第一比特序列进行Polar码编码,生成编码后序列;
处理单元1502,用于对编码后序列进行变换操作,获得第二比特序列,变换操作包括加扰、交织和重排中的至少一种;
处理单元1502,用于在M个不连续的时间单元上发送第二比特序列;其中,M个不连续的时间单元中至少存在两个时间单元之间的时间间隔不相等。
可选的,M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;
第一时间单元和第二时间单元之间的第一时间间隔、以及第二时间单元和第三时间单元之间的第二时间间隔满足:第二时间间隔大于或等于,第一时间间隔、第一时间单元和第二时间单元之和。
可选的,处理单元1502用于:对编码后序列进行至少两级分组;
对每一级分组的序列进行变换,其中,一级分组的序列进行变换所采用的变换量用于指示一级时序传输的时序索引值。
可选的,至少两级分组中的其中一级分组的序列采用M个变换量,M个变换量用于指示M个不连续的时间单元的时序索引值。
可选的,两个时间单元之间的时间间隔用于指示接收端对在两个时间单元上接收到的信号进行软合并的方式。
可选的,两个时间单元之间的时间间隔用于指示两个时间单元上各自的时序索引。
可选的,变换操作为循环移位。
基于图9所示的Polar码传输方法的同一发明构思,如图16所示,本申请实施例还提供一种Polar码传输装置1600,该Polar码传输装置1600用于执行图9所示的Polar码传输方法。Polar码传输装置1600包括:
接收单元1601,用于获取待译码信息;
处理单元1602,用于根据M个不连续的时间单元之间的时间间隔,对待译码信息进行第一解变换操作和Polar码译码,其中,M个不连续的时间单元中至少存在两个时间单元之间的时间间隔不相等,解变换操作包括解扰、解交织和解重排中的至少一种;
处理单元1602,用于对译码后的序列进行第二解变换操作。
可选的,M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;
第一时间单元和第二时间单元之间的第一时间间隔、以及第二时间单元和第三时间单元之间的第二时间间隔满足:第二时间间隔大于或等于,第一时间间隔、第一时间单元和第二时间单元之和。
可选的,处理单元1602用于:
对译码后的序列进行至少两级分组;
对除第i级分组之外的每一级分组的序列进行第二解变换,第i级分组的序列采用M 个解变换量,M个解变换量用于指示M个不连续的时间单元的时序索引值。
可选的,处理单元1602用于:
根据M个不连续的时间单元之间的时间间隔,确定各时间单元上发送序列采用的第一解变换量;
利用第一解变换量对待译码信息进行第一解变换,并对第一解变换后的序列进行软合并;
对软合并后的序列进行Polar码译码。
可选的,解变换操作为循环移位。
基于图9所示的Polar码传输方法的同一发明构思,如图17所示,本申请实施例中还提供一种Polar码传输装置1700,该Polar码传输装置1700用于执行图9所示的Polar码传输方法中编码侧的方法。上述实施例的Polar码传输方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,Polar码传输装置1700包括:输入接口电路1701,用于获取待编码的第一比特序列;逻辑电路1702,用于执行上述图9所示的Polar码传输方法,具体请见前面方法实施例中的描述,此处不再赘述;输出接口电路1703,用于输出第二比特序列。
可选的,Polar码传输装置1700在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的Polar码传输方法中的部分或全部通过软件来实现时,如图18所示,Polar码传输装置1700包括:存储器1801,用于存储程序;处理器1802,用于执行存储器1801存储的程序,当程序被执行时,使得Polar码传输装置1700可以实现上述实施例提供的Polar码传输方法。
可选的,上述存储器1801可以是物理上独立的单元,也可以如图19所示,存储器1801与处理器1802集成在一起。
可选的,当上述实施例的编码方法中的部分或全部通过软件实现时,Polar码传输装置1700也可以只包括处理器1802。用于存储程序的存储器1801位于Polar码传输装置1700之外,处理器1802通过电路/电线与存储器1801连接,用于读取并执行存储器1801中存储的程序。
基于图9所示的Polar码传输方法的同一发明构思,如图20所示,本申请实施例中还提供一种Polar码传输装置2000,该Polar码传输装置2000用于执行图9所示的Polar码传输方法中译码侧的方法。上述实施例的Polar码传输方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,Polar码传输装置2000包括:输入接口电路2001,用于获取待译码信息;逻辑电路2002,用于执行上述图9所示的Polar码传输方法中译码侧的方法,具体请见前面方法实施例中的描述,此处不再赘述;输出接口电路2003,用于输出Polar码译码后的比特序列。
可选的,Polar码传输装置2000在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的Polar码传输方法中的部分或全部通过软件来实现时,如图21所示,Polar码传输装置2000包括:存储器2101,用于存储程序;处理器2102,用于执行存储器2101存储的程序,当程序被执行时,使得Polar码传输装置2000可以实现上述实施例提供的Polar码传输方法。
