WO2018202195A1 - 编码方法、装置和设备 - Google Patents

编码方法、装置和设备 Download PDF

Info

Publication number
WO2018202195A1
WO2018202195A1 PCT/CN2018/085797 CN2018085797W WO2018202195A1 WO 2018202195 A1 WO2018202195 A1 WO 2018202195A1 CN 2018085797 W CN2018085797 W CN 2018085797W WO 2018202195 A1 WO2018202195 A1 WO 2018202195A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
polarization
weight
numbers
sequence number
Prior art date
Application number
PCT/CN2018/085797
Other languages
English (en)
French (fr)
Inventor
陈莹
刘小成
黄凌晨
周悦
李榕
罗禾佳
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710648424.2A external-priority patent/CN108809333B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18793834.5A priority Critical patent/EP3598649B1/en
Publication of WO2018202195A1 publication Critical patent/WO2018202195A1/zh
Priority to US16/661,931 priority patent/US11063608B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing

Definitions

  • the present application relates to the field of communications, and in particular, to a method, a transmitting device, and a receiving device for a coded code.
  • channel coding plays a vital role in ensuring the reliable transmission of data.
  • channel coding is generally performed using a Turbo code, a Low Density Parity Check (LDPC), and a Polar code.
  • Turbo codes cannot support information transmissions that are too low or too high.
  • Turbo code and LDPC code are also difficult to achieve ideal performance under a limited code length due to the characteristics of their own compiled code.
  • the Turbo code and the LDPC code have high computational complexity in the implementation of the compiled code.
  • the Polar code is a good code that theoretically proves that the Shannon capacity can be obtained and has a relatively simple coding code complexity, and thus has been widely used.
  • Enhanced Mobile Broadband eMBB
  • Massive Machine Type Communication mMTC
  • Ultra Reliable Low Latency Communication URLLC
  • the present application provides a method, a transmitting device, and a receiving device for a coded code, which can improve the performance of a coded code.
  • the present application provides a method for encoding a polarization code, the method comprising: selecting, by a transmitting device, a ranking of reliability and a number of information bits K of N polarization channels of a polarization code having a code length of N, and selecting K The non-punctured position sequence number is used as a reference sequence number set, wherein the reliability of the polarization channel corresponding to any one of the reference sequence numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers.
  • the transmitting device determines the information bit number set according to the determination condition and the reference sequence number set, wherein the determination condition is based on at least one of a code rate, a mother code length and a code weight of the polarization code.
  • the transmitting device performs polarization encoding on the coded bits according to the information bit number set.
  • the sending device determines the information bit number set according to the determining condition and the reference sequence number set, including: if the determining condition is not met, the sending device determines the reference sequence number set as the information bit sequence number set.
  • the transmitting device and reference numerals in accordance with the determination condition set is determined set number of information bits, comprising: determining if the condition is satisfied, the transmitting device determines K 1 of first serial number from the reference set, the K 1
  • the code weight corresponding to each of the first serial numbers is W min , where W min is equal to the minimum code weight of the K code weights corresponding to the K non-punch position numbers respectively; Selecting K 2 second serial numbers to replace K 2 first serial numbers in the K 1 first serial numbers, to obtain a set of information bit numbers, wherein the optional serial numbers are the reference sequence numbers and the sequence numbers of the N polarized channels a sequence number other than the number of the punched positions, K 2 ⁇ K 1 , wherein the K 2 second numbers satisfy any one of the following conditions: a code corresponding to each of the second numbers of the K 2 second numbers heavily than W min, and the reliability of the polarization channels corresponding to each of the second number greater than or equal to the number of selectable polarization channel number corresponds
  • the determining condition is at least one of the following conditions: the mother code length is greater than or equal to the preset mother code length threshold; the code rate is greater than or equal to the preset code rate threshold; and the reference sequence number includes code weight K 1 non-puncturing position number corresponding to the minimum symbol weight of the number is greater than or equal to a threshold number; each code weight reference numeral in the set of the respective number corresponding to the minimum symbol weight of less than or equal to a preset code weight threshold .
  • the method further includes: determining, by the sending device, a polarization weight of the N polarized channels according to a calculation formula of the polarization weight; and transmitting, by the transmitting device, a polarization weight of the N polarized channels Sorting, determining the order of reliability of the N polarized channels, the calculation formula of the polarization weight is:
  • the method further includes: the sending device calculates the reference K 1 K ordinals corresponding number included in the set are 1 code weight; determining a minimum code transmitting apparatus from the weight corresponding to the ordinals K 1 K 1 yard in weight.
  • the method further includes: determining, by the sending device, a modified polarization weight of the N polarized channels according to a formula for calculating the modified polarization weight; and transmitting, by the transmitting device, the N polarized channels The ordering of the polarization weights is corrected, and the order of reliability of the N polarized channels is determined.
  • the formula for calculating the polarization weights is:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the present application provides a method for encoding a polarization code, the method comprising: a transmitting device calculating a polarization weight of N polarization channels of a polarization code with a code length N according to a calculation formula of a polarization weight, The formula for calculating the weight is:
  • the transmitting device determines the information bit number set according to the polarization weight of the N polarized channels and the information bit number K; the transmitting device performs polarization coding on the coded bits according to the information bit number set.
  • the method further includes: determining, by the sending device, a modified polarization weight of the N polarized channels according to a formula for calculating the modified polarization weight; and transmitting, by the transmitting device, the N polarized channels The ordering of the polarization weights is corrected, and the order of reliability of the N polarized channels is determined.
  • the formula for calculating the polarization weights is:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the present application provides a method for decoding a polarization code, the method comprising: selecting, by a receiving device, a reliability of N polarization channels of a polarization code with a code length N and a number of information bits K, selecting The K non-punctured position numbers are used as the reference sequence number set, wherein the reliability of the polarization channel corresponding to any one of the reference sequence numbers is greater than or equal to the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers.
  • the receiving device determines the information bit number set according to the determination condition and the reference sequence number set, wherein the determination condition is based on at least one of a code rate, a mother code length and a code weight of the polarization code
  • the transmitting device decodes the sequence to be decoded according to the set of information bit numbers.
  • the receiving device determines the information bit number set according to the determining condition and the reference sequence number set, including: if the determining condition is not met, the receiving device determines the reference sequence number set as the information bit number set.
  • the receiving apparatus depending on the condition and the reference numerals set, determining a set of number of information bits, comprising: determining if the condition is satisfied, the receiving apparatus determines K 1 of first serial number from the reference set, the K 1 The code weight corresponding to each of the first serial numbers is equal to W min , where W min is equal to the minimum code weight of the K code weights corresponding to the K non-punch position numbers respectively; Selecting K 2 second serial numbers to replace K 2 first serial numbers in the K 1 first serial numbers, to obtain a set of information bit numbers, wherein the optional serial numbers are the reference sequence numbers and the sequence numbers of the N polarized channels a sequence number other than the number of the punched positions, K 2 ⁇ K 1 , wherein the K 2 second numbers satisfy any one of the following conditions: a code corresponding to each of the second numbers of the K 2 second numbers heavily than W min, and the reliability of the polarization channels corresponding to each of the second number greater than or equal to the number of selectable polarization channel number
  • the determining condition is at least one of the following conditions: the mother code length is greater than or equal to the preset mother code length threshold; the code rate is greater than or equal to the preset code rate threshold; and the reference sequence number includes code weight K 1 non-puncturing position number corresponding to the minimum symbol weight of the number is greater than or equal to a threshold number; each code weight reference numeral in the set of the respective number corresponding to the minimum symbol weight of less than or equal to a preset code weight threshold .
  • the receiving device determines a polarization weight of the N polarized channels according to a calculation formula of the polarization weight; and the receiving device determines the polarization weight of the N polarized channels as the The ordering of the reliability of the N polarized channels, the calculation formula of the polarization weight is:
  • the method further includes: receiving device calculation reference numerals included in the set corresponding to the ordinals K 1 K 1 th code weight; receiving device determines the minimum weight code from the ordinals K 1 K 1 th code corresponding to the weight.
  • the method further includes: determining, by the receiving device, a modified polarization weight of the N polarized channels according to the calculated formula of the modified polarization weight; and transmitting, by the transmitting device, the N polarized channels The ordering of the polarization weights is corrected, and the order of reliability of the N polarized channels is determined.
  • the formula for calculating the polarization weights is:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the present application provides a method for decoding a polarization code, the method comprising: receiving, by a receiving device, a polarization weight of N polarized channels of a polarization code having a code length of N according to a calculation formula of a polarization weight
  • the formula for the polarization weight is:
  • the receiving device determines a set of information bit numbers according to the polarization weights of the N polarized channels and the number K of information bits; and the receiving device decodes the sequence to be decoded according to the set of information bit numbers.
  • the method further includes: determining, by the receiving device, a modified polarization weight of the N polarized channels according to the calculated formula of the modified polarization weight; and transmitting, by the transmitting device, the N polarized channels The ordering of the polarization weights is corrected, and the order of reliability of the N polarized channels is determined.
  • the formula for calculating the polarization weights is:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • an embodiment of the present application provides a method for encoding a polarization code, where the method includes: the transmitting device calculates, according to a calculation formula of a polarization weight, each of N polarization channels of a polarization code with a code length of N.
  • the method for encoding the polarization code provided by the fifth aspect is different from the method for encoding the polarization code provided by the third aspect, in that the calculation formula of the polarization weight provided is different. After calculating the polarization weights of the polarized channels according to the calculation formulas provided by each, determining the reliability order of the polarized channels, determining the information bit number set, and performing polarization encoding according to the information bit number set are the same of.
  • the embodiment of the present application provides a method for decoding a polarization code, where the method includes: a receiving device calculates, according to a calculation formula of a polarization weight, each of N polarization channels of a polarization code with a code length of N.
  • the method further includes: determining, by the sending device, a modified polarization weight of the N polarized channels according to a formula for calculating the modified polarization weight; and transmitting, by the transmitting device, the N polarized channels The ordering of the polarization weights is corrected, and the order of reliability of the N polarized channels is determined.
  • the formula for calculating the polarization weights is:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the method for decoding the polarization code provided by the sixth aspect is different from the method for decoding the polarization code provided by the fourth aspect, in that the calculation formula of the polarization weight provided is different. After calculating the polarization weights of the polarized channels according to the calculation formulas provided by each, determining the reliability order of the polarized channels, determining the information bit number set, and decoding the sequence to be decoded according to the information bit number set It is the same.
  • the method for encoding a polarization code provided by the third aspect and the fifth aspect determines the information bit number after calculating the polarization weight of the polarized channel and determining the reliability order of the polarized channel according to the polarization weight.
  • the process of the aggregation may adopt the technical solution for determining the set of information bit numbers provided by the first aspect of the present application.
  • the technical solution for determining the set of information bit numbers in the prior art may also be used, which is not limited in this embodiment of the present application.
  • the method for decoding a polarization code provided by the fourth aspect and the sixth aspect determines the information bit after calculating the polarization weight of the polarized channel and determining the reliability order of the polarized channel according to the polarization weight.
  • the process of determining the sequence of information bits can also be adopted in the process of determining the sequence of information bits provided by the second aspect of the present application.
  • a technical solution for determining a set of information bit numbers in the prior art can also be employed.
  • the present application provides a method for encoding a polarization code, the method comprising: a sending device acquiring a maximum mother code sequence, wherein the maximum mother code sequence is ⁇ 1, 2, 3, 5, 9, 17, 4 , 33,6,7,10,65,11,18,13,19,129,21,34,35,25,8,37,66,257,12,67,41,14,69,20,49,15,
  • the present application provides a method for encoding a polarization code, the method comprising: a sending device acquiring a maximum mother code sequence, wherein the maximum mother code sequence is ⁇ 1, 2, 3, 5, 9, 17, 4 , 33,6,7,10,65,11,18,13,19,129,34,21,35,8,25,37,66,12,257,67,41,14,20,69,15,
  • the present application provides a method for decoding a polarization code, the method comprising: receiving, by a receiving device, a maximum mother code sequence, where the maximum mother code sequence is ⁇ 1, 2, 3, 5, 9, 17 4,33,6,7,10,65,11,18,13,19,129,21,34,35,25,8,37,66,257,12,67,41,14,69,20,49,15,
  • the present application provides a method for decoding a polarization code, the method comprising: receiving, by a receiving device, a maximum mother code sequence, where the maximum mother code sequence is ⁇ 1, 2, 3, 5, 9, 17 4,33,6,7,10,65,11,18,13,19,129,34,21,35,8,25,37,66,12,257,67,41,14,20,69,15,
  • the application provides a transmitting device for performing the method in the first aspect or any possible implementation of the first aspect.
  • the transmitting device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a transmitting device for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • the transmitting device comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the application provides a receiving device for performing the method in any of the possible implementations of the third aspect or the third aspect.
  • the receiving device comprises means for performing the method of any of the third aspect or any of the possible implementations of the third aspect.
  • the present application provides a receiving device for performing the method in any of the possible implementations of the fourth aspect or the fourth aspect.
  • the receiving device comprises means for performing the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • the present application provides a transmitting device for performing the method in any of the possible implementations of the fifth aspect or the fifth aspect.
  • the transmitting device comprises means for performing the method of any of the fifth or fifth aspects of the possible implementation.
  • the present application provides a receiving device for performing the method in any of the possible implementations of the sixth aspect or the sixth aspect.
  • the receiving device comprises means for performing the method of any of the sixth or sixth aspects of the possible implementation.
  • the present application provides a transmitting device for performing the method in any of the possible implementations of the seventh aspect or the seventh aspect.
  • the transmitting device comprises means for performing the method of any of the seventh or seventh aspects of the possible implementation.
  • the present application provides a transmitting device for performing the method in any of the possible implementations of the eighth aspect or the eighth aspect.
  • the transmitting device comprises means for performing the method of any of the eighth or eighth possible implementations.
  • the present application provides a receiving device for performing the method in any of the possible implementations of the ninth aspect or the ninth aspect.
  • the receiving device comprises means for performing the method of any of the possible implementations of the ninth aspect or the ninth aspect.
  • the present application provides a receiving device for performing the method in any of the possible implementations of the tenth or tenth aspect.
  • the receiving device comprises means for performing the method of any of the possible implementations of the tenth or tenth aspect.
  • the present application provides an encoding apparatus having a function of implementing the behavior of a transmitting device in any of the possible aspects of the first aspect and the first aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the encoding device comprises: an input interface circuit for acquiring a sequence to be encoded; and a logic circuit for performing the first aspect and the first The behavior of the sender in any of the possible designs; the output interface circuit for outputting the Polar encoded bit sequence.
  • the encoding device may be a chip or an integrated circuit.
  • the encoding device when part or all of the function is implemented by software, the encoding device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the encoding device may implement the method as described in the first aspect and any of the possible designs of the first aspect.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the encoding device when some or all of the functions are implemented by software, the encoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides an encoding apparatus having a function of implementing the behavior of a transmitting device in any of the possible aspects of the second aspect and the second aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the encoding device comprises: an input interface circuit for acquiring a sequence to be encoded; and a logic circuit for performing the second aspect and the second The behavior of the sender in any of the possible designs; the output interface circuit for outputting the Polar encoded bit sequence.
  • the encoding device may be a chip or an integrated circuit.
  • the encoding device when part or all of the function is implemented by software, the encoding device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the encoding device can implement the method described in any of the possible aspects of the second aspect and the second aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the encoding device when some or all of the functions are implemented by software, the encoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides a decoding apparatus having a function of implementing the behavior of a receiving device in any of the possible aspects of the third aspect and the third aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the decoding apparatus when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring a sequence to be decoded; and a logic circuit for performing the third aspect and The behavior of the receiving device in any of the possible designs of the third aspect; the output interface circuit for outputting the decoded bit sequence.
  • the decoding device may be a chip or an integrated circuit.
  • the decoding apparatus when part or all of the function is implemented by software, includes: a memory for storing a program; a processor for executing the program stored by the memory, when When the program is executed, the decoding apparatus may implement the method as described in any of the possible aspects of the third aspect and the third aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the decoding device when some or all of the functionality is implemented in software, the decoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides a decoding apparatus having a function of implementing the behavior of a receiving device in any of the possible aspects of the fourth aspect and the fourth aspect described above.
  • the functions may be implemented by hardware or by corresponding software implementation by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the decoding apparatus when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring a sequence to be decoded; and a logic circuit for performing the fourth aspect and The behavior of the receiving device in any of the possible designs of the fourth aspect; the output interface circuit for outputting the decoded bit sequence.
  • the decoding device may be a chip or an integrated circuit.
  • the decoding apparatus when part or all of the function is implemented by software, includes: a memory for storing a program; a processor for executing the program stored by the memory, when When the program is executed, the decoding apparatus may implement the method as described in any of the possible aspects of the fourth aspect and the fourth aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the decoding device when some or all of the functionality is implemented in software, the decoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides an encoding apparatus having a function of realizing the behavior of a transmitting device in any of the possible aspects of the fifth aspect and the fifth aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the encoding device comprises: an input interface circuit for acquiring a sequence to be encoded; and a logic circuit for performing the fifth aspect and the fifth aspect described above The behavior of the sender in any of the possible designs; the output interface circuit for outputting the Polar encoded bit sequence.
  • the encoding device may be a chip or an integrated circuit.
  • the encoding device when part or all of the function is implemented by software, the encoding device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the encoding apparatus can implement the method as described in any of the possible aspects of the fifth aspect and the fifth aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the encoding device when some or all of the functions are implemented by software, the encoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides a decoding apparatus having a function of implementing the behavior of a receiving device in any of the possible aspects of the sixth aspect and the sixth aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the decoding apparatus when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring a sequence to be decoded; and a logic circuit for performing the sixth aspect and The behavior of the receiving device in any of the possible designs of the sixth aspect; the output interface circuit for outputting the decoded bit sequence.
  • the decoding device may be a chip or an integrated circuit.
  • the decoding apparatus when part or all of the function is implemented by software, includes: a memory for storing a program; a processor for executing the program stored by the memory, when When the program is executed, the decoding apparatus may implement the method as described in any of the possible aspects of the sixth aspect and the sixth aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the decoding device when some or all of the functionality is implemented in software, the decoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides an encoding apparatus having a function of implementing the behavior of a transmitting device in any of the possible aspects of the seventh aspect and the seventh aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the encoding apparatus comprises: an input interface circuit for acquiring a sequence to be encoded; and a logic circuit for performing the seventh aspect and the seventh aspect described above The behavior of the sender in any of the possible designs; the output interface circuit for outputting the Polar encoded bit sequence.
  • the encoding device may be a chip or an integrated circuit.
  • the encoding device when part or all of the function is implemented by software, the encoding device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the encoding apparatus may implement the method as described in any of the possible aspects of the seventh aspect and the seventh aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the encoding device when some or all of the functions are implemented by software, the encoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides an encoding apparatus having a function of realizing the behavior of a transmitting device in any of the possible aspects of the eighth aspect and the eighth aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the encoding device comprises: an input interface circuit for acquiring a sequence to be encoded; and a logic circuit for performing the above eighth aspect and the eighth The behavior of the sender in any of the possible designs; the output interface circuit for outputting the Polar encoded bit sequence.
  • the encoding device may be a chip or an integrated circuit.
  • the encoding device when part or all of the function is implemented by software, the encoding device comprises: a memory for storing a program; a processor for executing the program stored by the memory, When the program is executed, the encoding apparatus can implement the method as described in any of the possible aspects of the eighth aspect and the eighth aspect described above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the encoding device when some or all of the functions are implemented by software, the encoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides a decoding apparatus having a function of implementing the behavior of a receiving device in any of the possible aspects of the ninth and ninth aspects described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the decoding apparatus when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring a sequence to be decoded; and a logic circuit for performing the above ninth aspect and The behavior of the receiving device in any of the possible designs of the ninth aspect; the output interface circuit for outputting the decoded bit sequence.
  • the decoding device may be a chip or an integrated circuit.
  • the decoding apparatus when part or all of the function is implemented by software, the decoding apparatus includes: a memory for storing a program; a processor for executing the program stored by the memory, when When the program is executed, the decoding apparatus may implement the method as described in any of the possible aspects of the ninth and ninth aspects above.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the decoding device when some or all of the functionality is implemented in software, the decoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides a decoding apparatus having a function of implementing the behavior of a receiving device in any of the possible aspects of the above tenth and tenth aspects.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the decoding apparatus when part or all of the function is implemented by hardware, includes: an input interface circuit for acquiring a sequence to be decoded; and a logic circuit for performing the above tenth aspect and The behavior of the receiving device in any of the possible designs of the tenth aspect; the output interface circuit for outputting the decoded bit sequence.
  • the decoding device may be a chip or an integrated circuit.
  • the decoding apparatus when part or all of the function is implemented by software, includes: a memory for storing a program; a processor for executing the program stored by the memory, when When the program is executed, the decoding apparatus may implement the method as described in any of the possible aspects of the above tenth and tenth aspects.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the decoding device when some or all of the functionality is implemented in software, the decoding device includes a processor.
  • a memory for storing a program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing a program stored in the memory.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method in the implementation.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the foregoing second or second aspects The method in the implementation.
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the above third or third aspects The method in the implementation.
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the above fourth or fourth aspects The method in the implementation.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the fifth or fifth aspects described above The method in the implementation.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the foregoing sixth or sixth aspects The method in the implementation.
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the foregoing seventh or seventh aspects The method in the implementation.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the foregoing eighth or eighth aspects The method in the implementation.
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the foregoing ninth or ninth aspects The method in the implementation.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform any of the above-described tenth or tenth aspects The method in the implementation.
  • the sending device and the receiving device first set a reference sequence number set, and then set according to factors such as a code weight related to the performance of the polarization code encoding code, the number of information bits, and the code length of the mother code of the polarization code.
  • the determination condition further determines whether the reference sequence number set is determined as the information bit number set for the polarization code encoding code, or the reference sequence number set is adjusted as the information bit number set. Since the transmitting device and the receiving device consider the factors affecting the performance of the compiled code to determine the information bit number set in the process of performing the polarization code encoding and decoding, the performance of the polarization code encoding code can be improved.
  • FIG. 1 is a wireless communication system to which the embodiment of the present application is applied.
  • Figure 2 is a basic flow diagram for communicating using wireless technology.
  • FIG. 3 is a schematic interaction diagram of a method 100 of a polarization code encoding code according to an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of a method 200 of a polarization code encoding code according to another embodiment of the present application.
  • Figure 5 is a comparison of the performance of the polarization code compiled code under different mother codes and different information bit lengths.
  • FIG. 6 is a schematic block diagram of a sending device 300 according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a receiving device 400 according to an embodiment of the present application.
  • FIG. 8 is a sending device 500 according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing the internal structure of a processing device of a transmitting device.
  • Fig. 10 is a schematic diagram showing another internal structure of a processing device of a transmitting device.
  • FIG. 11 is a schematic diagram showing still another internal structure of a processing device of a transmitting device.
  • FIG. 12 is a receiving device 600 according to an embodiment of the present application.
  • Figure 13 is a schematic diagram showing the internal structure of a processing device of a receiving device.
  • Figure 14 is a schematic diagram showing another internal structure of a processing device of a receiving device.
  • Figure 15 is a schematic diagram showing still another internal structure of a processing device of a receiving device.
  • FIG. 16 is a schematic structural diagram of the terminal device 700.
  • FIG. 1 is a wireless communication system to which the embodiment of the present application is applied.
  • the wireless communication system can include at least one network device in communication with one or more terminals.
  • the network device may be a base station, or may be a device integrated with a base station controller, or may be another device having similar communication functions.
  • the terminals involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal may be a mobile station (MS), a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet.
  • MS mobile station
  • PDA personal digital assistant
  • a computer a wireless modem, a handset, a laptop computer, a Machine Type Communication (MTC) terminal, and the like.
  • MTC Machine Type Communication
  • the network device in FIG. 1 communicates with the terminal using wireless technology.
  • the network device sends a signal, it is the transmitting end, and when the network device receives the signal, it is the receiving end.
  • the terminal is also the same.
  • the terminal sends a signal, it is the transmitting end.
  • the terminal receives the signal, it is the receiving end.
  • Figure 2 is a basic flow diagram for communicating using wireless technology.
  • the source of the transmitting end is sequentially transmitted on the channel after source coding, channel coding, rate matching and modulation, and the receiving end receives the signal and then obtains the sink after demodulation, de-rate matching, channel decoding and source decoding.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a Narrow Band-Internet of Things (NB-IoT), a Global System for Mobile Communications (GSM), and an enhanced data rate.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronization Codes Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • next-generation 5G mobile communication system three application scenarios eMBB, URLLC and eMTC or new future Communication Systems.
  • Channel codec is one of the core technologies in the field of wireless communication, and its performance improvement will directly improve network coverage and user transmission rate.
  • the polarization code is a channel coding technology that can theoretically prove to reach the Shannon limit and has practical linear complexity coding and decoding capabilities.
  • the core of the polarization code structure is the processing of "channel polarization".
  • the coding method is used to make each subchannel exhibit different reliability.
  • some channels will tend to be close to the capacity.
  • the no-noise channel of 1 and the other part of the channel tend to be a full-noise channel with a capacity close to zero, and the information is directly transmitted on a channel having a capacity close to 1 to approximate the channel capacity.
  • the encoding strategy of the Polar code is the characteristic that applies this phenomenon.
  • the non-noise channel is used to transmit the useful information of the user, and the full-noise channel transmits the agreed information or does not transmit the information.
  • F N is an N ⁇ N matrix, and Defined as the Kronecker product of log2 N matrices F 2 ,
  • the addition and multiplication operations involved in the above equations are addition and multiplication operations on the binary Galois field.
  • a part of the bits are used to carry information, called a set of information bits.
  • the set of indices for these bits is denoted A.
  • the other part of the bits is set to a fixed value pre-agreed by the receiving end and the transmitting end, which is called a fixed bit set or a set of frozen bits, and the set of indexes is represented by the complement A c of A.
  • the encoding process of the Polar code is equivalent to Here, F N (A) is a sub-matrix obtained by the row corresponding to the index in the set A in F N .
  • F N (A C ) is a sub-matrix obtained from the row corresponding to the index in the set A C in F N .
  • uA is The set of information bits in the number is K. for A fixed set of bits in the number (NK) that is a known bit. These fixed bits are usually set to 0, but the fixed bits can be arbitrarily set as long as the receiving end and the transmitting end pre-agreed.
  • u A is In the information bit set, u A is the row vector of length K, ie
  • K, the symbol
  • the construction process of the Polar code determines the performance of the Polar code.
  • the construction process of the Polar code is generally such that a total of N polarization channels are determined according to the mother code length N, and the N polarization channels respectively correspond to N rows of the coding matrix. Calculate the reliability of the polarized channel, and use the sequence number (or index) of the top K polarized channel with higher reliability as the element of the set A, and the sequence number corresponding to the remaining (NK) polarized channels as the fixed bit number set.
  • the element of A C determines the position of the information bits, and set A C determines the position of the fixed bits.
  • the method for encoding a code for a polarization code provided by the embodiment of the present application mainly relates to the selection of a set of information bit numbers.
  • the method for encoding a code for a polarization code provided by an embodiment of the present application is described below.
  • a Polar code includes the following parts: information bits, fixed bits (or frozen bits), and bits that are punctured during rate matching.
  • K is the number of information bits
  • F is the number of fixed bits
  • P is the number of bits that are punctured during rate matching.
  • the number K of information bits refers to the number of non-fixed bits.
  • K herein also includes the number of check bits.
  • FIG. 3 is a schematic interaction diagram of a method 100 of a polarization code encoding code according to an embodiment of the present application.
  • the transmitting device and the receiving device select K non-punctured position numbers as the reference sequence set according to the order of reliability of the N polarized channels with the code length N and the number of information bits K.
  • the reliability of the polarization channel corresponding to any one of the reference sequence numbers is greater than the reliability of the polarization channel corresponding to the remaining (N-K) sequence numbers, and K ⁇ 1 is an integer. In other words, the reliability of the polarization channel corresponding to any one of the reference sequence numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (N-K) sequence numbers.
  • parameters such as error probability, channel capacity, or polarization weight may be selected as parameters for measuring the reliability of the polarized channel, or other parameters capable of measuring the reliability of the polarized channel may be selected, and the embodiment of the present invention does not specifically limited.
  • the K sequence numbers included in the sequence number set are referenced, and the K sequence numbers correspond to K polarization channels in the N polarization channels.
  • the reliability of any one of the K polarized channels is greater than or equal to the reliability of any one of the N polarized channels except the K polarized channels.
  • the reference sequence number set is ⁇ 0, 1, 3, 5 ⁇
  • the reliability of the channel is greater than or equal to the reliability of the polarized channel corresponding to the numbers 2, 4, 6, and 7.
  • the reference sequence number set is used as a reference for the transmitting device to determine the information bit sequence number set.
  • the reference sequence number set may be used as a set of information bit numbers when performing polarization coding.
  • the transmitting device makes some adjustments to some or all of the sequence numbers in the reference sequence number set, and uses the adjusted reference sequence number set as the information bit sequence number set. Whether or not the reference sequence number set can be directly used as the information bit number set without adjustment, the following step 120 will be described in detail.
  • the sending device and the receiving device determine a set of information bit numbers according to the determining condition and the reference sequence number set.
  • the determination condition is set according to at least one of a code rate, a mother code length of the polarization code, and a code weight.
  • the determination condition is a condition that the transmitting device and the receiving device determine whether or not the reference sequence number set is directly used as the information bit number set at the time of polarization encoding.
  • the determination condition is a condition that the transmitting device and the receiving device determine whether to adjust the reference sequence number set after selecting the reference sequence number set.
  • the determination condition is that the transmitting device and the receiving device are preset according to at least one of a code rate of the polarization coding, a mother code length and a code weight of the polarization code.
  • the code weight in the embodiment of the present application refers to the number of “1” in each row of the coding matrix F N of the polarization code with the code length N. Therefore, the code weight can also be called the line weight or the Hamming weight. Sometimes the line weight of a line (or the weight of the code or the weight of the Hamming, which is not distinguished below) can be defined as "1" in the line. The logarithm of the quantity, without loss of generality, is defined by the number of "1"s in the line in this application.
  • the row weight can also be calculated by the binary number of the polarized channel. Assuming that the binary sequence number corresponding to the polarization channel number i is B n-1 B n-2 ...
  • the channel number i or the row corresponding to the i-th row of the coding matrix has a weight of 2 ⁇ (B n-1 + B n-2 +...+B 0 ), for example, the binary representation of the channel number 0, 1, 2 is 00, 01, 10, respectively, and the corresponding row weights are 1, 2, 2, respectively.
  • Each row of the polarization matrix generation matrix F N corresponds to one row weight, and the row weight is an integer power of two.
