WO2018171789A1 - 极化码的速率匹配方法及设备 - Google Patents

极化码的速率匹配方法及设备 Download PDF

Info

Publication number
WO2018171789A1
WO2018171789A1 PCT/CN2018/080393 CN2018080393W WO2018171789A1 WO 2018171789 A1 WO2018171789 A1 WO 2018171789A1 CN 2018080393 W CN2018080393 W CN 2018080393W WO 2018171789 A1 WO2018171789 A1 WO 2018171789A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
channel
sorting
low
reliability value
Prior art date
Application number
PCT/CN2018/080393
Other languages
English (en)
French (fr)
Inventor
陈莹
张公正
黄凌晨
李榕
张华滋
罗禾佳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710374785.2A external-priority patent/CN108631942A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3057729A priority Critical patent/CA3057729C/en
Priority to JP2019552601A priority patent/JP7126510B2/ja
Priority to BR112019019854A priority patent/BR112019019854A2/pt
Priority to EP18770251.9A priority patent/EP3579468B1/en
Publication of WO2018171789A1 publication Critical patent/WO2018171789A1/zh
Priority to US16/239,910 priority patent/US10439759B2/en
Priority to US16/582,746 priority patent/US11057152B2/en
Priority to ZA2019/06992A priority patent/ZA201906992B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to communication technologies, and in particular, to an encoding method, a decoding method, an apparatus, and a device.
  • Polar Codes are from 2008 by E. A new type of channel coding is proposed.
  • the polarization code is designed based on Channel Polarization. It is the first constructive coding scheme that can prove the channel capacity through rigorous mathematical methods.
  • the Polar code is a linear block code. Its generator matrix is F N and its encoding process is among them Is a binary line vector of length N (ie mother code length); F N is an N ⁇ N matrix, and Here Defined as the Kronecker product of log 2 N matrices F 2 .
  • the set of indexes of these bits is denoted as I; the other part of the bits is set to a fixed value pre-agreed by the transceiver, which is called a fixed bit, and the set of indexes is I.
  • the complement I c is expressed.
  • the information bit number set I is selected according to the following method: using the construction algorithm of the Polar code to obtain the channel error probability corresponding to the bit of the sequence number i Or channel capacity estimate C (i) , choose The K numbers whose values are the smallest or whose C (i) value is the largest constitute the set I.
  • Channel error probability Or the channel capacity estimate C (i) is related to the reliability of the channel.
  • the reliability of the channel can be calculated by formula (1):
  • i is the serial number of the channel.
  • the sequence of the obtained channel is fixed, and thus the determined position set of the information bits is relatively simple.
  • the present application provides an encoding method, a decoding method, an apparatus, and a device for solving a technical problem of determining a single location set of information bits.
  • the first aspect of the present application provides an encoding method, including:
  • the transmitting device acquires a target configuration sequence, where the target configuration sequence includes a sorting sequence and/or a quantized sequence, the sorting sequence is a sequence obtained by sorting the sequence numbers of the channels according to the reliability of the channel, and the quantized sequence is a pair of channels. a sequence obtained by sorting the results after normalization after the normalization process is performed;
  • the transmitting device determines a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel;
  • the transmitting device transmits the encoded bit sequence to a receiving device.
  • the transmitting device that is, the encoding side
  • the receiving device that is, the decoding side
  • the solution may be used for the terminal and the network device.
  • the information interaction between the terminal and the terminal can also be applied to the information interaction between the terminal and the terminal.
  • the present application further provides a constructed sequence for determining an information bit encoding position, where the constructed sequence includes a sorting sequence and/or a quantized sequence, after sorting the sequence numbers of the channels according to the reliability of the channel.
  • the obtained sequence is a sequence obtained by normalizing the reliability of the channel and sorting the normalized processed result.
  • different mother code lengths correspond to different sorting sequences and/or quantized sequences.
  • the transmitting device obtains the target structure sequence and determines the location set according to the target structure sequence, and encodes the information bit sequence to be encoded, thereby making the determination of the location set of the information bits more flexible.
  • the target construction sequence is a set of construction sequences obtained from a plurality of sets of construction sequences.
  • the transmitting device acquires one of the plurality of sets of construction sequences as the target construction sequence.
  • the target construction sequence will also be acquired from the plurality of sets of construction sequences in the same manner.
  • the transmitting device and the receiving device may stipulate one or more target configuration sequences according to related parameters such as code length and code rate.
  • the multiple sets of configuration sequences are sequences determined according to the reliability of the multiple sets of channels after the reliability of the plurality of sets of channels is calculated according to the length of the mother code and the preset coding parameters.
  • the value of ⁇ may be in the range of 1-1.62.
  • the accuracy of the calculated channel reliability is high, in a possible
  • is in the order of 0.0001, and the reliability of the calculated channel is higher when the value is from 1.1870 to 1.2000.
  • the location set is the P channel with the highest reliability selected from the sorting sequence, where P is greater than or equal to the number of bits of the information bit.
  • the reliability of each channel after calculating the reliability of each channel, it can be sorted according to the reliability of the channel, such as sorting according to reliability from high to low, or sorting according to reliability from low to high, and selecting from among them.
  • the P channels with the highest reliability are used as the locations of the information bits.
  • the location set is the L channels with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the reliability of each channel is normalized, and the normalized quantization sequence is defined as the reliability level is quantized from 1 or 0 with an accuracy of 1. And selecting the L channels with the highest reliability from the processed sequence as the position of the information bits.
  • the sorting sequence is
  • the sorting sequence is
  • the sorting sequence is
  • the sorting sequence is
  • the sorting sequence is
  • the sorting sequence is
  • the quantization sequence is
  • the quantization sequence is
  • the quantization sequence is
  • the quantization sequence is
  • the quantization sequence is
  • the quantization sequence is
  • each of the above schemes the sequence is exemplified in decimal.
  • each sequence may also be expressed in binary, octal, or hexadecimal form.
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 is the order in the sorting sequence. Arranged, the corresponding reliability value of the first channel in the sorting sequence is the lowest.
  • part of the 1024 channels also comply with one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the fourth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence.
  • sequence numbers of the channels are numbered from 0.
  • the numbers of the channels may be numbered starting from 1, and of course, they may be numbered starting from other numbers.
  • a second aspect of the present application provides a decoding method, including:
  • the receiving device acquires a target configuration sequence, where the target configuration sequence includes a sorting sequence and/or a quantized sequence, the sorting sequence is a sequence obtained by sorting the sequence numbers of the channels according to the reliability of the channel, and the quantized sequence is a pair of channels. a sequence obtained by sorting the results after normalization after the normalization process is performed;
  • the receiving device determines a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel;
  • the receiving device decodes the encoded bit sequence according to the set of locations to obtain an information bit sequence.
  • the receiving device can be either a network device or a terminal.
  • the receiving device decodes the encoded information bit sequence by acquiring a target structure sequence and determining a location set according to the target structure sequence.
  • the target construction sequence is a set of construction sequences obtained from a plurality of sets of construction sequences.
  • the transmitting device acquires one of the plurality of sets of construction sequences as the target construction sequence.
  • the target construction sequence will also be acquired from the plurality of sets of construction sequences in the same manner.
  • the transmitting device and the receiving device may stipulate one or more target configuration sequences according to related parameters such as code length and code rate.
  • the multiple sets of configuration sequences are sequences determined according to the reliability of the multiple sets of channels after the reliability of the plurality of sets of channels is calculated according to the length of the mother code and the preset coding parameters.
  • the reliability is according to a formula Calculated; where, W i
  • the value of ⁇ may be in the range of 1-1.62.
  • the accuracy of the calculated channel reliability is high, in a possible
  • is in the order of 0.0001, and the reliability of the calculated channel is higher when the value is from 1.1870 to 1.2000.
  • the location set is the P channel with the highest reliability selected from the sorting sequence, where P is greater than or equal to the number of bits of the information bit.
  • the reliability of each channel after calculating the reliability of each channel, it can be sorted according to the reliability of the channel, such as sorting according to reliability from high to low, or sorting according to reliability from low to high, and selecting from among them.
  • the P channels with the highest reliability are used as the locations of the information bits.
  • the location set is the L channels with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the reliability of each channel is normalized, and the normalized quantization sequence is defined as the reliability level is quantized from 1 or 0 with an accuracy of 1. And selecting the L channels with the highest reliability from the processed sequence as the position of the information bits.
  • the sorting sequence is
  • the quantization sequence is Any one of the quantized sequences can be referred to the description in the previous embodiment.
  • each of the above schemes the sequence is exemplified in decimal.
  • each sequence may also be expressed in binary, octal, or hexadecimal.
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 is the order in the sorting sequence. Arranged, the corresponding reliability value of the first channel in the sorting sequence is the lowest.
  • part of the 1024 channels also comply with one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the fourth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence.
  • a third aspect of the present application provides an encoding apparatus, including:
  • a processing module configured to acquire a target structure sequence, where the target structure sequence includes a sort sequence and/or a quantized sequence, where the sort sequence is a sequence obtained by sorting sequence numbers of channels according to reliability of a channel, where the quantized sequence is a sequence obtained by sorting the normalized processed results after normalizing the reliability of the channel;
  • the processing module is further configured to determine a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel;
  • the processing module is further configured to: according to the set of locations, encode the information bit sequence to be encoded to obtain a coded bit sequence;
  • the sending module is configured to send the encoded bit sequence to a receiving device.
  • the target construction sequence is a set of construction sequences obtained from a plurality of sets of construction sequences.
  • the multiple sets of configuration sequences are sequences determined according to the reliability of the multiple sets of channels after the reliability of the plurality of sets of channels is calculated according to the length of the mother code and the preset coding parameters.
  • the reliability is according to a formula Calculated; where, W i
  • the location set is the P channel with the highest reliability selected from the sorting sequence, where P is greater than or equal to the number of bits of the information bit.
  • the location set is the L channels with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the sorting sequence is
  • the quantization sequence is Any one of the quantized sequences can be referred to the description in the previous embodiment.
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 is the order in the sorting sequence. Arranged, the corresponding reliability value of the first channel in the sorting sequence is the lowest.
  • Some of the 1024 channels also follow one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the fourth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence.
  • a fourth aspect of the present application provides a decoding apparatus, including:
  • a processing module configured to acquire a target structure sequence, where the target structure sequence includes a sort sequence and/or a quantized sequence, where the sort sequence is a sequence obtained by sorting sequence numbers of channels according to reliability of a channel, where the quantized sequence is a sequence obtained by sorting the normalized processed results after normalizing the reliability of the channel;
  • the processing module is further configured to determine a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel;
  • a receiving module configured to receive the encoded bit sequence
  • the processing module is further configured to decode the encoded bit sequence according to the set of locations to obtain an information bit sequence.
  • the target construction sequence is a set of construction sequences obtained from a plurality of sets of construction sequences.
  • the multiple sets of configuration sequences are sequences determined according to the reliability of the multiple sets of channels after the reliability of the plurality of sets of channels is calculated according to the length of the mother code and the preset coding parameters.
  • the reliability is according to a formula Calculated; where, W i
  • the location set is the P channel with the highest reliability selected from the sorting sequence, where P is greater than or equal to the number of bits of the information bit.
  • the location set is the L channels with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the sorting sequence is
  • the quantization sequence is Any one of the quantized sequences can be referred to the description in the previous embodiment.
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 is the order in the sorting sequence. Arranged, the corresponding reliability value of the first channel in the sorting sequence is the lowest.
  • some of the 1024 channels are also compliant with one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the fourth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence.
  • the sort sequence or the quantized sequence may be a sort sequence of the above-mentioned mother code length of 1024 or a subset of the quantized sequence.
  • the subset may be taken out in order from a sorted sequence or a quantized sequence of a parent code length of 1024, or may be taken out of order.
  • the processing module may be embodied as a processor, the transmitting module may be implemented as a transmitter, and the receiving module may be implemented as a receiver.
  • a fifth aspect of the present application provides a transmitting device, including: a memory, a processor, a transmitter, and a computer program, wherein the computer program is stored in the memory, and the processor runs the computer program to execute the first aspect or the An encoding method as described in various embodiments of the invention.
  • the number of processors is at least one, and is used to execute an execution instruction of the memory storage, that is, a computer program.
  • the encoding method provided by the above-mentioned first aspect or the various embodiments of the first aspect is performed by the transmitting device performing data interaction with the receiving device through the communication interface.
  • the memory may also be integrated inside the processor.
  • a sixth aspect of the present application provides a receiving device, including: a memory, a processor, a receiver, and a computer program, wherein the computer program is stored in the memory, and the processor runs the computer program to perform the second aspect or the A decoding method as described in various embodiments of the second aspect.
  • the number of processors is at least one, and is used to execute an execution instruction of the memory storage, that is, a computer program.
  • the decoding method provided by the second embodiment or the second embodiment of the second aspect is performed by the receiving device by performing data interaction between the receiving device and the transmitting device.
  • the memory may be integrated inside the processor.
  • a seventh aspect of the present application provides a storage medium comprising: a readable storage medium and a computer program, the computer program being used to implement the encoding method provided in any one of the first aspects.
  • the eighth aspect of the present application provides a storage medium comprising: a readable storage medium and a computer program, the computer program being used to implement the decoding method provided in any one of the second aspects.
  • a ninth aspect of the present application provides a program product comprising a computer program (i.e., an execution instruction) stored in a readable storage medium.
  • a computer program i.e., an execution instruction
  • At least one processor of the transmitting device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the transmitting device implements the encoding method provided by the first aspect or the various embodiments of the first aspect.
  • a tenth aspect of the present application provides a program product comprising a computer program (i.e., an execution instruction), the computer program being stored in a readable storage medium.
  • At least one processor of the receiving device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the receiving device implements the decoding method provided by the second aspect or the various embodiments of the second aspect.
  • the encoding method, the decoding method, the device and the device provided by the present application in the process of encoding, acquires a target structure sequence, and determines a location set of information bits according to the target structure sequence, and then according to the location set, the code to be encoded
  • the information bit sequence is encoded, and the corresponding decoding may also use the same set of positions to decode the received information bit sequence to be encoded, since the constructed sequence may be obtained from multiple sets of constructed sequences, so that the constructed sequence is The form is more diverse, which makes the selection of the location set of information bits more flexible.
  • FIG. 1 is a schematic diagram of a basic flow of a commonly used wireless communication
  • FIG. 2 is a schematic diagram of an application system of an encoding method and a decoding method provided by the present application
  • FIG. 3 is an interaction flowchart of an encoding method and a decoding method provided by the present application
  • FIG. 4 is a structural block diagram of an encoding module
  • FIG. 5 is a schematic structural diagram of an encoding apparatus provided by the present application.
  • FIG. 6 is a schematic structural diagram of a decoding apparatus provided by the present application.
  • Fig. 7 is a schematic structural view of an encoding device.
  • the technical solution of the embodiment of the present application can be applied to a 5G communication system or a future communication system, and can also be used in other various wireless communication systems, such as a Global System of Mobile communication (GSM) system, and code division multiple access (CDMA, Code Division Multiple Access system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), and the like.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 is a schematic diagram of a basic flow of a commonly used wireless communication.
  • a source is sequentially transmitted after source coding, channel coding, rate matching, and digital modulation.
  • digital demodulation, de-rate matching, channel decoding, and source decoding are outputted in sequence.