可选的,上述存储器2101可以是物理上独立的单元,也可以如图22所示,存储器2101与处理器2102集成在一起。
可选的,当上述实施例的编码方法中的部分或全部通过软件实现时,Polar码传输装置2000也可以只包括处理器2102。用于存储程序的存储器2101位于Polar码传输装置2000之外,处理器2102通过电路/电线与存储器2101连接,用于读取并执行存储器2101中存储的程序。
本申请实施例提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行图9所示的Polar码传输方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行图9所示的Polar码传输方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (30)
- 一种Polar码传输方法,其特征在于,包括:发送端对待编码的第一比特序列进行Polar码编码,生成编码后序列;所述发送端对所述编码后序列进行变换操作,获得第二比特序列,所述变换操作包括加扰、交织和重排中的至少一种;所述发送端在M个不连续的时间单元上发送所述第二比特序列;其中,所述M个不连续的时间单元中至少存在两个所述时间单元之间的时间间隔不相等。
- 如权利要求1所述的方法,其特征在于,所述M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;所述第一时间单元和第二时间单元之间的第一时间间隔、以及所述第二时间单元和所述第三时间单元之间的第二时间间隔满足:所述第二时间间隔大于或等于,所述第一时间间隔、所述第一时间单元和所述第二时间单元之和。
- 如权利要求1或2所述的方法,其特征在于,所述发送端对所述编码后序列进行变换操作,包括:所述发送端对所述编码后序列进行至少两级分组;所述发送端对每一级分组的序列进行变换,其中,一级分组的序列进行变换所采用的变换量用于指示一级时序传输的时序索引值。
- 如权利要求3所述的方法,其特征在于,所述至少两级分组中的其中一级分组的序列采用M个变换量,所述M个变换量用于指示所述M个不连续的时间单元的时序索引值。
- 如权利要求1~4任一项所述的方法,其特征在于,两个所述时间单元之间的时间间隔用于指示接收端对在两个所述时间单元上接收到的信号进行软合并的方式。
- 如权利要求1~5任一项所述的方法,其特征在于,两个所述时间单元之间的时间间隔用于指示两个所述时间单元各自的时序索引。
- 如权利要求1~6任一项所述的方法,其特征在于,所述变换操作为循环移位。
- 一种Polar码传输方法,其特征在于,包括:接收端获取待译码信息;所述接收端根据M个不连续的时间单元之间的时间间隔,对所述待译码信息进行第一解变换操作和Polar码译码,其中,所述M个不连续的时间单元中至少存在两个所述时间单元之间的时间间隔不相等,所述解变换操作包括解扰、解交织和解重排中的至少一种;所述接收端对译码后的序列进行第二解变换操作。
- 如权利要求8所述的方法,其特征在于,所述M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;所述第一时间单元和第二时间单元之间的第一时间间隔、以及所述第二时间单元和所述第三时间单元之间的第二时间间隔满足:所述第二时间间隔大于或等于,所述第一时间间隔、所述第一时间单元和所述第二时间单元之和。
- 如权利要求9所述的方法,其特征在于,所述接收端对译码后的序列进行第二解变换,包括:所述接收端对译码后的序列进行至少两级分组;所述接收端对除第i级分组之外的每一级分组的序列进行第二解变换,所述第i级分组的序列采用M个解变换量,所述M个解变换量用于指示所述M个不连续的时间单元的时序索引值。
- 如权利要求9或10所述的方法,其特征在于,所述接收端根据M个不连续的时间单元之间的时间间隔,对所述待译码信息进行第一解变换操作和Polar码译码,包括:所述接收端根据M个不连续的时间单元之间的时间间隔,确定各时间单元上发送序列采用的第一解变换量;所述接收端利用第一解变换量对所述待译码信息进行第一解变换,并对第一解变换后的序列进行软合并;所述接收端对软合并后的序列进行Polar码译码。
- 如权利要求8~11任一项所述的方法,其特征在于,所述解变换操作为循环移位。
- 一种Polar码传输装置,其特征在于,包括:处理单元,用于对待编码的第一比特序列进行Polar码编码,生成编码后序列;所述处理单元,用于对所述编码后序列进行变换操作,获得第二比特序列,所述变换操作包括加扰、交织和重排中的至少一种;所述处理单元,用于在M个不连续的时间单元上发送所述第二比特序列;其中,所述M个不连续的时间单元中至少存在两个所述时间单元之间的时间间隔不相等。
- 如权利要求13所述的装置,其特征在于,所述M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;所述第一时间单元和第二时间单元之间的第一时间间隔、以及所述第二时间单元和所述第三时间单元之间的第二时间间隔满足:所述第二时间间隔大于或等于,所述第一时间间隔、所述第一时间单元和所述第二时间单元之和。
- 如权利要求13或14所述的装置,其特征在于,所述处理单元用于:对所述编码后序列进行至少两级分组;对每一级分组的序列进行变换,其中,一级分组的序列进行变换所采用的变换量用于指示一级时序传输的时序索引值。
- 如权利要求15所述的装置,其特征在于,所述至少两级分组中的其中一级分组的序列采用M个变换量,所述M个变换量用于指示所述M个不连续的时间单元的时序索引值。