  • the code weight is 2, 4, 16, 128, and the like.
  • E.g, F 2 consists of two lines.
  • the code weight of the first line is 1 and the code weight of the second line is 2.
  • F 4 includes 4 lines, and the code weights are 1, 2, 2, and 4, respectively.
  • the determining condition is at least one of the following conditions:
  • the mother code length is greater than or equal to the preset mother code length threshold
  • the code rate is greater than or equal to a preset rate threshold
  • the number of the smallest code weights corresponding to the sequence numbers in the reference sequence number set is greater than or equal to the quantity threshold;
  • the minimum code weight of the code weight corresponding to the sequence number in the reference sequence number set is less than or equal to the preset code weight threshold.
  • code weight corresponding to a serial number in the embodiment of the present application refers to the code weight (or row weight) of the corresponding row in the generation matrix.
  • the transmitting device and the receiving device may preset the determination condition to any one of the above conditions, or a combination of any of these conditions.
  • the code rate is greater than or equal to the preset code rate threshold as condition #1
  • the mother code length is greater than or equal to the preset mother code length threshold as condition #2.
  • the code rate threshold may be any one or more of ⁇ 1/6, 1/3, 1/2, 2/3 ⁇ .
  • different mother codes correspond to thresholds of one or more code rates.
  • the code length threshold can be any one of ⁇ 64, 128, 256 ⁇ .
  • the determination condition can be set to satisfy only condition #1 or only condition #2.
  • the determination condition is that both condition #1 and condition #2 are satisfied.
  • the number of the smallest code weights corresponding to the sequence numbers in the reference sequence number set is greater than or equal to the quantity threshold (hereinafter referred to as K t ) as the condition #3, and the minimum code among the code weights corresponding to the sequence numbers in the reference sequence set.
  • the weight is less than or equal to the preset code weight threshold as condition #4.
  • the quantity threshold may be any one or more of 1 to 25. Different mother codes can correspond to different number thresholds. For example, when the mother code length is 256, the corresponding number threshold K t is 5, 6, or 7. When the mother code length is 512, the corresponding number threshold K t is one of 8, 9, 10, 11, and 12. When the mother code length is 1024, the corresponding number is K t is one of 8, 9, 10, 11, 12, 13, 14, and 15.
  • the code weight threshold is N/32 or one of the sets ⁇ N/16, N/32, N/64 ⁇ , where N is the corresponding mother code length.
  • the preset mother code length threshold may be any one of ⁇ 64, 128, 256 ⁇ .
  • the determination condition may be preset to satisfy only one of Condition #3 or Condition #4 herein. Alternatively, the determination condition may be preset to satisfy any of the conditions #1 to #4 at the same time.
  • the method further includes:
  • the sending device calculates a code weight corresponding to each serial number in the reference sequence number set
  • the transmitting device determines a minimum code weight among the code weights corresponding to each sequence number in the reference sequence number set.
  • the transmitting device first needs to calculate the code weight corresponding to the sequence number of each polarization channel, and determine the weight of the code.
  • the minimum code is heavy.
  • the sending device determines the reference sequence number set as the information bit number set.
  • the transmission apparatus selects K 1 of first serial number from the reference set, the number K 1 of first sequence number corresponding to each of the first The code weight is W min , where W min is the minimum code weight among the code weights corresponding to the K non-punch position numbers;
  • the sending device selects K 2 second serial numbers from the optional serial numbers to replace K 2 first serial numbers in the K 1 first serial numbers, to obtain a set of information bit numbers, and the optional serial number is the serial number of the N polarized channels.
  • K 2 ⁇ K 1 In addition to the reference number set and the number of the punch position number, K 2 ⁇ K 1 ,
  • K 2 second serial numbers satisfy at least one of the following conditions:
  • the code corresponding to each of the second serial numbers of the K 2 second serial numbers is greater than W min , and the reliability of the polarized channel corresponding to each second serial number is greater than or equal to the second serial number and the selected serial number.
  • the smallest number K 2 sequence number in the second number is greater than the selectable maximum number after removing the second number K 2;
  • the code of each of the K 2 second serial numbers is greater than or equal to 2W min .
  • the first serial number herein is the serial number corresponding to the smallest code weight (ie, W min ) in the reference sequence number set.
  • the second sequence number is a sequence number selected from the N number numbers corresponding to the N polarization channels for replacing the first sequence number in the reference sequence number set. Specifically, all of the K 1 first serial numbers may be replaced, or a part of the K 1 first serial numbers may be replaced. Therefore, the number of the first serial number is greater than or equal to the number of the second serial number, that is, K 2 ⁇ K 1 .
  • the reference sequence number set ⁇ 0, 1, 2, 3, 5, 4, 6, 7 ⁇
  • the set of 8 code numbers corresponding to the eight sequence numbers in the reference sequence number set is ⁇ 1, 1, 1,1,2,2,4,4 ⁇ .
  • the minimum code weight W min 1 among the plurality of code weights corresponding to all the sequence numbers in the reference sequence number set.
  • serial numbers corresponding to W min are respectively number 0, 1, 2, and 3.
  • the transmitting device determines the reference sequence number set according to the reliability ranking of the polarized channels.
  • the transmitting device needs to determine whether the parameters of the polarization encoding (for example, the code rate, the code weight corresponding to each sequence number in the reference sequence number set, etc.) satisfy the determination condition.
  • case 1 and case 2 respectively.
  • the transmitting device determines the reference sequence number set as the information bit number set. Subsequently, the transmitting device performs step 130, that is, performing polarization coding on the coded bits according to the information bit number set.
  • the transmitting device adjusts the reference sequence number set, and uses the adjusted reference sequence number set as the information bit number set.
  • the generation matrix of the polarization code having the code length N in step 110 is F N .
  • the generation matrix F N includes a total of N rows. Among them, each of the N lines has a code weight.
  • W 1 , W 2 , W 3 , ... W N the code weights of the first row to the Nth row of the generation matrix.
  • the transmitting device determines K 1 first sequence numbers from the reference sequence number set.
  • the code weight of the row corresponding to the K 1 first sequence numbers in the generation matrix is smaller than the code weight of the row corresponding to the other sequence numbers in the generation matrix in the generation matrix.
  • the minimum code weight of the m code weights is determined, and the sequence number corresponding to the minimum code weight is the first sequence number mentioned herein. If there are multiple minimum code weights, the corresponding serial numbers of the plurality of minimum code weights are all the first serial numbers mentioned herein.
  • the number of minimum code weights is K 1 . Where 1 ⁇ K 1 ⁇ K.
  • W min is one or several of W 1 , W 2 , W 3 , ... W N .
  • the sequence number in the reference sequence number is the sequence number of the non-punch position
  • the K 1 first sequence numbers are selected from the reference sequence number set. Therefore, the K 1 first sequence numbers are non- The serial number of the punched position.
  • the transmitting device selects K 2 second serial numbers from the optional serial numbers to replace K 2 first serial numbers in the K 1 first serial numbers.
  • the optional sequence number is the sequence number of the N polarization polarization channels of the polarization code with the code length N in the step 110, and the sequence numbers included in the reference sequence number and the sequence numbers remaining after the serial number of the punch position are excluded.
  • K 1 represents the number of the smallest code weight among the code weights corresponding to all the sequence numbers in the reference sequence number set.
  • K 1 is the number of the sequence numbers of the polarized channels corresponding to the smallest code weight in the reference sequence number set.
  • K t is the preset replacement number threshold.
  • the specific adjustment process is to replace all or part of the sequence number corresponding to the smallest code weight in the reference sequence number set.
  • the number of replacements is denoted as K 2 .
  • K 2 is related to the number of minimum code weights among the code weights corresponding to the preset replacement quantity threshold and all the sequence numbers in the reference sequence number set, which is the comparison between the two. Small.
  • K t ⁇ K 1 only the part of the K 1 first numbers in the reference sequence set is replaced (ie, only K 2 are replaced, and K 2 ⁇ K 1 ).
  • K 2 first serial numbers can satisfy the following characteristics:
  • the reliability of the polarized channel corresponding to any one of the K 2 first serial numbers is lower than or equal to (K 1 -K 2 ) corresponding to the remaining (K 1 -K 2 ) first serial numbers (K 1 -K 2 The lowest reliability among the reliability of the polarized channels.
  • the largest serial number of the K 2 first serial numbers is smaller than the smallest serial number among the remaining (K 1 - K 2 ) first serial numbers.
  • the K 2 first serial numbers may be randomly selected from the K 1 first serial numbers.
  • (1) to (3) are only examples in which the first serial number is replaced in the case where the first serial number is replaced.
  • the embodiments of the present application are not limited thereto.
  • the selection of the second serial number can be in various ways.
  • sequence #A The optional serial numbers are sorted in descending order of the corresponding code weights, and the obtained sequence is recorded as sequence #A.
  • the sequence number of the first K 2 non-punch positions of the sequence #A is selected as the K 2 second numbers.
  • sequence #B The optional serial numbers are sorted in descending order of the serial numbers, and the resulting sequence is recorded as sequence #B.
  • K 2 numbers whose codes are greater than or equal to 2W min are selected as the K 2 second numbers.
  • the transmitting device selects a corresponding first code is equal to 2W weight
  • the serial number of min is taken as the second serial number. If the number of serial numbers corresponding to 2W min is K 3 and K 3 ⁇ K 2 . Then, the transmitting device selects (K 2 -K 3 ) numbers from the sequence numbers whose corresponding code weight is equal to 4W min , and together with the numbers of K 3 corresponding code weights equal to 2W min as K 2 second numbers.
  • the transmitting device selects the second serial number according to the mode 3, it first selects from the serial number whose corresponding code weight is equal to 2W min .
  • the transmitting device selects the second serial number according to the mode 3.
  • the K 2 second serial numbers are selected from the corresponding serial numbers whose code weight is equal to 2W min .
  • K 2 K 2
  • K 2 K 2
  • K 3 K 2
  • K 2 K 2
  • K 2 K 2 are selected as the second serial number from the K 3 numbers of the code weight 2W min .
  • K 2 may be selected in order of reliability from the order of 2W min .
  • the coded bits can be polarization coded according to the information bit number set.
  • the acquired sequence to be decoded may be decoded according to the information bit number set.
  • the transmitting device performs polarization coding on the coded bits according to the information bit number set.
  • the receiving device acquires a sequence to be decoded.
  • the receiving device decodes the sequence to be decoded according to the information bit number set.
  • the polarization coding process and the decoding process involved in the above steps 130-150 can refer to the prior art and will not be described in detail herein.
  • the transmitting device and the receiving device determine the reference sequence number set according to the order of the reliability of the polarization channel, and before the information bit sequence set is determined according to the reference sequence number set, the sending device and the receiving device first need to obtain the code length.
  • the reliability of the N polarized channels of the polarization code of N is the reliability of the N polarized channels of the polarization code of N.
  • the reliability of the polarized channel can be determined by calculating the polarization weight of the polarized channel.
  • the method for calculating the polarization weight of the polarized channel is not limited in the embodiment of the present application.
  • the transmitting device and the receiving device can perform calculations using a method of calculating polarization weights of a polarized channel provided by the prior art.
  • W i is the polarization weight of the i-th polarized channel, i ⁇ ⁇ 0, 1, ..., n-1 ⁇ .
  • the embodiment of the present application proposes a method for calculating the polarization weight of the polarization channel (method 200 below).
  • the method for calculating the polarization weight provided by the embodiment of the present application can be used for measuring the reliability of the polarized channel, which helps to improve the accuracy of determining the reliability of the polarized channel, thereby improving the coding code of the polarization code. performance.
  • FIG. 4 is a schematic interaction diagram of a method 200 of a polarization code encoding code according to another embodiment of the present application.
  • the transmitting device and the receiving device calculate a polarization weight of the N polarized channels of the polarization code with the code length N according to the calculation formula of the polarization weight.
  • B j ⁇ ⁇ 0, 1 ⁇ , j ⁇ ⁇ 0, 1, ..., n-1 ⁇ .
  • i B n-1 B n-2 ... B 0 , B n-1 B n-2 ... B 0 is a binary representation of i.
  • W i is the polarization weight of the i-th polarized channel, i ⁇ ⁇ 0, 1, ..., n-1 ⁇ .
  • the ranges of a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d 3 , f 1 , f 2 , and f 3 are all [-2, 2].
  • n log 2 (N).
  • the formula (2) for calculating the polarization weight provided by the embodiment of the present application has higher accuracy than the formula (1).
  • a set of values of (a 1 , b 1 , c 1 , d 1 , f 1 ) in the above formula (2) is ( 1 , 1.07, 1 , 0.5) , 1/4) or (1,1.1,1,0.5,1,1/4) or (1,1,1,0,1/4), (a 2 , b 2 , c 2 , d 2 , f
  • Sequence #1 ⁇ 1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,21,34,35,25,8,37,66,257 , 12,67,41,69,20,49,15,130,73,22,131,23,36,513,133,26,81,38,27,137,39,258,29,68,42,97,259,43,145,70,261,50,16,71 , 45,74,51,265,132,161,75,24,53,514,134,82,77,515,273,135,28,83,57,138,40,193,517,30,85,98,139,260,289,31,44,521,99,146,14 1,89,262,147,72,46,101,263,52,529,47,266,149,321,162, 76,105,54,267,163,153,78,55,516,274,545,269,136,84,165,58,
  • Sequence #2 ⁇ 1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,34,21,35,8,25,37,66 , 12,257,67,41,14,20,69,15,130,49,22,73,131,36,23,26,513,133,38,81,27,39,258,68,137,42,29,259,97,70,43,16,145,50,261 , 71,45,74,132,51,24,265,75,161,514,134,53,82,28,77,515,135,40,273,83,138,57,30,517,260,193,98,139,85,44,31,146,289,99,262,72,521,141,46,89,147,52,263,101,47,266,76,162,529,149 , 54,321,267,105,78,163,516,136,55,274,84,153,58,269,
  • the transmitting device may perform online calculation by using the method for performing polar encoding provided in the foregoing embodiments to determine a mother code sequence of a required length.
  • the transmitting device may also store the above-described sequence #1 and sequence #2 as the maximum mother code sequence in advance.
  • the mother code sequence of the desired length is read from the sequence #1 or the sequence #2.
  • the receiving device When performing polar decoding, the receiving device performs online calculation to determine a mother code sequence of a desired length. Alternatively, the sequence #1 and the sequence #2 may be stored in advance as the maximum mother code sequence. When decoding the sequence to be decoded, the mother code sequence of the desired length is read from the sequence #1 or the sequence #2.
  • the code lengths of the above sequence #1 and sequence #2 are both 1024. Therefore, when the code length (the integer power of 2) of the mother code sequence required by the transmitting device or the receiving device is less than or equal to 1024, the mother code sequence of the desired length can be read from the sequence #1 or the sequence #2. Subsequently, the read mother code sequence is used for polar coding (for the transmitting device) or decoding (for the receiving device).
  • the polarization weight is used to measure the reliability of the polarized channel, and the reliability order of the polarized channel can be determined.
  • the process of determining the set of information bit numbers according to the reliability order of the polarized channels by the transmitting device and the receiving device may be performed by using the prior art method or the determining the information bit number set described in the method 100 described above. method.
  • the sending device and the receiving device determine a set of information bit numbers according to the polarization weights of the N polarized channels and the number K of information bits.
  • the transmitting device and the receiving device use the polarization weight as a parameter to measure the reliability of the polarized channel. Therefore, it can be understood that, in step 210, the transmitting device and the receiving device can calculate the polarization weight of each polarized channel with a code length of N according to the formula for calculating the polarization weight provided by the embodiment of the present application, thereby The ordering of the reliability of the N polarized channels can be determined.
  • step 220 the transmitting device and the receiving device select, according to the number K of information bits, the sequence numbers of the K non-punctured positions from the sequence numbers corresponding to the polarization weights of the N polarized channels as the information bit number set.
  • the polarization weight corresponding to each of the serial numbers of the K non-punch positions is greater than or equal to the maximum polarization weight among the polarization weights corresponding to the remaining (N-K) numbers.
  • the transmitting device and the receiving device select the K poles with the largest polarization weight and the non-punch position from the N polarization weights.
  • the sequence number corresponding to the weight is used as a set of information bit numbers.
  • the transmitting device performs polarization coding on the coded bits according to the information bit sequence set.
  • the receiving device acquires a sequence to be decoded.
  • the receiving device decodes the sequence to be decoded according to the information bit number set.
  • Steps 230-250 can be the same as the prior art, and are not described herein again.
  • the present application also provides another method of calculating polarization weights.
  • the polarization weight of each polarization channel can be calculated according to the following formula (6).
  • W i is the i th polarization channels polarization weights.
  • B j ⁇ 0,1 ⁇ ,j ⁇ 0,1,...,n-1 ⁇ . I ⁇ 0,1,...,n-1 ⁇ .
  • a high-order term can be introduced to estimate the reliability of the polarization channel, so that the polarization weight calculated according to the formula (6) or (7) is used.
  • the accuracy of the polarization channel reliability estimation is higher.
  • both equation (6) and formula (7) can be reduced regardless of information transmission without rate matching or rate matching.
  • the required signal to noise ratio condition when obtaining the specified decoding performance can be improved.
  • the reliability order of the polarized channel can be determined.
  • the process of determining the set of information bit numbers according to the reliability order of the polarized channels by the transmitting device and the receiving device may be performed by using the prior art method or the determining the information bit number set described in the method 100 described above. method. This embodiment of the present application does not limit this.
  • the modified polarization weight is calculated as:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel. It is not difficult to see that the larger the ⁇ , the more polarized weights are more inclined to the polarization weights. The smaller the ⁇ , the more the modified polarization weights tend to be heavier.
  • the process of decoding the acquired sequence to be decoded by the receiving device is actually a reverse process in which the transmitting device performs polarization encoding on the bit to be encoded according to the information bit number set. Since the fixed bits are pre-agreed by the transmitting device and the receiving device, that is, the process of decoding the sequence to be decoded by the receiving device is to determine the set of information bit numbers.
  • the process in the receiving device determining the information bit sequence number set is the same as the process in which the transmitting device determines the information bit sequence number set. That is, the receiving device first determines the reference sequence number set based on the reliability ordering of the N polarized channels of the polarization code having the code length N and the number of information bits K. Then, the information bit number set is determined according to the determination condition and the reference sequence number set.
  • the transmitting device and the receiving device pre-agreed the determination condition.
  • the process of determining the information bit number set is the same. Therefore, the process in which the receiving device determines the determination condition and the reference sequence number set to determine the information bit number set is the same as the process in which the transmitting device determines the information bit number set according to the determination condition and the reference sequence number set. Therefore, in the text, the process of determining the information bit number set by the receiving device is not described in detail, and the process of determining the information bit number set by the transmitting device is described.
  • the method for encoding and decoding the polarization code provided by the embodiment of the present application is described in detail above. It can be understood that the method for encoding and decoding the polarization code involved in the foregoing embodiments may be either an online calculation method or a table reading method. Or, the combination of online calculation and reading. It is relatively easy for a person skilled in the art to implement the specific implementation process of online calculation and reading. Therefore, it will not be described in detail here.
  • Figure 5 is a comparison of the performance of the polarization code compiled code under different mother codes and different information bit lengths.
  • the abscissa in FIG. 5 represents the length of the information bit, and the ordinate is the signal-to-noise ratio.
  • There are four sets of lines in the figure (one line and a dotted line in each line), indicating that the length of the mother code is 1024, 512, 256, 128, respectively.
  • the signal-to-noise ratio required when the packet error rate reaches 0.001 the smaller the value, the better the decoding performance.
  • the dashed line is a curve for obtaining the signal to noise ratio condition required for the performance of the specified compiled code using the polarization code encoding code method provided in the embodiment of the present application. It can be seen from the experimental results that for the mother code length of the same length, the signal-to-noise ratio corresponding to the broken line is equal to or lower than the signal-to-noise ratio corresponding to the solid line (the position in the dotted circle). It can be seen that the polarization code encoding and decoding method provided by the embodiment of the present application improves the performance of the polarization code encoding code compared to the prior art.
  • the sending device and the receiving device first determine a reference sequence number set, and then set according to factors such as a code weight related to the performance of the polarization code encoding code, a number of information bit numbers, and a code length of the mother code of the polarization code. Determining the determination condition, further determining whether the reference sequence number set is determined as a set of information bit numbers for the polarization code encoding code, or adjusting the reference sequence number set as a set of information bit numbers, thereby improving the polarization code encoding code performance.
  • factors such as a code weight related to the performance of the polarization code encoding code, a number of information bit numbers, and a code length of the mother code of the polarization code. Determining the determination condition, further determining whether the reference sequence number set is determined as a set of information bit numbers for the polarization code encoding code, or adjusting the reference sequence number set as a set of information bit numbers, thereby improving the polarization code encoding code performance.
  • the method 100 and method 200 for the polarization code encoding code provided by the embodiment of the present application are described in detail above with reference to FIG. 3 to FIG.
  • the transmitting device and the receiving device provided by the embodiments of the present application are described below with reference to FIG. 6 to FIG.
  • FIG. 6 is a schematic block diagram of a sending device 300 according to an embodiment of the present application.
  • the transmitting device 300 includes a processing unit 310 and a transmitting unit 320 for performing a method of encoding a polarization code in each embodiment.
  • the processing unit 310 is configured to select, according to the order of reliability of the N polarized channels of the code length N and the number of information bits K, K non-punch position numbers as reference reference sets, wherein the reference sequence set
  • the reliability of the polarization channel corresponding to any one of the serial numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers, K ⁇ 1 and is an integer;
  • the processing unit 310 is further configured to determine, according to the determination condition and the reference sequence number set, the information bit sequence set, where the determination condition is set according to at least one of a code rate, a mother code length and a code weight of the polarization code;
  • the processing unit 310 is further configured to perform polarization coding on the bit to be coded according to the information bit number set.
  • processing unit 310 is configured to:
  • the coded bits are polarization coded according to the information bit number set.
  • processing unit 310 is configured to:
  • the polarization weight of each of the N polarization channels of the polarization code with the code length N is calculated:
  • W i represents a polarization weight of the i-th polarized channel, i ⁇ N;
  • the coded bits are polarization coded according to the information bit number set.
  • processing unit 310 is configured to:
  • the coded sequence is polarization coded according to the maximum mother code sequence.
  • processing unit 310 is configured to:
  • the coded sequence is polarization coded according to the maximum mother code sequence.
  • FIG. 7 is a schematic block diagram of a receiving device 400 according to an embodiment of the present application.
  • the receiving device 400 includes a processing unit 410 and a receiving unit 420 for performing the method of polarization code decoding in the above embodiments.
  • the processing unit 410 is configured to select K non-punctured location numbers as the reference sequence set according to the order of reliability of the N polarized channels of the polarization code with the code length N and the information bit number K, where the reference sequence set
  • the reliability of the polarization channel corresponding to any one of the serial numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers, K ⁇ 1 and is an integer;
  • the processing unit 410 is further configured to determine, according to the determination condition and the reference sequence number set, the information bit sequence set, where the determination condition is set according to at least one of a code rate, a mother code length and a code weight of the polarization code;
  • the processing unit 410 is further configured to decode the sequence to be decoded according to the set of information bit numbers.
  • processing unit 410 is configured to:
  • the sequence to be decoded is decoded according to the set of information bit numbers.
  • processing unit 410 is configured to:
  • the polarization weight of each of the N polarization channels of the polarization code with the code length N is calculated:
  • W i represents a polarization weight of the i-th polarized channel, i ⁇ N;
  • the processing unit 401 is further configured to: determine a modified polarization weight of the N polarized channels according to the calculated formula of the modified polarization weight; specifically: sort the modified polarization weights of the N polarized channels Determined as the order of reliability of the N polarized channels, and the modified polarization weight is calculated as:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the sequence to be decoded is decoded according to the set of information bit numbers.
  • processing unit 410 is configured to:
  • the sequence to be decoded is decoded according to the maximum mother code sequence.
  • processing unit 410 is configured to:
  • the sequence to be decoded is decoded according to the maximum mother code sequence.
  • FIG. 8 is a function of a sending device 500 for implementing encoding according to an embodiment of the present application.
  • the sending device 500 includes:
  • a transceiver 508 configured to acquire a bit to be encoded
  • the processing device 504 is configured to select K non-punctured location numbers as the reference sequence set according to the order of reliability of the N polarized channels of the polarization code with the code length N and the information bit number K, where the reference sequence set
  • the reliability of the polarization channel corresponding to any one of the serial numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers, K ⁇ 1 and is an integer;
  • the processing device 504 is further configured to determine, according to the determining condition and the reference sequence number set, the information bit number set, wherein the determining condition is set according to at least one of a code rate, a mother code length and a code weight of the polarization code;
  • the processing device 504 is further configured to perform polarization coding on the bit to be encoded according to the information bit number set.
  • processing device 504 is configured to:
  • the coded bits are polarization coded according to the information bit number set.
  • processing device 504 is configured to:
  • the polarization weight of each of the N polarization channels of the polarization code with the code length N is calculated:
  • W i represents a polarization weight of the i-th polarized channel, i ⁇ N;
  • the processing device 504 is further configured to: determine a modified polarization weight of the N polarized channels according to the calculated formula of the modified polarization weight; specifically: sort the modified polarization weights of the N polarized channels Determined as the order of reliability of the N polarized channels, and the modified polarization weight is calculated as:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the coded bits are polarization coded according to the information bit number set.
  • processing device 504 is configured to:
  • the coded sequence is polarization coded according to the maximum mother code sequence.
  • processing device 504 is configured to:
  • the coded sequence is polarization coded according to the maximum mother code sequence.
  • the above sending device may be a network device that communicates with the terminal, or may be a terminal device.
  • the embodiment of the present application further provides a processing device 504 for encoding, which is used to implement the encoding method in the above embodiment.
  • a processing device 504 for encoding which is used to implement the encoding method in the above embodiment.
  • Some or all of the coding methods of the foregoing embodiments may be implemented by hardware or by software.
  • FIG. 9, which is a schematic diagram of the internal structure of the processing apparatus.
  • the processing device 504 includes:
  • An input interface circuit 5142 configured to acquire an input bit to be encoded
  • the logic circuit 5144 is configured to select K non-punctured position numbers as a reference sequence set according to the order of reliability of the N polarized channels of the polarization code with the code length N and the number K of information bits, wherein the reference sequence set
  • the reliability of the polarization channel corresponding to any one of the serial numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers, K ⁇ 1 and is an integer;
  • the logic circuit 5144 is further configured to determine, according to the determination condition and the reference sequence number set, the information bit number set, wherein the determination condition is set according to at least one of a code rate, a mother code length and a code weight of the polarization code;
  • the logic circuit 5144 is further configured to perform polarization coding on the bit to be coded according to the information bit number set.
  • the output interface circuit 5146 is configured to output a polar encoded bit sequence.
  • the above logic circuit 5144 can be used to perform the encoding method described in the embodiments of the present application.
  • the processing device may be a chip or an integrated circuit.
  • logic circuit 5144 is used to:
  • the coded bits are polarization coded according to the information bit number set.
  • logic circuit 5144 is used to:
  • the polarization weight of each of the N polarization channels of the polarization code with the code length N is calculated:
  • W i represents a polarization weight of the i-th polarized channel, i ⁇ N;
  • the logic circuit 5144 is further configured to: determine a modified polarization weight of the N polarized channels according to the calculated formula of the modified polarization weight; specifically: sort the modified polarization weights of the N polarized channels Determined as the order of reliability of the N polarized channels, and the modified polarization weight is calculated as:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the coded bits are polarization coded according to the information bit number set.
  • logic circuit 5144 is used to:
  • the coded sequence is polarization coded according to the maximum mother code sequence.
  • logic circuit 5144 is used to:
  • the coded sequence is polarization coded according to the maximum mother code sequence.
  • FIG. 10 is another internal structure diagram of a processing device of a transmitting device.
  • the processing device 504 includes:
  • a memory 5044 configured to store a program
  • the processor 5042 is configured to execute the program stored by the memory, and when the program is executed, the processor performs a method of encoding a polarization code in the foregoing embodiments.
  • the above memory 5044 can be a physically independent unit, as shown in FIG. It can also be integrated with the processor 5042, as shown in FIG. 11 is a schematic diagram showing still another internal structure of a processing device of a transmitting device.
  • the processing device may also include only a processor, the memory is located outside the processing device, and the processor is connected to the memory through a circuit/wire for reading and executing the storage in the memory. program.
  • FIG. 12 is a receiving device 600 according to an embodiment of the present application.
  • the receiving device includes:
  • a transceiver 608 configured to acquire a sequence to be decoded
  • the processing device 604 is configured to select K non-punctured location numbers as the reference sequence set according to the order of reliability of the N polarized channels of the polarization code with the code length N and the information bit number K, where the reference sequence set
  • the reliability of the polarization channel corresponding to any one of the serial numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers, K ⁇ 1 and is an integer;
  • the processing device 604 is further configured to determine, according to the determining condition and the reference sequence number set, the information bit number set, wherein the determining condition is set according to at least one of a code rate, a mother code length and a code weight of the polarization code;
  • the processing device 604 is further configured to decode the sequence to be decoded according to the set of information bit numbers.
  • processing device 604 is configured to:
  • the sequence to be decoded is decoded according to the set of information bit numbers.
  • processing device 604 is configured to:
  • the polarization weight of each of the N polarization channels of the polarization code with the code length N is calculated:
  • W i represents a polarization weight of the i-th polarized channel, i ⁇ N;
  • the processing device 604 is further configured to: determine, according to the modified formula of the polarization weight, the corrected polarization weight of the N polarized channels; specifically: sort the modified polarization weights of the N polarized channels Determined as the order of reliability of the N polarized channels, and the modified polarization weight is calculated as:
  • W_Modified(j) ⁇ *W(j)/max(W)+(1- ⁇ )*RW(j)/max(RW)
  • PW_Modified(j) is the modified polarization weight of the jth polarized channel
  • j 0,1,2,...,N-1
  • is the weighting coefficient
  • is greater than or equal to 0 and less than or equal to 1.
  • the number constant takes any value from 0.8 to 1
  • max(W) is the largest polarization weight value in the polarized channel
  • RW(j) is the row weight corresponding to the jth polarization channel
  • max(RW) Is the largest row weight value in the polarized channel.
  • the sequence to be decoded is decoded according to the set of information bit numbers.
  • processing device 604 is configured to:
  • the sequence to be decoded is decoded according to the maximum mother code sequence.
  • processing device 604 is configured to:
  • the sequence to be decoded is decoded according to the maximum mother code sequence.
  • the embodiment of the present invention further provides a processing device 604 for decoding, which is used to implement the decoding method in the foregoing embodiment.
  • the above part or all of the decoding method of the embodiment may be implemented by hardware or by software.
  • the structure of the processing device 604 is the same as that of the processing device in the previous encoding device, but the function is implemented. Different, so here is just a description of the difference.
  • FIG. 13 is a schematic diagram showing the internal structure of a processing device of a receiving device.
  • An input interface circuit 6142 configured to acquire an input bit to be encoded
  • the logic circuit 6144 in the processing device 604 is used to select K for the order of reliability and the number of information bits K of the N polarized channels of the polarization code having a code length of N.
  • the non-punctured position sequence number is used as a reference sequence number set, wherein the reliability of the polarization channel corresponding to any one of the reference sequence numbers is greater than or equal to the reliability of the reliability of the polarization channel corresponding to the remaining (NK) sequence numbers.
  • the logic circuit 6144 is further configured to determine, according to the determination condition and the reference sequence number set, the information bit number set, wherein the determination condition is set according to at least one of a code rate, a mother code length and a code weight of the polarization code;
  • the logic circuit 6144 is further configured to decode the sequence to be decoded according to the set of information bit numbers.
  • the output interface circuit 6146 is configured to output the decoded bit sequence.
  • logic circuit 6144 is configured to:
  • the sequence to be decoded is decoded according to the set of information bit numbers.
  • logic circuit 6144 is configured to:
  • the polarization weight of each of the N polarization channels of the polarization code with the code length N is calculated:
  • W i represents a polarization weight of the i-th polarized channel, i ⁇ N;
  • the sequence to be decoded is decoded according to the set of information bit numbers.
  • logic circuit 6144 is used to:
  • the sequence to be decoded is decoded according to the maximum mother code sequence.
  • logic circuit 6144 is used to:
  • the sequence to be decoded is decoded according to the maximum mother code sequence.
  • the logic circuit 6144 can be used to perform the decoding methods described in the various embodiments of the present application. For details, please refer to the description of the decoding side in the foregoing method embodiment, and details are not described herein again.
  • the processing device 604 may be a chip or an integrated circuit.
  • the above-mentioned part or all of the decoding method of the embodiment may be implemented by hardware or by software, and the processor 6042 in the processing apparatus is configured to execute a program stored in the memory, when the program is executed, The processor 6042 performs the method of polarization code decoding in the above embodiments.
  • the above memory 6044 may be a physically independent unit, as specifically seen in FIG. Figure 14 is a schematic diagram showing another internal structure of a processing device of a receiving device.
  • the memory 6044 can also be integrated with the processor 6042, as specifically seen in FIG. Figure 15 is a schematic diagram showing still another internal structure of a processing device of a receiving device.
  • the processing device may also include only a processor, the memory is located outside the processing device, and the processor is connected to the memory through a circuit/wire for reading and executing the storage in the memory. program.
  • the processing device for encoding and the processing device for decoding in the embodiments of the present application may be independent in actual application, or may be integrated, that is, form a device.
  • the foregoing sending device or receiving device may be a terminal device (hereinafter referred to as a terminal) or a network device.
  • a terminal When the transmitting device or the receiving device is a terminal, see FIG. FIG. 16 is a schematic diagram showing the structure of the terminal device 700.
  • the terminal 700 can also include a power source 712 for providing power to various devices or circuits in the terminal.
  • the terminal may further include an antenna 710, configured to send the uplink data output by the transceiver through the wireless signal, or output the received wireless signal to the transceiver.
  • the terminal may further include one or more of an input unit 714, a display unit 716, an audio circuit 718, a camera 720, a sensor 722, and the like, and the audio circuit may include a speaker. 7182, microphone 7184, etc.
  • the above functions are implemented in the form of software and sold or used as stand-alone products, they can be stored in a computer readable storage medium.
  • the part of the technical solution of the present application which contributes in essence or to the prior art, or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请提供一种极化码编译码的方法、发送设备和接收设备,能够提高极化码的编译码性能。该方法包括:发送设备根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度,K≥1且为整数;发送设备根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长、信息比特数目和码重中的至少一种设定的;发送设备根据信息比特序号集合,对待编码比特进行极化编码。