  • the channel coding can use a Polar code, and in the case of channel decoding, SC decoding, SCL decoding, etc. can be used.
  • the sorting sequence obtained by sorting the sequence numbers of the channels according to the reliability of the channel, or normalizing the reliability of the channel, after normalizing the processed As a result, the quantized sequences obtained after sorting are relatively fixed and relatively single, so that the position set of information bits is also relatively simple.
  • the present application provides a technical solution that solves the problem that the location set of the above-mentioned determined information bits is relatively fixed and single.
  • the encoding method and the decoding method provided by the present application are described in detail below with reference to the accompanying drawings.
  • the solution is applied in a process of information interaction between a network device and a terminal
  • the coding side may be a network device. It may be a terminal; correspondingly, the decoding side may be either a terminal or a network device.
  • the solution can also be applied in the process of information interaction between terminals, and the solution is not limited.
  • FIG. 3 is an interaction flowchart of an encoding method and a decoding method provided by the present application. As shown in FIG. 3, the specific implementation steps of the encoding method and the decoding method are:
  • S301 The sending device acquires a target structure sequence.
  • the target structure sequence includes a sort sequence and/or a quantized sequence
  • the sort sequence is a sequence obtained by sorting the channel numbers according to the reliability of the channel, and the quantized sequence is normalized after the channel reliability is verified.
  • the transmitting device determines a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel.
  • the sending device when it needs to send information, it first needs to acquire the information bit sequence, and determines the location of the information bit in the channel according to the acquired target structure sequence. For example, if there are 64 channels, the information bit sequence 111 is on the first channel, the third channel, and the 16th channel, respectively.
  • the transmitting device will only determine the location set according to the sorting sequence. If the constructing sequence includes only the quantized sequence, the transmitting device will only determine the location set according to the quantized sequence, if the constructing sequence includes the sorting When sequencing and quantizing the sequence, the transmitting device will determine the set of locations based on the sorting sequence and the quantized sequence, respectively.
  • the constructing sequence may be a group, and the set of constructing sequences is a target constructing sequence.
  • the constructing sequence may also be multiple groups.
  • the sending device may obtain one of the multiple sets of constructing sequences.
  • the group constructs a sequence as a target.
  • the target construction sequence will also be acquired from the plurality of sets of construction sequences in the same manner for the receiving device.
  • the transmitting device and the receiving device may stipulate one or more target configuration sequences according to related parameters such as code length and code rate.
  • the multiple sets of construction sequences are sequences determined according to reliability after calculating the reliability of the plurality of sets of channels according to the length of the mother code and the preset coding parameters.
  • the reliability can be obtained by calculation according to the formula (3).
  • W i is the reliability of the ith channel
  • j ⁇ ⁇ 0, 1, L n-1 ⁇ , n log 2 N
  • N is the length of the mother code
  • is a constant
  • ranges from 1.16 to 1.21, where j, B j and ⁇ are preset coding parameters.
  • the value of ⁇ is in the range of 1-1.62.
  • is in the order of 0.0001, and the reliability of the calculated channel is higher when the value is from 1.1870 to 1.2000.
  • the reliability may be calculated according to other algorithms, as long as the reliability value of each channel can be calculated, and the specific determination manner of the reliability is not limited herein.
  • the set of locations of information bits is the most reliable P channels selected from the ordered sequence, where P is greater than or equal to the number of bits of the information bits.
  • each channel may be sorted according to the reliability of the channel, such as sorting according to reliability from high to low, or sorting according to reliability from low to high. From which the P channels with the highest reliability are selected as the locations of the information bits.
  • P may be the number of bits of the information bit, or may be the number of bits of the information bit and the check bit, wherein the check bit may be, for example, a CRC, a parity bit, etc., therefore, P is greater than or equal to the information bit. The integer of the number.
  • the sorting sequence obtained from low to high reliability is If the information bit has 5, the 56th, 60th, 62nd, 63rd and 64th channels will be selected as the position of the information bits.
  • the set of locations of the information bits is the L channel with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the reliability of each channel is normalized, and the normalized quantization sequence is defined as the reliability level starting from 1 or 0 to 1
  • the accuracy is quantized, and the L channels with the highest reliability are selected from the processed sequences as the positions of the information bits.
  • L may be the number of bits of the information bit, or may be the number of bits of the information bit and the check bit, wherein the check bit may be, for example, a CRC, a parity bit, etc., so L is greater than or equal to the information bit. The integer of the number.
  • the position with the highest reliability is selected as the position of the information bit according to the quantization sequence.
  • S303 The transmitting device encodes the information bit sequence to be encoded according to the location set to obtain the encoded bit sequence.
  • the Polar code first selects a target position set I of information bits by using a constructing module of the Polar code before encoding.
  • the Polar code construction module includes a sequence of sequencing sequences or quantization and a process of determining a set of information bit positions.
  • the present application obtains a Polar code according to a target location set I of information bits and a target location set I of information bits.
  • the coded obtains the encoded bit sequence, and finally performs rate matching according to the target code length.
  • S304 The transmitting device sends the encoded bit sequence to the receiving device.
  • the transmitting device encodes the information bit sequence to be encoded according to the position of the information bit in the channel, and transmits the obtained encoded bit sequence.
  • the encoded bit sequence transmitted by the transmitting device is received.
  • S305 The receiving device acquires a target structure sequence.
  • the target structure sequence includes a sort sequence and/or a quantized sequence
  • the sort sequence is a sequence obtained by sorting the channel numbers according to the reliability of the channel, and the quantized sequence is normalized after the channel reliability is verified.
  • the receiving device determines a location set according to the target configuration sequence, where the location set is used to indicate a location of the information bit sequence in the channel.
  • S307 The receiving device decodes the encoded bit sequence according to the set of locations to obtain an information bit sequence.
  • the received encoded bit sequence is decoded according to the location set to obtain an information bit sequence.
  • S305 and S306 may be executed first, and then the encoded bit sequence sent by the transmitting device may be received, or the encoding sent by the transmitting device may be received first.
  • the bit sequence is further executed in S305 and S306. The order of the steps is not limited in this application.
  • the transmitting device acquires a target structure sequence, and determines a location set of the information bits according to the target structure sequence, and then, according to the location set, the information bit sequence to be encoded Coding, the corresponding decoding can also use the same set of locations to decode the received information bit sequence to be encoded. Since the constructed sequence can be obtained from multiple sets of construct sequences, the form of the constructed sequence is more diverse. The selection of the set of locations of information bits is more flexible.
  • the length of the mother code is 64, and when the ⁇ takes a different value, the obtained sorting sequence is enumerated, and the set of locations acquired by the transmitting device and the receiving device will be a subset of the sorting sequence.
  • the mother code length is less than 64, the sort sequence and the quantized sequence are subsets of the following sequences, which will not be enumerated here.
  • the sequence in this embodiment is exemplified in decimal. Of course, each sequence may also be expressed in binary, octal, or hexadecimal.
  • each channel may be sorted in order of increasing to small, or may be sorted in ascending order. In the following sequence, only the relative sizes between the reliability of each channel are indicated. For the relationship between the size and the specific expression of the reliability, the embodiment is not limited herein.
  • the sort sequence is:
  • the length of the mother code is 1024, and when the value of ⁇ is different, the obtained sorting sequence is enumerated, and the set of locations acquired by the transmitting device and the receiving device will be a subset of the sorting sequence.
  • the sorting sequence is a subset of the following sequences, which will not be enumerated here.
  • the sequence in this embodiment is exemplified in decimal. Of course, each sequence may also be expressed in binary, octal, or hexadecimal.
  • each channel may be sorted in order of increasing to small, or may be sorted in ascending order. In the following sequence, only the relative sizes between the reliability of each channel are indicated. For the relationship between the size and the specific expression of the reliability, the embodiment is not limited herein.
  • the sorting sequence may be any of the following:
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 are sequentially arranged in the sorting sequence.
  • the corresponding reliability value of one channel in the sorting sequence is the lowest.
  • some of the 1024 channels also follow one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence; or,
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth order of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the 4th position of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third order of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence.
  • sequence numbers of the channels are numbered from 0. In actual applications, the sequence numbers of the channels can also be numbered starting from 1. Of course, the numbers can also be numbered from other numbers, which is not limited in this embodiment. .
  • FIG. 5 is a schematic structural diagram of an encoding apparatus provided by the present application. As shown in FIG. 5, the encoding apparatus 10 includes:
  • the processing module 11 is configured to acquire a target configuration sequence, where the target configuration sequence includes a sorting sequence and/or a quantized sequence, where the sorting sequence is a sequence obtained by sorting the sequence numbers of the channels according to the reliability of the channel, and the quantized sequence a sequence obtained by sorting the normalized processed results after normalizing the reliability of the channel;
  • the processing module 11 is further configured to determine a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel;
  • the processing module 11 is further configured to: according to the set of locations, encode the information bit sequence to be encoded to obtain a coded bit sequence;
  • the sending module 12 is configured to send the encoded bit sequence to a receiving device.
  • the coding device provided in this embodiment is used to implement the technical solution on the sending device side provided by any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the target construction sequence is a set of construction sequences acquired from a plurality of sets of construction sequences.
  • the multiple sets of configuration sequences are sequences determined according to the reliability of the multiple sets of channels after the reliability of the plurality of sets of channels is calculated according to the length of the mother code and the preset coding parameters.
  • the set of locations is the P channel with the highest reliability selected from the sorting sequence, where P is greater than or equal to the number of bits of the information bits.
  • the set of locations is the L channel with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the sorting sequence may be Any one of them, the specific form of the sorting sequence, can be referred to the description in the previous method embodiment.
  • the quantized sequence is used as the constructed sequence, when the mother code length is 64, the quantized sequence is Any one of the quantized sequences can be referred to the description in the previous method embodiments.
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 are sequentially arranged in the sorting sequence.
  • the corresponding reliability value of the first channel in the sorting sequence is the lowest.
  • some of the 1024 channels also comply with one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the fourth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence. .
  • the coding device provided in any of the foregoing embodiments is used to implement the technical solution on the sending device side provided by any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a decoding apparatus provided by the present application. As shown in FIG. 6, the decoding apparatus 20 includes:
  • the processing module 21 is configured to acquire a target configuration sequence, where the target configuration sequence includes a sorting sequence and/or a quantization sequence, where the sorting sequence is a sequence obtained by sorting the sequence numbers of the channels according to the reliability of the channel, and the quantized sequence a sequence obtained by sorting the normalized processed results after normalizing the reliability of the channel;
  • the processing module 21 is further configured to determine a location set according to the target configuration sequence; the location set is used to indicate a location of the information bit sequence in the channel;
  • the receiving module 22 is configured to receive the encoded bit sequence.
  • the processing module 21 is further configured to: according to the set of locations, decode the encoded bit sequence to obtain an information bit sequence.
  • the decoding device provided in this embodiment is used to implement the technical solution on the receiving device side provided by any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the target construction sequence is a set of construction sequences acquired from a plurality of sets of construction sequences.
  • the multiple sets of configuration sequences are sequences determined according to the reliability of the multiple sets of channels after the reliability of the plurality of sets of channels is calculated according to the length of the mother code and the preset coding parameters.
  • the set of locations is the P channel with the highest reliability selected from the sorting sequence, where P is greater than or equal to the number of bits of the information bits.
  • the set of locations is the L channel with the highest reliability selected from the quantized sequence, where L is greater than or equal to the number of bits of the information bits.
  • the sorting sequence is Any one of the sorting sequences can be referred to the description in the foregoing method embodiments.
  • the quantization sequence is Any one of the quantized sequences can be referred to the description in the previous method embodiments.
  • the reliability of the channel with the sequence number 0, the channel with the sequence number 1, and the channel with the sequence number 2 are sequentially arranged in the sorting sequence.
  • the corresponding reliability value of the first channel in the sorting sequence is the lowest.
  • some of the 1024 channels also comply with one or more of the following rules:
  • the channel numbered 4 is in the 4th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 9 is in the 11th bit of the reliability value from low to high in the sorting sequence.
  • the channel numbered 1005 is in the 16th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1014 is in the 11th bit of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1015 is in the fifth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1019 is in the fourth sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1021 is in the third sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1022 is in the second sequence of the reliability value from high to low in the sorting sequence.
  • the channel numbered 1023 is in the first bit of the reliability value from high to low in the sorting sequence.
  • the decoding device provided by any of the foregoing embodiments is used to implement the technical solution of the receiving device side provided by any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the structure of the decoding apparatus is similar to that of the encoding apparatus.
  • the processing module in the encoding apparatus or the decoding apparatus may be a processing in a specific implementation.
  • the processor 21 can be implemented by hardware or by software. When the processor is implemented by hardware, the hardware can be implemented as a logic circuit; when the processor is implemented by software, it can be through a general-purpose processor.
  • the computer program stored in the processing is read, or the function of the processing module is implemented by reading a computer program stored in an external memory, and various programs can be stored in the memory 22 for performing various processing functions and implementing the implementation. The method steps of the example.
  • the foregoing sending module may be the transmitter 20 when the specific implementation is implemented, and the receiving module may be the receiver 24 when the specific implementation is implemented.
  • the application further provides a storage medium comprising: a readable storage medium and a computer program, the readable storage medium for storing the computer program, the computer program comprising code for providing any of the foregoing embodiments The encoding method.
  • the application further provides a storage medium comprising: a readable storage medium and a computer program, the readable storage medium for storing the computer program, the computer program comprising code for providing any of the foregoing embodiments Decoding method.
  • the application also provides a program product comprising a computer program (ie, an execution instruction), the computer program comprising code for implementing the encoding method provided by any of the preceding embodiments.
  • a program product comprising a computer program (ie, an execution instruction), the computer program comprising code for implementing the encoding method provided by any of the preceding embodiments.
  • At least one processor of the transmitting device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the transmitting device implements the encoding method provided by the various embodiments described above.
  • the present application also provides a program product comprising a computer program (ie, an execution instruction), the computer program comprising code for implementing the decoding method provided by any of the foregoing embodiments.
  • a program product comprising a computer program (ie, an execution instruction), the computer program comprising code for implementing the decoding method provided by any of the foregoing embodiments.
  • At least one processor of the receiving device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the receiving device implements the decoding method provided by the various embodiments described above.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processor, digital signal processor (English: Digital Signal) Processor, referred to as DSP, and Application Specific Integrated Circuit (ASIC).
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. All or part of the steps of implementing the above method embodiments may be performed by hardware associated with the program instructions.
  • the aforementioned program can be stored in a readable memory.
  • the foregoing memory includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请提供一种编码方法、译码方法、装置和设备,该方法包括:发送设备获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;发送设备根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;所述发送设备根据所述位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列;所述发送设备将所述编码后的比特序列发送至接收设备。本申请能够提高信息比特的位置集合获取的灵活性。