- 如权利要求13~16任一项所述的装置,其特征在于,两个所述时间单元之间的时间间隔用于指示接收端对在两个所述时间单元上接收到的信号进行软合并的方式。
- 如权利要求13~17任一项所述的装置,其特征在于,两个所述时间单元之间的时间间隔用于指示两个所述时间单元各自的时序索引。
- 如权利要求13~18任一项所述的装置,其特征在于,所述变换操作为循环移位。
- 一种Polar码传输装置,其特征在于,包括:接收单元,用于获取待译码信息;处理单元,用于根据M个不连续的时间单元之间的时间间隔,对所述待译码信息进行第一解变换操作和Polar码译码,其中,所述M个不连续的时间单元中至少存在两个所述时间单元之间的时间间隔不相等,所述解变换操作包括解扰、解交织和解重排中的至少一种;所述处理单元,用于对译码后的序列进行第二解变换操作。
- 如权利要求20所述的装置,其特征在于,所述M个不连续的时间单元中包括按照时序索引值从小到大排序的第一时间单元、第二时间单元和第三时间单元;所述第一时间单元和第二时间单元之间的第一时间间隔、以及所述第二时间单元和所述第三时间单元之间的第二时间间隔满足:所述第二时间间隔大于或等于,所述第一时间间隔、所述第一时间单元和所述第二时间单元之和。
- 如权利要求21所述的装置,其特征在于,所述处理单元用于:对译码后的序列进行至少两级分组;对除第i级分组之外的每一级分组的序列进行第二解变换,所述第i级分组的序列采用M个解变换量,所述M个解变换量用于指示所述M个不连续的时间单元的时序索引值。
- 如权利要求20~22任一项所述的装置,其特征在于,所述处理单元用于:根据M个不连续的时间单元之间的时间间隔,确定各时间单元上发送序列采用的第一解变换量;利用第一解变换量对所述待译码信息进行第一解变换,并对第一解变换后的序列进行软合并;对软合并后的序列进行Polar码译码。
- 如权利要求20~23任一项所述的装置,其特征在于,所述解变换操作为循环移位。
- 一种Polar码传输装置,其特征在于,包括:输入接口电路,用于获取待编码的第一比特序列;逻辑电路,用于执行如权利要求1~7任一项所述的方法,获得第二比特序列;输出接口电路,用于输出第二比特序列。
- 如权利要求25所述的装置,其特征在于,所述装置为芯片或集成电路。
- 一种Polar码传输装置,其特征在于,包括:输入接口电路,用于获取待译码信息;逻辑电路,用于执行如权利要求8~12任一项所述的方法,获得第二比特序列;输出接口电路,用于输出Polar码译码后的比特序列。
- 如权利要求27所述的装置,其特征在于,所述装置为芯片或集成电路。
- 一种计算机存储介质,其特征在于,用于存储计算机程序,该计算机程序包括用于执行如权利要求1~12任一项所述的方法的指令。
- 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1~12任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18801323.9A EP3614701A4 (en) | 2017-05-15 | 2018-05-15 | POLAR CODE TRANSFER METHOD AND DEVICE |
US16/685,366 US11171741B2 (en) | 2017-05-15 | 2019-11-15 | Polar code transmission method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710340275.3 | 2017-05-15 | ||
CN201710340275.3A CN108880566B (zh) | 2017-05-15 | 2017-05-15 | 一种Polar码传输方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/685,366 Continuation US11171741B2 (en) | 2017-05-15 | 2019-11-15 | Polar code transmission method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018210244A1 true WO2018210244A1 (zh) | 2018-11-22 |
Family
ID=64273500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/086922 WO2018210244A1 (zh) | 2017-05-15 | 2018-05-15 | 一种Polar码传输方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11171741B2 (zh) |
EP (1) | EP3614701A4 (zh) |
CN (1) | CN108880566B (zh) |
WO (1) | WO2018210244A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3501109B1 (en) * | 2017-04-01 | 2023-12-27 | Huawei Technologies Co., Ltd. | Polar code transmission method and apparatus |