Description

编码方法、装置和设备
本申请要求于2017年05月05日提交中国专利局、申请号为201710314076.5、申请名称为“极化码编译码的方法、发送设备和接收设备”以及2017年08月01日提交中国专利局、申请号为201710648424.2、申请名称为“极化码编译码的方法、发送设备和接收设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种极化码编译码的方法、发送设备和接收设备。
背景技术
信道编码作为最基本的无线接入技术,在保证数据的可靠性传输方面起到至关重要的作用。在现有的无线通信系统中,一般采用Turbo码、低密度奇偶校验码(Low Density Parity Check,LDPC)和极化(Polar)码进行信道编码。Turbo码不能够支持过低或过高码率的信息传输。而对于中短包传输,Turbo码和LDPC码也由于自身编译码的特点,在有限码长下很难达到理想的性能。在实现方面,Turbo码和LDPC码在编译码实现过程中具有较高的计算复杂度。极化(Polar)码是理论上证明可以取得香农容量,且具有相对简单的编译码复杂度的好码,因而得到了越来越广泛的应用。
但是,随着无线通信系统的快速演进,未来的通信系统(例如,5G)将会出现一些新的特点。例如,最典型的三个通信场景包括增强型移动互联网(Enhance Mobile Broadband,eMBB)、海量机器连接通信(Massive Machine Type Communication,mMTC)和高可靠低延迟通信(Ultra Reliable Low Latency Communication,URLLC)。这些通信场景对于极化码的编译码性能提出了更高的要求。
而现阶段,极化码在应用过程中的编译码性能还并不理想,需要进一步提高。
发明内容
本申请提供一种极化码编译码的方法、发送设备和接收设备,能够提高极化码编译码的性能。
第一方面,本申请提供一种极化码编码的方法,该方法包括:发送设备根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;发送设备根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;发送设备根据信息比特序号集合,对待编码比特进行极化编码。
在一种可能的实现方式中,发送设备根据判定条件和参考序号集合,确定信息比特序号集合,包括:若不满足判定条件,发送设备将参考序号集合确定为信息比特序 号集合。
在一种可能的实现方式中,发送设备根据判定条件和参考序号集合,确定信息比特序号集合,包括:若满足判定条件,发送设备从参考序号集合中确定K 1个第一序号,该K 1个第一序号中每个第一序号对应的码重为W min,其中,W min等于该K个非打孔位置序号分别对应的K个码重中的最小码重;发送设备从可选序号中选择K 2个第二序号替换该K 1个第一序号中的K 2个第一序号,得到信息比特序号集合,该可选序号为该N个极化信道的序号中除了参考序号集合和打孔位置序号之外的序号,K 2≤K 1,其中,该K 2个第二序号满足如下条件中的任意一项:该K 2个第二序号中的每个第二序号对应的码重大于W min,且每个第二序号对应的极化信道的可靠度大于或等于该可选序号中除了第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;该K 2个第二序号中最小的序号大于该可选序号中除去该K 2个第二序号后最大的序号;该K 2个第二序号中每个第二序号的码重大于或等于2W min
在一种可能的实现方式中,判定条件为下列条件中的至少一个:母码长度大于或等于预设母码长度阈值;码率大于或等于预设的码率阈值;参考序号集合中包括的K 1个非打孔位置序号对应的码重中最小码重的数目大于或等于数量阈值;参考序号集合中的各个序号对应的各个码重中的最小码重小于或等于预设的码重阈值。
在一种可能的实现方式中,该方法还包括:发送设备根据极化权重的计算公式,确定该N个极化信道的极化权重;发送设备将该N个极化信道的极化权重的排序,确定为该N个极化信道的可靠度的排序,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000001
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5, 1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
在一种可能的实现方式中,在判定条件为参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值的情况下,该方法还包括:发送设备计算参考序号集合中包括的K 1个序号对应的K 1个码重;发送设备从该K 1个序号对应的K 1个码重中确定最小码重。
在一种可能的实现方式中,该方法还包括:发送设备根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;发送设备将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
第二方面,本申请提供一种极化码编码的方法,该方法包括:发送设备根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000002
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];发送设备根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;发送设备根据信息比特序号集合对待编码比特进行极化编码。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
在一种可能的实现方式中,该方法还包括:发送设备根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;发送设备将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
第三方面,本申请提供一种极化码译码的方法,该方法包括:接收设备根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;接收设备根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;发送设备根据信息比特序号集合对待译码序列进行译码。
在一种可能的实现方式中,接收设备根据判定条件和参考序号集合,确定信息比特序号集合,包括:若不满足判定条件,接收设备将参考序号集合确定为信息比特序号集合。
在一种可能的实现方式中,接收设备根据判定条件和参考序号集合,确定信息比特序号集合,包括:若满足判定条件,接收设备从参考序号集合中确定K 1个第一序号,该K 1个第一序号中每个第一序号对应的码重等于W min,其中,W min等于该K个非打孔位置序号分别对应的K个码重中的最小码重;接收设备从可选序号中选择K 2个第二序号替换该K 1个第一序号中的K 2个第一序号,得到信息比特序号集合,该可选序号为该N个极化信道的序号中除了参考序号集合和打孔位置序号之外的序号,K 2≤K 1,其中,该K 2个第二序号满足如下条件中的任意一项:该K 2个第二序号中的每个第二序号对应的码重大于W min,且每个第二序号对应的极化信道的可靠度大于或等于该可选序号中除了第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;该K 2 个第二序号中的最小的序号大于该可选序号中除去该K 2个第二序号后最大的序号;该K 2个第二序号中每个第二序号的码重大于或等于2W min
在一种可能的实现方式中,判定条件为下列条件中的至少一个:母码长度大于或等于预设母码长度阈值;码率大于或等于预设的码率阈值;参考序号集合中包括的K 1个非打孔位置序号对应的码重中最小码重的数目大于或等于数量阈值;参考序号集合中的各个序号对应的各个码重中的最小码重小于或等于预设的码重阈值。
在一种可能的实现方式中,接收设备根据极化权重的计算公式,确定该N个极化信道的极化权重;接收设备将该N个极化信道的极化权重的排序,确定为该N个极化信道的可靠度的排序,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000003
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
在一种可能的实现方式中,在判定条件为参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值的情况下,所述方法还包括:接收设备计算参考序号集合中包括的K 1个序号对应的K 1个码重;接收设备从该K 1个序号对应的K 1个码重中确定最小码重。
在一种可能的实现方式中,该方法还包括:接收设备根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;发送设备将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
第四方面,本申请提供一种极化码译码的方法,该方法包括:接收设备根据极化权重的计算公式,计算码长为N的极化码的N个极化信道的极化权重,极化权重的的公式为:
Figure PCTCN2018085797-appb-000004
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];接收设备根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;接收设备根据信息比特序号集合对待译码序列进行译码。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
在一种可能的实现方式中,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
在一种可能的实现方式中,该方法还包括:接收设备根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;发送设备将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极 化信道中最大的行重值。
第五方面,本申请实施例提供一种极化码编码的方法,该方法包括:发送设备根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000005
其中,W i为第i个极化信道的极化权重,B j∈{0,1},j∈{0,1,...,n-1},i∈{0,1,...,n-1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,Ξ=[1,2,3,...]表征m的取值集合,
Figure PCTCN2018085797-appb-000006
n=log 2(N);发送设备根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;发送设备根据信息比特序号集合对待编码比特进行极化编码。
需要说明的是,第五方面提供的极化码编码的方法与第三方面提供的极化码编码的方法相比,不同之处在于提供的极化权重的计算公式不同。在根据各自提供的计算公式,计算得到极化信道的极化权重之后,确定极化信道的可靠度排序,以及确定信息比特序号集合,并根据信息比特序号集合进行极化编码的过程都是相同的。
第六方面,本申请实施例提供一种极化码译码的方法,该方法包括:接收设备根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000007
其中,W i为第i个极化信道的极化权重,B j∈{0,1},j∈{0,1,...,n-1},i∈{0,1,...,n-1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,Ξ=[1,2,3,...]表征m的取值集合,
Figure PCTCN2018085797-appb-000008
n=log 2(N);接收设备根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;接收设备根据信息比特序号集合对待译码序列进行译码。
在一种可能的实现方式中,该方法还包括:发送设备根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;发送设备将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极 化信道中最大的行重值。
同样的,第六方面提供的极化码译码的方法与第四方面提供的极化码译码的方法相比,不同之处在于提供的极化权重的计算公式不同。在根据各自提供的计算公式,计算得到极化信道的极化权重之后,确定极化信道的可靠度排序,以及确定信息比特序号集合,并根据信息比特序号集合对待译码序列进行译码的过程也是相同的。
具体地,第三方面和第五方面提供的极化码编码的方法,在计算得到极化信道的极化权重,并根据极化权重确定了极化信道的可靠度排序之后,确定信息比特序号集合的过程可以采用本申请第一方面提供的确定信息比特序号集合的技术方案。当然,也可以采用现有技术中确定信息比特序号集合的技术方案,本申请实施例对此不作限定。
同样地,第四方面和第六方面提供的极化码译码的方法,在计算得到极化信道的极化权重,并根据极化权重确定了极化信道的可靠度排序之后,确定信息比特序号集合的过程也可以采用本申请第二方面提供的确定信息比特序号集合的方案。同样地,也可以采用现有技术中确定信息比特序号集合的技术方案。
第七方面,本申请提供一种极化码编码的方法,该方法包括:发送设备获取最大母码序列,其中,该最大母码序列为{1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,21,34,35,25,8,37,66,257,12,67,41,14,69,20,49,15,
130,73,22,131,23,36,513,133,26,81,38,27,137,39,258,29,68,42,97,259,43,145,70,261,50,16,71,45,74,51,265,132,161,75,24,53,514,134,82,77,515,273,135,28,83,57,138,40,193,517,30,85,98,139,260,289,31,44,521,99,146,141,89,262,147,72,46,101,263,52,529,47,266,149,321,162,76,105,54,267,163,153,78,55,516,274,545,269,136,84,165,58,113,79,275,194,518,59,385,86,140,195,169,519,277,290,32,87,61,522,100,577,142,291,197,90,523,281,148,177,102,143,91,264,293,530,48,201,525,103,150,322,93,531,106,268,151,323,297,164,641,107,154,56,209,533,546,270,325,166,114,155,80,276,109,547,305,271,167,60,386,537,115,157,329,196,170,520,278,225,549,387,88,62,117,578,171,279,292,198,769,63,524,389,282,579,337,553,178,144,199,92,173,121,294,283,202,526,179,104,581,393,295,94,532,203,561,527,285,152,324,298,181,353,642,95,108,585,210,534,299,205,643,401,326,156,211,185,535,110,548,306,272,327,301,168,645,53 8,116,593,111,158,330,307,213,226,550,388,539,417,118,159,331,172,280,649,227,551,309,770,64,217,390,541,119,580,338,554,609,333,200,771,174,229,122,391,284,339,555,313,180,657,582,175,394,123,296,449,773,204,562,528,286,233,583,341,557,182,354,395,96,125,586,563,287,300,206,777,183,355,644,402,673,397,587,345,212,186,536,241,207,565,403,328,302,357,646,594,187,112,589,308,214,785,303,647,540,405,418,595,569,160,332,215,189,361,650,228,552,310,705,419,218,542,120,597,610,651,409,334,311,772,230,801,219,392,543,340,556,421,314,611,369,658,335,176,653,231,124,450,601,774,315,221,659,234,584,342,558,396,613,451,425,775,126,564,288,235,343,559,317,778,184,356,661,833,674,398,127,588,453,346,617,242,208,566,779,404,237,675,433,358,399,347,188,665,590,243,567,786,304,457,781,359,648,406,596,677,570,625,591,349,216,787,190,362,245,706,407,420,571,897,598,191,363,652,410,312,707,465,681,789,802,220,544,249,422,599,573,612,370,411,336,365,654,232,803,709,602,423,316,222,793,371,660,689,614,655,413,452,426,603,776,481,805,223,236,344,560,318,713,615,373,662,834,427,128,454,605,618,319,780,663,835,238,809,676,434,400,455,348,429,619,377,666,244,568,721,239,458,782,435,360,837,678,626,667,592,350,788,621,246,459,817,783,408,679,572,437,898,627,351,192,364,669,841,247,708,466,682,790,737,461,899,250,600,574,412,629,467,683,441,791,366,804,710,251,424,575,901,794,372,849,690,367,656,414,711,604,469,685,482,633,806,224,795,253,714,691,616,374,415,428,905,483,807,606,320,715,473,797,375,664,836,810,693,865,456,430,607,620,485,378,722,240,811,717,436,913,838,431,379,668,723,697,622,460,818,784,489,839,813,680,438,628,352,623,381,670,842,248,819,725,738,462,439,900,929,630,671,843,468,684,442,792,739,497,463,821,252,576,729,902,631,850,443,368,845,712,470,686,741,634,903,796,851,254,825,692,416,471,687,445,906,484,635,808,961,255,716,474,798,376,745,853,694,866,907,608,486,637,475,799,812,718,695,867,914,432,909,487,380,857,724,698,753,719,477,915,490,840,814,869,699,624,382,820,726,491,815,440,917,930,383,672,844,727,701,873,740,498,464,822,493,931,730,632,444,921,846,499,823,742,731,904,852,933,826,881,847,472,688,446,743,636,501,962,256,827,733,746,854,447,908,963,937,638,476,800,747,505,855,829, 696,868,910,488,639,965,858,754,720,478,916,749,945,870,911,859,700,755,479,492,816,969,871,918,384,861,728,702,874,757,919,494,932,703,875,922,500,824,977,495,732,761,934,882,923,848,877,744,502,935,828,734,883,448,925,503,964,938,993,735,748,506,856,830,885,939,640,966,507,831,750,946,912,967,860,941,889,756,480,751,509,970,947,872,862,758,971,920,949,863,704,876,759,978,496,973,762,924,979,953,878,763,936,884,879,926,504,981,994,736,765,886,927,940,995,508,832,985,887,968,942,997,890,752,510,948,943,891,511,972,1001,950,864,893,760,974,951,980,954,1009,975,764,955,880,982,766,928,983,957,996,767,986,888,998,987,944,999,892,512,989,1002,894,1003,952,895,1010,976,1005,956,1011,984,958,1013,768,959,988,1017,1000,990,991,1004,896,1006,1012,1007,1014,960,1015,1018,1019,992,1021,1008,1016,1020,1022,1023,1024};发送设备根据该最大母码序列进行极化编码。
第八方面,本申请提供一种极化码编码的方法,该方法包括:发送设备获取最大母码序列,其中,该最大母码序列为{1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,34,21,35,8,25,37,66,12,257,67,41,14,20,69,15,
130,49,22,73,131,36,23,26,513,133,38,81,27,39,258,68,137,42,29,259,97,70,43,16,145,50,261,71,45,74,132,51,24,265,75,161,514,134,53,82,28,77,515,135,40,273,83,138,57,30,517,260,193,98,139,85,44,31,146,289,99,262,72,521,141,46,89,147,52,263,101,47,266,76,162,529,149,54,321,267,105,78,163,516,136,55,274,84,153,58,269,79,545,165,518,275,194,113,140,86,59,32,519,385,290,195,100,277,169,87,522,142,61,90,148,291,577,264,197,102,523,143,48,281,91,177,530,150,293,103,322,525,268,201,106,93,164,531,151,56,323,154,297,107,270,80,641,546,166,533,276,209,114,155,325,60,271,109,547,167,520,386,305,196,115,278,170,88,537,157,62,329,549,387,292,225,578,279,198,171,117,524,144,63,282,92,178,769,579,389,294,199,104,553,337,173,526,283,202,121,94,179,532,152,295,581,324,527,393,298,203,108,285,95,642,561,181,534,210,353,156,326,299,585,272,205,110,643,548,168,535,401,306,211,116,185,327,538,158,301,111,330,645,550,388,307,226,593,280,213,172,118,539,159,64,331,551,417,770,227,580,390,309,200,649,119,554,338,174,541,284,217,122,333,180, 771,609,391,296,229,582,555,339,175,528,394,313,204,123,286,96,657,562,182,773,583,449,354,557,395,341,300,233,586,287,206,125,644,563,183,536,402,212,355,186,328,777,587,397,302,207,112,673,345,646,565,403,308,241,594,214,187,357,540,160,303,589,332,647,552,418,785,228,595,405,310,215,650,120,569,189,542,218,361,334,419,772,705,610,392,311,230,651,597,556,340,176,543,409,314,219,124,335,658,801,611,421,774,231,584,450,369,653,558,396,342,315,234,601,288,221,126,659,564,184,775,613,451,356,559,425,343,778,235,588,398,317,208,127,674,346,661,566,404,242,833,453,188,358,779,617,399,304,237,590,675,347,648,567,433,786,243,596,406,216,665,359,570,190,781,591,457,362,677,349,420,787,706,625,407,312,245,652,598,571,191,544,410,220,363,336,897,802,707,612,422,789,232,681,599,465,370,654,573,411,316,249,602,222,365,660,803,423,776,709,614,452,371,655,560,426,344,793,236,603,413,318,223,128,689,662,805,615,481,834,454,427,373,780,713,618,400,319,238,605,676,348,663,568,434,244,835,455,666,360,809,619,429,782,239,592,458,377,678,350,435,788,721,626,408,246,667,837,572,192,783,621,459,364,679,351,898,817,708,627,437,790,247,682,600,466,669,574,412,250,841,461,366,899,804,737,424,791,710,683,629,467,372,656,575,441,794,251,604,414,224,367,690,901,806,711,616,482,849,685,469,428,374,795,714,633,415,320,253,606,691,664,807,483,836,456,905,375,810,715,620,430,797,240,607,473,378,693,436,722,865,485,668,838,811,431,784,717,622,460,379,680,352,913,818,723,628,438,248,697,839,670,813,623,489,842,462,381,900,819,738,439,792,725,684,630,468,671,576,442,252,843,463,368,929,739,902,821,712,631,497,850,686,470,443,796,729,634,416,254,845,692,903,808,741,484,851,687,471,906,376,825,716,635,445,798,255,608,474,694,961,866,486,907,853,812,745,432,799,718,637,475,380,695,914,724,867,487,698,840,909,814,719,624,490,857,477,382,915,820,753,440,726,699,869,672,815,491,844,464,383,930,740,917,822,727,632,498,701,444,730,873,493,846,931,904,823,742,499,852,688,472,921,826,731,636,446,256,847,933,743,962,881,501,908,854,827,746,447,800,733,638,476,696,963,868,488,937,855,747,910,829,720,639,505,858,478,916,754,965,700,870,911,816,749,492,859,479,384,945,755,918,728,871,702,969,874,494,861,932,919,824,757,500,703,9 22,732,875,495,848,934,744,977,882,502,923,828,761,448,734,877,935,964,883,503,938,856,748,925,830,735,640,506,993,966,939,885,912,831,750,507,860,480,946,756,967,872,941,751,970,889,509,862,947,920,758,704,971,876,496,863,949,759,978,924,762,973,878,936,979,884,504,953,763,926,736,879,994,981,940,886,927,832,765,508,995,968,887,942,752,985,890,510,948,997,943,972,891,511,864,950,760,1001,974,893,951,980,954,764,975,880,1009,982,955,928,766,996,983,888,957,767,986,998,944,987,892,512,999,1002,989,894,952,1003,976,895,1010,956,1005,1011,984,958,768,1013,959,988,1000,1017,990,1004,991,896,1006,1012,1007,1014,960,1015,1018,1019,992,1021,1008,1016,1020,1022,1023,1024};发送设备根据该最大母码序列进行极化编码。