Description

极化码的速率匹配方法及设备
本申请要求于2017年5月24日提交中国专利局、申请号为201710374785.2、申请名称为“编码方法、译码方法、装置和设备”的中国专利申请的优先权,申请号为201710374785.2的申请又要求于2017年3月24日提交中国专利局、申请号为201710184322.X、发明名称为“编码方法、译码方法、装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种编码方法、译码方法、装置和设备。
背景技术
极化码(Polar Codes)是2008年由E.
Figure PCTCN2018080393-appb-000001
提出的一种新型信道编码。极化码基于信道极化(Channel Polarization)进行设计,是第一种能够通过严格的数学方法证明达到信道容量的构造性编码方案,Polar码是一种线性块码。其生成矩阵为F N,其编码过程为
Figure PCTCN2018080393-appb-000002
其中
Figure PCTCN2018080393-appb-000003
是一个二进制的行矢量,长度为N(即母码长度);F N是一个N×N的矩阵,且
Figure PCTCN2018080393-appb-000004
这里
Figure PCTCN2018080393-appb-000005
Figure PCTCN2018080393-appb-000006
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。
Polar码的编码过程中,
Figure PCTCN2018080393-appb-000007
中的一部分比特用来携带信息,称为信息比特,这些比特的索引的集合记作I;另外的一部分比特置为收发端预先约定的固定值,称之为固定比特,其 索引的集合用I的补集I c表示。信息比特序号集合I按以下方法选取:利用Polar码的构造算法得到序号i的比特对应的信道错误概率
Figure PCTCN2018080393-appb-000008
或信道容量估计C (i),选择
Figure PCTCN2018080393-appb-000009
值最小或C (i)值最大的的K个序号,构成集合I。
信道错误概率
Figure PCTCN2018080393-appb-000010
或信道容量估计C (i)与信道的可靠度有关,通常,信道的可靠度可以通过公式(1)计算:
Figure PCTCN2018080393-appb-000011
其中,
Figure PCTCN2018080393-appb-000012
β i=(2 i-1) 1/4
Figure PCTCN2018080393-appb-000013
为信道的序号从1到2 i的可靠度的大小,
i为信道的序号。
另外,还可以通过公式(2)计算信道的可靠度:
Figure PCTCN2018080393-appb-000014
其中,i@B n-1B n-2...B 0,B j∈{0,1},j∈{0,1,L n-1},B n-1B n-2...B 0为i的二进制表示。
通过上述方式计算出信道的可靠度后,获得的信道的序列是固定的,因此确定出的信息比特的位置集合较单一。
发明内容
本申请提供一种编码方法、译码方法、装置和设备,用于解决确定信息比特的位置集合较单一的技术问题。
本申请第一方面提供一种编码方法,包括:
发送设备获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;
发送设备根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
所述发送设备根据所述位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列;
所述发送设备将所述编码后的比特序列发送至接收设备。
在本方案中,发送设备即编码侧既可以是网络设备,也可以是终端,相应的,接收设备即译码侧既可以是终端也可以是网络设备,该方案可以用于终端和网络设备之间的信息交互,也可以应用于终端与终端之间的信息交互,对此本方案不做限制。
另外,本申请中还提供一种用于确定信息比特编码位置的构造序列,所述构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列。
其中,不同的母码长度对应不同的排序序列和/或量化序列。
在编码发送的过程中,发送设备通过获取目标构造序列,并根据目标构造序列确定位置集合,以对待编码的信息比特序列进行编码,由此可以使得信息比特的位置集合的确定更加灵活。
一种具体的实现方式中,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
在该方案中,构造序列为多组时,发送设备将从多组构造序列中获取到其中一组作为目标构造序列。对于接收设备,也将按照同样的方式从多组构造序列中获取到目 标构造序列。其中,发送设备和接收设备可以根据码长、码率等相关参数约定其中的一个或多个目标构造序列。
一种具体的实现方式中,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
一种具体的实现方式中,所述可靠度为根据公式
Figure PCTCN2018080393-appb-000015
计算获得的;其中,W i为第i个信道的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β为常量,且β的取值范围为1-1.62。
在该方案中,β的取值范围可以为1-1.62,可选地,β的取值范围在1.16-1.21内时,计算出的信道的可靠度的准确性较高,在一种可能的实施方式中,β以0.0001为步长,从1.1870到1.2000取值时,计算出的信道的可靠度的准确性更高
一种具体的实现方式中,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
在该方案中,计算出每个信道的可靠度之后,可以按照信道的可靠度的大小进行排序,如按照可靠度从高到低进行排序,或者按照可靠度从低到高进行排序,从中选择出可靠度最高的P个信道,作为信息比特的位置。
一种具体的实现方式中,所述位置集合为从所述量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于所述信息比特的位数。
在该方案中,计算出每个信道的可靠度之后,将对每个信道的可靠度进行归一化处理,定义归一化量化序列为可靠度大小从1或者0开始以1的精度量化得到,并从处理后的序列中选择出可靠度最高的L个信道,作为信息比特的位置。
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000016
Figure PCTCN2018080393-appb-000017
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000018
Figure PCTCN2018080393-appb-000019
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000020
Figure PCTCN2018080393-appb-000021
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000022
Figure PCTCN2018080393-appb-000023
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000024
Figure PCTCN2018080393-appb-000025
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000026
Figure PCTCN2018080393-appb-000027
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000028
Figure PCTCN2018080393-appb-000029
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000030
Figure PCTCN2018080393-appb-000031
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000032
Figure PCTCN2018080393-appb-000033
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000034
Figure PCTCN2018080393-appb-000035
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000036
Figure PCTCN2018080393-appb-000037
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000038
Figure PCTCN2018080393-appb-000039
在上述各方案中,序列是以十进制举例说明的,当然,各序列也可以以二进制、 八进制或十六进制等形式表示。
一种具体的实现方式中,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
一种具体的实现方式中,所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
在上述各方案中,信道的序号是从0开始编号,在实际应用中,信道的序号也可以是从1开始编号,当然,还可以从其它的数字开始编号。
本申请第二方面提供一种译码方法,包括:
接收设备获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;
所述接收设备根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
所述接收设备接收编码后的比特序列;
所述接收设备根据所述位置集合,对所述编码后的比特序列进行译码得到信息比 特序列。
与编码侧对应的,该接收设备既可以是网络设备,也可以是终端。
在译码的过程中,接收设备通过获取目标构造序列,并根据目标构造序列确定位置集合,以对编码后的信息比特序列进行译码。
一种具体的实现方式中,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
在该方案中,构造序列为多组时,发送设备将从多组构造序列中获取到其中一组作为目标构造序列。对于接收设备,也将按照同样的方式从多组构造序列中获取到目标构造序列。其中,发送设备和接收设备可以根据码长、码率等相关参数约定其中的一个或多个目标构造序列。
一种具体的实现方式中,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
一种具体的实现方式中,所述可靠度为根据公式
Figure PCTCN2018080393-appb-000040
计算获得的;其中,W i
为第i个信道的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β
为常量,且β的取值范围为1-1.62。
在该方案中,β的取值范围可以为1-1.62,可选地,β的取值范围在1.16-1.21内时,计算出的信道的可靠度的准确性较高,在一种可能的实施方式中,β以0.0001为步长,从1.1870到1.2000取值时,计算出的信道的可靠度的准确性更高
一种具体的实现方式中,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
在该方案中,计算出每个信道的可靠度之后,可以按照信道的可靠度的大小进行排序,如按照可靠度从高到低进行排序,或者按照可靠度从低到高进行排序,从中选择出可靠度最高的P个信道,作为信息比特的位置。
一种具体的实现方式中,所述位置集合为从所述量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于所述信息比特的位数。
在该方案中,计算出每个信道的可靠度之后,将对每个信道的可靠度进行归一化处理,定义归一化量化序列为可靠度大小从1或者0开始以1的精度量化得到,并从处理后的序列中选择出可靠度最高的L个信道,作为信息比特的位置。
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000041
Figure PCTCN2018080393-appb-000042
Figure PCTCN2018080393-appb-000043
中的任意一个,所述排序序列的具体形式可以参见前面实施方式中的描述。
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000044
Figure PCTCN2018080393-appb-000045
中的任意一个,所述量化序列的具体形式可以参见前面实施方式中的描述。
在上述各方案中,序列是以十进制举例说明的,当然,各序列也可以以二进制、八进制或十六进制等形式表示。
一种具体的实现方式中,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
一种具体的实现方式中,所述1024个信道中的部分信道还遵从如下规律中的一种 或多种:
序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
本申请第三方面提供一种编码装置,包括:
处理模块,用于获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;
所述处理模块,还用于根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
所述处理模块,还用于根据所述位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列;
所述发送模块,用于将所述编码后的比特序列发送至接收设备。
一种具体的实现方式中,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
一种具体的实现方式中,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
一种具体的实现方式中,所述可靠度为根据公式
Figure PCTCN2018080393-appb-000046
计算获得的;其中,W i
为第i个信道的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β为常量,且β的取值范围为1-1.62。
一种具体的实现方式中,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
一种具体的实现方式中,所述位置集合为从所述量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于所述信息比特的位数。
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000047
Figure PCTCN2018080393-appb-000048
Figure PCTCN2018080393-appb-000049
中的任意一个,所述排序序列的具体形式可以参见前面方法实施例中的描述。
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000050
Figure PCTCN2018080393-appb-000051
中的任意一个,所述量化序列的具体形式可以参见前面实施方式中的描述。
一种具体的实现方式中,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
本申请第四方面提供一种译码装置,包括:
处理模块,用于获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;
所述处理模块,还用于根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
接收模块,用于接收编码后的比特序列;
所述处理模块,还用于根据所述位置集合,对所述编码后的比特序列进行译码得到信息比特序列。
一种具体的实现方式中,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
一种具体的实现方式中,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
一种具体的实现方式中,所述可靠度为根据公式
Figure PCTCN2018080393-appb-000052
计算获得的;其中,W i
为第i个信道的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β
为常量,且β的取值范围为1-1.62。
一种具体的实现方式中,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
一种具体的实现方式中,所述位置集合为从所述量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于所述信息比特的位数。
一种具体的实现方式中,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000053
Figure PCTCN2018080393-appb-000054
Figure PCTCN2018080393-appb-000055
中的任意一个,所述排序序列的具体形式可以参见前面实施方式中的描述。
上述字母“Q”之后的数字1,2,3,4,5,6仅仅用于表示不同的序列,没有具体的含义。
一种具体的实现方式中,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000056
Figure PCTCN2018080393-appb-000057
中的任意一个,所述量化序列的具体形式可以参见前面实施方式中的描述。
上述字母“Z”之后的数字1,2,3,4,5,6仅仅用于表示不同的序列,没有具体的含义。
一种具体的实现方式中,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
可选的,所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
当母码的长度短于1024时,排序序列或者量化序列可以是上述母码长度为1024的排序序列或者量化序列的子集。例如,该子集可以是按顺序从母码长度为1024的排序序列或者量化序列中取出的,也可以是不按顺序取出的。
应理解,在上述编码装置或者译码装置的实现中,处理模块可以被具体实现为处理器,发送模块可以被实现为发送器,接收模块可以被实现为接收器。
本申请第五方面提供一种发送设备,包括:存储器、处理器、发送器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行第一方面或者第一方面的各种实施方式所述的编码方法。
在上述发送设备的具体实现中,处理器的数量为至少一个,用来执行存储器存储的执行指令,即计算机程序。使得发送设备通过通信接口与接收设备之间进行数据交互来执行上述第一方面或者第一方面的各种实施方式提供的编码方法,可选的,存储器还可以集成在处理器内部。
本申请第六方面提供一种接收设备,包括:存储器、处理器、接收器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行第二方面或者第二方面的各种实施方式所述的译码方法。
在上述接收设备的具体实现中,处理器的数量为至少一个,用来执行存储器存储的执行指令,即计算机程序。使得接收设备通过通信接口与发送设备之间进行数据交 互,来执行上述第二方面或者第二方面的各种实施方式提供的译码方法,可选的,存储器还可以集成在处理器内部。
本申请第七方面提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第一方面任一项提供的编码方法。
本申请第八方面提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第二方面任一项提供的译码方法。
本申请第九方面提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。发送设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得发送设备实施第一方面或者第一方面的各种实施方式提供的编码方法。
本申请第十方面提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。接收设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得接收设备实施上述第二方面或者第二方面的各种实施方式提供的译码方法。
本申请提供的编码方法、译码方法、装置和设备,在编码的过程中,发送设备获取目标构造序列,并根据该目标构造序列确定信息比特的位置集合,再根据该位置集合,对待编码的信息比特序列进行编码,对应的译码也可以采用相同的位置集合对接收到的待编码的信息比特序列进行译码,由于构造序列可以为从多组构造序列中获取到的,使得构造序列的形式比较多样化,从而使信息比特的位置集合的选择更加灵活。
附图说明
图1为常用的无线通信的基本流程示意图;
图2为本申请提供的编码方法和译码方法的一种应用系统示意图;
图3为本申请提供的编码方法和译码方法的交互流程图;
图4为编码模块的结构框图;
图5为本申请提供的编码装置的结构示意图;
图6为本申请提供的译码装置的结构示意图;
图7为编码装置的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用5G通信系统或未来的通信系统,也可以用于其他各种无线通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(CDMA,Code Division Multiple Access)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
图1为常用的无线通信的基本流程示意图,如图1所示,在发送端,信源依次经过信源编码、信道编码、速率匹配和数字调制后发出。在接收端,依次经过数字解调、解速率匹配、信道译码、信源解码输出信宿。信道编码可以采用Polar码,而在信道译码的时候,可以采用SC译码、SCL译码等。
在Polar码的编码过程中,需要确定出信道的可靠度,根据信道的可靠度,将信息比特和固定比特放置在相应的位置,以进行正确的编码。确定信道可靠度的一种计算方式如下:
Figure PCTCN2018080393-appb-000058
其中,
Figure PCTCN2018080393-appb-000059
β i=(2 i-1) 1/4
Figure PCTCN2018080393-appb-000060
为信道的序号从1到2 i的可靠度的大小,i为信道的序号。另外,还可以通过公式(2)计算信道的可靠度:
Figure PCTCN2018080393-appb-000061
其中,i@B n-1B n-2...B 0,B j∈{0,1}j∈{0,1,L n-1},B n-1B n-2...B 0为i的二进制表示。
另外,本申请中将极化权重,错误概率和极化信道容量等能够描述极化信道可靠度相对大小的表述统一描述为可靠度。