CN108809332B (zh) * | 2017-05-05 | 2021-09-03 | 华为技术有限公司 | 一种Polar码传输方法及装置 |
EP3635890B1 (en) * | 2017-09-11 | 2023-08-09 | Huawei Technologies Co., Ltd. | Methods and apparatus for polar encoding of information comprising bits used to indicate a version of encoded codeword |
WO2019099318A1 (en) * | 2017-11-15 | 2019-05-23 | Idac Holdings, Inc. | Urllc transmissions with polar codes |
CN109873686B (zh) * | 2019-03-11 | 2020-06-05 | 北京理工大学 | 一种基于极化码的5g广播信道合并接收方法 |
AU2020286350A1 (en) * | 2019-06-07 | 2021-12-16 | Michel Fattouche | A novel communication system of high capacity |
CN112886969B (zh) * | 2019-11-30 | 2024-05-14 | 华为技术有限公司 | 一种极化码编码方法及装置 |
CN111817823B (zh) * | 2020-09-14 | 2020-12-01 | 翱捷科技股份有限公司 | 一种pbch的接收方法及系统 |
WO2022174884A1 (en) * | 2021-02-16 | 2022-08-25 | Huawei Technologies Co., Ltd. | Automorphism-based polar encoding and decoding |
CN116667861A (zh) * | 2022-02-17 | 2023-08-29 | 华为技术有限公司 | 基于极化码的编码方法和编码装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104539393A (zh) * | 2015-01-07 | 2015-04-22 | 北京邮电大学 | 一种基于极化码的信源编码方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1377142B (zh) * | 2001-03-22 | 2010-06-16 | 中兴通讯股份有限公司 | 一种高速解交织的实现方法和装置 |
KR100575925B1 (ko) * | 2003-12-04 | 2006-05-02 | 삼성전자주식회사 | 이동통신시스템에서 상이한 전송시간간격들을 가지는채널들을 다중화하는 전송률 정합 방법 및 장치 |
CN102164025B (zh) * | 2011-04-15 | 2013-06-05 | 北京邮电大学 | 基于重复编码和信道极化的编码器及其编译码方法 |
US9503126B2 (en) * | 2012-07-11 | 2016-11-22 | The Regents Of The University Of California | ECC polar coding and list decoding methods and codecs |
US20150333775A1 (en) * | 2014-05-15 | 2015-11-19 | Broadcom Corporation | Frozen-Bit Selection for a Polar Code Decoder |
US10790934B2 (en) * | 2016-08-10 | 2020-09-29 | Idac Holdings, Inc. | HARQ for advanced channel codes |
CN108289010B (zh) * | 2017-01-09 | 2022-04-15 | 中兴通讯股份有限公司 | 一种数据处理方法和装置 |
MX2019012826A (es) * | 2017-04-27 | 2020-02-03 | Sharp Kk | Aparato de estacion base, aparato terminal, metodo de comunicacion y circuito integrado. |
EP3635892B1 (en) * | 2017-05-05 | 2022-07-06 | Telefonaktiebolaget LM Ericsson (publ) | Polar coding for beam sweeping broadcast channel |
-
2017
- 2017-05-15 CN CN201710340275.3A patent/CN108880566B/zh active Active
-
2018
- 2018-05-15 EP EP18801323.9A patent/EP3614701A4/en active Pending
- 2018-05-15 WO PCT/CN2018/086922 patent/WO2018210244A1/zh unknown
-
2019