第九方面,本申请提供一种极化码译码的方法,该方法包括:接收设备获取最大母码序列,其中,该最大母码序列为{1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,21,34,35,25,8,37,66,257,12,67,41,14,69,20,49,15,
130,73,22,131,23,36,513,133,26,81,38,27,137,39,258,29,68,42,97,259,43,145,70,261,50,16,71,
45,74,51,265,132,161,75,24,53,514,134,82,77,515,273,135,28,83,57,138,40,193,517,30,85,98,139,260,289,31,44,521,99,146,141,89,262,147,72,46,101,263,52,529,47,266,149,321,162,76,105,54,267,163,153,78,55,516,274,545,269,136,84,165,58,113,79,275,194,518,59,385,86,140,195,169,519,277,290,32,87,61,522,100,577,142,291,197,90,523,281,148,177,102,143,91,264,293,530,48,201,525,103,150,322,93,531,106,268,151,323,297,164,641,107,154,56,209,533,546,270,325,166,114,155,80,276,109,547,305,271,167,60,386,537,115,157,329,196,170,520,278,225,549,387,88,62,117,578,171,279,292,198,769,63,524,389,282,579,337,553,178,144,199,92,173,121,294,283,202,526,179,104,581,393,295,94,532,203,561,527,285,152,324,298,181,353,642,95,108,585,210,534,299,205,643,401,326,156,211,185,535,110,548,306,272,327,301,168,645,538,116,593,111,158,330,307,213,226,550,388,539,417,118,159,331,172,280,649,227,551,309,770,64,217,390,541,119,580,338,554,609,333,200,771,174,229,122,391,284,339,555,313,180,657,582,175,394,123,296,449,773,204,562,528,286,233,583,341,557,1 82,354,395,96,125,586,563,287,300,206,777,183,355,644,402,673,397,587,345,212,186,536,241,207,565,403,328,302,357,646,594,187,112,589,308,214,785,303,647,540,405,418,595,569,160,332,215,189,361,650,228,552,310,705,419,218,542,120,597,610,651,409,334,311,772,230,801,219,392,543,340,556,421,314,611,369,658,335,176,653,231,124,450,601,774,315,221,659,234,584,342,558,396,613,451,425,775,126,564,288,235,343,559,317,778,184,356,661,833,674,398,127,588,453,346,617,242,208,566,779,404,237,675,433,358,399,347,188,665,590,243,567,786,304,457,781,359,648,406,596,677,570,625,591,349,216,787,190,362,245,706,407,420,571,897,598,191,363,652,410,312,707,465,681,789,802,220,544,249,422,599,573,612,370,411,336,365,654,232,803,709,602,423,316,222,793,371,660,689,614,655,413,452,426,603,776,481,805,223,236,344,560,318,713,615,373,662,834,427,128,454,605,618,319,780,663,835,238,809,676,434,400,455,348,429,619,377,666,244,568,721,239,458,782,435,360,837,678,626,667,592,350,788,621,246,459,817,783,408,679,572,437,898,627,351,192,364,669,841,247,708,466,682,790,737,461,899,250,600,574,412,629,467,683,441,791,366,804,710,251,424,575,901,794,372,849,690,367,656,414,711,604,469,685,482,633,806,224,795,253,714,691,616,374,415,428,905,483,807,606,320,715,473,797,375,664,836,810,693,865,456,430,607,620,485,378,722,240,811,717,436,913,838,431,379,668,723,697,622,460,818,784,489,839,813,680,438,628,352,623,381,670,842,248,819,725,738,462,439,900,929,630,671,843,468,684,442,792,739,497,463,821,252,576,729,902,631,850,443,368,845,712,470,686,741,634,903,796,851,254,825,692,416,471,687,445,906,484,635,808,961,255,716,474,798,376,745,853,694,866,907,608,486,637,475,799,812,718,695,867,914,432,909,487,380,857,724,698,753,719,477,915,490,840,814,869,699,624,382,820,726,491,815,440,917,930,383,672,844,727,701,873,740,498,464,822,493,931,730,632,444,921,846,499,823,742,731,904,852,933,826,881,847,472,688,446,743,636,501,962,256,827,733,746,854,447,908,963,937,638,476,800,747,505,855,829,696,868,910,488,639,965,858,754,720,478,916,749,945,870,911,859,700,755,479,492,816,969,871,918,384,861,728,702,874,757,919,494,932,703,875,922,500,824,977,495,732,761,934,882,923,848,877,744,502,935,828,734,883,448,925,503,964,938,993,73 5,748,506,856,830,885,939,640,966,507,831,750,946,912,967,860,941,889,756,480,751,509,970,947,872,862,758,971,920,949,863,704,876,759,978,496,973,762,924,979,953,878,763,936,884,879,926,504,981,994,736,765,886,927,940,995,508,832,985,887,968,942,997,890,752,510,948,943,891,511,972,1001,950,864,893,760,974,951,980,954,1009,975,764,955,880,982,766,928,983,957,996,767,986,888,998,987,944,999,892,512,989,1002,894,1003,952,895,1010,976,1005,956,1011,984,958,1013,768,959,988,1017,1000,990,991,1004,896,1006,1012,1007,1014,960,1015,1018,1019,992,1021,1008,1016,1020,1022,1023,1024};接收设备根据该最大母码序列对待译码序列进行译码。
第十方面,本申请提供一种极化码译码的方法,该方法包括:接收设备获取最大母码序列,其中,该最大母码序列为{1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,34,21,35,8,25,37,66,12,257,67,41,14,20,69,15,
130,49,22,73,131,36,23,26,513,133,38,81,27,39,258,68,137,42,29,259,97,70,43,16,145,50,261,71,45,74,132,51,24,265,75,161,514,134,53,82,28,77,515,135,40,273,83,138,57,30,517,260,193,98,139,85,44,31,146,289,99,262,72,521,141,46,89,147,52,263,101,47,266,76,162,529,149,54,321,267,105,78,163,516,136,55,274,84,153,58,269,79,545,165,518,275,194,113,140,86,59,32,519,385,290,195,100,277,169,87,522,142,61,90,148,291,577,264,197,102,523,143,48,281,91,177,530,150,293,103,322,525,268,201,106,93,164,531,151,56,323,154,297,107,270,80,641,546,166,533,276,209,114,155,325,60,271,109,547,167,520,386,305,196,115,278,170,88,537,157,62,329,549,387,292,225,578,279,198,171,117,524,144,63,282,92,178,769,579,389,294,199,104,553,337,173,526,283,202,121,94,179,532,152,295,581,324,527,393,298,203,108,285,95,642,561,181,534,210,353,156,326,299,585,272,205,110,643,548,168,535,401,306,211,116,185,327,538,158,301,111,330,645,550,388,307,226,593,280,213,172,118,539,159,64,331,551,417,770,227,580,390,309,200,649,119,554,338,174,541,284,217,122,333,180,771,609,391,296,229,582,555,339,175,528,394,313,204,123,286,96,657,562,182,773,583,449,354,557,395,341,300,233,586,287,206,125,644,563,183,536,402,212,355,186,328,777,587,397,302,207,112,673,345,646,565,403,308,241,594,214 ,187,357,540,160,303,589,332,647,552,418,785,228,595,405,310,215,650,120,569,189,542,218,361,334,419,772,705,610,392,311,230,651,597,556,340,176,543,409,314,219,124,335,658,801,611,421,774,231,584,450,369,653,558,396,342,315,234,601,288,221,126,659,564,184,775,613,451,356,559,425,343,778,235,588,398,317,208,127,674,346,661,566,404,242,833,453,188,358,779,617,399,304,237,590,675,347,648,567,433,786,243,596,406,216,665,359,570,190,781,591,457,362,677,349,420,787,706,625,407,312,245,652,598,571,191,544,410,220,363,336,897,802,707,612,422,789,232,681,599,465,370,654,573,411,316,249,602,222,365,660,803,423,776,709,614,452,371,655,560,426,344,793,236,603,413,318,223,128,689,662,805,615,481,834,454,427,373,780,713,618,400,319,238,605,676,348,663,568,434,244,835,455,666,360,809,619,429,782,239,592,458,377,678,350,435,788,721,626,408,246,667,837,572,192,783,621,459,364,679,351,898,817,708,627,437,790,247,682,600,466,669,574,412,250,841,461,366,899,804,737,424,791,710,683,629,467,372,656,575,441,794,251,604,414,224,367,690,901,806,711,616,482,849,685,469,428,374,795,714,633,415,320,253,606,691,664,807,483,836,456,905,375,810,715,620,430,797,240,607,473,378,693,436,722,865,485,668,838,811,431,784,717,622,460,379,680,352,913,818,723,628,438,248,697,839,670,813,623,489,842,462,381,900,819,738,439,792,725,684,630,468,671,576,442,252,843,463,368,929,739,902,821,712,631,497,850,686,470,443,796,729,634,416,254,845,692,903,808,741,484,851,687,471,906,376,825,716,635,445,798,255,608,474,694,961,866,486,907,853,812,745,432,799,718,637,475,380,695,914,724,867,487,698,840,909,814,719,624,490,857,477,382,915,820,753,440,726,699,869,672,815,491,844,464,383,930,740,917,822,727,632,498,701,444,730,873,493,846,931,904,823,742,499,852,688,472,921,826,731,636,446,256,847,933,743,962,881,501,908,854,827,746,447,800,733,638,476,696,963,868,488,937,855,747,910,829,720,639,505,858,478,916,754,965,700,870,911,816,749,492,859,479,384,945,755,918,728,871,702,969,874,494,861,932,919,824,757,500,703,922,732,875,495,848,934,744,977,882,502,923,828,761,448,734,877,935,964,883,503,938,856,748,925,830,735,640,506,993,966,939,885,912,831,750,507,860,480,946,756,967,872,941,751,970,889,509,862,947,920,758,704,971,876,496,863 ,949,759,978,924,762,973,878,936,979,884,504,953,763,926,736,879,994,981,940,886,927,832,765,508,995,968,887,942,752,985,890,510,948,997,943,972,891,511,864,950,760,1001,974,893,951,980,954,764,975,880,1009,982,955,928,766,996,983,888,957,767,986,998,944,987,892,512,999,1002,989,894,952,1003,976,895,1010,956,1005,1011,984,958,768,1013,959,988,1000,1017,990,1004,991,896,1006,1012,1007,1014,960,1015,1018,1019,992,1021,1008,1016,1020,1022,1023,1024};接收设备根据该最大母码序列对待译码序列进行译码。
第十一方面,本申请提供一种发送设备,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该发送设备包括执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第十二方面,本申请提供一种发送设备,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该发送设备包括执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第十三方面,本申请提供一种接收设备,用于执行第三方面或第三方面的任意可能的实现方式中的方法。具体地,该接收设备包括执行第三方面或第三方面的任意可能的实现方式中的方法的单元。
第十四方面,本申请提供一种接收设备,用于执行第四方面或第四方面的任意可能的实现方式中的方法。具体地,该接收设备包括执行第四方面或第四方面的任意可能的实现方式中的方法的单元。
第十五方面,本申请提供一种发送设备,用于执行第五方面或第五方面的任意可能的实现方式中的方法。具体地,该发送设备包括执行第五方面或第五方面的任意可能的实现方式中的方法的单元。
第十六方面,本申请提供一种接收设备,用于执行第六方面或第六方面的任意可能的实现方式中的方法。具体地,该接收设备包括执行第六方面或第六方面的任意可能的实现方式中的方法的单元。
第十七方面,本申请提供一种发送设备,用于执行第七方面或第七方面的任意可能的实现方式中的方法。具体地,该发送设备包括执行第七方面或第七方面的任意可能的实现方式中的方法的单元。
第十八方面,本申请提供一种发送设备,用于执行第八方面或第八方面的任意可能的实现方式中的方法。具体地,该发送设备包括执行第八方面或第八方面的任意可 能的实现方式中的方法的单元。
第十九方面,本申请提供一种接收设备,用于执行第九方面或第九方面的任意可能的实现方式中的方法。具体地,该接收设备包括执行第九方面或第九方面的任意可能的实现方式中的方法的单元。
第二十方面,本申请提供一种接收设备,用于执行第十方面或第十方面的任意可能的实现方式中的方法。具体地,该接收设备包括执行第十方面或第十方面的任意可能的实现方式中的方法的单元。
第二十一方面,本申请提供一种编码装置,该编码装置具有实现上述第一方面和第一方面的任一种可能的设计中发送设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述编码装置包括:输入接口电路,用于获取待编码序列;逻辑电路,用于执行上述第一方面和第一方面的任一种可能的设计中发送端的行为;输出接口电路,用于输出Polar编码后的比特序列。
可选的,所述编码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述编码装置可以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十二方面,本申请提供一种编码装置,该编码装置具有实现上述第二方面和第二方面的任一种可能的设计中发送设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述编码装置包括:输入接口电路,用于获取待编码序列;逻辑电路,用于执行上述第二方面和第 二方面的任一种可能的设计中发送端的行为;输出接口电路,用于输出Polar编码后的比特序列。
可选的,所述编码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述编码装置可以实现如上述第二方面和第二方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十三方面,本申请提供一种译码装置,该译码装置具有实现上述第三方面和第三方面的任一种可能的设计中接收设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述译码装置包括:输入接口电路,用于获取待译码序列;逻辑电路,用于执行上述第三方面和第三方面的任一种可能的设计中接收设备的行为;输出接口电路,用于输出译码后的比特序列。
可选的,所述译码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述译码装置可以实现如上述第三方面和第三方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十四方面,本申请提供一种译码装置,该译码装置具有实现上述第四方面和第四方面的任一种可能的设计中接收设备行为的功能。所述功能可以通过硬件实现, 也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述译码装置包括:输入接口电路,用于获取待译码序列;逻辑电路,用于执行上述第四方面和第四方面的任一种可能的设计中接收设备的行为;输出接口电路,用于输出译码后的比特序列。
可选的,所述译码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述译码装置可以实现如上述第四方面和第四方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十五方面,本申请提供一种编码装置,该编码装置具有实现上述第五方面和第五方面的任一种可能的设计中发送设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述编码装置包括:输入接口电路,用于获取待编码序列;逻辑电路,用于执行上述第五方面和第五方面的任一种可能的设计中发送端的行为;输出接口电路,用于输出Polar编码后的比特序列。
可选的,所述编码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述编码装置可以实现如上述第五方面和第五方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置 包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十六方面,本申请提供一种译码装置,该译码装置具有实现上述第六方面和第六方面的任一种可能的设计中接收设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述译码装置包括:输入接口电路,用于获取待译码序列;逻辑电路,用于执行上述第六方面和第六方面的任一种可能的设计中接收设备的行为;输出接口电路,用于输出译码后的比特序列。
可选的,所述译码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述译码装置可以实现如上述第六方面和第六方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十七方面,本申请提供一种编码装置,该编码装置具有实现上述第七方面和第七方面的任一种可能的设计中发送设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述编码装置包括:输入接口电路,用于获取待编码序列;逻辑电路,用于执行上述第七方面和第七方面的任一种可能的设计中发送端的行为;输出接口电路,用于输出Polar编码后的比特序列。
可选的,所述编码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所 述程序被执行时,所述编码装置可以实现如上述第七方面和第七方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十八方面,本申请提供一种编码装置,该编码装置具有实现上述第八方面和第八方面的任一种可能的设计中发送设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述编码装置包括:输入接口电路,用于获取待编码序列;逻辑电路,用于执行上述第八方面和第八方面的任一种可能的设计中发送端的行为;输出接口电路,用于输出Polar编码后的比特序列。
可选的,所述编码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述编码装置可以实现如上述第八方面和第八方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述编码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第二十九方面,本申请提供一种译码装置,该译码装置具有实现上述第九方面和第九方面的任一种可能的设计中接收设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述译码装置包括:输入接口电路,用于获取待译码序列;逻辑电路,用于执行上述第九方面和第九方面的任一种可能的设计中接收设备的行为;输出接口电路,用于输出译码后的比 特序列。
可选的,所述译码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述译码装置可以实现如上述第九方面和第九方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第三十方面,本申请提供一种译码装置,该译码装置具有实现上述第十方面和第十方面的任一种可能的设计中接收设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述译码装置包括:输入接口电路,用于获取待译码序列;逻辑电路,用于执行上述第十方面和第十方面的任一种可能的设计中接收设备的行为;输出接口电路,用于输出译码后的比特序列。
可选的,所述译码装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述译码装置可以实现如上述第十方面和第十方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第三十一方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第三十二方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第三十三方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第三十四方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意可能的实现方式中的方法。
第三十五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第五方面或第五方面的任意可能的实现方式中的方法。
第三十六方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第六方面或第六方面的任意可能的实现方式中的方法。
第三十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第七方面或第七方面的任意可能的实现方式中的方法。
第三十八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第八方面或第八方面的任意可能的实现方式中的方法。
第三十九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第九方面或第九方面的任意可能的实现方式中的方法。
第四十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第十方面或第十方面的任意可能的实现方式中的方法。
本申请实施例中,发送设备和接收设备通过先确定一个参考序号集合,再根据与极化码编译码性能相关的码重、信息比特数目、极化码的母码码长等因素设定的判定条件,进一步确定是否将该参考序号集合确定为用于极化码编译码的信息比特序号集 合,或者将该参考序号集合进行调整后作为信息比特序号集合。由于发送设备和接收设备在进行极化码编译码的过程中,考虑了诸多影响编译码性能的因素来确定信息比特序号集合,因此,够提高极化码编译码的性能。
附图说明
图1为本申请实施例所适用的无线通信系统。
图2是采用无线技术进行通信的基本流程图。
图3为本申请一实施例提供的极化码编译码的方法100的示意性交互图。
图4为本申请另一实施例提供的极化码编译码的方法200的示意性交互图。
图5为极化码编译码在不同母码下和不同信息比特长度下的性能的对比图。
图6为本申请实施例提供的发送设备300的示意性框图。
图7为本申请实施例提供的接收设备400的示意性框图。
图8为本申请实施例提供的发送设备500。
图9为发送设备的处理装置的内部结构示意图。
图10为发送设备的处理装置的另一种内部结构示意图。
图11为发送设备的处理装置的再一种内部结构示意图。
图12为本申请实施例提供的接收设备600。
图13为接收设备的处理装置的内部结构示意图。
图14为接收设备的处理装置的另一种内部结构示意图。
图15为接收设备的处理装置的再一种内部结构示意图。
图16为终端设备700的结构示意图。
具体实施方式
下面将结合附图,对本申请提供的技术方案进行详细说明。
图1为本申请实施例所适用的无线通信系统。该无线通信系统中可以包括至少一个网络设备,该网络设备与一个或多个终端进行通信。该网络设备可以是基站,也可以是基站与基站控制器集成后的设备,还可以是具有类似通信功能的其它设备。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、 膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
图1中的网络设备与终端之间采用无线技术进行通信。当网络设备发送信号时,其为发送端,当网络设备接收信号时,其为接收端。终端也是一样的,当终端发送信号时,其为发送端,当终端接收信号时,其为接收端。