然而,通过上述方式计算出信道的可靠度后,根据信道的可靠度对信道的序号进行排序之后获得的排序序列,或者对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的量化序列都比较固定且比较单一,从而使得信息比特的位置集合也较单一。
综上问题,本申请提供了可解决上述确定出的信息比特的位置集合较固定和单一的问题的技术方案,下面结合附图为本申请提供的编码方法、译码方法进行详细说明。
图2为本申请提供的编码方法和译码方法的一种应用系统示意图,如图2所示,该方案应用在网络设备与终端之间的信息交互过程中,编码侧既可以是网络设备也可以是终端;与之相应的,译码侧既可以是终端也可以是网络设备。可选的,也可以应用在终端之间的信息交互过程中,对此本方案不做限制。
图3为本申请提供的编码方法和译码方法的交互流程图,如图3所示,该编码方法以及译码方法的具体实现步骤为:
S301:发送设备获取目标构造序列。
其中,目标构造序列包括排序序列和/或量化序列,排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列。
S302:发送设备根据目标构造序列确定位置集合;该位置集合用于指示信息比特序列在信道中的位置。
在上述步骤中,发送设备需要发送信息时,首先需要获取信息比特序列,并根据获取到的目标构造序列确定信息比特在信道中所在的位置。例如:若有64个信道时,信息比特序列111分别在第一个信道、第3个信道和第16个信道等。
另外,若构造序列中只包括排序序列时,发送设备将仅根据排序序列确定位置集合,若构造序列中只包括量化序列时,发送设备将仅根据量化序列确定位置集合,若构造序列中包括排序序列和量化序列时,发送设备将分别根据排序序列和量化序列确定位置集合。
可选地,构造序列可以为一组,且这组构造序列即为目标构造序列,可选地,构造序列也可以为多组,此时,发送设备将从多组构造序列中获取到其中一组作为目标构造序列。
若构造序列为多组时,对于接收设备,也将按照同样的方式从多组构造序列中获取到目标构造序列。其中,发送设备和接收设备可以根据码长、码率等相关参数约定其中的一个或多个目标构造序列。
可选地,多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据可靠度确定出的序列。
具体地,可靠度可以根据公式(3)计算获得。
Figure PCTCN2018080393-appb-000062
其中,W i为第i个信道的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β为常量,且β的取值范围为1.16-1.21,其中,j、B j和β为预设的编码参数。另外,β的取值范围为1-1.62,可选地,β的取值范围在1.16-1.21内时,计算出的信道的可靠度的准确性较高,在一种可能的实施方式中,β以0.0001为步长,从1.1870到1.2000取值时,计算出的信道的可靠度的准确性更高。
另外,可靠度也可以根据其他算法进行计算,只要能够计算出各信道的可靠度值即可,对于可靠度的具体确定方式,本实施例在此不作限定。
在一种实施方式中,信息比特的位置集合为从排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于信息比特的位数。
具体地,根据公式(3)计算出每个信道的可靠度之后,可以按照信道的可靠度的大小进行排序,如按照可靠度从高到低进行排序,或者按照可靠度从低到高进行排序,从中选择出可靠度最高的P个信道,作为信息比特的位置。另外,P可以为信息比特的位数,也可以为信息比特与校验比特的位数,其中,校验比特例如可以为CRC,奇偶校验比特等,因此,P为大于或等于信息比特位数的整数。例如:以最大母码长度64为例,当β=2 1/4时,按照可靠度从低到高得到的排序序列为
Figure PCTCN2018080393-appb-000063
Figure PCTCN2018080393-appb-000064
Figure PCTCN2018080393-appb-000065
若信息比特有5为,则将选择第56个,第60个,第62个,第63个和第64个信道作为信息比特的位置。
在另一种实施方式中,信息比特的位置集合为对从量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于信息比特的位数。
具体地,根据公式(3)计算出每个信道的可靠度之后,将对每个信道的可靠度进行归一化处理,定义归一化量化序列为可靠度大小从1或者0开始以1的精度量化得到,并从处理后的序列中选择出可靠度最高的L个信道,作为信息比特的位置。另外,L可以为信息比特的位数,也可以为信息比特与校验比特的位数,其中,校验比特例如可以为CRC,奇偶校验比特等,因此,L为大于或等于信息比特位数的整数。例如N=64时,对每个信道的可靠度进行量化之后,获得的序列为
Figure PCTCN2018080393-appb-000066
Figure PCTCN2018080393-appb-000067
Figure PCTCN2018080393-appb-000068
用来表示1-64位信道的可靠度相对大小,例如Z1(4)=7,Z1(5)=4表示第4位信道的可靠度为7,第5位信道的可靠度为4,可以根据量化序列选择可靠度最高的位置作为信息比特的位置。
S303:发送设备根据位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列。
图4为编码模块的结构框图,如图4所示,Polar码在编码前首先利用Polar码的构造模块选出信息比特的目标位置集合I。其中,Polar码构造模块包括排序序列或量化的产生以及信息比特位置集合的确定过程,本申请通过获取信息比特的目标位置集合I,再根据待编码比特和信息比特的目标位置集合I进行Polar码编码得到编码后的比特序列,最后根据目标码长进行速率匹配。
S304:发送设备将编码后的比特序列发送至接收设备。
在本实施例中,发送设备获取到位置集合之后,将根据信息比特在信道中的位置,对待编码的信息比特序列进行编码,并将得到的编码后的比特序列进行发送。
对于接收设备,则接收发送设备发送的编码后的比特序列。
S305:接收设备获取目标构造序列。
其中,目标构造序列包括排序序列和/或量化序列,排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列。
S306:接收设备根据目标构造序列确定位置集合,该位置集合用于指示信息比特序列在信道中的位置。
S307:接收设备根据位置集合,对编码后的比特序列进行译码得到信息比特序列。
在本实施例中,接收设备获取到目标构造序列,并根据该目标构造序列确定出位置集合之后,将根据位置集合对接收到的编码后的比特序列进行译码,以获得信息比特序列。
另外,对于接收设备来说,可能根据编码后的比特序列的长度不同,可能会先执行S305和S306,再接收发送设备发送的编码后的比特序列,也可能会先接收发送设备发送的编码后的比特序列,再执行S305和S306,对于这些步骤之间的先后顺序,本申请并不作限制。
本实施例提供的编码方法和译码方法,在编码的过程中,发送设备获取目标构造 序列,并根据该目标构造序列确定信息比特的位置集合,再根据该位置集合,对待编码的信息比特序列进行编码,对应的译码也可以采用相同的位置集合对接收到的待编码的信息比特序列进行译码,由于构造序列可以为从多组构造序列中获取到的,使得构造序列的形式比较多样化,从而使信息比特的位置集合的选择更加灵活。
下面,将对母码长度为64,且当β取不同的值时,获得的排序序列进行列举说明,发送设备和接收设备获取到的位置集合将为排序序列的子集。当母码长度小于64时,排序序列和量化序列为以下各序列中的子集,此处将不再列举。另外,本实施例中的序列是以十进制举例说明的,当然,各序列也可以以二进制、八进制或十六进制等形式表示。
需要进行说明的是,各信道的可靠度可以按照对大到小的顺序进行排序,也可以按照从小到大的顺序进行排序,以下序列中只表示了各信道的可靠度之间的相对大小的关系,对于表述可靠度的大小具体的表现形式,本实施例在此不作限制。
若母码长度为64,且信道的数量为64个,且信道的序号从1开始时,排序序列为:
Figure PCTCN2018080393-appb-000069
Figure PCTCN2018080393-appb-000070
Figure PCTCN2018080393-appb-000071
Figure PCTCN2018080393-appb-000072
Figure PCTCN2018080393-appb-000073
Figure PCTCN2018080393-appb-000074
上述字母“Q”之后的数字1,2,3,4,5,6仅仅用于表示不同的序列,没有具体的含义。
下面,将对母码长度为1024,且当β取不同的值时,获得的排序序列进行列举说明,发送设备和接收设备获取到的位置集合将为排序序列的子集。当母码长度小于1024时,排序序列为以下各序列中的子集,此处将不再列举。另外,本实施例中的序列是以十进制举例说明的,当然,各序列也可以以二进制、八进制或十六进制等形式表示。
需要进行说明的是,各信道的可靠度可以按照对大到小的顺序进行排序,也可以按照从小到大的顺序进行排序,以下序列中只表示了各信道的可靠度之间的相对大小的关系,对于表述可靠度的大小具体的表现形式,本实施例在此不作限制。
若母码长度为1024,且信道的数量为1024个,且信道的序号从0开始时,排序序列可以为如下任意一种:
Figure PCTCN2018080393-appb-000075
Figure PCTCN2018080393-appb-000076
Figure PCTCN2018080393-appb-000077
Figure PCTCN2018080393-appb-000078
Figure PCTCN2018080393-appb-000079
Figure PCTCN2018080393-appb-000080
Figure PCTCN2018080393-appb-000081
Figure PCTCN2018080393-appb-000082
Figure PCTCN2018080393-appb-000083
Figure PCTCN2018080393-appb-000084
Figure PCTCN2018080393-appb-000085
Figure PCTCN2018080393-appb-000086
Figure PCTCN2018080393-appb-000087
Figure PCTCN2018080393-appb-000088
Figure PCTCN2018080393-appb-000089
Figure PCTCN2018080393-appb-000090
Figure PCTCN2018080393-appb-000091
Figure PCTCN2018080393-appb-000092
Figure PCTCN2018080393-appb-000093
Figure PCTCN2018080393-appb-000094
Figure PCTCN2018080393-appb-000095
Figure PCTCN2018080393-appb-000096
Figure PCTCN2018080393-appb-000097
Figure PCTCN2018080393-appb-000098
Figure PCTCN2018080393-appb-000099
Figure PCTCN2018080393-appb-000100
Figure PCTCN2018080393-appb-000101
Figure PCTCN2018080393-appb-000102
Figure PCTCN2018080393-appb-000103
Figure PCTCN2018080393-appb-000104
Figure PCTCN2018080393-appb-000105
Figure PCTCN2018080393-appb-000106
Figure PCTCN2018080393-appb-000107
Figure PCTCN2018080393-appb-000108
Figure PCTCN2018080393-appb-000109
Figure PCTCN2018080393-appb-000110
Figure PCTCN2018080393-appb-000111
Figure PCTCN2018080393-appb-000112
Figure PCTCN2018080393-appb-000113
Figure PCTCN2018080393-appb-000114
Figure PCTCN2018080393-appb-000115
Figure PCTCN2018080393-appb-000116
Figure PCTCN2018080393-appb-000117
Figure PCTCN2018080393-appb-000118
Figure PCTCN2018080393-appb-000119
Figure PCTCN2018080393-appb-000120
Figure PCTCN2018080393-appb-000121
Figure PCTCN2018080393-appb-000122
Figure PCTCN2018080393-appb-000123
Figure PCTCN2018080393-appb-000124
Figure PCTCN2018080393-appb-000125
Figure PCTCN2018080393-appb-000126
Figure PCTCN2018080393-appb-000127
Figure PCTCN2018080393-appb-000128
Figure PCTCN2018080393-appb-000129
Figure PCTCN2018080393-appb-000130
Figure PCTCN2018080393-appb-000131
Figure PCTCN2018080393-appb-000132
Figure PCTCN2018080393-appb-000133
Figure PCTCN2018080393-appb-000134
Figure PCTCN2018080393-appb-000135
Figure PCTCN2018080393-appb-000136
Figure PCTCN2018080393-appb-000137
Figure PCTCN2018080393-appb-000138
Figure PCTCN2018080393-appb-000139
Figure PCTCN2018080393-appb-000140
Figure PCTCN2018080393-appb-000141
Figure PCTCN2018080393-appb-000142
Figure PCTCN2018080393-appb-000143
Figure PCTCN2018080393-appb-000144
Figure PCTCN2018080393-appb-000145
Figure PCTCN2018080393-appb-000146
Figure PCTCN2018080393-appb-000147
Figure PCTCN2018080393-appb-000148
Figure PCTCN2018080393-appb-000149
Figure PCTCN2018080393-appb-000150
Figure PCTCN2018080393-appb-000151
Figure PCTCN2018080393-appb-000152
Figure PCTCN2018080393-appb-000153
Figure PCTCN2018080393-appb-000154
Figure PCTCN2018080393-appb-000155
Figure PCTCN2018080393-appb-000156
Figure PCTCN2018080393-appb-000157
Figure PCTCN2018080393-appb-000158
Figure PCTCN2018080393-appb-000159
Figure PCTCN2018080393-appb-000160
Figure PCTCN2018080393-appb-000161
Figure PCTCN2018080393-appb-000162
Figure PCTCN2018080393-appb-000163
Figure PCTCN2018080393-appb-000164
Figure PCTCN2018080393-appb-000165
Figure PCTCN2018080393-appb-000166
Figure PCTCN2018080393-appb-000167
Figure PCTCN2018080393-appb-000168
Figure PCTCN2018080393-appb-000169
Figure PCTCN2018080393-appb-000170
Figure PCTCN2018080393-appb-000171
Figure PCTCN2018080393-appb-000172
Figure PCTCN2018080393-appb-000173
Figure PCTCN2018080393-appb-000174
Figure PCTCN2018080393-appb-000175
Figure PCTCN2018080393-appb-000176
Figure PCTCN2018080393-appb-000177
Figure PCTCN2018080393-appb-000178
Figure PCTCN2018080393-appb-000179
Figure PCTCN2018080393-appb-000180
Figure PCTCN2018080393-appb-000181
Figure PCTCN2018080393-appb-000182
Figure PCTCN2018080393-appb-000183
Figure PCTCN2018080393-appb-000184
Figure PCTCN2018080393-appb-000185
Figure PCTCN2018080393-appb-000186
Figure PCTCN2018080393-appb-000187
Figure PCTCN2018080393-appb-000188
Figure PCTCN2018080393-appb-000189
Figure PCTCN2018080393-appb-000190
Figure PCTCN2018080393-appb-000191
Figure PCTCN2018080393-appb-000192
Figure PCTCN2018080393-appb-000193
Figure PCTCN2018080393-appb-000194
Figure PCTCN2018080393-appb-000195
Figure PCTCN2018080393-appb-000196
Figure PCTCN2018080393-appb-000197
Figure PCTCN2018080393-appb-000198
Figure PCTCN2018080393-appb-000199
Figure PCTCN2018080393-appb-000200
Figure PCTCN2018080393-appb-000201
Figure PCTCN2018080393-appb-000202
Figure PCTCN2018080393-appb-000203
Figure PCTCN2018080393-appb-000204
Figure PCTCN2018080393-appb-000205
Figure PCTCN2018080393-appb-000206
Figure PCTCN2018080393-appb-000207
Figure PCTCN2018080393-appb-000208
Figure PCTCN2018080393-appb-000210
Figure PCTCN2018080393-appb-000211
Figure PCTCN2018080393-appb-000212
Figure PCTCN2018080393-appb-000213
Figure PCTCN2018080393-appb-000214
Figure PCTCN2018080393-appb-000215
Figure PCTCN2018080393-appb-000216
Figure PCTCN2018080393-appb-000217
Figure PCTCN2018080393-appb-000218
Figure PCTCN2018080393-appb-000219
Figure PCTCN2018080393-appb-000220
Figure PCTCN2018080393-appb-000221
Figure PCTCN2018080393-appb-000222
Figure PCTCN2018080393-appb-000223
Figure PCTCN2018080393-appb-000224
Figure PCTCN2018080393-appb-000225
Figure PCTCN2018080393-appb-000226
Figure PCTCN2018080393-appb-000227
Figure PCTCN2018080393-appb-000228
Figure PCTCN2018080393-appb-000229
Figure PCTCN2018080393-appb-000230
Figure PCTCN2018080393-appb-000231
Figure PCTCN2018080393-appb-000232
Figure PCTCN2018080393-appb-000233
Figure PCTCN2018080393-appb-000234
Figure PCTCN2018080393-appb-000235
Figure PCTCN2018080393-appb-000236
Figure PCTCN2018080393-appb-000237
Figure PCTCN2018080393-appb-000238
Figure PCTCN2018080393-appb-000239
Figure PCTCN2018080393-appb-000240
Figure PCTCN2018080393-appb-000241
Figure PCTCN2018080393-appb-000242
Figure PCTCN2018080393-appb-000243
Figure PCTCN2018080393-appb-000244
Figure PCTCN2018080393-appb-000245
Figure PCTCN2018080393-appb-000246
Figure PCTCN2018080393-appb-000247
Figure PCTCN2018080393-appb-000248
Figure PCTCN2018080393-appb-000249
Figure PCTCN2018080393-appb-000250
Figure PCTCN2018080393-appb-000251
Figure PCTCN2018080393-appb-000252
Figure PCTCN2018080393-appb-000253
Figure PCTCN2018080393-appb-000254
Figure PCTCN2018080393-appb-000255
Figure PCTCN2018080393-appb-000256