- 2019-11-15 US US16/685,366 patent/US11171741B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104539393A (zh) * | 2015-01-07 | 2015-04-22 | 北京邮电大学 | 一种基于极化码的信源编码方法 |
Non-Patent Citations (4)
Title |
---|
HUAWEI ET AL.: "Discussion on SS Block Time Index Indication", 3GPP TSG RAN WG1 MEETING #89 R1-1708166, 6 May 2017 (2017-05-06), XP051262298 * |
HUAWEI ET AL.: "Discussion on SS Burst Set Composition and SS Block Time Index Indication", 3GPP TSG RANWG1 MEETING #88BIS R1-1705052, 7 April 2017 (2017-04-07), XP051243183 * |
HUAWEI ET AL.: "Soft-combining for PBCH", 3GPPTSG RAN WG1 MEETING #89 R1-1708158, 7 May 2017 (2017-05-07), XP051263160 * |
See also references of EP3614701A4 |
Also Published As
Publication number | Publication date |
---|---|
US20200083984A1 (en) | 2020-03-12 |
EP3614701A4 (en) | 2020-05-20 |
US11171741B2 (en) | 2021-11-09 |
CN108880566A (zh) | 2018-11-23 |
CN108880566B (zh) | 2020-08-25 |
EP3614701A1 (en) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018210244A1 (zh) | 一种Polar码传输方法及装置 | |
US11689220B2 (en) | Method and device for interleaving data | |
US11165537B2 (en) | Method for encoding information bit sequence in communication network | |
CN113708775B (zh) | 利用分段式的冗余校验对控制信令进行编码和解码 | |
CN108347302B (zh) | 一种编译码方法和终端 | |
RU2691885C2 (ru) | Способ согласования скорости полярного кода и устройство согласования скорости полярного кода | |
CN110048726B (zh) | 编码方法、译码方法、装置和设备 | |
CN109075799B (zh) | 极化Polar码的编译码方法及装置 | |
CN105075163B (zh) | 极化码的处理方法和设备 | |
US10567994B2 (en) | Method and device for transmitting data | |
CN108737021B (zh) | Polar码传输方法及装置 | |
TW201813322A (zh) | 極化碼的速率匹配方法及通道編碼器 | |
WO2018202166A1 (zh) | 一种Polar码传输方法及装置 | |
CN108288970B (zh) | 一种极化码编译码方法及装置 | |
US11296723B2 (en) | Methods and apparatuses for data processing in communication system | |
WO2018146552A1 (en) | Crc aided decoding of polar codes | |
WO2019149180A1 (zh) | 交织方法和交织装置 | |
CN109150199B (zh) | 一种极化Polar码的交织处理方法及装置 | |
KR20190013374A (ko) | 통신 또는 방송 시스템에서 극부호 부호화/복호화 방법 및 장치 | |
CN108574562B (zh) | 数据传输方法及装置 | |
US8977913B2 (en) | Method, device and baseband chip for receiving service data in a communication system | |
TWI653840B (zh) | 極化碼打孔方法及裝置 | |
CN111525980A (zh) | 译码方法及装置 | |
CN109787707B (zh) | 交织方法和交织装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18801323 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018801323 Country of ref document: EP Effective date: 20191121 |