图2是采用无线技术进行通信的基本流程图。发送端的信源依次经过信源编码、信道编码、速率匹配和调制后在信道上发出,接收端收到信号后依次经过解调、解速率匹配、信道解码和信源解码后获得信宿。
本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、下一代5G移动通信系统的三大应用场景eMBB、URLLC和eMTC或者将来出现的新的通信系统。
信道编解码是无线通信领域的核心技术之一,其性能的改进将直接提升网络覆盖及用户传输速率。目前,极化码是可理论证明达到香农极限,并且具有可实用的线性复杂度编译码能力的信道编码技术。极化码构造的核心是通过“信道极化”的处理,在编码侧,采用编码的方法使各个子信道呈现出不同的可靠性,当码长持续增加时,一部分信道将趋向于容量接近于1的无噪信道,另一部分信道趋向于容量接近于0的全噪信道,选择在容量接近于1的信道上直接传输信息以逼近信道容量。
Polar码的编码策略正是应用了这种现象的特性,利用无噪信道传输用户有用的信息,全噪信道传输约定的信息或者不传信息。Polar码也是一种线性块码,其编码矩阵(也称为生成矩阵)为F N,编码过程为
Figure PCTCN2018085797-appb-000009
。其中,
Figure PCTCN2018085797-appb-000010
是一个二进制的行矢量,长度为N(即,码长),且N=2 n,n为正整数。F N是一个N×N的矩阵,且
Figure PCTCN2018085797-appb-000011
定义为log2 N个矩阵F 2的克罗内克(Kronecker)乘积,
Figure PCTCN2018085797-appb-000012
以上各式中涉及的加法、乘法操作均为二进制伽罗华域上的加法、乘法操作。
Polar码的编码过程中,
Figure PCTCN2018085797-appb-000013
中的一部分比特用来携带信息,称为信息比特集合。这些比特的索引的集合记作A。另外的一部分比特设置为接收端和发送端预先约定的固定值,称之为固定比特集合或冻结比特(frozen bits)集合,其索引的集合用A的补集A c表示。Polar码的编码过程相当于
Figure PCTCN2018085797-appb-000014
这里,F N(A)是F N中由集合A中的索引对应的行得到的子矩阵。F N(A C)是F N中由集合A C中的索引对应的行得到的子矩阵。uA为
Figure PCTCN2018085797-appb-000015
中的信息比特集合,数量为K。
Figure PCTCN2018085797-appb-000016
Figure PCTCN2018085797-appb-000017
中的固定比特集合,其数量为(N-K),是已知比特。这些固定比特通常被设置为0,但是只要接收端和发送端预先约定,固定比特可以被任意设置。从而,Polar码的编码输出可简化为
Figure PCTCN2018085797-appb-000018
这里的u A
Figure PCTCN2018085797-appb-000019
中的信息比特集合,u A为长度K的行矢量,即|A|=K,符号||表示集合中元素的个数,K为信息块大小,F N(A)是矩阵F N中由集合A中的索引对应的那些行得到的子矩阵,F N(A)是一个N×N的矩阵。
Polar码的构造过程即集合A的选取过程,决定了Polar码的性能。Polar码的构造过程通常是,根据母码码长N确定共存在N个极化信道,这N个极化信道分别对应编码矩阵的N个行。计算极化信道的可靠度,将可靠度较高的前K个极化信道的序号(或者说,索引)作为集合A的元素,剩余(N-K)个极化信道对应的序号作为固定比特序号集合A C的元素。集合A决定了信息比特的位置,集合A C决定了固定比特的位置。本申请实施例提供的极化码编译码的方法主要涉及信息比特序号集合的选取。下面对本申请实施例提供的极化码编译码的方法进行说明。
本申请实施例中出现的编号“第一”、“第二”等仅仅为了区分不同的对象。例如,为了区分不同的序号,不应对本申请实施例的保护范围构成限定。
另外,在Polar码编码的过程中,一个Polar码包括如下部分:信息比特、固定比特(或称为冻结比特)和速率匹配过程中被打孔的比特。以Polar码的母码码长为N为例,则N=K+F+P。其中,K为信息比特的个数,F为固定比特的个数,P为速率匹配过程中被打孔的比特的个数。
需要说明的是,在本申请实施例中,信息比特个数K指的是非固定比特的个数。在编码过程中存在校验比特的情况下,本文中的K也包括了校验比特的个数。
参见图3,图3为本申请一实施例提供的极化码编译码的方法100的示意性交互图。
110、发送设备和接收设备根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合。
其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于剩余(N-K)个序号对应的极化信道的可靠度,K≥1且为整数。或者说,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度。
计算极化信道的可靠性时,可以采用现有技术中的密度进化、高斯近似或线性拟合等方法。具体计算过程可以与现有技术相同,为了简洁,此处不作赘述。
另外,可以选用错误概率、信道容量或极化权重等参数作为衡量极化信道可靠性的参数,或者,也可以选用能够衡量极化信道的可靠度的其它参数,本发明实施例对此不作特别限定。
本申请实施例中,参考序号集合中所包括K个序号,这K个序号对应N个极化信道中的K个极化信道。这K个极化信道中任意一个极化信道的可靠度都大于或等于该N个极化信道中除去该K个极化信道之外的任意一个极化信道的可靠度。
例如,码长为N=8的极化码,极化信号的序号为0~7。假定参考序号集合为{0,1,3,5},那么,针对N=8的极化码的8个极化信道来说,序号0、1、3、5中任意一个序号对应的极化信道的可靠度,都大于或等于序号2、4、6、7对应的极化信道的可靠度。
这里,参考序号集合作为发送设备确定信息比特序号集合的一个参考。参考序号集合可能会作为进行极化编码时的信息比特序号集合。或者,发送设备会对参考序号集合中的部分或全部序号作一些调整,并将调整后的参考序号集合作为信息比特序号集合。关于参考序号集合是否可以不进行调整而直接作为信息比特序号集合,下文的步骤120会作详细说明。
120、发送设备和接收设备根据判定条件和参考序号集合,确定信息比特序号集合。
其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的。
这里,判定条件是作为发送设备和接收设备确定是否将参考序号集合直接作为极化编码时的信息比特序号集合的条件。或者说,判定条件是发送设备和接收设备在选取了参考序号集合之后,确定是否要对参考序号集合进行调整的条件。
其中,判定条件是发送设备和接收设备根据极化编码的码率、极化码的母码码长和码重中的至少一种预先设定的。
需要说明的是,本申请实施例中所说的码重,是指码长为N的极化码的编码矩阵F N的每行中“1”的数量。因此,码重也可以称之为行重或者汉明重量,有时候还可以把某一行的行重(或码重或汉明重量,下文对此不作区分)定义为该行中“1”的数量的对数,不失一般性,本申请中还是以该行中“1”的数量来定义行重。另外,行重也可以通过极化信道的二进制序号进行计算。假设极化信道序号为i对应的二进制序号为B n-1B n-2...B 0,则信道序号i或编码矩阵的第i行对应的行重为2^(B n-1+B n-2+...+B 0),例如,信道序号为0,1,2的二进制表示分别为00,01,10,对应的行重分别为1,2,2。
极化码的生成矩阵F N的每一行都对应一个行重,并且,行重都是2的整数次幂。例如,码重为2、4、16、128等。
例如,
Figure PCTCN2018085797-appb-000020
F 2包括两行。第一行的码重为1,第二行的码重为2。
又例如,
Figure PCTCN2018085797-appb-000021
F 4包括4行,码重分别为1、2、2、4。
可选地,作为一个实施例,判定条件为下列条件中的至少一个:
母码长度大于或等于预设母码长度阈值;
码率大于或等于预设的码率阈值;
参考序号集合中的序号对应的码重中最小码重的数量大于或等于数量阈值;
参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值。
需要说明的是,在本申请实施例中所说的一个序号对应的码重,是指这个序号在生成矩阵中对应的行的码重(或者说,行重)。
发送设备和接收设备可以预先设定判定条件为上述条件中的任意一个,或者为这些条件中任意多个条件的组合。
例如,码率大于或等于预设的码率阈值作为条件#1,母码码长大于或等于预设母码长度阈值作为条件#2。
其中,码率阈值可以为{1/6,1/3,1/2,2/3}中的任意一个或多个。例如,不同的母码对应一个或多个码率的阈值。码长阈值可以是{64,128,256}中任意一个。
判定条件可以设定为仅满足条件#1或仅满足条件#2。或者,判定条件为同时满足条件#1和条件#2。
又例如,参考序号集合中的序号对应的码重中最小码重的数量大于或等于数量阈值(以下记作K t)作为条件#3,参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值作为条件#4。
其中,数量阈值可以为1~25中的任意一个或者多个。不同的母码可以对应不同的数量阈值。例如,母码长度为256时,对应的数量阈值K t为5、6或7。母码长度为512时,对应的数量阈值K t为8、9、10、11、12中的一个。母码长度为1024时,对应的数量为K t为8、9、10、11、12、13、14、15中的一个。
码重阈值为N/32或集合{N/16,N/32,N/64}中的一个,N为对应的母码长度。
预设母码长度阈值可以是{64,128,256}中任意一个。
判定条件可以预设为仅满足这里的条件#3或条件#4的其中一个。或者,判定条件可以预设为同时满足条件#1至条件#4中的任意多个。
可选地,作为一个实施例,在判定条件具体为参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值的情况下,该方法还包括:
发送设备计算参考序号集合中每个序号对应的码重;
发送设备确定参考序号集合中每个序号对应的码重中的最小码重。
也就是说,在判定条件中涉及到码重阈值的情况下,发送设备在确定是否满足判定条件之前,首先需要计算每个极化信道的序号对应的码重,并确定出这些码重中的最小码重。
可选地,作为一个实施例,若不满足判定条件,发送设备将参考序号集合确定为信息比特序号集合。
可选地,作为一个实施例,若满足判定条件,若满足所述判定条件,发送设备从参考序号集合中选择K 1个第一序号,该K 1个第一序号中每个第一序号对应的码重为W min,其中,W min为该K个非打孔位置序号对应的码重中的最小码重;
发送设备从可选序号中选择K 2个第二序号替换该K 1个第一序号中的K 2个第一序号,得到信息比特序号集合,可选序号为该N个极化信道的序号中除了参考序号集合和打孔位置序号之外的序号,K 2≤K 1
其中,该K 2个第二序号满足如下条件中的至少一项:
该K 2个第二序号中的每个第二序号对应的码重大于W min,且每个第二序号对应的极化信道的可靠度大于或等于该可选序号中除了第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;
该K 2个第二序号中的最小的序号大于该可选序号中除去该K 2个第二序号后最大的序号;
该K 2个第二序号中每个第二序号的码重大于或等于2W min
需要说明的是,本实施例中仅以发送设备作为示例进行说明。对于接收设备而言,根据判定条件确定信息比特序号集合的过程与发送设备是相同的。
应理解,这里的第一序号为参考序号集合中最小码重(即,W min)对应的序号。第二序号为从N个极化信道对应的N个序号中选择的用于替换参考序号集合中的第一序号的序号。具体地,可以将K 1个第一序号全部替换,或者,也可以替换K 1个第一序号中的部分。因此,第一序号的个数大于或等于第二序号的个数,即K 2≤K 1
例如,假定参考序号集合={0,1,2,3,5,4,6,7},该参考序号集合中的8个序号所对应的8个码重构成的集合为{1,1,1,1,2,2,4,4}。那么,参考序号集合中的所有序号对应的多个码重中的最小码重W min=1。并且W min对应的序号有4个,分别为序号0、1、2、3。那么,该参考序号集合中的第一序号的个数K 1=4。
对于发送设备和接收设备而言,在步骤110中,根据极化信道的可靠度排序,发送设备确定了参考序号集合。接下来,发送设备需要判定极化编码的参数(例如,码率、参考序号集合中每个序号对应的码重等)是否满足判定条件。
下面对极化编码的参数不满足判定条件和满足判定条件的情况(以下分别记作情况1和情况2)下,如何确定信息比特序号集合分别进行说明。
情况1
若不满足判定条件,则发送设备将参考序号集合确定为信息比特序号集合。后续,发送设备执行步骤130,即根据信息比特序号集合对待编码比特进行极化编码。
情况2
若满足判定条件,则发送设备对参考序号集合进行调整,并将调整后的参考序号集合作为信息比特序号集合。
下面详细说明在满足判定条件的情况下,发送设备如何调整参考序号集合,得到信息比特序号集合的过程。
为了便于说明,我们将步骤110中码长为N的极化码的生成矩阵记作F N。根据极化码编码的过程可知,生成矩阵F N共包括N行。其中,这N行中的每行都存在一个码重。我们将生成矩阵的第1行至第N行的码重依次记作W 1、W 2、W 3,…W N
(1)发送设备从参考序号集合中确定出K 1个第一序号。
其中,这K 1个第一序号在生成矩阵中所对应的行的码重均小于参考序号集合中其它序号在生成矩阵中所对应的行的码重。
换句话说,假定参考序号集合中共包括m个序号,分别计算该m个序号对应的码重,会得到m个码重。确定该m个码重中的最小码重,最小码重对应的序号即为这里所说的第一序号。若最小码重有多个,那么,这多个最小码重各自对应的序号都是这里所说的第一序号。最小码重的个数即为K 1。其中,1≤K 1≤K。
应理解,W min为W 1、W 2、W 3,…W N中的某一个或某几个。
并且,如前文所述,参考序号集合中的序号为非打孔位置的序号,而这K 1个第一序号是从参考序号集合中选择出来的,因此,这K 1个第一序号为非打孔位置的序号。
(2)发送设备从可选序号中选择K 2个第二序号替换上述K 1个第一序号中的K 2个第一序号。
其中,可选序号为步骤110中码长为N的极化码的N个极化极化信道的序号中,排除参考序号集合中包括的序号以及打孔位置的序号后剩余的序号。
根据上文可知,参考序号集合中被替换的第一序号的个数为K 2,本申请实施例中,K 2=min(K 1,K t)。
其中,K 1表示为参考序号集合中全部序号对应的码重中最小码重的数量。或者说,K 1为参考序号集合中最小码重对应的极化信道的序号的个数。K t为预设的替换数量阈值。
即,若极化码编码(对于发送设备来说)的参数符合判定条件,则需要对参考信号集合进行调整。具体的调整过程是将参考序号集合中最小码重对应的序号全部或部分进行替换。替换的个数记作K 2
根据上面给出的K 2的计算公式可知,K 2与预设的替换数量阈值和参考序号集合中的全部序号对应的码重中最小码重的个数有关,为这两者之中的较小者。
例如,K=4的极化码,若参考序号集合中的4个序号对应的码重为{1,2,2,4},K t=2。由于K 1=1,则K 2=min(1,2)=1。
又例如,K=8的极化码,若参考序号集合中8个序号对应的码重为{1,1,1,1,2,2,4,4},由于K 1=4,K t=2。则K 2=min(4,2)=2。
可以理解是,在K t<K 1的情况下,仅会替换参考序号集合中的K 1个第一序号中的部分(即,仅替换K 2个,且K 2<K 1)。在K t≥K 1的情况下,可以替换全部K 1个第一序号(即,替换K 2个,且K 2=K 1)。
在仅替换K 1个第一序号中的部分第一序号的情况下,需要从该K 1个第一序号中选择K 2个第一序号替换为第二序号。该K 2个第一序号可以满足如下特点:
(1)该K 2个第一序号中的任意一个第一序号对应的极化信道的可靠度低于或等于剩余的(K 1-K 2)个第一序号对应的(K 1-K 2)个极化信道的可靠度中的最低可靠度。
(2)该K 2个第一序号中的最大序号小于剩余的(K 1-K 2)个第一序号中的最小序号。
(3)该K 2个第一序号可以为从该K 1个第一序号中随机选取。
这里的(1)至(3)仅作为在替换部分第一序号的情况下,应选取哪些第一序号被替换的示例。本申请实施例不限于此。
这里对参考序号集合中需要替换的第一序号的数量如何确定进行了说明。下面说明选取哪些序号作为第二序号来替换第一序号。
具体地,第二序号的选取可以有多种方式。
方式1
将可选序号按照所对应的码重从大到小的顺序进行排序,得到的序列记作序列#A。
选择序列#A的前K 2个非打孔位置的序号作为该K 2个第二序号。
方式2
将可选序号按照序号从大到小的顺序排序,得到的序列记作序列#B。
选择序列#B的前K 2个非打孔位置的序号作为该K 2个第二序号
方式3
从N个序号对应的N个码重中,选择码重大于或等于2W min的K 2个序号作为该K 2个第二序号。
若参考序号集合中W min对应的第一序号的个数为K 1个,在替换其中K 2个(K 2≤K 1)第一序号的情况下,发送设备先选择对应的码重等于2W min的序号作为第二序号。如果2W min对应的序号的个数为K 3个,且K 3<K 2。那么,发送设备再从对应码重等于4W min的序号中选择(K 2-K 3)个序号,与K 3个对应的码重等于2W min的序号一起作为K 2个第二序号。
即是说,发送设备在根据方式3选择第二序号的情况下,首先从对应的码重等于2W min的序号开始选取。鉴于对应的码重等于2W min的序号的个数与K 1的大小关系,可能出现(a)和(b)两种情况。
(a)2W min对应的序号的个数K 3大于或等于K 2
此种情况下,K 2个第二序号就是从对应的码重等于2W min的序号中选取的。
进一步地,若码重2W min对应的序号的个数恰好为K 2个(K 3=K 2),则将码重2W min对应的K 2个序号确定为K 2个第二序号。若码重2W min对应的序号的个数大于K 2个(K 3>K 2),则从码重2W min的K 3个序号中选择K 2个作为第二序号。例如,可以从2W min对应的序号中,按照可靠度从大到小的顺序选择K 2个。
(b)2W min对应的序号的个数K 3小于K 2
此种情况下,将2W min对应的全部序号(即,K 3个)作为第二序号。另外需要继续从4W min对应的序号中选择(K 2-K 3)个序号,与2W min对应的K 3个序号一起作为K 2个第二序号。以此类推,如果4W min对应的序号的个数不足(K 2-K 3)个,那么发送设备继续从8W min对应的序号中选取。直至选择的序号的个数的总和为K 2个。也就是说,发送设备需要以2的整数次幂的形式,按照从小到大的顺序,选取K 2个第二序号。
应理解,上述几种方式仅是作为选取第二序号的示例。具体实现时,不一定按照文中所述的选取步骤一一执行,只需要选取的K 2个第二序号满足文中所说的K 2第二序号应该满足的条件即可。
(3)将参考序号集合中的K 2个第一序号替换为K 2个第二序号之后的参考序号集合作为信息比特序号集合。
至此,极化编码时的信息比特序号集合已经确定。对于发送设备而言,就可以根据信息比特序号集合对待编码比特进行极化编码。对于接收设备而言,可以根据信息比特序号集合对获取到的待译码序列进行译码。
130、发送设备根据信息比特序号集合,对待编码比特进行极化编码。
140、接收设备获取待译码序列。
150、接收设备根据信息比特序号集合,对待译码序列进行译码。
上述步骤130-150涉及的极化编码过程和译码过程可以参考现有技术,这里不作详述。
前文所述的方法100中,发送设备和接收设备根据极化信道的可靠度的排序确定参考序号集合,进而根据参考序号集合确定信息比特序号集合之前,发送设备和接收设备首先需要获取到码长为N的极化码的N个极化信道的可靠度。
根据前文的说明已经知道,能够衡量极化信道的可靠度的参数有很多,其中,极化权重也可以作为衡量极化信道的可靠度的参数之一。因此,本申请实施例中,极化信道的可靠度可以通过计算极化信道的极化权重来确定。
并且,本申请实施例对于计算极化信道的极化权重的方法不作限定。例如,发送设备和接收设备可以使用现有技术提供的计算极化信道的极化权重的方法进行计算。
现有技术中提供一种计算极化权重的方案,对于码长为N(N=2 n,n≥1且为整数)的极化码,第i个极化信道的极化权重的计算公式可以如下面公式(1)所示:
Figure PCTCN2018085797-appb-000022
其中,B j∈{0,1},j∈{0,1,...,n-1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1}。
现有技术中还有其它计算极化信道的极化权重的方法,在本申请实施例中都是适用的。本申请实施例不限定仅使用上述公式(1)计算。
另外,本申请实施例为了提高极化码的编译码性能,提出了一种计算极化信道的极化权重的方法(下文的方法200)。根据本申请实施例提供的计算极化权重的方法,可以用于极化信道的可靠度的衡量,有助于提高确定极化信道的可靠度的准确性,进而能够提高极化码的编译码性能。
参见图4,图4为本申请另一实施例提供的极化码编译码的方法200的示意性交互图。
210、发送设备和接收设备根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重。
其中,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000023
其中,B j∈{0,1},j∈{0,1,...,n-1}。i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示。W i为第i个极化信道的极化权重,i∈{0,1,...,n-1}。a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。n=log 2(N)。
本申请实施例提供的计算极化权重的公式(2),相比于公式(1),准确性更高。
可选地,在一种可能的实现方式中,上述公式(2)中(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)或(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
此时,公式(2)可以简化为如下公式(3):
Figure PCTCN2018085797-appb-000024
将a 1、b 1、c 1、d 1、f 1的一组取值代入公式(3)中,就可以计算出码长为N的每个极化信道的极化权重。
可选地,在另一种可能的实现方式中,上述公式(2)中(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)或(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
此时,公式(2)可以简化为如下公式(4):
Figure PCTCN2018085797-appb-000025
将(a 1,b 1,c 1,d 1,f 1)的一组取值和(a 2,b 2,c 2,d 2,f 2)的一组取值代入公式(4),就可以计算出码长为N的每个极化信道的极化权重。
可选地,在另一种可能的实现方式中,上述公式中(2)中(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
此时,公式(2)可以简化为如下公式(5):
Figure PCTCN2018085797-appb-000026
将(a 1,b 1,c 1,d 1,f 1)的一组取值和(a 3,b 3,c 3,d 3,f 3)的一组取值代入公式(5),就可以计算出码长为N的每个极化信道的极化权重。
下面给出(a 1,b 1,c 1,d 1,f 1)=(1,1.07,1,0.5,1/4)且a 2=a 3=0的情况下,根据上述公式(3)计算每个极化信道的极化权重,并将极化信道的序号按照所对应的极化权重从小到大的顺序进行排序,得到的最大母码序列如下面所示的序列#1(本序列及以下序列均从1开始排序,这与从0开始是等价的,当从0开始的时候,每个序号减1即可)。
序列#1={1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,21,34,35,25,8,37,66,257,12,67,41,69,20,49,15,130,73,22,131,23,36,513,133,26,81,38,27,137,39,258,29,68,42,97,259,43,145,70,261,50,16,71,45,74,51,265,132,161,75,24,53,514,134,82,77,515,273,135,28,83,57,138,40,193,517,30,85,98,139,260,289,31,44,521,99,146,14 1,89,262,147,72,46,101,263,52,529,47,266,149,321,162,76,105,54,267,163,153,78,55,516,274,545,269,136,84,165,58,113,79,275,194,518,59,385,86,140,195,169,519,277,290,32,87,61,522,100,577,142,291,197,90,523,281,148,177,102,143,91,264,293,530,48,201,525,103,150,322,93,531,106,268,151,323,297,164,641,107,154,56,209,533,546,270,325,166,114,155,80,276,109,547,305,271,167,60,386,537,115,157,329,196,170,520,278,225,549,387,88,62,117,578,171,279,292,198,769,63,524,389,282,579,337,553,178,144,199,92,173,121,294,283,202,526,179,104,581,393,295,94,532,203,561,527,285,152,324,298,181,353,642,95,108,585,210,534,299,205,643,401,326,156,211,185,535,110,548,306,272,327,301,168,645,538,116,593,111,158,330,307,213,226,550,388,539,417,118,159,331,172,280,649,227,551,309,770,64,217,390,541,119,580,338,554,609,333,200,771,174,229,122,391,284,339,555,313,180,657,582,175,394,123,296,449,773,204,562,528,286,233,583,341,557,182,354,395,96,125,586,563,287,300,206,777,183,355,644,402,673,397,587,345,212,186,536,241,207,565,403,328,302,357,646,594,187,112,589,308,214,785,303,647,540,405,418,595,569,160,332,215,189,361,650,228,552,310,705,419,218,542,120,597,610,651,409,334,311,772,230,801,219,392,543,340,556,421,314,611,369,658,335,176,653,231,124,450,601,774,315,221,659,234,584,342,558,396,613,451,425,775,126,564,288,235,343,559,317,778,184,356,661,833,674,398,127,588,453,346,617,242,208,566,779,404,237,675,433,358,399,347,188,665,590,243,567,786,304,457,781,359,648,406,596,677,570,625,591,349,216,787,190,362,245,706,407,420,571,897,598,191,363,652,410,312,707,465,681,789,802,220,544,249,422,599,573,612,370,411,336,365,654,232,803,709,602,423,316,222,793,371,660,689,614,655,413,452,426,603,776,481,805,223,236,344,560,318,713,615,373,662,834,427,128,454,605,618,319,780,663,835,238,809,676,434,400,455,348,429,619,377,666,244,568,721,239,458,782,435,360,837,678,626,667,592,350,788,621,246,459,817,783,408,679,572,437,898,627,351,192,364,669,841,247,708,466,682,790,737,461,899,250,600,574,412,629,467,683,441,791,366,804,710,251,424,575,901,794,372,849,690,367,656,414,711,604,469,685,482,633,806,224,795,253,714,691,616,374,415,428,905,483,807,606,320,715,473,797,375,664,836,810,693,865,456,430,607,620,485,378,722,24 0,811,717,436,913,838,431,379,668,723,697,622,460,818,784,489,839,813,680,438,628,352,623,381,670,842,248,819,725,738,462,439,900,929,630,671,843,468,684,442,792,739,497,463,821,252,576,729,902,631,850,443,368,845,712,470,686,741,634,903,796,851,254,825,692,416,471,687,445,906,484,635,808,961,255,716,474,798,376,745,853,694,866,907,608,486,637,475,799,812,718,695,867,914,432,909,487,380,857,724,698,753,719,477,915,490,840,814,869,699,624,382,820,726,491,815,440,917,930,383,672,844,727,701,873,740,498,464,822,493,931,730,632,444,921,846,499,823,742,731,904,852,933,826,881,847,472,688,446,743,636,501,962,256,827,733,746,854,447,908,963,937,638,476,800,747,505,855,829,696,868,910,488,639,965,858,754,720,478,916,749,945,870,911,859,700,755,479,492,816,969,871,918,384,861,728,702,874,757,919,494,932,703,875,922,500,824,977,495,732,761,934,882,923,848,877,744,502,935,828,734,883,448,925,503,964,938,993,735,748,506,856,830,885,939,640,966,507,831,750,946,912,967,860,941,889,756,480,751,509,970,947,872,862,758,971,920,949,863,704,876,759,978,496,973,762,924,979,953,878,763,936,884,879,926,504,981,994,736,765,886,927,940,995,508,832,985,887,968,942,997,890,752,510,948,943,891,511,972,1001,950,864,893,760,974,951,980,954,1009,975,764,955,880,982,766,928,983,957,996,767,986,888,998,987,944,999,892,512,989,1002,894,1003,952,895,1010,976,1005,956,1011,984,958,1013,768,959,988,1017,1000,990,991,1004,896,1006,1012,1007,1014,960,1015,1018,1019,992,1021,1008,1016,1020,1022,1023,1024}。