Figure PCTCN2018080393-appb-000257
Figure PCTCN2018080393-appb-000258
Figure PCTCN2018080393-appb-000259
Figure PCTCN2018080393-appb-000260
Figure PCTCN2018080393-appb-000261
Figure PCTCN2018080393-appb-000262
Figure PCTCN2018080393-appb-000263
Figure PCTCN2018080393-appb-000264
Figure PCTCN2018080393-appb-000265
Figure PCTCN2018080393-appb-000266
Figure PCTCN2018080393-appb-000267
Figure PCTCN2018080393-appb-000268
Figure PCTCN2018080393-appb-000269
Figure PCTCN2018080393-appb-000270
Figure PCTCN2018080393-appb-000271
Figure PCTCN2018080393-appb-000272
Figure PCTCN2018080393-appb-000273
Figure PCTCN2018080393-appb-000274
Figure PCTCN2018080393-appb-000275
Figure PCTCN2018080393-appb-000276
Figure PCTCN2018080393-appb-000277
Figure PCTCN2018080393-appb-000278
Figure PCTCN2018080393-appb-000279
Figure PCTCN2018080393-appb-000280
Figure PCTCN2018080393-appb-000281
Figure PCTCN2018080393-appb-000282
Figure PCTCN2018080393-appb-000283
Figure PCTCN2018080393-appb-000284
Figure PCTCN2018080393-appb-000285
Figure PCTCN2018080393-appb-000286
Figure PCTCN2018080393-appb-000287
Figure PCTCN2018080393-appb-000288
Figure PCTCN2018080393-appb-000289
Figure PCTCN2018080393-appb-000290
Figure PCTCN2018080393-appb-000291
Figure PCTCN2018080393-appb-000292
Figure PCTCN2018080393-appb-000293
Figure PCTCN2018080393-appb-000294
Figure PCTCN2018080393-appb-000295
Figure PCTCN2018080393-appb-000296
Figure PCTCN2018080393-appb-000297
Figure PCTCN2018080393-appb-000298
Figure PCTCN2018080393-appb-000299
Figure PCTCN2018080393-appb-000300
Figure PCTCN2018080393-appb-000301
Figure PCTCN2018080393-appb-000302
Figure PCTCN2018080393-appb-000303
Figure PCTCN2018080393-appb-000304
Figure PCTCN2018080393-appb-000305
Figure PCTCN2018080393-appb-000306
Figure PCTCN2018080393-appb-000307
Figure PCTCN2018080393-appb-000308
Figure PCTCN2018080393-appb-000309
Figure PCTCN2018080393-appb-000310
Figure PCTCN2018080393-appb-000311
Figure PCTCN2018080393-appb-000312
Figure PCTCN2018080393-appb-000313
Figure PCTCN2018080393-appb-000314
Figure PCTCN2018080393-appb-000315
Figure PCTCN2018080393-appb-000316
Figure PCTCN2018080393-appb-000317
Figure PCTCN2018080393-appb-000318
Figure PCTCN2018080393-appb-000319
Figure PCTCN2018080393-appb-000320
Figure PCTCN2018080393-appb-000321
Figure PCTCN2018080393-appb-000322
Figure PCTCN2018080393-appb-000323
Figure PCTCN2018080393-appb-000324
Figure PCTCN2018080393-appb-000325
Figure PCTCN2018080393-appb-000326
Figure PCTCN2018080393-appb-000327
Figure PCTCN2018080393-appb-000328
Figure PCTCN2018080393-appb-000329
Figure PCTCN2018080393-appb-000330
Figure PCTCN2018080393-appb-000331
Figure PCTCN2018080393-appb-000332
Figure PCTCN2018080393-appb-000333
Figure PCTCN2018080393-appb-000334
Figure PCTCN2018080393-appb-000335
Figure PCTCN2018080393-appb-000336
Figure PCTCN2018080393-appb-000337
Figure PCTCN2018080393-appb-000338
Figure PCTCN2018080393-appb-000339
Figure PCTCN2018080393-appb-000340
Figure PCTCN2018080393-appb-000341
Figure PCTCN2018080393-appb-000342
Figure PCTCN2018080393-appb-000343
Figure PCTCN2018080393-appb-000344
Figure PCTCN2018080393-appb-000345
Figure PCTCN2018080393-appb-000346
Figure PCTCN2018080393-appb-000347
Figure PCTCN2018080393-appb-000348
Figure PCTCN2018080393-appb-000349
Figure PCTCN2018080393-appb-000350
Figure PCTCN2018080393-appb-000351
Figure PCTCN2018080393-appb-000352
Figure PCTCN2018080393-appb-000353
Figure PCTCN2018080393-appb-000354
Figure PCTCN2018080393-appb-000355
Figure PCTCN2018080393-appb-000356
Figure PCTCN2018080393-appb-000357
Figure PCTCN2018080393-appb-000358
Figure PCTCN2018080393-appb-000359
Figure PCTCN2018080393-appb-000360
Figure PCTCN2018080393-appb-000361
Figure PCTCN2018080393-appb-000362
Figure PCTCN2018080393-appb-000363
Figure PCTCN2018080393-appb-000364
Figure PCTCN2018080393-appb-000365
Figure PCTCN2018080393-appb-000366
Figure PCTCN2018080393-appb-000367
Figure PCTCN2018080393-appb-000368
Figure PCTCN2018080393-appb-000369
Figure PCTCN2018080393-appb-000370
Figure PCTCN2018080393-appb-000371
Figure PCTCN2018080393-appb-000372
Figure PCTCN2018080393-appb-000373
Figure PCTCN2018080393-appb-000374
Figure PCTCN2018080393-appb-000375
Figure PCTCN2018080393-appb-000376
Figure PCTCN2018080393-appb-000377
Figure PCTCN2018080393-appb-000378
Figure PCTCN2018080393-appb-000379
Figure PCTCN2018080393-appb-000380
Figure PCTCN2018080393-appb-000381
Figure PCTCN2018080393-appb-000382
Figure PCTCN2018080393-appb-000383
Figure PCTCN2018080393-appb-000384
Figure PCTCN2018080393-appb-000385
Figure PCTCN2018080393-appb-000386
Figure PCTCN2018080393-appb-000387
Figure PCTCN2018080393-appb-000388
Figure PCTCN2018080393-appb-000389
Figure PCTCN2018080393-appb-000390
Figure PCTCN2018080393-appb-000391
Figure PCTCN2018080393-appb-000392
Figure PCTCN2018080393-appb-000393
Figure PCTCN2018080393-appb-000394
Figure PCTCN2018080393-appb-000395
Figure PCTCN2018080393-appb-000396
Figure PCTCN2018080393-appb-000397
Figure PCTCN2018080393-appb-000398
Figure PCTCN2018080393-appb-000399
Figure PCTCN2018080393-appb-000400
Figure PCTCN2018080393-appb-000401
Figure PCTCN2018080393-appb-000402
Figure PCTCN2018080393-appb-000403
Figure PCTCN2018080393-appb-000404
Figure PCTCN2018080393-appb-000405
Figure PCTCN2018080393-appb-000406
Figure PCTCN2018080393-appb-000407
Figure PCTCN2018080393-appb-000408
Figure PCTCN2018080393-appb-000409
Figure PCTCN2018080393-appb-000410
Figure PCTCN2018080393-appb-000411
Figure PCTCN2018080393-appb-000412
Figure PCTCN2018080393-appb-000413
Figure PCTCN2018080393-appb-000414
Figure PCTCN2018080393-appb-000415
Figure PCTCN2018080393-appb-000416
Figure PCTCN2018080393-appb-000417
Figure PCTCN2018080393-appb-000418
Figure PCTCN2018080393-appb-000419
Figure PCTCN2018080393-appb-000420
Figure PCTCN2018080393-appb-000421
Figure PCTCN2018080393-appb-000422
Figure PCTCN2018080393-appb-000423
Figure PCTCN2018080393-appb-000424
Figure PCTCN2018080393-appb-000425
Figure PCTCN2018080393-appb-000426
Figure PCTCN2018080393-appb-000427
Figure PCTCN2018080393-appb-000428
Figure PCTCN2018080393-appb-000429
Figure PCTCN2018080393-appb-000430
Figure PCTCN2018080393-appb-000431
Figure PCTCN2018080393-appb-000432
Figure PCTCN2018080393-appb-000433
Figure PCTCN2018080393-appb-000434
Figure PCTCN2018080393-appb-000435
Figure PCTCN2018080393-appb-000436
Figure PCTCN2018080393-appb-000437
Figure PCTCN2018080393-appb-000438
Figure PCTCN2018080393-appb-000439
Figure PCTCN2018080393-appb-000440
Figure PCTCN2018080393-appb-000441
Figure PCTCN2018080393-appb-000442
Figure PCTCN2018080393-appb-000443
Figure PCTCN2018080393-appb-000444
Figure PCTCN2018080393-appb-000445
Figure PCTCN2018080393-appb-000446
Figure PCTCN2018080393-appb-000447
Figure PCTCN2018080393-appb-000448
Figure PCTCN2018080393-appb-000449
Figure PCTCN2018080393-appb-000450
Figure PCTCN2018080393-appb-000451
Figure PCTCN2018080393-appb-000452
Figure PCTCN2018080393-appb-000453
Figure PCTCN2018080393-appb-000454
Figure PCTCN2018080393-appb-000455
Figure PCTCN2018080393-appb-000456
Figure PCTCN2018080393-appb-000457
Figure PCTCN2018080393-appb-000458
Figure PCTCN2018080393-appb-000459
Figure PCTCN2018080393-appb-000460
Figure PCTCN2018080393-appb-000461
Figure PCTCN2018080393-appb-000462
Figure PCTCN2018080393-appb-000463
Figure PCTCN2018080393-appb-000464
Figure PCTCN2018080393-appb-000465
Figure PCTCN2018080393-appb-000466
Figure PCTCN2018080393-appb-000467
Figure PCTCN2018080393-appb-000468
Figure PCTCN2018080393-appb-000469
Figure PCTCN2018080393-appb-000470
Figure PCTCN2018080393-appb-000471
Figure PCTCN2018080393-appb-000472
Figure PCTCN2018080393-appb-000473
Figure PCTCN2018080393-appb-000474
Figure PCTCN2018080393-appb-000475
Figure PCTCN2018080393-appb-000476
Figure PCTCN2018080393-appb-000477
Figure PCTCN2018080393-appb-000478
Figure PCTCN2018080393-appb-000479
Figure PCTCN2018080393-appb-000480
Figure PCTCN2018080393-appb-000481
Figure PCTCN2018080393-appb-000482
Figure PCTCN2018080393-appb-000483
Figure PCTCN2018080393-appb-000484
Figure PCTCN2018080393-appb-000485
Figure PCTCN2018080393-appb-000486
Figure PCTCN2018080393-appb-000487
Figure PCTCN2018080393-appb-000488
Figure PCTCN2018080393-appb-000489
Figure PCTCN2018080393-appb-000490
Figure PCTCN2018080393-appb-000491
Figure PCTCN2018080393-appb-000492
Figure PCTCN2018080393-appb-000493
Figure PCTCN2018080393-appb-000494
Figure PCTCN2018080393-appb-000495
Figure PCTCN2018080393-appb-000496
Figure PCTCN2018080393-appb-000497
Figure PCTCN2018080393-appb-000498
Figure PCTCN2018080393-appb-000499
Figure PCTCN2018080393-appb-000500
Figure PCTCN2018080393-appb-000501
Figure PCTCN2018080393-appb-000502
Figure PCTCN2018080393-appb-000503
Figure PCTCN2018080393-appb-000504
Figure PCTCN2018080393-appb-000505
Figure PCTCN2018080393-appb-000506
Figure PCTCN2018080393-appb-000507
Figure PCTCN2018080393-appb-000508
Figure PCTCN2018080393-appb-000509
Figure PCTCN2018080393-appb-000510
Figure PCTCN2018080393-appb-000511
Figure PCTCN2018080393-appb-000512
Figure PCTCN2018080393-appb-000513
Figure PCTCN2018080393-appb-000514
Figure PCTCN2018080393-appb-000515
Figure PCTCN2018080393-appb-000516
Figure PCTCN2018080393-appb-000517
Figure PCTCN2018080393-appb-000518
Figure PCTCN2018080393-appb-000519
Figure PCTCN2018080393-appb-000520
Figure PCTCN2018080393-appb-000521
Figure PCTCN2018080393-appb-000522
Figure PCTCN2018080393-appb-000523
Figure PCTCN2018080393-appb-000524
Figure PCTCN2018080393-appb-000525
Figure PCTCN2018080393-appb-000526
Figure PCTCN2018080393-appb-000527
Figure PCTCN2018080393-appb-000528
Figure PCTCN2018080393-appb-000529
Figure PCTCN2018080393-appb-000530
Figure PCTCN2018080393-appb-000531
Figure PCTCN2018080393-appb-000532
Figure PCTCN2018080393-appb-000533
Figure PCTCN2018080393-appb-000534
Figure PCTCN2018080393-appb-000535
Figure PCTCN2018080393-appb-000536
Figure PCTCN2018080393-appb-000537
Figure PCTCN2018080393-appb-000538
Figure PCTCN2018080393-appb-000539
Figure PCTCN2018080393-appb-000540
Figure PCTCN2018080393-appb-000541
Figure PCTCN2018080393-appb-000542
Figure PCTCN2018080393-appb-000543
Figure PCTCN2018080393-appb-000544
Figure PCTCN2018080393-appb-000545
Figure PCTCN2018080393-appb-000546
Figure PCTCN2018080393-appb-000547
Figure PCTCN2018080393-appb-000548
Figure PCTCN2018080393-appb-000549
Figure PCTCN2018080393-appb-000550
Figure PCTCN2018080393-appb-000551
Figure PCTCN2018080393-appb-000552
Figure PCTCN2018080393-appb-000553
Figure PCTCN2018080393-appb-000554