下面再给出一个(a 1,b 1,c 1,d 1,f 1)=(1,1,1,0,1/4)、(a 2,b 2,c 2,d 2,f 2)=(1/4,1,1,0,1/16)、a 3=0情况下,根据上述公式(4)计算每个极化信道的极化权重,并将极化信道的序号按照所对应的极化权重从小到大的顺序进行排序,得到的最大母码序列如下面所示的序列#2。
序列#2={1,2,3,5,9,17,4,33,6,7,10,65,11,18,13,19,129,34,21,35,8,25,37,66,12,257,67,41,14,20,69,15,130,49,22,73,131,36,23,26,513,133,38,81,27,39,258,68,137,42,29,259,97,70,43,16,145,50,261,71,45,74,132,51,24,265,75,161,514,134,53,82,28 ,77,515,135,40,273,83,138,57,30,517,260,193,98,139,85,44,31,146,289,99,262,72,521,141,46,89,147,52,263,101,47,266,76,162,529,149,54,321,267,105,78,163,516,136,55,274,84,153,58,269,79,545,165,518,275,194,113,140,86,59,32,519,385,290,195,100,277,169,87,522,142,61,90,148,291,577,264,197,102,523,143,48,281,91,177,530,150,293,103,322,525,268,201,106,93,164,531,151,56,323,154,297,107,270,80,641,546,166,533,276,209,114,155,325,60,271,109,547,167,520,386,305,196,115,278,170,88,537,157,62,329,549,387,292,225,578,279,198,171,117,524,144,63,282,92,178,769,579,389,294,199,104,553,337,173,526,283,202,121,94,179,532,152,295,581,324,527,393,298,203,108,285,95,642,561,181,534,210,353,156,326,299,585,272,205,110,643,548,168,535,401,306,211,116,185,327,538,158,301,111,330,645,550,388,307,226,593,280,213,172,118,539,159,64,331,551,417,770,227,580,390,309,200,649,119,554,338,174,541,284,217,122,333,180,771,609,391,296,229,582,555,339,175,528,394,313,204,123,286,96,657,562,182,773,583,449,354,557,395,341,300,233,586,287,206,125,644,563,183,536,402,212,355,186,328,777,587,397,302,207,112,673,345,646,565,403,308,241,594,214,187,357,540,160,303,589,332,647,552,418,785,228,595,405,310,215,650,120,569,189,542,218,361,334,419,772,705,610,392,311,230,651,597,556,340,176,543,409,314,219,124,335,658,801,611,421,774,231,584,450,369,653,558,396,342,315,234,601,288,221,126,659,564,184,775,613,451,356,559,425,343,778,235,588,398,317,208,127,674,346,661,566,404,242,833,453,188,358,779,617,399,304,237,590,675,347,648,567,433,786,243,596,406,216,665,359,570,190,781,591,457,362,677,349,420,787,706,625,407,312,245,652,598,571,191,544,410,220,363,336,897,802,707,612,422,789,232,681,599,465,370,654,573,411,316,249,602,222,365,660,803,423,776,709,614,452,371,655,560,426,344,793,236,603,413,318,223,128,689,662,805,615,481,834,454,427,373,780,713,618,400,319,238,605,676,348,663,568,434,244,835,455,666,360,809,619,429,782,239,592,458,377,678,350,435,788,721,626,408,246,667,837,572,192,783,621,459,364,679,351,898,817,708,627,437,790,247,682,600,466,669,574,412,250,841,461,366,899,804,737,424,791,710,683,629,467,372,656,575,441,794,251,604,414,224,367,690,901,806,711,616,482,849,685,469,428,374,795,714,633,415,320,253,606,691,6 64,807,483,836,456,905,375,810,715,620,430,797,240,607,473,378,693,436,722,865,485,668,838,811,431,784,717,622,460,379,680,352,913,818,723,628,438,248,697,839,670,813,623,489,842,462,381,900,819,738,439,792,725,684,630,468,671,576,442,252,843,463,368,929,739,902,821,712,631,497,850,686,470,443,796,729,634,416,254,845,692,903,808,741,484,851,687,471,906,376,825,716,635,445,798,255,608,474,694,961,866,486,907,853,812,745,432,799,718,637,475,380,695,914,724,867,487,698,840,909,814,719,624,490,857,477,382,915,820,753,440,726,699,869,672,815,491,844,464,383,930,740,917,822,727,632,498,701,444,730,873,493,846,931,904,823,742,499,852,688,472,921,826,731,636,446,256,847,933,743,962,881,501,908,854,827,746,447,800,733,638,476,696,963,868,488,937,855,747,910,829,720,639,505,858,478,916,754,965,700,870,911,816,749,492,859,479,384,945,755,918,728,871,702,969,874,494,861,932,919,824,757,500,703,922,732,875,495,848,934,744,977,882,502,923,828,761,448,734,877,935,964,883,503,938,856,748,925,830,735,640,506,993,966,939,885,912,831,750,507,860,480,946,756,967,872,941,751,970,889,509,862,947,920,758,704,971,876,496,863,949,759,978,924,762,973,878,936,979,884,504,953,763,926,736,879,994,981,940,886,927,832,765,508,995,968,887,942,752,985,890,510,948,997,943,972,891,511,864,950,760,1001,974,893,951,980,954,764,975,880,1009,982,955,928,766,996,983,888,957,767,986,998,944,987,892,512,999,1002,989,894,952,1003,976,895,1010,956,1005,1011,984,958,768,1013,959,988,1000,1017,990,1004,991,896,1006,1012,1007,1014,960,1015,1018,1019,992,1021,1008,1016,1020,1022,1023,1024}。
在进行polar编码时,发送设备可以通过上述各实施例提供的进行polar编码的方法,进行在线计算,确定所需长度的母码序列。或者,发送设备也可以预先存储上述序列#1和序列#2作为最大母码序列。在进行polar编码时,再从序列#1或序列#2中读取所需长度的母码序列。
在进行polar译码时,接收设备进行在线计算,确定所需长度的母码序列。或者,也可以预先存储序列#1和序列#2作为最大母码序列。在对待译码序列进行译码时,再从序列#1或序列#2中读取所需长度的母码序列。
应理解,上述序列#1和序列#2的码长均为1024。因此,发送设备或接收设备所 需母码序列的码长(2的整数次幂)小于或等于1024时,都可以从序列#1或序列#2中读取所需长度的母码序列。后续,将读取的母码序列用于polar编码(对于发送设备而言)或译码(对于接收设备而言)。
关于如何从一个最大母码序列中读取所需长度的母码序列的过程,可以参见现有技术,这里不作说明。
根据以上公式(2)至(5),计算得到每个极化信道的极化权重后,将极化权重用于极化信道的可靠度的衡量,可以确定极化信道的可靠度排序。后续,发送设备和接收设备根据极化信道的可靠度排序确定信息比特序号集合的过程,既可以采用现有技术的方法,也可以采用前文所述的方法100中描述的确定信息比特序号集合的方法。
220、发送设备和接收设备根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合。
在本申请实施例中,发送设备和接收设备将极化权重作为衡量极化信道的可靠度的参量。因此,可以理解的是,在步骤210中,发送设备和接收设备根据本申请实施例提供的计算极化权重的公式,能够计算出码长为N的每个极化信道的极化权重,从而能够确定N个极化信道的可靠度的排序。
在步骤220中,发送设备和接收设备根据信息比特数目K,从这N个极化信道的极化权重对应的序号中选择K个非打孔位置的序号作为信息比特序号集合。其中,这K个非打孔位置的序号中每个序号对应的极化权重大于或者等于剩余的(N-K)个序号所对应的极化权重中的最大极化权重。
换句话说,确定了N个极化信道中每个极化信道的极化权重后,发送设备和接收设备从这N个极化权重中选择极化权重最大且非打孔位置的K个极化权重对应的序号作为信息比特序号集合。
230、发送设备根据信息比特序号集合对待编码比特进行极化编码。
240、接收设备获取待译码序列。
250、接收设备根据信息比特序号集合,对待译码序列进行译码。
步骤230-250可以与现有技术相同,这里不再赘述。
实验表明,本申请实施例提供的极化信道的极化权重的计算公式(2)至(4),与根据现有技术中的公式(2)计算得到的极化信道的极化权重相比,准确性更高。
此外,本申请还提供另一种计算极化权重的方法。具体地,可以根据如下公式(6)计算每个极化信道的极化权重。
Figure PCTCN2018085797-appb-000027
其中,W i为第i个极化信道的极化权重。B j∈{0,1},j∈{0,1,...,n-1}。i∈{0,1,...,n-1}。i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示。Ξ=[1,2,3,...],表征m的取值集合,即,m可以等于集合{1,2,3,…}中的任意一个数字。
Figure PCTCN2018085797-appb-000028
。n=log 2(N)。
例如,Ξ=[2]时,公式(6)转换为如下公式(7)。
Figure PCTCN2018085797-appb-000029
根据公式(6)或(7)提供的计算极化权重的方法,可以引入高阶项来估计极化信道的可靠度,使得根据该公式(6)或(7)计算得到的极化权重用于极化信道可靠度估计的准确性更高。与前文现有技术中的公式(1)提供的极化权重的方法相比,无论是在无速率匹配或存在速率匹配的情况下的信息传输,公式(6)和公式(7)都可以降低在获取指定译码性能时的所需的信噪比条件。因而,可以提高极化码编译码的性能。
这里,根据公式(6)计算得到每个极化信道的极化权重后,将极化权重用于极化信道的可靠度的衡量,可以确定极化信道的可靠度排序。后续,发送设备和接收设备根据极化信道的可靠度排序确定信息比特序号集合的过程,既可以采用现有技术的方法,也可以采用前文所述的方法100中描述的确定信息比特序号集合的方法。本申请实施例对此不作限定。
进一步地,本申请实施例为了提高极化码的编译码性能,在通过以上各种方法或以任意已知的方法得到极化信道的极化权重后,根据每个极化信道的行重对极化权重进一步进行修正,具体地,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。不难看出,α越大,修正的极化权重更倾向于极化权重,α越小,修正的极化权重更倾向于行重。
可以理解的是,接收设备对获取到的待译码序列进行译码的过程,实际上正好是 发送设备根据信息比特序号集合对待编码比特进行极化编码的逆过程。由于固定比特是发送设备和接收设备预先约定的,即是已知的,因此,接收设备对待译码序列进行译码的过程,关键是确定出信息比特序号集合。
而接收设备确定信息比特序号集合中的过程与发送设备确定信息比特序号集合的过程是一样的。即,接收设备首先根据码长为N的极化码的N个极化信道的可靠度排序以及信息比特数目K,确定参考序号集合。再根据判定条件和参考序号集合确定信息比特序号集合。
发送设备和接收设备预先约定了判定条件,对于码长为N的极化码,不管是编码还是译码,信息比特序号集合的确定过程是一样的。因此,接收设备确定判定条件和参考序号集合确定信息比特序号集合的过程,与发送设备根据判定条件和参考序号集合确定信息比特序号集合的过程是一样的。因而,文中对于接收设备确定信息比特序号集合的过程不作赘述,参见发送设备确定信息比特序号集合的过程。
以上对本申请实施例提供的极化码编码和译码的方法作了详细说明。可以理解的是,以上各实施例中涉及的极化码编码和译码的方法,既可以采用在线计算的方式,也可以采用读表的方式。或者是,在线计算和读表相结合的方式。对于在线计算和读表的具体实现过程,对于本领域技术人员来说是比较容易的。因此,这里不作详细说明。
图5为极化码编译码在不同母码下和不同信息比特长度下的性能的对比图。参见图5,图5中的横坐标表示信息比特长度,纵坐标为信噪比,图中有四组线(每组线有一条实线和虚线)表示母码长度分别为1024,512,256,128时,不同信息比特长度下,误包率达到0.001时候所需要的信噪比,该值越小表示译码性能越好。图5中的实线为使用现有技术的公式(1)获取指定编译码性能所需的信噪比条件的曲线。虚线为使用本申请实施例中提供的极化码编译码方法获取指定编译码性能所需的信噪比条件的曲线。从实验结果可以看出,对于相同长度的母码码长,虚线对应的信噪比等于或者低于(虚线圈中的位置)实线对应的信噪比。可见,相比于现有技术,本申请实施例提供的极化码编译码方法提升了极化码编译码的性能。
本申请实施例中,发送设备和接收设备通过先确定一个参考序号集合,再根据与极化码编译码性能相关的码重、信息比特序号个数、极化码的母码码长等因素设定判定条件,进一步确定是否将该参考序号集合确定为用于极化码编译码的信息比特序号集合,或者将该参考序号集合进行调整后作为信息比特序号集合,能够提高极化码编 译码的性能。
以上结合图3至图5对本申请实施例提供的极化码编译码的方法100和方法200作了详细说明。下面结合图6至图16说明本申请实施例提供的发送设备和接收设备。
图6为本申请实施例提供的发送设备300的示意性框图。参见图6,发送设备300包括处理单元310和发送单元320,用于执行各实施例中极化码编码的方法。
处理单元310,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
处理单元310,还用于根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
处理单元310,还用于根据信息比特序号集合,对待编码比特进行极化编码。
或者,处理单元310用于:
根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000030
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待编码比特进行极化编码。
或者,处理单元310用于:
根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000031
其中,W i表示第i个极化信道的极化权重,i≤N;
根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待编码比特进行极化编码。
或者,处理单元310用于:
确定最大母码序列,该最大母码序列为前文所示的序列#1;
根据该最大母码序列,对待编码序列进行极化编码。
或者,处理单元310用于:
确定最大母码序列,该最大母码序列为前文所示的序列#2;
根据该最大母码序列,对待编码序列进行极化编码。
图7为本申请实施例提供的接收设备400的示意性框图。参见图7,接收设备400包括除处理单元410和接收单元420,用于执行上述各实施例中极化码译码的方法。
处理单元410,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
处理单元410,还用于根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
处理单元410,还用于根据信息比特序号集合,对待译码序列进行译码。
或者,处理单元410用于:
根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000032
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待译码序列进行译码。
或者,处理单元410用于:
根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000033
其中,W i表示第i个极化信道的极化权重,i ≤N;
或者,处理单元401还用于:根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;具体为:将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合,对待译码序列进行译码。
或者,处理单元410用于:
确定最大母码序列,该最大母码序列为前文所示的序列#1;
根据该最大母码序列,对待译码序列进行译码。
或者,处理单元410用于:
确定最大母码序列,该最大母码序列为前文所示的序列#2;
根据该最大母码序列,对待译码序列进行译码。
参见图8,图8为本申请实施例提供的发送设备500,用于实现编码的功能,该发送设备500包括:
收发器508,用于获取待编码比特;
处理装置504,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
处理装置504,还用于根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
处理装置504,还用于根据信息比特序号集合,对待编码比特进行极化编码。
或者,处理装置504用于:
根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000034
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待编码比特进行极化编码。
或者,处理装置504用于:
根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000035
其中,W i表示第i个极化信道的极化权重,i≤N;
或者,处理装置504还用于:根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;具体为:将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待编码比特进行极化编码。
或者,处理装置504用于:
确定最大母码序列,该最大母码序列为前文所示的序列#1;
根据该最大母码序列,对待编码序列进行极化编码。
或者,处理装置504用于:
确定最大母码序列,该最大母码序列为前文所示的序列#2;
根据该最大母码序列,对待编码序列进行极化编码。
上述发送设备可以是与终端通信的网络设备,也可以是一个终端设备。
本申请实施例还提供了一种用于编码的处理装置504,用于实现上述实施例中的 编码方法。上述实施例的编码方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,参见图9所示,图9为处理装置的内部结构示意图。该处理装置504包括:
输入接口电路5142,用于获取输入的待编码比特;
逻辑电路5144,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
逻辑电路5144,还用于根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
逻辑电路5144,还用于根据信息比特序号集合,对待编码比特进行极化编码。
输出接口电路5146,用于输出polar编码后的比特序列。
上述逻辑电路5144可以用于执行本申请各实施例中所述的编码方法。具体请见前面方法实施例中的描述,此处不再赘述。在具体实现时,上述处理装置可以是芯片或者集成电路。
或者,逻辑电路5144用于:
根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000036
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待编码比特进行极化编码。
或者,逻辑电路5144用于:
根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000037
其中,W i表示第i个极化信道的极化权重,i≤N;
或者,逻辑电路5144还用于:根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;具体为:将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待编码比特进行极化编码。
或者,逻辑电路5144用于:
确定最大母码序列,该最大母码序列为前文所示的序列#1;
根据该最大母码序列,对待编码序列进行极化编码。
或者,逻辑电路5144用于:
确定最大母码序列,该最大母码序列为前文所示的序列#2;
根据该最大母码序列,对待编码序列进行极化编码。
当上述实施例的编码方法中的部分或全部通过软件来实现时,参见图10所示,图10为发送设备的处理装置的另一种内部结构示意图。该处理装置504包括:
存储器5044,用于存储程序;
处理器5042,用于执行所述存储器存储的所述程序,当所述程序被执行时,处理器执行上述各实施例中极化码编码的方法。
上述存储器5044可以是物理上独立的单元,具体参见图10所示。也可以与处理器5042集成在一起,具体参见图11所示。图11为发送设备的处理装置的再一种内部结构示意图。
在另一种可选的实施例中,处理装置也可以只包括处理器,上述存储器位于处理装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
图12为本申请实施例提供的接收设备600。参见图12所示,该接收设备包括:
收发器608,用于获取待译码序列;
处理装置604,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中 任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
处理装置604,还用于根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
处理装置604,还用于根据信息比特序号集合,对待译码序列进行译码。
或者,处理装置604用于:
根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000038
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待译码序列进行译码。
或者,处理装置604用于:
根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000039
其中,W i表示第i个极化信道的极化权重,i≤N;
或者,处理装置604还用于:根据修正的极化权重的计算公式,确定该N个极化信道的修正的极化权重;具体为:将该N个极化信道的修正极化权重的排序,确定为该N个极化信道的可靠度的排序,修正的极化权重的计算公式为:
W_Modified(j)=α*W(j)/max(W)+(1-α)*RW(j)/max(RW)
其中,PW_Modified(j)为第j个极化信道的修正的极化权重,j=0,1,2,…,N-1,α为加权系数,α为大于等于0而小于等于1的正数常量,例如取0.8~1中的任一数值,max(W)为极化信道中最大的极化权重值,RW(j)为第j个极化信道对应的行重,max(RW)为极化信道中最大的行重值。
根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待译码序列进行译码。
或者,处理装置604用于:
确定最大母码序列,该最大母码序列为前文所示的序列#1;
根据该最大母码序列,对待译码序列进行译码。
或者,处理装置604用于:
确定最大母码序列,该最大母码序列为前文所示的序列#2;
根据该最大母码序列,对待译码序列进行译码。
本发明实施例还提供了一种用于译码的处理装置604,用于实现上述实施例中的译码方法。上述是实施例的译码方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,该处理装置604的结构与前面编码装置中处理装置的结构相同,只是在实现的功能上有所不同,因此,此处只是对其区别进行说明。
参见图13,图13为接收设备的处理装置的内部结构示意图。
输入接口电路6142,用于获取输入的待编码比特;
当处理装置604通过硬件实现时,该处理装置604中的逻辑电路6144用于用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
该逻辑电路6144还用于根据判定条件和参考序号集合,确定信息比特序号集合,其中,判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
该逻辑电路6144还用于根据信息比特序号集合,对待译码序列进行译码。
输出接口电路6146,用于输出译码后的比特序列。
或者,该逻辑电路6144用于:
根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,极化权重的计算公式为:
Figure PCTCN2018085797-appb-000040
,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待译码序列进行译码。
或者,该逻辑电路6144用于:
根据极化权重的计算公式,计算码长为N的极化码的N个极化信道中每个极化信道的极化权重:
Figure PCTCN2018085797-appb-000041
其中,W i表示第i个极化信道的极化权重,i≤N;
根据该N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
根据信息比特序号集合对待译码序列进行译码。
或者,逻辑电路6144用于:
确定最大母码序列,该最大母码序列为前文所示的序列#1;
根据该最大母码序列,对待译码序列进行译码。
或者,逻辑电路6144用于:
确定最大母码序列,该最大母码序列为前文所示的序列#2;
根据该最大母码序列,对待译码序列进行译码。
该逻辑电路6144可以用于执行本申请各实施例中所述的译码方法。具体请见前面方法实施例中对译码侧的描述,此处不再赘述。在具体实现时,上述处理装置604可以是芯片或者集成电路。
上述是实施例的译码方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,该处理装置中的处理器6042,用于执行存储器存储的程序,当所述程序被执行时,处理器6042执行上述各实施例中极化码译码的方法。
上述存储器6044可以是物理上独立的单元,具体参见图14。图14为接收设备的处理装置的另一种内部结构示意图。或者,存储器6044也可以与处理器6042集成在一起,具体参见图15。图15为接收设备的处理装置的再一种内部结构示意图。
在另一种可选的实施例中,处理装置也可以只包括处理器,上述存储器位于处理装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
本申请实施例中用于编码的处理装置和用于译码的处理装置,在实际应用中可能是分别独立的,也有可能是集成在一起的,即形成一套装置。
上述发送设备或接收设备可以是终端设备(以下称为终端),也可以是网络设备。当发送设备或接收设备是终端的情况下,参见图16所示。图16为终端设备700的结 构示意图。该终端700还可以包括电源712、用于给终端中的各种器件或电路提供电源。该终端还可以可以包括天线710,用于将收发器输出的上行数据通过无线信号发送出去,或者将收到的无线信号输出给收发器。
除此之外,为了使得终端的功能更加完善,该终端还可以包括输入单元714,显示单元716,音频电路718,摄像头720和传感器722等中的一个或多个,所述音频电路可以包括扬声器7182,麦克风7184等。
结合前面的描述,本领域的技术人员可以意识到,本文实施例的方法,可以通过硬件(例如,逻辑电路),或者软件,或者硬件与软件的结合来实现。这些方法究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当上述功能通过软件的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。在这种情况下,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (54)