Figure PCTCN2018080393-appb-000555
Figure PCTCN2018080393-appb-000556
Figure PCTCN2018080393-appb-000557
Figure PCTCN2018080393-appb-000558
Figure PCTCN2018080393-appb-000559
Figure PCTCN2018080393-appb-000560
Figure PCTCN2018080393-appb-000561
Figure PCTCN2018080393-appb-000562
Figure PCTCN2018080393-appb-000563
Figure PCTCN2018080393-appb-000564
Figure PCTCN2018080393-appb-000565
Figure PCTCN2018080393-appb-000566
Figure PCTCN2018080393-appb-000567
Figure PCTCN2018080393-appb-000568
Figure PCTCN2018080393-appb-000569
Figure PCTCN2018080393-appb-000570
Figure PCTCN2018080393-appb-000571
Figure PCTCN2018080393-appb-000572
Figure PCTCN2018080393-appb-000573
Figure PCTCN2018080393-appb-000574
Figure PCTCN2018080393-appb-000575
Figure PCTCN2018080393-appb-000576
Figure PCTCN2018080393-appb-000577
Figure PCTCN2018080393-appb-000578
Figure PCTCN2018080393-appb-000579
Figure PCTCN2018080393-appb-000580
Figure PCTCN2018080393-appb-000581
Figure PCTCN2018080393-appb-000582
Figure PCTCN2018080393-appb-000583
Figure PCTCN2018080393-appb-000584
Figure PCTCN2018080393-appb-000585
Figure PCTCN2018080393-appb-000586
Figure PCTCN2018080393-appb-000587
Figure PCTCN2018080393-appb-000588
Figure PCTCN2018080393-appb-000589
Figure PCTCN2018080393-appb-000590
Figure PCTCN2018080393-appb-000591
Figure PCTCN2018080393-appb-000592
Figure PCTCN2018080393-appb-000593
Figure PCTCN2018080393-appb-000594
Figure PCTCN2018080393-appb-000595
Figure PCTCN2018080393-appb-000596
Figure PCTCN2018080393-appb-000597
Figure PCTCN2018080393-appb-000598
Figure PCTCN2018080393-appb-000599
Figure PCTCN2018080393-appb-000600
Figure PCTCN2018080393-appb-000601
Figure PCTCN2018080393-appb-000602
Figure PCTCN2018080393-appb-000603
Figure PCTCN2018080393-appb-000604
Figure PCTCN2018080393-appb-000605
Figure PCTCN2018080393-appb-000606
Figure PCTCN2018080393-appb-000607
Figure PCTCN2018080393-appb-000608
Figure PCTCN2018080393-appb-000609
Figure PCTCN2018080393-appb-000610
Figure PCTCN2018080393-appb-000611
Figure PCTCN2018080393-appb-000612
Figure PCTCN2018080393-appb-000613
Figure PCTCN2018080393-appb-000614
Figure PCTCN2018080393-appb-000615
Figure PCTCN2018080393-appb-000616
Figure PCTCN2018080393-appb-000617
Figure PCTCN2018080393-appb-000618
Figure PCTCN2018080393-appb-000619
Figure PCTCN2018080393-appb-000620
Figure PCTCN2018080393-appb-000621
Figure PCTCN2018080393-appb-000622
Figure PCTCN2018080393-appb-000623
Figure PCTCN2018080393-appb-000624
Figure PCTCN2018080393-appb-000625
Figure PCTCN2018080393-appb-000626
Figure PCTCN2018080393-appb-000627
Figure PCTCN2018080393-appb-000628
Figure PCTCN2018080393-appb-000629
Figure PCTCN2018080393-appb-000630
Figure PCTCN2018080393-appb-000631
Figure PCTCN2018080393-appb-000632
Figure PCTCN2018080393-appb-000633
Figure PCTCN2018080393-appb-000634
Figure PCTCN2018080393-appb-000635
Figure PCTCN2018080393-appb-000636
Figure PCTCN2018080393-appb-000637
Figure PCTCN2018080393-appb-000638
Figure PCTCN2018080393-appb-000639
Figure PCTCN2018080393-appb-000640
Figure PCTCN2018080393-appb-000641
Figure PCTCN2018080393-appb-000642
Figure PCTCN2018080393-appb-000643
Figure PCTCN2018080393-appb-000644
Figure PCTCN2018080393-appb-000645
Figure PCTCN2018080393-appb-000646
Figure PCTCN2018080393-appb-000647
Figure PCTCN2018080393-appb-000648
Figure PCTCN2018080393-appb-000649
Figure PCTCN2018080393-appb-000650
Figure PCTCN2018080393-appb-000651
Figure PCTCN2018080393-appb-000652
Figure PCTCN2018080393-appb-000653
Figure PCTCN2018080393-appb-000654
Figure PCTCN2018080393-appb-000655
Figure PCTCN2018080393-appb-000656
Figure PCTCN2018080393-appb-000657
Figure PCTCN2018080393-appb-000658
Figure PCTCN2018080393-appb-000660
Figure PCTCN2018080393-appb-000661
Figure PCTCN2018080393-appb-000662
Figure PCTCN2018080393-appb-000663
Figure PCTCN2018080393-appb-000664
Figure PCTCN2018080393-appb-000665
Figure PCTCN2018080393-appb-000666
Figure PCTCN2018080393-appb-000667
Figure PCTCN2018080393-appb-000668
Figure PCTCN2018080393-appb-000669
Figure PCTCN2018080393-appb-000670
Figure PCTCN2018080393-appb-000671
Figure PCTCN2018080393-appb-000672
Figure PCTCN2018080393-appb-000673
Figure PCTCN2018080393-appb-000674
Figure PCTCN2018080393-appb-000675
Figure PCTCN2018080393-appb-000676
Figure PCTCN2018080393-appb-000677
Figure PCTCN2018080393-appb-000678
Figure PCTCN2018080393-appb-000679
Figure PCTCN2018080393-appb-000680
Figure PCTCN2018080393-appb-000681
Figure PCTCN2018080393-appb-000682
Figure PCTCN2018080393-appb-000683
Figure PCTCN2018080393-appb-000684
Figure PCTCN2018080393-appb-000685
Figure PCTCN2018080393-appb-000686
Figure PCTCN2018080393-appb-000687
Figure PCTCN2018080393-appb-000688
Figure PCTCN2018080393-appb-000689
Figure PCTCN2018080393-appb-000690
Figure PCTCN2018080393-appb-000691
Figure PCTCN2018080393-appb-000692
Figure PCTCN2018080393-appb-000693
Figure PCTCN2018080393-appb-000694
Figure PCTCN2018080393-appb-000695
Figure PCTCN2018080393-appb-000696
Figure PCTCN2018080393-appb-000697
Figure PCTCN2018080393-appb-000698
Figure PCTCN2018080393-appb-000699
Figure PCTCN2018080393-appb-000700
Figure PCTCN2018080393-appb-000701
Figure PCTCN2018080393-appb-000702
Figure PCTCN2018080393-appb-000703
Figure PCTCN2018080393-appb-000704
Figure PCTCN2018080393-appb-000705
Figure PCTCN2018080393-appb-000706
Figure PCTCN2018080393-appb-000707
Figure PCTCN2018080393-appb-000708
Figure PCTCN2018080393-appb-000709
Figure PCTCN2018080393-appb-000710
Figure PCTCN2018080393-appb-000711
Figure PCTCN2018080393-appb-000712
Figure PCTCN2018080393-appb-000713
Figure PCTCN2018080393-appb-000714
Figure PCTCN2018080393-appb-000715
Figure PCTCN2018080393-appb-000716
Figure PCTCN2018080393-appb-000717
Figure PCTCN2018080393-appb-000718
Figure PCTCN2018080393-appb-000719
Figure PCTCN2018080393-appb-000720
Figure PCTCN2018080393-appb-000721
Figure PCTCN2018080393-appb-000722
Figure PCTCN2018080393-appb-000723
Figure PCTCN2018080393-appb-000724
Figure PCTCN2018080393-appb-000725
Figure PCTCN2018080393-appb-000726
Figure PCTCN2018080393-appb-000727
Figure PCTCN2018080393-appb-000728
Figure PCTCN2018080393-appb-000729
Figure PCTCN2018080393-appb-000730
Figure PCTCN2018080393-appb-000731
Figure PCTCN2018080393-appb-000732
Figure PCTCN2018080393-appb-000733
Figure PCTCN2018080393-appb-000734
Figure PCTCN2018080393-appb-000735
Figure PCTCN2018080393-appb-000736
Figure PCTCN2018080393-appb-000737
Figure PCTCN2018080393-appb-000738
Figure PCTCN2018080393-appb-000739
Figure PCTCN2018080393-appb-000740
Figure PCTCN2018080393-appb-000741
Figure PCTCN2018080393-appb-000742
Figure PCTCN2018080393-appb-000743
Figure PCTCN2018080393-appb-000744
Figure PCTCN2018080393-appb-000745
Figure PCTCN2018080393-appb-000746
Figure PCTCN2018080393-appb-000747
上述字母“Q”之后的数字1,2,3,…,275,276仅仅用于区分不同的序列,没有特别的含义。
通过上述序列可以获知,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在排序序列中是顺序排列的,第1个信道的在排序序列中对应的可靠度值最低。另外,1024个信道中的部分信道还遵从如下规律中的一种或多种:
序号为4的信道在排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在排序序列中处于可靠度值从高到低数的第1位。
需要进行说明的是,此处信道的序号是从0开始编号的,在实际应用中,信道的序号也可以从1开始编号,当然,还可以从其它数字开始编号,本实施例对此不作限制。
图5为本申请提供的编码装置的结构示意图,如图5所示,该编码装置10包括:
处理模块11,用于获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;
所述处理模块11,还用于根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
所述处理模块11,还用于根据所述位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列;
所述发送模块12,用于将所述编码后的比特序列发送至接收设备。
本实施例提供的编码装置,用于实现前述任一方法实施例提供的发送设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述实施例的基础上,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
可选地,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
可选地,所述可靠度为根据公式
Figure PCTCN2018080393-appb-000748
计算获得的;其中,W i为第i个信道 的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β为常量,且β的取值范围为1-1.62。
可选地,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
可选地,所述位置集合为从所述量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于所述信息比特的位数。
可选地,若母码长度为64,所述排序序列可以为
Figure PCTCN2018080393-appb-000749
Figure PCTCN2018080393-appb-000750
中的任意一个,排序序列的具体形式,可以参见前面方法实施例中的描述。
如果采用量化序列作为构造序列,则当母码长度为64时,量化序列为
Figure PCTCN2018080393-appb-000751
Figure PCTCN2018080393-appb-000752
中的任意一个,量化序列的具体形式,可以参见前面方法实施例中的描述。
可选地,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
可选地,所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。。
上述任一实施例提供的编码装置,用于实现前述任一方法实施例提供的发送设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图6为本申请提供的译码装置的结构示意图,如图6所示,该译码装置20包括:
处理模块21,用于获取目标构造序列,所述目标构造序列包括排序序列和/或量化序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列,所 述量化序列为对信道的可靠度进行归一化处理后,对归一化处理后的结果进行排序之后获得的序列;
所述处理模块21,还用于根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
接收模块22,用于接收编码后的比特序列;
所述处理模块21,还用于根据所述位置集合,对所述编码后的比特序列进行译码得到信息比特序列。
本实施例提供的译码装置,用于实现前述任一方法实施例提供的接收设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述实施例的基础上,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
可选地,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
可选地,所述可靠度为根据公式
Figure PCTCN2018080393-appb-000753
计算获得的;其中,W i为第i个信道的可靠度,j∈{0,1,L n-1},n=log 2N,N为母码长度,B j∈{0,1},β为常量,且β的取值范围为1-1.62。
可选地,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
可选地,所述位置集合为从所述量化序列中选择出的可靠度最高的L个信道,其中,L大于或等于所述信息比特的位数。
可选地,若母码长度为64,所述排序序列为
Figure PCTCN2018080393-appb-000754
中的任意一个,所述排序序列的具体形式可以参见前面方法实施例中的描述。
可选地,若母码长度为64,量化序列为
Figure PCTCN2018080393-appb-000755
中的任意一个,所述量化序列的具体形式可以参见前面方法实施例中的描述。
可选地,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
可选地,所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
序号为1005的信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
上述任一实施例提供的译码装置,用于实现前述任一方法实施例提供的接收设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图7为编码装置的结构示意图,译码装置的结构与编码装置的结构类似,可参见图7所示,应理解,在上述编码装置或者译码装置中处理模块在具体实现时可以是一个处理器21,该处理器21可以通过硬件实现也可以通过软件实现,当该处理器通过硬件实现时硬件实现时可以是逻辑电路;当该处理器通过软件实现时,可以是通过一个通用的处理器读取所述处理内部存储的计算机程序,或者是通过读取外部存储器存储的计算机程序来实现上述处理模块的功能,存储器22中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。
上述发送模块在具体实现时可以是发送器20,接收模块在具体实现时可以是接收器24。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述可读存储介质用于存储所述计算机程序,所述计算机程序包括代码,用用于实现前述任一实施例提供的编码方法。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述可读存储介质用于存储所述计算机程序,所述计算机程序包括代码,用用于实现前述任一实施例提供的译码方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序包括代码,用用于实现前述任一实施例提供的编码方法。发送设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得发送设备实施前述各种实施方式提供的编码方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序包括代码,用用于实现前述任一实施例提供的译码方法。接收设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得接收设备实施上述各种实施方式提供的译码方法。
在发送设备或者接收设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (35)