  1. 一种极化码编码的方法,其特征在于,所述方法包括:
    发送设备根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,所述参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
    所述发送设备根据判定条件和所述参考序号集合,确定信息比特序号集合,其中,所述判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
    所述发送设备根据所述信息比特序号集合,对待编码比特进行极化编码。
  2. 根据权利要求1所述的方法,其特征在于,所述发送设备根据判定条件和所述参考序号集合,确定信息比特序号集合,包括:
    若不满足所述判定条件,所述发送设备将所述参考序号集合确定为所述信息比特序号集合。
  3. 根据权利要求1所述的方法,其特征在于,所述发送设备根据判定条件和所述参考序号集合,确定信息比特序号集合,包括:
    若满足所述判定条件,所述发送设备从所述参考序号集合中确定K 1个第一序号,所述K 1个第一序号中每个第一序号对应的码重为W min,其中,W min等于所述K个非打孔位置序号分别对应的K个码重中的最小码重;
    所述发送设备从可选序号中选择K 2个第二序号替换所述K 1个第一序号中的K 2个第一序号,得到所述信息比特序号集合,所述可选序号为所述N个极化信道的序号中除了所述参考序号集合和打孔位置序号之外的序号,K 2≤K 1
    其中,所述K 2个第二序号满足如下条件中的任意一项:
    所述K 2个第二序号中的每个第二序号对应的码重大于所述W min,且每个第二序号对应的极化信道的可靠度大于或等于所述可选序号中除了所述第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;
    所述K 2个第二序号中最小的序号大于所述可选序号中除去所述K 2个第二序号后最大的序号;
    所述K 2个第二序号中每个第二序号的码重大于或等于2W min
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述判定条件为下列条件中的至少一个:
    母码长度大于或等于预设母码长度阈值;
    码率大于或等于预设的码率阈值;
    所述参考序号集合中包括的K 1个非打孔位置序号对应的码重中最小码重的数目大于或等于数量阈值;
    所述参考序号集合中的各个序号对应的各个码重中的最小码重小于或等于预设的码重阈值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述发送设备根据极化权重的计算公式,确定所述N个极化信道的极化权重;
    所述发送设备将所述N个极化信道的极化权重的排序,确定为所述N个极化信道的可靠度的排序,
    所述极化权重的计算公式为:
    Figure PCTCN2018085797-appb-100001
    其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。
  6. 根据权利要求5所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  7. 根据权利要求5所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  8. 根据权利要求5所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  9. 根据权利要求4至7中任一项所述的方法,其特征在于,在所述判定条件为所述参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值的情况下,所述方法还包括:
    所述发送设备计算所述参考序号集合中包括的K 1个序号对应的K 1个码重;
    所述发送设备从所述K 1个序号对应的K 1个码重中确定最小码重。
  10. 一种极化码编码的方法,其特征在于,所述方法包括:
    发送设备根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,所述极化权重的计算公式为:
    Figure PCTCN2018085797-appb-100002
    其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
    发送设备根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
    发送设备根据所述信息比特序号集合对待编码比特进行极化编码。
  11. 根据权利要求10所述的方法,其特征在于,所述(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  12. 根据权利要求10所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  13. 根据权利要求10所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  14. 一种极化码译码的方法,其特征在于,所述方法包括:
    接收设备根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,所述参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
    所述接收设备根据判定条件和所述参考序号集合,确定信息比特序号集合,其中,所述判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
    所述发送设备根据所述信息比特序号集合,对待译码序列进行译码。
  15. 根据权利要求14所述的方法,其特征在于,所述接收设备根据判定条件和所述参考序号集合,确定信息比特序号集合,包括:
    若不满足所述判定条件,所述接收设备将所述参考序号集合确定为所述信息比特 序号集合。
  16. 根据权利要求14所述的方法,其特征在于,所述接收设备根据判定条件和所述参考序号集合,确定信息比特序号集合,包括:
    若满足所述判定条件,所述接收设备从所述参考序号集合中确定K 1个第一序号,所述K 1个第一序号中每个第一序号对应的码重为W min,其中,W min等于所述K个非打孔位置序号分别对应的K个码重中的最小码重;
    所述接收设备从可选序号中选择K 2个第二序号替换所述K 1个第一序号中的K 2个第一序号,得到所述信息比特序号集合,所述可选序号为所述N个极化信道的序号中除了所述参考序号集合和打孔位置序号之外的序号,K 2≤K 1
    其中,所述K 2个第二序号满足如下条件中的任意一项:
    所述K 2个第二序号中的每个第二序号对应的码重大于所述W min,且每个第二序号对应的极化信道的可靠度大于或等于所述可选序号中除了所述第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;
    所述K 2个第二序号中的最小的序号大于所述可选序号中除去所述K 2个第二序号后最大的序号;
    所述K 2个第二序号中每个第二序号的码重大于或等于2W min
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述判定条件为下列条件中的至少一个:
    母码长度大于或等于预设母码长度阈值;
    码率大于或等于预设的码率阈值;
    所述参考序号集合中包括的K 1个非打孔位置序号对应的码重中最小码重的数目大于或等于数量阈值;
    所述参考序号集合中的各个序号对应的各个码重中的最小码重小于或等于预设的码重阈值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述接收设备根据极化权重的计算公式,确定所述N个极化信道的极化权重;
    所述接收设备将所述N个极化信道的极化权重的排序,确定为所述N个极化信道的可靠度的排序,
    所述极化权重的计算公式为:
    Figure PCTCN2018085797-appb-100003
    其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。
  19. 根据权利要求18所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  20. 根据权利要求18所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  21. 根据权利要求18所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,在所述判定条件为所述参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值的情况下,所述方法还包括:
    所述接收设备计算所述参考序号集合中包括的K 1个序号对应的K 1个码重;
    所述接收设备从所述K 1个序号对应的K 1个码重中确定最小码重。
  23. 一种极化码译码的方法,其特征在于,所述方法包括:
    接收设备根据极化权重的计算公式,计算码长为N的极化码的N个极化信道的极化权重,所述极化权重的的计算公式为:
    Figure PCTCN2018085797-appb-100004
    ,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
    所述接收设备根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
    所述接收设备根据所述信息比特序号集合对待译码序列进行译码。
  24. 根据权利要求23所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4), 且a 2=a 3=0。
  25. 根据权利要求23所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  26. 根据权利要求23所述的方法,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  27. 一种发送设备,其特征在于,包括:
    处理单元,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,所述参考序号集合中任意一个序号对应的极化信道的可靠度大于或等于剩余(N-K)个序号对应的极化信道的可靠度中最大的可靠度,K≥1且为整数;
    所述处理单元,还用于根据判定条件和所述参考序号集合,确定信息比特序号集合,其中,所述判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
    所处处理单元,还用于根据所述信息比特序号集合,对待编码比特进行极化编码。
  28. 根据权利要求27所述的发送设备,其特征在于,所述处理单元具体用于在确定不满足所述判定条件的情况下,将所述参考序号集合确定为所述信息比特序号集合。
  29. 根据权利要求27所述的发送设备,其特征在于,所述处理单元具体用于:
    在确定满足所述所述判定条件的情况下,从所述参考序号集合中确定K 1个第一序号,所述K 1个第一序号中每个第一序号对应的码重为W min,其中,W min等于所述K个非打孔位置序号分别对应的K个码重中的最小码重;
    从可选序号中选择K 2个第二序号替换所述K 1个第一序号中的K 2个第一序号,得到所述信息比特序号集合,所述可选序号为所述N个极化信道的序号中除了所述参考序号集合和打孔位置序号之外的序号,K 2≤K 1
    其中,所述K 2个第二序号满足如下条件中的任意一项:
    所述K 2个第二序号中的每个第二序号对应的码重大于所述W min,且每个第二序号对应的极化信道的可靠度大于或等于所述可选序号中除了所述第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;
    所述K 2个第二序号中的最小的序号大于所述可选序号中除去所述K 2个第二序号后最大的序号;
    所述K 2个第二序号中每个第二序号的码重大于或等于2W min
  30. 根据权利要求27至29中任一项所述的发送设备,其特征在于,所述判定条件为下列条件中的至少一个:
    母码长度大于或等于预设母码长度阈值;
    码率大于或等于预设的码率阈值;
    所述参考序号集合中包括的K 1个非打孔位置序号对应的码重中最小码重的数目大于或等于数量阈值;
    所述参考序号集合中的各个序号对应的各个码重中的最小码重小于或等于预设的码重阈值。
  31. 根据权利要求27至30中任一项所述的发送设备,其特征在于,所述处理单元还用于:
    根据极化权重的计算公式,确定所述N个极化信道的极化权重;
    将所述N个极化信道的极化权重的排序,确定为所述N个极化信道的可靠度的排序,
    所述极化权重的计算公式为:
    Figure PCTCN2018085797-appb-100005
    其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。
  32. 根据权利要求31所述的发送设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  33. 根据权利要求31所述的发送设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  34. 根据权利要求31所述的发送设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  35. 根据权利要求30至34中任一项所述的发送设备,其特征在于,在所述判定条件为所述参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈 值的情况下,所述处理单元还用于:
    计算所述参考序号集合中包括的K 1个序号对应的K 1个码重;
    从所述K 1个序号对应的K 1个码重中确定最小码重。
  36. 一种发送设备,其特征在于,包括:
    处理单元,用于根据极化权重的计算公式计算码长为N的极化码的N个极化信道的极化权重,所述极化权重的计算公式为:
    Figure PCTCN2018085797-appb-100006
    其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
    所述处理单元,还用于根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
    所述处理单元,还用于根据所述信息比特序号集合对待编码比特进行极化编码。
  37. 根据权利要求36所述的发送设备,其特征在于,所述(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  38. 根据权利要求36所述的发送设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  39. 根据权利要求36所述的发送设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  40. 一种接收设备,其特征在于,包括:
    处理单元,用于根据码长为N的极化码的N个极化信道的可靠度的排序和信息比特数目K,选择K个非打孔位置序号作为参考序号集合,其中,所述参考序号集合中任意一个序号对应的极化信道的可靠度大于剩余(N-K)个序号对应的极化信道的可靠度,K≥1且为整数;
    所述处理单元,还用于根据判定条件和所述参考序号集合,确定信息比特序号集合,其中,所述判定条件是根据码率、极化码的母码码长和码重中的至少一种设定的;
    所述处理单元,还用于根据所述信息比特序号集合对待译码序列进行译码。
  41. 根据权利要求40所述的接收设备,其特征在于,所述处理单元具体用于在确定不满足所述判定条件的情况下,将所述参考序号集合确定为所述信息比特序号集合。
  42. 根据权利要求40所述的接收设备,其特征在于,所述处理单元具体用于:
    在确定满足所述判定条件的情况下,从所述参考序号集合中确定K 1个第一序号,所述K 1个第一序号中每个第一序号对应的码重为W min,其中,W min等于所述K个非打孔位置序号分别对应的K个码重中的最小码重;
    从可选序号中选择K 2个第二序号替换所述K 1个第一序号中的K 2个第一序号,得到所述信息比特序号集合,所述可选序号为所述N个极化信道的序号中除了所述参考序号集合和打孔位置序号之外的序号,K 2≤K 1
    其中,所述K 2个第二序号满足如下条件中的至少一项:
    所述K 2个第二序号中的每个第二序号对应的码重大于所述W min,且每个第二序号对应的极化信道的可靠度大于或等于所述可选序号中除了所述第二序号和打孔位置序号之外的序号中任意一个序号对应的极化信道的可靠度;
    所述K 2个第二序号中的最小的序号大于所述可选序号中除去所述K 2个第二序号后最大的序号;
    所述K 2个第二序号中每个第二序号的码重大于或等于2W min
  43. 根据权利要求40至42中任一项所述的接收设备,其特征在于,所述判定条件为下列条件中的至少一个:
    母码长度大于或等于预设母码长度阈值;
    码率大于或等于预设的码率阈值;
    所述参考序号集合中包括的K 1个非打孔位置序号对应的码重中最小码重的数目大于或等于数量阈值;
    所述参考序号集合中的各个序号对应的各个码重中的最小码重小于或等于预设的码重阈值。
  44. 根据权利要求40至43中任一项所述的接收设备,其特征在于,所述处理单元还用于:
    根据极化权重的计算公式,确定所述N个极化信道的极化权重;
    将所述N个极化信道的极化权重的排序,确定为所述N个极化信道的可靠度的排序,
    所述极化权重的计算公式为:
    Figure PCTCN2018085797-appb-100007
    其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2]。
  45. 根据权利要求44所述的接收设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  46. 根据权利要求44所述的接收设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  47. 根据权利要求44所述的接收设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  48. 根据权利要求43至47中任一项所述的接收设备,其特征在于,在所述判定条件为所述参考序号集合中的序号对应的码重中的最小码重小于或等于预设的码重阈值的情况下,所述处理单元还用于:
    计算所述参考序号集合中包括的K 1个序号对应的K 1个码重;
    从所述K 1个序号对应的K 1个码重中确定最小码重。
  49. 一种接收设备,其特征在于,包括:
    处理单元,用于根据极化权重的计算公式,计算码长为N的极化码的N个极化信道的极化权重,所述极化权重的的计算公式为:
    Figure PCTCN2018085797-appb-100008
    ,其中,W i为第i个极化信道的极化权重,i∈{0,1,...,n-1},j∈{0,1,...,n-1},B j∈{0,1},i=B n-1B n-2...B 0,B n-1B n-2...B 0为i的二进制表示,a 1、a 2、a 3、b 1、b 2、b 3、c 1、c 2、c 3、d 1、d 2、d 3、f 1、f 2、f 3的取值范围均为[-2,2];
    所处处理单元,还用于根据所述N个极化信道的极化权重和信息比特数目K,确定信息比特序号集合;
    所述处理单元,还用于根据所述信息比特序号集合对待译码序列进行译码。
  50. 根据权利要求49所述的接收设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),且a 2=a 3=0。
  51. 根据权利要求49所述的接收设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 2,b 2,c 2,d 2,f 2)的一组取值为(1/4,1,1,0,1/16),且a 3=0。
  52. 根据权利要求49所述的接收设备,其特征在于,(a 1,b 1,c 1,d 1,f 1)的一组取值为(1,1.07,1,0.5,1/4)、(1,1.1,1,0.5,1,1/4)或(1,1,1,0,1/4),(a 3,b 3,c 3,d 3,f 3)的一组取值为(1,1.2,1,0,1),且a 2=0。
  53. [根据细则91更正 19.07.2018] 
    一种存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述存储的指令在计算机上运行时,计算机执行上述权利要求1至9任一项所述的编码方法。
  54. [根据细则91更正 19.07.2018] 
    一种存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述存储的指令在计算机上运行时,计算机执行上述权利要求10至22任一项所述的编码方法。
PCT/CN2018/085797 2017-05-05 2018-05-07 编码方法、装置和设备 WO2018202195A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18793834.5A EP3598649B1 (en) 2017-05-05 2018-05-07 Polar code encoding method, apparatus and device with selection of polarized channels based on reliability and minimum code weight
US16/661,931 US11063608B2 (en) 2017-05-05 2019-10-23 Coding method and apparatus, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710314076 2017-05-05
CN201710314076.5 2017-05-05
CN201710648424.2 2017-08-01
CN201710648424.2A CN108809333B (zh) 2017-05-05 2017-08-01 极化码编译码的方法、发送设备和接收设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/661,931 Continuation US11063608B2 (en) 2017-05-05 2019-10-23 Coding method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2018202195A1 true WO2018202195A1 (zh) 2018-11-08

Family

ID=64015910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085797 WO2018202195A1 (zh) 2017-05-05 2018-05-07 编码方法、装置和设备

Country Status (1)

Country Link
WO (1) WO2018202195A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684477A (zh) * 2012-09-24 2014-03-26 华为技术有限公司 混合极性码的生成方法和生成装置
CN105811998A (zh) * 2016-03-04 2016-07-27 深圳大学 一种基于密度演进的极化码构造方法及极化码编译码系统
US20170111060A1 (en) * 2015-10-15 2017-04-20 Macronix International Co., Ltd. Method and device for performing polar codes channel-aware procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684477A (zh) * 2012-09-24 2014-03-26 华为技术有限公司 混合极性码的生成方法和生成装置
US20170111060A1 (en) * 2015-10-15 2017-04-20 Macronix International Co., Ltd. Method and device for performing polar codes channel-aware procedure
CN105811998A (zh) * 2016-03-04 2016-07-27 深圳大学 一种基于密度演进的极化码构造方法及极化码编译码系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598649A4 *

Similar Documents

Publication Publication Date Title
US11539457B2 (en) Method for encoding information in communication network
EP3598649B1 (en) Polar code encoding method, apparatus and device with selection of polarized channels based on reliability and minimum code weight
RU2716739C1 (ru) Способ, аппаратура и устройство полярного кодирования
EP3584972B1 (en) Polar code encoding method and apparatus
CN106982172B (zh) 确定极化码传输块大小的方法和通信设备
US11057054B2 (en) Channel coding method and apparatus in communication system
US20200220648A1 (en) Polar Code Rate Matching Method And Apparatus
WO2018196786A1 (zh) Polar码的速率匹配方法及装置
US20200067531A1 (en) Polar code encoding and decoding method and apparatus
CN109150384A (zh) 极化码编码的方法和装置
CN109286403B (zh) 极化码编码的方法和装置
US11115054B2 (en) Polar code encoding method and apparatus
WO2018202195A1 (zh) 编码方法、装置和设备
CN108880565B (zh) 极化码的编译码方法和通信设备
CN109088698B (zh) 一种编码方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018793834

Country of ref document: EP

Effective date: 20191018

NENP Non-entry into the national phase

Ref country code: DE