  1. 一种编码方法,其特征在于,包括:
    发送设备获取目标构造序列,所述目标构造序列包括排序序列和,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列;
    发送设备根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
    所述发送设备根据所述位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列;
    所述发送设备发送所述编码后的比特序列。
  2. 根据权利要求1所述的方法,其特征在于,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
  3. 根据权利要求2所述的方法,其特征在于,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
  6. 根据权利要求5所述的方法,其特征在于,所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
    序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
    序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
    序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
    序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
    序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
    序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
    序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
    序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
  7. 根据权利要求5所述的方法,其特征在于,所述1024个信道中的部分信道还遵从如下规律:
    序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位和序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位。
  8. 根据权利要求5或者7所述的方法,其特征在于,所述1024个信道中的部分信道还遵从如下规律:
    序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;
    序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;
    序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;
    序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;
    序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;以及
    序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
  9. 一种译码方法,其特征在于,包括:
    接收设备获取目标构造序列,所述目标构造序列包括排序序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列;
    所述接收设备根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
    所述接收设备接收编码后的比特序列;
    所述接收设备根据所述位置集合,对所述编码后的比特序列进行译码得到信息比特序列。
  10. 根据权利要求9所述的方法,其特征在于,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
  11. 根据权利要求10所述的方法,其特征在于,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
  12. 根据权利要求10-11任一项所述的方法,其特征在于,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或者等于所述信息比特的位数。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
  14. 根据权利要求13所述的方法,其特征在于,所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
    序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
    序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
    序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
    序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
    序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
    序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
    序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
    序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
  15. 根据权利要求13所述的方法,其特征在于,所述1024个信道中的部分信道还遵从如下规律:
    序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位和序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位。
  16. 根据权利要求13或者15所述的方法,其特征在于,所述1024个信道中的部分信道还遵从如下规律:
    序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;
    序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;
    序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;
    序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;
    序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;以及
    序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
  17. 一种编码装置,其特征在于,包括:
    处理模块,用于获取目标构造序列,所述目标构造序列包括排序序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列;
    所述处理模块,还用于根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
    所述处理模块,还用于根据所述位置集合,对待编码的信息比特序列进行编码得到编码后的比特序列;
    所述发送模块,用于发送所述编码后的比特序列备。
  18. 根据权利要求17所述的装置,其特征在于,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
  19. 根据权利要求18所述的装置,其特征在于,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
  20. 根据权利要求17-19任一项所述的装置,其特征在于,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
  21. 根据权利要求17-20任一项所述的装置,其特征在于,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
  22. 根据权利要求21所述的方法,其特征在于,当所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
    序号为4的子信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
    序号为9的子信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
    序号为1014的子信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
    序号为1015的子信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
    序号为1019的子信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
    序号为1021的子信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
    序号为1022的子信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
    序号为1023的子信道在所述排序序列中处于可靠度值从高到低数的第1位。
  23. 根据权利要求21所述的方法,其特征在于,当所述1024个信道中的部分信道还遵从如下规律:
    序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位和序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位。
  24. [根据细则26改正27.04.2018]
    根据权利要求21或者23所述的方法,其特征在于,当所述1024个信道中的部分信道还遵从如下规律:
    序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;
    序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;
    序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;
    序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;
    序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;以及
    序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
  25. [根据细则26改正27.04.2018]
    一种 译码装置,其特征在于,包括:
    处理模块,用于获取目标构造序列,所述目标构造序列包括排序序列,所述排序序列为根据信道的可靠度对信道的序号进行排序之后获得的序列;所述处理模块,还用于根据所述目标构造序列确定位置集合;所述位置集合用于指示信息比特序列在所述信道中的位置;
    接收模块,用于接收编码后的比特序列;所述处理模块,还用于根据所述位置集合,对所述编码后的比特序列进行译码得到信息比特序列。
  26. 根据权利要求25所述的装置,其特征在于,所述目标构造序列为从多组构造序列中获取到的一组构造序列。
  27. 根据权利要求26所述的装置,其特征在于,所述多组构造序列为根据母码长度和预设的编码参数计算获得多组信道的可靠度后,根据所述多组信道的可靠度确定出的序列。
  28. 根据权利要求25-27任一项所述的装置,其特征在于,所述位置集合为从所述排序序列中选择出的可靠度最高的P个信道,其中,P大于或等于所述信息比特的位数。
  29. 根据权利要求25-28任一项所述的装置,其特征在于,若母码长度为1024,且信道为1024个时,序号为0的信道、序号为1的信道、序号为2的信道的可靠度在所述排序序列中是顺序排列的,所述第1个信道的在所述排序序列中对应的可靠度值最低。
  30. 根据权利要求29所述的装置,其特征在于,当所述1024个信道中的部分信道还遵从如下规律中的一种或多种:
    序号为4的子信道在所述排序序列中处于可靠度值从低到高数的第4位;或者,
    序号为9的子信道在所述排序序列中处于可靠度值从低到高数的第11位;或者,
    序号为1005的子信道在所述排序序列中处于可靠度值从高到低数的第16位;或者,
    序号为1014的子信道在所述排序序列中处于可靠度值从高到低数的第11位;或者,
    序号为1015的子信道在所述排序序列中处于可靠度值从高到低数的第5位;或者,
    序号为1019的子信道在所述排序序列中处于可靠度值从高到低数的第4位;或者,
    序号为1021的子信道在所述排序序列中处于可靠度值从高到低数的第3位;或者,
    序号为1022的子信道在所述排序序列中处于可靠度值从高到低数的第2位;或者,
    序号为1023的子信道在所述排序序列中处于可靠度值从高到低数的第1位。
  31. 根据权利要求29所述的装置,其特征在于,当所述1024个信道中的部分信道还 遵从如下规律:
    序号为4的信道在所述排序序列中处于可靠度值从低到高数的第4位和序号为9的信道在所述排序序列中处于可靠度值从低到高数的第11位。
  32. 根据权利要求29或者31所述的装置,其特征在于,当所述1024个信道中的部分信道还遵从如下规律:
    序号为1014的信道在所述排序序列中处于可靠度值从高到低数的第11位;
    序号为1015的信道在所述排序序列中处于可靠度值从高到低数的第5位;
    序号为1019的信道在所述排序序列中处于可靠度值从高到低数的第4位;
    序号为1021的信道在所述排序序列中处于可靠度值从高到低数的第3位;
    序号为1022的信道在所述排序序列中处于可靠度值从高到低数的第2位;以及
    序号为1023的信道在所述排序序列中处于可靠度值从高到低数的第1位。
  33. 一种发送设备,其特征在于,包括:存储器、处理器、发送器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行权利要求1-8任一项所述的编码方法。34、一种接收设备,其特征在于,包括:存储器、处理器、接收器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行权利要求9至16任一项所述的译码方法。
  34. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现权利要求1-8任一项所述的编码方法。
  35. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现权利要求9-16任一项所述的译码方法。
PCT/CN2018/080393 2017-03-24 2018-03-24 极化码的速率匹配方法及设备 WO2018171789A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3057729A CA3057729C (en) 2017-03-24 2018-03-24 A communication method and apparatus
JP2019552601A JP7126510B2 (ja) 2017-03-24 2018-03-24 通信方法及び装置
BR112019019854A BR112019019854A2 (pt) 2017-03-24 2018-03-24 método de comunicação e aparelho
EP18770251.9A EP3579468B1 (en) 2017-03-24 2018-03-24 Polar code rate matching method and device
US16/239,910 US10439759B2 (en) 2017-03-24 2019-01-04 Communication method and apparatus
US16/582,746 US11057152B2 (en) 2017-03-24 2019-09-25 Communication method and apparatus
ZA2019/06992A ZA201906992B (en) 2017-03-24 2019-10-23 A communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710184322.X 2017-03-24
CN201710184322 2017-03-24
CN201710374785.2A CN108631942A (zh) 2017-03-24 2017-05-24 编码方法、译码方法、装置和设备
CN201710374785.2 2017-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/239,910 Continuation US10439759B2 (en) 2017-03-24 2019-01-04 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2018171789A1 true WO2018171789A1 (zh) 2018-09-27

Family

ID=63584842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080393 WO2018171789A1 (zh) 2017-03-24 2018-03-24 极化码的速率匹配方法及设备

Country Status (1)

Country Link
WO (1) WO2018171789A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208183A1 (en) * 2013-01-23 2014-07-24 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
CN104219019A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 编码方法及编码设备
CN104918063A (zh) * 2015-06-01 2015-09-16 中国农业大学 一种基于Polar码技术的可抗差错图像传输方法
CN105743621A (zh) * 2016-02-02 2016-07-06 北京邮电大学 基于极化码的harq信号发送、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208183A1 (en) * 2013-01-23 2014-07-24 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
CN104219019A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 编码方法及编码设备
CN104918063A (zh) * 2015-06-01 2015-09-16 中国农业大学 一种基于Polar码技术的可抗差错图像传输方法
CN105743621A (zh) * 2016-02-02 2016-07-06 北京邮电大学 基于极化码的harq信号发送、接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579468A4 *

Similar Documents

Publication Publication Date Title
US20190207709A1 (en) Communication method and apparatus
CN110855299B (zh) 使用极化码编码数据的方法和装置
CN111614361B (zh) 用于极化编码的方法、装置和设备
CN106982172B (zh) 确定极化码传输块大小的方法和通信设备
KR102180186B1 (ko) 인코딩 방법 및 장치
CN1266868C (zh) 通信终端设备和解码方法
WO2018202057A1 (zh) 传输数据的方法、基站和终端设备
US11211947B2 (en) Polar code encoding method and apparatus, polar code decoding method and apparatus, and device
CN108347301B (zh) 数据的传输方法和装置
CN110719141B (zh) 一种信息的传输方法、译码方法和装置
KR102221430B1 (ko) 폴라 인코딩 및 디코딩 방법, 전송 기기, 그리고 수신 기기
CN108809486B (zh) Polar码编译码方法及装置
US20190386778A1 (en) Method, apparatus, and device for determining polar code encoding and decoding
WO2018127140A1 (zh) 数据编码及译码的方法和装置
KR102520788B1 (ko) 채널 상태 정보 인코딩 방법 및 장치, 저장 매체 및 프로세서
WO2018171789A1 (zh) 极化码的速率匹配方法及设备
US20200092042A1 (en) Method and apparatus for constructing coding sequence
CN109391358B (zh) 极化码编码的方法和装置
US20200119752A1 (en) Coding method and communications device
WO2018202195A1 (zh) 编码方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018770251

Country of ref document: EP

Effective date: 20190902

ENP Entry into the national phase

Ref document number: 3057729

Country of ref document: CA

Ref document number: 2019552601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019854

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019019854

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190923